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Abstract

Flood hazards are the most common and destructive of all natural hazards in the
world. A series of floods that hit the south east region of Queensland in Australia
from December 2010 to January 2011 caused a massive devastation to the State,
people, and its critical infrastructures. G1S-based risk mapping is considered a vital
component in land use planning to reduce the adverse impacts of flooding. However,
the integrated mapping of climate adaptation strategies, analysing interdependencies
of critical infrastructures, and finding optimum decisions for natural disaster risk
reduction in floodplain areas remain some of the challenging tasks. In this study, |
examined the vulnerability of an urban community and its critical infrastructures to
help alleviate these problem areas. The aim was to investigate the vulnerability and
interdependency of urban community’s critical infrastructures using an integrated
approach of flood risk and climate adaptation capacity assessments in conjunction
with newly developed spatially-explicit analytical tools.

As to the research area, | explored Brisbane City and identified the flood-affected
critical infrastructures such as electricity, road and rail, sewerage, stormwater, water
supply networks, and building properties. | developed a new spatially-explicit
analytical approach to analyse the problem in four components: 1) transformation
and standardisation of flood risk and climate adaptation capacity indicating variables
using a) high resolution digital elevation modelling and urban morphological
characterisation with 3D analysis, b) spatial analysis with fuzzy logic, c) geospatial
autocorrelation, among others; 2) fuzzy gamma weighted overlay and topological
cluster analyses using Bayesian joint conditional probability theory and self-
organising neural network (SONN); 3) examination of critical infrastructure
interdependency using utility network theory; and 4) analysis of optimum natural
disaster risk reduction policies with Markov Decision Processes (MDP).

The flood risk metrics and climate adaptation capacity metrics revealed a
geographically inverse relationship (e.g. areas with very high flood risk index
occupy a low climate adaptation capacity index). Interestingly, majority of the study
area (93%) exhibited negative climate adaptation capacity metrics (-22.84 to < 0)
which indicate that the resources (e.g. socio-economic) are not sufficient to increase
the climate resiliency of the urban community and its critical infrastructures. I
utilised these sets of information in the wvulnerability assessment of critical
infrastructures at single system level. The January 2011 flood instigated service
disruptions on the following infrastructures: 1) electricity supplies along 627km
(75%) and 212km (25%) transmission lines in two separate areas; 2) road and rail
services along 170km (47%) and 2.5km (38%) networks, respectively; 3) potable
water supply along 246km (56%) distribution lines; and 4) stormwater and sewerage
services along 33km (91%) and 32km (78%) networks, respectively.

From the critical infrastructure interdependency analysis, the failure of sewerage
system due to the failure of electricity supply during the January 2011 flood
exemplified the first order interdependency of critical infrastructures. The ripple
effects of electricity failure down to road inaccessibility for emergency evacuation
demonstrated the higher order interdependency. Moreover, an inverted pyramid



structure demonstrated that the hierarchy of climate adaptation strategies of the
infrastructures was graded from long-term measures (e.g. elimination) down to
short-term measures (e.g. protection).

The analysis with Markov Decision Processes (MDP) elucidated that the Australian
Commonwealth government utilised the natural disaster risk reduction expenditure
to focus on recovery while the State government focused on mitigation. There was a
clear indication that the results of the MDP analysis for the State government
established an agreement with the previous economic analysis (i.e. mitigation could
reduce the cost of recovery by 50% by 2050 with benefit-cost ratio of 1.25).

The newly developed spatially-explicit analytical technique, formulated in this thesis
as the flood risk-adaptation capacity index-adaptation strategies (FRACIAS) linkage
model, integrates the flood risk and climate adaptation capacity assessments for
floodplain areas. Exacerbated by the absence of critical infrastructure
interdependency assessment in various geographic analyses, this study enhanced the
usual compartmentalised methods of assessing the flood risk and climate adaptation
capacity of flood plain areas. Using the different drivers and factors that exposed an
urban community and critical interdependent infrastructures to extreme climatic
event, this work developed GIS-enabled systematic analysis which established the
nexus between the descriptive and prescriptive modelling to climate risk assessment.
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Chapter 1 Introduction

Chapter 1

INTRODUCTION

1.1 Background

Flood hazards are the most common and destructive of all natural hazards
(Vanneuville et al. 2011) and flood damages had been estimated to be the most
costly in Australia (BTRE 2002 and Geoscience Australia 2010a). To reduce the
impact of flooding, flood hazard mapping has been considered a vital component for
appropriate land use planning in flood prone areas (Linham and Nicholls 2010). In
doing so, flood forecasts are usually determined by examining past occurrences of
flooding events, determining recurrence intervals of historical events (known as
Annual Recurrence Interval), and then extrapolating to future probabilities (known
as Average Exceedance Probability) (Baer 2008). Taking along with forecasts,
nowecasting can also be done by describing in details the current weather through
extrapolation of weather data (e.g. radar echoes) for a period of 0 to 6 hours ahead
(WMO n.d.).

The estimation of the Average Exceedance Probability (AEP) of extreme floods is
grouped into two broad categories: the statistical streamflow modelling methods and
rainfall-runoff modelling methods (Smith et al. 2010). These modelling and
mapping techniques produce a better understanding of the causes and magnitude of
disastrous flooding. Furthermore, these methods will provide flood information
necessary to support the development of an integrated strategy to improve disaster
resilience and preparedness in the flood hazard reduction areas (Teasdale et al.
2010).

With the widespread use of Geographic Information System (GIS) and database
resources, models and inundation maps can be easily updated and improved,
significant flood information can be generated, and potential hazards or risks
associated with locating critical infrastructures can be determined (Teasdale et al.
2010). Despite GIS increasingly becoming more analytical (Berry 1995), an
integrated approach in mapping climate adaptation strategies for flood risk
management remains a challenging task. Engineering profession must respond to
these challenges by working in new ways using the integrated systems approach
(Collins et al. 2011). This approach requires a framework which can address
adaptation challenges of a system (e.g. urban infrastructure system) exposed to
variable and changing climate in an integrated and systematic manner. In a built
environment, strong interdependency of infrastructures exists. This interdependency
sets the interaction of the different forms of infrastructures to provide various social
services. For example, the energy infrastructure (e.g. electricity) keeps the business
and industries, communication, medical, educational, and other social services
operational. The failure to supply energy will consequently disrupt the entire system.
Traditionally, climate adaptation action for infrastructures has tended to be
individualised or compartmentalised among the different camps of water, electricity,
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transportation, residential houses, commercial and industrial buildings, education,
and public health and safety, etc. The policy, research and implementing agencies
treated them separately — an approach analogous to a “pigeon-hole”. Hence, the
research gap on spatial modelling and vulnerability assessment of integrated critical
infrastructures as significant research contribution in providing policies for flood
risk management and climate adaptation strategies was examined.

1.2 Research Problems and Significance

The impacts of climate on our ecological and socio-economic systems will most
likely affect several sectors like food, industry, settlement and society, health, and
water (Parry et al. 2007). In the urban setting, for example, some cities will face
difficulties in providing basic services to their inhabitants like energy and water
supply, physical infrastructure, transportation, ecosystem goods and services, and
industrial production (UN Habitat 2011). Furthermore, the United Nations estimates
that by 2025, half of the world’s population will be living in areas that are at risk
from storms and other weather extremes (Heller et al. 2003). Thus, there is an urgent
need to develop natural disaster risk reduction measures and climate adaptation
strategies to help minimise the harmful effects of extreme weather events like
floods.

In Australia, the Government has funded a number of projects under the Climate
Change Adaptation Program to improve knowledge of the impacts of climate
change, strengthen the capacity of decision-makers to respond and address major
areas of national vulnerability (DCCEE 2010). The current recommended strategies
are to manage climate risk through mitigation (i.e. net reductions in greenhouse gas
emissions) and adaptation to unavoidable climate impacts (CSIRO 2007). In support
to the latter strategy, this study examined the vulnerability of an urban community
and its critical infrastructures exposed to extreme flood event.

In New York City, the New York City Climate Change Adaptation Task Force
(NYC CCATF) evaluated the vulnerability of its infrastructures to climate change
with emphasis on coastal flooding and developed adaptation strategies such as
maintenance and operations (e.g. temporary flood gates, cleaning of drainage
systems, etc.), capital investments (e.g. installation of new flood barriers, elevating
elements of critical infrastructure to levels above projected flood elevations), and
regulatory (e.g. modification of city building codes and design standards
(McLaughlin et al. 2011). In The Netherlands, the urban water managers in the city
of Rotterdam developed a new water management strategy through a transformative
water management approach by combining urban design with a climate adaptation
strategy (Graaf and Brugge 2010). In New Zealand, a study was conducted to
understand the impact of climate changes on the interconnected infrastructure
systems and services (ISS) in Hamilton City (Jollands et al. 2006).

Whilst these studies offer a magnitude of lessons, each has its own drawbacks. The
asset-specific adaptation strategies for critical infrastructures identified in the New
York City could be addressed by the integrated approach in the Hamilton City study.
However, the latter lacked the transformative approach through a multi-level
perspective which has been thoroughly discussed in the Rotterdam study.
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Conversely, the Rotterdam study lacks an emphasis on the importance of
infrastructure interdependencies as thoroughly presented in the Hamilton City study.
Infrastructure interdependency refers to the networks of infrastructures wherein the
operation of individual infrastructure sector relies on other sectors, e.g. energy,
water and transport networks depend on information and communication technology
(ICT) infrastructure for control and monitoring of their conditions, which entails
dependency on energy (Collins et al. 2011). Thus, infrastructure interdependencies
are highly critical considering that extreme events are responsible to ‘cascade
failure’ where the failure of one aspect of infrastructure can lead to complete
fragmentation of interdependent networks (Buldyrev et al. 2010).

In identifying natural disaster risk reduction policies and climate adaptation
strategies, the Geographic Information System (GIS) and remote sensing
technologies play a significant role in climate impact assessment process. Their
capability to handle and analyse thematic maps with high accuracy, time- and cost-
efficiency has been demonstrated in various disciplines. With its wide range of
applications and modelling functions, these technologies are popular tools in disaster
risk management. Thus, the successful utilisation of these technologies in disaster
management is crucial (Altan et al. 2010) for study of historical events (Islam and
Sado 2000), a major tool in planning (Ernst and Mostafa 2010), and to map spatial
distribution of flood risk and vulnerability (Karmakar et al. 2010). As a tool, GIS
can be used for analysing climate impacts, identifying the risks and opportunities
that will need to be responded to, defining the geographical areas most sensitive to
climate change, and identifying appropriate adaptation responses (Liu 2009).

A GIS-based framework can provide a scientific understanding of earth systems and
leads to more thoughtful and informed decision making (Dangermond and Baker
2010) to combat the potential harmful effects of extreme climatic conditions.
However, the greatest priority is to develop responses or strategic actions that can
work within the high uncertainty of future climate change, to build resilience, and
maintain flexibility (Hunt and Watkiss 2010). In prioritising strategic responses for
climate adaptation and natural disaster risk reduction, decision-makers are
confronted with competing financial resources. Hence, in an increasingly
competitive financial environment, government expenditures for disaster risk
reduction should be spent optimally without losing the efficacy of finest delivery of
infrastructure services to communities.

Having identified the significant issues mentioned above, this study was challenged
to fill in the following research gaps and thereby produced significant academic and
practical contributions to this area of research:

1. The universal way of representing and analysing flood risk through
maps is descriptive (e.g. low, moderate, high, and very high risk).
This study, however, extends beyond the descriptive model of
representing flood risk and climate adaptation capacity indices to
include the prescriptive model of representing climate adaptation
policies and strategies for flood risk management under extreme
climatic condition. Prescriptive  modelling refers to the
characterisation of direct and indirect factors related to system
response used in determining appropriate management action (Berry
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1995). This research area has never been substantially explored in
flood risk assessment studies.

The linkage between descriptive and prescriptive modelling
techniques is presented in Chapters 3, 4 and 6.

2. The pigeon-hole approach has been the common method of analysing
infrastructure exposure to flood hazards which separately analyses
risk for different types of infrastructure (e.g. water, electricity,
sewerage, etc.). An infrastructure asset is said to be critical if its
disruption would cause social inconvenience. This study introduced
an integrated approach of analysing infrastructure risk to damage due
to flooding (in general) and identifying critical interdependent
infrastructure assets (in particular) that are exposed and vulnerable to
flood hazards. Infrastructure interdependency refers to the networks
of infrastructures wherein the performance of one relies on the other
(Collins et al. 2011). The critical infrastructures analysed in this
study were electricity, water supply, sewerage, stormwater, roads and
rails, and building properties. They were selected based on the
availability of spatial information. Chapter 5 identifies the ways and
discusses the means of addressing the issue.

3. Finally, the spatial modelling to find optimal decisions for disaster
risk reduction by setting the problem as Markov decision process was
also examined in this study — an approach that has not been
comprehensively studied to support the natural disaster risk reduction
efforts. This is also fully discussed in Chapter 6.

1.3 Research Objectives

The aim of this study was to investigate the vulnerability and interdependency of
urban community’s critical infrastructures using an integrated approach of flood risk
and climate adaptation capacity assessment in conjunction with newly developed
spatially-explicit analytical tools.

Specifically, the objectives of this study were the following:

1. To develop a comprehensive set of flood risk and climate adaptation
capacity metrics as inputs for modelling natural disaster risk reduction
and climate adaptation strategies;

2. To assess the vulnerability of an urban community and its critical
interdependent infrastructures exposed to flood hazard for the
development of integrated climate adaptation strategies; and

3. To examine the optimality of natural disaster risk reduction policies
being implemented in an urban community and its critical infrastructures.

In achieving these objectives, this study hypothesised that: “Spatially explicit flood
risk and climate adaptation capacity models can provide sets of information that are
useful in planning and developing adaptation strategies from the potential effects of
extreme flood event to the physical assets (human settlement and critical
infrastructure systems) of an urban community.”
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1.4 Location of the Study Area

The study area is located in the core suburbs of Brisbane City, the Queensland’s
capital in Australia (see Figure 1.1). The City is traversed by the 345-kilometer long
Brisbane River, which is the longest river in South East Queensland and flows down
from Mount Stanley to Moreton Bay (Middelman 2002). Including the Lockyer
Creek and Bremer River catchments, around 6,500 km? (approximately 50%) of the
Brisbane River catchment is below Wivenhoe and Somerset Dams (Robinson 2011).
Completed in 1984, the Wivenhoe Dam was built as a dual-purpose storage for both
drinking water (which supplies water to the City) and flood mitigation (SEQ Water
2012).

Described as Australia’s New World City with strong economic growth, Brisbane
City had an $85 billion economy in 2011, almost half of the State economy (BCC
2011). However, the Brisbane’s economic progress together with more than a
million estimated residents, had been hampered and devastated recently by
2010/2011 floods. In January 2011, the Brisbane River broke its banks and
inundated the city (Queensland Museum 2011). Flood waters in Brisbane peaked at
4.46 metres making it one of the worst floods since the January 1974 flood when
Brisbane River reached 5.45 metres (BOM 2013). The flood caused significant
damage on the City’s infrastructures, assets, transport, waterways, and community
areas with an estimated damage bill in excess of $440 million (BCC 2012b).

4950[}0 4990().0 5000{:0 501 090

2, > RedH
- ’T = Loery ) REDAILL 3
iy
Bgrdon '
4

5030[30

5020[30

Fortit

2 N AFol-S
=1
i ubf 2
, FORTITWDE VAl 3 e -
B Ba.ruﬁ; ING HILL

Spring Hill

6963000

3.

} Latlnae"““q'

PADDINGTONITOT

BARDON
0 250 500 1,000 1,500

‘1 , Meters
I 1:28,078

69620?0
¢

"W
& Brisbane’
# BRISBAI

Coordinate System:
GDA 1994 MGA Zone 56

=, Brifiihne
ACity BMjanical

6961000

6960000

HHIGHGATE Hil{

Legend

6959000

!"ng-) /
—
-

TARINGA

6959000

- Brisbane River
I 2011 Flood
:I Suburb Boundary

[ study Area (Extent)
Sources: Brisbane City Council
Open Street Map
Altius Directory

DUTION PARK )
Dutton Park

WORELOOMEABEA

y ‘ a
\'_ 1 ‘. RLEY|

T - T
502000 503000

IBDOCROOPILLY

T
499000

6958000

T = T T
498000 500000 501000

Figure 1.1 The location map of the study area

Comprising an area of approximately 2,200 ha, the study area includes the 22
suburbs of the City: South Brisbane, West End, Highgate Hill, Brisbane Central
Business District (CBD), Toowong, Auchenflower, and portions of Spring Hill,
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Paddington, Bardon, St. Lucia, and Dutton Park, etc.. The extent of this study area
was chosen based on available high resolution LIiDAR dataset.

On the South Brisbane side, the study area is home to major cultural attractions and
art galleries, Australia’s only beach in a city, Brisbane’s best restaurants and cafes,
and one of the East Queensland’s most popular tourist destinations. Aside from
offering tourism services to an estimated 10 million people each year, the area is
devoted to several land uses such as recreation parks, commerce and business,
industry, education, residential, cultural centres and museum, State Library of
Queensland, among others (South Bank Corporation 2012). Within the CBD, the
centre takes the role of the Queensland’s principal vicinity for business and
administration complemented by retailing, entertainment, education, community and
cultural facilities, tourism and residences (BCC 2010).

1.5 Overview of Research Methods

This study developed an integrated approach of formulating climate adaptation
strategies to reduce vulnerability of an urban community and infrastructure assets
from floods and the long-term effects of extreme climatic events. Figure 1.2 is the
input-process-output (IPO) model specifically used in this study. Highlighted in the
figure were data inputs used, processes involved, and the outputs generated from the
comprehensive analysis. Under the input component, the flood hazard, vulnerability,
and exposure indicators were assessed (also see Table 3.1). Under the process
component, four (4) main GIS operation challenges were addressed to generate the
flood risk and adaptation capacity metrics. The first challenge was to identify
analytical tools with ArcGIS 10 (ESRI 2011) that will transform indicating variables
(i.e. indicators that describe observable variables) for flood hazard, vulnerability,
and exposure into standardised raster formats. The digital elevation modelling and
urban morphological characterisation with 3D analysis, spatial analysis with fuzzy
logic, proximity, quadrat, collect events analyses, hot spot and line statistical
analyses were primarily operationalised. Each of this preliminary analytical
technique was used according to the type of geographic feature being represented by
the indicating variable (Table 3.1).

This study was also challenged to apply the spatial autocorrelation techniques with
emphasis on Global Moran’s | and Cluster and Outlier Analysis of Anselin Local
Moran’s |. These techniques were applied to measure the dispersion of urban
development, critical infrastructures, emergency services, and flood-related hazards
that suggest a measure of perceived level of flood risk in an urban community. The
application and conceptualisation of these techniques are a challenging task
considering that direct interpolation techniques of point data, for example, renders
inaccurate results in clustering highly vulnerable infrastructures. The initial outputs
generated from the spatial autocorrelation analyses were then summarised in raster
using the Inverse Distance Weight (IDW) method of point data interpolation. The
generated raster maps were then carefully analysed to assign categorised values for
each indicating variable that generally explain perceived level of flood risk.

The second challenge was to evaluate which of these variables have certain degree
of direct correlation (pattern similarity) with perceived flood risk and which of them
can be potentially included in the weighted overlay analysis. The issue was resolved
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by creating transformation algorithm of the raster maps in MATLAB version
R2011b program (The Mathworks, Inc. 2013) and analysed the topological clusters
of these indicating variables using the self-organising neural network (SONN)
mapping tool. Selection was then made as to which of the indicating variables were
included in the weighted overlay operations.

The third challenge was to address the limitations of deductive and normative
arguments in climate risk assessment. As such, varying degrees of importance
(unequal weights) of indicating variables were generated using Bayesian probability.
These probability values were used in the weighted overlay operations in generating
consequential hazard, physical vulnerability, and exposure indices. These indices
were in turn used in calculating the flood risk metrics using the modified fuzzy
gamma function. Applying Equations 3.1 to 3.6, the flood risk and climate
adaptation capacity metrics were generated.

The final outputs (i.e. flood risk and adaptation capacity metrics) were then applied
in assessing the vulnerability of urban community and critical infrastructures.
Finally, optimal decision modelling was performed to assess the optimum natural
disaster risk reduction policies implemented by the Commonwealth government of
Australia and, the State government of Queensland.
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1.6 Scope and Limitation of the Study

The study was scoped based on several considerations: availability of spatial
datasets, single flood event (i.e. January 2011 flood), and strategic locations of
significantly flooded critical interdependent infrastructures in an urban community
(i.e. Brisbane City). The rationale and key considerations in the way how this study
was scoped were based on the recommendations of Queensland Floods Commission
of Inquiry to look at solutions to limit the consequences of infrastructure failure
from severe weather events like the January 2011 flood in Brisbane. As a very
topical and significant issue, the Commission was established by the State
government of Queensland to investigate into what had happened during the
December 2010-January 2011 floods in south east region of the state and provide
recommendatory actions to increase Queensland’s resiliency from flooding. The
information from this inquiry based on actual flood events gave this study an
opportunity to bring GIS and remote sensing as tools to help find the solutions.

A variety of limitations can be identified in this study. The most obvious one is the
extent of the study area. Its selection was approached on the basis of availability of
high resolution LiDAR data. Ideally, flood risk assessment should be done through
the ecosystem approach either on the basis of flood plain or catchment area.
However, none of this approach was considered due to the absence of a wider
LiDAR coverage to scope the entire flood plain or catchment area.

The second limitation is the absence of temporal analysis of flood risk. Due to
unavailability of data which relate to historical extreme flood events, this study
opted to settle on a single flood event data particularly the actual extent of the
January 2011 flood. Furthermore, due to complexity and unfeasibility to “predict”
the future conditions of Brisbane City and its critical interdependent infrastructures
in the future, the climate change factors for assessing future flood risk in the study
area were also excluded in the analysis. Hence, the absence of temporal dynamics of
flood risk is acknowledged in this study.

To fully assess the vulnerability of the study area and its critical infrastructures, ICT
infrastructure, broadband, gas storage and distribution, ports and airports, food
supply, waste, financial, and other networked infrastructures were desired to be
included in the analysis. However, the availability and the confidentiality of some
datasets hindered to include them in the analysis.

Furthermore, the effect of integrating hydrologic and hydraulic analysis in the flood
risk assessment has also been disregarded in this study. Instead of using them as
tools in flood risk assessment, it was assumed that the actual flood extent could
provide better and accurate modelling information.

Finally, the assumptions associated with the variables in setting the Markov decision
processes (MDP) were mainly based on existing literature; hence, no actual
experimentation was performed.
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1.7 Organisation of the Thesis

This thesis is organised into seven chapters with schematic representation shown in
Figure 1.3.

The First Chapter presents the introductory background to the research, poses the
research problems and significance, and sets out the objectives.

The Second Chapter reviews the areas of knowledge that are relevant to this study:
geographic information system (GIS) and natural disaster risk assessment. The use
of spatial layers in flood risk and climate adaptation capacity assessments is
discussed along with critical infrastructure interdependency modelling and
optimising disaster risk reduction policies. In a nutshell, this Chapter provides the
nexus amongst the flood risk, climate adaptation capacity, critical infrastructure
interdependency, and disaster risk reduction policies of the examined urban
community.

Chapter 3 describes the spatial analytical tools that were utilised to transform and
standardise flood risk and climate adaptation capacity indicating variables. This
Chapter serves as the “gateway” to Chapters 4, 5 and 6.

Chapter 4 covers the development of flood risk and climate adaptation capacity
metrics through the applications of Self-Organising Neural Network (SONN),
Bayesian joint conditional probability, weighted overlay, and fuzzy gamma overlay
techniques in GIS.

The Fifth Chapter covers the methods of assessing the vulnerability of critical
infrastructures along with interdependency analysis. The specific and integrated
climate adaptation strategies to increase climate resiliency of the study area and its
critical infrastructures are also discussed.

Chapter 6 applies the optimisation technique called Markov Decision Processes
(MDP) to find natural disaster risk reduction policies funded by the Australian
governments. Lastly, the Final Chapter covers the conclusions and
recommendations for future works.
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Chapter 2

LITERATURE REVIEW

The first Chapter presented the overall framework on the potential use of GIS and
remote sensing in the natural disaster risk management. This second Chapter is a
review on the relationships of various factors affecting the flood risk and climate
adaptation capacity assessments of urban community and critical infrastructures.
Furthermore, this Chapter establishes the niche for disaster risk reduction and
climate adaptation, as well as the relevant sciences and technologies of GIS and
remote sensing. In summary, Chapter 2 provides the journey towards exploring the
relationship of the three major components of this study: (1) flood risk-climate
adaptation capacity assessments; (2) vulnerability assessment of critical
infrastructures and their interdependencies; and (3) identification and analysis of
natural disaster risk reduction measures.

2.1 Overview of the Climate System

As a complex system, the Earth’s climate is controlled primarily by the exchange
and storage of heat through the atmosphere, ocean, and biosphere (Dai et al. 2001;
Whitfield et al. 2010). Once any of the components are changed, it may give rise to
change in the climatic conditions on different scales of time and in different ways
(Bradley 2015). For example, the equatorial location of the tropical rainforest and
high sun angles all throughout the year make the tropical region high in terms of
annual temperatures with very little seasonal variation (Ritter 2006). In the late
1970s, the atmospheric science community had begun reporting on the potential for
a warming of the global climate as a result of increased gaseous pollutants released
into the atmosphere (Changnon 1995).

Whilst others are having an ongoing political debate on climate change (Heinke et
al. 2013) due to the absence of much evidence (Tol 2013), others argue that there is
evidence to suggest that climate change may have already affected ecosystem
services and human society (Gosling 2013). Over the past 25 years, temperatures
have increased at a rate of 0.19°C per decade, in very good agreement based on
greenhouse gas predictions with the trend continues to be one of warming (Allison et
al. 2009). High temperatures cause more extreme climatic events by putting heat-
trapping gases into the atmosphere (Wagner and Zeckhauser 2011). The global
increase in the number of hurricanes of the strongest categories 4 and 5 and intense
tropical activities have been associated by the rising sea surface temperatures (SST)
as the leading cause (Allison et al. 2009).
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2.2 Climate and Climate Change in Australia and Queensland

As a large island continent in the southern hemisphere, Australia has a diverse range
of climate zones characterised by the following (BOM 2011):
e The northern part, interior, and southern part of the continent has tropical,
arid, and temperate climatic conditions, respectively;
e The country is a relatively arid country with 80% of the land receiving 600
mm annual rainfall and 50% receiving less than 300 mm.
e The south eastern coastal cities are characterised as wetter zone — where
most Australians are living.

A country that is very vulnerable to the effects of climate change, Australia’s
climatic conditions had been altered significantly. Since 1910, the average
temperature of the country has risen by 1°C and estimated to face the following by
2030 (DCCEE 2011):

e a further 1°C of warming in temperatures;

e upto 20 % increase in drought;

e upto 25 % increase in the days of very high or extreme fire danger; and

e increase in storm surges and severe weather events.

In Queensland, the climatic conditions across the area are considerably varied as
summarised in the following Table (BOM 2011).

