
University of Southern Queensland
Faculty of Health, Engineering and Sciences

DOMINATION PROBLEMS IN SOCIAL NETWORKS

A Dissertation submitted by
Guangyuan Wang, MSc

For the award of
Doctor of Philosophy

2014

Abstract

The thesis focuses on domination problems in social networks. Domination prob-
lems are one of the classical types of problems in computer science. Domination
problems are fundamental and widely studied problems in algorithms and com-
plexity theory. They have been extensively studied and adopted in many real-life
applications. In general, a set D of vertices of a simple (no loops or multiple
edges), undirected graph G = (V,E) is called dominating if each vertex in V −D
is adjacent to some vertex in D. The computational problem of computing a
dominating set of minimum size is known as “the dominating set problem”. The
dominating set problem is NP-hard in general graphs.

A social network - the graph of relationships and interactions within a group of
individuals - plays a fundamental role as a medium for the spread of informa-
tion, ideas, and influence among its members. In a social network, people, who
have problems such as drinking, smoking and drug use related issues, can have
both positive and negative impact on each other and a person can take and move
among different roles since they are affected by their peers. As an example, posi-
tive impacts of intervention and education programs on a properly selected set of
initial individuals can diffuse widely into society via various social contacts: face
to face, phone calls, email, social networks and so on. Exploiting the relation-
ships and influences among individuals in social networks might offer considerable
benefit to both the economy and society.

In order to deal with social problems, the positive influence dominating set (PIDS)
is a typical one to help people to alleviate these social problems. However, existing
PIDS algorithms are usually greedy and finding approximation solutions that are
inefficient for the growing social networks. By now these proposed algorithms
can deal with social problems only in undirected social networks with uniform
weight value. To overcome the shortcomings of the existing PIDS model, a novel
domination model namely weight positive influence dominating set (WPIDS) is
presented. A main contribution of the thesis is that the proposed WPIDS model
can be applied in weighted directed social networks. It considers the direction and
degree of users’ influence in social networks in which the PIDS model does not.
The experimental results have revealed that the WPIDS model is more effective
than the PIDS model.

At the same time, thanks to the publication of Dijkstra’s pioneering paper, a lot
of self-stabilizing algorithms for computing minimal dominating sets have been

ii

proposed, such as the self-stabilizing algorithms for minimal single dominating
sets and minimal k-dominating sets (MKDS). However, for the MKDS problem,
so far there is no self-stabilizing algorithm that works in arbitrary graphs. The
proposed algorithms for the MKDS either work for tree graphs or find a minimal
2-dominating set. So, in the thesis, for the MKDS problem, two self-stabilizing
algorithms are presented that can operate on general graphs. For the weighted
dominating set (WDS) problem, most of the proposed algorithms find approx-
imation solutions to a WDS. For the non-uniform WDS problem, there is no
self-stabilizing algorithm for the WDS. In the thesis, self-stabilizing algorithms
for the minimal weighted dominating set (MWDS) and minimal positive influence
dominating set (MPIDS) are presented when operating in any general network.
The worst case convergence time of the two algorithms from any arbitrary initial
state are also proved. Finally, in order to reduce cost in an education/intervention
programme arising from the PIDS problem, two cooperative cost games about
PIDS problem are constructed.

Keywords: Social problems, Dominating set, Positive influence dominating set,
Weighted positive influence dominating set, K -dominating set, Weighted domi-
nating set, Self-stabilizing algorithm, Daemon, Cooperative cost games, Comput-
ing complexity.

Certification of Dissertation

I certify that the ideas, experimental work, results, analysis and conclusions re-
ported in this dissertation are entirely my own effort, except where otherwise
acknowledged. I also certify that the work is original and has not been previously
submitted for any other award.

Guangyuan Wang, Candidate Date

ENDORSEMENT

Prof. Hua Wang, Principal supervisor Date

Dr Ji Zhang, Co-supervisor Date

Dr Xiaohui Tao, Co-supervisor Date

Acknowledgments

I would like to thank my supervising Professor Hua Wang for constantly moti-
vating and encouraging me, and also for his invaluable advice during the course
of my doctoral studies. I am extremely fortunate to have had the opportunity
to work with him over the past few years. In addition, I would like to thank Dr.
Xiaohui Tao and Dr. Ji Zhang for their support, feedback, and encouragement.

I would also like to extend my appreciation to the Centre for Systems Biology
(CSBi), Department of Mathematics and Computing, Faculty of Science and
Research and Higher Degree office of University of Southern Queensland for pro-
viding the excellent study environment and financial support. It is my great
pleasure to study at the Department of Mathematics and Computing.

I also acknowledge our friends Alan and Mee Wah Roocroft for their help on
proof-reading the dissertation. Finally, on a personal note, I would never have
made it this far without the continuing support and encouragement from my
family; Qinghe Wang, Bingfen Su, and Menglin Qiao.

List of Publications

The following publications were produced during the period of candidature:

1. G. Wang, H. Wang, X. Tao and J. Zhang: Finding Weighted Positive In-
fluence Dominating Set to Make Impact to Negatives - A Study on Social
Networks in New Millennium. To appear in ICTs and the Millennium De-
velopment Goals - A United Nations Perspective (Ed. by Haur and Tao),
2014, Springer.

2. G. Wang, H. Wang, X. Tao, J. Zhang and X. Yi: Positive influence domi-
nating set games. To appear in the 18th IEEE International Conference on
Computer Supported Cooperative Work in Design (CSCWD 2014), 2014.

3. G. Wang, H. Wang, X. Tao, J. Zhang and J. Zhang: Minimising k-dominating
set in arbitrary network graphs. In proceedings of the 9th International
Conference on Advanced Data Mining and Applications (ADMA 2013), pp:
120-132, 2013.

4. G. Wang, H. Wang, X. Tao, J. Zhang and G. Zhu: Finding a weighted
positive influence dominating set in e-learning social networks. Internal
Journal Computing & Technology, 10(10), pp: 2136-2145, 2013.

5. G. Wang, H. Wang, X. Tao and J. Zhang: A self-stabilizing protocol for
minimal weighted dominating sets in arbitrary networks. In proceedings of
the 17th IEEE International Conference on Computer Supported Cooper-
ative Work in Design (CSCWD 2013), pp: 496-501, 2013.

6. G. Wang, H. Wang, X. Tao and J. Zhang: A self-stabilizing algorithm for
finding a minimal positive influence dominating set in social networks. In
proceedings of 24th Australasian Database Conference (ADC 2013), pp:
93-99, 2013.

7. G. Wang, H. Wang, X. Tao and J. Zhang: A self-stabilizing algorithm
for finding a minimal k-dominating set in general networks. In proceed-
ings of 2012 International Conference on Data and Knowledge Engineering
(ICDKE2012), pp: 74-85, 2012.

8. G. Wang, H. Wang, X. Tao and J. Zhang: Positive influence dominating
set in e-Learning social networks. In proceedings of the 10th International
Conference on Web-based Learning (ICWL 2011), pp: 82-91, 2011.

Contents

Abstract i

Certification of Dissertation iii

Acknowledgments iv

List of Publications v

List of Figures ix

List of Tables x

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Research Problem Statement . 5

1.3 Contributions . 5

1.4 Structure of the Thesis . 6

Chapter 2 Weighted Positive Influence Dominating Set 8

2.1 Introduction . 8

2.2 Motivations and Contributions . 9

2.3 Problem Definition . 11

2.4 Weighted Positive Influence Dominating Set Algorithms 12

2.5 Experimental Evaluations . 16

2.5.1 Simulation Program Design 17

2.5.2 Evaluation Metrics . 17

2.5.3 Experimental Results . 18

2.6 Case Study . 20

2.6.1 Discussions . 21

2.7 Summary . 21

Chapter 3 Self-Stabilization and K-Dominating Set 23

3.1 Introduction . 23

CONTENTS vii

3.2 Self-Stabilization . 24

3.3 K -Dominating Set Problem . 26

3.4 Motivations and Contributions . 27

3.5 Minimal K-Dominating Set Algorithm 28

3.5.1 An Illustration of a Minimal 3-Dominating Set 29

3.6 Convergence of the K-Dominating Set Algorithm 3.1 32

3.7 Related Work and Algorithm Comparison 34

3.8 Summary . 36

Chapter 4 A Self-Stabilizing Algorithm for K-Domination 37

4.1 Introduction . 37

4.1.1 K-Dominating Set Problem 37

4.1.2 Self-Stabilizing Algorithm 38

4.2 Related Work . 38

4.3 Motivations and contributions . 40

4.4 K-Dominating Set Algorithm . 40

4.4.1 Formal Definition of the MKDS Problem 41

4.4.2 Proposed Algorithm . 41

4.5 The Stabilization Time of Algorithm 4.1 42

4.6 Algorithm Comparison . 45

4.7 Summary . 46

Chapter 5 A Self-Stabilizing Algorithm for Weighted Domination 47

5.1 Introduction . 47

5.2 Dijkstra’s Central Daemon Model 48

5.3 Motivations and Contributions . 49

5.4 Weighted Dominating Set . 49

5.5 Weighted Dominating Set Algorithm 51

5.5.1 An Illustration . 52

5.6 The Stabilization Time of Algorithm 5.1 52

5.7 Related Work and Comparisons 55

5.8 Summary . 56

Chapter 6 A New Algorithm for the Positive Influence Dominating Set 57

6.1 Introduction . 57

6.1.1 Positive Influence Dominating Set 57

6.2 Self-Stabilization . 59

6.3 Motivations and Contributions . 59

6.4 Positive Influence Dominating Set 60

6.5 Positive Dominating Set Algorithm 61

6.5.1 Proposed Algorithm . 62

CONTENTS viii

6.5.2 An Illustration . 62

6.5.3 The Stabilization Time of Algorithm 6.1 64

6.6 Related Work and Comparison 65

6.7 Summary . 67

Chapter 7 Positive Influence Dominating Set Games 68

7.1 Introduction . 68

7.1.1 Cooperative Game . 68

7.1.2 Positive Influence Dominating Set Problem 70

7.2 Related Work . 70

7.3 Motivations and Contributions . 72

7.4 Definition of Positive Influence Dominating Set Games 72

7.4.1 Cooperative Game . 73

7.5 Positive Influence Dominating Set Games 73

7.6 The Balancedness of the PIDS Game 75

7.6.1 Balancedness of the relaxed PIDS game 75

7.6.2 Computational Complexity on Cores 76

7.7 Summary . 77

Chapter 8 Conclusions 78

8.1 Overview of Previous Chapters 78

8.2 Key Outcomes . 80

8.3 Future Research . 80

References 82

Appendices 91

Appendix A Procedure Code 92

Appendix B Experimental Data 104

List of Figures

1.1 An example of a dominating set 2

2.1 An example of a PIDS graph model 10
2.2 An example of a WPIDS graph model with an authority 13
2.3 An example of a WPIDS selection algorithm graph model 16
2.4 A case study of a WPIDS selection algorithm group model 20

3.1 A M2DS example . 26
3.2 A M3DS example to illustrate the execution of Algorithm 3.1. . . 30
3.3 A M3DS example to illustrate the execution of Algorithm 3.1. . . 31
3.4 The M3DS result of Figs. 3.2 and 3.3 by running Algorithm 3.1. . 31

4.1 A M2DS example to illustrate the execution of Algorithm 4.1. . . 43

5.1 An example to illustrate the execution of Algorithm 5.1. 53

6.1 An example to illustrate the execution of Algorithm 6.1 63

List of Tables

2.1 Result of the simulation program by WPIDS selection algorithm 2.1 18
2.2 Result of the simulation program by WPIDS selection algorithm 2.2 19
2.3 Comparison between WPIDS and PIDS selection algorithms . . . 19

3.1 Self-stabilizing algorithms for the dominating set 35

4.1 Algorithms for the dominating set 45

5.1 Self-stabilizing algorithms for the dominating set 56

6.1 Algorithms for the dominating set 66

Chapter 1

Introduction

1.1 Introduction

Graph Domination problems are one of the classical types of problems in computer
science. Domination problems are fundamental and widely studied problems in
algorithms and complexity theory. They are an important class of combinatorial
problems with many practical and theoretical applications. For example, in con-
structing a cellular phone network, one needs to choose locations for the towers
to cover a large region as cheaply as possible. This is a domination problem: the
vertices of the graph are the locations that need coverage, the neighborhood of a
vertex is the area that a tower at that vertex would cover, and a dominating set
is any set of locations at which one could place towers to cover the whole region.

Mathematical study of domination in graphs began around 1960, beginning with
Claude Berge [1] in 1962. He introduced the coefficient of external stability, which
is now known as the domination number of a graph. Oystein Ore [2] introduced
the terms dominating set and domination number in his book on graph theory
which was published in 1962. A decade later, Cockayne and Hedetniemi [3]
published a survey paper, in which the notation γ(G) was first used for the
domination number of a graph G. In 1998, a book [4] on domination has been
published which lists 1222 papers in this area. Since this book was published,
domination in graphs has been studied extensively and several additional research
papers have been published on this topic. Recently, domination problems have
been extensively studied and adopted in many real-life applications in fields such
as optimisation, communication networks and network design, social network
theory, computational complexity, and algorithm design. Many facility location,
resource allocation, and scheduling problems, are variants of graph domination
problems [5–10].

In general, a set D of vertices of a simple (no loops or multiple edges), undirected
graph G = (V,E) with vertex set V and edge set E is called dominating if each
vertex in V −D is adjacent to some vertex in D. That is if every vertex v ∈ V is
either in D or adjacent to some vertex in D. For clarity, we assume that all the
graphs in this thesis are simple and undirected unless separately defined. Let us
start by formally introducing a prominent graph domination problem:

Introduction 2

Bob

Don Ann

Tom

Figure 1.1: An example of a dominating set

Dominating Set Problem1

Input: A graph G = (V,E) with vertex set V and edge set E and an integer
k ∈ N (N is the set of natural numbers).
Question: Does there exist a dominating set D ⊆ V in G of size at most k?

We use an illustration to further understand the dominating set (DS). For exam-
ple, there are four persons in Fig. 1.1 and their relationships constitute a complete
graph. We can say anyone of the four persons is a DS of the four persons group.
Due to the practical applications of dominating sets, there are many variations of
dominating sets such as Total Dominating Set (TDS) [11–14], Weighted Dominat-
ing Set (WDS) [15–18], Connected Dominating Set (CDS) [19–24], K-Dominating
Set (KDS) [25,26], Positive Influence Dominating Set (PIDS) [27,28] and so on.

Recently, online social network has developed significantly in the new millennium.
For example, online social network sites like Facebook, MySpace and Twitter are
among the most popular sites on the Internet. Some research has been done to
understand the properties of online social networks [29–34] and how to effectively
utilize social networks to spread ideas and information within a group [27, 28,
35, 36]. Among these research, Wang et. al explored the problem of how to
utilize online social networks to help alleviate social problems in the physical
world [27, 28]. The social problems include drinking, smoking, drug use and so
on. Within the context of the drinking problem, for example, a person can be
an abstainer, or an alcoholic. An abstainer has positive impact on his direct
friends (called neighbourhoods), but he might turn into an alcoholic and have
negative impact on his neighbourhoods if many of his friends are alcoholics and
vice versa. Ideally, in an alcohol intervention programme the purpose is to educate
all alcoholics, since this will reduce the possibility of the converted alcoholics
being influenced by his alcoholic friends who are not selected in the intervention
programme. On the other hand, due to the financial limitations in budget, it is too

1We will develop algorithms for the dominating set problem in the following Chapters.

1.1 Introduction 3

expensive to select all the alcoholics in an intervention programme. Therefore, it
becomes an important research problem as to how to select a subset of individuals
to be part of the programme so that the effect of the intervention programme can
spread through the whole group under consideration.

To deal with the above social problems, Wang et. al [27] introduced the notion of
the positive influence dominating set (PIDS) and proposed a greedy approxima-
tion PIDS selection algorithm in 2009. Recall that D ⊆ V is a positive influence
dominating set (PIDS) [27,28] if any node v ∈ V is dominated by at least ⌈d(v)

2
⌉

nodes (that is, v has at least ⌈d(v)
2
⌉ neighbours) in D where d(v) is the degree of

node v. Note that there are two requirements for PIDS:

(i) Every node not in D has at least half of its neighbours in D;

(ii) Every node in D also has at least half of its neighbours in D.

Wang et al. [27] revealed that approximately 60% of the whole group under
consideration needs to be selected into the PIDS in order to achieve the goal that
every individual in the community has more positive neighbours than negative
neighbours. However, the proposed algorithm can deal with social problems only
in undirected social networks with uniform weight value. If we consider some
key factors, such as the attribute, direction and degree of each person’s influence,
the size of the solution for selecting a proper subset of the whole group might be
smaller and the algorithm might be more effective and economical. Exploiting
the relationships and influences among individuals in social networks might offer
considerable benefit to both the economy and society.

Following the key factors as we analyzed above, Figure 1.1 is a proper example
which illustrates the scenario as discussed above. In Figure 1.1, Bob, Tom, Don
and Ann are four equal e-learners in a small group. Any three of them is a PIDS
satisfying its definition (requirements (i) and (ii)). But if Bob is a tutor and
has strong positive influence on others, only Bob can positively affect (dominate)
others.

In this thesis we would like to explore how to select a subset of individuals to
be part of the programme so that the effect of the intervention programme can
spread through the whole group under consideration. We consider the degree and
direction of each user’s influence, propose a novel DS named weighted positive
influence dominating set (WPIDS) and develop two WPIDS selection algorithms
in e-learning environments.

The computational problem of computing a DS of minimum size is known as dom-
ination problems. Domination problems are all NP-hard in general graphs [11,37].
Nowadays, it is commonly believed that NP-hard problems cannot be solved in
polynomial times. For these problems one remaining hope is to design exact al-
gorithms with good exponential running times [38, 38–44]. The fastest currently
known exact algorithms for the DS are around O(1.5n) where n is the number
of nodes [41, 42]. So numbers of researchers study exact exponential algorithms
for the domination problem on certain special graph classes [38,43]. Another re-
search direction is to compute approximation solutions to domination problems.

Introduction 4

Research on local algorithms has been thriving again [45–48], probably thanks to
emerging applications in ad hoc and sensor networks. To get a virtual backbone
(connected DS), Guha, Khuller, and Du et al. [20–23,49–51] presented some two-
stage greedy approximation algorithms and interesting results by utilizing the
property of wireless networks.

Owing to the rapid development of social network services, domination problems
in social networks have become important issues [27,28,36,52]. Eubank et al. [36]
proposed a greedy approximation algorithm and proved that the algorithm gives
an 1 + O(1) approximation with a small constant in O(1) to the DS problem
in a power-law graph. Kleinberg et al. [53] studied online social networks, in
which relationships can be either positive or negative. Wang et al. introduced
a new DS, called PIDS which can help alleviate social problems in the physical
world [27,28].

Although domination problems are all NP-hard in general graphs [11, 37], which
means to find a minimum DS is NP-hard in general graphs, some proposed self-
stabilizing algorithms for minimal dominating sets are in polynomial time (steps
or rounds) complexity [26,54] or linear time (steps or rounds) complexity [54,55].

Self-stabilization is an optimistic fault tolerance approach for distributed sys-
tems. It was introduced by Dijkstra [56, 57]. Self-stabilization can be used to
solve a variety of graph theoretic problems such as dominating sets [58, 59], in-
dependent sets [54, 59, 60], colorings [61–63], and matchings [64–66] problems in
graphs. According to Dijkstra’s work, a self-stabilizing system is guaranteed to
reach a correct state, in a finite time, regardless of its initial state [67]. Thus, a
self-stabilizing system can recover from any transient fault without any external
intervention. Self-stabilization is also a non-masking approach, since after the oc-
currence of a transient fault, the system exhibits temporarily disrupted behaviour
for a certain period of time.

A fundamental idea of self-stabilizing algorithms is that the distributed system
may be started from an arbitrary global state. After finite time the system reaches
a correct global state, called a legitimate or stable state. An algorithm is self-
stabilizing if the following two properties hold: convergence and closure. That is,
when the system executes the algorithm,

(1) for any initial illegitimate state it reaches a legitimate state after a finite
number of node moves (convergence), and

(2) for any legitimate state and for any move allowed by that state, the next
state is a legitimate state (closure).

However, the current proposed self-stabilizing algorithms for the minimal k-
dominating set (MKDS) problem either work for tree graphs (Kamei and Kaku-
gawa [26] or find a minimal 2-dominating set (Huang et al. [55, 68]). There are
seldom self-stabilizing algorithms for the MKDS that work in arbitrary graphs.
Another shortcoming for the generalized DS (Goddard et al. [58]) is that most of
the existing algorithms work for uniform weight cases. The weight value of each
node in most of the proposed algorithms is uniform [26,26,54,55,58]. Meanwhile,
the polynomial time approximation algorithms for weighted domination problems
are all greedy algorithms for finding approximation solutions [16–18]. There are

1.2 Research Problem Statement 5

seldom self-stabilizing algorithms for the weighted dominating set (WDS) prob-
lem.

In this thesis, we have the motivations to extend the PIDS model which can
deal with social problems only in undirected social networks with uniform weight
and the minimal 2-dominating set (M2DS) to the general k: the minimal k-
dominating set (MKDS). We have proposed a novel DS, namely weight positive
influence dominating set (WPIDS) considering the direction and degree of users’
influence in weighted directed social networks in which the PIDS model does not.
To extend Huang et al.’s work, two self-stabilizing algorithms have been proposed
for the MKDS when operating in any general networks. Moreover, two self-
stabilizing algorithms for finding a minimal weighted dominating set (MWDS)
and an MPIDS under a central daemon in a general graph are presented. Finally,
we consider cooperative cost games arising from the PIDS problem which can
deal with social problems. We introduce two games, the rigid PIDS game and
relaxed PIDS game and focus on the cores of both games.

1.2 Research Problem Statement

Based on the background knowledge and the research gap we discuss above, we
list five research problems.

• Problem A: How to find a smaller DS in an education/intervention pro-
gramme to positively dominate the whole group?

• Problem B: How to find an MKDS2 in any general network.

• Problem C: How to find an MWDS3 in any general networks.

• Problem D: How to find an MPIDS4 in any general social network.

• Problem E: How to distribute the total cost among the individual players
in a “fair” way to ensure that no coalition would have an incentive to split
from the grand coalition V , and do better on its own when there is a PIDS.

1.3 Contributions

In this section, we list our models and algorithms which we have solved these five
problems we listed above.

First, the research is as to how to effectively select positive e-learners to affect an
individual in the e-learning network becomes “positive” if half of its neighbours
are “positive” about adopting a product or behaviour. We give both theoretical
justification and empirical verification for the two proposed selection algorithms
[69, 70]. Second, we are interested in an MKDS in any general networks [71, 72].

2Refer to Definition 3.1 in Chapter 3.
3Refer to Definition 5.1 in Chapter 5.
4Refer to Definition 6.1 in Chapter 6.

Introduction 6

Third, we extend Huang et al.’s work and consider the extension problem of
M2DS mentioned in [55, 68]. We will solve that extension problem for general
k (i.e., for k being an arbitrary positive integer) in general networks. We firstly
develop two new self-stabilization algorithms for finding an MKDS in a general
network. The first algorithm works under a central daemon [71] and the second
one works under a distributed daemon [72]. We discuss the PIDS problem further.
We propose a self-stabilizing algorithm for an MPIDS [73] and discuss the core
of the PIDS games [74]. The contributions of this thesis are as follows:

1. A new DS named WPIDS and its model are defined. Two WPIDS selection
algorithms to solve Problem A are proposed. The model reasonably utilizes
its online social network structure to help e-learners to improve their study
achievements [69,70]. It overcomes the drawbacks that the PIDS model can
deal with social problems only in undirected social networks with uniform
weight. The effectiveness of our two WPIDS selection algorithms has been
evaluated by simulation experiments. The experimental results show the
size of the WPIDS is much smaller than that of the PIDS model.

2. A self-stabilizing algorithm for finding an MKDS under a central daemon in
an arbitrary simple connected undirected network graph to solve Problem
B is presented. The correctness of the proposed algorithm is verified. The
computational complexity of the algorithm is proved that the worst case
convergence time of the algorithm from any arbitrary initial state is O(n2)
steps where n is the number of nodes in the network [71].

3. A self-stabilizing algorithm for finding an MKDS under a distributed dae-
mon in an arbitrary connected simple undirected graph to research Problem
B further is presented. The correctness of the proposed algorithm is veri-
fied; the worst case convergence time of the algorithm from any arbitrary
initial state is proved to be O(n2) steps where n is the number of nodes in
the network graph [72].

4. A self-stabilizing protocol for finding an MWDS in an arbitrary network
graph under a central daemon to solve Problem C is proposed. The worst
case convergence time of the protocol from any arbitrary initial state is
proved to be O(n2) steps where n is the number of nodes in the network [75].

5. A self-stabilizing algorithm for finding an MPIDS in an arbitrary network
graph under a central daemon to solve Problem D. The worst case conver-
gence time of the protocol from any arbitrary initial state is proved to be
O(n2) steps where n is the number of nodes in the network [73].

6. Two new game models, the rigid PIDS game and relaxed PIDS game are
presented. A relationship between the cores of both games is obtained. The
core of the relaxed PIDS game is discussed to solve Problem E [74].

1.4 Structure of the Thesis

The outcomes of about three years worth of research for the PhD thesis has been
presented in eight chapters. Briefly the contents of each chapter are as follows:

1.4 Structure of the Thesis 7

Chapter 1 - In the first chapter, we have discussed the background of domination
problems and listed the research problems or what we can improve for domination
problems. We have also listed our contributions or what we have done to solve
these research problems.

Chapter 2 - We analyze the problem of how to utilize online social network as
a medium to improve users’ study achievements in e-learning environments. We
have proposed a new DS named WPIDS and two WPIDS selection algorithms
to evaluate the effect of educating a subset of the entire target group susceptible
to a social problem. The simulation experimental results have revealed that the
WPIDS model and selection algorithms are more effective than the PIDS one [27].

Chapter 3 - We extend Huang et al.’s work and consider the extension prob-
lem of M2DS mentioned in [55, 68]. We have solved the extension problem for
general k (i.e., for k being an arbitrary positive integer) in general networks. We
have first developed a new self-stabilization algorithm for finding an MKDS in a
general network that works under a central daemon. We have also analyzed the
correctness and time complexity of the proposed algorithm, in which the time
complexity of their algorithm is not been discussed in [68].

Chapter 4 - We have proposed another new self-stabilization algorithm for find-
ing an MKDS in a general network that works under a distributed daemon. We
have also analyzed the correctness and time complexity of the proposed algorithm
in this chapter.

Chapter 5 - We have presented a self-stabilizing protocol for finding an MWDS
in an arbitrary network graph under a central daemon. We have also analyzed
the correctness and time complexity of the proposed algorithm in this chapter.

Chapter 6 - We have first presented a self-stabilizing algorithm for the MPIDS
problem, which can find an MPIDS in large social networks without any isolated
node. We have also proved that the worst case convergence time of the algorithm
from any arbitrary initial state is O(n2) steps where n is the number of nodes in
the network.