Table 2.1 The Queensland’s climatic conditions

Geographic Location Climatic Condition
Inland west Low rainfall and hot summers
North Monsoon season
Coastal strip Warm temperate
Southern ranges Low minimum temperatures

The warm waters of the Coral and Tasman Seas influence the climate of the coastal
strip with an annual median rainfall ranging from 1000 to 6000 mm increasing to
over 3200 mm along parts of the northern coast (BOM 2011). In coastal regions,
tropical cyclones (from November to May) are a natural hazard (BOM 2011).

In a report released by the Queensland’s Office of Climate Change in 2008, the
following key findings were emphasised (Whitfield et al. 2010):
e Year 2000-2009 was the hottest on record with temperatures 0.58°C higher
than the 1961-1990 average;
e Queensland regions can expect increased temperatures of between 1.0°C and
2.2°C by 2050;
e Rainfall is expected to change, with a potential decrease by up to seven per
cent (7%) in central Queensland by 2050;
e A three to five per cent (3-5%) decrease in rainfall in the south-east
Queensland region is projected; and
e Sea levels are rising faster than expected.

As a result of climate change, Queensland is likely to experience impacts like

increased flooding, erosion and damage in coastal areas due to increased numbers of
severe tropical cyclones and sea level rise (Whitfield et al. 2010).
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Australia has historically been impacted by various flood disasters and recently the
December 2010 to January 2011 floods in south east Queensland. Floods are
estimated to be the most costly natural disaster in Australia (Geoscience Australia
2011). The average direct annual cost of flooding between 1967 and 1999 has been
estimated at $314 million. The most costly flood was recorded in 1974 amounting to
$2.9 billion (Geoscience Australia 2010); which has been, however, superseded by
the 2010/2011 Queensland floods.

2.3 Floods in Queensland and other Australian States

Were the December 2010 to January 2011 floods in south east Queensland caused
by anthropogenic climate change?

In an interview of ABC Radio National with Stewart Franks, a hydrologist from the
University of Newcastle, the latter described that extreme climatic events in Eastern
Australia were associated with El Nifio and La Nifia events (Franks 2011). These
events tended to cluster into what referred as the multi-decadal epochs of climate
variability such that during these periods, EI Nifio may be dominant bringing
droughts between 20 to 40 year periods and subsequently replaced by La Nifia
events for another 20 to 40 year periods leading to a marked increase in flood risk
(Franks 2011). Furthermore, the warm El Nifio events are associated with below
average rainfall and higher than average temperatures and evaporation, whereas the
cool La Nifa events typically deliver enhanced rainfall totals and cooler than normal
conditions demonstrated that year-to-year flood (and drought) risk varies
significantly and that this variability was closely related to ElI Nifio/Southern
Oscillation (ENSO) (Kiem et al. 2006).

In another view, however, opposite scientists argue that although the global
atmospheric warming of about 0.75°C over the past century had some impact, there
IS no strong reason at the moment to say that La Nifia is stronger or worse than it
would even without humans (Birsel 2011). Whether the 2010/2011 floods in
Queensland and other floods in Australia were caused by climate change or ENSO
phenomenon, these were the significant things that are certain - that the flood
hazards considerably affected and shaped the economy and history of Australia in
general and Queensland in particular as summarised in Table 2.2.

Table 2.2 Flood events in Queensland and other Australian States from 1899 to 2011

Year Flood Event Description

1899 On 04 March 1899, a category 5 cyclone, named Cyclone Mahina, was one of the
Australia’s recorded worst natural disasters. Winds reached 260 kilometres per hour that
caused tsunami of 14.6 metres. The cyclone swept the inland of Queensland for 5
kilometres. Four hundred (400) people lost their lives. Some sharks and dolphins were
left hanging from trees and cliffs (State Library of Queensland 2010).

1918 During the early 1918 (January), Mackay Cyclone was the first two cyclones that
inflicted heavy damage on significant population centres in northern Queensland. Thirty
(30) people lost their lives mainly from Mackay and Rockhampton due to devastating
winds, and storm surge. The phenomenal amount of rainfall (1,411 mm) that lasted for
three days generated the worst flood in Mackay’s history (ABS 2008).

1929 Twenty two (22) people died from heavy flood when a torrential rainfall, measuring up
to 500 mm, hit the Burnie and Ulverstone areas on 03 April 1929. The Briseis Dam on
the Cascade River was crumpled, tons of trees, rocks and gravel were carried by heavy

14




Chapter 2 Literature Review

Year Flood Event Description
rains, and over 1,000 houses in Launceston were inundated (ABS 2008).
1955 Moving south from Queensland, a monsoon depression deposited the 250-mm rainfall

in 24 hours in the Hunter, Macquarie, Namoi and Gwydir River Valleys. The floods lost
14 lives and 15,000 people were evacuated. The flood disaster completely submerged
houses and damaged various infrastructure assets like bridges, roads, railways and
telephone lines (ABS 2008).

1974 The year 1974 brought devastations in the areas of Brisbane and Darwin. In January,
Brisbane was got flooded due to heavy rain from Cyclone Wanda. The 580-mm rainfall
in Brisbane and 1,300-mm rainfall at Mt. Glorious made the rivers rose at the highest
levels, washed away many houses, and unfortunately killed 14 people (ABS 2008).

In December of the same year, Cyclone Tracy brought devastating floods in Darwin.
Most buildings were totally destroyed and badly damaged due to extremely fierce
winds. Sixty five (65) people died and the remaining population was evacuated. It was
then that building codes and aspects of disaster planning were given much attention
(ABS 2008).

1975 Since 1910, 48 cyclones have caused gale-force winds at Port Hedland. On the average,
a cyclone visited the area once for every two years usually from mid-December to April
peaking in February. Cyclone Joan in 1975 had the strongest wind gust recorded at Port
Hedland measuring 208 km/h (ABS 2008).

1999 The strong and slow moving upper level trough undercut by cool south-easterly winds
caused persistent heavy rainfall in the Esperance region for few days. This climatic
event made the area significantly flooded. Rainfall record reached 209 mm - the
heaviest rainfall event since rainfall records began in 1899 (ABS 2008).

2006 Carrying gale-force winds of up to 290 km/h, category 5 Cyclone Larry smashed into
the far-north Queensland coast. The cyclone significantly uprooted trees, lifted roofs of
houses and flattened crops on the 20" of March 2006. The estimated loss of
infrastructure and crops between the areas of Babinda and Tully was at $500M. Larry
caused a significant storm surge with inundation record as high as 4.9 metres above the
expected at Bingil Bay. Mulgrave, Tully, Murray Rivers and Gulf Rivers were similarly
flooded caused by rainfall associated with cyclone (ABS 2008).

2007 Between the 8™ and 11" of June 2007, the regions of Hunter and Central Coast of New
South Wales were lashed with torrential downpours and gale-force winds. Flash floods
urged thousands of residents to abandon their homes. Consequently, a section of Old
Pacific Highway collapsed and electric powers were cut. The three-day wild storms lost
nine (9) lives on the record.

In July 2007, Victoria’s Gippsland was under the state’s worst flood in a decade.
Homes, businesses and farms were significantly lost amounting to millions of dollars.
The rising flood waters caused by 48-hour torrential rains urged the residents for rescue
and evacuation (ABS 2008).

2010- From December 2010 to January 2011, a series of floods hit Australia, particularly in
2011 the state of Queensland, with three quarters of the state declared a disaster zone with
over 2.5 million people affected (QRA 2011). Areas like Brisbane City, Rockhampton,
Emerald, Bundaberg, Dalby, Toowoomba and Ipswich were devastated by floods.
During the early hours of Christmas Day of 2010, a category 1 Tropical Cyclone Tasha
brought significant rain in the broad area of northern Queensland. Thirty-five (35)
people died, 29,000 homes and businesses suffered from inundation, and flood damaged
the region with an estimated amount of over $5 billion (QFCI 2011).

Between 2™ and 3™ of February 2011, Category 5 Tropical Cyclone Yasi once again
devastated the state of Queensland. The areas of Innisfail and Townsville were the
destructive core of the cyclone. Tully and Cardwell suffered major damage to structures
and vegetation. The 24-hour total rainfall measured 200-300 mm caused flooding in
some areas of Cairns and Ayr. The highest total were recorded in Mission Beach (471
mm), Hawkins Creek (464 mm), Zattas (407 mm), and Bulgun Creek (373 mm). A 5-
metre tidal surge was observed at Cardwell, which is 2.3 metre above the Highest
Astronomical Tide (HAT) (BOM 2011).
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2.4 Flood Risk Assessment

A potentially damaging phenomenon (i.e. flood hazard) is considered a disaster
when it brings damage, loss or destruction to the socio-economic system of
populated areas (Westen2002). A methodology that is meant to determine the nature
and extent of risk by analysing the potential hazards and evaluating the conditions of
vulnerability and potential it may cause to people, property, services, livelihoods and
the environment is termed as risk assessment (UNISDR (2009). In various risk
assessment studies, protection of people and assets has been the primordial concern.

2.4.1 Risk components and its relationship

The highly recognised expression of risk is represented by Crichton’s (1999) three-
dimensional pyramid which comprises of three elements: hazard, vulnerability, and
exposure. If any of these elements increases or decreases, the risk increases or
decreases, respectively; hence, the greater the contribution of one of the factors, the
greater the risk there would be (Dwyer et al. 2004) as shown in the following Figure.
As the colour of the pyramid gets from being red to green, the risk level decreases.

Figure 2.3 The Crichton’s (1999) risk triangle/pyramid after Dwyer et al. (2004)

Fundamental in understanding the risk assessment process is to understand what is
meant by the term risk. Risk is defined as the combination of the probability of an
event and its negative consequences (UNISDR 2009). Whilst engineers tend toward
quantitative expressions of risk such as cumulative frequency plots; a corporate risk
manager defined the term as a pertinent event for which there is a textual description
(Koller 2007). Thus, in this research, risk is proposed to be perceived as a social
construct and contextual notion (Jonkman 2007) taking into consideration who
contextualises the notion, when and where it has been contextualised, how and for
what purpose it has been contextualised.

Two parameters are associated then with risk: 1) probability of occurrence of an
event; and 2) impact or consequence (Koller 2007 and UNISDR 2009). Now, the
ambiguity arises as to whether it is probability of occurrence of hazard called event
risk, or the probability of a particular outcome known as outcome risk (Brooks
2003). The former refers to the risk of occurrence of any particular hazard or
extreme event while the latter refers to the risk of a particular outcome and
integrates both the social or inherent vulnerability and the chance of the occurrence
of an event that jointly results in losses (Brooks 2003).
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Risk can either be classified as (Mirfenderesk and Corkill 2009):
1. Existing risk that applies to existing buildings and development on flood-
prone area and refers to the risk a community is exposed to as a result of its
location on the floodplain;
2. Future risk refers to the risk a community may be exposed to either as a
result of new development on the floodplain or change in environmental forces
as a result of climate change; and
3. Residual risk refers to the risk remaining after mitigation. UNISDR (2009)
similarly refers this risk that remains in unmanaged form, even when effective
disaster risk reduction measures are in place, and for which emergency
response and recovery capacities must be maintained.

In the absence of sufficient and reliable data on future and residual risks in relation
to the flooding events within the study area, this study mainly focused on existing or
current flood risk.

The number of assets (e.g. people, property, systems and other elements) present in
hazard zones that are subject to potential losses is termed as exposure (UNISDR
2009). In a broader sense, assets are understood to include productive assets (e.g.
human, natural, physical, and financial assets); social and political assets (e.g. voting
rights, community participation, etc.); and geographical assets (e.g. location of
household, population centres, markets, etc.) (Heltberg et al. 2008).

Equally important in understanding the concept of asset is how people weigh its
significance, such that an asset is said to be critical if its disruption would cause
social inconvenience. These include primary physical structures, technical facilities
and systems which are socially, economically or operationally essential to the
functioning of a society or community, both in routine circumstances and in the
extreme circumstances of an emergency (UNISDR (2009). For the purpose of this
study, infrastructure assets refer to the interrelated built, institutional and
environmental systems and services (Jollands et al. 2006) of an urban community.

When a dangerous phenomenon, substance, human activity or condition potentially
damages property or causes loss of life, injury or other health impacts, or
environmental damage (UNISDR 2009), that danger brings the system into a hazard
condition. Phenomena like droughts, floods, storms, episodes of heavy rainfall, and
any other physical manifestations of climatic variability or change are some
examples of climatic-related hazard (Brooks 2003). In harmonising UNISDR’s
(2009) and Brooks’ (2003) interpretations, it seems apparent that both are intended
to mean hazards as either physical or social manifestations of a phenomenon that
may cause an undesirable outcome.

In response to the hazard-centric perception of disasters in the 1970s, the term
vulnerability had been introduced to describe the extent to which people suffer from
calamities and their socio-economic circumstances to withstand them
(Schneiderbauer and Ehrlich 2004). Learning from these insights, vulnerability then
can be perceived as a hazard-centred interpretation such that it has been defined as
potential impact of hazard on a system within which the latter’s capacity to cope or
resist and adversely responded to events in a particular geographic area is defined by
its socio-economic resources. The system here may refer to a biophysical system,
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social system, or a subsystem of a system such as infrastructure system within an
urban ecosystem, or the human-environment interactions and social-ecological
system.

Interestingly, Geoscience Australia (2010) conceptualised vulnerability as the
impact a hazard has on the people, infrastructure, and the economy. When we
characterise a vulnerable human being as: 1) capable of being physically,
emotionally or spiritually wounded; 2) open to attack or damage (physical,
emotional, or spiritual); and 3) lack in defence or support mechanisms (at the levels
of government; community; household; and individual) (Schneiderbauer and Ehrlich
2004), then the term vulnerability is analogous to any individual or social grouping
that is determined by their capacity to respond to a hazard, rather than by what may
or may not happen in the future (Kelly and Adger 2000).

A variety of research in this area espoused a risk-based approach (Merz et al. 2010,
Aronica et al. 2012) to identify spatial patterns of flood risk associated with hazard,
vulnerability, and exposure (Kazmierczak and Cavan 2011). Researchers
approached their methods and constructs to their analyses in different ways (Boholm
1998) and yet flood risk experts and decision makers still face the challenge of
finding techniques and measures to effectively cope with flood hazards (Kellens et
al. 2013).

The concepts associated with flood risk assessment were useful in this study
particularly on the choice of indicating variables, parameters, and risk classification.
For example, the term hazard was associated to the January 2011 flood that caused
danger to the study area and its consequential hazards such as biological, chemical,
building damage, and electricity hazards. Thus, the concept of hazard was
considered in this study being not solely and directly attributed to the flood
phenomenon but also its consequences that aggravated the danger.

Furthermore, social vulnerability was referred in this study as the political and socio-
economic circumstances (e.g. index of education and occupation, insurance, number
of emergency volunteers, etc.) that allowed the urban community to withstand the
hazards. Sets of information such as building size, height, settlement growth, and
number of critical infrastructure assets were also relevant in determining the
physical vulnerability (Deichman 2011) and exposure of the study area.

Finally, in the absence of sufficient and reliable data on future and residual risks in
relation to the flooding events within the study area, this study mainly focused on
the existing or current flood risk type of classification.

2.5 Climate Adaptation Capacity

The way how the terms capacity and adaptation had been conceptualised appears to
be similarly multi-dimensional. Capacity is defined as the combination of all the
strengths, attributes and resources available within a community, society or
organisation that can be used to achieve agreed goals (UNISDR 2009). Using these
available skills and resources of people to face and manage adverse conditions,
emergencies or disasters, the people and the community and organisational systems
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involved in the process are said to be in the state of coping capacity (Bell 2010).
Thus, the term capacity is a generic and collective definition while coping capacity
encompasses individual, people, community and organisational capacity that require
continuing awareness, resources, good management during crises or adverse
conditions that would contribute to the reduction of disaster risks (UNISDR 2009).

Within the context of climate science, adaptation is defined as any adjustment in
ecological, social, or economic systems in response to actual or expected climatic
stimuli, and their effects or impacts (IPCC 2001). This term refers to changes in
processes or structures - anticipatory and reactive, autonomous and planned, or
public and private (Gallopin 2006), to moderate or offset potential damages or to
take advantages of opportunities associated with changes in climate (Bosello et al.
2009). However, the use of the term adjustments poses an issue such that it has been
considered antagonistic to the goal of adaptation per se considering that vulnerability
of the system remains (Preston and Stafford-Smith 2009). Hence, the term adaptive
capacity should be viewed as a system response to perturbations or stress factors that
are sufficient to make fundamental changes in the system itself, shifting the system
to a new state or how the system responds (Gallopin 2006; Preston and Stafford-
Smith 2009); hence, may also be referred to as response capacity (Tompkins and
Adger 2005; Preston and Stafford-Smith 2009).

The terms climate adaptation and disaster risk reduction come into play within this
body of knowledge when both are considered short-term and long-term processes.
The former requires a long-term vision and strategy on the side of national and local
policy makers while the latter has been considered as an approach that greatly
contributes to adaptation to a changing climate (UNISDR and EUR-OPA 2011). As
such, disaster risk reduction may no longer consider short-term system’s response,
but has been viewed both as a short-term and long-term strategy focusing on
reducing vulnerability to natural hazards by increasing human, social and
environmental capacity and improving physical infrastructure to address the
projected changes of future climate (UNISDR and EUR-OPA 2011).

Climate change presents a double challenge today whereby the reduction of
greenhouse gases through mitigation is necessarily be complemented with
adaptation to the impacts of climate change (CEC 2007 and Bosello et al. 2009). In
the coastal cities of Rotterdam, New York, and Jakarta, Aerts et al. (2011) identified
flood risk problems and climate adaptation solutions such as updating facilities and
use of new building materials; however, they argued that coastal cities focused
primarily on flood defences and less on climate adaptation. Mathew et al. (2012)
tackled a new framework by incorporating the non-economic dimensions (e.g. local
knowledge) as potential adaptation options. In a participatory assessment of
adaptation strategies to flood risk in Upper Brahmaputra and Danube river basins,
Ceccato et al. (2011) emphasised the potential use of NetSyMod as a decision
support systems (DSS) tool in the field of climate change adaptation and integrated
water resources management (IWRM).

In 2009, Maantay and Maroko (2009) examined the potential utility of a mapping
method, the Cadastral-based Expert Dasymetric System (CEDS), in estimating the
population of New York City at risk from floods. They emphasised that
underestimating more vulnerable populations impairs preparedness and relief efforts.
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Furthermore, the disjuncture between the local government and the community
rendered governance and climate adaptability weak (Fatti and Patel 2013). In Chia,
Colombia, Melgarejo and Lakes (2014) developed and applied an integrated
assessment of public infrastructure serving as temporary shelter in case of extreme
weather events. Using the Collective-Centre Suitability Index, they found that the
assessment method offers a flexible screening tool for transitional shelter and local
adaptation planning.

In exploring the use of risk assessment approach for climate change adaptation,
Suroso et al. (2013) mainstreamed several adaptation options such as canalisation
and retention pond for lowland areas; detention basin and dam construction for
midland areas; and reforestation for high land areas into South Sumatra’s
development plans. Lawrence et al. (2013) explored alternative climate change
scenarios for flood frequency analysis and found that the method of evaluation
supports a wider range of flood response options that better reflect the changing
nature of risk. Lung et al. (2013), on the other hand, developed a spatially-explicit
regional adaptive capacity index from heat stress, river flood risk and forest fire risk
and found that the assessment can serve as a basis for climate adaptation and
regional development in Europe.

In understanding the socio-economic consequences and the costs and benefits of
climate change adaptation in the European Union, Rojas et al. (2013) established a
finding that adaptation associated with the increase in protection could be highly
cost-effective; however, at the country level, there is a need to consider climate
uncertainty in formulating practical adaptation strategies. Zhou et al. (2012) adopted
an integrated approach by incorporating climate change impact assessment, flood
inundation modelling, economic tool, and risk assessment; thereby, they developed a
step-by-step process for cost-benefit assessment of climate change adaptation
measures. In another study, Wilby and Keenan (2012) distinguished the enabling
environment for adaptation (e.g. flood forecasting, contingency planning,
institutional reform, insurance and legal incentives, etc.) and implementing measures
to manage flood risk (e.g. climate safety factors for new build, upgrading climate
resiliency of existing infrastructure, development control, etc.). Finally, Chan et al.
(2013) developed a generic sustainable flood risk appraisal (SFRA) framework that
can be used in flood risk management. They found that the framework can address
social, environmental and economic concerns of climate change.

Based on the comprehensive review of recent literature, Wilby et al. (2008)
emphasised that the emerging policy agenda is heavily focused on building adaptive
capacity through improved quantification of uncertainty in extreme events and by
identifying areas at greatest risk of future flooding. This finding clearly emphasised
that the research gaps identified in this study are of two folds: 1) Although a variety
of GIS-enabled frameworks exists that incorporate flood risk and climate adaptation
capacity for assessing flood-prone areas, the analysis of urban communities’ critical
infrastructure interdependency remains isolated; and 2) Cost-effectiveness and
economic benefits associated with climate adaption are highly regarded in the
literature; however, finding the optimality of natural disaster risk reduction measures
and climate adaptation policies needs to be addressed. With the current trend of
continuing urbanisation combined with projected future climate changes that will
intensify the problems of flooding (Evans et al. 2006 and Pitt 2008), a decision
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support tool for prioritising climate change adaptation (Fitzimons et al. 2010) and
adaptation responses are urgently needed (Kazmierczak and Cavan 2011).

Finally, the term climate adaptation capacity was examined in this study to provide
the sets of information on the urban community’s measure of response to extreme
climatic events such as flood. This was further exemplified by the social
vulnerability of the study area as presented in Chapter 3.2.

2.6 Developing Flood Risk and Climate Adaptation Capacity Indicating
Variables

Quantifying flood risk and climate adaptation capacity requires indicators. In a
dynamic and complex process of flood risk and climate adaptation capacity
assessments, measuring indicators should meet the following criteria: meaningful,
understandable, quantifiable, and unambiguous (De Bruijn 2005). An indicator can
be described as a function from observable variables (Gallopin 1997); and called
indicating variables to theoretical variables (Hinkel 2011). A scalar indicator is one
kind of indicator which maps observable variable to one theoretical variable (Hinkel
2011). For instance, the extent of flooded area (observable variable) is used to
indicate high level of flood risk (theoretical variable). This kind of inference follows
a linear and monotonously increasing or decreasing operation (Hinkel 2011) such
that it is illogical and misleading to indicate flooded areas of both having very low
and very high flood risk. This thesis follows this rule of argumentation.

There are two ways of developing indicators: the indicator-based approach and
simulation-model-based approach (Hinkel 2011). The former is simple and excludes
time as an argument whilst the latter is complex and time-dependent (Hinkel 2011).
Using the indicator-based approach in this study, the flood risk components that
were defined to be indicated include the physical and social vulnerabilities and
exposure of an urban community to flood hazard.

The analysis of flood risk indicators is a crucial prerequisite in developing the
integrated framework for the flood risk and climate adaptation capacity assessments.
Several attempts have been made by various researchers to find indicating variables
such as hazard and vulnerability indicators (Wang et al. 2011), social vulnerability
indicators (Vari et al. 2013), and exposure, susceptibility and resilience (Balica et al.
2012). Despite flood risk assessment indicators hold great importance, however,
they are often neglected (Scheuer 2013). This study highlighted the development of
flood risk and climate adaptation capacity indicators using a set of spatial analytical
tools and high resolution dataset (i.e. LIDAR point data).

Even with the presence of highly sophisticated mathematical tools and computing
machines nowadays, an interesting question in regard to the selection of indicators
for inclusion in the flood risk assessment exercise remains a challenging task. In an
exceptional flood risk factor analysis conducted by Elmoustafa (2012), a box plot
test was used to exclude extremely high parameter that may lead to unrealistic risk
factor. The main innovation of this study, however, was the application of artificial
intelligence tool identified as self-organising neural network (SONN) in helping
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address this research issue. A separate section in this Chapter is provided to discuss
SONN.

2.6.1 Geographic Information System

As a popular tool in climate and earth system studies, geographic information
system (GIS) has the capability to capture and combine flood and climate risk
components. Taking into consideration that climate and geography are bilaterally
affecting one another, GIS is the single most powerful integrating tool in conducting
inventory, analysis, and in the management of extremely complex problem of
climate (Artz and Dangermond 2011).

As climatological phenomena are naturally spatially variables, geoinformatics offers
a practical solution in managing vast spatial data sets (Joshi et al. 2011). Thus, the
main purpose of the geospatial tools is to provide information on the earth surface
and document the impacts of natural and anthropogenic events on the going changes
(Joshi et al. 2011). Spatial information then is especially important for monitoring
present and future climate as it offers a great potential in handling climate models in
both spatial and temporal dimensions (Paudyal et al. 2011).

Several studies on flood susceptibility mapping using remote sensing and GIS
technologies (Pradhan 2011) were combined with the applications of logistic
regression modelling, fuzzy logic, and artificial neural network (McLaughlin et al.
2011). However, spatial-based adaptation capacity index and corresponding
adaptation policy options have never been substantially studied for critical
infrastructure interdependency of an urban community.

2.6.2 Spatial Analytical Techniques

A set of analytical tools was utilised in this study to initially structure the intensity
levels of flood risk and climate adaptation capacity of the study area. The choice of
these analytical tools was derived from the special characteristics of datasets
included in the analysis as fully discussed in the subsequent sections.

2.6.2.1 Three Dimensional (3D) Analysis using Light Detection and Ranging
(LiDAR) Data

Urban three-dimensional (3D) model is an increasing demand for various
applications such as city planning, microclimate investigation, virtual city reality,
etc. (Zhou et al. 2004). As an active research domain, 3D analysis allows to measure
the terrain elevation, landscape relief and slope, building heights, water depths, tree
volumes, etc. for applications stated earlier. This study initially used 3D analysis in
digital elevation modelling and urban morphological characterisation for flood risk
assessment.
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Digital Elevation Modelling (DEM) for Flood Hazard Analysis

One of the important aspects of flood risk assessment deals with a high quality
representation of floodplain’s terrain and elevation. The creation of 3D databases of
terrain and elevation in city areas is an issue of high significance to various
applications in cartographic modelling and simulation (Gabet et al. 1997). Urban
areas, however, are generally difficult to simulate because of the presence of small-
scale system features such as roads and buildings (Haile and Rientjes 2005). The use
of airborne remote sensing data such as those coming from “Light Detection and
Ranging” (LiDAR) allowed this study to produce high resolution data such as digital
elevation model (DEM) as input in flood hazard simulation.

Airborne LIDAR data for topographic analysis has been available since the 1980s
and this technology has been widely used in a broad range of research and
applications such as geomorphology, coastal zone monitoring, forest management,
and infrastructural and environmental projects (Werbrouck et al. 2011). LIDAR is
an active remote sensing technique (Mutlu et al. 2008, Werbrouck et al. 2011) that
uses laser technology to reflect pulses of light from an aerial sensor to the ground
surface (Lillesand et al. 2004, Alexander et al. 2009). To measure the terrain
elevation, the laser pulse is used with registered x-, y- and z-coordinates through the
laser altimetry (Lloyd and Atkinson 2005, Drosos and Farmakis 2006, Liu 2008,
Werbrouck et al. 2011).

Several advantages and disadvantages can be associated with the use of airborne
LIiDAR data. Aside from being expensive and consists of voluminous data
(Axelsson 1999, Challis et al. 2008, Liu 2008, Werbrouck et al. 2011), the
interpretability of raw data is limited due to absence of object information (Axelsson
1999, Werbrouck 2011). On the other hand, the main advantage of using airborne
LIDAR data is the exceptional planimetric accuracy of centimetre level which
allows the production of high resolution Digital Elevation Model (DEM) (Lohr
1998, Axelsson 1999, Drosos and Farmakis 2006, Liu 2008, Werbrouck et al. 2011).

Digital Building Modelling (DBM) for Urban Morphological Characterisation

Traditionally, photogrammetry is an important tool in acquiring 3D data and become
widely used in generating digital surface model (DSM) or digital terrain model
(DTM) due to the efficiency and cost effectiveness of the production process (Zhou
et al. 2004). In urban landscape modelling, photogrammetry provides objects and
landcover of an urban area in three dimensions (3D) (Dowman 2000) through the
process of object extraction. The task involves the detection of object of interest and
extraction of geometric boundary from remotely sensed data (Sohn and Dowman
2007). The performance of photogrammetric processes, however, degrades mainly
because of failures of image matching particularly in dense urban areas using large
scale imagery (Zhou et al. 2004). The LiDAR remote sensing technology offers a
breakthrough in urban environment mapping (Yu et al. 2010) and extraordinary
capability in gathering highly accurate and densely sampled surface elevation
measurements in urban areas allowing accurate delineation of building footprints
(Ma 2005, Yu et al. 2009, Zhang et al. 2006, Yu et al. 2010) and generation of
buildings in 3D shapes (Gamba and Housmand 2002, Rottensteiner 2003, Forlani et
al. 2006, Yu et al. 2010).
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Urban morphological or form characterisation is part of an urban fabrics analysis
that gives the basis to understand urban dynamics and consequently to inform urban
design and planning (Hamaina et al. 2012). A large number of urban morphological
variables exist in literatures such as topography, altitude, city size, etc. Edussuriya et
al. (2011) identified thirty (30) variables and discussed their importance such as in
the air quality study in dense residential environments.

In a tsunami risk study conducted by Eckert et al. (2012), the physical vulnerability
of the study area was determined by using the elevation, building type, and number
of floors. In the north-west portion of the study area, it was found very vulnerable to
a tsunami impact mainly because, aside from being close to shoreline and located at
low elevation, some buildings were not very high and in poor condition (Eckert et
al. 2012). Hence, building FSI is a significant building density parameter not only in
urban planning and design (Edussuriya et al. 2011) but also in flood risk assessment.
Santo et al. (2012) discoursed that, aside from geological and geomorphological
factors, urbanisation coupled with the development of tourism increased the risk of
an island to landslides and flash floods as evidenced by the presence of high flood
water marks on building walls.

The specific use of LIDAR data in building FSI modelling and visualisation was
given attention in this study. Literatures cited that the main problems in creating a
3D urban model from LiDAR data are the detection of building edges and in the
interpolation of heights (Alexander et al. 2009). A variety of methods had been
explored to approximate building boundaries by (1) using LIiDAR data (Altharty and
Bethel 2002, Cho et al. 2004), (2) by digitising from aerial photographs (Palmer and
Shan 2002), or (3) by using building footprint (Alexander 2009).

2.6.2.2 Spatial Analysis with Fuzzy Logic

Introduced by Zadeh in 1965, fuzzy set theory embraces the membership function to
operate over the range of real numbers (0, 1), reflecting the degree of certainty of
membership (Brule 1985, Pradhan 2011) instead of using crisp sets that only allow
values of 0 or 1 (Jun et al. 2013). In GIS-based natural hazard mapping, the idea of
using fuzzy logic is to consider the spatial objects on a map (e.g. areas on an
evidence map) as members of a set (e.g. areas hazardous to landslide) wherein the
unconstrained (subjective judgment) fuzzy membership values must lie in the range
0 and 1 rather than being measured over discrete intervals (Pradhan 2011). As a tool
to handle complex problems such as flood risk assessment, fuzzy logic is attractive
because it is straightforward to understand and implement, allows flexibility of
combining maps, can be readily implemented with GIS language (Pradhan 2011),
and manipulates spatial objects of different measurement units into standardised
values (Espada et al. 2012).

Fuzzy logic has been used for different purposes such as landslide mapping, flood
risk assessments by considering climate change impacts, flood disaster validation,
and decision-support for environmental impact assessment, among others (Jiang et
al. 2009, Liu and Lai 2009, Aksoy and Ercanoglu 2012, Jun et al. 2013). In the past
decades, increasing interest among researchers and scientists focused on the synergy
between GIS and fuzzy logic to analyse Earth observation data.
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Flood risk management is always associated with some degree of uncertainty: (1)
uncertainty caused by inherent hydrologic variability such as spatial and temporal
and uncertainty due to a lack of knowledge; (2) uncertainty in quantification of
social values and flood impacts that imparts subjectivity in the decision-making
process; and (3) uncertainty that depends on the quality or quantity of the available
information (Akter and Simonovic 2005). The final type of uncertainty can be
classified into numerical, linguistic, interval-valued and symbolic (Zimmerman
2001).

2.6.2.3 Proximity Analysis

Another important spatial quantification technique used in this study is the
proximity analysis. This is a type of analysis in which geographic features (points,
lines, polygons or raster cells) are selected based on their distance from other
features or cells (Wade and Sommer 2006). Using spatial measurement of point-to-
point distances, proximity has been used to determine the degree of interaction
between two spatial entities (Lo and Yeung 2007). The Newton’s law of universal
gravitation has been influential in conceptualising proximity, which accordingly,
two bodies attract each other in proportion to the product of their masses and
inversely as the square of their distances apart (Haggett et al. 1977, Lo and Yeung
2007). This law has been applied to the study of population migration and retailing
in human geography, spread of wildlife and insect infestation, timber harvest
planning, wildlife habitat analysis, and dispersion of pollutants from a point source
(Lo and Yeung 2007). Wood and Molloy (2009) developed a methodology using
proximity analysis in landscape ecology for biodiversity planning and management
in the South West Region, Western Australia.

Also known as neighbourhood, distance, and vicinity analyses (Davis 2001), the
concepts and techniques of spatial calculation used in proximity are relatively simple
and straightforward but their importance in vector processing and GIS application
can never be discounted (Lo and Yeung 2007).

2.6.2.4 Quadrat Analysis

The use of quadrat analysis as a means of understanding object patterns is highly
popular in ecological studies. A wide range of studies can be cited from literatures
on the application of this analysis from microorganism level to giant sequoia tree
like the works of Saetre and Baath (2000) and Bonnicksen and Stone (1980),
respectively. Spatial pattern analysis was also explored in ophthalmology by Ayala
et al. (2006) archaeology by Orton (1982) and traffic incidents by Eckley and Curtin
(2013). In electronics, Miranda et al. (2011) examined quadrat counting method
(QCM) by integrating Morishita index in the analysis of the spatial breakdown spots
pattern in metal gate/magnesium oxide/indium phosphide structures and found
complete spatial randomness of the structures.

Taken from the ecological perspective, association as a powerful indicator of
interaction between species may be determined using quadrat sampling and plotless
methods (Sanjerehei (2011). As the oldest method used in spatial statistics, quadrat
sampling is efficient, easy to implement, and allows exhaustive sampling; however,
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less used for detecting association since the outcome of the association between
species is dependent on the size and shape of the sampling quadrats (Sanjerehei
2011). Literatures cited that one major drawback of the quadrat counting method
(QCM) is that the choice of the quadrat size is strongly linked to the spatial scale
(Miranda et al. 2011). Despite a number of proposed methods to minimise this
problem, statistical method still necessarily relies on the determination of an
appropriate quadrat size and shape (Sanjerehei 2011).

2.6.2.5 Spatial Statistics with Collect Events Analysis

ESRI (2011) defined collect events analysis as a process of converting event data,
such as crime or disease incidents, to weighted point data. Accordingly, this
combines coincident points that have the same X and Y centroid coordinates.
However, there is a very limited number of literatures exists which are directly
involved in using coincident experiments. The statistical analysis for estimating the
number of coincident events in electronic and radioactive decay constants conducted
by Friedlander (1964) and the coincidence experiment for astrophysics analysing the
coincident events between SPASE and AMANDA conducted by Miller et al. (1995)
are examples of studies related to collect events analysis.

2.6.2.6 Modelling with Spatial Autocorrelation

A significant number of risk assessment methodologies for critical infrastructures
had been established that adopting the linear approach (Giannopoulos et al. 2012).
One of the types of infrastructure interdependency, other than physical
interdependency, is geographic interdependency which Rinaldi et al. (2001)
described as interdependency based on local environmental event (e.g. flood) that
simultaneously affects several infrastructures due to close spatial proximity. In
spatial science, spatial proximity of objects can be modelled by spatial
autocorrelation techniques.

Essentially recognised as the nature of geography (Wong and Lee 2005), spatial
autocorrelation examines the spatial ordering of geospatial data such that objects
from locations near one another in space are more likely to be similar than objects
from locations remote from one another (Lo and Yeung 2007). This principle is best
explained by Tobler’s First Law of Geography stating that “everything is related to
everything else, but near things are more related than distance things” (Tobler 1970).
A variety of studies can be associated to the application of spatial autocorrelation
techniques such as multi-scale land use modelling (Overmars et al. 2003), exploring
spatial dependence of cotton yield (Ping et al. 2004), examining forest insect
outbreaks (Bone et al. 2013), identifying pollution hotspots of Pb in urban soils
(Zhang et al. 2008), among others.

The magnitude of spatial autocorrelation or spatial association of geographic events
can be measured in a global or local scale. The global measures of spatial
autocorrelation describe the overall spatial relationship; while, local measures of
spatial autocorrelation describe the regional variability of spatial relationship of the
study area (Wong and Lee 2005).
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2.6.2.7 Hot Spot Analysis

In combination with other statistical cluster analysis, a range of research applications
can be attributed to the use of hot spot analysis such as employment assessment
(Ceccato and Persson 2002), neighbourhood effects and voter turn-out (Sui and
Hugill 2002), road accidents (Prasannakumar et al. 2011), and the multi-scale
mapping of basin’s fire burned areas and fire severity (Lanorte et al. 2013), among
others.

Whilst the application of spatial autocorrelation techniques such as the global
Moran’s | and local Moran’s | were significantly useful in this study, these
analytical tools however provided spatial clustering of objects of uncertain number
of classes for risk classification when applied to heritage sites (Espada et al. 2012).
Consequently, classes of less than two bring uncertainty in assigning the ordinal
values for the perceived flood risk during the assessment process. The hot spot
analysis was then operationalised in this study to address this issue and applied in
the exposure assessment of heritage sites.

2.6.2.8 Line Statistical Analysis

Line statistics calculates a statistic on the attributes of lines in a circular
neighborhood around each output cell (ESRI 2011). The tool operates by finding the
majority, minority, and median values are weighted according to the length of the
line (ESRI 2011). This statistical tool is not well-cited in literature; however, its use
cannot be understated in assessing the vulnerability of road infrastructure in this
study.

2.7 Vulnerability Assessment of Critical Infrastructures for
Interdependency Analysis

Critical infrastructures are essential to the proper functioning of the society.
However, when these infrastructures are threatened by natural and man-made
disasters, it takes a complex process to identify priorities and cost-effective
protective measures. The necessity to understand geographically the risk associated
with the integrated infrastructures and the involved vulnerabilities is one of the
various methods to analyse the problem. This study was conducted to perform an
initial step in identifying the risk due to 2010/2011 flooding for critical
infrastructure protection.

Often called as lifeline systems (McDaniels et al. 2007; Wang et al. 2012), critical
infrastructures refer to critical physical facilities (Stapelberg 2008), technological
networks (Utne et al. 2011), and logical systems (Huang et al. 2014) that play major
importance for public welfare (Kjolie et al. 2012). The modern society is highly
dependent on the continuous services of critical infrastructures which include
electricity supply (Kjolie et al. 2012), transport services, water supply, oil and gas,
banking and finance, and ICT (information and communication technology) systems
(Utne et al. 2011). Consequently, the breakdowns and disruptions in infrastructural
services may cause direct and indirect impacts to population’s health, safety,
security, and economy (Johansson and Hassel 2010; Huang et al. 2014).
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In order to optimise the uses of infrastructures while minimising damages during
and post-flood events, there is a need to recognise that a particular infrastructure
cannot properly function when other infrastructure on which it depends
malfunctions. This is the concept that promotes cascade failure (Collins et al. 2011).
On the other hand, common cause failure occurs when two or more infrastructure
networks are disrupted at the same time either because they occupy the same
physical space (known as geographic interdependency) or the widespread
occurrence of the root problems such as floods (Rinaldi et al. 2001), earthquakes
(Abdalla and Niall 2010), terrorist attacks (Lin and Fan 2010), among others. In
Queensland, Australia, both cascade and common cause failures were experienced
when essential services were disrupted due to failures of the infrastructure systems
during the 2010/2011 floods.

In a survey of critical infrastructure interdependency modelling conducted by
Pederson et al. (2006), however, geospatial interdependency modelling was
excluded from their study. It was only then that the GIS-based geographic
interdependency analysis was explored by Abdalla and Niall (2010) and Lin and Fan
(2010) using earthquake and hypothetical terrorist attack, respectively. Using this
approach of analysing infrastructure interdependency in a flood risk scenario had not
been substantially explored. Nevertheless, whatever the cause of infrastructure
breakdowns — terrorism, natural events, or unintentional human error — the methods
of responding to, mitigating, and ideally preventing breakdown reoccurrences are
based on a common approach: the coordinated use of geospatial information (GITA
2008).

In spite of the fact that GIS is widely recognised to deepen the risk analysis of
critical interdependent infrastructures, the approach has given little attention (Rey et
al. 2013). Hence, this study explored the GIS approach of understanding the critical
infrastructure vulnerability and their interdependencies.

2.7.1 Application of Self-Organising Neural Network (SONN)

Section 2.6 postulated that addressing the issue on the sufficiency of indicating
variables for inclusion in the flood risk assessment exercise remains a challenging
task. The question, so to speak, was on how to evaluate the available indicating
variables which were perceived to have a certain degree of direct correlation (pattern
similarity) with flood risk; hence, identified to be potentially included for further
analysis (i.e. weighted overlay) (Espada 2013b and 2013c). In other words, those
indicating variables that exhibited dissimilar patterns with perceived level of flood
risk were excluded as flood risk and climate adaptation capacity indicators. A type
of Artificial Neural Network (ANN) known as Kohonen’s Self-Organising Map
(SOM) was applied to enlighten the issue through the operation of the topological
cluster analysis of a 2-dimension self-organising neural network (SONN) (Espada
2013b and 2013c). The SONN analysis then served as the prerequisite of critical
infrastructure vulnerability assessment and interdependency analysis.

Self-organising maps (SOM) mimic the action of a biological network of neurons,
where each neuron accepts different signals from neighbouring neurons and
processes them (Ballabio et al. 2009). Kohonen maps are self-organising systems
which are capable to solve unsupervised rather than supervised problems (Kohonen
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1988). As an effective tool for the visualisation of high dimensional data (Nourani et
al. 2013), SOM allows to convert complex, nonlinear statistical relationships
between high-dimensional data items into simple geometric relationships on a low-
dimensional display while preserving the topology structure of the data (Kohonen
1997).

There are numbers of successful applications of self organising maps were reviewed
from current literature such as in chemometry (Ballabio et al. 2009), categorisation
of water, soil and sediment quality in petrochemical regions (Olawoyin et al. 2013),
clustering spatial-temporal precipitation (Hsu and Li 2010), among others. In risk
assessment, some studies include typhoon-rainfall forecasting (Lin and Wu 2009),
detection of possible earthquake precursory electric field patterns (Ozerdem et al.
2006), modelling hydrologic and geomorphic hazards across post-fire landscape
(Friedel 2011), and flood estimation (Dawson et al. 2006).

In terms of assessing variables, studies like stream modification patterns of a river
basin (Jeong et al. 2010), assessing meteorological variables for evaporation
estimation (Chang et al. 2010), and modelling for karst flood forecasting (Siou et al.
2011) were of significant contributions. However, the application of SOM/SONN to
examine the indicating variables for flood risk and climate adaptation capacity
assessments in relation to vulnerability assessment of critical infrastructures has
never been explored as far as the review of literature by the author is concerned.
Hence, the application of SOM/SONN to this study was explored as a decision-
making tool in selecting the indicating variables to be included in the further
analysis.

2.7.2 Application of Bayesian Joint Conditional Probability

Established under the Commission of Inquiry Act 1950, the Queensland Floods
Commission of Inquiry (QFCI) was set up to enquire into matters arising out of the
2010/2011 floods (QFCI 2012). The Commission made recommendations for the
improvement of preparation and planning for future floods and emergency response
in natural disasters. Because disastrous floods which struck south-east Queensland in
January 2011 were unprecedented and completely unexpected, governments should
improve readiness to deal with disaster (QFCI 2012). Included in the Commission’s
recommendation is how can flood damage be minimised across essential
infrastructures such as electricity, sewerage, storm water, telecommunications, and
roads and rails in the future. The big challenge to implement these recommendations
is the availability of spatially explicit analytical tools that will help the governments,
industries, and people to prepare and adapt to climate risk and increase critical
infrastructure resiliency (Espada et al. 2013b, 2013c).

In response to these recommendations, the development of flood risk and adaptation
capacity metrics was considered in this study. However, developing a
comprehensive set of metrics is challenging due to a wide variety of adaptations as
well as the dynamic nature of various environmental and socio-economic factors
(Szlafsztein 2008). This research problem is further exacerbated by inductive
argumentation which particularly pertains to the sufficiency of indicating variables
and availability of statistical models in climate risk assessment. When these
indicating variables are aggregated with deductive approach (e.g. expert judgment)
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or by normative approach (e.g. equal weighting), the delivery of robust results is an
issue due to subjective judgments in the former case and the multi-dimensionality of
variables to different stakeholders in the latter case (Hinkel 2011).

There were various Bayesian probabilistic studies conducted to simulate uncertainty
such as impacts of sea level rise on coastal engineering design practice
(Rajabalinejad and Demirbilek 2013), flood frequency estimation (Niggli and Musy
2005, O’Connell 2005), and hurricane risk perceptions (Kelly et al. 2012), among
others. The challenge of addressing the limitations of deductive and normative
arguments in the flood risk and climate adaptation capacity assessments has never
been substantially explored in accordance with the extensive review of literature. As
such, varying degrees of importance (unequal weights) of flood risk and climate
adaptation capacity indicating variables were generated using Bayesian probability.
These probability values were instrumental in the weighted overlay operations in
generating consequential hazards, physical vulnerability, and exposure indices.
These indices were further utilised to quantify the flood risk and climate adaptation
metrics using the fuzzy gamma overlay function.

The fuzzy gamma overlay operation was chosen in this study to resolve the
confusion as to which risk equation (see Eg. 3.1 and 3.2) will be used in the
assessment. This operation combined the “increasive” and “decreasive” effects of
fuzzy “sum” overlay and fuzzy “product” overlay operations, respectively (Farrell et
al. 2006). This mathematical framework emphasised that operating Eq. 3.1 in fuzzy
logic rendered a limitation such that this equation was expressed neither just a mere
“product” nor “sum” operation but extended to a “gamma” operation (Espada et al.
2012). Furthermore, the operation of those equations takes the parametric approach
wherein data were used to build a picture of the vulnerability (and risk) of the study
area (Balica et al. 2013).

2.7.3 Critical Infrastructure Interdependency Analysis

Critical infrastructures do not exist in isolation of one another (Rinaldi 2004), they
consist of complex, highly connected and highly interdependent systems (Stapelberg
2008) and the failure of one infrastructure may impact the functionality of others
(Huang et al. 2014). By definition, interdependency is a bidirectional relationship
that exists between two infrastructures with each is dependent on the other (Rinaldi
et al. 2001, Rinaldi 2004, Stapelberg 2008, Lin and Fan 2010). Highly useful in the
vulnerability assessment, infrastructure interdependencies are taxonomically
categorised into physical, informational/cyber, geospatial, and logical
interdependency (Rinaldi et al. 2001; Dudenhoeffer 2006; Stapelberg 2008; Lin and
Fan 2010).

A variety of studies had been conducted to examine the relationships of
infrastructure interdependencies. The importance of complete and accurate baseline
information and topological characterisation was emphasised in the studies
conducted by Laefer et al. (2006) and Duefias-Osorio et al. (2007) in analysing and
understanding the geographic interdependency of critical networked infrastructures.
As part of geographic interdependency modelling, Abdalla and Niall (2010) used
location-based critical infrastructure interdependency (LBCII) in analysing the
critical infrastructure sectors that were co-located and affected by an earthquake
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scenario. Further, an empirical framework for characterising infrastructure failure
interdependencies for power system outages was developed by McDaniels et al.
(2007).

Traditionally, flood risk management had been implemented to protect people and
property and reduce the disastrous effects of flooding to essential infrastructures. In
the past years, increasing resiliency for infrastructure such as electricity, water
supply, telecommunication, transportation, and among others, had been treated
separately. Focusing on one’s own facilities and pay little attention to cross system
interactions complicates issues on infrastructure interdependency (Chou et al. 2007).
Further, individual approaches do not address the interconnected relationships
between these infrastructures and therefore do not provide a comprehensive
approach. Hence, comprehensive understanding of all interdependency relationships
remains a challenging task (Chou and Tseng 2010).

Following the concept of utility network, the infrastructure components that build up
the system are defined into two: nodes (e.g. electricity supply stations) and edges
(e.g. electricity transmission lines) (Johansson and Hassel 2010). Moreover, the
functional and geographic interdependency models were advocated by Johansson
and Hassel (2010) to be incorporated in the network model. In implementing their
theory into practice, this study explored the vulnerability of an infrastructure from
functioning properly (e.g. power outage) through utility network analysis given the
geographical locations of its nodes and edges across areas characterised by very high
flood risk or low climate adaptation capacity.

From the extensive review of literature, approaches used in analysing infrastructures
were diverse, but, the pattern was to firstly need to find out the vulnerability and
interdependency of critical infrastructure system (CIS), then use a kind of methods
to quantify them, and implement corresponding measures (Li and Huang 2010). This
study adopted these general steps, but, with a novel approach by utilising a
combined set of self-organising neural network, Bayesian probability, and utility
network analyses.

2.8 Optimisation Techniques with Markov Decision Process

Markov Decision Process (MDP) relies on theory to model feasible action with
associated transition matrix containing the probabilities that performing the action in
state s will move the system to state s” (Schapaugh and Tyre 2013). As a stochastic
process, MDP is a decision-making model for finding optimum policy under
certainty (White 111 and White 1989; Eun-Kim 1994; Dufour and Prieto-Rumeau
2014). For examples, Krougly et al. (2009) presented a stochastic model simulating
fire behaviour in a forested landscape and illustrated the total disturbance impact
under different initial conditions and scenarios. In Tianjin coastal area, China, Ma et
al. (2012) used Markov chain as a stochastic model in assessing wetland change
dynamics and demonstrated three main conclusions: 1) a continuing ‘exchange’ of
wetland area occurs between artificial wetlands and natural wetlands categories; 2)
pollution and construction were the predominant causes for wetland changes; and 3)
the natural wetlands will be in great decline in 2020 and 2050.
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There were also numbers of studies conducted for modelling decision-making
problems in different areas, such as finding optimum hydro-power production
(Lamond and Boukhtouta 1996), maintenance policy of repairable power equipment
(Tomasevicz and Asgarpoor (2009), inventory control problem for optimal ordering
decisions (Ahiska et al. 2013), and natural resources conservation and management
(Williams 2009). In rangeland management, for example, Freier et al. (2011)
investigated a dynamic land use decision model using Markov chain meta-model
and revealed two significant results: 1) the drought simulations show a decrease in
profits from pastoralism by up to 75%; and 2) pastoral land use of the rangeland
increases surface runoff by 20%, doubles infiltration, and thus influences irrigation
agriculture.

Moreover, urban growth modelling with Multi-Criteria Evaluation framed in
Markov Cellular Automata model (Vaz et al. 2012) and simulation through Markov
analysis on the land use, and effects of urban, agricultural, forest and wetland
dynamics (Vaz et al. 2013) are some analytical tools used in assessing the
consequences of regional environmental changes. Integrated with GIS, those studies
revealed a set of promising tools for the strategic development of rural and/or urban
areas in response to environmental challenges arising from exploitation of land-use
resources, economic prosperity, increasing population, growth of infrastructures
(Vaz et al. 2012), and natural disasters.

In a study conducted by Arsanjani et al. (2013), they analysed the suburban in the
metropolitan area of Tehran, Iran by using the hybrid model consisting of logistic
regression model, Markov chain, and cellular automata. They found a satisfactory
performance to predict land use maps for 2016 and 2026 illustrating a new wave of
suburban development for the next decades. In Mumbai, India, Moghadam and
Helbich (2013) implemented an urban growth model by integrating Markov Chains-
Cellular Automata (MC-CA) that characterised the open land and croplands having
mostly affected by degradation. Further, their forecast revealed that built-up areas
will increase by 26% in 2020 and 12% in 2030 and mostly pronounced toward the
north along the main traffic infrastructure and eastern areas. Similar trend was
observed in a study conducted by Guan et al. (2011) that built-up areas in Saga,
Japan will undergo an upward trend affecting agricultural land and forestland areas.
This was further supported in the study conducted by Haibo et al. (2011) in Tai’an
City, China wherein the Markov model revealed that farmland was mainly changed
to lawn or residential land. Agricultural expansion is the main driving force for loss
of forest, wetland and marshy land and has the potential to continue in the future
(Behera et al. 2012).

Xin et al. (2012) compared the performance of MC-CA model with Ant Colony
Optimisation-Markov Chain-Cellular Automata (ACO-MC-CA) model in the
spatiotemporal assessment of land use change in Beijing, China. The latter revealed
a promising result being more appropriate to use in predicting the quantity and
spatial distribution of land use change in the study area (Xin et al. 2012). Within the
same city, Wang et al. (2012) explored the accuracy of MC-CA simulation through
the calculation of Kappa index for location and quantity. Their analysis revealed that
simulation accuracy of small cell size is better than big cell size which gives a better
understanding on how to select best spatial resolution for simulation. In order to grip
land use changes better, Sang et al. (2011) proposed that simulation can be divided
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into two parts: one is the quantitative forecast by using the Markov model, and the
other is the simulating the spatial pattern changes by using the CA model. Validating
the performance of CA-Markov model, statistics revealed that accuracy is slightly
higher when this model is combined with multi-objective land allocation (MOLA)
procedure in the land use and land cover (LULC) change analysis (Surabuddin et al.
(2013). In 2009, the Markov-CA-MOLA procedure was used in simulating future
land use/cover changes (up to 2030) and predicted a continuing downward trend in
woodland areas and an upward trend in bare land areas (Kamusoko et al. 2009). To
reduce bias in the non-spatial error term of those models, Finley et al. (2009) offered
a knot-based predictive process approach set in the Markov chain Monte Carlo
models.