Chapter 7 - We investigate cooperative cost games arising from the PIDS prob-
lem on social network graphs. We have proposed two new game models, the
rigid PIDS game and relaxed PIDS game, and focused on their cores. First, a
relationship between their cores of both games is obtained. Next, we have proved
that the core of the relaxed PIDS game is non-empty if and only if there is no
integrality gap for the relaxation linear programming of the PIDS problem on the
graph G.

Chapter 8 - The conclusions of the entire thesis are presented in this chapter.
Firstly, an overview of the entire thesis is provided followed by the major con-
clusions arising from this research. Detailed conclusions based on the specific
objectives and the key outcomes are presented. Finally, the key areas proposed
for further research are identified.

Chapter 2

Weighted Positive Influence
Dominating Set

In order to help alleviate a certain social problem, a variation of dominating
set, called positive influence dominating set (PIDS) was introduced by Wang
et al. [27]. The PIDS can deal with social problems only in undirected social
networks for uniform weight cases [69, 70]. In this chapter, we have motivations
to extend the PIDS to overcome its drawbacks. For example, the PIDS in existing
research does not take into consideration the attributes, directions and degrees
of persons’ influence [27, 28]. We will propose a novel dominating set called
weighted positive influence dominating set (WPIDS) and two WPIDS selection
algorithms in e-learning environments. The WPIDS can deal with social problems
in weighted directed social networks. Experimental results demonstrate that the
proposed WPIDS and algorithms are more reasonable and effective than those
of the PIDS without considering the factors of attribute, direction and weight of
users’ influence in e-learning environments.

The information in this chapter is based on two published papers [69,70].

2.1 Introduction

As the Internet becomes widespread, e-learning communities have become more
and more popular [76–78]. E-learning is an attractive and efficient way for modern
education since e-learning environments are more convenient and source saving
to build compared with the traditional learning environments. In such learning
environments, almost all the resources are provided through the computers and
networks and students can learn at anytime or anywhere. Meanwhile, the inter-
action and collaboration of tutors and students also play important roles in the
e-learning programme. Social interaction within an online framework can help
students share experiences and collaborate on relevant topics.

Recently, some research has been done to understand the properties of e-learning.
Many educators and researchers have proposed their designs, described their im-
plementation and shared their experiences from different points of view on e-
learning environments [77–80]. In fact, the relationship between the e-learning

2.2 Motivations and Contributions 9

users (e-learners) composes an online social network. In e-learning programmes
the tutors and students compose the set of e-learners. There are some different
studying groups according to their interests and purposes. The fact is that each
e-learner has a different learning ability. For instance, an excellent student, an
average student, or a poor student in terms of their academic records. An ex-
cellent student has positive influence on his direct friends (outgoing neighbours),
but he might turn into a poor student and has negative influence on his outgoing
neighbours if he is affected by many of his friends who are poor students, and vice
versa. Besides, an e-learner can be an authority such as a tutor who has strong
positive influence on others. It is very important to divide groups such that there
are plenty of tutors or excellent students in each group to have positive influence
to help other students.

On the other hand, due to the financial limitations in budget, it is too expensive
to set many tutors in the study programme. Therefore, how to choose a subset
of individuals to be part of the programme so that the effect of the intervention
program can spread through the whole group under consideration becomes an
important research problem. These issues are very intricate and complex prob-
lems. In an effort to address this issue, the specific problem we study in this
chapter is the following: Given an online e-learning social network and the set
of e-learners, we identify a subset of the individuals within the e-learning online
social network to participate in an education/intervention programme such that
the education/intervention can result in a globally positive impact on the other
e-learners.

2.2 Motivations and Contributions

In [27], Wang et al. introduced the notion of the PIDS and proposed a greedy
approximation PIDS selection algorithm in 2009. Recall that D ⊆ V is a positive
influence dominating set (PIDS) [27, 28] if any node i in V is dominated by at

least ⌈d(i)
2
⌉ nodes (that is, i has at least ⌈d(i)

2
⌉ neighbours) in D where d(i) is the

degree of node i. Note that there are two requirements for PIDS:

(i) Every node not in D has at least half of its neighbours in D;

(ii) Every node in D has at least half of its neighbours in D.

Wang et al. [27] revealed that approximately 60% of the whole group under con-
sideration needs to be selected into the PIDS to achieve the goal that every
individual in the community has more positive neighbours than negative neigh-
bours.

Figure. 2.1 is a proper example of PIDS which illustrates the scenario as dis-
cussed above. In Fig. 2.1, Bob, Tom, Don and Ann are four equal e-learners in
a small learning group. Any three of them form a PIDS satisfying its definition
(requirements (i) and (ii)). If Bob is a tutor and has strong positive influence
on others, only Bob can positively affect (dominate) others. Another fact is that
the degrees of influence between two persons are not always equal. But the PIDS
assumes the degrees of influence among them are uniform [27,28].

Weighted Positive Influence Dominating Set 10

Bob

Don Ann

Tom

Figure 2.1: An example of a PIDS graph model

As we discussed above, if we consider some key factors in e-learning environments,
such as the important persons and degree of each e-learner’s influence, the size
of the solution for selecting a proper subset of the whole group might be smaller
and the algorithm might be more effective and economical. In this chapter we
consider the degree and direction of each e-learner’s influence in e-learning social
networks. We propose a novel dominating set named WPIDS and develop two
WPIDS selection algorithms. The effectiveness of our proposed WPIDS model
and algorithms are evaluated by experiments.

The main idea of our research is as to how to effectively select positive e-learners
to affect an individual in the e-learning social network. An individual becomes a
“positive” e-learner if its neighbours’ “positive” influence are more than its neigh-
bours’ “negative” influence. We give both theoretical justification and empirical
verification for the two proposed selection algorithms. Specifically, we prove the
feasibility of the two selection algorithms by a theorem. The contributions of our
work are as follows:

1. A new dominating set named WPIDS and two WPIDS selection algorithms
have been presented. The WPIDS model reasonably utilizes its online social
network structure to help e-learningers to improve their study achievements.

2. The effectiveness of the two WPIDS selection algorithms has been evaluated
by simulation experiments.

3. The differences between WPIDS and PIDS models and the causes why the
WPIDS model is better than PIDS model have been discussed.

2.3 Problem Definition 11

2.3 Problem Definition

In this section, we formulate the WPIDS problem arising from the e-learning so-
cial networks. We will use the following graph model to illustrate the e-learning
social network in the context of the improving study achievement issue: A di-
graph G = (V,A,C,W) is used to represent the e-learning online social network.
V is the set of nodes in which each node is an e-learner in the e-learning social
network; A is the set of arcs in which each direct arc represents the existence of
a social connection/influence between the two endpoints; C is the compartment
vector that saves the compartment of each node. The compartment of a node
decides whether it has positive or negative influence on its outgoing neighbours.
For example, for the improving e-learningers’ study achievements problem, the
compartment of each node is one of the followings: authority (tutor), excellent
student, average student, or poor student. A node in the authority or excellent
student compartment has positive influence and all nodes in any of the other two
compartments have negative influence. W is a set of weight values corresponding
to arcs belong to A. Each arc’s value is decided by the frequency of the two
persons’ interactions.

We assume that:

(i) If the total arcs weight of an individual’s incoming neighbours has positive
impact on him, then the probability that this individual positively impacts
others in the social network is high;

(ii) Education/intervention programmes can convert a negative influential indi-
vidual to a positive influential person;

(iii) There are some authority e-learners (tutors) with no incoming arcs which
means that they are positive e-learners without others’ influence.

The first assumption comes from an extensive body of evidence suggesting that
one of the most powerful predictors of habitual behaviour in individuals is whether
an individual has friends who also engage in that behaviour [81–83]. Due to out-
side competition in terms of personality traits attained from peer influence, the
more neighbours/friends exerting positive influence an individual has, the more
likely he is to impact others in a positive way. The second assumption comes from
the work in [81, 84, 85], where nearly every individual in the feedback interven-
tion programme showed an improving grade in studying. The third assumption
comes from the fact that the tutors are authorities in the study programme who
cannot be affected by other students’ negative influence. With the above three
assumptions, the problem is equivalent to selecting a subset of all the e-learners in
an e-learning programme such that other e-learners in the social network receive
more positive influence than negative influence.

The formal definitions of the WPIDS problem are as follows.

Definition 2.1. (E-learner Social Network). An e-learner social network is

Weighted Positive Influence Dominating Set 12

a weighted digraph G = (V,A,C,W). V is the set of nodes in which each
node is an e-learner in the network; A is the set of arcs between the vertices:
A = {(u, v)|u, v ∈ V, u 7→ v}, where u 7→ v indicates that the e-learner u affects
the e-learner v; C is the compartment vector; the compartment of a node decides
whether it has positive or negative influence on its outgoing neighbours. W is a
set of weight values corresponding to arcs belonging to A. The weight value W of
an arc (u, v) is defined as:

{
w(u, v) ∈ [−1, 0) if the e-learner u is a negative e-learner;
w(u, v) ∈ [0, 1] if the e-learner u is a positive e-learner.

Definition 2.2. (Weighted Positive Influence Dominating Set (WPIDS)). With
Definition 2.1, the WPIDS of an e-learner online social network G is defined as
a subset P ⊆ V such that any node u ∈ V −P is positively dominated by P . That
is,

∀u ∈ V − P, w(u−) =
∑

v∈N−(u)

w(u, v) ≥ 0,

where N−(u) = {v|(v, u) ∈ A} is the set of incoming neighbours of node u.

The WPIDS problem is to find a so-called minimum WPIDS of G, which min-
imizes the total number of its vertices. In this chapter, we will propose two
selection algorithms for the WPIDS problem and find approximate solutions to
the WPIDS problem in large online social networks.

Example 2.1. An example of the WPIDS is shown in Fig. 2.2. Let node v2
represent an authority (tutor) and nodes v1, v3, v4 represent negative students,
and let w(v2, v1) = w(v2, v3) = w(v2, v4) = 0.7, other arcs weight values are -0.3.
According to the definition of WPIDS, the total incoming arcs weight values of
nodes v1, v3, v4 are 0.1. So the subset P = {v2} is a WPIDS, which shows the key
person’s influence.

2.4 Weighted Positive Influence Dominating Set

Algorithms

In this section, we present one theorem and two WPIDS selection algorithms for
the WPIDS problem formalized in the above section. To do so, we first define a
function f as follows.

2.4 Weighted Positive Influence Dominating Set Algorithms 13

v1

2

3 4v

v

v

-0.3

-0.3

-0.3

-0.3

-0.3

-0.3

0.7

0.70.7

Figure 2.2: An example of a WPIDS graph model with an authority

Definition 2.3. Consider a weighted digraph G = (V,A,C,W) as an instance of
WPIDS. For any vertex subset P ⊆ V , we define

f(P) =
∑

v∈V−P min{0, w(n−
P (v))},

where w(n−
P (v)) =

∑
u∈n−

P (v)w(u, v), n
−
P (v) = {u|(u, v) ∈ P} denotes the incom-

ing neighbours of v ∈ P .

The following theorem states important properties of the function f .

Theorem 2.1.

(1) f(∅) = 0.
(2) ∀v ∈ V − P, f(P) = 0, if and only if P is a WPIDS of G.
(3) If f(P) < 0, then there exists a vertex u ∈ V −P such that f(P∪{u}) > f(P).

Proof. Note that n−
∅ (v) = ∅ for all v ∈ V . Therefore (1) holds.

For (2), we note that f(P) = 0 if and only if 0 ≤ w(n−
P (v)) for every v ∈ V − P

if and only if P is a WPIDS.

To see (3), note that f(P) < 0 implies the existence of v ∈ V − P such that
0 > w(n−

P (v)). Let u be an incoming neighbour of v which is not in P and select
u into P , then f(P ∪ {u}) =

∑
v∈V min{0, w(n−

P (v)) + w(u, v)} > f(P).

Theorem 2.1 is the theoretical analysis to conduct two greedy algorithms for the
WPIDS problem formalized in the earlier section. This is very important for
running the algorithms in practice.

We define and explain a few terms and definitions used in the description of our
algorithms. Let a weighted digraph G = (V,A,C,W) be an instance of WPIDS.
Each node of V can have either positive or negative impact on its neighbourhoods.
The positive degree of a node v affects an outgoing neighbour u is the positive

Weighted Positive Influence Dominating Set 14

weight value of v′s outgoing arc weight value w(u, v). The same holds for the
negative degree. The compartment C of a node decides whether the node is a
positive or a negative node. For example, in the e-learning social network, a node
in the tutor compartment is a positive node and a node in any other compartment
is a negative node. Nodes chosen into the WPIDS are marked positive. Thus an
e-learner u is a positive e-learner if u is initially a positive node or u is selected
into the WPIDS. A PIDS P of a graph G is a subset of nodes in G that any
node u in G is dominated by at least ⌈d(u)

2
⌉ positive nodes (that is, u has positive

neighbours in at least half of its neighbourhood) in P where d(u) is the degree of
node u. A WPIDS P of a graph G is a subset of nodes in G such that any node
u in V − P is positively dominated by the positive nodes in P (that is, the total
influence value of u′s incoming neighbours is no less than zero).

We explain the heuristic methods to the two WPIDS selection algorithms as
follows:

Algorithm 2.1: Weighted Positive Influence Dominating Set (WPIDS) Selection
Algorithm

Input: A digraph G = (V,A,C,W) where V is the set of nodes, A is the set of
arcs that capture the social interaction of the nodes, C is the set of
nodes that are initially in a positive compartment.

Output: A subset P ∪ C of V such that any node u in V − P ∪ C has been
positively dominated by P ∪ C, i.e., each node u ∈ V , w(u−) is
non-negative.

1 let V ′ = V − C and set the status of nodes in C to POSITIVE;
2 initialize the status of all nodes in V ′ to NEGATIVE and P to empty;
3 each node u ∈ V ′, calculate w(u−) ;
4 T is the set of nodes in V ′ that have been positively dominated;
5 let V ′ = V ′ − T ;
6 while not every node in V ′ has been positively dominated
7 choose the node u with the minimum negative weight value of its total

outgoing arcs in V ′ into set P , set the status of nodes in P to positive;
resetting the node u has absolute weight value of outgoing arc weights;

8 update P = u ∪ P , V ′ = V ′ − T ;
9 update the positive values of each node in V ′;

10 end of while
11 the nodes in set V − P ∪ C are positively dominated in G, and the

positive influence of each node (w(u−)) in V − P ∪ C is also calculated.
12 OUTPUT: The nodes in set P ∪ C positively dominate set of V − P ∪ C, and

the positive value of each node (w(u−)) in V − P ∪ C is also calculated.

First we need to consider the e-learners (nodes) who are not positively dominated.
It is easy to imagine that we can get a more “greedy” algorithm if we select nodes
with the biggest outgoing negative influence as dominators into the WPIDS be-

2.4 Weighted Positive Influence Dominating Set Algorithms 15

cause they have more positive influence on others. Repeat this procedure until all
nodes not in the WPIDS are positively dominated by their incoming neighbours.
The procedure of this algorithm is presented in Algorithm 2.1.

Considering the fact that the negative e-learners (nodes) who have the highest
accumulative negative weights from other neighbours’ influence are more easily
educated into positive e-learners, we propose a new algorithm. The main idea
of WPIDS Selection Algorithm 2.2 is to select the e-learners (nodes) from the
negative e-learners group with the highest accumulative weights of incoming arcs
into the WPIDS according to the fact that these selected e-learners are more easily
educated into positive e-learners. The procedure of this algorithm is presented in
Algorithm 2.2.

Algorithm 2.2: Weighted Positive Influence Dominating Set (WPIDS) Selection
Algorithm

Input: A digraph G = (V,A,C,W) where V is the set of nodes, A is the set of
arcs that capture the social interaction of the nodes, C is the set of
nodes that are initially in a positive compartment.

Output: A subset P ∪ C of V such that any node u in V − P ∪ C has been
positively dominated by P ∪ C, i.e., each node u ∈ V , w(u−) is
non-negative.

1 let V ′ = V − C and set the status of nodes in C to POSITIVE;
2 initialize the status of all nodes in V ′ to NEGATIVE and P to empty;
3 each node u ∈ V ′, calculate w(u−) ;
4 T is the set of nodes in V ′ that have been positively dominated;
5 let V ′ = V ′ − T ;
6 while not every node in V ′ has been positively dominated
7 choose the node u with the maximum negative weight value of its total

incoming arcs in V ′ into set P , set the status of nodes in P to positive;
resetting the node u has absolute weight value of outgoing arc weights;

8 update P = u ∪ P , V ′ = V ′ − T ;
9 update the positive values of each node in V ′;

10 end of while
11 the nodes in set V − P ∪ C are positively dominated in G, and the

positive influence of each node (w(u−)) in V − P ∪ C is also calculated.
12 OUTPUT: The nodes in set P ∪ C positively dominate set of V − P ∪ C, and

the positive value of each node (w(u−)) in V − P ∪ C is also calculated.

The difference between these two selection algorithms is that Algorithm 2.1 is to
select e-learners with the biggest outgoing negative influence as dominators and
Algorithm 2.2 is to select e-learners who are easy to be changed into positive e-
learners as dominators. The procedures of these two WPIDS selection algorithms
are described in Algorithms 2.1 and 2.2 respectively.

Weighted Positive Influence Dominating Set 16

v1

2

3 4v

v

v

-0.3

-0.3

-0.3

-0.3

-0.3

-0.3

0.7

0.70.7

5v

-0.2

-0.2

Figure 2.3: An example of a WPIDS selection algorithm graph model

Example 2.2. Figure. 2.3 shows how to operate our two WPIDS selection algo-
rithms. Figure. 2.3 is almost the same as Fig. 2.2 except one more negative node
v5 and let w(v4, v5) = w(v5, v4) = −0.2. According to Algorithm 2.1, the nodes v1
and v3 have already been positively dominated by the node v2. So we just consider
the nodes v4 and v5. The node v4 has the smallest total outgoing arcs weight
value (-0.8) and the node v5 has total outgoing arcs weight values as -0.2, so the
node v4 is selected as a positive node. The arc weight w(v4, v5) becomes 0.2 which
can positively dominate the node v5. Consequently, the set {v2, v4} is a WPIDS,
which can positively dominate the whole set of nodes. According to Algorithm 2.2,
the node v4 has the biggest total ingoing arcs weight value (-0.1) and the node v5
has total ingoing arcs weight values as -0.2, so the node v4 is selected as a positive
node. The arc weight w(v4, v5) becomes 0.2, which can positively dominate the
node v5. The set {v2, v4} is a WPIDS of Fig. 2.3.

2.5 Experimental Evaluations

In order to clearly reveal the effectiveness of our proposed WPIDS methods,
we designed a programme to simulate e-learning environment. In this way, we
can clearly predefine the ground truth of each e-learner’s attribute to test the
efficiency of our greedy WPIDS selection algorithms. In this section, we will
discuss the experiments of WPIDS selection algorithms on data generated from
the programme.

The evaluation is designed to answer the following questions:

a) What is the difference between the size of WPIDS and PIDS and what is the
difference between the influences of these two sets?

To answer the first questions, we compare the size of dominating sets [36] between
PIDS and WPIDS. Generally speaking, the smaller the size of the dominating set,

2.5 Experimental Evaluations 17

the more effective the algorithm.

b) How many nodes need to be selected into the WPIDS and how influential these
nodes can be?

To answer the second question, we calculate the average total incoming arcs’
weight of each node (called positive influence value) [86] to measure influence.
The higher the average positive influence value is, the more the influential of the
WPIDS can be; and the possibility of the whole community turning into a posi-
tive community is higher.

c) what is the difference of the performance of our two greedy WPIDS selection
algorithms in the WPIDS problem?

In order to test the third question, we compare the evaluation of these twoWPIDS
selection algorithms by parameter selection respectively.

2.5.1 Simulation Program Design

The experiment coded was implemented by standard Java and conducted on a
Windows XP server with a 2.4GHz Intel Dual Core processor, 4GB of RAM, and
2TB SATA HD RAID (Level 5).

We conducted experimental evaluations of the proposed method on the data set
generated from simulations. Two types of e-learners are defined in the simulation
including: P Type (positive e-learners or tutors), N Type (neutral e-learners or
students). P Type of e-learners have three characteristics as follows.

1) All P Type e-learners have outgoing arcs. They are positive e-learners or tutors
without others’ influence during the process.

2) All P Type e-learners have more outgoings arcs than N Types e-learners. They
are the very active e-learners or instructor presenting distance learning courses.

3) A P Type e-learner has higher total influence degree than an N Type e-learner.
N Type e-learners are neutral e-learners or students whose neighbours and influ-
ence degree are smaller than P Type e-learners. They are assigned randomly.

In the designed simulation programme, we simulated 300 e-learners and ran the
programme 100 cycles. Among these 300 e-learners, in the light of the e-learning
course of USQ standard, we used a parameter θ to determine the percentage of
positive e-learners. For example, θ = 5%, 10%, or 15%, would make 15 P Type
e-learners, 30 P Type e-learners or 45 P Type e-learners respectively,

2.5.2 Evaluation Metrics

We used the size of dominating sets [36] as one of the parameters to evaluate the
effectiveness of WPIDS selection algorithms. The size of WPIDS is the proportion

Weighted Positive Influence Dominating Set 18

of selected e-learners in the whole e-learners group, i.e.,

Size =
|WPIDS|

|V |
, (2.1)

The smaller the size of dominating sets, the more effective the algorithm.

We used the Average Positive Influence Value of e-learners (APIV) [86] as the
other evaluation parameter, which implies the possibility of the whole community
turning into a positive community. The APIV of e-learners is calculated as:

APIV =

∑
v∈V−P w(n−(v))

|V − P |
, (2.2)

where n−(v) = {u|(u, v) ∈ V } denotes the incoming neighbour nodes of v in V .

The high APIV of e-learners reflects the high possibility of the whole community
turning into a positive community.

2.5.3 Experimental Results

Table 2.1: Result of the simulation program by WPIDS selection algorithm 2.1

P Type (percentage) Size of WPIDS (percentage) APIV

15(5%) 52(17.3%) 0.218

30(10%) 67(22.3%) 0.212

45(15%) 79(26.3%) 0.211

Table 2.1 illustrates the result of the simulation experiments for WPIDS Selection
Algorithm 2.1. The size of the e-learning group is 300 e-learners, we performed
the simulation experiments with three different settings of the parameter θ =
5% (15 P Type e-learners), 10% (30 P Type e-learners), and 15% (45 P Type
e-learners). The result in Table 2.1 is the average over 100 runs. Applying
WPIDS Selection Algorithm 2.1, the experiment results show that when θ = 5%
the model has the best performance: 17.3% (52 P Type e-learners are selected)
of the e-learners (nodes) are selected into the WPIDS (the smallest) and the
resulting APIV is 0.218 (the biggest), which means it is more effective to positively
dominate the whole group. For the PIDS Selection Algorithm [27], 58.2% of the
nodes are selected into the dominating set, which is more than three times as big
as our WPIDS Selection Algorithm 2.1. Another observation is that the WPIDS
Selection Algorithm 2.1 displays a tendency that the smaller the parameter θ, the
better WPIDS can be obtained (for both the two evaluation parameters). Based
on experiences, this tendency is not monotonic, there should be a turning point.

Table 2.2 illustrates the result of the simulation programme under similar settings
(the same e-learning group size (300 nodes) and the similar parameter θ (5%, 10%,
15%)) by WPIDS Selection Algorithm 2.2. On the contrary, it is clear shown in

2.5 Experimental Evaluations 19

Table 2.2: Result of the simulation program by WPIDS selection algorithm 2.2

P Type (percentage) Size of WPIDS (percentage) APIV

15(5%) 76(25.3%) 0.306

30(10%) 74(24.7%) 0.324

45(15%) 68(22.7%) 0.324

Table 2.2 that θ = 15% gives the best performance: 22.7% (68 P Type e-learners,
the smallest) of the nodes are selected into the dominating set which is also much
smaller than 58.2% (PIDS Selection Algorithm [27]), and the resulting APIV is
0.324 (the biggest). From Table 2.2 we can also see a tendency that the bigger
the parameter θ, the better result can be achieved (for both the two evaluation
parameters).

In summary, from Tables 2.1 and 2.2, we can see that the size of WPIDS by
Algorithm 2.1 is smaller than that of Algorithm 2.2 when the parameter θ is small
(θ = 5% and θ = 10%). This result meets our conjecture. Because Algorithm
2.1 is firstly to select the persons who have the more influence among the users
as positive dominators and it is more “greedy” than Algorithm 2.2. So it may
find a WPIDS much smaller and faster than Algorithm 2.2. Another experiment
result is that the APIV of Algorithm 2.1 is smaller than that of Algorithm 2.2
respectively. This phenomenon contradicts our conjecture. Heuristically, to select
persons with the biggest negative influence into positive ones in Algorithm 2.1
can provide a bigger positive influence than to select persons with the smallest
negative influence in Algorithm 2.2. An explanation is that it is more effective
to change persons who are easily changed than to change persons who are hard
changed in an education/intervention programme. This interesting result needs
further investigation.

Table 2.3: Comparison between WPIDS and PIDS selection algorithms

Algorithm (percentage) Size of DS (percentage) Average

WPIDS Selection Algorithm 2.1 26.3% 0.211 (APIV)

WPIDS Selection Algorithm 2.2 22.7% 0.324 (APIV)

PIDS Selection Algorithm 58.2% 22.5 (degree)

Table 2.3 illustrates the different size of dominating sets which are got by running
PIDS Selection Algorithm in [27] and our WPIDS Selection Algorithms in online
social networks. We set θ = 15% which is the same percentage as in Wang et.
al’s work [27]. The results in Table 2.3 are the average over 100 runs. Note that
for each run, the size and average degree are consistent. The greedy WPIDS
Selection Algorithms have better performance over the greedy PIDS Selection
Algorithm in [27]. Applying WPIDS Selection Algorithm 2.1, 26.3% of the nodes
are selected into the dominating set and the resulting APIV is 0.211. Further-
more, applying WPIDS Selection Algorithm 2.2, 22.7% of the nodes are selected
into the dominating set and the resulting APIV is 0.324. Both evaluation param-
eters are obviously improved compared with WPIDS Selection Algorithm 2.1. For
PIDS Selection Algorithm, 58.2% of the nodes are selected into the dominating
set and the resulting average positive degree is 22.5 [27]. In terms of the com-
parison in Table 2.3, the probability of positive influencing the whole community

Weighted Positive Influence Dominating Set 20

Bob

Don

KrisTom

Ann

0.7 0.7

0.7 -0.3
-0.3

-0.3

-0.3

-0.3

-0.3

-0.2
-0.2

-0.1

Figure 2.4: A case study of a WPIDS selection algorithm group model

through an intervention programme where participants selection is determined by
the WPIDS Selection Algorithm is significantly higher by moderately considering
the key persons’ positive effect and increasing the participation related cost.

2.6 Case Study

In this section we use a study group Fig. 2.4 to discuss the differences between
WPIDS and PIDS selection algorithms. The study case is depicted in Fig. 2.4.
The scenario undergraduates are picked from a computer science class1, where
Bob is a tutor and other persons are non-positive students in a small e-learning
group. Ann is a quiet and introverted girl who has limited influence on others.
In Fig. 2.4, the arcs weight values are the same as in Fig. 2.3 and Ann has -0.1
influence value on Don. According to our WPIDS definition, Bob and Kris are
a WPIDS. If we get rid of the arc’s weights and directions, Don and Kris are a
PIDS according to its definition [27]. The difference between these two solutions
is that the solution to WPIDS select Bob as one of the dominators and considers
the fact Bob is a tutor which should be as a key person who plays an important
role in the programme. But the solution to PIDS does not. Another difference is
our graph model is directed. The influence of relationship between e-learners is
different, whereas the influence between e-learners in PIDS model is uniform [27].