We further examined the application of Markov models in natural disaster risk
reduction. The binomial cluster analysis and MDP were used in optimal-decision
making such as the identification and selection of disaster debris management sites
(Grzeda 2014) and optimum utilisation of open space for emergency response (Li et
al. 2013), respectively. The Markov-CA-MOLA procedure was used in Nigeria to
predict the areas where desert conditions are likely to spread to by the year 2030.
Musa et al. (2012) emphasised that the valleys of the Rivers Kamandagu Gana and
Kamandugu Yobe are among the most vulnerable areas from desertification.
Applied in the vegetation restoration assessment at landslide areas caused by
catastrophic earthquake in Central Taiwan, the Markov-chain model showed that
vegetation restoration at the Chiufenershan and Ninety-nine peaks landslide areas is
ongoing, but has been disturbed by natural disasters (Chuang et al. 2011). In
modeling emergency evacuation for major hazard industrial sites, Georgiadou et al.
(2007) used the Markov-Monte Carlo model to support decisions for emergency
response concerning for example areas that must be evacuated or not in certain
circumstances and for land use planning issues such as providing information about
the need to increase transportation network capacity and safe shelters.

Having reviewed pertinent literature, the studies on optimising expenditures for
natural disaster risk reduction have never been substantially explored. In doing this
study, we introduced a new way of dealing with uncertainty in the state transition
function by using existing records on government expenditures for natural disaster
risk reduction measures, social discounting factors, and total business loss during the
January 2011 flood in the study area within the MDP framework. The authors
acknowledged that this study is a rare situation in natural disaster risk management
to implement in an urban area. Markov analysis is spatially non-explicit (Lopez et
al. (2001); Moghadam and Helbich 2013); however, this study explored on how to
transform the model become spatially explicit and applied in identifying optimal
decisions and policy actions for flood mitigation.

2.9 Summary
The overall issues of the current flood risk and climate adaptation capacity

techniques in relation to the vulnerability assessment of critical infrastructures and
interdependency are outlined as follows:
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o Separate frameworks for flood risk and climate adaptation capacity
assessments currently exist which in reality both have the same goal -
disaster risk reduction from extreme climatic events;

e Available spatial datasets for flood risk and climate adaptation capacity
indicating variables vary in formats from different sources;

e Selection and integration of indicating variables to be included in the flood
risk and climate adaptation capacity assessments for vulnerability assessment
of urban community and critical infrastructures are currently not clearly
defined,

e Analysis of critical infrastructure interdependency for disaster risk reduction
or climate adaptation in GIS setting has never been substantially explored;
and

e In a highly competitive financial environment, optimisation techniques need
to be operationalised to prioritise funding support for natural disaster risk
reduction and climate adaptation.

These issues defined the overall framework and nexus amongst flood risk, climate

adaptation capacity, critical infrastructure interdependency, and natural disaster risk
reduction.
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Chapter 3

METHODS FOR THE TRANSFORMATION AND
STANDARDISATION OF INDICATING VARIABLES

3.1 Introduction

This Chapter outlines the transformation and standardisation techniques used in
developing the preliminary indices of flood risk and climate adaptation capacity.
The significant contributions of this Chapter in the study are the applications of
various spatially-explicit analytical tools which account the multi-dimensionality of
geographic variables. These include the use of high resolution LiDAR dataset in the
flood hazard analysis, fuzzy logic, spatial autocorrelation techniques, and other
spatial statistics especially designed to represent flood risk and climate adaptation
capacity indicating variables.

As a common practice in GIS, flood and climate risk assessments require a set of
analytical tools which allow the indicating variables for hazard, vulnerability and
exposure be transformed and standardised into a uniform set of representation. This
is because the identification of potential risk indicators is essential for effective
disaster planning otherwise sensible mitigation measures cannot be fully developed
and effectively implemented without undertaking a meaningful analysis (Eckert
2012). As the popular maxim states: “what cannot be measured, cannot be
managed.”

To empirically support the selection of indicating variables as presented in Table
3.1, this Chapter examined a set of literature aside from those presented in Chapter 2
(Literature Review). One of the major thematic elements in flood hazard mapping is
the Digital Elevation Model (DEM). DEM data have been used to derive
hydrological features which serve as inputs to various models (Li and Wong 2010)
such as the flood hazard model. This study used the DEM based on airborne light
detection and ranging (LiDAR) in the flood hazard modelling because of high
horizontal resolution, vertical accuracy (~0.1 m) and the ability to separate bare-
earth from built structures and vegetation (Sanders 2007). With specific attention
given to the January 2011 flood, major flood characteristic such as area of
inundation (Yu et al. 2009) was incorporated into the DEM database to characterise
or measure the degree of flood hazard.

Injuries can occur before, during and after flood; however, the most common
reasons for flood-infected nonfatal injuries are cuts, falls, being struck by falling
debris or objects moving quickly in flood water (Alderman et al. 2012). Increased
risk for water- and vector-borne diseases and exposure of population to toxic
chemicals can also be associated to floods (Alderman et al. 2012). In this study,
biological hazard (e.g. microbes from debris and sewerage), chemical hazard (e.g.
presence of asbestos), electricity hazard (e.g. power boards submerged under water),
and building damage/collapse hazard were taken from the Queensland Fire and
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Rescue Services (QFRS) database. These data were collected through the agency’s
rapid damage assessment during the January 2011 to assess damage to properties
(DCS 2011).

Adger (2006) defined vulnerability as the state of being susceptible to harm from
exposure to stresses associated with physical environment and social conditions and
from the absence of capacity to adapt. Based on this concept, a variety of studies
identified the following generic indicators of vulnerability which serve as the basis
in the selection of indicating variables for vulnerability in this study (Brooks et al.
2005, Marshall et al. 2014, Ahsan and Warner 2014, Lee 2014):
e Percentage of old and children
Literacy rate
Civil liberties
Voice and accountability
Political rights
Government effectiveness
Employability
Family
Business size and skills
Financial status and access to credit
Income diversity
Local environmental knowledge
Environmental awareness
Formal and informal networks
Connection to infrastructure services (electricity, water, transportation, etc.)
Access to public infrastructure and security (e.g. emergency infrastructures).

UNDP (2004) defined exposure as the inventory of those people or artefacts that are
exposed to a hazard. In characterising the indicating variables for exposure, this
study considered the following exposure indicators as the guide in the selection of
datasets (Moel et al. 2011, Belmonte et al. 2011):

e Total amount of urban area that can be potentially become inundated due to
floods. This includes number of population, highly wvulnerable critical
infrastructures and culturally significant assets;

e Level of human and critical infrastructure exposure to flood.

The specific methods of data standardisation and transformation for the hazard,
vulnerability, and exposure indicating variables are fully explained in Section 3.3.

3.2 Key Concepts and Data Inputs

In Chapter 2, the concept of risk was established as a function of hazard,
vulnerability, and exposure. Expressed in mathematical forms, risk can be stated as
(Mirfenderesk and Corkill 2009; Downing 2002; Hughey and Bell 2010):

Risk = Hazard x Vulnerability x Exposure Eq. 3.1
Risk = Hazard + Vulnerability Eqg. 3.2
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Risk = Hazard + Vulnerability — Adaptation Capacity Eqg. 3.3

As shown in these equations, the terms hazard, vulnerability, exposure, and
adaptation capacity are significantly associated to each other and can influence the
flood risk assessment process. The fuzzy gamma overlay operation was chosen in this
study to resolve the confusion as to which risk equation (see Eq. 3.1 and 3.2) will be used in
the assessment. This operation combined the “increasive” and “decreasive” effects of fuzzy
“sum” overlay and fuzzy “product” overlay operations, respectively (Farrell et al. 2006).
Furthermore, the operation of these equations takes the parametric approach wherein readily
available data were used to build a picture of the vulnerability (and risk) of the study area
(Balica et al. 2013). In the absence of sufficient and reliable data on future and residual risks
in relation to the flooding events within the study area, this study mainly focused on existing
or current flood risk using the fuzzy gamma overlay operation.

By transforming Eq. 3.3, adaptation capacity can be mathematically expressed as
follows (Espada et al. 2012):

Adaptation Capacity (AC) = Vulnerability — (Risk + Hazard) Eq. 3.4
To operationalise Eg. 3.4, it has been further expressed in Equations 3.5 and 3.6.

AC = Social Vulnerability — (Risk + Flood Hazard) Eq. 3.5
AC = Social Vulnerability — [(Fuzzy Gamma Function {Consequential
Hazards, Physical Vulnerability, and Exposure} + Flood Hazard)] Eq. 3.6

Table 3.1 summarises the list of thematic layers/indicating variables used to analyse
the components of flood risk and adaptation capacity. The significance of
identifying and understanding these indicating variables relates to the findings of the
inquest into the January 2011 south-east Queensland flood deaths. Pursuant to
s8(3)(b) of the Coroners Act 2003, for example, one amongst 22 known reportable
deaths was identified as Ms. S.H. Baillie. Died in Postman Ridge, Queensland,
Australia, Ms. Baillie, 72 years old, was the sole occupant of a single-storey brick
house situated 10 to 20 meters from the banks of Rocky Creek (Barnes 2012). The
house had collapsed and was swept away by a wall of water during a flash flood that
caused her death from drowning (Barnes 2012). Given these actual circumstances,
the age, number of occupants, proximity to river, and building type and density were
the potential indicating variables that explain the observed harm from the flood
event.

Table 3.1 The thematic layers/indicating variables with corresponding assumptions used in the study

Risk Indicating Assumption Input Data
Component Variable Source
Defined Flood Defined Flood Level (DFL) and 2011 flood BCC, DERM
Level (DFL) and | extent indicate the observed harm from extreme and QGIS;
2011 Flood weather or climate event to the urban community
Extent and critical infrastructures.
2009 Digital Flooded elevation indicates the observed flood LIDAR data
Hazard Elevation Model hazard of the area. The areas with low DEM from DERM
(m) values indicate high flooded areas.
Biological Hazard | Biological hazard, building damage hazard, QFRS
Building Damage | chemical hazard, and electricity hazard were QFRS
Hazard observed second level processes or agents
Chemical Hazard | (consequential hazards) which indicate harm as QFRS
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Risk Indicating Assumption Input Data
Component Variable Source
Electricity Hazard | results of flood event. QFRS
Building Floor Areas with higher building floor space index DERM;
Space generally indicate lower physical vulnerability to | ArcGIS
flood hazard. Online
Estimated Period | Areas earlier settled with significant growth in BCC, ABS
of Settlement residential, industrial and commercial activities and UQ-
(No. of Years have likely older buildings than other areas; CGQ
between 1800 to hence, relatively more vulnerable from wear-and-
2011) tear and require higher investment for retrofitting,
maintenance and improvements.
Electricity Assets | Areas holding critical electricity assets (e.g. zone | Energex
supply substations, transformer sites) may
indicate high physical vulnerability to flood
damage.
Physical Roads and Rail Areas with highly flooded roads and rail QGISs
Vulnerability networks may indicate high physical
vulnerability to flood damage.
Sewerage Avreas holding critical sewerage assets (e.g. pump | BCC
stations, storage facilities, and wet well) may
indicate high physical vulnerability to flood
damage.
Stormwater Avreas holding critical stormwater assets (e.g. BCC
stormwater SQID — gross pollution trap and
sediment trap, and pipe outlets) may indicate high
physical vulnerability to flood damage.
Water Supply Avreas holding critical water supply assets (e.g. BCC
Network Assets water pressure main, valves, water devices and
hydrants, and water service equipment) may
indicate high physical vulnerability to flood
damage.
2011 Population Areas occupied by higher percentage of ABS and
by Age (0-14 and | population with ages 0 to 14 and above 65 BCC
> 65 in %) generally indicate higher degree of social
vulnerability to flooding and consequential
hazards.
2010-2011 Total Suburbs with higher counts of registered ABS and
Counts of businesses indicate higher revenue; hence, lower | BCC
Registered degree of social vulnerability than suburbs with
Businesses (No.) | lower counts.
2011 Educational | Suburbs with higher proportion of persons with ABS and
Qualification (%) | educational qualification (i.e. bachelor degree or | BCC
Social higher, diploma, and certificate) indicate a lower
Vulnerability degree of social vulnerability.

Access to
Emergency
Services

Emergency
Response Time

Far distance and long response time from
emergency services (i.e. police stations, hospitals,
fire and rescue, and evacuation centres) generally
indicate relatively high degree of social
vulnerability to flood event and consequential
hazards.

Google Earth

2011 Index of Suburbs with higher index score indicate ABS
Education and relatively higher education and occupation status
Occupation (IEO) | of people in general; hence, more advantageous

with less degree of social vulnerability than in

other suburbs.
2011 Index of Suburbs with higher index score indicate ABS

Economic
Resources (IER)

relatively greater access to economic resources
related to income and wealth in general; hence,
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Risk Indicating Assumption Input Data
Component Variable Source
more advantageous with less degree of social
vulnerability than in other suburbs.
2011 Index of Suburbs with higher index score indicate lower ABS
Relative Socio- disadvantage and greater advantage in general in
Economic relation to the economic and social conditions of
Advantage and people and households; hence, more
Disadvantage advantageous with less degree of social
(IRSAD) vulnerability than in other suburbs.
2011 Index of Suburbs with higher index score indicate lower ABS
Relative Socio- disadvantage in general in relation to the
Economic economic and social conditions of people and
Disadvantage households; hence, lower degree of social
(IRSD) vulnerability than in other suburbs.
2012 Insurance Areas with higher average sum of insurance Suncorp
(Home and premium are more likely flood-prone areas; Insurance
Content) ($) hence, higher degree of social vulnerability to
flood hazard than other suburbs.
Social 2011 Persons in Areas with the higher proportions of people in ABS and
Vulnerability | Need of need of assistance indicate areas with relatively | BCC
Assistance (%) profound or severe disability; hence, a higher
degree of social vulnerability.
2011 Without Avreas with larger percentage of occupied private | ABS and
Vehicles (%) dwellings with no motor vehicles indicate lack of | BCC
immediate mobility during emergency; hence, a
higher degree of social vulnerability.
2011 Residential Higher percentage of rented private dwellings ABS and
Tenure - Renting | generally indicate lack of property ownership in BCC
(%) the area in general; hence, a higher degree of
social vulnerability.
2012 Total Suburbs with higher recorded total value of ABS and
Building Value residential and non-residential buildings indicate | BCC
($°000) areas with higher valuable assets; hence, lower
degree of social vulnerability.
2012 Suburbs with higher proportions of unemployed ABS and
Unemployment persons aged 15 years and over indicate areas BCC
Rate (%) with lower income; hence, higher degree of social
vulnerability.
2011 Volunteers Suburbs with higher percentage of volunteers ABS and
(%) aged 15 years and over indicate areas with higher | BCC
accessibility to social assets; hence, lower degree
of social vulnerability.
2011 Weekly Suburbs with higher percentage of persons aged ABS and
Personal Income 15 years and over who had their total personal BCC
(%) weekly income less than $400 per week may
indicate higher degree of social vulnerability.
2011 Flooded Suburbs with high number of flooded residential | Houghton, et
Residential and and commercial properties during the January al., 2011
Commercial 2011 flood are likely more exposed to flood
Properties (No.) hazard than other suburbs.
Heritage Sites Heritage sites highly clustered together may DERM
Exposure indicate relatively highly exposure of cultural
assets to flood hazard.
2011 Estimated Areas with higher number of estimated resident ABS and
Resident population indicate a higher number of people BCC
Population (No.) | exposed to flood hazard.
2007-2011 Areas with higher percentage of annual ABS and
Average Annual population growth rate indicate a higher change BCC
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Risk Indicating Assumption Input Data
Component Variable Source
Population in population over a unit time period; hence,

Growth Rate (%) | relatively greater exposure of number of people
to flood hazard.

Electricity Areas holding higher number of pole assets BCC
providing direct source of electricity to residents
indicate relatively greater exposure to flood
hazard.

Sewerage Avreas holding higher number of main reticulation | BCC
inlets providing direct sewerage services to
residents indicate relatively greater exposure to
Exposure flood hazard.

Stormwater Avreas holding higher number of stormwater gully | BCC
inlets where garbage/solid wastes may potentially
clogged indicate relatively greater exposure to
flood hazard.

Water Supply Areas holding higher number of water supply BCC
Connections/ assets providing direct water connections or
Services services to residents indicate relatively greater

exposure to flood hazard.

ABS - Australian Bureau of Statistics; BCC — Brishane City Council; DERM - Queensland Department of
Environment and Resource Management; QFRS — Queensland Fire and Rescue Service; QGIS — Queensland
Government Information Service; UQ-CGQ — University of Queensland Centre for Government Queensland

3.3 Data Transformation and Standardisation

The development of indices for flood risk and climate adaptation capacity is a
daunting task particularly when it involves datasets that are represented in varying
formats. As outlined in Table 3.1, it is evident that this study used available data
from various sources presented in different spatial information (i.e. tabular, vector
and raster), units of measurement (e.g. meters, per cent, index, etc.) and geographic
features (i.e. points, lines, and polygons). For this reason, this study identified some
spatially-explicit analytical tools that allowed the construction of standardised food
risk and climate adaptation capacity indices in a uniform raster format. These
analytical tools include:

1) digital elevation modelling (DEM) and urban morphological characterisation
with 3D analysis;

2) spatial analysis with fuzzy logic;

3) proximity analysis;

4) quadrat analysis;

5) spatial analysis with collect events analysis;

6) geographic interdependency modelling with spatial autocorrelation;

7) hot spot analysis; and

8) line statistics.

Except for those indicating variables that were available immediately in desired
raster format, the application of these tools was not mutually exclusive in this study.
Hence, the method was consequently designed to consider jointly performed with its
cross-functional process shown in Figure 3.1. This diagram shows the cross-
functional process map used in this study which outlines the means or the processes
(shown in the “process” window) involved in the generation of perceived level of
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flood risks (the “end” or output window) which were derived from the indicating
variables (shown from the “start” window). Part of the processing component was
the definition of map datum, coordinate system, and UTM zone. The maps used in
this study were defined based on Geocentric Datum of Australia 1995 (GDA 1994)
with Map Grid Australia (MGA) as the coordinate system and 56 as the UTM zone.

The desired outputs which represent the flood risk and climate adaptation capacity
indices were spatially-structured in raster format described in Table 3.2. This means
that when generated indices are equivalent to 4 and 1, for example, risk is described
as very high and adaptation capacity is low, respectively.

Cross-Functional Process Map
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Figure 3.1 The cross-functional process map used in the study (The colour of the lines represents the path it takes
to perform the data transformation and standardisation of indicating variables)

Table 3.2 Flood risk and adaptation capacity index classification
Risk Index Description Adaptation Capacity Index
1 Low 4
2 Moderate 3
3 High 2
4 Very High 1

The indexing system specified in Table 3.2 was adopted in this study to show flood
risk and climate adaptation capacity at different intensity levels. These index
designations were assigned following the concepts introduced by Balica et al.
(2013). Accordingly, a very high designation is assigned if there is very high
potential for loss of life and/or extreme economic loss based on indicators (e.g.
hazard, vulnerability, and exposure). On the other hand, a low designation is
assigned if there is a small but still existing potential for loss of life and the
economic loss is minor (Balica et al. 2013). This means that a higher value of index
data coincides with higher flood disaster risk (Jiang et al. 2009). These designations

41



Chapter 3 Transformation and Standardisation of Indicating Variables

are a critical parameter without which disaster risk assessment (and climate
adaptation capacity) cannot be calculated (Deichmann et al. 2011).

3.3.1 Three Dimensional (3D) Analysis

The 3D analysis was performed in this study in two ways: digital elevation
modelling (DEM) for flood hazard analysis and digital building modelling (DBM)
for urban morphological characterisation. The flowchart is provided below for
guidance with full discussions presented in the subsequent sub-sections.

[ Create DEE DO DEN O ey it High Resalution Digital
—H Terrain to Raster —»| Defined Flood Level and Elevation Model (5m)
‘\ Geodatabase lJanuary 2011 Flood Extent

-

LiDAR : Spatial High Resolution Flood Hazard Maps
Point - |Analysis with (i.e. Defined Flood Level and January
Data Fuzzy Logic 2011 Flood Extent)
r=-! Digitisation of [ create Terrain (i.e. Spatial Autocorrelation Spatial Analysis with ‘:‘u" “”:"":;“"M:"‘E‘L':"
| Building Building Building) Dataset (Global Moran’s land —» Inverse Distance Building Floor Spa:: lnd-ex
| Footprints \Geadatabase to Raster Local Moran's I) Weight (IDW) 4 Map)
| I
| |
[ | Calculate Summary
- L | statistics (Mean
| Building Heights)
|
| |
|
|

Calculate Building
- Floor Space Index
(Fsl)

Figure 3.2 The flow chart of flood hazard analysis and
urban morphological characterisation used in the study

3.3.1.1 Digital Elevation Modelling for Flood Hazard Analysis

Being traversed by a 345-kilometre Brisbane River, the study area shown in Figure
1.1 fits within the floodplain areas of the Brisbane catchment. As discussed earlier,
Brisbane City had been devastated by the January 2011 flood and damaged
thousands of infrastructures and residential and commercial properties. In 2009, the
City has been part of the Queensland government-initiated project, i.e. the South
East Queensland LIiDAR Capture Project. The purpose of the project was to provide
highly accurate elevation data for use in risk assessment, the management of natural
disasters, infrastructure planning, and developing strategies to support climate
change, topographic mapping and modelling (DERM 2011).

As a product of an aerial survey company and made available in 1 kilometre tile for
use in this study, the airborne LiDAR data was captured in 2010 from a fixed wing
aircraft with the technical background information summarised in Table 3.3. The
laser (LAS - binary file format) strikes were classified into ground and non-ground
points using a single step algorithm with classification format in accordance with
ASPRS Standard LIiDAR Point Classes as follows (DERM 2011):

2 — Ground

6 - Building

8 - Model Key-Point (Mass Point)
10 - Non-ground

One of the critical steps in generating Digital Elevation Model (DEM) from LiDAR
point data is separating ground points from non-ground points by using a technique
commonly known as filtering method. Over the past years, several widely
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recognised filtering algorithms had been developed to automate the extraction of
ground points from non-ground points which include the interpolation-based filter,
slope-based filter, and morphological filter (Liu 2008). The different applications of
these filtering methods were comprehensively discussed in the works of Kraus and
Pfeifer (1998), Vosselman (2000), and Kilian et al. (1996) and Lohman et al.
(2000). As an active area for research, several filtering methods are currently
underway on its development.

Using the ground classification value (i.e. 2) as enumerated earlier, the LIDAR
points in LAS format was imported into multipoint ground feature class in ArcGIS
10 platform through the 3D Analyst tool. This was an automated scheme of
searching filtered ground points for terrain modelling.

Table 3.3 The technical background information of
LIDAR system and data (DERM 2011)

LASER Characteristic

LASER Description

Device Name ALTM Leica ALS50-11
Flying Height 1700 m (Average)

Side Overlap 25% (Average)

Swath Width 850 m (Average)

Laser Footprint Size 0.34 m (Average)

Laser Mode Multi-Pulse

Captured Terrain Model (All Laser | 2.5 points/m” (Average)
Strikes)

Supplied Terrain Model (All Points)

2.0 points/ m” (Average)

Ground Points (Open Clear Ground)

2.0 points/ m” (Average)

Project Area Average 0.7 point/ m” (Average)
Reference System

Datum GDA 94

Projection MGA Zone 56

Vertical Datum AHD

Geoid Model Ausgeoid98
Accuracy

Vertical Data (Derived Points) 0.15m

Horizontal Data (Measured Points) <03lm

Tested Points (Measured Points) 0.05 m

Digital elevation models (DEMs) are usually represented in three ways: (1) grid
DEM, (2) triangular irregular network (TIN), and (3) contour line model (Liu 2008).
This study explored grid DEM by using the multipoint ground feature interpolated
with the Inverse Distance Weight (IDW) technique. Almost all the LiDAR-derived
DEMs had been produced using grids (Lohr 1998, Wack and Wimmer 2002, Lloyd
and Atkinson 2006, Liu et al. 2007) from IDW interpolation primarily because the
latter works well in highly dense and evenly-distributed sample points such as
LiDAR (Childs 2004). The IDW method of interpolation is discussed separately in
details in the subsequent section.

Raster DEMs were then produced by processing large LIiDAR point collections
using the geoprocessing tools known as “Point to Raster” and “Terrain to Raster” in
ArcGIS platform. The advantage of using Point to Raster is the speed and
convenience of processing; however, it does not produce the highest quality result
possible (ESRI 2010). On the other hand, the use of Terrain to Raster gives higher
quality results than Point to Raster particularly when the LIDAR point data are
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dealing with photogrammetric breaklines such as the edges of rivers, lake shorelines,
and water-related features (ESRI 2011). To generate the 5m grid DEM as shown in
Figure 3.3, this study opted to use the Terrain to Raster as the method of
interpolation.

After generating the DEM, the identification of flood prone areas by delineating
flood hazards (and risks) was the next step. Hence, the generated terrain model was
processed and analysed further to generate the standardised flood hazard index. The
task was challenged to find the locations from the DEM the maximum raster
elevation (MaxREV) which will capture the areas that had been completely flooded.

Generally, the issue can be resolved by using either of the two methods:
probabilistic approach or deterministic approach. The former involves estimating the
flood flow quantiles in different predicted probabilistic scenarios by frequency
analysis such as the work of Sarhadi et al. (2012). On the other hand, the
deterministic approach, also called scenario-based, uses realistic scenarios for
inundation based on historical data (Eckert 2012). This study used the deterministic
approach by overlaying the January 2011 flood extent with the DEM.

Using the “Clip Raster Processing” tool in ArcGIS 10, the generated MaxREV was
11.94m. The area covered within the MaxREV down to the minimum raster
elevation (MIinREV), i.e. 11.94 to -23.57m, was identified as very high risk. Beyond
the MaxREV, with elevation values between 11.95 to 83.76m, the flood hazard was
assumed to diminish from high to low. Based on these elevation values and
inference rules, the fuzzy linear membership function was operationalised to
transform and standardise the elevation values into new fuzzy membership values
ranging from 0 to 1. These new values defined the possibility of membership to a
specified class or set, with 0 holding areas of very high flood risk and 1 of low flood
risk as shown in Figure 3.4. To conform to GIS norms, the fuzzy membership values
were further “refuzzified” using the fuzzy “small” membership function to reclassify
0 as low flood risk and 1 very high flood risk using 1 and 4 as flood hazard indices,
respectively as summarised in Table 3.4.

A separate section is provided in this Chapter discussing in details about the use of
fuzzy logic in data transformation and standardisation.

Table 3.4 The flood hazard categories and risk description

Elevation (m) Fuzzy Membership Flood Hazard | Risk Description
Value Category

-23.57 - 11.94 0 4 Very High

11.94 - 25.25 0-0.27 3 High

25.25 - 41.67 0.27-0.49 2 Moderate

41.67 — 83.76 0.49-1 1 Low
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Figure 3.3 The LiDAR-derived digital elevation Figure 3.4 The flood hazard index map

model

3.3.1.2 Digital Building Modelling (DBM) for Urban Morphological
Characterisation

This section presents a method of integrating the high resolution satellite imagery
and LIiDAR point data for generation of digital building model (DBM) and building
floor space index (FSI).

One of the commonly used morphological variables to characterise urban fabrics is
density which can be described based on ground space index (GSI) and floor space
index (FSI) of the buildings. Opted to use the latter in this study, building FSI was
calculated by using the buildings’ space area and height parameters and
mathematically operationalised as the ratio between the building volume and the
corresponding VVoronoi diagram’s cell area (Hamaina et al. 2012).

Aimed to generate an object-oriented data structure, edges of almost 17,000 building
objects were digitised on top of LIDAR point data and high resolution (1 meter or
better) satellite and aerial imagery from ArcGIS Online. The main advantage of
using this method was the attainment of high building footprints accuracy by
detecting and excluding building walls which had been erroneously depicted by
LiDAR points as part of building roofs. However, the method was tedious and time-
consuming. The extracted edges of building objects with associated bi-dimensional
geometric property and planimetric coordinates were saved in vector format for
establishment of building objects elevation by sampling at random locations.

Processed with “Create Random Points” geoprocessing tool in ArcGIS 10, the result
created a feature class containing groups of points with one group for each building
footprint as shown in Figure 3.5. The building heights information from the random
points were then added to the building footprints and summarised with mean
statistical method to generate the average roof heights (m). The building volume
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(m?) was then calculated by taking the product of the floor space (m?) of the building
footprints and the average roof heights. Visualised in ArcScene, the LiDAR-derived
digital building model and building volume is shown in Figure 3.6. The colour
gradient (from green to red) represents the building volume from low to very high.
Using Hamaina’s et al. (2012) method of calculation as presented earlier, the
building floor space index was generated and visualised as point and stick map
shown in Figure 3.7. Taken from the geometric centroid of building footprints,
points from Figure 3.7 with associated building FSI were further analysed with
spatial autocorrelation techniques specifically the Global Moran’s | and Anselin
Local Moran’s | (see Section 3.3.6) to generate 5m-gridded map. The results were
then reclassified to represent the building’s physical vulnerability of the area (Figure
3.8). In deriving physical vulnerability attributes, an inverse relationship was
assumed such that low and high values of building FSI indicate high and low
vulnerability (and risk), respectively.

Low[ ST High
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Figure 3.5 The building footprints map Figure 3.6 The LiDAR-derived digital building model and

building volume in 3D

46



Chapter 3 Transformation and Standardisation of Indicating Variables

Point and Stick Map
Building Floor Space Index

Figure 3.7 Point and stick map of Figure 3.8 Physical vulnerability index map from building
building FSI floor space

3.3.2 Spatial Analysis with Fuzzy Logic

The mathematical expression of fuzzy set theory and fuzzy logic to model ambiguity
and uncertainty in decision-making is presented as follows (Akter and Simonovic
2005):

If X is a collection of objects generically by x, then a fuzzy set A in X is a set
of ordered pairs:

A= {x,u,(x))Ix€X} Eqg. 3.7
where wu,(x) is called the membership function or grade of

membership of x in A.

The membership function stated above was applied in modelling uncertainties of
selected indicating variables of flood risk (i.e. hazard, physical vulnerability, social
vulnerability and exposure) enumerated in Table 3.2.

This study adopted the fuzzy synthetic evaluation (FSE) method where data or
values of indicating variables were divided into several categories (see Table 3.2)
(Lu et al. 1999) according to predetermined quality criteria (i.e. lowest risk zone,
lower risk zone, medium risk zone, higher risk zone, and highest risk zone) (Jiang et
al. 2009). This study used these criteria to associate the graded interval value
generated from fuzzy membership analysis. The FSE algorithm was implemented in
this study by using the descending (i.e. fuzzy small) and ascending (i.e. fuzzy large)
fuzzy membership functions with the geometric interpretations shown in Figures 3.8
and 3.9. These types define the fuzzy membership functions where the smaller input
values or the larger input values have membership closer to 1 (ESRI 2011). From
Figures 3.9 and 3.10, the blue lines represent the fuzzy values of indicating variables
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processed with fuzzy logic and the green, yellow, orange, and red lines represent the
crisp sets after having the fuzzy values “defussified” using the fuzzy synthetic
evaluation technique.
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Figure 3.9 The geometric interpretation of fuzzy small Figure 3.10 The geometric interpretation of fuzzy large
membership membership

Utilising the fuzzy membership tool of Spatial Analyst in ArcGIS 10, the fuzzy
membership values (FMV) of selected indicating variables of hazard, social
vulnerability, and exposure were obtained through the process called fuzzification
following the Hinkel’s (2011) linear and monotonous operation of indicating
variables and explicit assumptions specified in Table 3.1. Fuzzification is the
process of converting attributes into a homogenous scale by assigning memberships
with respect to predefined fuzzy subsets (Sadiq et al. 2004). As users being required
to provide the midpoint or centroid of crisp value (except for flood hazard as
discussed earlier), the value was obtained by averaging the minimum and the
maximum values of an indicating variable.

As FSE method eliminates the possible fuzziness (Jiang et al. 2009), the fuzzy
membership values (u,(x)) of the indicating variables used in the analysis were

defuzzified into four classes according to perceived level of flood risk (PFR): low
risk, moderate risk, high risk and very high risk. Defuzzification is a process in FSE
that calculates the crisp value (i.e. grade interval) of a fuzzy set (Sadiq et al. 2004).
The grade interval values for this study were obtained through geometric interval
classification of the raster data fuzzy set. As a compromise method between equal
interval and quantile (ESRI 2010), geometric intervals were used to delineate classes
based on natural groupings of fuzzy membership values. This option tries to find a
balance between highlighting the changes in the middle values and the extreme
values (ESRI 2011). Using this argument, FMV (u,(x))can be expressed in the

following mathematical equations (Zadeh 1975):

() = [H Eq. 3.8
where: uF: — [0, 1] is the membership; and integral denotes the union

of fuzzy singletons uF(u)/u over the universe of discourse (i.e.
universe of an indicating variable) denoted by U such that the fuzzy
subset of U would be expressed as:
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(wa(x) = [ == /2 Eq. 3.9

0 1442

which means that (u,(x) is a fuzzy subset of the unit interval [0, 1]
whose membership function is defined by

uF(u) = — Eq. 3.10

1+u?

Using the four geometric interval classes (low risk, moderate risk, high risk, and
very high risk), the membership function of the fuzzy subset was expressed as
(Zadeh 1975):

s(u: a, B,y) = low risk (0) foru<a Eq. 3.11
u—o?
= moderate risk (2 Y_a) fora<u<p
= high risk (1 — 2 t:”:) forp<u<y
= very high risk (1) foru>vy

where the parameter g = “;—Y is the crossover point.

The following figures (Figures 3.11-3.13) show the processed maps using GIS-based
fuzzy synthetic evaluation technique. Each figure depicts the vulnerability (and risk)
index of the study area using the classified FMVs of indicating variables as
summarised in Appendix 1.

Settlement Index Map

———"

Figure 3.11 The physical vulnerability index map of settlement
indicating variable processed with fuzzy logic
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Figure 3.12 Index maps of fifteen (15) social vulnerability
indicating variables processed with fuzzy logic (continued next page)
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Figure 3.12 Index maps of fifteen (15) social vulnerability indicating variables processed
with fuzzy logic (continued from previous page)
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Figure 3.12 Index maps of fifteen (15) social vulnerability indicating variables
processed with fuzzy logic (continued from previous page)
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Figure 3.13 Index maps of three (3) exposure
indicating variables processed with fuzzy logic
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3.3.3 Proximity Analysis

Another important spatial quantification technique used in this study is the
proximity analysis. This is a type of analysis in which geographic features (points,
lines, polygons or raster cells) are selected based on their distance from other
features or cells (Wade and Sommer 2006).

In this study, the vector-based proximity measurements using two input features: the
distance (D) between two points p; and p, and the centre of gravity or centroid of a
polygon (Xc, Yc) were applied in determining access to emergency services and
emergency response time. The D (p1, p2) was calculated using the Pythagorean
Theorem and X, y. were estimated by means of the following equations (Lo and
Yeung 2007):

D (p1p2) =/ (x1— %202 + (1 — 12)? Eqg. 3.12
1

Xe ™ Ga =1 (a + Xipg) (e + Xips — YiXita) Eg. 3.13
1

Ch az?;l(yi + Yirr) (Vi + Xixr — ViXira) Eqg. 3.14

where p, is being represented by locations of emergency and p, is
the centroid of building footprints.

Fifty four (54) emergency services (i.e. police stations including beat shopfronts, fire
and rescue stations, hospitals and medical centres, and January 2011 flood
evacuation centre) were included in the analysis. These points were digitised from
Google Earth, saved in KML format, and then exported into shapefile format. Using
the point distance tool in ArcGIS 10, the outcome created a table of the calculated
average distances between emergency services and buildings. The results then were
used to calculate the emergency response time (ERT). Emergency response time was
considered in this study as the ability of emergency crews to respond in an
emergency situation (e.g. flood) for a given time that travelled 30kph speed drive. It
was assumed in this paper that emergency crews could not travel or drive at a higher
speed due to fallen trees and electricity transmission lines along the roads with
delayed time from rerouting; hence, a reduction in driving speed and consequently a
non-straightforward emergency response.

Through this exercise, the concept of proximity was extended from physical
measurement distance to the calculation of movement times and other impedance
factors such as weather conditions, presence of water bodies, traffic density and
speed, and other barriers (Lo and Yeung 2007). As specified earlier, the 30kph
driving speed and fallen trees and electricity transmission lines were assumed as
potential impedance factors and barriers.
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The results of proximity analyses were then further analysed with spatial
autocorrelation techniques to cluster the point representations of emergency
services. The derived values were then interpolated with inverse distance weight
(IDW) method to represent perceived level of risks based on access to and response
time from emergency services. Longer distances and travel times between
emergency services and buildings indicate very highly vulnerable areas as shown in
Figure 3.14.

aspaan a0 o000 sanons. suzoon suzean

Emergency Response Index Map

i wwa o o i s

Emergency Access Index Map

[

Spring Hill

oo

Taringa
Indooroopilly
.i 5

H
! Lagend Soclal Vul biliny Inds : Legend :
oclal Vulnerability Index Social Vulnerability Index
Low (1) Maderate (21 High 3) Very High (4) [ srisvane River Low (1) Moderate (2} High (3) Very High (4) [ srishane River

$ wordinate Syiem: ri
- £ Tuput Datn: Crogls Earth A{.u A mu'| \|:. A Zene 6 3 3 e Sysem: It
¥|  Source of laput Duta: Gowgly Eart 4 L - 99 . H
P o W | Source of Input Data: Goagle Earth GDATPMGA ZaneS6 | §

Meters
0 a0 1520

aseesh a0 saoncn sanne suzoch suzeal

Figure 3.14 The vulnerability index maps of access
to emergency services and response time

3.3.4 Quadrat Analysis

The specific use of quadrat analysis in this study dealt with the detection of point
patterns of infrastructure connections/services and culturally significant assets (i.e.
heritage sites). Infrastructure connection is defined in this study as the physical
contact point between infrastructure service providers and consumers. Operationally,
this definition involved the identification of the locations of nodes in the
infrastructure network topology wherein the infrastructure service concludes and
consumer starts to access the service.

Using the quadrat counting method (QCM), this study analysed the spatial patterns
of the infrastructure nodes and heritage sites to assess the number of consumers or
end-users and cultural assets that were exposed to the January 2011 flood event.
The QCM consists of partitioning the area into Q subsets (or quadrats) (Miranda et
al. 2011) through the following equation (Wong and Lee 2005):

Qs =2AIr Eqg. 3.15
where:

Qs is the quadrat size

A area of the study area
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r is the number of infrastructure nodes/points (i.e. electricity,
sewerage, stormwater, water supply, and heritage sites)

In generating the Q subsets, a fishnet was created in ArcGIS 10 and spatially joined
the infrastructures nodes with the intersect tool into the fishnet to count its number
per Q subset. The infrastructures nodes evaluated in this study are listed in Table
3.5. Through this method, this study enabled to evaluate the distribution of point
locations of infrastructure connections/services distribution by examining the
density (expressed as the number of connections or heritage sites per quadrat)
changes over space (Wong and Lee 2005). The infrastructure node density and
heritage site density were further analysed with spatial autocorrelation techniques
and hot spot analysis, respectively, to detect their level of spatial autocorrelation and
associated perceived level of exposure (and risk) to flood hazard. The red areas in
Figure 3.15 indicate very high exposure of consumers/end-users of critical
infrastructure services to flood hazard; hence, designated with very high risk
classification. Exposure map of heritage sites are discussed under a separate section
intended for hot spot analysis (see Section 3.3.7).

Table 3.5 The infrastructure nodes/points used in
guadrat analysis for exposure assessment

Infrastructure Asset Infrastructure Node/Point (r)
Electricity Electricity pole sites
Sewerage Reticulation inlets
Stormwater Stormwater end structures/pipe outlets
Water Supply Water service pipe outlets
Heritage Sites Polygon centroids of heritage sites based
on land use map
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Exposure Index Map of Electricity Assets Exposure Index Ma of Sewerage Assets
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Figure 3.15 The exposure index maps of electricity, sewerage,
stormwater, and water supply assets

3.3.5 Spatial Statistics with Collect Events Analysis

As available analytical tool in ArcGIS 10, collect events analysis was found
appropriately applicable to hazard point features gathered by the Queensland Fire
and Rescue Service (QFRS) during the rapid damage assessment following the
January 2011 flood event. Through this tool, point locations of biological, chemical,
electricity, and building damage hazards within flood extent were converted into
weighted point features. This was found applicable to these data because of
insufficient number of incidents or observations before spatial autocorrelation
techniques can be successfully executed. For this type of data, weighted points were
required rather than individual incidents (ESRI 2011). In effect, this analytical tool
combined coincident points representing these consequential hazards and produced
single “ICOUNT?” field in the attribute table holding the sum of all hazard incidents
for each unique location.
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The results of the analysis were further analysed with spatial autocorrelation
techniques to cluster the weighted hazard points and interpolated with inverse
distance weight (IDW) technique to generate perceived flood risk maps. As a result
of January 2011 flood, the maps shown in Figure 3.16 are the generated
consequential hazard maps. The red areas in the map (very high classification)
signify areas with high counts of hazard points; hence, indicated as highly hazardous

areas.
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Figure 3.16 The consequential hazard maps (biological hazard, upper left; building damage,
upper right; electricity hazard, lower left; and chemical hazard, lower right) of the study area
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3.3.6 Modelling with Spatial Autocorrelation

Noticeably from previous discussions, spatial autocorrelation techniques played a
significant role in the process of standardisation to some datasets. This section is
provided to explain how this study operationalised the concept of spatial
autocorrelation techniques.

The magnitude of spatial autocorrelation or spatial association of geographic events
can be measured in a global or local scale. The global measures of spatial
autocorrelation describe the overall spatial relationship; while, local measures of
spatial autocorrelation describe the regional variability of spatial relationship of the
study area (Wong and Lee 2005). For this study, both measures of spatial
autocorrelation were applied. Specifically, the global measure regarded in this study
was Moran’s | and the local measure was the Anselin Local Moran’s | with
equations shown as follows (Wong and Lee 2005; ESRI 2011):

[ — nEETRwix- f)@ﬁ—f} Eqg. 3.16
WE[Xi-X)
E, = —__1 Eg. 3.17
7, = % Eq. 3.18
VI= E(I*)-E()? Eg. 3.19
where:

I is the global Moran’s | index of an indicating variable
Xi is the derived field value for each dataset

w is the sum of all elements of the spatial weights matrix
E, is expected value for global Moran’s |

Z, is the critical z-score for global Moran’s I.

VI is the statistical variance for global Moran’s 1.

'{E = ZE EJ WU Z_I Eq 320
ElI]= ;‘_‘1 Eqg. 3.21
_ L-E[R]
where:

li is the local Moran’s | index of an indicating variable

zi and z; are deviations from the mean for the corresponding x
values

E[li] is the expected value of randomness for local Moran’s |
Z[1i] is the critical z-score for local Moran’s |

Var is the statistical variance for local Moran’s I.

As inferential statistics, the results of the global and local measures of spatial
autocorrelation analyses were interpreted within the context of a null hypothesis.
This study hypothesised that the observed patterns of indicating variables (see Table
3.2) were spatially random at 95% level of confidence.
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The calculated values were then interpreted whether the statistics indicate a strong
positive autocorrelation or strong negative autocorrelation. An extremely negative
autocorrelation was indicated by -1 Moran’s | index while an extremely positive
autocorrelation was indicated by +1 Moran’s | index. The expected value for
Moran’s | (E|) were then compared with the observed Moran’s | index () as another
way of interpreting the spatial autocorrelation. There was no spatial autocorrelation
when the observed negative Moran’s | was larger than the negative expected value
(Wong and Lee 2005). When the critical z-score was between -1.96 and +1.96
associated with 0.05 p-value larger than 0.05, the pattern exhibited was a result of a
random spatial process; hence, the decision rule was to accept the null hypothesis.
The calculated global Moran’s | statistics of flood risk and climate adaptation
capacity indicating variables are presented in Appendix 2.

To assess the reliability of the critical z-scores, distances with interval of 100 were
preselected and iteratively used in the calculation of observed Moran’s I, expected
value for Moran’s |, and z-score until the z-score reached zero or close to zero. The
distance bands and z-score values were then graphed against each other in
MATLAB to determine the peak values from the function curves as shown in
Figures 3.17-3.20. As perceived to be tangential to the function curves, these
generated peak points (in red dots) provided the z-score with corresponding distance
band for each indicating variable (see Table 3.6) which in turn used in calculating
the cluster and outlier (i.e Anselin Local Moran’s 1) statistics.

The main limitation of the Global Moran’s | observed in this study, however, was
that it did not account the variability of features distribution across the study region.
Hence, it was reasonable to examine the magnitude of spatial autocorrelation
whether the distribution of observed events is variable. The Anselin Local Moran’s |
was tested to investigate the possibility of finding positive spatial autocorrelation in
one part of the region or negative spatial autocorrelation in another part of the
region.

Table 3.6 Summary of generated z-scores and distance bands of food risk and
climate adaptation capacity indicating variables used in the local Moran’s |

Component Indicating Variable Z-score Distance
Band (m)
Hazard Biological 21 1900
Building Damage 143 240
Chemical 28 1100
Electricity 102 502
Physical Vulnerability Building FSI 78 2600
Electricity Infrastructure 68 650
Sewerage Infrastructure 29 900
Stormwater Infrastructure 48 400
Water Supply Infrastructure 236 1000
Social Vulnerability Access to Emergency Services 16 3092
Emergency Response Time 16 3092
Exposure Electricity Infrastructure 85 600
Heritage Sites 13 2000
Sewerage Infrastructure 49 950
Stormwater Infrastructure 130 700
Water Supply Infrastructure 83 900
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Figure 3.18 The function curves of physical vulnerability indicating variables (cubic function curve of
building FSI, top; 5" degree polynomial curve of electricity, bottom left; and linear function curve of
sewerage, bottom right) (continued next page)
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stormwater, left; and cubic function curve of water supply , right) (continued from previous page)
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Figure 3.19 The function curves of social vulnerability indicating variables (cubic function curves of access to
emergency services, left; and emergency response time, right)
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Figure 3.20 The function curves of infrastructures’
exposure indicating variables (continued next page)
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Figure 3.20 The function curves of infrastructures’ exposure indicating variables (quadratic function curve of
heritage sites, top; 4" degree polynomial curves of electricity, upper left; sewerage, upper right; stomrwater,
lower left; and water supply, lower right) (continued from previous page)

The local clustering or dispersion of geographic features was then analysed based on
statistical values. A positive value for I; indicates a positive correlation because the
feature is surrounded by features with similar values; hence, the feature is part of a
cluster (Wong and Lee 2005; ESRI 2011). A negative value for li indicates a
negative autocorrelation because the feature is surrounded by features with
dissimilar values; hence, an outlier (Wong and Lee 2005; ESRI 2011). As a relative
measure of spatial autocorrelation, local Moran’s | is best interpreted within the
context of critical z-scores. When the calculated z-scores at 95% level of confidence
were between -1.96 and +1.96, the null hypothesis was accepted. The spatial
distribution of the geographic features on this regard has exhibited a random pattern.

When cluster and outlier (CO) analysis was performed in ArcGIS 10, CO Type was
identified as the best indication of representing cluster and outlier being not a
relative measure of spatial autocorrelation and set apart the clusters from outliers
using the 95% level of statistical confidence.

However, using CO Type was found to have its own limitation. Performing
interpolation with a nominal scale of measurement is completely impossible in GIS.
The remedy then was to assign ordinal values (AOV) according to degree of spatial
clustering of examined indicating variables and its associated level to perceived
flood risk. Extra care was observed in assigning these values and performing
interpolation to maintain the associated statistical significance. Tables 3.7-3.10 show
the CO Type classes from selected indicating variables with assigned ordinal values
(AOV) and perceived levels of flood risk (PFR).
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Those tables were generated based on the assumed relationship of indicating
variables with the perceived level of flood risk (PFR). For example, the assigned
values for emergency access and response and electricity hazard were observed to
have correlated with CO type such that assigned value of 1 indicates an LL
classification and 4 with an HH classification. This means that low attributes
surrounded by low attributes (LL) indicated a low level of perceived flood risk while
high attributes surrounded by high attributes (HH) indicated a high level of
perceived flood risk. For building FSI, an inverse relationship was observed in
associating the level of perceived flood risk (PFR). The assigned value of 1 to LL
CO type means that a low building floor space index value surrounded by low floor
space index values (LL) indicated that the building was highly physically vulnerable
to flood risk; hence the assigned value for PFR was 4. The assigned ordinal values
and perceived levels of flood risk of other indicating variables followed this rule of
inference (see Tables 3.7-3.10).

After having identified the CO type classes of indicating variables and assigned
ordinal values with corresponding levels of flood risk, interpolation was done using
the Inverse Distance Weight (IDW) method. This technique interpolated the raster
surface from points using an inverse distance weight.

The Inverse Distance Weight (IDW) method of interpolation also adopts the
Tobler’s First Law of Geography. This method assumes that the variable being
mapped decreases influence with distance from the sampled location (ESRI 2011).
The inverse of the distance is controlled by the power parameter as the weight such
that higher power values can emphasise nearest points (ESRI 2011). This method
was operationalised in ArcGIS 10 based on the following equation (Watson and
Philip 1985):

iz n
_ Ejo. P/

P, = L= Eqg. 3.23
Liipn
ij
where
P is the property at location i
P; i_s the property at sam_plec_i location j
Dj; is the distance from i to
G is the number of sampled location
n is the inverse-distance weighting power
Table 3.7 The CO Type classes of hazard indicating variables with
assigned ordinal values and perceived levels of flood risk
CO Type Biological Building Damage Chemical Electricity
AOV | PFR AOV PFR AOV | PFR | AOV | PFR
LL 1 1 1 1 3 3 1 1
HL - - 3 3 - - 3 3
LH 2 2 1 1 - - 2 2
HH 4 4 3 3 4 4 4 4
NS 3 3 2 2 2 2 2 2

LL — Low values surrounded by low values; HL — High values surrounded by low values; LH — Low values surrounded by
high values; HH — High values surrounded by high values; NS — Not significant; AOV — Assigned ordinal values; PFR —
Perceived flood risk with 1 being low, 2 moderate, 3 high, and 4 very high.

65




Chapter 3 Transformation and Standardisation of Indicating Variables
Table 3.8 The CO Type classes of physical vulnerability indicating variables with
assigned ordinal values and perceived levels of flood risk
CO Type Building FSI Electricity Sewerage Stormwater Water Supply
AOV | PFR | AOV | PFR | AOV | PFR | AOV | PFR | AQV PFR
LL 1 4 1 4 2 2 - - 1 4
HL 4 1 4 1 3 3 2 3 3 2
LH 2 3 2 3 2 2 2 2 - -
HH 4 1 4 1 4 4 3 4 4 1
NS 3 2 3 2 1 1 1 1 2 3

LL — Low values surrounded by low values; HL — High values surrounded by low values; LH — Low values surrounded by
high values; HH — High values surrounded by high values; NS — Not significant; AOV — Assigned ordinal values; PFR —
Perceived flood risk with 1 being low, 2 moderate, 3 high, and 4 very high.

Table 3.9 The CO Type classes of social vulnerability indicating variables
with assigned ordinal values and perceived levels of flood risk

CO Type Emergency Access Emergency RT
AOV PFR AOV PFR
LL 1 1 1 1
HL - - - -
LH - - - -
HH 3 3 3 3
NS 2 2 2 2

LL — Low values surrounded by low values; HL — High values surrounded by low values; LH — Low values surrounded by
high values; HH — High values surrounded by high values; NS — Not significant; AOV — Assigned ordinal values; PFR —
Perceived flood risk with 1 being low, 2 moderate, 3 high, and 4 very high.

Table 3.10 The CO Type classes of exposure indicating variables with
assigned ordinal values and perceived levels of flood risk

CO Type Electricity Sewerage Stormwater Water Supply
AQV PFR | AOV | PFR AQV PFR AQV PFR
LL 1 1 1 1 1 1 1 1
HL 3 3 4 4 3 3 3 3
LH 1 1 1 1 1 1 3 3
HH 4 4 3 3 4 4 4 4
NS 2 2 2 2 2 2 1 1

LL — Low values surrounded by low values; HL — High values surrounded by low values; LH — Low values surrounded by
high values; HH — High values surrounded by high values; NS — Not significant; AOV — Assigned ordinal values; PFR —
Perceived flood risk with 1 being low, 2 moderate, 3 high, and 4 very high.

Figures 3.21-3.24 show the cluster and outlier maps (foreground) and perceived
level of risk maps (background) generated from spatial autocorrelation techniques
and IDW technique, respectively.
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Figure 3.21 The cluster and outlier (CO) maps of hazard indicating variables (biological hazard, upper
left; building damage, upper right; chemical hazard, lower left; and electricity hazard, lower right)
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Figure 3.22 The cluster and outlier (CO) maps of critical infrastructures physical vulnerability
indicating variables (building FSI, top; electricity, middle left; sewerage, middle right; stormwater,
lower left; and water supply, lower right)
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Figure 3.24 The cluster and outlier (CO) maps of critical infrastructures exposure indicating
variables (electricity, upper left; sewerage, upper right; stormwater, lower left; and water supply,
lower right)
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3.3.7 Hot Spot Analysis

Whilst the application of spatial autocorrelation techniques such as the global
Moran’s | and local Moran’s | were significantly useful in this study, these
analytical tools however provided spatial clustering of objects of uncertain number
of classes for risk classification when applied to heritage sites. Consequently, classes
of less than two caused uncertainty in assigning the ordinal values for the perceived
flood risk during the assessment process. The hot spot analysis was then
operationalised in this study to address this issue and applied in the exposure
assessment of heritage sites.

In this study, hot spot analysis was a tool used to calculate the Getis-Ord Gi*
statistic by looking each heritage feature within the context of neighbouring features
and identified statistically significant spatial clusters of high and low values (ESRI
2011). The Getis-Ord local statistic was measured using the following equations
(ESR12011) with the classified result shown in Figure 3.25.

n & T
E_.l'::l. wijxj— X E_.l'::l."‘-’fd'

G: = | ’ Eq -
* Ty 9l [E?ﬂmi’j}
A n
N - Eqg. 3.25
E’.'f_ixg
s = J‘_,n L — (%) S
where:

x; is the attribute value for heritage feature j
w, ; is the spatial weight between heritage feature i and

n is the total number of heritage features
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Figure 3.25 The heritage infrastructure exposure index map

3.3.8 Line Statistics

Line statistics are a simple analytical tool in GIS but their importance in the risk
analysis of roads and rails cannot be understated in this study. Superimposed with
the flood hazard index layer described in Section 3.3.1, the vulnerability of roads
and rails to January 2011 flood was identified as shown in Figure 3.26 (foreground).
From this map, dark blue lines indicate roads and rails. Its vulnerability indices were
classified such as 1 being low and 4 being very highly exposed to the flood hazard.