1From Faculty of Science, University of Southern Queensland, Australia. For privacy reasons,
the students have been renamed.

2.7 Summary 21

2.6.1 Discussions

So from the Case Study of Fig. 2.4, we can see that the WPIDS in our model
has some different real meanings from the PIDS [27]. One of our improvements is
that we consider the reasonable partition of persons who attended the programme.
Either in e-learning programme or drinking (smoking or drug use) intervention
strategies and programmes we should consider the authorities’ effect such as tu-
tors or correctional officers who have strong positive influence on other persons
and without interference from others. In other words, they are the key persons
who play important roles in the programme. For example, in the above Case
Study Bob is a tutor who should be a key person and as one of the dominators
in the programme. But the PIDS model has a different conclusion of the Case
Study. Tom’s role is the same as Bob’s. Tom can be a replacement dominator
of Bob in any solution. This does not meet the fact that Bob is a tutor whereas
Tom is a student.

Due to Ann’s special situation, Kris should be selected into WPIDS to positively
influence Ann instead of other persons. This solution shows the importance of
effective directions. For example, the influence of relationship between tutors
and students can be considered one-way. The fact is that the degree of influence
between two persons is different and should be considered. Besides, our defini-
tion of the dominating problem is more reasonable than that of PIDS since one
person’s neighbours’ level of influence is the decisive factor instead of the number
of one’s positive neighbours. So, in order to positively dominate the whole group
we can strengthen influence on the key persons instead of increasing the number
of positive persons. Through these discussions we can draw the conclusion our
WPIDS model is more reasonable and effective than PIDS model [27].

2.7 Summary

In this chapter, we have introduced and studied the problem of how to utilize
online social network as a medium to improve e-learners’ study performances in e-
learning environments. We have proposed an innovative dominating set (WPIDS)
and two WPIDS Selection Algorithms (Algorithms 2.1 and 2.2) to evaluate the
effect of educating a subset of the entire target group susceptible to an e-learning
issue. Our idea is one person’s neighbours’ level of influence is the decisive factor
instead of the number of its positive neighbours. The experimental results have
demonstrated that the WPIDS model and selection algorithms are more effective
than the PIDS one [27,28], especially to deal with the large social network cases.
The main reason is that the WPIDS model considers the key persons who play
important roles in the community. So the size of WPIDS is smaller than that of
the PIDS one in an online social network. Moreover, the Case Study has further
revealed that the WPIDS model and algorithms are more effective than those of
the PIDS ones [27].

For the further research work of the WPIDS problem, an interesting research
direction is that the influence of each individual in the system will have changed

Weighted Positive Influence Dominating Set 22

over a period of time. So applying a mathematical model to understand the
dynamic change of the WPIDS model is very attractive.

Chapter 3

Self-Stabilization and
K-Dominating Set

In this chapter, the extension problem, “To find a self-stabilizing algorithm for
the minimal 2-dominating set (M2DS) problem in general networks under the
central daemon model” which was studied by Huang et al. [55, 68] is presented.
In the past, the existing proposed self-stabilizing algorithms for the minimal k-
dominating set (MKDS) either work for tree graphs (Kamei and Kakugawa [26])
or find an M2DS (Huang et al. [55, 68]). We have the motivation to extend
the M2DS from 2 to general k (MKDS). We propose a self-stabilizing algorithm
for the MKDS under a central daemon model when operating in any general
network. We further prove that the worst case convergence time of the algorithm
from any arbitrary initial state is O(n2) steps where n is the number of nodes in
the network.

The information in this chapter is based on one published paper [71].

3.1 Introduction

In this chapter, we first discuss a classical approach for distributed systems: Self-
stabilization, which was introduced by Dijkstra in [56, 57]. Self-stabilization is
a paradigm for distributed systems that allows the system to achieve a desired
global state, even in the presence of faults [56, 57]. It is an optimistic fault
tolerance approach for distributed systems. Before introducing Self-Stabilization
we first present the conception of distributed systems.

A distributed system consists of a set of loosely connected processes that do not
share a common or global memory. Each process has one or more shared registers
and possibly some non-shared local variables, the contents of which specify the
local state of the process. Local states of all processes in the system at a certain
time constitute the global configuration (or, simply, configuration) of the system
at that time. The main restriction of a distributed system is that each process
in the system can only access the data (i.e., read the shared data) of its neigh-
bours. Since a distributed algorithm is an algorithm that works in a distributed
system, it cannot violate this main restriction. Depending on the purpose of a dis-

Self-Stabilization and K-Dominating Set 24

tributed system, a global criterion for the global configuration is defined. Those
global configurations satisfying the criterion are called legitimate configurations,
whereas other global configurations are called illegitimate configurations. A goal
of a distributed system is that the system should function correctly in spite of
intermittent faults. When the system is in a legitimate configuration, the purpose
of the system is fulfilled. Ideally the global state of the system should remain in a
legitimate state. Often, however, malfunctions or perturbations bring the system
to some illegitimate state, and it is desirable that the system be automatically
brought back to a legitimate state without the interference of an external agent.

A distributed system can be modeled as a simple undirected graph. The topology
of a distributed system can be represented as an undirected graph G = (V,E)
(called the system’s communication graph) with nodes set V and edges set E,
where the nodes represent the processes and the edges represent the intercon-
nections between the processes. Throughout this chapter, we denote by n the
number of nodes (|V | = n), and by m the number of edges (|E| = m) in the
graph G. Let i ∈ V be a node; then N(i), its open neighbourhood, denotes the
set of nodes to which i is adjacent. Every node j ∈ N(i) is called a neighbour
of node i. We denote by d(i) the number of neighbours of node i, or its degree
(d(i) = |N(i)|). Throughout this chapter we assume G is connected and n > 1.

3.2 Self-Stabilization

Self-stabilization can be used to solve the Dominating Set problem, which is
introduced by Dijkstra [56, 57], is the most inclusive approach to fault toler-
ance in distributed systems. According to Dijkstra’s work, a distributed system
is self-stabilizing if it can start at any possible global configuration and regain
consistency in a finite number of steps by itself without any external interven-
tion and remains in a consistent state [56, 57]. After having been neglected for
nearly a decade, Dijkstra’s work was drawn to public attention by Lamport in
his invited address at PODC [87]. Since then, the research on self-stabilizing
systems has flourished, and a great number of papers regarding self-stabilizing
algorithms have been published. Recently, some self-stabilizing algorithms for
Dominating Set, Independent Set, Colorings, and Matchings in graphs have been
developed [54,61,64,88].

In a self-stabilizing algorithm, each process maintains its local variables, and
can make decisions based on the knowledge of its neighbours’ states. A process
changes its local state by making a move (a change of local state). The algorithm
is a set of rules of the form “if condition part (or guard)” then “action part”. The
condition part (or guard) is a Boolean function over the states of the process and
its neighbours; the action part is an assignment of values to some of the process’s
shared registers. A process i becomes privileged if it’s condition is true. When a
process becomes privileged, it may execute the corresponding move.

A fundamental idea of self-stabilizing algorithms is that the distributed system
may be started from an arbitrary global state. After finite time the system
reaches a correct global state, called a legitimate or stable state. An algorithm is

3.2 Self-Stabilization 25

self-stabilizing if, when the system executes the algorithm,

(i) for any initial illegitimate state it reaches a legitimate state after a finite
number of node moves (convergence), and

(ii) for any legitimate state and for any move allowed by that state, the next
state is a legitimate state (closure).

The convergence property ensures that, starting from any incorrect state, the
distributed system reaches a correct state. The closure property ensures that,
after convergence, the system remains in the set of correct states.

Various execution models have been suggested for developing self-stabilizing al-
gorithms. These models are encapsulated within the notion of a daemon (or
scheduler). Daemons are one of the most central yet less understood concepts
in self-stabilization. Most of these papers adopt Dijkstra’s computational model,
which is generally referred to as the central daemon model [56, 89, 90]. Under a
central daemon, only one process can execute an atomic step at one time. In a
central daemon, we assume a serial model in which no two processes move simul-
taneously. If two or more processes are privileged, one cannot predict which one
will move next. Multiple protocols exist [58,91,92] that provide such a scheduler.

Another popular scheduler is the distributed daemon, which selects a subset of
the system processes to execute an atomic step at the same time. The distributed
daemon activates the processors by repeatedly selecting a set of processors and
activating them simultaneously to execute a computation step. Each processor
executes the next computation step as defined by its state just prior to this
activation. Once every processor in the set has finished reading, all the processors
write a new state (change state). Only then does the scheduler choose a new set
of processors to be activated. Note that no non-activated processor changes its
state. Thus if a system is self-stabilizing under the distributed daemon model,
then it is self-stabilizing under the central daemon model. The converse, however,
is not true (the total Dominating Set algorithm in [58] and the 2-Dominating Set
algorithm in [55] are self-stabilizing under the central daemon models, but not
under the distributed daemon models).

If a synchronous daemon is supposed, then all the system processes will execute
an atomic step at the same time. The synchronous daemon plays a very important
part in the self-stabilization literature. First introduced by Herman [93] to enable
analytical tractability of probabilistic self-stabilizing protocols, it was later used
in domination problems [94,95].

The stabilization time is the maximum amount of time it takes for the system to
reach a correct state. When estimating the time complexity of a self-stabilizing
algorithm, we consider the stabilization time, since a self-stabilizing algorithm
is usually a do forever loop and it does not terminate. The time complexity is
estimated in terms of process atomic steps (or simply steps), or in terms of rounds.
A round is usually defined to be the minimum time period in which every process
is scheduled to execute an action at least once.

A distributed algorithm is said to be uniform if all of the individual processes
run the same code. If all processes run the same code except a single process,

Self-Stabilization and K-Dominating Set 26

a a a

a a a

1 2 3

4 5 6

Figure 3.1: A M2DS example

then the algorithm is semi-uniform. Some algorithms are designed for anonymous
systems, where the processes do not have any identification [71,96], whereas other
algorithms assume that processes have globally unique identifiers [55,58,68,70,73].

3.3 K -Dominating Set Problem

The k-dominating set (KDS) was introduced by Fink and Jacobson in 1985 [97].
Jacobson and Peters showed that the k-domination problem is NP-complete for
general graphs [98].

The KDS has many practical applications. For example, to build some fire sta-
tions in an urban area with a limited budget we need to ensure that its six areas
can receive help from at least k times services from its neighbour areas. Assume
there is also a fixed cost for building a fire station in each area. The problem can
be interpreted as to determine the number of the fire stations such that the total
building cost is minimum among the participating areas under the k times ser-
vices condition. This problem is equivalent to the problem of finding a minimum
weighted KDS among these areas. The following is the formal definition of KDS
problem.

Let G = (V,E) be a simple connected undirected graph with vertex set V and
edge set E. For a positive integer k, a k-dominating set (KDS) of a graph G is
a subset D ⊆ V (G) such that every vertex not in D is dominated by at least k
vertices in D. The k-domination number γ(G) of G is the minimum size of a KDS
of G. The k-domination problem is to determine a minimum KDS of a graph.
The special case when k = 1 is the ordinary domination (single domination). On
the complexity side of the k-domination problem, Jacobson and Peters showed
that the k-domination problem is NP-complete for general graphs [98] and gave
linear-time algorithms to compute the γ(G) of trees and series-parallel graphs [98].

A KDS D in G is minimal if any proper subset of D is not a KDS in G. The
so-called minimal KDS problem is to find a minimal KDS (MKDS) in G. Note
that an MKDS is minimal not minimum.

For example, without loss of generality, considering the case k = 2, a 2-dominating
set (2DS) in the urban area as remarked on early, which has 6 locations (a1, a2,

3.4 Motivations and Contributions 27

..., a6) and the neighbourhood relations are shown in Fig. 3.1 . We can select the
locations {a3, a4, a5}, which is a minimal 2DS.

3.4 Motivations and Contributions

Graph algorithms have natural applications in networks and distributed systems,
since a distributed system can be modeled with an undirected graph. Due to Dijk-
stra’s pioneering work [56,57], some self-stabilizing algorithms for graph problems
have been proposed in the literature, such as the self-stabilizing algorithms for
Dominating Set [25, 58, 68], Independent Set and Matching in graphs [54, 88].
Dominating Set and related problems are considered to be of central importance
in combinatorial optimization and have been the object of much research. Due to
the NP-complete of domination problems [37], researchers have developed some
self-stabilizing algorithms for finding a minimal dominating set (MDS).

A self-stabilizing algorithm for the maximal independent set problem can be
viewed as a self-stabilizing algorithm for the MDS problem since any maximal
independent set in a graph is a MDS in that graph. Hedetniemi et al. [54]
presented two uniform algorithms (a distributed algorithm is said to be uniform
if all of the individual processes run the same code) for the DS and the MDS
problems. The algorithms all work for any connected graph and assume a central
daemon (only one process can execute an atomic step at one time). Goddard et
al. [88] proposed another uniform algorithm for finding an MDS in an arbitrary
graph under a distributed daemon, which selects a subset of the system processes
to execute an atomic step at the same time.

Alternatively, some self-stabilized algorithms have been proposed in the multiple
domination case. Kamei and Kakugawa [26] presented two self-stabilizing algo-
rithms for the MKDS problem in a tree graph. The first uniform algorithm works
under a central daemon and the second algorithm works under a distributed dae-
mon. Huang et al. [55, 68] presented two self-stabilizing algorithms to find an
M2DS in an arbitrary graph. The first algorithm works under a central dae-
mon with linear time complexity [55] and the second algorithm works under
a distributed daemon [68] respectively. For a more detailed discussion of self-
stabilizing algorithms for the DS problem, refer to a survey paper [99].

However, so far, there is no algorithm for the MKDS problem in an arbitrary
graph that works under a central daemon. The proposed algorithms for the
MKDS problem either work for tree graphs (Kamei and Kakugawa [26]) or find
an M2DS (Huang et al. [55,68]). In this chapter, we are considering the extension
problem of M2DS just mentioned in [55,68]. We will solve that extension problem
for general k – MKDS (i.e., for k being an arbitrary positive integer) in general
networks.

The following are the contributions.

1. A self-stabilizing algorithm is presented for finding an MKDS under a cen-
tral daemon in an arbitrary connected simple undirected graph.

Self-Stabilization and K-Dominating Set 28

2. The correctness of the proposed algorithm is verified; the worst case con-
vergence time of the algorithm from any arbitrary initial state is proved to
be O(n2) steps where n is the number of nodes in the network graph.

3.5 Minimal K-Dominating Set Algorithm

The distributed system in consideration has a general underlying topology, and
can be modeled by a connected simple undirected graph G = (V,E), with each
node i ∈ V representing a processor in the system and each edge (i, j) ∈ E
representing the bidirectional link connecting processors i and j. It is assumed
that the number of all processors in G is denoted by n. Assume now that for
each processor i ∈ V , the set N(i) represents its open neighbourhood, denotes the
set of processors to which i is adjacent. d(i) represents the number of neighbours
of processor i, or its degree (d(i) = |N(i)|).

Definition 3.1. A subset D of V is a k-dominating set (KDS) in G if each
node not in D has at least k neighbours in D.

A KDS D in G is minimal if any proper subset of D is not a KDS in G.

The so-called “minimal KDS problem” (MKDS) is to find an MKDS in G.

The concept of the MKDS problem raises another problem:

Minimal K-Dominating Set

INSTANCE: A connected simple undirected graph G = (V,E) and an arbitrary
positive integer k.

QUESTION: How to find an MKDS D ⊆ V such that the D is a KDS of the
graph G and minimal, i.e., to construct D = {i ∈ V |x(i) = 1}1 as an MKDS?

In the following, we will propose a self-stabilizing algorithm for finding an MKDS
in general networks.

Assume further that each node i in the G has a Boolean flag x(i), whose value is
either 0 or 1. At any given time, we will denote with D the current set of nodes
i with x(i) = 1. That is,

x(i) =

{
0 if i /∈ D
1 if ∈ D.

(3.1)

1Refer to Definition of x(i) in Equation 3.1.

3.5 Minimal K-Dominating Set Algorithm 29

Definition 3.2. X(i) denotes the set {j ∈ N(i)|x(j) = 1}, and |X(i)| denotes
the cardinality of X(i).

Note X(i) is the set of i′s neighbours in D, that is N(i) ∩D.

The minimal k-dominating set algorithm:

Algorithm 3.1: Finding a Minimal K-Dominating Set

Input: A graph G = (V,E), ∀i ∈ V , a Boolean flag x(i), k is a positive
integer.
Output: D = {i ∈ V |x(i) = 1}.
R1: x(i) = 0 ∧ |X(i)| ≤ k − 1 → x(i) = 1
R2: x(i) = 1 ∧ |X(i)| ≥ k → x(i) = 0.

The Algorithm 3.1 consists of two rules (R1 and R2). Assume k being an arbi-
trary positive integer. In Algorithm 3.1 each node i has a Boolean variable x(i)
indicating membership in the set D that we are trying to construct. The value
x(i) = 1 indicates that i ∈ D, while the value x(i) = 0 indicates that i /∈ D
as Equation 3.1 describes. The set X(i) is the set of i′s neighbours in D and
|X(i)| denotes the cardinality of X(i). The variable |X(i)| is designed to count
N(i)∩D. Thus, a node i is privileged if it holds R1 or R2, and then executes the
corresponding move. An example to illustrate the execution of Algorithm 3.1 is
shown in Fig. 3.2 and Fig. 3.3.

R1 says that a node i should enter D if it has fewer than k neighbours in D. R2
says that a node i should leave D if it is dominated by more than k neighbours
in D.

3.5.1 An Illustration of a Minimal 3-Dominating Set

Example 3.1. The example in Fig. 3.2 and Fig. 3.3 is to illustrate the execution
of Algorithm 3.1. Without loss of generality, we consider the case k = 3 and
use a minimal 3-dominating set example to illustrate the execution of Algorithm
3.1. Note that in each configuration, the shaded nodes represent privileged nodes,
whereas the shaded node with a darkened circle represents the privileged node
selected by the central daemon to make a move.

In the last configuration (Fig. 3.4), which is a legitimate configuration of Fig. 3.2
and Fig. 3.3, we can see a minimal 3-Dominating Set D = {a, c, d, e, g, h} can be
identified (the shaded nodes).

Self-Stabilization and K-Dominating Set 30

Figure 3.2: A M3DS example to illustrate the execution of Algorithm 3.1.

3.5 Minimal K-Dominating Set Algorithm 31

Nodes c and h are
privileged by R1.

Central daemon picks
node b to make a move

Node h is privileged by R1.Central daemon picks
node c to make a move

Central daemon picks
node h to make a move

Figure 3.3: A M3DS example to illustrate the execution of Algorithm 3.1.

 a b c d

e f g h

x(b)=0 x(c)=1 x(d)=1

x(e)=1 x(f)=0 x(g)=1 x(h)=1

x(a)=1

Figure 3.4: The M3DS result of Figs. 3.2 and 3.3 by running Algorithm 3.1.

Self-Stabilization and K-Dominating Set 32

The legitimate configurations are defined to be all those configurations in which

∀i ∈ V [(x(i) = 0 ∧ |X(i)| ≥ k) ∨ (x(i) = 1 ∧ |X(i)| ≤ k − 1)].

It is obvious that the system is in a legitimate configuration if and only if no node
in the system is privileged. The following Lemma clarifies that in any legitimate
configuration, an MKDS D = {i ∈ V |x(i) = 1} can be identified.

Lemma 3.1. If Algorithm 3.1 stabilizes (no node in the system is privileged),
then the set D = {i ∈ V |x(i) = 1} is an MKDS.

Proof: Suppose no node in G is privileged. For any i /∈ D, since x(i) = 0 and i
is not privileged by R1, we have |X(i)| ≥ k. Thus i has at least k neighbours in
D and thus, D is a KDS in G. We now claim D is minimal as well. If D is not
minimal, then there is a proper subset D′ of D such that D′ is also a KDS. Let
j ∈ D −D′, then x(j) = 1. Since D′ is also a KDS and j /∈ D′, j has at least k
neighbours in D′ in view of the definition of KDS. It follows that j has at least k
neighbours in D, i.e., |X(j)| ≥ k. With x(j) = 1 and |X(j)| ≥ k, j is privileged
by R2, which causes a contradiction. Therefore D is an MKDS.

3.6 Convergence of the K-Dominating Set Al-

gorithm 3.1

In this section, we show the convergence of Algorithm 3.1. We will provide
some preliminaries and a correctness proof of convergence for Algorithm 3.1. We
consider a distributed system whose topology is represented as a simple connected
undirected graph G = (V,E), where the nodes represent the processes and the
edges represent the interconnections between the processes. We denote by δ the
minimum degree of G (δ = min{d(i)|i ∈ V }) and ∆ the maximum degree of G
(∆ = max{d(i)|i ∈ V }) respectively.

In a distributed system, under a central daemon model, the behaviour of the
system under the action of the algorithm can be described by an execution se-
quence Γ = (γ1, γ2, ...) in which for any i ≥ 1, γi represents a global configuration.
For any configuration γi, let γi+1 be any configuration that follows γi which is
obtained after exactly one process in the system makes the ith move. Then, we
denote this transition relation by γi+1 → γi.

Definition 3.3. Let a sequence Γ = (γ1, γ2, ...) be a set of all configurations, and
an algorithm E is self-stabilizing with respect to Λ ⊆ Γ if and only if the following
two conditions hold:

a) Convergence: Starting from any arbitrary configuration, configuration eventu-
ally becomes one in Λ, and

b) Closure: For any configuration λ ∈ Λ, any configuration γ that follows λ is
also in Λ.

3.6 Convergence of the K-Dominating Set Algorithm 3.1 33

Each λ ∈ Λ is called a legitimate configuration. And Λ is called a set of legitimate
configurations.

We now prove the convergence of Algorithm 3.1. Note that the term process
represents the term node.

Theorem 3.1. Algorithm 3.1 always stabilizes, and finds a minimal k-dominating
set (MKDS).

Proof: In light of Lemma 3.1 we see that if Algorithm 3.1 is stabilizing it
always finds an MKDS, which satisfies the closure. We need to prove stabilization
(convergence). We divide the distributed system (graph) into two cases: δ < k
and δ ≥ k.

Case 1: δ < k. Suppose that there exists an infinite computation E starting
from γ0 that does not reach a legitimate configuration. First, we consider the
process i ∈ V (Pi) with the degree δ. Because of δ < k, a guarded command
that i may execute is only R1. By the definitions of R1 and KDS, the Pi can
execute R1 at most once in an infinite computation. Because computation E is
infinite and the processes in G are finite, there must be at least one process , say
Pj (d(j) ≥ k), which is executed infinitely. By the definition of Algorithm 3.1, a
process alternates executing R1 and R2. After Pj executes a guarded command
once, it is no longer privileged until |X(j)| changes by an execution of at least
one of the neighbours. Thus, there must be a neighbour, say Pk, of Pj which
is also executed infinitely. By following such a dependency, we eventually reach
the process i. This implies that the Pi must be executed infinitely. This is a
contradiction.

Case 2: δ ≥ k. Suppose that there exists an infinite computation E starting
from γ0 that does not reach a legitimate configuration. First, we consider the
process i ∈ V (Pi) with the degree ∆. Because of ∆ ≥ k, by the definitions of
R1, R2 and KDS, a guarded command that the Pi may execute is R1 or R2.
By the definition of Algorithm 3.1, after Pi executes a guarded command once,
it is no longer privileged until |X(i)| changes by an execution of at least one of
the neighbours. Thus, the Pi execute R1 and R2 at most ∆ times in an infinite
computation. Since the processes in G are finite (The number of all processes is
n). This is a contradiction.

Therefore, there is no infinite computation, and eventually computation termi-
nates in a configuration in which no process is privileged.

Theorem 3.2. Algorithm 3.1 produces an MKDS and stabilizes in O(n2) steps.

Proof: From Lemma 3.1 and Theorem 3.1, we see that Algorithm 3.1 produces
an MKDS. We need to prove only Algorithm 3.1 stabilizes in O(n2) steps. By
Theorem 3.1, each node changes its x-value at most ∆ times in a finite computa-
tion. Considering the graph G is a simple connected undirected graph, the upper
bound of the ∆ is (n− 1), the upper bound of moves is n(n− 1). Therefore, the
stabilization time of Algorithm 3.1 is O(n2) steps.

Self-Stabilization and K-Dominating Set 34

3.7 Related Work and Algorithm Comparison

In this section, we discuss the existing self-stabilizing algorithms for the DS. We
also compare our algorithm with the related work based on the main ideas. The
algorithms presented in this section are summarized in Table 3.1.

Hedetniemi et al. [54] presented two uniform algorithms (all of the individual
processes run the same code) for the DS and the MDS problems. The algorithms
work for any connected graph and assume a central daemon (only one process can
execute an atomic step at one time). The main idea of the first algorithm is to
partition the set of nodes into two disjoint sets, such that each set is dominating.
The algorithm for the DS problem stabilizes in linear time (O(n) steps) under a
central daemon. The second algorithm calculates an MDS. The main idea of this
algorithm is that it allows a node to join the set S, if it has no neighbour in S.
On the other hand, a node that is already a member of S, and has a neighbour
that is also a member of S, will leave the set if all its neighbours are not pointing
to it. Thus, after stabilization the set S will be an MDS. The algorithm for the
MDS problem stabilizes in O(n2) steps under a central daemon.

Goddard et al. [58] gave a self-stabilizing algorithm working on the minimal total
dominating set (MTDS) problem. A set is said to be a total dominating set if
every node is adjacent to a member of it. Goddard et al. assume globally unique
identifiers for the nodes and a central daemon in [58]. The algorithm uses a
mechanism of pointers similar to the one used by the previous algorithm. So,
a node i will point to its neighbour having the minimum identifier if i has no
neighbour in the set S under construction. On the other hand, if a node i has
more than one neighbour in the set then i will point to null; otherwise i will point
to its unique neighbour that is a member of the set S. The algorithm allows a
node to join the set S if some neighbour is pointing to it, and to leave the set S
otherwise. So after stabilization, the set S will become an MTDS. The algorithm
works under a central daemon for any general graphs.

Recently, Goddard et al. [88] proposed another uniform self-stabilizing algorithm
for finding an MDS in an arbitrary graph under a distributed daemon (a dis-
tributed daemon selects a subset of the system processes to execute an atomic
step at the same time). The main idea of the algorithm is that it uses a Boolean
variable to determine whether a node is a member of the MDS or not, and an in-
teger to count a node’s neighbours that are members of the MDS. The algorithm
allows an undominated node that has smaller identifier than any undominated
neighbour to join the set under construction. On the other hand, a node leaves
this latter set if it is not the unique dominator of itself nor any of its neighbours.
The algorithm stabilizes in O(n) steps.

Alternatively, some self-stabilizing algorithms have been proposed in the k-domination
case. Kamei and Kakugawa [26] presented two uniform algorithms for the MKDS
problem in a tree graph. The first algorithm allows a node to join the set S un-
der construction if it has fewer than k neighbours in S, and to leave the set S
if it has more than k neighbours in S. The first algorithm works for a central
daemon. Based on this idea, in the second algorithm, a node having more than
k neighbours in the set S under construction will first make a request to leave

3.7 Related Work and Algorithm Comparison 35

S, and then leaves the set S only if its identifier is the smallest among all the
neighbours requesting to leave S. So, after stabilization the set S will become
an MKDS. The second algorithm works under a distributed daemon. The time
complexity of the two algorithms are both O(n2) steps.

Huang et al. [55] presented a self-stabilizing algorithm to find an M2DS in an
arbitrary graph. The algorithm allows a node to join the set under construction
if it has fewer than 2 neighbours in S, and to leave the set S if it has more than
2 neighbours in S. The algorithm works under a central daemon with linear time
complexity. Huang et al. also [68] presented another self-stabilizing algorithm
to find an M2DS in an arbitrary graph. The algorithm assumes globally unique
identifiers for the nodes and works under a distributed daemon. The algorithm
allows a node to join the set under construction if it is dominated by fewer than
two nodes and none of its neighbours having smaller identifier is in the same
situation. Also, a node may leave the set under construction if it is dominated
by more than two nodes, and all of its neighbours are either in the set under
construction or dominated by more than two nodes.

Table 3.1: Self-stabilizing algorithms for the dominating set

Reference Output Topology Self-Stabilizing Daemon Complexity

Hedetniemi et al. [54]-1 DS Arbitrary Yes Central O(n) steps
Hedetniemi et al. [54]-2 MDS Arbitrary Yes Central O(n2) steps
Goddard et al. [58] MTDS Arbitrary Yes Central
Goddard et al. [88] MDS Arbitrary Yes Distributed O(n) steps
Kamei et al. [26]-1 MKDS Tree Yes Central O(n2) steps
Kamei et al. [26]-2 MKDS Tree Yes Distributed O(n2) steps
Huang et al. [55] M2DS Arbitrary Yes Central O(n) steps
Huang et al. [68] M2DS Arbitrary Yes Distributed
Wang et al. [71] MKDS Arbitrary Yes Central O(n2) steps

We have presented a uniform self-stabilizing algorithm for finding an MKDS that
works in general graphs under a central daemon [71]. We use a Boolean flag x(i)
indicating whether the node i is in the constructed set D or not and an integer
variable X(i) for counting i′s neighbours in D. The algorithm allows a node i to
join the set D (the value x(i) = 1) under construction if it is dominated by fewer
than k nodes in D (R1). Also, a node i may leave the set D under construction if
it is dominated by more than k nodes (R2). The time complexity of our algorithm
in general graphs is O(n2) steps.

The algorithms we compared in this section are summarized in Table 3.1. As
we can see, the first four self-stabilizing algorithms are for single domination (1-
dominating set or total dominating set); and the algorithms for the KDS problem
by Kamei et al [26] work for a tree graph; the algorithms by Huang et al. [55,68]
are finding an M2DS. And the self-stabilizing algorithm for the MKDS problem
in [71] works under a central daemon. Our Algorithm is the first work using a
central daemon approach to discuss the MKDS problem in general networks.

Self-Stabilization and K-Dominating Set 36

3.8 Summary

In this chapter, we have successfully solved the problem, “To find a self-stabilizing
algorithm for the MKDS problem in general networks, under the central daemon
model”, extended from 2 to general k. Since the MKDS problem is more general
than the M2DS problem and is much too complicated to handle. Kamei and
Kakugawa have been the first to tackle the problem, restricted to tree networks
only [26]. Huang et al. [55,68] discussed the case k = 2, the M2DS in any general
network.

In the next chapter, we still study the extension problem further, “To find a
self-stabilizing algorithm for the MKDS problem in general networks”. We will
develop a self-stabilizing algorithm for the MKDS problem under a distributed
daemon in an arbitrary network.

Chapter 4

A Self-Stabilizing Algorithm for
K-Domination

In this chapter, we continue discussing the minimal k-dominating set (MKDS)
problem we have studied in Chapter 3. In Chapter 3, we have presented self-
stabilizing algorithm for the MKDS problem in arbitrary graphs under a central
daemon [71]. But so far, there is no algorithm for the MKDS problem in arbitrary
graphs that works under a distributed daemon. In this chapter, we propose
a self-stabilizing algorithm for the MKDS under a distributed daemon model
when operating in any general network. We further prove that the worst case
convergence time of the proposed algorithm from any arbitrary initial state is
O(n2) steps where n is the number of nodes in the network.

The information in this chapter is based on a published paper [72].

4.1 Introduction

4.1.1 K-Dominating Set Problem

The k-dominating set (KDS), which was introduced by Fink and Jacobson in
1985 [97], is that for a positive integer k, a k-dominating set (KDS) of a graph G
is a subset D ⊆ V (G) such that every vertex not in D is dominated by at least
k vertices in D. The KDS has many real applications. For example, applications
in wireless networks and social networks, a person needs to receive help from
at least k times services from its neighbours. This problem is equivalent to the
problem of finding a minimum KDS on the networks. The following is the formal
definition of the KDS problem.

Let G = (V,E) be a connected simple undirected graph in which each node i ∈ V
represents a person and each edge (i, j) ∈ E represents the bidirectional link
connecting nodes i and j. Let k be an arbitrary positive integer. A subset D of
V is a k-dominating set in G if each node not in D has at least k neighbours in
D. The so-called “k-dominating set problem” is to find a KDS of minimum size
in G. The k-dominating number γ(G) of G is the minimum size of a KDS of G.
On the complexity side of the KDS problem, Jacobson and Peters showed that

A Self-Stabilizing Algorithm for K-Domination 38

the KDS problem is NP-complete for general graphs [98] and gave linear-time
algorithms to compute the γ(G) of trees and series-parallel graphs [98].

A KDS D in G is minimal if any proper subset of D is not a KDS in G. Note that
a minimal k-dominating set (MKDS) is minimal not minimum. A k-dominating
set for k = 1, i.e., a 1-dominating set, is just an ordinary dominating set.

The topology of a distributed system can be represented as an undirected graph
G = (V,E) (called the system’s communication graph), where the nodes represent
the processes and the edges represent the interconnections between the processes.
In this chapter, we denote by n the number of nodes (|V | = n), and by m the
number of edges (|E| = m) in the graph G. Let i ∈ V be a node; then N(i),
its open neighbourhood, denotes the set of nodes to which i is adjacent. Every
node j ∈ N(i) is called a neighbour of node i. We denote by d(i) the number of
neighbours of node i, or its degree (d(i) = |N(i)|).

4.1.2 Self-Stabilizing Algorithm

The concept of Self-Stabilization, introduced by Dijkstra [56, 57] is considered
to be a very general technique to design a system to tolerate arbitrary transient
faults. A distributed system is self-stabilizing if it can start at any possible global
configuration and regain consistency in a finite number of steps by itself without
any external intervention and remains in a consistent state [67]. By this property,
self-stabilizing algorithms tolerate any kind and any finite number of transient
faults.

The state of a fault-free system is defined by a local predicate based on the states
of the nodes in the distributed algorithm. Each node is based on local knowledge:
its own state and the states of its immediate neighbours. The objective is to
achieve some global objective a predicate defined on the states of all the nodes
in the network – based on local actions where individual nodes have no global
knowledge about the network. Refer to Chapter 3 for a general overview of the
paradigm of self-stabilization and its requirements.

4.2 Related Work

There are many self-stabilizing algorithms for finding a dominating set of a net-
work, including the single dominating set and the multiple dominating set (k > 1).

Hedetniemi et al. [54] presented two uniform algorithms (all of the individual
processes run the same code) for the dominating set (DS) and the minimal dom-
inating set (MDS) problems. The algorithms work for any connected graph and
assume a central daemon (only one process can execute an atomic step at one
time). The main idea of the first algorithm is to partition the set of nodes into two
disjoint sets, such that each set is dominating. The algorithm for the DS problem
stabilizes in linear time (O(n) steps) under a central daemon. The second algo-
rithm calculates an MDS. The main idea of this algorithm is that it allows a node
to join the set S, if it has no neighbour in S. On the other hand, a node that is

4.2 Related Work 39

already a member of S, and has a neighbour that is also a member of S, will leave
the set if all its neighbours are not pointing to it. Thus, after stabilization the
set S will be an MDS. The algorithm for the MDS problem stabilizes in O(n2)
steps under a central daemon.

Goddard et al. [58] gave a self-stabilizing algorithm working on the minimal total
dominating set (MTDS) problem. A set is said to be a total dominating set if
every node is adjacent to a member of it. The authors assume globally unique
identifiers for the nodes and a central daemon in [58]. The algorithm uses a
mechanism of pointers similar to the one used by the previous algorithm. So,
a node i will point to its neighbour having the minimum identifier if i has no
neighbour in the set S under construction. On the other hand, if a node i has
more than one neighbour in the set then i will point to null; otherwise i will point
to its unique neighbour that is a member of the set S. The algorithm allows a
node to join the set S if some neighbour is pointing to it, and to leave the set S
otherwise. So after stabilization, the set S will become an MTDS.

Recently, Goddard et al. [88] proposed another uniform self-stabilizing algorithm
for finding an MDS in an arbitrary graph under a distributed daemon (a dis-
tributed daemon selects a subset of the system processes to execute an atomic
step at the same time). The main idea of their algorithm is that it uses a Boolean
variable to determine whether a node is a member of the MDS or not, and an in-
teger to count a node’s neighbours that are members of the MDS. The algorithm
allows an undominated node that has a smaller identifier than any undominated
neighbour to join the set under construction. On the other hand, a node leaves
this latter set if it is not the unique dominator of itself nor any of its neighbours.
The algorithm stabilizes in O(n) steps.

Meanwhile, some self-stabilizing algorithms have been proposed in the k-domination
case. Kamei and Kakugawa [26] presented two uniform algorithms for the mini-
mal k-dominating set (MKDS) problem in a tree graph. The first algorithm allows
a node to join the set under construction S if it has fewer than k neighbours in S,
and to leave the set S if it has more than k neighbours in S. The first algorithm
works for a central daemon. Based on this idea, in the second algorithm, a node
having more than k neighbours in the set S under construction will first make a
request to leave S, and then leaves the set S only if its identifier is the smallest
among all the neighbours requesting to leave S. So, after stabilization the set S
will become an MKDS. The second algorithm works under a distributed daemon.
The time complexity of the two algorithms are both O(n2) steps.

Huang et al. [55] presented a self-stabilizing algorithm to find a minimal 2-
dominating set (M2DS) in an arbitrary graph. The algorithm allows a node
to join the set S under construction if it has fewer than 2 neighbours in S, and
to leave the set S if it has more than 2 neighbours in S. The algorithm works
under a central daemon, with linear time complexity.

Huang et al. also [68] presented another self-stabilizing algorithm to find an
M2DS in an arbitrary graph. The algorithm assumes globally unique identifiers
for the nodes and works under a distributed daemon. The algorithm allows a node
to join the set under construction if it is dominated by fewer than two nodes and
none of its neighbours having a smaller identifier is in the same situation. Also,

A Self-Stabilizing Algorithm for K-Domination 40

a node may leave the set under construction if it is dominated by more than
two nodes, and all of its neighbours are either in the set under construction or
dominated by more than two nodes.

In Chapter 3, we have presented a self-stabilizing algorithm for finding an MKDS
that works in general graphs under a central daemon [71]. We used a Boolean
flag x(i) indicating whether the node i is in the constructed set D or not and an
integer variable X(i) for counting i′s neighbours in D. The algorithm allows a
node i to join the set D (the value x(i) = 1) under construction if it is dominated
by fewer than k nodes in D (R1). Also, a node i may leave the set D under
construction if it is dominated by more than k nodes (R2). The time complexity
of our algorithm in general graphs is O(n2) steps.

4.3 Motivations and contributions

The self-stabilizing algorithms we dicussed in Section Related Work all work on
the dominating set problems. However, there is no self-stabilizing algorithm for
the MKDS problem in arbitrary graphs that works under a distributed daemon.
The proposed algorithms for the MKDS either work for tree graphs (Kamei and
Kakugawa [26]) or find an M2DS (Huang et al. [55, 68]). We have solved the
MKDS problem under a central daemon which operates in general graphs in
Chapter 3.

In this chapter, we have motivations to extend Huang et al.’s work and consider
the extension problem of the M2DS [55, 68] from 2 to general k: the MKDS.
We are interested in the work about developing a self-stabilizing algorithm for
finding an MKDS in a general network that works under a distributed daemon.
We also analyze the correctness and time complexity of the proposed algorithm,
in which the time complexity of the algorithm has not been discussed in [68]. The
contributions are as follows:

1. A self-stabilizing algorithm for finding an MKDS under a distributed dae-
mon in an arbitrary connected simple undirected graph is presented.

2. The correctness of the proposed algorithm is verified. The worst case con-
vergence time of the algorithm from any arbitrary initial state is proved to
be O(n2) steps where n is the number of nodes in the network graph.

4.4 K-Dominating Set Algorithm

In this section, the self-stabilizing algorithm for solving the MKDS problem will
be presented.

4.4 K-Dominating Set Algorithm 41

4.4.1 Formal Definition of the MKDS Problem

The distributed system under consideration has a general underlying topology,
and can be modeled by a connected simple undirected graph G = (V,E), with
each node i ∈ V representing a processor in the system and each edge (i, j) ∈ E
representing the bidirectional link connecting processors i and j. It is assumed
that the number of all processors in G is denoted by n. Assume now that for each
processor i ∈ V , the set N(i) represents its open neighbourhood, denotes the set
of processors to which i is adjacent. d(i) represents the number of neighbours of
processor i, or its degree (d(i) = |N(i)|). Throughout this chapter, we denote by
δ the minimum degree of G (δ = min{d(i)|i ∈ V }) and ∆ the maximum degree
of G (∆ = max{d(i)|i ∈ V }) respectively. It is assumed that

(1) each processor i in the system has a unique identity,

(2) each processor i maintains two shared registers, di and pi,

(3) N(i) denotes the set of all open neighbours of i and L(i) = {j ∈ N(i)|j < i},

(4) the value of di is taken from {0, 1},

(5) D(i) = {j ∈ N(i)|dj = 1}, and |D(i)| is the cardinality of D(i), and

(6) the value of pi is always ∅, {i} or D(i).

A Boolean variable di indicates membership in the set D that we are trying to
construct. The value di = 1 indicates that i ∈ D, while the value di = 0 indicates
that i /∈ D.

The concept of the MKDS problem gives rise to the following problem:

Minimal K-Dominating Set

INSTANCE: A connected simple undirected graph G = (V,E) with nodes set V
and edges set E, given an arbitrary positive integer k.

QUESTION: How to find an MKDS D ⊆ V such that the D is a KDS of the
graph G and minimal, i.e., to construct D = {i ∈ V |di = 1} is an MKDS.

4.4.2 Proposed Algorithm

The Algorithm 4.1 is shown below which consists of five rules. Assume k being
an arbitrary positive integer. It should also be reiterated that the computational
model assumed in the system is the distributed daemon model.

R1 tries to ensure that a node i /∈ D which has less than k neighbours in D should
enter D, if its pointer points to itself and its neighbours which have smaller IDs
than it has are all dominated at least k times. R2 says that a node i is dominated

A Self-Stabilizing Algorithm for K-Domination 42

Algorithm 4.1: Finding A Minimal K-Dominating Set

Input: A graph G = (V,E), ∀i ∈ V , a Boolean flag di and a set of pointers
pi.
Output: D = {i ∈ V |di = 1}.
R1: di = 0 ∧ |D(i)| < k ∧ pi = {i} ∧ ∀j ∈ {m ∈ L(i)|dm = 0},

pj ̸= {j} → di := 1
R2: di = 1 ∧ |D(i)| ≥ k ∧ ∀j ∈ N(i)−D(i), pj = ∅ → di := 0
R3: di = 0 ∧ |D(i)| < k ∧ pi ̸= {i} → pi = {i}
R4: di = 0 ∧ |D(i)| = k ∧ pi ̸= D(i) → pi = D(i)
R5: di = 0 ∧ |D(i)| > k ∧ pi ̸= ∅ → pi = ∅.

at least k times by D should leave D if as far as it can tell all of its neighbours
not in D are dominated at least k times. That is, the node i is redundant for its
neighbours not in D since they are dominated at least k times by D − {i}. R3,
R4 and R5 mean that the nodes not in D should reset their pointers according
to the numbers of their neighbours in D. An example to illustrate the execution
of Algorithm 4.1 is shown in Fig. 4.1.

Example 4.1. The example in Fig. 4.1 is to illustrate the execution of Algorithm
4.1. Without loss of generality, we consider the case k = 2 and use a minimal
2-dominating set example to illustrate the execution of Algorithm 4.1. Note that
in each configuration, the shaded nodes represent privileged nodes.

In the first subgraph of Fig. 4.1, we set d1 = d3 = 1, other nodes’ d-values are
0, that means D = {1, 3}. We further set p1 = p5 = {1}, p3 = p6 = {3},
p2 = {2}, p4 = {1, 3}, just as the arrows point in the first subgraph. According to
the Rules of Algorithm 4.1, after a series of moves and resets, the system reaches
a legitimate state. As the last subgraph of Fig. 4.1 shows, which is a legitimate
configuration, we can see a minimal 2-dominating set D = {1, 2, 3, 6} can be
identified.

Note that the 2-dominating set D = {1, 2, 3, 6} is minimal not minimum. The
set D = {3, 4, 5} or D = {4, 5, 6} is an M2DS.

4.5 The Stabilization Time of Algorithm 4.1

The legitimate configurations are defined to be all those configurations in which
no node in the system is privileged. The following theorem clarifies that in any
legitimate configuration, a minimal k-dominating set can be identified (closure).

Theorem 4.1. If Algorithm 4.1 stabilizes,, then the set D = {i ∈ V |di = 1} is
an MKDS.

Proof. It is obvious that the system is in a legitimate configuration if and only
if no node in the system is privileged.

4.5 The Stabilization Time of Algorithm 4.1 43

Figure 4.1: A M2DS example to illustrate the execution of Algorithm 4.1.

A Self-Stabilizing Algorithm for K-Domination 44

(1) Suppose D is not a KDS, then there exists a node i ∈ V −D such that i has
at most k − 1 neighbours in D, i.e., di = 0 and |D(i)| < k.

Claim. For any node i in the system when it reaches a legitimate configuration,
if di = 0 and |D(i)| < k, then there exists a node j ∈ L(i) (thus j < i) such that
dj = 0 and |D(j)| < k.

Proof of Claim. Since di = 0, |D(i)| < k, and i is not privileged by R3, we
have pi = {i}. Then since i is not privileged by R1, i.e., ∀j ∈ {m ∈ L(i)|dm =
0}, pj ̸= {j} cannot hold. Hence there exists a node j0 ∈ L(i) such that dj0 = 0
and pj0 = {j0}. If |D(j0)| = k, then since dj0 = 0 and pj0 = {j0} ̸= D(j0), j0 is
privileged by R4, which causes a contradiction. If |D(j0))| > k, then since dj0 = 0
and pj0 = {j0} ̸= ∅, j0 is privileged by R5, which causes a contradiction. Hence
|D(j0))| < k and the claim is proved.

By applying the above claim to node i, we get a node i1 ∈ L(i) such that di1 = 0
and |D(i1)| < k. Then, by applying the claim to node i1, we get a node i2 ∈ L(i1)
such that di2 = 0 and |D(i2)| < k. In this way, we eventually get infinitely many
nodes i1, i2, i3, . . . such that i > i1 > i2 > i3 > · · · . However, this causes a
contradiction because the system has only a finite number of nodes. Therefore,
D must be a KDS.

(2) Suppose D is not an MKDS, then there exists a node i ∈ D such that D−{i}
is a KDS. Since i /∈ D−{i} and D−{i} is a KDS, i has at least k neighbours in
D−{i} and thus |D(i)| ≥ k. If N(i)−D(i) = ∅, then, since di = 1 and |D(i)| ≥ k,
i is privileged by R2, which causes a contradiction. Hence N(i)−D(i) ̸= ∅. Let j
be an arbitrary node in N(i)−D(i). Since j /∈ D−{i} (dj = 0) and D−{i} is a
KDS, j has at least k neighbours in D−{i}. Thus j has at least k+1 neighbours
in D, i.e., |D(j)| > k. Since dj = 0, |D(j)| > k and j cannot be privileged by R5,
we have pj = ∅. Hence the condition [∀j ∈ N(i) − D(i), pj = ∅] holds. Since
di = 1, |D(i)| ≥ k and [∀j ∈ N(i) −D(i), pj = ∅] hold, node i is privileged by
R2, which causes a contradiction. Hence D is an MKDS.

In the following, we prove the convergence of Algorithm 4.1. We will first provide
two Lemmas. Based on these two Lemmas, we will prove the convergence time
of Algorithm 4.1.

Lemma 4.1. If di changes from 0 to 1, then di will not change again.

Proof: Since di changes from 0 to 1 by R1 at time t, so the condition di =
0∧ |D(i)| < k ∧ pi = {i}∧∀j ∈ {m ∈ L(i)|dm = 0}, pj ̸= {j} holds. By R1, only
the node with larger ID than i′s is able to enter the set D. Suppose at the time
t′, the node i leaves the set D by R2, thus the condition di = 1∧|D(i)| ≥ k∧∀j ∈
N(i)−D(i), pj = ∅ holds. So there exists a node j ∈ N(i)−D(i) with lager ID
than i′s entering the set D. Then the node j satisfies R1, we can get pj = {j},
but if the node i leaves the set D it satisfies the R2, and we have pj = ∅, which
causes a contradiction.

Lemma 4.2. A node can make at most two membership moves.

4.6 Algorithm Comparison 45

Proof: If a nodes first membership move is by R1, by Lemma 4.1, it will not
make a membership move again. If its first membership move is R2, then any
next membership move must be by R1, after which, it cannot make another
membership move.

Now we will prove Algorithm 4.1 always stabilizes (convergence).

Theorem 4.2. Algorithm 4.1 produces an MKDS and stabilizes in O(n2) steps.

Proof: In light of Theorem 4.1 we need only prove stabilization (convergence).
By Lemma 4.2, each node will change its d-value at most twice. Therefore, there
can be at most 2n changes of d-values on all nodes during the whole time. If there
is no change in d-value of any node in a time-step, then the time-step involves
only changes in p-values. The change in a p-value is determined only by d-values
and its neighbours in the set D according to the R3, R4 or R5. Consider the
processor i ∈ V with the largest degree ∆, a guarded command the pi may execute
is R3, R4 or R5. By definition of the Algorithm 4.1, after pi executes a guarded
command once, it is no longer privileged until |D(i)| changes by an execution of
at least one of the neighbours. Thus, the pi executes R3, R4 or R5 at most 2∆
times in an infinite computation. So, the upper bound of the execution time is
2(∆+ 1)n time-steps. Considering the graph G is a connected simple undirected
graph, the upper bound of the ∆ is (n− 1), therefore, Algorithm 4.1 produces an
MKDS and the stabilization time of Algorithm 4.1 is O(n2) steps.

4.6 Algorithm Comparison

In this section, we collect and discuss the existing self-stabilizing algorithms for
the dominating set (DS) respectively. The self-stabilizing algorithms presented
in this chapter are summarized in Table 4.1. The basic ideas of the first nine self-
stabilizing algorithms for the DS are discussed in Related Work (refer to Section
4.3). We also introduce the basic idea of the proposed algorithm presented in this
chapter.

Table 4.1: Algorithms for the dominating set

Reference Output Topology Self-stabilizing Daemon Complexity

Hedetniemi et al. [54]-1 DS Arbitrary Yes Central O(n) steps
Hedetniemi et al. [54]-2 MDS Arbitrary Yes Central O(n2) steps
Goddard et al. [58] MTDS Arbitrary Yes Central
Goddard et al. [88] MDS Arbitrary Yes Distributed O(n) steps
Kamei et al. [26]-1 MKDS Tree Yes Central O(n2) steps
Kamei et al. [26]-2 MKDS Tree Yes Distributed O(n2) steps
Huang et al. [55] M2DS Arbitrary Yes Central O(n) steps
Huang et al. [68] M2DS Arbitrary Yes Distributed
Wang et al. [71] MKDS Arbitrary Yes Central O(n2) steps
Algorithm 4.1 [72] MKDS Arbitrary Yes Distributed O(n2) steps

The main idea of our algorithm is that it allows a node i to join the set D (the

A Self-Stabilizing Algorithm for K-Domination 46

value di = 1) under construction if its pointer points to itself and its neighbours
which have smaller IDs than it has are all dominated at least k times (R1). Also,
a node i may leave the set under construction the set D if as far as it can tell all
of its neighbours not in D are dominated at least k times by D − {i}. The time
complexity of our algorithm in an arbitrary system graph is O(n2) steps.

In this chapter we have designed a self- stabilizing algorithm for the MKDS
(Algorithm 4.1) under a distributed daemon. The distributed daemon activates
the processors by repeatedly selecting a set of processors and activating them
simultaneously to execute a computation step. Each processor executes the next
computation step as defined by its state just prior to this activation. Once every
processor in the set has finished reading, all the processors write a new state
(change state). Only then does the scheduler choose a new set of processors to
be activated. Note that no non-activated processor changes its state. The central
daemon is a special case of the distributed daemon in which the set of activated
processors consists of exactly one processor. Thus if a system is self-stabilizing
under the distributed daemon model, then it is self-stabilizing under the central
daemon model. The converse, however, is not true (the total dominating set
algorithm in [58] and the 2-dominating set algorithm in [55] are self-stabilizing
under the central daemon models, but not under the distributed daemon models).

The algorithms we compared in this section are summarized in Table 4.1. As
we can see, the self-stabilizing algorithms for MDS of Hedetniemi et al. [54] and
Goddard et al. [58,88] all work for the single domination (the 1-dominating set or
the total dominating set). On the other hand, the other last six algorithms have
been proposed in the multiple domination case [26,55,68,71,72]. The algorithms
for the KDS problem by Kamei et al [26] work for a tree graph; the algorithms
by Huang et al. [55, 68] find an M2DS in general graphs. The self-stabilizing
algorithm for the MKDS in [71] works under a central daemon in general graphs.
Our Algorithm 4.1 is the first work using a distributed daemon approach to
discuss the MKDS problem in general graphs.

4.7 Summary

In this chapter, we have successfully solved the extension problem, “To find a
self-stabilizing algorithm for the MKDS problem in general networks, under a
distributed daemon model”, for the general k. Since the MKDS problem is more
general than the M2DS t problem, it is much too complicated to handle. Kamei
and Kakugawa have been the first to tackle the above extension problem, although
their results in [26] are restricted to tree networks only. Huang et al. [55, 68]
discussed the case k = 2, M2DS in any general network.

An immediate extension of this work is to find if it is possible to enhance the
stabilization time to O(nlgn) steps. Another future research topic is to attempt
to find a proper upper bound size of an MKDS in an arbitrary network.