After having assessed the risk index for the roads and rails network, the
neighborhood statistic of the line features was calculated using the Line Statistics
tool in ArcGIS to create a 5m-gridded layer. ESRI (2011) defined Line Statistics as a
tool that calculates a statistic on the attributes of lines in a circular neighborhood
around each output cell. Using mean as the type of statistic, the generated 5m-
gridded vulnerability index map of roads and rails network is shown in Figure 3.26
(background).

71



Chapter 3

Transformation and Standardisation of Indicating Variables

o sone sanooe

v suzons sosonn.

o

S

wstoto

Vulnerability Index

Roads and Rails Network Vulnerability Map
. — — .

wsassla

ssstolo

Moderate (2)

High (3)

Source of Input Data: Queensland GIS

Very High (4)

ey o anigs

B sozons 000

Figure 3.26 The roads and rails vulnerability index map

3.4 Summary and Conclusion

This study applied and developed a variety of analytical tools needed to transform
and standardise the indicating variables of hazard, vulnerability, and exposure. Table
3.11 provides the summary of those techniques employed.

Table 3.11 Procedural summary of the transformation and standardisation of indicating variables

Flood Risk and
Adaptation
Capacity
Component

Thematic Layer

Transformation and
Standardisation Procedure

Desired Output

3. Cluster and outlier types were

LIDAR point 1. Created terrain geodatabase High resolution
file in ArcCatalog; and 5m-gridded
2. Transformed terrain dataset digital elevation
to raster with 3D Analyst model (DEM)
Flood Hazard - TOQIS' - -
Defined Flood Level | Combined with DEM, 5m-gridded
(DFL) and January continuous DFL and 2011 flood | maps of DFL
2011 flood extent extent were reclassified with and January
fuzzy “small” membership tool 2011 flood
of Spatial Analyst. extent
Point locations of 1. Individually evaluated the 5m-gridded
biological, building expressed patterns of these maps of
damage, chemical, hazards with spatial biological,
and electricity autocorrelation (i.e. Global building
hazards Moran’s I); damage,
Biological, 2. Evaluated the appropriate chemical, and
Chemical, Building distance bands using the z- electricity
Damage, and score results from Global hazards
Electricity Hazards Moran’s I and used them to collectively
run the Cluster and Outlier identified in this
Analysis (i.e. Anselin Local study as
Moran’s 1) to identify spatial | consequential
clusters for each hazard; and | hazards
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Flood Risk and
Adaptation
Capacity
Component

Thematic Layer

Transformation and
Standardisation Procedure

Desired Output

interpolated with the Inverse
Distance Weighted (IDW)
technique of the Spatial
Analyst tool.

Physical
Vulnerability

Building Floor Space
Index
e LIDAR
point
e ArcGIS
Online high
resolution
satellite and
aerial
imagery

1. Digitised almost 17,000
buildings to achieve highly
accurate 2D data from
LIDAR data and
aerial/satellite imagery;

2. Created a building
geodatabase in ArcCatalog;

3. Added surface information
from LIDAR data;

4. Transformed terrain dataset
to raster with 3D Analyst
tools;

5. Performed summary statistics
geoprocessing to calculate
mean heights of the
buildings;

6. Analysed the urban fabrics by
calculating the building floor
space index;

7. Evaluated the expressed
patterns of the buildings with
spatial autocorrelation (i.e.
Global Moran’s I);

8. Evaluated the appropriate
distance bands using the z-
score results from Global
Moran’s | and used them to
run the Cluster and Outlier
Analysis (i.e. Anselin Local
Moran’s 1) to identify spatial
clusters of buildings; and

9. Cluster and outlier types were
interpolated with the Inverse
Distance Weight (IDW)
technique of the Spatial
Analyst tool.

High resolution
5m-gridded
building floor
space index map

Estimated Period of Transformed period of 5m-gridded
Settlement settlement tabular data into period of
vector map and standardised settlement map
with fuzzy “large” membership
tool of Spatial Analyst
Electricity 1. Extracted the critical 5m-gridded
Sewerage infrastructure junctions/ physical
Stormwater nodes from the network; vulnerability
Water Supply 2. Collect events tool of spatial maps

statistics was used to create
weighted counts of the
infrastructure junctions;

3. Spatial autocorrelation
techniques (i.e. Global
Moran’s | and Anselin Local
Moran’s I) were performed to
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Flood Risk and

Thematic Layer

Transformation and

Desired Output

rescue stations, and
January 2011
evacuation centre)

services to the geometric
centroids of all buildings and
calculated the average
response time using 30kph
driving speed;

2. Collect events tool of spatial
statistics was used to create
weighted points of coincident
features of emergency access
and response time;

3. Spatial autocorrelation
techniques (i.e. Global
Moran’s | and Anselin Local
Moran’s 1) were performed to
cluster the emergency
features; and

4. Cluster and outlier types were
interpolated with the Inverse
Distance Weight (IDW)
technique of the Spatial

Adaptation Standardisation Procedure
Capacity
Component
analyse the cluster and
outlier; and
4. Assigned ordinal values to
cluster and outlier types and
then interpolated with the
Inverse Distance Weighted
Physical (IDW) technique of the
Vulnerability Spatial Analyst tool.

Roads and Rails 1. Roads and rails network layer | 5m-gridded
was overlaid with the flood roads and rails
hazard layer; and network

2. Performed line statistics vulnerability
analysis. map

Population by Age Transformed population by age 5m-gridded

tabular data into vector map and | population by
standardised with fuzzy “large” age map
membership tool of Spatial

Analyst.

Total Count of Transformed the total count of 5m-gridded total

Registered registered businesses tabular data | count of

Businesses into vector map and standardised | registered

with fuzzy “small” membership | businesses map
tool of Spatial Analyst.

Educational Transformed the percentage of 5m-gridded

Qualification persons with educational educational

qualification tabular data into qualification
vector map and standardised map
with fuzzy “small” membership
tool of Spatial Analyst.
Point locations of 1. Point distance tool of 5m-gridded
emergency services proximity analysis was used maps of
Social (police stations, to determine the average emergency
Vulnerability hospitals, fire and distance of emergency services

accessibility and
response time
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Flood Risk and

Thematic Layer

Transformation and

Desired Output

Adaptation Standardisation Procedure
Capacity
Component
Analyst tool.

SEIFA (IEO, IER, Transformed the 2011 SEIFA 5m-gridded

IRSAD, & IRSD) (IEO, IER, IRSAD, and IRSD) maps of IEO,
tabular data into vector data and | IER, IRSAD,
standardised with fuzzy “small” | and IRSD
membership tool of Spatial
Analyst.

Insurance (Home and | Transformed insurance tabular 5m-gridded

Content) data into vector map and insurance map
standardised with fuzzy “large”
membership tool of Spatial
Analyst.

Persons in Need of Transformed the percentage of 5m-gridded

Assistance persons in need of assistance persons in need
tabular data into vector map and | of assistance
standardised with fuzzy “large” map
membership tool of Spatial
Analyst.

No Vehicles Transformed the percentage of 5m-gridded no
occupied dwellings without vehicle map
vehicles tabular data into vector

Social map and standardised with fuzzy
Vulnerability “large” membership tool of
Spatial Analyst.

Residential Tenure Transformed residential tenure 5m-gridded

(Renting) tabular data into vector map and | residential
standardised with fuzzy “large” tenure map

membership tool of Spatial
Analyst.

Total Building Value

Transformed total building value
tabular data into vector map and
standardised with fuzzy “small”
membership tool of Spatial
Analyst.

5m-gridded total
building value
map

Unemployment Rate

Transformed unemployment rate
tabular data into vector map and
standardised with fuzzy “large”
membership tool of Spatial
Analyst.

5m-gridded
unemployment
map

Volunteers Transformed the percentage of 5m-gridded
volunteers tabular data into volunteer map
vector map and standardised
with fuzzy “small” membership
tool of Spatial Analyst.

Weekly Personal Transformed the percentage of 5m-gridded

Income persons with weekly income < personal weekly
$400 tabular data into vector income map

map and standardised with fuzzy
“large” membership tool of
Spatial Analyst.
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Flood Risk and

Thematic Layer

Transformation and

Desired Output

Adaptation Standardisation Procedure
Capacity
Component
Social
Vulnerability
Flooded Residential 1. Counts of January 2011 5m-gridded
and Commercial flooded properties from news | flooded
Properties reports were transformed into | residential and
vector map using land use as | commercial
the base map; and properties map
2. Standardised the flooded
properties map with fuzzy
“large” membership tool of
Exposure Spatial Analyst.

Estimated Resident
Population and
Annual Population

Transformed estimated resident
population and annual
population growth rate tabular

5m-gridded
population and
annual growth

Growth Rate data into vector maps and rate maps

standardised with fuzzy “large”

membership tool of Spatial

Analyst.
Electricity Separately performed quadrat 5m-gridded
Sewerage analysis and then standardised heritage sties
Stormwater with spatial autocorrelation and critical
Heritage Sites techniques or hot spot analysis. infrastructures
Water Supply exposure maps

This Chapter demonstrated the different applications of spatially-explicit analytical
tools of transforming and standardising flood risk and climate adaptation capacity
indicating variables sourced from varying spatial information. The selection made
on the statistical tools depends on the geographic types and attributes of indicating
variables to be analysed. In the execution of the statistical tool, extra care was given
attention in such a way not to lose its significance in relation to the established
assumptions.

The results obtained from those analytical tools as inputs for simulating flood risk
and adaptation capacity showed how the methodology can be used with success by
fully exploiting the available spatial information. The issue of representing flood
risk and climate adaptation capacity indicating variables was fully addressed in this
Chapter through the generation of hazard, vulnerability, and exposure indices in
raster format. The steps involved in calculating these indices were fairly
straightforward to some datasets and complex to other datasets. This implies that
there is no single spatially-explicit analytical tool that can deal with variable spatial
information.

After having all the indicating variables transformed and standardised into
raster/gridded format, the next question addressed in this study focused on whether
all of the indicating variables be included in the flood risk and climate adaptation
capacity assessments. The early part of the next Chapter explores the response to
this query.
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Chapter 4

USING SPATIAL MODELLING TO DEVELOP FLOOD RISK
AND CLIMATE ADAPTATION CAPACITY METRICS

4.1 Introduction

Chapter 3 discussed the spatially complex and statistical processes of transforming
and standardising a set of flood risk and climate adaptation capacity indicating
variables into raster datasets. The next step is a novel approach of quantifying flood
risk and climate adaptation capacity indices/metrics within which this Chapter is
designed for. In quantifying the indices/metrics, four main contributions to
computational techniques were deployed: (1) the Artificial Neural Network (ANN)
based on Kohonen’s Self-Organising Map (SOM) architecture or otherwise known
as Self-Organising Neural Network (SONN), (2) joint conditional probable weights
calculation based on Bayesian probability rule, (3) weighted overlay, and (4) fuzzy
gamma overlay. Also significant in Chapter 4 is the prescriptive modelling of
disaster risk reduction and climate adaptation strategies within the spatial
framework.

In most flood risk and climate adaptation capacity assessments, developing a
comprehensive set of metrics is challenging due to a wide variety of climate
adaptations as well as the dynamic nature of various environmental and socio-
economic factors (Szlafsztein 2008). This research problem is further exacerbated by
inductive argumentation which particularly pertains to the sufficiency of indicating
variables and availability of statistical models in climate risk assessment. When
these indicating variables are aggregated with deductive approach (e.g. expert
judgment) or by normative approach (e.g. equal weighting), the delivery of robust
results is an issue due to subjective judgments in the former case and the multi-
dimensionality of variables to different stakeholders in the latter case (Hinkel 2011).
This issue is further aggravated by the process of selecting the indicating variables to
indicate flood risk and its application to adaptation capacity assessment. This study
had devised an ArcGIS-MATLAB algorithm interface in working the self-
organising neural network (SONN) to select appropriate indicating variables and
aggregate them with joint conditional probable weights based on Bayesian theory for
flood risk and climate adaptation capacity modelling.

The research issues and justifications on the use of the above computational

techniques are found in the subsequent sections and discussed more in Chapter 2
(Literature Review).
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4.2 Research Methods

4.2.1 Application of Artificial Neural Network - Self-Organising Neural
Network

A variety of “intelligent” systems has been developed to advance research in
numerous scientific disciplines. While modern digital computers can outperform
humans in difficult numeric computation and manipulation; however, the latter can
effortlessly solve complex perceptual problems at a high speed and extent (Jain et al.
1996). The remarkable difference in their performance lies in the biological neural
system architecture in humans (Jain et al. 1996), which is typically absent in
computation modelling system.

Neural networks or more precisely known as artificial neural networks (ANN) are a
branch of artificial intelligence (Gardner and Dorling 1998) which attempts to
simulate the networks of nerve cell (neurons) of the biological (human or animal)
central nervous system (Graupe 2007). The application of ANN in various
researches was proposed based on modern biology research relating to human brain
tissue, which can be used to simulate neural activity in the human brain
(Markopoulos et al. 2008, Feng and Lu 2010). The rough analogy between artificial
neuron and biological neuron is that the connections between nodes represent the
axons and dendrites, the connection weights represent the synapses, and the
threshold approximates the activity in the soma (Jain et al. 1996, Basheer and
Hajmeer 2000). Figure 4.1 demonstrates n biological neurons with various signals of
intensity x and synaptic strength w feeding into a neuron with a threshold of b
(Basheer and Hajmeer 2000).

» 5 The Perceptron

Threshold —

Figure 4.1 The analogy between artificial neuron and biological neuron
(after Basheer and Hajmeer 2000)

In the application of Self-Organising Neural Network (SONN) for disaster risk
reduction, three most important strategic goals were taken into consideration
following the adoption made by the participants at the 2005 World Conference on
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Disaster Reduction in Hyogo, Japan based on Hyogo Framework for Action 2005-
2015. These include (UNISDR 2005):

1. The more effective integration of disaster risk considerations into
sustainable development policies, planning and programming at all
levels, with special emphasis on disaster prevention, mitigation,
preparedness and vulnerability reduction;

2. The development and strengthening of institutions, mechanisms and
capacities at all levels, in particular at the community level, that can
systematically contribute to building resilience to hazards; and

3. The systematic incorporation of risk reduction approaches into the design
and implementation of emergency preparedness, response and recovery
programs in the reconstruction of affected communities.

The main question for disaster reduction manager generally involves knowledge on
how to integrate disaster risk considerations such as climate adaptation at the
federal, state, or local level and the systematic incorporation of preparedness,
mitigation, response and recovery measures. This study proposed to solve the issue
by utilising spatial analytical tools in combination with self-organising neural
network. The approach was implemented by exploring the multi-parametric
assessment of flood risk and climate adaptation capacity with Kohonen’s self-
organising map (SOM). The standardised variables for flood risk and climate
adaptation capacity variables (see Chapter 3) were analysed in the MATLAB
workspace.

Kohonen self-organising map (KSOM) is a subtype of the ANN that is particularly
useful for visualisation of highly dimensional data (Mele and Crowley 2008). It
consists of a competitive layer that allows classification of datasets with any number
of dimensions into as many classes as the layer has neurons, which are arranged in a
2D topology (The Mathworks Inc. 2011). In this study, the SOM/SONN was
operationalised with four components: 1) input layer referring to the flood risk
indicating variables; 2) neuron computation; 3) output layer; and 4) a map of
clustered variables (Mele and Crowley 2008) as shown in Figure 4.2.

Input Layer Computation  Output Layer Kohonen Map

Flood hazard X ()
. X2
SEIFA index

Building FSI X1 ()
Infrastructure . SEEENG,

4 jee M%
Vo
S

weights s H> e

neurons

Figure 4.2 The conceptual self-organising neural network (SONN) used in the study

This study used Artificial Neural Network (ANN) with emphasis on Self-Organising
Neural Network (SONN) because this computational technique allows multiple
variables in both the input and output layers (Feng and Lu 2010). For examples,
Wallner et al. (2013) designed a regionalisation technique based on self-organising
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maps to optimise sets of model parameters and relate them with sub-catchment’s
physical properties. Choi et al. (2014) emphasised that the relationship between
groundwater samples and variables is found more clearly in using self-organising
maps than principal component analysis (PCA); hence, the approach can be
successfully used to classify and characterise the groundwater in terms of
hydrochemistry and quality. In understanding the effects of landscape and
morphometric factors on water quality of reservoirs, Park et al. (2014) also applied
the technique and found that hydrogeomorphometry of reservoirs and percentages of
land cover types have a considerable impact on the water quality. The integration of
time element with self-organising map was made possible in the study conducted by
Clark et al. (2014) such that the method can be applied to a wide variety of datasets
and is well suited to ecological and environmental data with missing values and data
structures that are changing over time.

To recall, thirty seven (37) indicating variables were standardised in this study (see
Chapter 3) and subsequently used in the SOM/SONN analysis: 5 for hazard, 7 for
physical vulnerability, 17 for social vulnerability, and 8 for exposure. The
consideration of these multiple variables is important since flood risk and adaptation
capacity are often functions of various flood hazard, vulnerability, and exposure
variables, which form the novelty value of this study. In analysing these variables,
vulnerability assessment of individual infrastructure had given particular emphasis.

The advent of geographic information systems has made mapping of flood risk and
climate adaptation capacity variables easier by providing tools that manipulate
spatial data and allow their integration. However, leaping directly into data
integration without initial relational assessment of indicating variables will lead into
less accurate modelling and simulation result. Pavlin et al. (2010) emphasised that
obtaining models can be very challenging because information sources are
heterogeneous and noisy, and reliable detection in such settings requires processing
of large quantities of noisy information. The goal of this exercise was to address
these issues by looking at the patterns and interrelationships that exist among
variables using MATLAB, a high-level technical computing language and
interactive environment for algorithm development, data visualisation, data analysis,
and numeric computation (The Mathworks, Inc. 2011).

The first step in analysing the data in MATLAB was to import the standardised
variables in previously saved Tagged Image File Format (TIFF). The import wizard
generated the names of the standardised variables specified in Chapter 3 with
pertinent descriptions as shown in the following figure.

4\ Import Wizard E
Select variables to import using checkboxes
@ Create variables matching preview.
Create vectors from each column using celumn names.
Create vectors from each row usIng row names.
Variables in C\Users\U1008934'Desktop'\My Data\My Raster\MODSIM\Hazard_TIFF\flood_hazard tif
Import Name Size Bytes Class 1 2 3 4 5 6 i
v EEEI e 1000000 1000000 intd 1 127 2 2 2 2 2 -
2 127 2 2 2 2 2
3 127 2 2 2 2 2 o
] T 3 ] 3
Help < Back Next > Generate MATLAE code | Cancel

Figure 4.3 The MATLAB import wizard tool
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From Figure 4.3, the imported variables are displayed in a 1000x1000 matrix or a
rectangular array of numbers with row and column values shown in the right side of
the panel. These numerical values represent the perceived level of flood risk
described in Chapter 3 (i.e. 1 — low, 2- moderate, 3 — high, 4 — very high). In the
matrix, the value “127” represents the null values from the imported TIFF file. Null
values in the matrix were automatically generated by MATLAB during the
importing process which correspond the Brisbane River in the GIS-based TIFF or
raster file.

To remove the undesired null values from the matrix and automatically create an n x
m array, the following scripts were executed in the MATLAB command window:

Xi (xi>127)=[1];
c=[x1 () x2 (s Xa() 15

where Xx; are the flood risk and climate adaptation capacity
variables
c is the complete set of variables in a single n x m array

n is the number of rows

m is the number of columns represented by 37
variables

Including the flood hazard as the base indicating variable, the i columns in the
matrices represent the indicating variables of flood risk and adaptation capacity.
Utilising the Neural Network Clustering Tool as shown in Figure 4.4, these variables
were grouped or clustered by similarity through the process of classifying a 2-
dimension layer of 100 neurons arranged in a 10 x 10 hexagonal grids. To execute
the learning topology and distribution of indicating variables, the network was
trained with a minimum of two (2) up to a maximum of four (4) using the batch
SOM algorithm with 200 epochs as summarised in Table 4.1

Table 4.1 The number of training performed in the neural network

Infrastructure Asset Number of Training
Electricity 2
Roads and Rails
Sewerage
Stormwater
Water Supply

Integrated Infrastructure

AW W|~

Taking flood hazard as the basis in the pair-wise comparison, the SOM planes were
examined to depict an intuitive pattern of similarity with all indicating variables.
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ﬂNeuml Network Clustering T¢

ﬁ ffa Welcome to the Neural Network Clustering Tool.

Solve a clustering problem with a self-organizing map (SOM) network

Introduction Neural Network

In clustering problems, you want a neural network to group data by
similarity. Input SOM Layer Output

For example: market segmentation done by grouping people according to .. blno II. b.-
their buying patterns; data mining can be done by partitioning dats into -—H_.

related subsets; or bivinformatic analysis such as grouping genes with
related expression patterns.

A self-organizing map consists of a competitive layer which
can classify a dataset of vectors with any number of dimensiens inte as
many classes as the layer has neurons. The neurons are arranged in a 2D
topelogy, which allows the layer to form a representation of the
distribution and a two-dimensional approximation of the topelogy of the
dataset

The Meural Network Clustering Tool will help you sclect data, create and
train a network, and evaluate its performance using a variety of
visualization tools.

The network is trained with the SOM batch algarithm

Bp To continue, dick [Next].
@ Neural Network Start M4 Welcome ® Bacl = Mext )
Figure 4.4 The MATLAB's neural network clustering tool

4.2.2 Quantification of Flood Risk and Climate Adaptation Capacity
Metrics

Computer-based applications require various conflicting sources of information to
be aggregated to form a global contradiction-free system (Gregoire and Konieczny
2006). Probabilistic causal models facilitate the design of robust and flexible
modular fusion systems with the help of causal Bayesian networks (Pavlin et al.
2010). In this section, a methodology is presented to estimate the joint conditional
probable weights of indicating variables that can influence in measuring flood risk
and climate adaptation capacity based on Bayesian theorem. This study used
Bayesian probability based on the following reasons:

1. The probabilistic framework provides accurate prediction of uncertainties
such as in sea level rise and associated inundation levels (Rajabalinejad and
Demirbilek 2013);

2. Bayesian combination of models is an interesting tool for flood estimation
because it gives preference to different models, depending on the catchment
size and on the availability of flood data (Niggli and Musy 2005);

3. Bayesian probabilistic model performs well in providing a foundation for
hazard mapping (Hapke and Plant 2010);

4. Direct probabilistic statements can be made about the unknown parameters,
thus improving communication with decision makers (Parent and Bernier
2003); and

5. Combined with Markov Chain Monte Carlo (MCMC), the Bayesian method
provides a computationally attractive and straightforward technique to
develop a full and complete description of the uncertainty in parameters,
quantiles and performance metrics (Reis and Stedinger 2005).
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4.2.2.1 Calculating Bayesian joint conditional probable weights

From Table 4.2, the values indicated in Bayesian joint conditional probable weight
columns were calculated using the following equation:

Pmax (FR; N V)

P(FR\V) = T n Pmax(FR; N V;)

Eq. 4.1

where:
FR is the flood risk represented by flood hazard as an apriori event
V is an indicating variable
i is the level of perceived flood risk (1-low, 2-moderate, 3-high,
4-very high)
Pmax is the maximum probability of an indicating variable
n is the number of indicating variables

These weight values were used in aggregating the indicating variables of hazard,
vulnerability, and exposure. The purpose of calculating weights with Bayesian probability
was to address the multi-dimensionality issue in the normative argument of equal weights.
In the normative argument, the indicating variables are aggregated such that each dimension
should be equally important in characterising the state of development (UNDP 1991, 1993;
Hinkel 2011). However, vulnerability assessment is not a straightforward exercise because
aggregation is complicated as multiple stakeholders value the dimensions in different ways
(Hinkel 2011). Within the context of spatial dimension, the development of risk from
different indicating variables varies across the space. In community vulnerability
assessment, for example, people affected by floods, wetlands lost, damage cost, and
adaptation cost are important dimensions to consider (Hinkel 2011).

4.2.2.2 GIS-based weighted overlay analysis

In the geospatial domain, data aggregation can be operationalised using the weighted
overlay analytical tool which is available in several GIS software such as ArcGIS.
Figure 4.5 shows an example of how weighted overlay analysis was executed in
generating hazard index. The values shown in % influence column of the figure
were the calculated Bayesian joint conditional probable weights using Equation 4.1
(also see Table 4.2). The weighted overlay technique was also utilised to produce the
vulnerability and exposure indices.
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ﬁ\ﬂaﬂg hted Overla
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2 2
3 3
4 4
1 MODATA MODATA
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2 2
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ry ry L=
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Output raster
CiYWsers\U 1008999 \ Documents WrcGIS \Default. gdbYWweighted _Overlay_Hazard

Figure 4.5 Example of ArcGIS weighted overlay analytical tool used in the study

After having generated the hazard, vulnerability and exposure indices, the fuzzy
gamma overlay analysis was performed to derive the flood risk index, which in turn
used in calculating the climate adaptation capacity index. The choice and
justifications on the use of these analytical tools were further discussed in Chapters 2
and 3.

4.3. Results and Discussions

4.3.1 Generated SOM/SONN planes by infrastructure assets

Shown in Figures 4.6 to 4.11 below are the generated SOM/SONN planes of all
indicating variables by infrastructure asset and integrated infrastructure assets. Using
flood hazard as the basis in the pair-wise comparison, results of the analysis revealed
intuitive pattern of similarity and dissimilarity among the indicating variables. From
Table 4.2, the indicating variables marked with “x” were excluded from further
analysis because they have general patterns dissimilar to flood hazard. However,
when all these indicating variables were integrated (Figure 4.10), the pair-wise
comparison showed that all indicating variables were included for further analysis
because they have not shown clear patterns of dissimilarity.

Furthermore, Table 4.2 summarises that 27 out of 30 indicating variables from
electricity, roads and rails, sewerage, and stormwater; 28 out of 30 from water
supply; and 30 out of 30 from integrated infrastructures were selected or included in
the quantification of flood risk and climate adaptation capacity metrics.