Chapter 5

A Self-Stabilizing Algorithm for
Weighted Domination

In this chapter, we focus on a classical domination problem - the weighted domina-
tion problem, which has been used in many practical and theoretical application
fields. The existing self-stabilizing algorithms for the dominating set (DS) all work
for uniform weight cases. There are seldom self-stabilizing algorithms working for
the weighted dominating set (WDS). So we present a self-stabilizing algorithm
for finding a minimal weighted dominating set (MWDS) under a central daemon
in a general graph. We further prove that the worst case convergence time of the
proposed algorithm from any arbitrary initial state is O(n2) steps where n is the
number of nodes in the graph.

The information in this chapter is based on one published paper [75].

5.1 Introduction

Graph domination problems are important combinatorial problems with many
practical and theoretical applications. They model many relevant problems in
fields such as communication networks and network design, social network theory,
computational complexity, and algorithm design. Many facility location, resource
allocation, and scheduling problems, are variants of graph domination problems.
For example, an application of fire stations, suppose a city has decided to build
some fire stations, which must serve all of the people in the city. Assume in
Toowoomba city, the fire stations are to be located in areas such as Kearneys
Spring, Middle Ridge, Harristown and Newtown so that every area is a neighbour
of an area which has a fire station to help it. Since each area has a request target,
if too few fire stations are set up to rescue people if there is a fire, there is a
high likelihood that in some areas people cannot get rescued in time due to the
distance involved. On the other hand, due to a fixed cost of building a fire station
there are financial limitations in budget. Hence, it is too expensive to build a fire
station in each area. Therefore, how to choose a subset of all the areas to build
the fire stations so that each area of the city can be rescued in time becomes a
significant issue of the city plan.

A Self-Stabilizing Algorithm for Weighted Domination 48

From the above example, we can model these four areas into a simple network
with 4 nodes. The fire station location problem can be formulated as a weighted
domination problem in a graph. Formally, a subset D ⊆ V of a graph G = (V,E)
is a dominating set (DS) if every vertex in V − D is adjacent to some vertex
in D. Let G = (V,E,W) be a simple undirected weighted graph with a weight
function W = {w1, w2, ..., wn}. wi is the weight associated with vertex i for
i ∈ {1, 2, ..., n}, which can represents the fire-fighting capacity of each node i
(also can be regarded as the construction fees). Each node also has a weight
target t(i) (help request). A weighted dominating set (WDS) D in G is a subset
of V such that for all i ∈ V , the sum

∑
j∈N(i)∩D w(j) ≥ t(i), where the set N(i)

represents its open neighbourhood, denotes the set of nodes to which i is adjacent.
Our purpose is to find a minimal assignment of the total values that satisfy the
constraints.

In this chapter, we will design a self-stabilizing algorithm for the WDS prob-
lem which works under a central daemon. Next, we discuss some basic ideas of
Dijkstra’s central daemon model.

5.2 Dijkstra’s Central Daemon Model

Dijkstra’s central daemon model of computation [56, 57, 89] of an algorithm in a
distributed system has the following features:

The algorithm running on each processor consists of one or more rules. Each rule
is of the form

condition part → action part.

The condition part (or guard) is a Boolean function over the states of the pro-
cessor and its neighbours; the action part is an assignment of values to some of
the processors shared registers. If the condition part of a rule in a processor is
evaluated as true, we say that the processor is privileged to execute the action
part (or to make a move).

In the initial configuration, if none of the processors is privileged, then the system
is deadlocked. Otherwise, if a privileged processor exists, the central daemon in
the system will randomly select exactly one among all the privileged processors
to make a move, in a single atomic step. The local state of the selected processor
thus changes and in the meantime results in the change of the global configuration
of the system. The system will then repeat the above process to change global
configurations as long as it does not encounter any deadlock situation. Thus, the
behaviour of the system under the action of the algorithm can be described by
executions (or a move). It is required that the executions are finite and no node
is privileged in the last configuration.

Under this computational model, a great number of papers regarding self-stabilizing
algorithms have been published. For example, self-stabilizing algorithms for dom-
inating sets, independent sets, colorings, and matchings in graphs have been de-
veloped [54,61–66,88].

5.3 Motivations and Contributions 49

5.3 Motivations and Contributions

Although domination problems are all NP-hard in general graphs [11, 37], which
means to find a minimum dominating set is NP-hard in general graphs, some
proposed self-stabilizing algorithms for the minimal dominating set are in poly-
nomial time (steps or rounds) complexity [26,54] or linear time (steps or rounds)
complexity [54, 55]. However, the proposed self-stabilizing algorithms for the
minimal k-dominating set (MKDS) (Kamei and Kakugawa [26]) and the mini-
mal generalized dominating set (Goddard et al. [58]) all work for uniform weight
cases. The weight of each node in most of the proposed algorithms was uni-
form [26, 26, 54, 55, 58]. On the other hand, the polynomial time approximation
algorithms for the weighted domination problems are all greedy algorithms for
finding approximation solutions [16–18]. There are seldom self-stabilizing algo-
rithms for the WDS.

In this chapter, we are interested in a minimal weighted dominating set (MWDS)
raised from some facility location problems. We first propose a self-stabilizing
algorithm for the MWDS under a central daemon model when operating in any
general network, which is a theoretical contribution to Distributed Computing.

The following are our contributions.

1. A self-stabilizing protocol for finding an MWDS in an arbitrary network
graph under a central daemon is presented.

2. The worst case convergence time of the protocol from any arbitrary initial
state is proved to be O(n2) steps where n is the number of nodes in the
network.

To the best of our knowledge, this is the first work using a self-stabilizing algo-
rithm to find an MWDS.

5.4 Weighted Dominating Set

Let G = (V,E,W) be a connected simple undirected weighted graph that models
a distributed system, with each node i ∈ V representing a process in the system,
each edge (i, j) ∈ E representing the bidirectional link connecting processes i and
j, and a nonnegative weight W = {w1, w2, ..., wn} (the weight function) denotes
the set of node weights. wi is the weight associated with node i for i ∈ {1, 2, ..., n}.
We denote w(S) =

∑
i∈S w(i) if S is a subset of V . We denote by n the number

of nodes (|V | = n), and by m the number of edges (|E| = m) in the graph G. For
each node i ∈ V , the set N(i) represents its open neighbourhood, denotes the set
of nodes to which i is adjacent. d(i) represents the number of neighbours of node
i, or its degree (d(i) = |N(i)|). Throughout this chapter, we denote by ∆ the
maximum degree of G (∆ = max{deg(i)|i ∈ V }). Our algorithm requires that
every node has a unique ID. Sometimes i interchangeably denotes a node or the
node’s ID. Assume there is a total ordering on the IDs. Assume now that each
node has a weight value target t(i) such that t(i) ≤ w(N(i)), indicates that there

A Self-Stabilizing Algorithm for Weighted Domination 50

must be a WDS D such that any node i ∈ V can be dominated by D. Given
these assumptions the definition of a WDS D ⊆ V is as follows:

Definition 5.1. A subset D ⊆ V is said to be a weighted dominating set
(WDS) if for every node i ∈ V ,

∑
j∈N(i)∩D

w(j) ≥ t(i). (5.1)

A WDS D is a minimal weight dominating set (MWDS) if any proper subset of
D is not a WDS in G.

The concept of the MWDS problem gives rise to the following problem:

Minimal Weighted Dominating Set

INSTANCE: A connected simple undirected weighted graph G = (V,E,W) and
a weight value target t(i) such that t(i) ≤ w(N(i)).

QUESTION: How to find an MWDS D ⊆ V such that the D is a WDS of the
graph G and minimal.

In this chapter, we propose a self-stabilizing algorithm under a central daemon
for finding an MWDS of a general graph. In our algorithm, each node i has
two variables: a set of pointers P (i) and a Boolean flag x(i). If P (i) = {j},
then we say that i points to j, written i → j. We allow P (i) to contain i and
its cardinality is bounded by N(i). Each node also has a Boolean flag x(i). At
any given time, we will denote with D the current set of nodes i with x(i) = 1,
otherwise x(i) = 0. That is,

x(i) =

{
0 if i /∈ D
1 if ∈ D.

(5.2)

At a given time, assume
∑

j∈N(i)∩D w(j) < t(i). Then since t(i) ≤ w(N(i)), there

is at least one member in N(i)−D.

Definition 5.2. Let Mi denote the unique set in N(i) − D having the smallest
IDs such that:

Mi = Min{S|w((D ∩N(i)) ∪ S) ≥ t(i), S ⊆ (N(i)−D)}.

Note that this set depends on N(i) and D.

5.5 Weighted Dominating Set Algorithm 51

Definition 5.3. A set of pointers Q(i) is designed as follows:

Q(i) =

{
(D ∩N(i)) ∪Mi if w(N(i) ∩D) ≤ t(i)

∅ if w(N(i) ∩D) > t(i).
(5.3)

Note that the valueQ(i) can be computed by i (i.e., it uses only local information).

Definition 5.4. The Boolean condition y(i) is defined to be 1 if and only if a
neighbour of i points to it, otherwise its value is 0.

5.5 Weighted Dominating Set Algorithm

Algorithm 5.1: Finding a Minimal Weighted Dominating Set

Input: A graph G = (V ;E;W), ∀i ∈ V , a Boolean
flag x(i), a target t(i) and a set of pointers P (i).
Output: D = {i ∈ V |x(i) = 1}.
R1: if x(i) ̸= y(i) ∨ P (i) ̸= Q(i)

then x(i) = y(i) ∧ P (i) = Q(i)

The Algorithm 5.1 (protocol) which consists of one rule (R1) shows the pseudo-
code above. In Algorithm 5.1 each node i has a Boolean variable x(i) indicating
membership in the set D that we are trying to construct. The value x(i) = 1
indicates that i ∈ D, while the value x(i) = 0 indicates that i /∈ D. The Boolean
condition y(i) is defined to be 1 if and only if a neighbour of i points to it. P (i)
is a set of pointers. Q(i) is counted by equation (5.3). Thus, a node i is privileged
if x(i) ̸= y(i) or P (i) ̸= Q(i). If R1 executes, then it sets x(i) = y(i) and
P (i) = Q(i). An example to illustrate the execution of Algorithm 5.1 is shown
in Fig. 5.1.

It is obvious that the system is in a legitimate configuration if and only if no node
in the system is privileged. The following lemma clarifies that in any legitimate
configuration, an MWDS D = {i ∈ V |x(i) = 1} can be identified.

Lemma 5.1. If Algorithm 5.1 stabilizes then D = {i ∈ V |x(i) = 1} is an MWDS
satisfying the definition of WDS (Definition 5.1).

Proof: Suppose that D satisfies the definition of WDS (Definition 5.1). By
contradiction suppose that for some i, w(N(i)∩D) < t(i). ThenMi ̸= ∅, and since
the system is stable there is a node j of i′s neighbour such that j ∈ Q(i) = P (i)
and j /∈ D, then y(j) is 1 but x(j) is 0, a contradiction, so D is a WDS. We
now claim D is minimal weight as well. Suppose there exists a subset D′ ⊂ D
is a WDS such that w(D′) < w(D). For some node j ∈ D −D′, there is a node
i ∈ N(j) that points to it. That means P (i) = {..., j} ̸= ∅. Since no node in the

A Self-Stabilizing Algorithm for Weighted Domination 52

system is privileged, we have P (i) = Q(i), and we must have w(N(i)∩D) ≤ t(i)
. Thus, the removal of j from D will leave w(N(i) ∩ D) < t(i) and D is not a
WDS (since the weight value of each node is positive). So the WDS D is minimal
weight.

5.5.1 An Illustration

Example 5.1. The example in Fig. 5.1 illustrates the execution of Algorithm 5.1.
Note that in each configuration, the shaded nodes represent nodes in D (x-value
is 1). The privileged node selected by the central daemon according to Algorithm
5.1 to make a move or reset the value of P (i).

In the first subgraph of Fig. 5.1, we set w(1) = w(3) = w(5) = 1 and w(2) =
w(4) = w(6) = 2. The weight targets are t(1) = 4, t(2) = t(5) = 3, t(3) = t(4) =
2, and t(6) = 1. We further set x(1) = x(3) = 1, other nodes’ x-values are 0, that
means D = {1, 3}. P (1) = P (2) = P (4) = P (5) = {1}, P (3) = P (6) = {3}, just
as the arrows point in the first subgraph. According to the definition of Algorithm
5.1, after a series of moves and resets, the system reaches a legitimate state. As
the last subgraph of Fig. 5.1 shows, which is a legitimate configuration, we can
see a minimal weighted dominating set D = {1, 2, 3, 4} can be identified (the
shaded nodes) and the minimal weight of D is 6.

5.6 The Stabilization Time of Algorithm 5.1

In this section, we prove the convergence of Algorithm 5.1. We say that node i
invites nodes Mi if, at some time t, the total weight of node i′s neighbours in D
has less than t(i) and then executes the rule, causing P (i) = (D ∩ N(i)) ∪ Mi.
For a node to join D, it must either be pointed to from an initial erroneous state
or be invited. As the proof of Lemma 5.1, we use the terminology that node i
invites node j (with j = i allowed) if at some time w(N(i) ∩D) < t(i), j ∈ Mi,
j executes a move. For a node to join D, it must be pointed to from an initial
state or be invited.

Definition 5.5. A move is an in-move if it causes x(i) to become 1, thereby
causing a node i to enter D.

Lemma 5.2. Let i be a node and suppose that between two moves t and t′, there
is no in-move by any node k > i. Then during this move interval node i can
make at most two in-moves.

Proof: If i is never invited during this interval, then once i leaves D, it cannot
re-join. The first in-move made by i may have been because a neighbour node
happened to initially point to i. The second in-move made by i must be by
invitation. So suppose i is invited by node j, allowing i to make an in-move. Once

5.6 The Stabilization Time of Algorithm 5.1 53

Figure 5.1: An example to illustrate the execution of Algorithm 5.1.

A Self-Stabilizing Algorithm for Weighted Domination 54

i enters D it must remain there if j continues pointing to it. And this is ensured,
provided w(N(j)∩D) ≤ t(j) throughout. Suppose during the move interval from
t to t’, w(N(j) ∩D) = t′(j) < t(j). Nodes having weight values larger than that
of i do not move during this period, but the nodes with smaller weight values can.
during the move interval from t to t’, i is among the nodes /node with smallest
weight value in N(j)−D. Even if all nodes with smaller weight values than that
of i were to enter D, we would still have w(N(j) ∩ D) ≤ t(j). It follows that j
will remain pointing to i throughout, and i will remain in D. Hence, x(i) can
make at most two in-moves during this move interval.

We now prove Algorithm 5.1 stabilizes. Observe that if D remains the same,
then every node can execute at most once (to correct its pointer). So it suffices
to show that D changes at most a finite number of times.

Theorem 5.1. Algorithm 5.1 always stabilizes, and finds an MWDS.

Proof: In light of Lemma 5.1 we see that if Algorithm 5.1 is stabilizing it always
finds an MWDS. We need only prove stabilization. It suffices to show that every
node makes only a finite number of in-moves. By Lemma 5.2, node n, which has
the largest ID, makes at most two in-moves. During each of the move intervals
from t to t′, the pointer set P (i) makes a finite number of moves since it only use
the information of its neighbours. when node n is not making an in-move, using
Lemma 5.2 again, node n− 1 makes at most a finite number of moves and resets.
It is easy to show this argument can be repeated, showing that each node can
make only a finite number of in-moves and resets during the intervals in which
larger weight value nodes are inactive.

We provide a correctness proof and a computation of the worst case stabilization
time for Algorithm 5.1.

Theorem 5.2. Algorithm 5.1 produces an MWDS and stabilizes in O(n2) steps.

Proof: From Lemma 5.1 and Theorem 5.1, we see that Algorithm 5.1 produces
an MWDS. We need only prove Algorithm 5.1 stabilizes in O(n2) steps. By
Lemma 5.2, each node will change its x-value at most twice. Therefore, there can
be at most 2n changes of x-value on all nodes in all the time. If there is no change
in x-value of any node in a time-step, then the time-step involves only changes
in P (i)-values. The change in a P (i)-value is determined only by Q(i)-values.
Since we are working with the central daemon, there cannot be two consecutive
time-steps without a change in x-value or P (i)-value. Therefore, there can be at
most n∆ changes of P (i)-value on all nodes during the whole time (where ∆ is
the maximum degree of G). So, the upper bound of the execution time is (2+∆)n
time-steps. Considering that the graph G is a simple undirected graph, we have
∆ ≤ (n− 1). Therefore, the stabilization time of Algorithm 5.1 is O(n2) steps.

5.7 Related Work and Comparisons 55

5.7 Related Work and Comparisons

In this section we present and discuss the existing algorithms for the dominating
set (DS), especially for the weighted dominating set (WDS) respectively. We also
discuss the basic idea of Algorithm 5.1.

Hedetniemi et al. [54] presented two self-stabilizing algorithms for the DS and the
minimal dominating set (MDS) problems. The idea of the first algorithm is to
partition the set of nodes into two disjoint sets, such that each set is dominating.
To obtain this result, each node has a boolean variable that indicates whether it
is in the first or the second set. Then, a node is allowed to change its state if all
nodes in its neighbourhood have the same state. In the second algorithm, which
calculates an MDS, each node maintains a boolean variable that indicates after
stabilization whether the node is in the MDS or not. Also, each node maintains
another variable (pointer) that indicates if it is dominated by only one node. So,
a node will point to null if it is in the set under construction S or it is dominated
by more than one node; otherwise it will point to the unique node that dominates
it. The algorithm allows a node to join the set S, if it has no neighbour in S. On
the other hand, a node that is already a member of S, and has a neighbour that
is also a member of S, will leave the set if all its neighbours are not pointing to
it. Thus, after stabilization the set S will be an MDS. The two algorithms work
for any connected graph and assume a central daemon.

Turau [59] designed a self-stabilizing algorithm for the MDS problem assuming
the nodes to have globally unique identifiers and an arbitrary graph. The idea
of his algorithm is that if a node is dominated by exactly one neighbour, then
it will point to this neighbour. And if a node is dominated by more than one
neighbour, or it is a member of the set under construction, then it will point to
null. This algorithm allows a node to join the set under construction if: a node
that has no neighbour in the set will first change its state to WAIT, then it will
change its state to IN if it has no neighbour with a lower identifier in WAIT
state.; however, in order to leave the set under construction a node must have no
neighbour pointing to it. Note that this is the first MDS algorithm that stabilizes
in linear time under a distributed daemon.

Zou et al. [16] gave the first polynomial time approximation scheme (PTAS) for
the MWDS problem on unit disk graphs, in which the sensor nodes are assumed
to lie on the Euclidean plane, and there is an edge between two nodes iff their
Euclidean distance is no more than one. The definition of the MWDS in their
paper is to seek a subset of the vertices of the graph with minimum total weight
such that each vertex of the graph is either in the subset or adjacent to some
nodes in the subset. For any ϵ > 0, their greedy algorithm can achieve a (4 + ϵ)-
approximation for the MWDS based on a polynomial-time dynamic programming.

However, there is no self-stabilizing algorithm for the weighted domination prob-
lems in arbitrary graphs that works under a central daemon. Most of the proposed
self-stabilizing algorithms all work under the uniform weight [54,59]. The weight
of each node in previous algorithms discussed in this section is all uniform. The
best greedy algorithm for the WDS problem is about (4 + ϵ)-approximation for
any ϵ > 0. In order to select a minimal weight dominating set (MWDS) in general

A Self-Stabilizing Algorithm for Weighted Domination 56

networks, we present a uniform algorithm (all of the individual processes run the
same code) for finding an MWDS that works in arbitrary graphs under a central
daemon.

The main idea of Algorithm 5.1 is that we assume globally unique identifiers for
the nodes and a central daemon. The algorithm uses a mechanism of pointers to
show that a node i will point to its neighbours having the smallest weight values if
i has been dominated less than t(i) weight value by the set D when constructing
it. On the other hand, if a node i has been dominated more than t(i) weight
value by the set D then P (i) will point to an empty set; otherwise P (i) will point
to its unique neighbours that are members of the set D. The algorithm allows a
node to join the set D if some neighbour is pointing to it, and to leave the set
D otherwise. So after stabilization, the set D will become an MWDS. The time
complexity of our algorithm in any arbitrary graphs is O(n2) steps. To the best
of our knowledge, this is the first work using a self-stabilizing algorithm to find
an MWDS, which can find an exact solution to the WDS problem (minimal).

Table 5.1: Self-stabilizing algorithms for the dominating set

Reference Output Topology Self-stabilizing Daemon Complexity

Hedetniemi et al. [54]-1 DS Arbitrary Yes Central O(n) steps
Hedetniemi et al. [54]-2 MDS Arbitrary Yes Central O(n2) steps
Turau [59] MDS Arbitrary Yes Distributed O(n) steps
Zou et al. [16] WMDS Arbitrary No (Greedy) (4 + ϵ)-approximation
Algorithm 5.1 MWDS Arbitrary Yes Central O(n2) steps

The algorithms we compared in this section are summarized in Table 5.1. As we
can see, the basic ideas of the first three algorithms are self-stabilizing; and all of
them deal with the dominating set with uniform weight cases. Zou et al.’s work is
a greedy approximation algorithm to deal with the MWDS case. Our algorithm is
the first work using a self-stabilizing approach to discuss the weighted domination
problem.

5.8 Summary

In this chapter, we have proposed a self-stabilizing algorithm to find an MWDS
which arises from some cost issues in networks. The algorithm can be used for
an arbitrary connected graph. Previously known algorithms are self-stabilizing
algorithms considering uniform weight cases or greedy algorithms. We have also
shown the stabilization time of the algorithm with O(n2) steps under a central
daemon. We briefly discuss how the ideas can be further generalized.

We can extend these ideas even further to other graph dominations such as weak,
strong and optional domination [100,101]. It can also be altered to allow a node
to have weights in a range {−b′(i), ..., b(i)} and so handle minus domination.
Another interesting direction for further research is to develop self-stabilizing
algorithms for weighted domination problems that operate under a distributed or
synchronous daemon.

Chapter 6

A New Algorithm for the Positive
Influence Dominating Set

A positive influence dominating set (PIDS) in a graph is a set of nodes such
that each node in the graph has at least half of its neighbours in the set. In the
past, a few algorithms for the PIDS problem have been studied in the literature.
However, all the existing work focused on greedy algorithms for the PIDS problem
with different approximation ratios, which are limited to finding approximate
solutions to a PIDS in large social networks. In order to select a minimal PIDS
(MPIDS) in large social networks, we first present a self-stabilizing algorithm for
the MPIDS problem. It can work for any general graphs under a central daemon.
We further prove that the worst case convergence time of the algorithm from
any arbitrary initial state is O(n2) steps where n is the number of nodes in the
network.

The information in this chapter is based on one published paper [73].

6.1 Introduction

6.1.1 Positive Influence Dominating Set

Recently, social networks for example, friendship networks, telephone call net-
works, and academia co-authorship networkshave received dramatic interest in
research and development, partly due to more and more social networks being
built online and the fast development of Web 2.0 applications, such as Face-
book [102–104], Twitter [32–34], e-learning research [78,105] and privacy protec-
tion [106–108]. However, social networks have also introduced to the research
community many new challenges. Graph theory has been considered a work-
ing solution to tackle these challenges. Some classical graph problems such as
domination problems in social networks have various new applications.

In a social network which consists of individuals with a certain type of social
problem, people can have both positive and negative impact on each other, and
a person can take and switch among different roles since they are affected by
their peers [82–84]. For example, for the drinking problem, a person named

A New Algorithm for the Positive Influence Dominating Set 58

Mark never drinks and has positive impact on his direct friends (Barry, etc.), but
Mark might turn into an alcoholic and has negative impact on his neighbours if
his friends Barry et al. are all alcoholics and vice versa. So, a person can be
an abstainer or an alcoholic. In order to truly alleviate the main source of the
drinking problem, intervention programmes are important tools to help alleviate
some of the social problems through disseminated education and therapy via mail,
Internet, or face-to-face interviews. Ideally, we want to educate all alcoholics,
since this will reduce the possibility of converted alcoholics being influenced by
their alcoholic friends who are not selected in the intervention programme. On the
other hand, due to budget limitations, the lower the total cost of the education
and therapy programme, the better. So, it is too expensive to include all the
alcoholics in the intervention programme. Therefore, it becomes an important
research problem as to how to choose a subset of individuals to be part of the
programme so that the effect of the intervention programme can spread through
the whole group under consideration.

The concept of the positive influence dominating set (PIDS) was introduced in
2009 by Wang et al. [27,28]. The PIDS can deal with some social problems, such
as drinking, smoking and drug use related issues. Formally, a social network can
be represented as a graph G = (V,E), where i ∈ V represents a person (node) in
the social network and edge eij ∈ E represents a relationship between persons i
and j. Recall that D ⊆ V is a positive influence dominating set (PIDS) [27, 28]

such that any node i in V is dominated by at least ⌈d(i)
2
⌉ nodes (that is, i has at

least half of its neighbours) in D where d(i) is the degree of node i. Note that
there are two requirements for PIDS: firstly, every node not in D has at least
half of its neighbours in D, secondly every node in D also has at least half of its
neighbours in D. A PIDS D is minimal (MPIDS) if no proper subset of D is a
PIDS.

For the drinking example remarked on earlier, an MPIDS is a plausible solution
since the MPIDS can guarantee that by selecting MPIDS nodes to participate
in the intervention programme, each individual in the social network has more
positive neighbours than negative ones to ensure that the intervention can result
in a globally positive impact on the entire social network.

Wang et al. proposed a greedy approximation PIDS selection algorithm and
analyzed its effect on a real online social network data set and through simulations
[27]. Their simulation results reveal that approximately 60% of the whole group
under consideration needs to be selected into the PIDS to achieve the goal that
every individual in the community has more positive neighbours than negative
neighbours. It also reveals that by strategically selecting 26% more people into the
PIDS to participate in the intervention programme, the average positive degree
increases by approximately 3.3 times. It means that by moderately increasing
the participation related cost, the probability of positive influencing the whole
community through the intervention programme is significantly higher.

Wang et al. also proved the PIDS problem is APX-hard (APX-hardness of the
PIDS problem means that if NP ̸= P , then PIDS has no polynomial-time approx-
imation scheme) and developed another greedy approximation algorithm with an
approximation ratio of H(δ) where H is the harmonic function and δ is the max-

6.2 Self-Stabilization 59

imum vertex degree of the graph representing a social network [28].

6.2 Self-Stabilization

Self-stabilization is a paradigm for distributed systems that allows the system to
achieve a desired global state, even in the presence of faults [56, 57, 89]. A self-
stabilizing programme consists of a collection of rules of the form if the condition
then changes state. A node is called privileged if the predicate of one of the
rules is true. It moves by changing state. A fundamental idea of self-stabilizing
algorithms is that no matter what global state the system finds itself in, after
a finite amount of time the system will reach a correct and desired global state.
Although the concept of self-stabilization was introduced in 1974 by Dijkstra [56],
serious work on self-stabilizing algorithms did not start until the late 1980’s.

An algorithm is self-stabilizing if

(i) for any initial illegitimate state it reaches a legitimate state after a finite
number of node moves (convergence), and

(ii) for any legitimate state and for any move allowed by that state, the next
state is a legitimate state (closure).

The convergence property ensures that, starting from any incorrect state, the
distributed system reaches a correct state. The closure property ensures that,
after convergence, the system remains in the set of correct states.

We assume that each transition from one configuration to another is driven by a
scheduler, also called a daemon. A central daemon selects, among all privileged
nodes, the next node to move. We assume a serial model in which no two nodes
move simultaneously. If two or more nodes are privileged, one cannot predict
which node will move next.

An unfair daemon can choose any node among those privileged nodes without
any consideration of fairness. The consequence of using an unfair daemon is that
a privileged node may never be chosen as long as there is at least one other
privileged node at each step.

Under this computational model, a great number of papers regarding self-stabilizing
algorithms have been published for graph problems. Such as, self-stabilizing algo-
rithms for dominating sets, independent sets, colorings, and matchings in graphs
have been developed [54,61,64,88].

6.3 Motivations and Contributions

The PIDS which has application in social networks can be considered as a special
case of multiple domination, introduced by Wang et al. [27,28]. Wang et al. pro-
posed a greedy approximation PIDS selection algorithm and analyzed its effect
on a real online social network data set and through simulations [27]. Wang et

A New Algorithm for the Positive Influence Dominating Set 60

al. also proved the PIDS problem is APX-hard and developed another greedy ap-
proximation algorithm and analyzed its approximation ratio [28]. APX-hardness
of the PIDS problem means that if NP ̸= P , then the PIDS problem has no
polynomial-time approximation scheme.

In the domination problems, finding a PIDS of minimum size is APX-hard [28].
Some greedy approximation algorithms have been proposed [27,28], which are all
limited to finding approximate solutions to PIDSs in large social networks. If we
can obtain a smaller size solution to the PIDS, it might save the total cost of
an intervention and education programme while positively dominating the whole
group. Moreover, it might offer considerable benefits to both the economy and
society.

On the other hand, none of these algorithms for the PIDS problem are self-
stabilizing. In order to obtain a minimal PIDS (MPIDS), we first propose a
new self-stabilization algorithm for computing an MPIDS in a general network
and analyze the time complexity of the proposed algorithm. To the best of our
knowledge, this is the first work using a self-stabilizing algorithm to find an
MPIDS. The following are our contributions.

1. A self-stabilizing algorithm for finding a minimal positive influence dominat-
ing set (MPIDS) in an arbitrary connected network graph under a central
daemon is presented.

2. The correctness of the proposed algorithm is verified. The worst case con-
vergence time of the algorithm, which is O(n2) steps from any arbitrary
initial state where n is the number of nodes in the network, is proved.

6.4 Positive Influence Dominating Set

Let G = (V,E) be a simple connected undirected graph with nodes set V and
edges set E. Assume now that for each node i ∈ V , the set N(i) represents its
open neighbourhood, denotes the set of nodes to which i is adjacent. d(i) rep-
resents the number of neighbours of node i, or its degree (d(i) = |N(i)|). Our
algorithm requires that every node has a unique ID. Sometimes i interchangeably
denotes a node or the node’s ID. Assume there is a total ordering on the IDs. As-
sume further that each node has a target integer h(i) ≤ d(i), where h(i) = ⌈d(i)

2
⌉

indicates that any node i ∈ V is dominated by at least ⌈d(i)
2
⌉ nodes in N(i).

Given these assumptions we define a minimal positive influence dominating set
D ⊆ V as follows:

Definition 6.1. A subset D ⊆ V is said to be a positive influence dominat-
ing set (PIDS) if for every node i ∈ V ,

|N(i) ∩D| ≥ h(i). (6.1)

A PIDS D is a minimal PIDS (MPIDS) if any proper subset of D is not a PIDS
in G.

6.5 Positive Dominating Set Algorithm 61

Note that in the case of total domination (a set D ⊆ V is said to be total
dominating if every i ∈ V is adjacent to at least a member of D), the h(i) in
Inequality (6.1) is a precisely uniform one.

The concept of an MPIDS problem gives rise to the following problem:

Minimal Positive Influence Dominating Set

INSTANCE: A connected simple undirected graph G = (V,E) with nodes set V
and edges set E.

QUESTION: How to find an MPIDS D ⊆ V such that the D is a PIDS of the
graph G and minimal.

6.5 Positive Dominating Set Algorithm

In this section, we present our self-stabilizing algorithm. In a graph without
isolated nodes, a PIDS must exist.

In our algorithm, assume each node i has two variables: a set of pointers P (i)
and a Boolean flag x(i). If P (i) = {j}, then we say that i points to j, written
i → j. We allow P (i) to contain i and its cardinality is bounded by h(i). Each
node also has a Boolean flag x(i). At any given time, we will denote with D the
current set of nodes i with x(i) = true.

At a given time, assume |N(i) ∩D| = k ≤ h(i). Then since h(i) ≤ |N(i)|, there
are at least h(i)− k members in N(i)−D.

Definition 6.2. Let Mi denote the unique set of those h(i)−k nodes in N(i)−D
having the smallest IDs.

Note this set depends on N(i) and D.

Definition 6.3. A set of pointers Q(i) is designed as follows:

Q(i) =

{
(D ∩N(i)) ∪Mi if |N(i) ∩D| = k ≤ h(i)

∅ if |N(i) ∩D| > h(i).
(6.2)

Note that the valueQ(i) can be computed by i (i.e., it uses only local information).

Definition 6.4. The Boolean condition y(i) is defined to be true if and only if a
neighbour of i points to it.

A New Algorithm for the Positive Influence Dominating Set 62

6.5.1 Proposed Algorithm

Algorithm 6.1: Finding a Minimal Positive Influence Dominating Set

Input: A graph G = (V,E), ∀i ∈ V , a Boolean
flag x(i) and a set of pointers P (i)
Output: D = {i ∈ V |x(i) = true}
R1: if x(i) ̸= y(i) ∨ P (i) ̸= Q(i)

then x(i) = y(i) ∧ P (i) = Q(i)

The Algorithm 6.1, consisting of one rule (R1), is shown above. In Algorithm 6.1
each node i has a Boolean variable x(i) indicating membership in the set D that
we are trying to construct. The value x(i) = true indicates that i ∈ D, while the
value x(i) = false indicates that i /∈ D. The Boolean condition y(i) is defined
to be true if and only if a neighbour of i points to it. P (i) is a set of pointers.
Q(i) is counted by Equation (6.2). Thus, a node i is privileged if x(i) ̸= y(i)
or P (i) ̸= Q(i). If R1 executes, then it sets x(i) = y(i) and P (i) = Q(i). An
example to illustrate the execution of Algorithm 6.1 is shown in Fig. 6.1.

It is obvious that the system is in a legitimate configuration if and only if no node
in the system is privileged. The following Lemma clarifies that in any legitimate
configuration, an MPIDS D = {i ∈ V |x(i) = true} can be identified.

Lemma 6.1. If Algorithm 6.1 stabilizes then D = {i ∈ V |x(i) = true} is an
MPIDS satisfying Inequality (6.1).

Proof: Suppose that D satisfies Inequality (6.1). By contradiction suppose that
for some i, |N(i)∩D| < h(i). Then Mi ̸= ∅, and since the system is stable there is
a node j of i′s neighbour such that j ∈ Q(i) = P (i) and j /∈ D, then y(j) is true
but x(j) is false, a contradiction, so D is a PIDS. We now claim D is minimal as
well. Suppose there exists a subset D′ ⊂ D is a PIDS. For some node j ∈ D−D′,
there is a node i ∈ N(j) that points to it. That means P (i) = {..., j} ≠ ∅. Since
no node in the system is privileged, we have P (i) = Q(i), and we must have
|N(i) ∩D| = h(i) according to the Equation (6.2). Thus, the removal of j from
D will leave |N(i) ∩D| < h(i) and D is not a PIDS. So the PIDS D is minimal.

6.5.2 An Illustration

Example 6.1. The example in Fig. 6.1 illustrates the execution of Algorithm 6.1.
Note that in each configuration, the shaded nodes represent nodes in D (x-value is
true). The privileged node selected by the central daemon according to Algorithm
6.1 to make a move or reset the value of P (i).

6.5 Positive Dominating Set Algorithm 63

Figure 6.1: An example to illustrate the execution of Algorithm 6.1 .

A New Algorithm for the Positive Influence Dominating Set 64

In the first subgraph of Fig. 6.1, we set x(1) = x(3) = true, other nodes’ x-values
are false, that means D = {1, 3}. P (1) = P (2) = P (4) = P (5) = {1}, P (3) =
P (6) = {3}, just as the arrows point in the first subgraph. According to the rule
(R1) of Algorithm 6.1 , after a series of moves, the system reaches a legitimate
state. As the last subgraph of Fig. 6.1 shows, which is a legitimate configuration,
we can see a minimal positive influence dominating set D = {1, 2, 3, 4} can be
identified (the shaded nodes).

6.5.3 The Stabilization Time of Algorithm 6.1

In this section, we prove the convergence of Algorithm 6.1 . We say that node i
invites node j (with j = i allowed) if at some time |N(i) ∩ D| < h(i), j ∈ Mi,
j executes a move. For a node to join D, it must be pointed to from an initial
state or be invited.

Definition 6.5. A move is an in-move if it causes x(i) to become true, thereby
causing a node i to enter D.

Lemma 6.2. Let i be a node and suppose that between two moves t and t′, there
is no in-move by any node k > i. Then during this move interval node i can
make at most two in-moves.

Proof: If i is never invited during this interval, then once i leaves D, it cannot
re-join. The first in-move made by i may have been because a neighbour node
happened to initially point to i. The second in-move made by i must be by
invitation. So suppose i is invited by node j, allowing i to make an in-move.
Once i enters D it must remain there if j continues pointing to it. And this
is ensured, provided |N(j) ∩ D| ≤ h(j) throughout. Suppose during the move
interval from t to t’, |N(j) ∩ D| = k. Nodes having IDs larger than that of i
do not move during this period, but the smaller nodes can. during the move
interval from t to t’, i is among the h(j) − k smallest nodes in N(j) −D. Even
if all nodes with smaller IDs than that of i were to enter D, we would still have
|N(j) ∩D| ≤ h(j). It follows that j will remain pointing to i throughout, and i
will remain in D. Hence, x(i) can make at most two in-moves during this move
interval.

We now prove our algorithm stabilizes. Observe that if D remains the same,
then every node can execute at most once (to correct its pointer). So it suffices
to show that D changes at most a finite number of times.

Theorem 6.1. Algorithm 6.1 always stabilizes, and finds an MPIDS.

Proof: In light of Lemma 6.1 we see that if Algorithm 6.1 is stabilizing it always
finds an MPIDS. We need only prove stabilization. It suffices to show that every
node makes only a finite number of in-moves. By Lemma 6.2, node n, which has
the largest ID, makes at most two in-moves. During each of the move intervals

6.6 Related Work and Comparison 65

from t to t′, the pointer set P (i) makes a finite number of moves since it only use
the information of its neighbours. When node n is not making an in-move, using
Lemma 6.2 again, node n− 1 makes at most a finite number of moves and resets.
It is easy to show this argument can be repeated, showing that each node can
make only a finite number of in-moves and resets during the intervals in which
larger nodes are inactive.

We provide a correctness proof and a computation of the worst case stabilization
time for Algorithm 6.1.

Theorem 6.2. Algorithm 6.1 produces an MPIDS and stabilizes in O(n2) steps.

Proof: From Lemma 6.1 and Theorem 6.1, we see that Algorithm 6.1 produces
an MPIDS. We need only prove Algorithm 6.1 stabilizes in O(n2) steps. By
Lemma 6.2, each node will change its x-value at most twice. Therefore, there can
be at most 2n changes of x-value on all nodes during the whole time. If there
is no change in x-value of any node in a time-step, then the time-step involves
only changes in P (i)-values. The change in a P (i)-value is determined only by
Q(i)-values. Since we are working with the central daemon, there cannot be two
consecutive time-steps without a change in x-value or P (i)-value. Therefore, there
can be at most ⌈∆

2
⌉n changes of P (i)-value on all nodes during the whole time

(where ∆ is the maximum degree of G). So, the upper bound of the execution
time is (⌈∆

2
⌉ + 2)n time-steps. Considering the graph G is a simple undirected

graph, therefore, the stabilization time of Algorithm 6.1 is O(n2) steps.

6.6 Related Work and Comparison

In this section we present and discuss the existing self-stabilizing algorithms and
greedy algorithms for the dominating set respectively. We also discuss the main
idea of Algorithm 6.1.

Hedetniemi et al. presented two self-stabilizing algorithms for the dominating set
(DS) and the minimal dominating set (MDS) problems. The algorithms work for
any connected graph. The algorithm for the DS problem stabilizes in linear time
(O(n) steps) under a central daemon. The second algorithm calculates an MDS
and stabilizes in O(n2) steps under a central daemon.

Goddard et al. [58] gave a self-stabilizing algorithm working on the minimal to-
tal dominating set (MTDS) problem. The algorithms works under a central
daemon for any general graphs. Goddard et al. [88] proposed another uniform
self-stabilizing algorithm for finding an MDS in an arbitrary graph under a dis-
tributed daemon. The algorithm stabilizes in O(n) steps.

On the other hand, some self-stabilizing algorithms have been proposed in the
k-domination case. Kamei and Kakugawa [26] presented two uniform algorithms
for the minimal k-dominating set (MKDS) problem in a tree under a central

A New Algorithm for the Positive Influence Dominating Set 66

daemon. The second algorithm works under a distributed daemon. The time
complexity of the two algorithms are both O(n2) steps.

Huang et al. presented two self-stabilizing algorithms to find a minimal 2-
dominating set (M2DS) in an arbitrary graph [55,68]. The first algorithm works
under a distributed daemon [68] and the second algorithm works under a central
daemon with linear time complexity [55].

We presented two self-stabilizing algorithm for finding an MKDS [71, 72] in any
general graphs. The first algorithm works for the MKDS problem in general
graphs under a central daemon [71] and the second one works for the MKDS
problem under a distributed daemon [72]. We also proposed a self-stabilizing
algorithm for finding a minimal weighted dominating set (MWDS) in any general
graphs [75]. The algorithm works under a central daemon in general graphs.

Wang et al. introduced the notion of the positive influence dominating set (PIDS)
and proposed a greedy approximation PIDS selection algorithm in 2009. They
revealed that approximately 60% of the whole group under consideration needs
to be selected into the PIDS to achieve the goal that every individual in the
community has more positive neighbours than negative neighbours.

Wang et al. also presented another greedy approximation algorithm and gave
theoretical analysis about its approximation ratio (AR) in 2011 [28]. The authors
proved that PIDS is APX-hard and proposed a greedy PIDS selection algorithm
with an approximation ratio of H(δ) where H is the harmonic function and δ is
the maximum vertex degree of the graph representing a social network.

Table 6.1: Algorithms for the dominating set

Reference Output Topology Self-stabilizing Daemon Complexity

Hedetniemi et al. [54]-1 DS Arbitrary Yes Central O(n) steps
Hedetniemi et al. [54]-2 MDS Arbitrary Yes Central O(n2) steps
Goddard et al. [58] MTDS Arbitrary Yes Central
Goddard et al. [88] MDS Arbitrary Yes Distributed O(n) steps
Kamei & Kakugawa [26]-1 MKDS Tree Yes Central O(n2) steps
Kamei & Kakugawa [26]-2 MKDS Tree Yes Distributed O(n2) steps
Huang et al. [68] M2DS Arbitrary Yes Distributed
Huang et al. [55] M2DS Arbitrary Yes Central O(n) steps
Wang et al. [71] MKDS Arbitrary Yes Central O(n2) steps
Wang et al. [72] MKDS Arbitrary Yes Distributed O(n2) steps
Wang et al. [75] MWDS Arbitrary Yes Central O(n2) steps
Wang et al. [27] PIDS Arbitrary Greedy
Wang et al. [28] PIDS Arbitrary Greedy H(δ) AR
Algorithm 6.1 MPIDS Arbitrary Yes Central O(n2) steps

In order to select a small size of PIDS in large social networks, we present a
uniform algorithm for finding an MPIDS that works in arbitrary graphs. We
assume globally unique identifiers for the nodes and a central daemon. The
algorithm uses a mechanism of pointers to show that a node i will point to its
neighbours having the smallest identifiers if i has less than h(i) neighbours in the
set D under construction. On the other hand, if a node i has more than h(i)
neighbours in the set D then P (i) will point to an empty set; otherwise P (i) will

6.7 Summary 67

point to its unique neighbours that are members of the set D. The algorithm
allows a node to join the set D if some neighbour is pointing to it, and to leave
the set D otherwise. So after stabilization, the set D will become an MPIDS.
The time complexity of our algorithm in any arbitrary graphs is O(n2) steps. To
the best of our knowledge, this is the first work using a self-stabilizing algorithm
to find an MPIDS, which can find an exact solution to a PIDS (minimal).

The algorithms we compared in this section are summarized in Table 6.1. As
we can see, the basic ideas of the first eleven algorithms are self-stabilizing, and
the algorithms for the PIDS problem from Wang et al. are greedy [27, 28] . Our
Algorithm 6.1 is the first work using a self-stabilizing approach to discuss the
MPIDS problem.

6.7 Summary

In this chapter, we have proposed a self-stabilizing algorithm to find an MPIDS
which arises from some social problems in social networks; Algorithm 6.1 can
be used for an arbitrary connected graph. All previously known algorithms are
approximate greedy algorithms for the PIDS problem. We have also shown the
stabilization time of Algorithm 6.1 with O(n2) steps under a central daemon. We
briefly discuss how the ideas can be further generalized.

One may obtain self-stabilizing algorithms for other domination problems. We
can also extend these ideas even further to other graph dominations such as weak,
strong and optional domination [100]. It can also be altered to allow a node
to have weights in a range {−b′(i), ..., b(i)} and so handle minus domination.
Another interesting direction for further research is to develop self-stabilizing
algorithms for weighted domination problems that operate under a distributed or
synchronous daemon.

Chapter 7

Positive Influence Dominating Set
Games

Motivated by applications in social networks, a new type of dominating set called
positive influence dominating set (PIDS) has been studied in the literature. The
PIDS can deal with some social problems such as drinking, smoking and drug
use by education/intervention programme. From the cost point of view, we have
the interest to investigate how to allocate the total cost of educating/intervening
persons among an intervention program. In this chapter, we consider cooperative
cost games arising from the PIDS problem which can deal with social problems.
We introduce two games, the rigid PIDS game and relaxed PIDS game and focus
on the cores of both games. First, a relationship between the cores of both games
is obtained. Next, we prove that the core of the relaxed PIDS game is non-empty
if and only if there is no integrality gap for the relaxation linear programming of
the PIDS problem on the graph.

The information in this chapter is based on one paper [74].

7.1 Introduction

7.1.1 Cooperative Game

Recent years have seen an increased interest in computational complexity aspects
of solution concepts in Cooperative Game Theory [109–111]. Game Theory, which
arises from Combinatorial Optimization problems, is divided into two branches,
called the non-cooperative and cooperative branches. In this chapter, we are
going to look at the cooperative branch.

It is well known that mathematical modelling of various real-world decision mak-
ing situations gives rise to Combinatorial Optimization problems. For situations
where more than one decision maker is involved, classical Combinatorial Opti-
mization Theory does not suffice, and it is here that Cooperative Game Theory
can make an important contribution. If a group of decision makers decide to un-
dertake a project together in order to increase the total revenue or decrease the
total costs, they face two problems. The first one is how to execute the project

7.1 Introduction 69

in an optimal way. The second one is how to allocate the revenue or cost among
the participants. Cooperative Game Theory can deal with the second problem.
The solution concepts from Cooperative Game Theory can be applied to arrive
at allocation methods [112].

The main fundamental question in Cooperative Game Theory is the question of
how to distribute the total revenue or cost. Different requirements for fairness and
rationality lead to different distributions of revenue or cost which are generally
referred to solution concepts of cooperative games. Among many of these solution
concepts, the core has attracted much attention from researchers [111, 113–116].
We will discuss the concept of the cooperative game and core as follows.

In Game Theory, a cooperative game is a game where groups of players (“coali-
tions”) may enforce cooperative behaviour, hence the game is a competition be-
tween coalitions of players, rather than between individual players. The main
fundamental question in Cooperative Game Theory is the question how to allo-
cate the total generated wealth or cost by the collective of all players in the player
set N itself over the different players in the game. In other words, what binding
contract between the players in N has to be written? Various criteria have been
developed [117].

A cooperative game consists of two elements:

(1) a set of players, and

(2) a characteristic function specifying the value created by different subsets of
the players in the game.

Formally, a cooperative game Γ = (N, c) consists of a player set N = {1, 2, . . . , n}
and a characteristic function c. Let N = {1, 2, . . . n} be the (finite) set of players,
and let i, where i runs from 1 through n, index the different members of N .
The characteristic function is a function, denoted c : 2N → R, where for each
subset S of N (called a coalition), c(S) represents the revenue or cost incurred
by the coalition of players in S without participation of other players. In sum,
a cooperative game is a pair (N, c), where N is a finite set and c is a function
mapping subsets of N to numbers. We consider terms only for cooperative cost
games, as a symmetric statement holds for cooperative revenue games.

The main fundamental question in Cooperative Cost Game Theory is the ques-
tion of how to distribute the total cost c(N) among the individual players in a
‘fair’ way. Different requirements for fairness and rationality lead to different dis-
tributions of cost which are generally referred to solution concepts of cooperative
games. Among many of these solution concepts, the core has attracted much
attention from researchers. A distribution vector x = {x1, x2, . . . , xn} is called an
imputation of the game Γ = (N, c) if

∑
i∈N = c(N) and ∀i ∈ N : xi ≤ c(i) (indi-

vidual rationality). Recall the following definitions from the note “Cooperative
Game Theory: Characteristic Functions, Allocations”:

(i) an allocation is a collection x = {x1, x2, . . . , xn} of numbers;

(ii) an allocation {x1, x2, . . . , xn} is individually rational if
∑

i∈N = c(N) and
∀i ∈ N : xi ≤ c(i);

Positive Influence Dominating Set Games 70

(iii) an allocation {x1, x2, . . . , xn} is efficient if
∑

i∈N = c(N).

The core of the game Γ = (N, c) is defined as:

Core(Γ) = {x ∈ Rn : x(N) = c(N) and x(S) ≤ c(S), ∀S ⊆ N},

where x(S) =
∑

i∈S xi for S ⊆ N .

The set of constraints imposed on Core(Γ) is called subgroup rationality which
ensures that no coalition has an incentive to split from the grand coalition N
and does better on its own. If the core of a game is non-empty, then the game is
called balanced [114,115].

7.1.2 Positive Influence Dominating Set Problem

The concept of the positive influence dominating set (PIDS) was introduced by
Wang et al. [27, 28]. The PIDS can deal with some social problems, such as
drinking, smoking and drug use related issues. In a social network which consists
of individuals with a certain type of social problem, people can have both positive
and negative impact on each other, and a person can take and switch among
different roles since they are affected by their peers [82–84].

Formally, a social network can be represented as a graph G = (V,E), where i ∈ V
represents a person (node) in the social network and edge (i, j) ∈ E represents a
relationship between persons i and j. Recall that D ⊆ V is a positive influence
dominating set (PIDS) [27, 28] if any node i in V is dominated by at least ⌈d(i)

2
⌉

positive nodes (that is, i has at least half of positive neighbours) in D where d(i)
is the degree of node i. Note that there are two requirements for a PIDS: firstly,
every node not in D has at least half of its neighbours in D, secondly every node
in D also has at least half of its neighbours in D. The PIDS problem is to find
a so-called minimum PIDS of G. The number of a minimum PIDS is called the
PIDS number.

In the domination problems, finding a PIDS of minimum size is APX-hard [28].
APX-hardness of the PIDS problem means that if NP ̸= P , then the PIDS
problems has no PTAS (polynomial-time approximation scheme). Some greedy
approximation algorithms have been proposed [27,28], which can find an approx-
imate solution to a PIDS in a large social network.

7.2 Related Work

The combinatorial optimization techniques have been often utilized in much coop-
erative games. Especially, integer linear programming and its duality theory have
proven itself a very powerful tool in the study of cores. Shapley and Shubik [113]
formulated the assignment game as a two-sided market, and showed that the core

7.2 Related Work 71

is exactly the set of optimal solutions of a dual linear programming of the as-
signment game problem. This approach is further exploited in the study of linear
production games [118, 119], packing and covering games [120]. Velzen [121] in-
troduced three kinds of cooperative games that arise from the weighted minimum
dominating set problem on a graph. It was shown that the core of each game is
non-empty if and only if the corresponding linear programming relaxation of the
weighted minimum dominating set problem has an integer optimal solution, and
in this case, an element in the core can be found in polynomial time.

Recently, Fang et al. proposed three domination games: dominating set games
[122], total dominating set games [123] and integer domination games [124]. Fang
et al. established a new kind of 0-1 program formulation to model the domination
problem on graphs, and gave a strong connection between LP relaxation of this 0-
1 program and the cost allocation problem concerning the core of a dominating set
game [122]. Fang et al. studied the balancedness (non-empty of the core) of the
total dominating set games by making use of the technique of linear programming
and its duality. The authors proved that in general the problems of testing
the balancedness and testing the membership of the core are all NP-hard for
both total dominating set games [123]. Fang et. al also discussed the integer
domination games [124]. The authors introduced two k-domination games and
focused on their cores. The authors gave characterizations of the cores and the
relationship between two k-domination games by making use of the technique of
linear programming and its duality.

Due to the new technology of web 2.0, social networks are a rapidly growing
research area for information system scholars. Among much exploiting research,
the relationships and influences among individuals in social networks might offer
considerable benefits to both the economy and society. Domingos and Richardson
[125] were the first ones to study the propagation of influence and the problem
of identification of the most influential users in networks. Kempe et al. [53,
126] formulated the influence maximization problem as an optimization problem.
Leskovec et al. [127] studied the influence propagation in a different perspective in
which they aimed to find a set of nodes in networks to detect the spread of virus
as soon as possible. Consequently, finding a proper subset of most influential
individual is formulated into a domination problem in which an individual in
the network becomes “influenced”. For example, Eubank et al. [36] proposed a
greedy approximation algorithm and proved that the algorithm gives a 1 +O(1)
approximation with a small constant in O(1) to the dominating set problem in a
power-law graph.

Zhu et al. [128] studied a new type of dominating set (DS) which satisfies the
property that for every node not in the DS has at least half of its neighbours which
are in the dominating set. They presented results regarding the complexity and
approximation in general graphs. Wang et al. [27] introduced a variation of a
DS, called positive influence dominating set (PIDS), which originated from the
context of influence propagation in social networks. Recently, Wang et al. [28]
also proved that finding a PIDS of minimum size is APX-hard and proposed a
greedy algorithm with an approximation ratio of H(δ) where H is the harmonic
function and δ is the maximum vertex degree of the graph representing a social
network. Dinh et al. [129] provided tight hardness results and approximation

Positive Influence Dominating Set Games 72

algorithms for many existing domination problems, especially the PIDS problem
and its variations.

In this chapter, we consider the PIDS problem from the education/intervention
cost point of view. We introduce two PIDS game models and prove the bal-
ancedness of the relaxed PIDS game using linear programming and its duality
theory.