84



Chapter 4 Development of Flood Risk and Climate Adaptation Capacity Metrics
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Figure 4.6 The SOM/SONN planes of indicating variables for electricity infrastructure vulnerability assessment
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Figure 4.8 The SOM/SONN planes of indicating variables for sewerage infrastructure vulnerability assessment
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Figure 4.9 The SOM/SONN planes of indicating variables for stormwater infrastructure vulnerability assessment
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Figure 4.10 The SOM/SONN planes of indicating variables for water supply infrastructure vulnerability assessment
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Figure 4.11 The SOM/SONN planes of indicating variables for integrated infrastructures vulnerability assessment
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Table 4.2 The indicating variables used in the SOM/SONN analysis and corresponding Bayesian joint conditional probable weights

Flood Risk/ Adaptation | Selected Indicating Variable Bayesian Joint Conditional Probable Weight
Capacity Component Electricity Roads & Sewerage Storm Water Integrated
Rails Water Supply Infrastructures
Hazard Biological Hazard 0.22 0.22 0.22 0.22 0.22 0.22
Building Damage Hazard 0.22 0.22 0.22 0.22 0.22 0.22
Chemical Hazard 0.24 0.24 0.24 0.24 0.24 0.24
Electricity Hazard 0.22 0.22 0.22 0.22 0.22 0.22
Flood Hazard 0.10 0.10 0.10 0.10 0.10 0.10
Physical Vulnerability Building FSI 0.35 0.37 0.42 0.28 0.30 0.13
Vulnerability of Electricity 0.28 NA NA NA NA 0.10
Period of Settlement 0.37 0.38 X 0.30 0.39 0.14
Vulnerability of Roads & NA 0.25 NA NA NA 0.09
Rails

Vulnerability of Sewerage NA NA 0.58 NA NA 0.18
Vulnerability of Stormwater NA NA NA 0.42 NA 0.19
Vulnerability of Water Supply NA NA NA NA 0.31 0.17
Social Vulnerability Age 0.06 0.06 0.06 0.06 0.07 0.05
Total Count of Registered 0.08 0.08 0.07 0.08 0.08 0.07

Businesses
Educational Qualification 0.05 0.05 0.04 0.05 0.05 0.04
Access to Emergency Services X X 0.09 X X 0.09
Emergency Response Time X X 0.07 X X 0.07
IEO 2011 0.07 0.07 0.06 0.07 0.07 0.06
IER 2011 0.06 0.06 0.04 0.06 0.06 0.05
IRSAD 2011 0.05 0.05 0.04 0.05 0.05 0.05
IRSD 2011 0.07 0.07 0.06 0.07 0.07 0.06
Home and Content Insurance 0.09 0.09 0.06 0.09 0.08 0.07
Persons in Need of Assistance 0.06 0.06 0.04 0.06 0.06 0.05
Vehicle Ownership 0.05 0.05 0.04 0.05 0.05 0.04
Residential Tenure (Rental) 0.07 0.07 0.05 0.07 0.07 0.06
Total Building Value 0.13 0.13 0.10 0.13 0.13 0.11
Unemployment 0.05 0.05 0.04 0.05 0.05 0.04
Volunteer 0.05 0.05 X 0.05 0.05 0.04
Weekly Income 0.06 0.06 0.04 0.06 0.06 0.05
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Flood Risk/ Adaptation

Selected Indicating Variable

Bayesian Joint Conditional Probable Weight

Capacity Component Electricity Roads & Sewerage Storm Water Integrated
Rails Water Supply Infrastructures

Exposure Electricity Connections 0.23 NA NA NA NA 0.12
Flooded Properties 0.39 0.51 0.38 0.40 0.31 0.20
Heritage Sites X X X X 0.12 0.08
2011 Population 0.20 0.26 0.20 0.21 0.16 0.10
Population Growth Rate 0.18 0.23 0.18 0.18 0.14 0.09
Sewerage Connections NA NA 0.24 NA NA 0.13
Stormwater Connections NA NA NA 0.21 NA 0.10
Water Supply Connections NA NA NA NA 0.27 0.18

Ratio Selected (No.) 27 27 27 27 28 30

Total (No.) 30 30 30 30 30 30

X — Excluded from further analysis

NA — Not applicable
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4.3.2 Flood Risk and Climate Adaptation Capacity Models

Applying the weighted overlay analytical tool as discussed in Section 4.2.2.2, the
physical vulnerability, social vulnerability, and exposure indices of the study area were
calculated. Figure 4.12, Figures 4.13 to 4.18, Figures 4.19 to 4.24, and Figures 4.25 to
4.30 show the weighted overlay maps of hazard, physical vulnerability, social
vulnerability, and exposure indices, respectively. From here onwards, the maps are
presented using uniform symbols such that areas from green to red represent low to very
high hazard/vulnerability/exposure, respectively.
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Figure 4.12 The weighted hazard index map
for assessing specific and integrated infrastructures
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Figure 4.13 The weighted physical vulnerability index Figure 4.14 The weighted physical vulnerability
map for assessing electricity infrastructure index map for assessing road and rail

infrastructures
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In conjunction with the fuzzy gamma overlay analysis (see Chapter 3), Equations 3.1 to
3.6 were operationalised to calculate the flood risk and climate adaptation capacity
indices. As explained in Chapter 3, the fuzzy gamma overlay operation was chosen in
this study to resolve the confusion as to which risk equation (see Eg. 3.1 and 3.2) will
be used in the assessment. This operation combined the “increasive” and “decreasive”
effects of fuzzy “sum” overlay and fuzzy “product” overlay operations, respectively
(Farrell et al. 2006). Aside from the use of gamma coefficient as a well-known rank
correlation measure to quantify the strength of dependence between two variables (Ruiz
and Hullermeier 2012), the application of fuzzy gamma model is very useful in
analysing the spatial change such as drought hazard which is significant for drought
management (Xing-peng et al. 2013). Applying 0.9 as the gamma coefficient (ESRI
2011), the overlay operation was made by using the weighted index maps shown in
Figures 4.12 to 4.30 by specific infrastructure and then the integrated infrastructure.
Using the raster calculator tool in ArcGIS 10, the following flood risk and climate
adaptation capacity index maps were generated.
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Figure 4.43 below summarises Figures 4.31 to 4.42 in stacked columns which compare
the contribution of each area (in hectares) being occupied by the level of flood risk and
adaptation capacity to the total study area across infrastructure categories. The colour-
coded vertical rectangles show the four levels of flood risk and adaptation capacity with
dark green, light green, orange, and red as low, moderate, high, and very high,
respectively. The bar graphs also show the inverse relationship of flood risk and
adaptation capacity by infrastructure category. By comparing the red columns (i.e. very
high) from the flood risk as against the dark green columns (i.e. low) from adaptation
capacity, the analysis revealed that the areas being occupied with very high flood risk
are larger than the areas being occupied with low adaptation capacity across
infrastructure categories. The same observation was also demonstrated when the
infrastructures were integrated.

Furthermore, this inverse relationship of flood risk and adaptation capacity signifies that
areas of low adaptation capacity are located on areas of very high flood risk.

On the other hand, when dark green columns (i.e. low) from flood risk were compared
as against the red columns (i.e. very high) from adaptation capacity, the analysis
revealed that the areas being occupied by very high adaptation capacity are smaller than
the areas being occupied by low flood risk all across infrastructure categories. This
trend was further exemplified when these infrastructures were integrated.

98



Chapter 4 Development of Flood Risk and Climate Adaptation Capacity Metrics

The significance of understanding this relationship demonstrates that flood risk
outweighs the climate adaptation capacity of the study area. The fine points are
discussed in the succeeding section.

4.3.3 Flood Risk and Climate Adaptation Capacity Model Applications

Figures 4.31 to 4.42 are also summarised in Table 4.3 below. This matrix shows the
proportional values of areas being occupied by flood risk (in yellow rows) and climate
adaptation capacity (in green rows) with corresponding metrics by descriptive level across
infrastructure category. In conjunction with the fuzzy gamma overlay analysis (see Chapter 2),
the metrics were calculated using Equations 3.1 to 3.6 described in Chapter 3 through the raster
calculation technique in ArcGIS 10.
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Figure 4.43 The area coverage of flood risk and climate adaptation capacity by infrastructure asset
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Table 4.3 The area coverage (%) and corresponding flood risk and adaptation capacity metrics

Level Low Moderate High Very High
Scale Area Metric/ Area Metric/ Area Metric/ Area Metric/
Infrastruc (%) Index (%) Index (%) Index (%) Index
Electricity 18 2.00-3.95 2 3.95-4.12 42 4.12-6.06 38 6.06-28.84
13 -21.84- -3.26 30 -3.26- -1.24 47 -1.24- 0.00 9 0.00-1.00
Roads & Rails 18 2.00- 3.95 3 3.95-4.12 41 4.12 -6.06 38 6.06 — 28.84
13 -22.84- -3.30 31 -3.30--1.31 47 -1.31- 0.00 9 0.00-0.91
Sewerage 17 2.00-3.95 15 3.95-4.12 31 4.12-6.06 37 6.06-28.84
12 -21.84- -3.26 37 -3.26- -1.24 44 -1.24- 0.00 7 0.00-1.00
Stormwater 21 2.00-3.95 5 3.95-4.12 39 4.12-6.06 35 6.06-28.84
13 -21.84- -3.26 31 -3.26--1.24 47 -1.24-0.00 9 0.00-1.00
Water Supply 17 2.0-4.90 24 4.90-5.33 29 5.33-8.23 30 8.23-28.0
19 -21.00- -4.80 25 -4.80- -2.12 56 -2.12-0.00 0 0.00-1.00
Integrated 18 2.07-4.02 22 4.02-4.18 25 4.18-6.12 35 6.12-28.84
Infrastructure 12 -21.84- -3.32 37 -3.32- -1.30 44 -1.30-0.00 7 0.00-0.93
Average 18 12 34 36
14 32 47 7
DRR Measures/ Mitigation Mitigation to Mitigation to Mitigation to Recovery
CA Strategies Preparedness Response

Flood risk
Climate adaptation capacity

Interestingly, Table 4.3 shows the relationship between the climate adaptation capacity
metrics (in green rows) and the flood risk metrics (in yellow rows) of the study area.
Analysing the matrix by column, for example, it shows that the percentage of areas
occupying very high level of flood risk is larger than the percentage of areas being occupied
by very high adaptation capacity. On the average, seven percent (7%) of the study area
(approximately 158 ha) reveal positive adaptation capacity metrics (>0 to maximum of 1).
This positive adaptation capacity metrics would signify that the resources within those areas
are one unit above the zero break-even and would indicate a positive measure of the
capability to mitigate flood or climate risk. However, extra caution should be taken into
account considering that some areas are positioned in a highly favourable physical condition
(e.g. higher elevation) but the socio-economic resources inhibit the adaptation to climate
risk.

Moreover, the majority of the study area (93%) reveals negative adaptation capacity metrics
(minimum of -22.84 to <0) which indicate that the capacity of the urban community requires
further deliberation as to how climate adaptation is intrinsically inseparable to the physical
and social vulnerability. If vulnerability takes the definition in this study as the capacity of
the people, community, or system to withstand flood risk, it follows then that vulnerability
is inherently associated with the general political-economy of resources, wealth, physical
and social well-being, governance, and political will. This significant finding would imply
that vulnerability as a resource-oriented factor determines the strength or weakness of the
study area; such that the generated negative values for adaptation capacity meant that the
resources (e.g. socio-economic) are not enough to increase climate resiliency of the urban
community and critical infrastructures (Espada et al. 2012). The results further signify that
the resources of the community are outbalanced by 31 units taking zero as the break-even
metric.

Consistent with the DOTARS’(2002) findings, the response measures on floods, coastal
inundation, storms and cyclones are not sufficient to assist the economic and social recovery
of the communities. In 2013, the Commonwealth government of Australia had planned to
set up the National Insurance Affordability Council, which would manage the $500 million
worth of national co-ordination of flood-risk management and other natural disaster
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mitigation projects (Hannam 2013). However, the cost of the entire expense for the projects
was yet unclear (Hannam 2013). Hence, this study emphasised the importance of linking the
flood risk and adaptation capacity metrics to identify flood priority areas for funding support
to increase climate resiliency.

These findings would further imply that the study area requires a range of disaster risk
reduction (DRR) or climate adaptation (CA) adaptation strategies that would increase
community and critical infrastructure resiliency. Adopted from Queensland Reconstruction
Authority’s (QRA) (2011) four phases of disaster risk reduction, the broad adaptation
strategies identified to increase community resiliency include mitigation, preparedness,
response, and recovery. Looking back at Table 4.3, the matrix suggests of considering the
following disaster risk reduction measures and/or climate adaptation strategies:

¢ Mitigation on areas of low flood risk or very high climate adaptation capacity;
Mitigation to preparedness on areas of moderate flood risk and high climate
adaptation capacity;

e Mitigation to response on areas of high flood risk and moderate climate adaptation
capacity; and

e Mitigation to recovery on areas of very high flood risk and low climate adaptation
capacity.

The specific discussions on this area of research are outlined in Chapters 5 and 6.

4.4 Summary and Conclusion

This Chapter discussed the novel approach of integrating the flood risk and climate
adaptation capacity assessment process. This includes the linkage application of
Artificial Neural Network (ANN), Bayesian joint conditional probability, weighted
overlay, and fuzzy gamma overlay within the GIS framework. A better
understanding was gained about the process of integrating the flood risk and climate
adaptation capacity indicating variables using those analytical tools. This has been
demonstrated by the improved method of assessment such as: 1) the empirical
selection of flood risk and climate adaptation capacity indicating variables through
the application of Self-Organizing Neural Network (SONN); 2) the application of
Bayesian joint conditional probability in assigning weights of indicating variables
rather than using equal weighting and expert opinion; and 3) the operation fuzzy
gamma-enabled quantification of flood risk and climate adaptation capacity. This
will offer reduction in computational confusion, uncertainty on data selection and
assigning of appropriate probable weights, and the time and resources involved in
the climate risk analysis. Significantly, the procedures used in this study
comprehensively discussed the mapping of flood risk (i.e. descriptive modelling)
and extended to climate adaptation strategies (i.e. prescriptive modelling) within the
GIS environment.

Identified as the main contribution in this study, i.e. the flood risk-adaptation
capacity index-adaptation strategies (FRACIAS) linkage model, the model allows
the identification of areas characterised with very high flood risk and low adaptation
capacity. The model was further used in identifying the disaster risk reduction
measures and climate adaptation strategies in the study area. The results from this
study are particularly useful for the development of sustainable policies on natural

102



Chapter 4 Development of Flood Risk and Climate Adaptation Capacity Metrics

disaster risk reduction, identification of priority communities for building climate
resiliency, and systematic integration of mitigation, preparedness, response, and
recovery programs in the reconstruction of communities exposed to climate risk.

Whilst the flood risk and adaptation capacity indices were obtained through a robust
methodology, the disaster risk reduction measures and adaptation strategies were
identified subjectively — an issue that is further addressed in Chapter 6 through an
optimisation technique called Markov Decision Processes (MDPs).
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Chapter 5

VULNERABILITY ASSESSMENT OF CRITICAL
INFRASTRUCTURES FOR INTERDEPENDENCY ANALYSIS

5.1 Introduction

This Chapter provides innovative contribution in the utilisation of GIS in assessing
the vulnerabilities and characterising the interdependencies of critical infrastructure
systems (CIS). As a significant issue for exploration, this study examined the
vulnerabilities and interdependencies of electricity, roads and rails, sewerage,
stormwater, and water supply into three (3) aspects: (1) network modelling of CIS
vulnerabilities; (2) characterising the CIS interdependencies; and (3) outlining the
climate resiliency measures for flood mitigation and climate adaptation.

Applying the utility network theory, the development of this analytical tool aimed to
assist infrastructure managers in the preparation of contingency plans and operations
particularly during extreme climatic event such as flooding. By showing the
infrastructure networks’ potential path of disruption due to flooding, this research
innovation allows planners and responders to visually identify interrupted networks
in order to make informed decisions for efficient disaster risk reduction and climate
adaptation.

Whilst catchment and land use management considered the significance of an
integrated approach in floodplain management, the interdependency of critical
infrastructures is often neglected in formulating the climate adaptation strategies and
flood disaster risk reduction measures. Finding and learning the adaptation measures
implemented during the 2010/2011 floods in Queensland will contribute in the
improvement of infrastructure interdependency management within other flood
plains.

The research issues and justifications on the choice of analytical tools used in this
Chapter are discussed in the subsequent sections and more in Chapter 2 (Literature
Review).

5.2 Research Methods

5.2.1 Setting the Dimensions of Critical Infrastructure Interdependency

The dimensions of critical infrastructure interdependency in Queensland in relation
to the 2010/2011 flood events are conceptualised in Figure 5.1. This study
investigated the interrelated factors influencing the dimensions of infrastructure
interdependency namely, a) climate risk environment, b) infrastructures’ cascade
and common cause failures, c) adaptation/resiliency measures, and d) physical and
geographic types of interdependency.
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Figure 5.1 The dimensions of infrastructure interdependency used in this study
(adopted from Rinaldi et al. 2001)

5.2.2 Climate Risk Environment

Floodplain risk management refers to all courses of actions that enable a floodplain
ecosystem manage and cope with floods (NFRAG 2008). In Australia, the floodplain
ecosystems are areas of commercial, social, and ecological significance where towns
and cities were principally located due to historical reasons associated with access to
fertile soil, water supply, recreation, etc. (QRA 2011). These towns and cities are
dependent on critical infrastructures to function effectively. Ideally, these critical
infrastructures should be built outside flood prone areas; however, many of the
infrastructures such as electricity, telecommunications and sewerage did not exist
during the early period of town and land use planning.

Floodplains are highly productive ecosystems, but intensively used by humans for
agricultural and urban development, which in turn resulting in the loss of
biodiversity and ecological functioning (Tockner et al. 2008). When massive floods
occur across inhabited floodplain areas, it can result in significant damages to public
infrastructures, private properties, and economy. These consequential damages of
floods can cause the loss of lives, disrupt significant infrastructure services, and
bring enormous challenges for immediate socio-economic recovery.

One way to conceive disaster risk reduction (DRR) initiatives is to understand the
four (4) interrelated steps: acknowledge risk, assess (characterise and analyse) risk,
communicate risk, and address risk (Bell 2010). Risk assessment and addressing the
risk offer the greatest challenge in disaster risk reduction. Floodplain disaster risk
assessment requires accurate information and an in-depth understanding of the three
components of risk: hazard, vulnerability and exposure. Specific considerations in
the assessment include the determination of the nature and extent of risk by
analysing potential hazards and evaluating existing conditions of vulnerability that
together could potentially harm exposed people, property, services, livelihoods and
the environment on which they depend (UNISDR 2009). The flood risk and climate
adaptation capacity assessments were initiated to help address this issue. The
procedures and discussions were comprehensively set in Chapters 3 and 4.
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In linking Chapters 3 and 4 in setting the climate risk environment, those chapter
studies were conducted to assess the flood risk and climate adaptation capacity of
the study area. The process started with the standardisation and transformation of
thirty seven (37) flood risk and climate adaptation capacity indicating variables (5
for hazard, 7 for physical vulnerability, 17 for social vulnerability, and 8 for
exposure) with different spatially-explicit analytical tools such as a) high resolution
digital elevation modelling and urban morphological characterisation with 3D
analysis, b) spatial analysis with fuzzy logic, c) geospatial autocorrelation
techniques with global Moran’s I and Anselin Local Moran’s I, among others. Using
a 2-dimension self-organising neural network (SONN) with 100 neurons and trained
by 200 epochs, the standardised variables were selected for inclusion in the Bayesian
joint conditional probability weighted overlay and modified fuzzy gamma overlay
operations. There were two outputs generated from the analyses: the flood risk
model and the climate adaptation capacity model. The outputs of the overlay
analyses revealed an inverse relationship between the degree of flood risk and
climate adaptation capacity (Espada et al. 2013b, 2013c). Being readily available,
the flood risk map generated from these previous studies was used to set the climate
risk environment.

The complex nature of the climate risk environment significantly poses challenges in
understanding interdependency. Climate risk, either in the form of climate change or
variability, is one of the biggest challenges the world faces. The extreme weather
events in December 2010 to January 2011 that resulted in a series of damaging
floods in the State of Queensland, Australia (McDougall 2012) are good examples.
Hence, it is important to build a strong flood risk management scheme to achieve a
highly adaptive and resilient State and its infrastructures. However, flood plain
planning schemes often lack the consideration of an interdependency approach.

5.2.3 Critical Infrastructures’ Common Cause and Cascade Failures

No matter how any government and public intensify its willingness to pay for
resilience, failures cannot be avoided (Collins et al. 2011). However, a proactive
approach of risk management can help minimise the problem rather than to wait for
infrastructure failures and breakdowns due to its inherent vulnerabilities (Johansson
and Hassel 2010). Otherwise, failures may cascade from one infrastructure system to
another (Little 2002) or even get back to the system itself due to high degrees of
complexity (Johansson and Hassel 2010), spatial dependencies and
interdependencies (Zimmerman 2001).

This section probes the failures of the critical infrastructures through risk and/or
vulnerability assessment into two levels: the single system level and multi-system
level. As a good basis for decisions regarding disaster risk reduction (Aven 2003)
and climate adaptation, risk and vulnerability assessment will increase our
knowledge about how the critical infrastructures in Brisbane City were exposed to
flood hazards and what were the consequences that aroused from the exposure.

5.2.3.1 Modelling the Individual Systems

The approach to critical infrastructure vulnerability assessment in this study was
motivated by the field of network theory where two basic components, nodes and
edges, build up the model of the system (Johansson and Hassel 2010). A network is
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a set of interconnected line features that represent paths of movement (Davis 2001)
within which characterised by edges and nodes or junctions. The edge is the line that
runs between two nodes or junctions (Mitchell 2012). A node is not a physical
“point”, but only a location indicator for the beginning and end of the edge (Davis
2001). At the single system level, this study used the network theory because, aside
from measuring topological interconnection as emphasised in Chapter 2, it serves as
a screening tool for identifying the most vulnerable parts of a critical infrastructure
(Eusgeld et al. 2009). In ArcGIS 10, two nodes are required to be clearly defined in
order to execute the network model: the source and the sink. The source is the
beginning node while the sink is the end node.

In this study, the structure of the network models was guided by the following
procedures:

1. Identification of feature classes to participate in the network.

2. Creating the network connectivity rules that constrain the type of
infrastructure network assets that allow to be connected to each other. The
Utility Network tool of ArcGIS 10 was operationalised in establishing the
network connectivity rules.

3. Using the generated flood risk and/or climate adaptation capacity map of
individual infrastructure from Chapter 4 to geographically locate either the
sources or the sinks of the infrastructure network within areas of very high
flood risk and low adaptation capacity.

5.2.4 Characterising the Critical Infrastructure Interdependencies

Comprehensively discussed above are issues and methods associated with the
fundamental understanding of the risk and vulnerabilities of critical infrastructures at
the single level. Whether these critical infrastructures are state-owned or managed
by local councils, their risk assessment approaches vary according to their
requirements. There is no single entity attempts to integrate these infrastructures to
evaluate and assess the risk of the critical infrastructures at the system-of-systems
level. Hence, this section is designed to look at the infrastructure system at a larger
and comprehensive scale. Following the argument of Burian et al. (2013), the goal
of this study was not mainly to summarise the climate vulnerabilities and adaptation
strategies of infrastructure systems but also to highlight the importance of the
interdependency of infrastructures in relation to extreme climatic event.

A variety of analytical tools (e.g. Supervisory Control and Data Acquisition
(SCADA)) is currently available in understanding the behaviour of critical
infrastructures either at single system level or interdependency level. This section
focuses on the interdependency approach of assessing the risk and vulnerabilities of
critical infrastructures. The relational interdependencies of critical infrastructures
were analysed using the Identity Analysis and Query Builder tools in ArcGIS 10.
The former computed the intersections of all vulnerable infrastructures with identity
values shown in Table 5.1. On the other hand, query builder were used in ArcGIS 10
to select the identity of the critical infrastructures specified in Table 5.1 to set the
geographic interdependency of the critical infrastructures. An example is shown in
Figure 5.2.
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Table 5.1 The identity values of critical infrastructures

Query Builder...

Critical Infrastructure Identity
Electricity Network 1
Road Network 2
Railway 3
Water Supply Network 4
Stormwater Network 5
Sewerage Network 6
[EE—— Query Builder [?] =2 |
[ General | Source | Selection | Display | Symbology ||| | "EGX" -7
A—
"Infra_ID" = 10R "Infra_ID" =6 "WTR"
STRMWTR" -
[=] Like
L
[ Gt riaue Vales | Go Te

SELECT * FROM Infra_Interdepend_Merged_F WHERE.
"Irfra_ID" = 1OR "Irfra_ID" = 6

Clear ]I Verify J{ Help Il Load.. IISave.J

|
[ ok ][ cance [ sepy |

Figure 5.2 A sample

query builder used to identify the

geographic interdependency of electricity and sewerage networks

5.3 Results and Discussions

5.3.1 Vulnerability Assessment of Critical Infrastructures at Single System

Level

The vulnerability of critical infrastructures at single system level is discussed in this
section. The infrastructures included in the analysis were electricity, road and rail,
water supply, sewerage, and stormwater networks.

5.3.1.1 Electricity Network Model

Power outages during the 2010/2011 floods in South East Queensland were directly
and indirectly linked to flood-damaged network that caused significant
consequential effects such as (Energex 2011b):

e Devastation of property

e Major pre-emptive interruption of supply to approximately 150,000
customers in Ipswich and Brisbane areas; and

e Cleaning up and restoration
affected by flood waters.

of power to approximately 60,000 homes

The distribution of electrical power in Queensland is provided by Energex Limited
and Ergon Energy Coporation Limited (QFCI 2011, QFCI 2012). Energex is
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responsible for the electricity distribution in South East Queensland including the
regions of Brisbane, Ipswich, Gympie and the Lockyer Valley (Energex 2011) while
Ergon Energy is responsible to rural and regional Queensland (DEWS 2013) as
shown in the following maps. The former, a government-owned corporation,
provides electricity supply to 1.32 million customers in the region, of which 1.21

million are residential (Energex 2011b).
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Figure 5.3 The Ergon Energy (left) and Energex (right) power distribution maps
(Source: Australian Energy Regulator (AER))

The electricity supply system in Queensland has four interconnected components:
generation, transmission, distribution and retail (DEWS 2013) (see Figure 5.3).
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Figure 5.4 The typical electricity supply system in Queensland
(Source: Department of Energy and Water Supply (DEWS))

Electricity generation is the process of producing power at power stations from
utilising other sources of primary energy such as coal, gas, oil, water, wind,
geothermal or solar (DEWS 2013). In Queensland, electricity generation is provided
by government-owned corporations and private companies (DEWS 2013).

Electricity transmission is the transport of high voltage electricity from power
stations where electricity is generated to the electricity distribution networks
(Powerlink Queensland 2012). In Queensland, Powerlink transmits high voltage in
bulk from where it is generated to distribution companies owned by Ergon and
Energex and to some major industrial customers (Powerlink Queensland 2012).

The term distribution is used to describe the supply of power from the zone
substations to transformers or customer connection points via designated feeders
(Energex 2011). In the process of distribution, the voltage of the electricity is
progressively reduced at a series of substations throughout the network until it
reaches the final voltage of 240 volts (V) for supply to customers (DEWS 2013).

As specified in the Network Management Plan 2011/2012-2015/16, ENERGEX
(2011b) takes supply of electricity from Powerlink and distributes the power through
sub-transmission and distribution system to customers throughout the SEQ region.
The zone substations and distribution substations convert the voltages to meet
customers’ requirements and minimise network losses (Energex 2011b). Within the
study area, this type of networking system is schematically represented in Figure
5.5. Using six hub centres as ENERGEX’s distribution areas (Energex 2011b), the
study area is within the boundary of Central West Hub and Metro South Hub.