7.3 Motivations and Contributions

In order to deal with some social problems, such as drinking, smoking and drug
use related issues, Wang et al. introduced the positive influence dominating set
(PIDS) [27,28]. An illustration of the PIDS problem is the following example. For
the drinking example remarked on earlier, a PIDS can guarantee that by selecting
PIDS nodes to participate in the intervention programme, each individual in the
social network has more positive neighbours than negative ones to ensure that the
intervention can result in a globally positive impact on the entire social network.

There must be cost fees in an education/intervention programme in order to
ensure that the intervention can result in a globally positive impact on the entire
social network. Therefore, a natural question arising from the above example is
how to allocate the total cost of educating or intervening the persons among the
education/intervention programme. This is a cost allocation problem. In this
paper, we use Cooperative Game Theory to study this problem and give a ”fair”
distribution of the total cost. We first introduce two closely related cooperative
cost games to model the cost allocation problem. To the best of our knowledge,
this is the first work using Cooperative Game Theory to consider the cost of the
education/intervention programme. The contributions are as follows:

1. Two new game models, the rigid PIDS game and relaxed PIDS game are
presented.

2. A relationship between the cores of both games is obtained. The core of the
relaxed PIDS game is non-empty if and only if there is no integrality gap
for the relaxation linear programming of the PIDS problem on the graph.

7.4 Definition of Positive Influence Dominating

Set Games

In this section, we introduce two cooperative cost games that are modeled on
the cost allocation problem arising from the PIDS problems on social network
graphs. We begin with some concepts and notions in Cooperative Game Theory.

7.5 Positive Influence Dominating Set Games 73

7.4.1 Cooperative Game

A cooperative game (in characteristic function form) Γ = (V, c) consists of a player
set V = {1, 2, . . . , n} and a characteristic function c : 2V → R with c(∅) = 0. For
each coalition S ⊆ V , c(S) represents the revenue or cost achieved by the players
in S together. The main issue is how to fairly distribute the total revenue or cost
c(V) among all the players. We define terms only for cost games, as a symmetric
statement holds for revenue games.

A vector x = {x1, x2, . . . , xn} is called an imputation if and only if
∑

i∈V xi = c(V)
and ∀i ∈ V : xi ≤ c(i). x(S) is defined to be

∑
i∈S xi for each S ⊂ V . Now, the

core of a game Γ = (N, c) is defined as follows:

Definition 7.1. An imputation x = {x1, x2, . . . , xn} is said to lie in the core of
the game Γ = (N, c) if it is efficient and is such that:

Core(Γ) = {x ∈ Rn : x(N) = c(N) and x(S) ≤ c(S), ∀S ⊆ V },

where x(S) =
∑

i∈S xi for S ⊆ V .

The set of constraints imposed on Core(Γ), which is called group rationality, en-
sures that no coalition would have an incentive to split from the grand coalition
V , and do better on its own.

The study of the core is closely associated with another important concept, the
balanced set. With techniques essentially the same as linear programming duality,
Bondareva [114] and Shapley [115] proved that a game has non-empty core if and
only if it is balanced.

Definition 7.2. A game Γ = (V, c) is called a monotonic game if it satisfies
c(S) ≤ c(T) for every S ⊆ T ⊆ V .

Proposition 7.1. Given a balanced monotonic game Γ = (V, c) and x ∈ Core(Γ),
it holds that xi = c(V)−

∑
j∈V \i xj ≥ c(V)− c(V \i) ≥ 0 for every i ∈ V .

That is, each core element of a monotonic balanced game is non-negative.

7.5 Positive Influence Dominating Set Games

In this section, we present two PIDS cooperative cost games. Let G = (V,E) be
a connected undirected graph with vertex set V and edge set E. Two distinct
vertices u, v ∈ V are called adjacent if edge (u, v) ∈ E. For any non-empty set
V ′ ∈ V , the induced subgraph by V ′, denoted by G[V ′], is a subgraph of G whose
vertex set is V ′ and whose edge set is the set of edges having both endpoints in V ′.
The open neighbourhood N(v) of vertex v ∈ V consists of the vertices adjacent to
v, i.e., N(v) = {u ∈ V : (u, v) ∈ E}. d(i) represents the number of neighbours of

Positive Influence Dominating Set Games 74

node i, or its degree (d(i) = |N(i)|). For any subset S ⊆ V , we define the open
neighbouring set of S to be the union of the open neighbourhoods of all vertices
in S, denoted by N(S) =

∪
v∈S N(v).

A positive influence dominating set of graph G is a set of verticesD ⊆ V such that
|N(v) ∩D| ≥ ⌈d(v)

2
⌉ for each v ∈ V . That is, every vertex in V is adjacent to at

least half of its neighbours inD. The PIDS problem is to find a so-called minimum
PIDS of G, which minimizes the total number of its vertices. The number of a
minimum PIDS is called the PIDS number, denoted by γp(G). Throughout the
paper, we assume that graph G has no isolated vertex to ensure the existence of
a PIDS of G.

Definition 7.3. Let G = (V,E) be a connected simple undirected graph. A rigid
PIDS game Γ = (V, c) corresponding to G is defined as:

1) The player set is V = {1, 2, . . . , n};
2) For each coalition S ⊂ V ,

c(S) =

{
(γp(G[S]) if G[S] has a PIDS

+∞ otherwise.
(7.1)

In the rigid PIDS game, each coalition can not place rescue facilities in vertices
not belonging to itself. We define another related PIDS game, the relaxed PIDS
game, by dropping the requirement that coalitions are only allowed to use ver-
tices corresponding to members of the coalition. Formally, the relaxed PIDS game
Γ̃ = (V, c̃) corresponding to G is defined as:

Definition 7.4. Let G = (V,E) be a connected simple undirected graph. A re-
laxed PIDS game Γ = (V, c) corresponding to G is defined as:

1) The player set is V = {1, 2, . . . , n};
2) For each coalition S ⊂ V ,

c̃(S) = min{γp(G[T]) : T ⊇ S and G[T] has a PIDS}.

Since coalitions have more choice of placing the facilities in the relaxed PIDS
game than in the rigid PIDS game, for all S ⊂ V , it holds that c(S) ≥ c̃(S). For
the grand coalition V , c(V) = c̃(V) = γp(G). It follows that

Core(Γ̃) ⊆ Core(Γ). (7.2)

7.6 The Balancedness of the PIDS Game 75

Moreover, we show that Core(Γ̃) coincides with the nonnegative part of Core(Γ).

Theorem 7.1. Let Γ = (V, c) and Γ̃ = (V, c̃) be the rigid and relaxed PIDS games
corresponding to graph G = (V,E), respectively. Then we have

Core(Γ̃) = Core(Γ)
∩
Rn

+.

Proof: It is easy to see that the relaxed PIDS game Γ̃ = (V, c̃) is monotonic,
i.e., c̃(S) ≤ c̃(T) for every S ⊆ T . For each x ∈ Core(Γ̃), we have that xi =
c̃(V) −

∑
j∈V \i xj ≥ c̃(V) − c̃(V \i) ≥ 0 for every i ∈ V . Also followed from

expression (7.2), it holds that Core(Γ̃) ⊆ Core(Γ)
∩

Rn
+.

On the other hand, we prove that Core(Γ)
∩

Rn
+ ⊆ core(Γ̃). Let x ∈ Core(Γ)

∩
Rn

+.
Clearly, x(V) = c(V) = c̃(V). Let T ⊂ V be an arbitrary subset such that
c(T) ≥ c̃(T), and let T0 ⊆ V be a subset such that T ⊆ N(T0) and T0 be the
minimum PIDS of T . So we have c̃(T) = min{γp(G[T])} = |T0|. It follows that
c(N(T0)) = |T0| = c̃(T). Hence we have

x(T) ≤ x(N(T0)) ≤ c(N(T0)) = c̃(T),

where the first inequality holds because x ≥ 0 and the second inequality holds
because x ∈ Core(Γ). Therefore, x ∈ Core(Γ̃).

7.6 The Balancedness of the PIDS Game

In this section, we first provide descriptions of the cores for the rigid and relaxed
PIDS games. Based on these descriptions, we prove a common necessary and
sufficient condition for the balancedness of the relaxed PIDS games.

7.6.1 Balancedness of the relaxed PIDS game

For a graph G = (V,E), the adjacent matrix of G, denoted by A(G) = [aij], is a
|V |×|V |-matrix with rows and columns indexed by the vertices in V respectively,
where aij = 1 if vertex i and j are adjacent, and aij = 0 otherwise. Then the
PIDS problem can be formulated as the following 0−1 integer linear programming
(IP):

γt(G) = min
n∑

j=1

xj (7.3)

s.t.

{
A(G)x ≥ b
x = (x1, x2, . . . , xn)

T ∈ {0, 1}n,

where b = {⌈d(1)
2
⌉, ⌈d(2)

2
⌉, . . . , ⌈d(n)

2
⌉}T .

Positive Influence Dominating Set Games 76

For this integer programming, we have the linear programming relaxation (LP)
as follows:

γt(G) = min
n∑

j=1

xj (7.4)

s.t.

{
A(G)x ≥ b
x = (x1, x2, . . . , xn)

T ≥ 0,

and its dual (DLP):

max

n∑
i=1

yb (7.5)

s.t.

{
yA(G) ≤ 1
y = (y1, y2, . . . , yn) ≥ 0,

where b = {⌈d(1)
2
⌉, ⌈d(2)

2
⌉, . . . , ⌈d(n)

2
⌉}T .

In the following, we show that the relaxed game Γ̃ = (V, c̃) is balanced if and
only if the above linear programming relaxation LP (7.4) has an integral optimal
solution, i.e., the optimal value of LP (7.4) equals the minimum PIDS of the
graph G. The following theorem provides a characterization of the core and a
necessary and sufficient condition for the balancedness of the relaxed PIDS game
Γ̃.

Theorem 7.2. Let Γ̃ = (V, c̃) be a relaxed PIDS game corresponding to a graph
G = (V,E). Then Core(Γ̃) ̸= ∅ if and only if there is no integrality gap for the
relaxation LP (7.4) of the PIDS problem on the graph G. In such case, a vector
z = {z1, z2, . . . , zn} is in the core if and only if it is an optimal solution to the
dual program DLP (7.5).

Proof: Considering the IP (7.3) relaxation LP (7.4) and its dual DLP (7.5) of LP
(7.4), the relaxed PIDS game Γ̃ = (V, c̃) belongs to the class of covering games
introduced in Deng et al. [120]. For the proof of this theorem we refer to the
Theorem 1 in the paper of Deng et al. [120].

7.6.2 Computational Complexity on Cores

The computational complexity as a rational measure for game theoretical con-
cepts has attracted more and more attention recently. Deng and Papadim-
itriou [111] found a game for which the core is non-empty if and only if a certain

7.7 Summary 77

imputation (Shapley value in this case) is in the core. Deng et al. [120] dis-
cussed the complexity concerning the core for a class of combinatorial optimiza-
tion games. Goemans and Skutella [116] showed that, for a facility location game,
if the core is non-empty, a core element can be found in polynomial time, and the
membership testing problem can also be solved in polynomial time. However, it is
NP-complete to decide whether the core is non-empty. Fang et. al [123] recently
proved that it is NP-complete to decide whether the core of a total domination
game is non-empty.

The computational complexity issues concerning the cores of the PIDS games will
be the focus of this subsection. From Theorem 7.2, the relaxed PIDS game is
balanced when the linear programming (LP (7.4)) has an integer optimal solution,
and we can obtain a core element for the relaxed PIDS games from an optimal
solution to its dual programming given in DLP (7.5). That is, a core element can
be found in polynomial time when the core is non-empty. However, the problem
of testing whether the linear programming (LP (7.4)) has an integer optimal
solution is difficult in general. For the dominating set problem, it was shown to
be NP-hard to determine the minimum number of the dominating set (see [37]).
We conjecture that for the PIDS problem, the problem of testing whether the
linear programming (LP) given in (7.4) has an integer optimal solution or not
is NP-hard. That is, testing the balancedness for both PIDS games is NP-hard
solution.

7.7 Summary

In this chapter, we are interested in cooperative cost games arising from the PIDS
problem on social network graphs. We have presented two new cooperative cost
game models, the rigid PIDS game and relaxed PIDS game. We discuss their
cores and a relationship between the cores of two PIDS games is obtained. We
also prove that the core of the relaxed PIDS game is non-empty if and only if
there is no integrality gap for its relaxation linear programming.

We briefly discuss how the ideas can be further studied. Since we have the
relationship of the two PIDS games cores from Theorem 7.1, we can further
discuss the balancedness of the rigid PIDS game. We conjecture that in general
the problems of testing the balancedness and testing the membership of the core
are all NP-hard for both PIDS games.

Chapter 8

Conclusions

This final chapter presents the conclusions and future research arising from this
work. The overall aim of this research was to develop new models and algorithms
for the dominating set problems arising from online social networks. An overview
of the previous chapters is initially provided to recap the significant trends in this
PhD research before highlighting the conclusions about the research problems
addressed. The key outcomes of the research and final opportunities for further
research then presented according to the research problems identified in Chapter
1.

8.1 Overview of Previous Chapters

Chapter 1

A broad overview and background of the research theme and the domination
problems in general is provided in this chapter. Especially, due to the rapid de-
velopment of online social networks, a new type of dominating set called positive
influence dominating set (PIDS) has been studied in the literature to deal with
some social problems. It is shown that the PIDS can be applied only in undirected
social networks with uniform weight. We have the motivations to address theses
shortcomings through designing new models and algorithms. The research prob-
lems are outlined in this chapter. The potential contributions and significance of
this research are also identified.

Chapter 2

The major objective of this chapter is to extend the PIDS model which was intro-
duced by Wang et al. [27,28] since it has some drawbacks in real-life applications.
We have designed a novel dominating set called weighted positive influence domi-
nating set (WPIDS) and twoWPIDS selection algorithms for the WPIDS problem
in the e-learning environment, considering some key factors such as the attributes,
directions and degrees of personal influence in the environment. Experimental
results demonstrate that our WPIDS model and algorithms are more reasonable
and effective than those of the PIDS which can deal with social problems only
for undirected social networks with uniform weight [27].

8.1 Overview of Previous Chapters 79

Chapter 3

For the minimal k-dominating set (MKDS), the proposed self-stabilizing algo-
rithms for the MKDS either work for trees (Kamei and Kakugawa [26]) or find
a minimal 2-dominating set (Huang et al. [55, 68]). There is no self-stabilizing
algorithm for the MKDS works for any general network graph. Hence, we have
proposed a self-stabilizing algorithms for the MKDS when operating in any gen-
eral graph in this chapter. The presented algorithm works under a central daemon
model. We have also proved that the worst case convergence time of the algo-
rithm from any arbitrary initial state is O(n2) steps where n is the number of
nodes in the network.

Chapter 4

In this chapter, we continue discussing the MKDS problem we have studied in
Chapter 3. We have proposed a self-stabilizing algorithm for the MKDS under
a distributed daemon model when operating in any general network. We have
further proved that the worst case convergence time of the algorithm from any
arbitrary initial state is O(n2) steps where n is the number of nodes in the net-
work.

Chapter 5

For the minimal weighted dominating set (MWDS), the proposed self-stabilizing
algorithms for the MWDS all work for uniform weight cases. We have developed
a self-stabilizing algorithm for finding an MWDS under a central daemon when
it operates in a general graph and proved that the worst case convergence time
of the algorithm from any arbitrary initial state is O(n2) steps where n is the
number of nodes in the network.

Chapter 6

For the PIDS, the existing work all focused on greedy algorithms for the PIDS
problem with different approximation ratios. In this chapter, we investigate min-
imal solution for the PIDS instead of greedy algorithms for approximation solu-
tions. We have first presented a self-stabilizing algorithm for the minimal PIDS
problem. It can work for any general graphs under a central daemon. We have
also proved that the worst case convergence time of the algorithm from any arbi-
trary initial state is O(n2) steps where n is the number of nodes in the network.

Chapter 7

In Chapter 7, we investigate the PIDS problem from the education/intervention
cost point of view. That is, how to allocate the total cost of educating or interven-
ing persons among an education/intervention programme. We have introduced
two cooperative cost games, the rigid PIDS game and relaxed PIDS game and
focused on their cores (a “fair” distribution of the total cost among all the play-
ers). A relationship between the cores of both games is obtained. We have proved
that the core of the relaxed PIDS game is non-empty if and only if there is no
integrality gap for the relaxation linear programming of the PIDS problem on the
graph.

Conclusions 80

8.2 Key Outcomes

This thesis focuses on domination problems arising from social networks. The
outcomes of our study are shown below:

• Propose a new dominating set model and two WPIDS selection algorithms
to evaluate the effect of educating a subset of the entire target group sus-
ceptible to a social problem. The simulation experimental results have
revealed that the WPIDS model and selection algorithm are more effective
than those of PIDS [27, 28]. The main reason is that we consider the tu-
tors who play important roles in the e-learning community. So the size of
WPIDS is smaller than that of PIDS in an online social network [27,28].

• Propose two self-stabilizing algorithms for the MKDS in general graphs and
discuss its computational complexity respectively.

• Propose a self-stabilizing algorithm for the MWDS in general graphs and
discuss its computational complexity. .

• Propose a self-stabilizing algorithm for the MPIDS in general graphs and
discuss its computational complexity. .

• Propose two cooperative cost game models, the rigid PIDS game and relaxed
PIDS game. Discuss their cores and obtain a relationship between the cores
of two PIDS games.

8.3 Future Research

This thesis is mainly focusing on algorithms of the domination problems on social
networks. The proposed research aims to address certain novel dominations such
as weighted positive influence domination, weighted domination, k domination
and so on. Based on the research work in this thesis, we propose the following
future research directions and issues:

• We have proposed a new dominating set model and two WPIDS selection
algorithms to evaluate the effect of educating a subset of the entire target
group susceptible to a social problem. To deeply understand the effect of
WPIDS, comparing the WPIDS selection algorithm with the PIDS algo-
rithm in some real-life e-learning communities is interesting in future work.
Since it is very important to specify the reasonable arc weight values of
the e-learning users’ influence, the proper selection of parameter θ, and the
cost of each tutor, designing the WPIDS models under these factors are
challenged.

• In this thesis, we have successfully solved the self-stabilizing algorithms for
the MKDS, the MWDS and the MPIDS. To discuss the much faster sta-
bilization time of these proposed algorithms is interesting and challenging.
An immediate extension of the work for the MKDS (MWDS or MPIDS) is
to find if it is possible to enhance the stabilization time to O(nlgn) steps.

8.3 Future Research 81

Another future research topic for the MKDS (MWDS or MPIDS) is to at-
tempt to find a proper upper bound size of an MKDS (MWDS or MPIDS)
in an arbitrary network. If someone can develop some self-stabilizing algo-
rithms for the MKDS (MWDS or MPIDS) under a synchronous daemon in
an arbitrary network, it is an interesting work.

• For the cost of the PIDS problem, we have presented two new cooperative
cost game models, the rigid PIDS game and the relaxed PIDS game. Since
we have the relationship between the cores of two PIDS games from The-
orem 7.1, discussing the balancedness of the rigid PIDS game is a future
work. We conjecture that in general the problems of testing the balanced-
ness and testing the membership of the core are all NP-hard for both PIDS
games.

• For the WPIDS problem, if considering the cost issue in an intervention
programme by Cooperative Game Theory, some good outcomes or solutions
will be achieved.

Although several algorithms on dominating sets have been proposed, the work on
domination is far from complete. We will have been planned experiment work for
testing the performance of the proposed algorithm as an extension work in near
future.

Data Collection

To perform necessary experiments in the proposed project, certain relational
databases are necessary to conduct experiments. There are three ways to ob-
tain experimental data. Firstly, we can use crawl softwares (Google search) to
crawl needed data from famous websites, for instances, Facebook.com, Flickr.com,
Myspace.com, YouTube.com, Yahoo.com, and so on. Secondly, masses of famous
public datasets, such as LETOR, Libra, DBLB, etc, can be used by many re-
searchers for application software development. Finally, simulated data for ex-
periment is a common method as we have studied the WPIDS problem in one of
my published papers [70].

Performance Analysis.

In general, one of the performance measures of domination problems is the time
complexity. Although we have proved the computing complexity of the proposed
algorithms, it is very important to consider the running time of the proposed
algorithms, especially working on a large social network as the examiners’ sug-
gestions’. To analyze experiment results, techniques such as charts, tables, and
figures can be better used so that the experiment results may be analyzed with
better efficiency. By comparing with existing methods and algorithms the effi-
ciency of our proposed methods and algorithms can be test. In summary, several
ordinary performance metrics for evaluation purposes can be used,including the
running time of these algorithms, the size of the dominating set, and the sensi-
tivity of presented approaches.

References

[1] C. Berge, Theory of Graphs and its Applications. Methuen, London, 1962.

[2] O. Ore, Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38, 1962.

[3] E. J. Cockayne and S. T. Hedetniemi, “Towards a theory of domination in
graphs,” Networks, vol. 7, pp. 247–261, 1977.

[4] T. W. Haynes, S. T. Hedetniemi, and P. J. S. (Eds.), Fundamentals of
domination in graphs. Marcel Dekker Inc., New York, 1998, vol. 208 of
Monographs and Textbooks in Pure and Applied Mathematics.

[5] J. M. M. van Rooij, Exact Exponential-Time Algorithms for Domination
Problems in Graphs. PhD thesis, Utrecht University, 2011.

[6] O. Favaron, M. Henning, C. Mynhart, and J. Puech, “Total domination in
graphs with minimum degree three,” J. Graph Theory, vol. 34, pp. 9–19,
2000.

[7] F. V. Fomin and D. M. Thilikos, “Dominating sets in planar graphs: branch-
width and exponential speed-up,” in SODA, 2003, pp. 168–177.

[8] J. M. M. van Rooij and H. L. Bodlaender, “Exact algorithms for edge
domination,” in IWPEC, 2008, pp. 214–225.

[9] C. Lenzen, Y. A. Oswald, and R. Wattenhofer, “What can be approximated
locally?: case study: dominating sets in planar graphs,” in SPAA, 2008, pp.
46–54.

[10] J. Wu and H. Li, “On calculating connected dominating set for efficient
routing in ad hoc wireless networks,” in In: Proceedings of the 3rd ACM In-
ternationalWorkshop on Discrete Algorithms and Methods for Mobile Com-
puting and Communications, 1999, pp. 7–14.

[11] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, “Total domination in
graphs,” Networks, vol. 10, pp. 211–219, 1980.

[12] M. A. Henning, “A survey of selected recent results on total domination in
graphs,” Discrete Mathematics, vol. 309, no. 1, pp. 32–63, 2009.

[13] T. W. Haynes, M. A. Henning, and L. C. van der Merwe, “Total domina-
tion supercritical graphs with respect to relative complements,” Discrete
Mathematics, vol. 258, no. 1-3, pp. 361–371, 2002.

REFERENCES 83

[14] M. A. Henning and H. C. Swart, “Bounds on a generalized total domination
parameter,” J. Combin. Math. Combin.Comput, vol. 6, pp. 143–153, 1989.

[15] J. A. Torkestani and M. R. Meybodi, “Finding minimum weight connected
dominating set in stochastic graph based on learning automata,” Informa-
tion Sciences, vol. 200, pp. 57–77, 2012.

[16] F. Zou, Y. Wang, X. Xu, X. Li, H. Du, P. Wan, and W. Wu, “New approx-
imations for minimum-weighted dominating sets and minimum-weighted
connected dominating sets on unit disk graphs,” Theor. Comput. Sci., vol.
412, no. 3, pp. 198–208, 2011.

[17] X. Zhu, W. Wang, S. Shan, Z. Wang, and W. Wu, “A ptas for the minimum
weighted dominating set problem with smooth weights on unit disk graphs,”
J. Comb. Optim., vol. 23, no. 4, pp. 443–450, 2012.

[18] A. Potluri and A. Singh, “Hybrid metaheuristic algorithms for minimum
weight dominating set,” Appl. Soft Comput., vol. 13, no. 1, pp. 76–88, 2013.

[19] E. Sampathkumar and H. B. Walikar, “The connected domination number
of a graph,” Math. Phys. Sci, vol. 13, pp. 607–613, 1979.

[20] G. S. Khuller, “Approximation algorithms for connected dominating sets,”
Algorithmica, vol. 20, pp. 374–387, 1998.

[21] X. Cheng, F. Wang, and D. Du, “Connected dominating set,” in Encyclo-
pedia of Algorithms, 2008.

[22] M. T. Thai, F. Wang, D. Liu, S. Zhu, and D. Du, “Connected dominating
sets in wireless networks with different transmission ranges,” IEEE Trans.
Mob. Comput., vol. 6, no. 7, pp. 721–730, 2007.

[23] D. Kim, Z. Zhang, X. Li, W. Wang, W. Wu, and D. Du, “A better approx-
imation algorithm for computing connected dominating sets in unit ball
graphs,” IEEE Trans. Mob. Comput., vol. 9, no. 8, pp. 1108–1118, 2010.

[24] L. Ding, X. Gao, W. Wu, W. Lee, X. Zhu, and D. Du, “An exact algo-
rithm for minimum cds with shortest path constraint in wireless networks,”
Optimization Letters, vol. 5, no. 2, pp. 297–306, 2011.

[25] M. Gairing, S. T. Hedetniemi, P. Kristiansen, and A. A. McRae, “Self-
stabilizing algorithms for {k}-domination,” in Self-Stabilizing Systems,
2003, pp. 49–60.

[26] S. Kamei and H. Kakugawa, “A self-stabilizing algorithm for the distributed
minimal k-redundant dominating set problem in tree network,” in ICPDC,
2003.

[27] F. Wang, E. Camacho, and K. Xu, “Positive influence dominating set in
online social networks,” in COCOA, 2009, pp. 313–321.

[28] F. Wang, H. Du, E. Camacho, K. Xu, W. Lee, Y. Shi, and S. Shan, “On
positive influence dominating sets in social networks,” Theor. Comput. Sci.,
vol. 412, no. 3, 2011.

REFERENCES 84

[29] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,
“Measurement and analysis of online social networks,” in The 7th ACM
SIGCOMM Conference on Internet Measurement Conference(IMC), 2007,
pp. 29–42.

[30] A. Anagnostopoulos, R. Kumar, and M. Mahdian, “Influence and correla-
tion in social networks,” in the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD), 2008, pp. 7–15.

[31] A. Nazir, S. Raza, and C. N. Chuah, “Unveiling facebook: a measurement
study of social network based applications,” in The 8th ACM SIGCOMM
Internet Measurement Conference (IMC), 2008, pp. 43–56.

[32] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu, “Analyzing spam-
mers’ social networks for fun and profit: a case study of cyber criminal
ecosystem on twitter,” in WWW, 2012, pp. 71–80.

[33] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi, “Measuring user
influence in twitter: the million follower fallacy,” in In Proceedings of the
Fourth International AAAI Conference on Weblogs and Social Media, 2010.

[34] H. Kwak, C. Lee, H. Park, and S. B. Moon, “What is twitter, a social
network or a news media?” in WWW, 2012, pp. 591–600.

[35] D. Kempe, J. Keinberg, and É. Tardos, “Maximizing the spread of infuence
through a social network,” in The 9th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining (KDD)., 2003, pp. 137–146.

[36] S. Eubank, V. Kumar, M. V. Marathe, A. Srinivasan, and N. Wang, “Struc-
tural and algorithmic aspects of massive social networks,” in SODA, 2004,
pp. 718–727.

[37] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[38] H. L. Bodlaender and J. M. M. van Rooij, “Exact algorithms for interval-
izing colored graphs,” in TAPAS, 2011, pp. 45–56.

[39] F. Fomin, F. Grandoni, and D. Kratsch, “Some new techniques in design
and analysis of exact (exponential) algorithms,” Bulletin of the EATCS,
vol. 87, pp. 47–77, 2005.

[40] F. V. Fomin, D. Kratsch, and G. J. Woeginger, “Exact (exponential) algo-
rithms for the dominating set problem,” in WG, 2004, pp. 245–256.

[41] J. M. M. van Rooij and H. L. Bodlaender, “Design by measure and conquer,
a faster exact algorithm for dominating set,” in STACS, 2008, pp. 657–668.

[42] F. V. Fomin, F. Grandoni, and D. Kratsch, “A measure & conquer approach
for the analysis of exact algorithms,” J. ACM, vol. 56, no. 5, 2009.

[43] L. Ding, X. Gao, W. Wu, W. J. Lee, X. Zhu, and D. Du, “An exact algo-
rithm for minimum cds with shortest path constraint in wireless networks,”
Optim Lett., vol. 5, pp. 297–306, 2011.

REFERENCES 85

[44] J. M. M. van Rooij and H. L. Bodlaender, “Exact algorithms for dominating
set,” Discrete Applied Mathematics, vol. 159, no. 17, pp. 2147–2164, 2011.

[45] L. B. N. Alon and A. Itai, “A fast and simple randomized parallel algorithm
for the maximal independent set problem,” J. Algorithms, vol. 7, no. 4, pp.
567–583, 1986.

[46] N. Linial, “Locality in distributed graph algorithms,” SIAM J. Comput.,
vol. 21, no. 1, pp. 193–201, 1992.

[47] M. Naor and L. J. Stockmeyer, “What can be computed locally?” SIAM
J. Comput., vol. 24, no. 6, pp. 1259–1277, 1995.

[48] D. Peleg, Distributed computing: a locality-sensitive approach. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2000.

[49] M. Cardei, M. Cheng, X. Cheng, and D. Du, “Connected domination in
multihop ad hoc wireless networks,” in JCIS, 2002, pp. 251–255.

[50] X. Cheng, X. Huang, D. Li, W. Wu, and D. Z. Du, “A polynomial-time
approximation scheme for the minimum-connected dominating set in ad
hoc wireless networks,” Networks, vol. 42, no. 4, pp. 202–208, 2003.

[51] Y. Li, M. T. Thai, F. Wang, C. Yi, P. J. Wan, and D. Du, “On greedy
construction of connected dominating sets in wireless networks,” Wireless
Communications and Mobile Computing, vol. 5, pp. 927–932, 2005.

[52] A. Barabasi, Emergence of scaling in complex networks, in: s. bornholdt,
h. schuster (eds.), handbook of graphs and networks ed. Wiley, 2003.

[53] D. Kempe, J. M. Kleinberg, and É. Tardos, “Influential nodes in a diffusion
model for social networks,” in ICALP, 2005, pp. 1127–1138.

[54] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani,
“Self-stabilizing algorithms for minimal dominating sets and maximal in-
dependent sets,” Computer Mathematics and Applications, vol. 46, no. 5-6,
pp. 805–811, 2003.

[55] T. Huang, C. Chen, and C. Wang, “A linear-time self-stabilizing algorithm
for the minimal 2-dominating set problem in general networks,” J. Inf. Sci.
Eng., vol. 24, no. 1, pp. 175–187, 2008.

[56] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[57] E. W. Dijkstra and A. J. M. van Gasteren, “A simple fixpoint argument
without the restriction to continuity,” Acta Inf., vol. 23, no. 1, pp. 1–7,
1986.

[58] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “A self-
stabilizing distributed algorithm for minimal total domination in an arbi-
trary system graph,” in IPDPS, 2003, p. 240.

[59] V. Turau, “Linear self-stabilizing algorithms for the independent and dom-
inating set problems using an unfair distributed scheduler,” Information
Processing Letters, vol. 103, no. 3, pp. 88–93, 2007.

REFERENCES 86

[60] M. Ikeda, S. Kamei, and H. Kakugawa, “A space-optimal self-stabilizing
algorithm for the maximal independent set problem,” in Proc. 3rd Interna-
tional Conference on Parallel and Distributed Computing, Applications and
Technologies, 2002, p. 0.

[61] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Linear time self-
stabilizing colorings,” Information Processing Letters, vol. 87, no. 5, pp.
251–255, 2003.

[62] A. Kosowski and L. Kuszner, “Self-stabilizing algorithms for graph coloring
with improved performance guarantees,” in Proc. 8th International Confer-
ence on Artificial Intelligence and Soft Computing, 2006, pp. 1150–1159.

[63] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Fault
tolerant algorithms for orderings and colorings,” in Proc. 18th International
Parallel and Distributed Processing Symposium, 2004, pp. 174–182.

[64] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil, “A new self-stabilizing
maximal matching algorithm,” CoRR, vol. abs/cs/0701189, 2007.

[65] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani, “Self-
stabilizing distributed algorithm for strong matching in a system graph,”
in Proc. 10th International Conference on High Performance Computing,
2003, pp. 66–73.

[66] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil, “A self-stabilizing 2
3
-

approximation algorithm for the maximum matching problem,” in Proc.
10th International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems, 2008, pp. 94–108.

[67] S. Dolev, Self-Stabilization. MIT Press, 2000.

[68] T. Huang, J. Lin, C. Chen, and C. Wang, “A self-stabilizing algorithm
for finding a minimal 2-dominating set assuming the distributed demon
model,” Computers and Mathematics with Applications, vol. 54, no. 3, pp.
350–356, 2007.

[69] G. Wang, H. Wang, X. Tao, and J. Zhang, “Positive influence dominating
set in e-learning social networks,” in In proceedings of the 10th International
Conference on Web-based Learning (ICWL 2011), 2011, pp. 82–91.

[70] G. Wang, H. Wang, X. Tao, J. Zhang, and G. Guo, “Finding a weighted
positive influence dominating set in e-learning social networks,” Internal
Journal Computing & Technology, vol. 10, no. 10, pp. 2136–2145, 2013.

[71] G. Wang, H. Wang, X. Tao, and J. Zhang, “A self-stabilizing algorithm
for finding a minimal k-dominating set in general networks,” in In proceed-
ings of 2012 International Conference on Data and Knowledge Engineering
(ICDKE 2012), 2012, pp. 74–85.

[72] G. Wang, H. Wang, X. Tao, J. Zhang, and J. Zhang, “Minimising k-
dominating set in arbitrary network graphs,” in In proceedings of the 9th In-
ternational Conference on Advanced Data Mining and Applications (ADMA
2013), 2013.

REFERENCES 87

[73] G. Wang, H. Wang, X. Tao, and J. Zhang, “A self-stabilizing algorithm
for finding a minimal positive influence dominating set in social networks,”
in In proceedings of 24th Australasian Database Conference (ADC 2013),
2013, pp. 93–99.

[74] G. Wang, H. Wang, X. Tao, J. Zhang, and X. Yi, “Positive influence domi-
nating set games,” in To appear in the 18th IEEE International Conference
on Computer Supported Cooperative Work in Design (CSCWD 2014), 2014.

[75] G. Wang, H. Wang, X. Tao, and J. Zhang, “A self-stabilizing protocol for
minimal weighted dominating sets in arbitrary networks,” in In proceed-
ings of the 17th IEEE International Conference on Computer Supported
Cooperative Work in Design (CSCWD 2013), 2013, pp. 496–501.

[76] I. Giannoukos, I. Lykourentzou, G. Mpardis, V. Nikolopoulos, V. Loumos,
and E. Kayafas, “Collaborative e-learning environments enhanced by wiki
technologies,” in PETRA, 2008, p. 59.

[77] I. H. Hsiao, J. Guerra, D. Parra, F. Bakalov, B. König-Ries, and
P. Brusilovsky, “Comparative social visualization for personalized e-
learning,” in AVI, 2012, pp. 303–307.

[78] H. Wang, Y. Zhang, and J. Cao, “Effective collaboration with information
sharing in virtual universities,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 6, pp. 840–853, 2009.

[79] N. Ghasem-Aghaee, S. Fatahi, and T. I. Ören, “Agents with personality
and emotional filters for an e-learning environment,” in SpringSim, 2008,
p. 5.

[80] H. Shi, S. Revithis, and S. Chen, “An agent enabling personalized learning
in e-learning environments,” in AAMAS, 2002, pp. 847–848.

[81] D. J. Crandall, D. Cosley, D. P. Huttenlocher, J. M. Kleinberg, and S. Suri,
“Feedback effects between similarity and social influence in online commu-
nities,” in KDD, 2008, pp. 160–168.

[82] J. Jaccard, H. Blanton, and T. Dodge, “Peer influences on risk behavior:
Analysis of the effects of a close friend,” Developmental Psychology, vol. 41,
no. 1, pp. 135–147, 2005.

[83] J. B. Standridge, R. G. Zylstra, and S. M. Adams, “Alcohol consumption:
An overview of benefits and risks,” Southern Medical Journal, vol. 97, no. 7,
pp. 664–672, 2004.

[84] M. E. Larimer and J. M. Cronce, “Identification, prevention, and treat-
ment revisited: Individual-focused college drinking prevention,” Addictive
Behaviors, vol. 32, pp. 2439–2468, 2007.

[85] S. T. Walters and M. E. Bennett, “Addressing drinking among college stu-
dents: a review of the empirical literature,” Alcoholism Treatment Quar-
terly, vol. 18, no. 1, pp. 61–67, 2000.

[86] W. Wei, J. H.-M. Lee, and I. King, “Measuring credibility of users in an
e-learning environment,” in WWW, 2007, pp. 1279–1280.

REFERENCES 88

[87] L. Lamport, “Solved problems, unsolved problems and non-problems in
concurrency,” in PODC 1984 Proceedings of the Third Annual ACM Sym-
posium on Principles of Distributed Computing, 1984, pp. 1–11, invited
address.

[88] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, P. K. Srimani, and Z. Xu,
“Self-stabilizing graph protocols,” Parallel Processing Letters, vol. 18, no. 1,
pp. 189–199, 2008.

[89] E. W. Dijkstra, “Self-stabilization in spite of distributed control,” in Se-
lected Writings on Computing: A Personal Perspective, Springer-Verlag,
1982, pp. 41–46.

[90] ——, “A belated proof of self-stabilization,” Distrib. Comput., vol. 1, pp.
5–6, 1986.

[91] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette, “Self-
stabilizing local mutual exclusion and daemon refinement,” in DISC, 2000,
pp. 223–237.

[92] M. Nesterenko and A. Arora, “Stabilization-preserving atomicity refine-
ment,” in DISC, 1999, pp. 254–268.

[93] T. Herman, “Probabilistic self-stabilization,” Information Processing Let-
ters, vol. 35, no. 2, pp. 63–67, 1990.

[94] S. Kamei and H. Kakugawa, “A self-stabilizing approximation algorithm
for the distributed minimum k-domination,” IEICE Transactions on Fun-
damentals of Electronics Communications and Computer Sciences E88-A,
vol. 5, pp. 1109–1116, 2005.

[95] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani, “A synchronous
selfstabilizing minimal domination protocol in an arbitrary network graph,”
in Proc. 5th International Workshop on Distributed Computing, 2003, pp.
26–32.

[96] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi, “Developing self-stabilizing
coloring algorithms via systematic randomization,” in Proc. 1st Interna-
tional Workshop on Parallel Processing, 1994, pp. 668–673.

[97] J. F. Fink and M. S. Jacobson, Graph theory with applications to algorithms
and computer science. Inc., New York, NY, USA, 1985, pp. 283–300.

[98] M. S. Jacobson and K. Peters, “Complexity questions for n-domination and
related parameters,” , Congr. Numer of the 18th Manitoba Conference on
Numerical Mathematics and Computing, vol. 68, pp. 7–22, 1989.

[99] N. Guellati and H. Kheddouci, “A survey on self-stabilizing algorithms for
independence, domination, coloring, and matching in graphs,” J. Parallel
Distrib. Comput., vol. 70, no. 4, pp. 406–415, 2010.

[100] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater., Domination in Graphs:
Advanced Topics. Marcel Dekker, 1998.

[101] ——, Fundamentals of Domination in Graphs. Marcel Dekker, 1998.

REFERENCES 89

[102] P. A. Kirschner and A. C. Karpinski, “Facebook and academic perfor-
mance,” Computers in Human Behavior, vol. 26, pp. 1237–1245, 2010.

[103] C. Madge, J. Meek, J. Wellens, and T. Hooley, “Facebook, social integration
and informal learning at university: it is more for socialising and talking
to friends about work than for actually doing work,” Computers in Human
Behavior, vol. 34, no. 2, pp. 141–155, 2009.

[104] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution
of user interaction in facebook,” in WOSN, 2009, pp. 37–42.

[105] L. Sun and H. Wang, “Access control and authorization for protecting dis-
seminative information in e-learning workflow,” Concurrency and Compu-
tation: Practice and Experience, vol. 23, no. 16, pp. 2034–2041, 2011.

[106] H. Wang, J. Cao, and Y. Zhang, “A flexible payment scheme and its role
based access control,” Transactions on Knowledge and Data Engineering,
vol. 17, no. 3, pp. 425–436, 2005.

[107] X. Sun, H. Wang, J. Li, and J. Pei, “Publishing anonymous survey rating
data,” Data Min. Knowl. Discov., vol. 23, no. 3, pp. 379–406, 2011.

[108] X. Sun, H. Wang, J. Li, and Y. Zhang, “Satisfying privacy requirements
before data anonymization,” Comput. J., vol. 55, no. 4, pp. 422–437, 2012.

[109] X. Deng, T. Ibaraki, and H. Nagamochi, “Combinatorial optimization
games,” in Proc. 8th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1997, pp. 720–729.

[110] X. Deng, T. Ibaraki, H. Nagamochi, and W. Zhang, “Totally balanced
combinatorial optimization games,” Mathematical Programming, vol. 87,
pp. 441–452, 2000.

[111] X. Deng and C. Papadimitriou, “On the complexity of cooperative game
solution concepts,” Mathematics of Operations Research, vol. 19, pp. 257–
266, 1994.

[112] I. Curiel, Cooperative game theory and applications. Kluwer Academic
Publishers, 1997.

[113] L. S. Shapley and M. Shubik, “The assignment game,” International Jour-
nal of Game Theory, vol. 1, pp. 111–130, 1972.

[114] O. N. Bondareva, “Some applications of the methods of linear programming
to the theory of cooperative games,” (Russian) Problemy Kibernet, vol. 10,
pp. 119–139, 1963.

[115] L. S. Shapley, “On balanced sets and cores,” Naval Res. Quart., vol. 14,
pp. 453–460, 1967.

[116] M. X. Goemans and M. Skutella, “Cooperative facility location games,” in
SODA, 2000, pp. 76–85.

[117] R. P. Gilles, The Cooperative Game Theory of Networks and Hierarchies.
Springer-Verlag Berlin Heidelberg, 2010.

REFERENCES 90

[118] I. Curiel., Cooperative game theory and applications - Cooperative games
arising from combinatorial optimization problems. Kluwer Academic, 1997.

[119] G. Owen, “On the core of linear production games,” Mathematical Pro-
gramming, vol. 9, no. 3, pp. 358–370, 1975.

[120] X. Deng, T. Ibaraki, and H. Nagamochi, “Algorithmic aspects of the core of
combinatorial optimization games,” Mathematics of Operations Research,
vol. 24, pp. 751–766, 1999.

[121] B. V. Velzen, “Dominating set game,” Opertations Research Letters, vol. 32,
pp. 565–573, 2004.

[122] Q. Fang and H. K. Kim, “A note on balancedness of dominating set games,”
J. Comb. Optim., vol. 10, no. 4, pp. 303–310, 2005.

[123] Q. Fang, H. K. Kim, and D. S. Lee, “Total dominating set games,” in
WINE, 2005, pp. 520–530.

[124] H. K. Kim and Q. Fang, “Balancedness of integer domination games,” Jour-
nal of the Korean Mathematical Society, vol. 43, pp. 297–309, 2006.

[125] P. Domingos and M. Richardson, “Mining the network value of customers,”
in KDD, 2001, pp. 57–66.

[126] D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003, pp. 137–146.

[127] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in KDD, 2007,
pp. 420–429.

[128] X. Zhu, J. Yu, W. J. Lee, D. Kim, S. Shan, and D. Z. Du, “New dominating
sets in social networks,” J. Global Optimization, vol. 48, no. 4, pp. 633–642,
2010.

[129] T. N. Dinh, M. T. Thai, and D. T. Nguyen, A Unified Approach for Domi-
nation Problems on Different Network Topologies, (p. pardalos, d. du, and
r. graham eds) ed. Springer Publisher.

Appendices

Appendix A

Procedure Code

The following is the procedure code in the paper [70].

mainclass.java

/** * * @author Guohun Zhu

*/

package Dominate;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

public class MainClass {

private final static int N=300;

static int totalPistive=10; // < N

/**

* @param args

*/

public static void main(String[] args) {

//TODO Auto-generated method stub

Graph graph = new Graph();

boolean computedByMinOutArcWSum = true;

for (totalPistive=10;totalPistive < 25;){

initgraph(graph,N,totalPistive);

System.out.printf(”************************ Nodes: %d, \ t Teacher: %d ************************
\ n”,N,totalPistive);

93

List<Node> P=new ArrayList<Node>();

List<Node> C=new ArrayList<Node>();

if(computedByMinOutArcWSum){

findDominatedSetByMinOutArcWSum(graph, P, C);

}

else {

findDominatedSetByMaxNegativeInArcWSum(graph, P, C);

}

int number=output(C, P);

double weight=GetAverageWeight(graph,P,C);

System.out.println(”totoal node is: \ t \ t ”+number);

System.out.printf(”Average weight is:\ t %6.3f \ n”,weight);

graph.clear();

totalPistive+=5;

}

}

private static int output(List<Node> c, List<Node> p) {

// TODO Auto-generated method stub

System.out.println(”positive:”);

for (Node node : c) {

System.out.print(”\ t”+node);

}

System.out.println();

System.out.println(”negative → positive:”);

for (Node node : p) {

System.out.print(”\ t”+node);

} System.out.println();

return p.size();

}

private static void findDominatedSetByMinOutArcWSum(Graph graph, List<Node>
P, List<Node> C) {

for (Node node : graph.getNodes()) {

if (node.positive==true) {

Procedure Code 94

C.add(node);

}

}

boolean hasNegativeNode = true;

while (hasNegativeNode){

hasNegativeNode = false;

double min=0;

Node minNode=null;

for (Node node : graph.getNodes()) {

if (node.positive==false && node.computeTotalInArcW()< 0 &&

node.computeTotalOutArcW()< min) {

min=node.computeTotalOutArcW();

minNode=node;

}

}

if(minNode!=null){

hasNegativeNode = true;

minNode.positive=true;

P.add(minNode);

for(Arc arc: minNode.outArcList) {

arc.weight=Math.abs(arc.weight);

}

}

}

}

private static void findDominatedSetByMaxNegativeInArcWSum(Graph graph,
List<Node> P,

List<Node> C) {

for (Node node : graph.getNodes()) {

if (node.positive==true) {

C.add(node);

}

}

95

boolean hasNegativeNode = true;

while (hasNegativeNode){

hasNegativeNode = false;

double max=Double.NEGATIVE-INFINITY;

Node maxNode=null;

for (Node node : graph.getNodes()) {

if (node.positive==false && node.computeTotalInArcW()< 0 &&

node.computeTotalInArcW()> max) {

max=node.computeTotalInArcW();

maxNode=node;

}

}

if(maxNode!=null){

hasNegativeNode = true;

maxNode.positive=true;

P.add(maxNode);

for(Arc arc: maxNode.outArcList) {

arc.weight=Math.abs(arc.weight);

}

}

}

}

private static double GetAverageWeight(Graph graph,List<Node> c,

List<Node> p) {

double weight=0;

int number=0;

for (Node node : graph.getNodes()) {

weight+=node.computeTotalInArcW();

number++; } for (Node node :c) {

weight-=node.computeTotalInArcW(); number–; } for (Node node :p) { weight-
=node.computeTotalInArcW();

number–; } if (number<1)

return weight;

Procedure Code 96

else

return weight /number; }

private static void initgraph(Graph graph,int nNodes,int totalPositive) {

int loc=0;

// initialize all nodes

Node node=null;

for (int i=1;i<=nNodes;i++){

node=new Node(”v”+String.valueOf(i),false);

graph.add(node);

}

for (int i=0;i<totalPositive;i++){

Random tempR=new Random();

loc=tempR.nextInt(nNodes);

graph.setNodeAsTeacher(loc);

}

// initialize arc list

for (int i=1;i<=nNodes;i++){

Arc arc=new Arc();

arc.from=graph.getNode(i-1);

loc=i-1;

arc.to=null;

while(arc.to==null){

while(loc==i-1){

loc=(int)(Math.random()*nNodes);

}

arc.to=graph.getNode(loc);

}

arc.weight=(Math.random()-0.5)*2;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

}

}

97

private static void Test1graph(Graph graph) {

int loc=0;

// initialize all nodes

String []NodesName={”Bob”,”Ann”,”Don”,”Kris”,”Tom”};

Node node=null;

node=new Node(NodesName[0],true);

graph.add(node);

graph.setNodeAsTeacher(0);

for (int i=1;i<NodesName.length;i++){

node=new Node(NodesName[i],false);

graph.add(node);

}

// initialize arc list

Arc arc=new Arc();

arc.from=graph.getNodeByID(”Bob”);

arc.to=graph.getNodeByID(”Don”);

arc.weight=0.7;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Bob”);

arc.to=graph.getNodeByID(”Tom”);

arc.weight=0.7;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Bob”);

arc.to=graph.getNodeByID(”Kris”);

arc.weight=0.7;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc(); arc.from=graph.getNodeByID(”Ann”);

Procedure Code 98

arc.to=graph.getNodeByID(”Don”);

arc.weight=-0.1;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Ann”);

arc.to=graph.getNodeByID(”Kris”);

arc.weight=-0.2;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Don”);

arc.to=graph.getNodeByID(”Kris”);

arc.weight=-0.3;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Don”);

arc.to=graph.getNodeByID(”Tom”);

arc.weight=-0.3;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Kris”);

arc.to=graph.getNodeByID(”Ann”);

arc.weight=-0.2;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Kris”);

arc.to=graph.getNodeByID(”Don”);

arc.weight=-0.3;

99

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Kris”);

arc.to=graph.getNodeByID(”Tom”);

arc.weight=-0.3;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Tom”);

arc.to=graph.getNodeByID(”Don”);

arc.weight=-0.3;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

arc=new Arc();

arc.from=graph.getNodeByID(”Tom”);

arc.to=graph.getNodeByID(”Kris”);

arc.weight=-0.3;

arc.from.outArcList.add(arc);

arc.to.inArcList.add(arc);

}

}

arc.java

package Dominate;

public class Arc { Node from; Node to; double weight; public Arc(){}

void clear() { from=null; to=null; } }

Graph.java

package Dominate;

import java.util.ArrayList; import java.util.List;

public class Graph {

private List<Node> V;

Procedure Code 100

public Graph(){

V=new ArrayList <Node>();

}

public void clear(){

for (Node node : V) {

node.clear();

}

V.clear();

}

public Node getNodeByID(String id) {

for (Node node : V) {

if (node.equalto(id))

return node;

}

return null;

}

public Node getNode(int index){

if (index<0) return null;

if (index<V.size())

return V.get(index);

else

return null;

}

void add(Node node) {

V.add(node);

}

List <Node> getNodes() {

return V;

}

public Node setNodeAsTeacher(int index) {

if (index<0) return null;

if (index<V.size()) {

101

V.get(index).positive=true;

return V.get(index);

}

else

return null;

}

}

Node.java

package Dominate;

import java.util.ArrayList;

import java.util.List;

public class Node {

private String ID;

boolean positive;

int x;

int y;

int[] ia3 =new int []{1,2,3};

int delta plus; /* edge starts from this node */

int delta minus; /* edge terminates at this node */

int dist; /* distance from the start node */

int prev; /* previous node of the shortest path */

int p edge;

int l;

int w;

int h;

char Color;

private char LeftRight; // ’L’, ’R’, ’M’

private int order; // visiting order;

private int Degree; // zero

private char Locate; // Frontal

// private String name;

Procedure Code 102

List<Arc> inArcList;

List<Arc> outArcList;

public Node(){}

public Node(String id,boolean positive){

ID=new String(id);

this.positive=positive;

inArcList=new ArrayList<Arc>();

outArcList=new ArrayList<Arc>();

} void clear(){

ID=null;

for (Arc x:inArcList) x.clear();

for (Arc x:outArcList) x.clear();

inArcList.clear();

outArcList.clear(); }

boolean equalto(String id){

boolean flag=false;

if (getID().compareTo(id)==0) return true;

return flag; }

public double computeTotalOutArcW(){

double sum=0;

for (Arc arc : outArcList) {

sum=sum+arc.weight;

}

return sum; }

@Override

public String toString(){

return getID();

}

public double computeTotalInArcW(){

double sum=0;

for (Arc arc : inArcList) {

sum=sum+arc.weight;

103

}

return sum;

}

/**

* @return the ID

*/

public String getID() {

return ID;

}

/**

* @param ID the ID to set

*/

public void setID(String ID) {

this.ID = ID;

}

}

Appendix B

Experimental Data

The following is the data used in paper [70].

code java.data

************************ Nodes: 300, Teacher: 10 ************************

positive:

v43 v47 v66 v68 v76 v85 v154 v208 v252 v261

negative → positive:

v149 v279 v112 v295 v288 v91 v189 v108 v280 v95 v30 v120 v248 v105 v127 v160
v75 v253 v122 v23 v230 v294 v254 v225 v104 v265 v109 v193 v74 v82 v38 v267

total node is: 32

Average weight is: 0.207

************************ Nodes: 300, Teacher: 15 ************************

positive:

v5 v18 v27 v114 v135 v145 v166 v172 v179 v180 v230 v257 v275

negative → positive:

v32 v125 v40 v11 v163 v178 v200 v261 v29 v147 v266 v167 v2 v203 v79 v231
v165 v286 v111 v282 v24 v149 v104 v130 v191 v99 v267 v248

total node is: 28

Average weight is: 0.249

************************ Nodes: 300, Teacher: 20 ************************

positive:

v7 v9 v37 v59 v64 v84 v108 v162 v163 v172 v232 v239 v244 v257 v258 v278 v282
v294

negative → positive:

105

v122 v135 v202 v87 v47 v117 v199 v63 v19 v18 v218 v4 v75 v170 v156 v185 v14
v269 v179 v1 v68 v277 v66 v208 v234 v35 v23 v292 v77 v50 v82 v272 v154 v219
v79 v273 v271 v20 v231 v8 v21 v72 v25 v29 v42 v196 v220

total node is: 47

Average weight is: 0.243

Experimental Data 106

-End of dissertation-