Figure 5.5 also depicts that the study area is typically supplied by 110/33 kV or
110/11 kV substations. The area has also extensive older, meshed 33 kV
underground cable networks that supply substations (Energex 2011b). These
components characterised the nodes and edges that participated in the risk and/or
vulnerability assessment of the electricity network as summarised in Table 5.2.
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Figure 5.5 The electricity network map of the study area

Table 5.2 The electricity assets that participated in the electricity network model

Source Edge Sink
Transmission Role
Lines
Zone Supply | 110kV Simple Edge Underground Sites
Substation - -
33kV Simple Edge Underground Sites
11kV Simple Edge Underground Sites
Low Voltage Simple Edge Overhead Pole Sites
Underground Low Voltage Simple Edge Underground Sites
Substation
Underground Low Voltage Simple Edge Underground ~ Common
Cubicle Substation Use Sites
Overhead Pole | Low Voltage Simple Edge Non-ENERGEX
Substation Overhead Sites

After having established the network connectivity rules using the Utility Network
tool in ArcGIS 10, the power distribution system was analysed by identifying the
highly vulnerable critical assets that were found within areas of very high flood risk
and low adaptation capacity (see Chapter 4). The analysis revealed that 75 of these
assets are within those areas as summarised in Table 5.3.
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Table 5.3 Count of highly vulnerable electricity assets within
very high flood risk zone (a) or low adaptation capacity zone (b)

Electricity Asset North West South East Total
Area (No.) Area (No.) (No.)

Supply 13 0 13

substations

High voltage 31 9 40

switches

Pole transformers 11 11 22

Total 55 20 75

Using these highly vulnerable critical electricity assets as flag junctions (see blue,
pink and brown dots in Figures 5.6 or 5.7), the connections of electricity
transmission lines were traced and then calculated its total linear kilometers. Results
of the path analysis revealed that electricity supplies were disrupted along the
627km (75%) and 212km (25%) transmission lines in the North West and South
East areas, respectively, due to the flood event. These results are summarised in
Table 5.4 with the corresponding vulnerability maps shown in Figures 5.6 and 5.7.
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Figure 5.6 The electricity network vulnerability maps in the north east to south west areas using flood risk (left)
and climate adaptation capacity (right) models
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Figure 5.7 The electricity network vulnerability maps in the south east area using flood risk (left) and climate
adaptation capacity (right) models

Table 5.4 Summary of potentially disrupted electricity transmission lines within the study area

Disrupted Connections
Transmission Line (linear km) Total (km)
North West Area South East Area
110 kV 13.80 4.72 18.51
33 kV 22.86 3.90 26.77
11 kv 260.49 81.34 341.83
Low Voltage 330.12 121.82 451.95
Total 627.27 211.78 839.06

As shown in Figures 5.6 and 5.7, the damage to shared electricity network
infrastructure due to flooding disrupted the power supply to large numbers of people
including non-flooded premises (Arnold 2011, QFCI2012). During the January 2011
flood, power was disconnected in flooded and selected non-flooded areas as
precautionary measure. Validated from the QFCI Final Report, one of the highly
vulnerable zone substations that was significantly impacted and disconnected during
the January 2011 flood that revealed in the vulnerability map was the Milton
substation. With the flood reached 0.95m above the 1% annual exceedance
probability (AEP) on the site, the floodwaters surrounded the area and significantly
damaged the substation’s equipment below the flood level with an estimated cost of
$750,000 (QFCI 2012).

The results from these analyses can assist power industry to apply vulnerability
information in decision-making for increasing critical infrastructure resiliency.
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5.3.1.2 Road and Rail Networks

The Queensland’s Department of Transport and Main Roads is charged with the
development and upkeep of the state-controlled network of roads (QFCI 2012). The
state has over 33,000 kilometres of state-controlled roads wherein 9,170 kilometres
of these road networks were affected by 2010/2011 flood events with 8,482
kilometres had been recovered as of September 2011 (QRA 2011). One of the
implications of the state-wide flooding was the closure of roads, and isolated several
rural and urban communities for a number of days.

In Brisbane City, the estimated cost of flood recovery work for minor roads and
related infrastructure was $156 million (BCC 2012). The Council restored 91 km of
road by September 2011 (BCC 2012b). Figures 5.8 and 5.9 show the road networks
within the state of Queensland and the study area, respectively.
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Figure 5.9 The road network map of the study area

On the other hand, the rail infrastructure in Queensland is owned by the state
government through the Queensland Rail (QFCI 2012). The company operates the
rail network that connects people around Queensland and Brisbane City for
transportation and travel as shown in Figures 5.10 and 5.11 (Queensland Rail 2014).
However, the 2010/2011 floods affected more than 3,000 km of the rail network
across the state (QFCI 2012). In Brisbane, the passenger network was almost
operational within six hours of flood (QFCI 2012).
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Figure 5.11 The train network map of Brisbane City
(Source: Queensland Rail and Translink)

To assess the vulnerability of road and rail

networks within the study area, the road

and rail networks were overlaid with the flood risk and climate adaptation capacity
maps. The simple overlay analysis of ArcGIS 10 was instrumental in analysing the
vulnerability of the road and network system. The analysis showed that

118




Chapter 5 Vulnerability Assessment of Critical Infrastructures for Interdependency Analysis

approximatelyl70km (47%) of road and 2.5km (38%) of rail networks were
identified within very highly risk and low adaptation capacity (see Figure 5.12).

One of the significant issues during the January 2011 flood was the isolation of
some residential areas, hospitals and aged care facilities in Brisbane City. To help
minimise the impacts of isolation, the functional model of the road network system
was implemented for emergency evacuation management with the algorithms
presented in the following subsection.

Road Network Model for Evacuation Routing

The road and rail network vulnerability map presented in Figure 5.12 was applied in
this study to find the best evacuation route. The network components defined in the
analysis were the road networks, locations of bus stops and the January 2011 flood
evacuation centres.

In establishing the network connectivity rules of the road, the evacuation route
analysis layer was created in ArcGIS 10 using the network analysis tool with three
categories — the bus stops, areas of very high flood risk or low adaptation capacity as
the barriers, and the evacuation routes. The identification of bus stops was based on
near distance analysis selecting < 100-meter distance between the bus stops and
centroid locations of buildings within areas occupied by very high flood risk and low
adaptation capacity. From existing literatures and news reports, two evacuation
centres were set up as temporary shelters for the affected families by the city
government of Brisbane.

The evacuation route analysis revealed two possible routes leading to evacuation
centres: one going to the first evacuation centre (i.e. RNA Show Grounds) and the
other one going to the second evacuation centre (i.e. QEIl Stadium). The first
evacuation route was identified to have 71 bus stops and second evacuation route
has 31 bus stops 21 km and 20.7 km travel distances, respectively. On the average,
the time to travel between bus stops is 0.60 minutes and 1.38 minutes within the
study area leading to evacuation route 1 and evacuation route 2, respectively.

Tables 5.5 and 5.6 summarise the bus stops, distance between previous and
succeeding bus stops, and travel times to be spent during evacuation. The calculated
travel times indicated in the Tables assumed the 30 km/h driving speed limit and
excluded the time spent for passenger’s boarding and embarking. Also significant to
consider in the analysis was the selection of bus stops because its number and
location significantly affect the evacuation routing system. In this study, all possible
bus stops were included in the analysis within 100-meter distance except for those
that were flagged of having no road network connections. Certainly, the option and
flexibility of choosing bus stops can be made available to emergency managers.

The information provided in Tables 5.5 and 5.6 will help affected people on areas of
very high flood risk and low adaptation capacity to identify accessible bus stops and
closest flood evacuation centre. These will also give them the idea of travel time
required between bus stops and expected time of arrival to their chosen evacuation
centre.
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Table 5.5 The study area’s potential road route to evacuation centre 1 (RNA Show Grounds)

Bus Stop Distance between Travel time | Bus Stop Distance between Travel time
(No.) bus stops (M) (min) (No.) bus stops (m) (min)
1 0.00 0.00 39 8.57 0.02
2 10.86 0.02 40 332.46 0.66
3 1229.38 2.46 41 421.52 0.84
4 571.79 1.14 42 0.41 0.00
5 94.57 0.19 43 1230.07 2.46
6 627.20 1.25 44 26.10 0.05
7 35.90 0.07 45 48.21 0.10
8 1069.29 2.14 46 405.49 0.81
9 154.02 0.31 47 21.12 0.04
10 177.64 0.36 48 203.06 0.41
11 72.55 0.15 49 17.23 0.03
12 55.70 0.11 50 18.98 0.04
13 145.16 0.29 51 223.23 0.45
14 30.00 0.06 52 122.30 0.24
15 708.45 1.42 53 232.42 0.46
16 173.05 0.35 54 91.77 0.18
17 542.30 1.08 55 132.04 0.26
18 437.95 0.88 56 28.37 0.06
19 10.85 0.02 57 1167.99 2.34
20 133.59 0.27 58 35.57 0.07
21 227.68 0.46 59 318.38 0.64
22 90.91 0.18 60 42.91 0.09
23 884.62 1.77 61 125.17 0.25
24 12.23 0.02 62 116.63 0.23
25 466.72 0.93 63 64.99 0.13
26 1296.84 2.59 64 123.46 0.25
27 26.09 0.05 65 245.52 0.49
28 616.14 1.23 66 17.67 0.04
29 1331.00 2.66 67 2.09 0.00
30 47.27 0.09 68 214.76 0.43
31 674.16 1.35 69 41.06 0.08
32 92.82 0.19 70 18.58 0.04
33 118.28 0.24 71 941.28 1.88
34 42.80 0.09 Total 21,088.25 42.18
35 773.88 1.55 Average 301.26 0.60
36 31.39 0.06
37 253.13 0.51
38 782.64 1.57
Table 5.6 The study area’s potential road route to evacuation centre 2 (QEIl Stadium)
Bus Stop Distance between Travel time Bus Stop Distance between Travel time
(No.) bus stops (M) (min) (No.) bus stops (m) (min)
1 0.00 0.00 18 190.11 0.38
2 3537.95 7.08 19 471.33 0.94
3 71.38 0.14 20 16.55 0.03
4 3042.91 6.09 21 381.18 0.76
5 2687.26 5.37 22 142.42 0.28
6 2360.51 4.72 23 296.60 0.59
7 120.86 0.24 24 345.55 0.69
8 255.55 0.51 25 21.10 0.04
9 102.99 0.21 26 501.58 1.00
10 224.15 0.45 27 232.78 0.47
11 264.23 0.53 28 44.75 0.09
12 56.33 0.11 29 410.97 0.82
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Bus Stop Distance between | Travel time Bus Stop Distance between Travel time
(No.) bus stops (M) (min) (No.) bus stops (m) (min)
13 173.05 0.35 30 322.29 0.64
14 52.73 0.11 31 3784.59 7.57
15 356.72 0.71 Total 20,733.04 41.47
16 100.38 0.20 Average 691.10 1.38
17 164.24 0.33
Road and Rail Networks Vulnerability and Road and Rail Networks Vulnerability and

Flood Evacuation Route Map Flood Evacuation Route Map

o' )
— REY.

sl TN .

&
]
Flood Risk N N
Low (1 Moderate (2, High (3} Very High (4 Coordinate System: Adaptation Capuelt L Coordimte System:
w (1} Moderate (2) igh (3) fi ’HJ GDA 1994 MGA Zone 56 Low (1) Moderate (3} High (3)  Very High (4} Acm 1994 MGA Zone 56
——————— Meters | ﬁ

| ———— Meters
E- o . ‘ foe [l 380 Th 1520 ] s o 350 T6i 1,520
H us Stops along Rou @  Bus Stops along Route 2 Road H §| ® usswpssbraRamet oo eng Route 2 oad

Evacuation Route 1 Evacuatiion Route 2 Railway Evacuation Route 1 Evacustion Routs2  ~——— Railway
[ risbaneRiver [ ] Study Aren [ srivancRiver [ | Studyarea

asseata

o e pem prves pre.s sl [ (- , . : .
s inmm 159000 saeam w10 so2000 sm

Figure 5.12 The road and rail networks vulnerability and flood evacuation route maps using flood risk (left) and
climate adaptation capacity (right) models

5.3.1.3 Water Supply Network Model

The Queensland’s water supplies and related infrastructures are owned and managed
by 170 registered service providers (QCA 2013). For the South East Queensland
region in Australia, the water infrastructure network is being provided by the SEQ
Water Grid. The SEQ Water, a merger of three state-owned businesses on 01
January 2013 - the SEQ Water Grid Manager, LinkWater and former SEQ Water, is
responsible for the long-term planning of the region’s water supply and the
management of more than $10 billion of assets and natural catchments (SEQ Water
2013b) as shown in Figure 5.13. To achieve the long-term security of the region, the
South East Queensland Water Strategy was developed using a water balance model
that considers climate variability, population growth and other regional factors
affecting supply and demand (SEQ Water 2013 b).
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Figure 5.13 The water supply network and assets in South East Queensland owned and managed by SEQ Water
(Source: SEQ Water 2013)

In order to provide a consistent framework and benchmarks for the planning and
design of urban water supply and sewerage infrastructure, the Queensland
Government developed the guidelines for water supply and sewerage in 2010
(DEWS 2013). However, the report was released a few months before the
2010/2011 flood events.

In Brisbane City, the city council developed the Water Supply Infrastructure
Contributions Planning Scheme Policy (PSP) to provide background and
contributions information on infrastructure for its water supply network (BCC
2009c). Furthermore, the policy was also developed to comply with the Integrated
Planning Act 1997 which requires integration of land use and infrastructure planning
to allow infrastructure to be supplied in a coordinated, efficient and orderly manner
(BCC 2009c).

As shown in Figure 5.14, the water supply PSP of the city sets contributions for the
trunk water supply network that services the future population including bulk supply
and treatment, reservoirs, pump stations, booster stations and pipes (BCC 2009c).
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Figure 5.14 The water supply network map of the study area

Considering that the water supply problem during the January 2011 flood, which
had been also experienced during the January 2013 flood, was more on water
turbidity (Keller 2013 and News Limited 2013), this study examined the
vulnerability of water supply by identifying the potential flow of turbid water along
the trunk-reticulation mains. Using the network analysis tool of ArcGIS 10, water
supply network components were defined as nodes and edge in the network model
as presented in Table 5.7.

Using the results from the flood risk and adaptation capacity assessments in the
water supply network vulnerability assessment, eight (8) out of 107 trunk-
reticulation main connection points (as potential entry points of turbid water or
source component of the network) were assessed as highly vulnerable critical water
supply assets being found within areas of very high flood risk and very low
adaptation capacity (see Table 5.7). Flagging them as critical junctions (see blue
square dots in Figure 5.15) in the Utility Network Analysis of ArcGIS 10, the
potential path of turbid water through the trunk-reticulation mains was traced and
the total linear kilometre was then calculated. Results of the analysis revealed that
turbid water may flow along 246 km water distribution lines in the North East and
North West based on the January 2011 flood event. This comprises 56% of the water
pressure mains within the study area which may potentially affected by supply of
turbid water.
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Table 5.7 Counts of highly to very highly vulnerable critical water supply network assets

Vulnerability Assessment of Critical Infrastructures for Interdependency Analysis

Water Supply Role Total | Highly to Very Highly | Percent of

Network Asset Vulnerable Total
Pressure Gauge (No.) Intermediate Node 13 0 0
Flow Meter (No.) Intermediate Node 61 11 18
Booster Pump (No.) Intermediate Node 1 0 0
Control Valve (No.) Intermediate Node 1990 268 13
Fitting (No.) Intermediate Node 2011 205 10
System Valve (No.) Intermediate Node 5010 636 13
Trunk-Reticulation Main Source 107 8 7
Connections (No.)
Pressure Main Edge 435 246 56
(Length in Km.)
Endpoint of Trunk- Sink 2205 _ _
Reticulation Connections
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Figure 5.15 The generated water supply network vulnerability maps of the study area using flood risk (left) and
climate adaptation capacity (right) models

The results from this analysis can assist the water supply industry to evaluate the
susceptibility of water system to “dirty water” event. The analytical tool and the
information generated from this study can help alleviate a range of consequences or
impacts such as water-borne diseases from any flood event. During the January 2011
flood, no report was made regarding any breakdown of water supply infrastructure
and water shortage except for the quality of drinking water in some areas.
Nonetheless, it is noteworthy to take into account the potential flood impacts that
may disrupt the entire water supply system.
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5.3.1.4 Sewerage Network Model

In most parts of Queensland, the public sewerage systems are managed by public
authorities (i.e. councils) except in the south-east where sewerage systems are
managed by specialised service providers known as “distributor-retailers” (QFCI
2012). Governed by an independent board, Brisbane and Ipswich City Councils, and
the Lockyer Valley, Scenic Rim and Somerset Regional Councils owned a
distributor-retailer Queensland Urban Utilities which has the primary role of
delivering drinking water, recycled water, and wastewater services to the cities and
townships within the boundaries of those five council areas (QUU 2011b). This
system of the administration of water and sewerage networks was directed through
the South East Queensland Water (Distribution and Retail Restructuring) Act 2009
(QFCI 2012).

Pursuant to the Act, the Queensland Urban Utilities are required to prepare the
Water Netserv Plan which was provided in two parts: Part A provides an overview
of the water and wastewater networks and services, and broad description of the
system. Part B, on the other hand, provides an overview of our operating framework,
processes, performance and management functions (QUU 2011b). As the key
strategic documents, the Plan highlights the importance of responding to
emergencies such as the 2010/2011 SEQ floods.

In Brisbane, the sewerage network is designed in accordance with the City’s
Sewerage Infrastructure Contributions Planning Scheme Policy (PSP) as shown in
Figure 5.16. Pursuant to the Integrated Planning Act 1997, the Policy outlines the
general approach to infrastructure planning and contributions for the sewerage
network for Brisbane (BCC 2009d).
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Figure 5.16 The sewerage network map of the study area

125



Chapter 5 Vulnerability Assessment of Critical Infrastructures for Interdependency Analysis

The impacts of the 2010/2011 floods on sewerage infrastructure include the damage
and inundation of the system which resulted in the discharge of untreated sewage
through overflow relief structures and backflow of sewage into private properties in
the Brisbane area (QFCI 2012). The overflow of untreated or contaminated sewage
with floodwaters entering waterways near residential areas and public parks posed
risk to human health (Jensen 2009 and QFCI 2012). In one of the recommendations
made by QFCI (2012), the Queensland Government should consider including in the
criteria in the Queensland Plumbing and Wastewater Code a requirement that the
risk of leakage from private on-site sewerage systems during floods be minimised.
As initial response to this recommendation, this study was conducted to assess the
vulnerability of sewerage network in Brisbane City.

In creating the network connectivity rules, the functional roles of the components of
the sewerage infrastructure network were defined according to its operational
characteristics as summarised in Table 5.8. From the table, the topological sewage
source and sewerage endpoint were derived by extracting the beginning points and
ending points of the sewerage main/reticulation networks, respectively.

Using the results from the flood risk and adaptation capacity assessments in the
sewerage network vulnerability assessment, 455 out of 2525 sewage sources (as
assumed points of sewerage blockage) were assessed as highly vulnerable sewerage
network assets being found within areas of very high flood risk and very low
adaptation capacity (see Table 5.8). Flagging them as critical junctions in the Utility
Network Analysis of ArcGIS 10, results of the analysis revealed that 33 km (91%),
32 km (78%), and 16 km (81%) of the sewerage main trunk, reticulation, and
pressure rising networks were potentially affected by the January 2011 flood. The
information provided in Table 5.8 and Figure 5.17 will assist sewerage infrastructure
management to comply with the maintenance requirements of the sewerage system
set forth in the Queensland Plumbing and Wastewater Code Guidelines.
Furthermore, these results will aid in addressing the issue raised by QFCI (2012)
that the aspect of flood resilience in sewerage infrastructure was not a specific
performance criterion in the Code.

Table 5.8 Counts and lengths of highly vulnerable critical sewerage network assets

Sewerage Network Asset Role Total Highly Vulnerable | Percent of Total

Sewage Source (No.) Source 2525 455 16

Sewerage Endpoint Sink 2932 - -

Main Intersection (No.) Intermediate 313 185 59
Node

Pump Station (No.) Intermediate 10 5 50
Node

Wet Well (No.) Intermediate 1 1 100
Node

Storage Facility (No.) - 2 1 50

Main Trunk (km) Edge 33 30 91

Main Reticulation (km) Edge 32 25 78

Reclaimed Water (km) Edge 1.5 0 0

Main Pressure Rising Edge 16 13 81

(km)
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Figure 5.17 The sewerage network vulnerability maps of the study area using flood risk (left) and climate
adaptation capacity (right) models

5.3.1.5 Stormwater Network Model

The Queensland system for urban stormwater management is governed by a variety
of state, regional and local policies. The planning of urban stormwater management
in the State was strengthened by the amendment of the Environmental Protection
(Water) Policy 2009 (EPP Water) placing urban stormwater in a total water cycle
management context and the approval of the State Planning Policy 4/10 Healthy
Waters (SPP Healthy Waters) 2010 (EHP 2010). As the primary water quality
management legislation in Queensland, the Environmental Protection Act 1994 (EP
Act) provides the statutory framework for setting and achieving environmental
values (EVs) and water quality objectives (WQOs) in the State (EHP 2010). Shown
in Figure 5.18 is the map of the EPP Water Schedule 1 with catchment-specific EVs
and WQOs within Moreton Bay/South East Queensland waters wherein the study
area is a part of.

During the 2010/2011 floods in the South East Queensland, stormwater contributed
to flooding in various areas which were characterised in two types: (1) basement
flooding; and (2) backflow flooding (QFCI 2012). In response to the Queensland
Floods Commission of Inquiry recommendations, the Department of Energy and
Water Supply (DEWS) conducted a review of the Queensland Urban Drainage
Manual (QUDM). Through this manual, the government aimed to provide details of
technical and regulatory aspects to consider during the planning, design and
management of urban stormwater drainage systems, and to provide details of
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appropriate design methods and computational procedures including the hydrologic

and hydraulic procedures and environmental and legal aspects (DEWS 2013c).
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In the draft new City Plan prepared by Brisbane City Council, stormwater is one of
the five trunk infrastructure networks intended for drains, water quality treatment,
and flood mitigation (BCC 2013b). The City Council has 2640 km of enclosed
stormwater pipes as shown in Figure 5.19 (Arnison et al. 2011). One of the desired
standards of service for the stormwater network is to collect and convey stormwater
flows during flood events with minimal effects to communities and damage to
properties (BCC 2012c). Also embodied in the City’s Waterways Planning Scheme
Policy (PSP), stormwater infrastructure was analysed to address contributions and
requirements for waterways infrastructures at the catchment level (BCC 2009e).
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Figure 5.19 The stormwater network map of the study area

In a report prepared by Bannan (2011a) and QFCI (2012), all parts of the stormwater
network require inspection for maintenance and system’s upgrade. Apart from being
an aged infrastructure, which was constructed in 1860 to serve a population of
approximately 5000, the pipes in flood-affected areas are likely to have been silted
(Bannan 2011la and QFCI 2012). To help improve the performance of the
stormwater infrastructure, QFCI (2012) recommended that councils should
periodically conduct risk assessments to identify areas at risk of backflow flooding
and consideration of the installation of backflow prevention devices.

With the purpose of providing aid in the management of stormwater drainage system
in Brisbane City and in support to QFCI recommendations, the vulnerability of the
network was assessed using geographic information system. However, this study
focused mainly on the available components of stormwater networks disregarding
the issues of illegal connections of stormwater to sewerage infrastructure. In doing
the analysis, the utility network analysis tool of ArcGIS was utilised once again to
establish the connectivity rules among stormwater pipes, gullies and inlets to the
stormwater drains. In the analysis, stormwater pipe outlets, end caps, and flood gates
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were assumed to have been accumulated with silt that may potentially cause damage
to stormwater pipes.

Utilising the results from the flood risk and adaptation capacity assessments of the
stormwater network, the overlay analysis revealed that 83, 13, and 4 pipe end
outlets, end caps, and flood gates, respectively, were highly vulnerable to flooding.
Using them as flag junctions in the utility network analysis, the result revealed that
approximately 87 km of stormwater pipes were potentially affected by flooding due
to siltation within the study area. This comprises 19% of the 450 km of the flood-
affected pipes as reported by Bannan (2011) and QFCI (2012). Figure 5.20 shows
the highly vulnerable stormwater network within areas of very high flood risk and
low climate adaptation capacity. The maps shown below will provide locational
information to focus on those parts of the stormwater drainage network with
pollutants and silts that would tend to accumulate and consequently affect the
effective performance of stormwater pipes.
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Figure 5.20 The stormwater network vulnerability maps of the study area using flood risk (left) and climate
adaptation capacity (right) models

5.3.2 Critical Infrastructure Interdependencies

Using the results from the vulnerability assessments of individual networks, the
highly vulnerable infrastructures assets were joined in Figure 5.21 to initially set its
geographical interdependency. The figure depicts the overall interdependency of
critical infrastructures (electricity, transportation, sewerage, stormwater, health care
infrastructure, and building properties). The background map in Figure 5.21 was
derived from the flood risk and climate adaptation capacity assessments presented in
Chapter 4. On the other hand, the vulnerable infrastructures shown in the foreground
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were taken from the utility network modelling specified in Section 5.2.3.1 of this
Chapter.

Either the interdependency of these infrastructures is bidirectional (Rinaldi et al.
2001) or unidirectional (Johansson and Hassel 2010), the failure state of one
infrastructure or several infrastructures due to January 2011 flooding had significant
effects on the state of other infrastructures on which the latter depends upon. From
this view, the specific critical infrastructure interdependencies are discussed in the
subsequent sections.
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Figure 5.21 The integrated infrastructure vulnerability maps of the study area using flood risk (left) and climate
adaptation capacity (right) models

This section starts the discussion with the operational strategies of an “external”
infrastructure - the Wivenhoe Dam. It was built in 1984 as a dual-purpose storage
both for water supply and flood mitigation (SEQ Water 2012). The dam was
designed to hold back 1.45 million megalitres during floods and 1.15 million
megalitres for normal storage capacity (SEQ Water 2013). Along with heavily soil-
saturated catchment due to torrential rains, the releases of water from the Wivenhoe
Dam raised the water levels in the Brisbane River by up to 10 metres during the
January 2011 flood (Calligeros 2011). Faulted of aggravating the damage
downstream, the dam operators made sub-optimal decisions by neglecting the
forecasts of further rainfall and assuming a “no rainfall scenario” (van den Honert
and McAneney 2011).

The January 2011 flood event cascaded failures of the critical infrastructures in
Brisbane City such as power outages, road cuts, isolation of residential premises,
down of communication lines, among others. The failures that spread across the
Brisbane City in relation to the extreme climatic event were described in this study
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as functional, geographical, direct or indirect interdependency (Rinaldi et al. 2001
and Johansson and Hassel 2010). However, the limitations of clearly delineating
these types of interdependencies are acknowledged in this Chapter.

The functional failure of the ENERGEX to supply electricity to other critical
infrastructures, either caused by direct flood damage or pre-emptive measures, can
be explicitly distinguished in Figure 5.22. A good example was the inability of the
electricity infrastructure to supply the demanded service to other critical
infrastructures such as built-up premises, railway system, sewerage system, and
health care facilities. The effect of removing the dependency edge from the
functional model rendered the electricity unavailable both to flooded and non-
flooded premises. The devastation caused 300,000 customers in Ipswich and
Brisbane to lose power. Furthermore, 35% of Ergon Energy’s distribution area was
disrupted primarily due to the pre-emptive measures taken during the 2010/2011
floods (QFCI 2012).

The co-location and close proximity of electricity infrastructure, residential
premises, railway, sewerage, and health care facilities on areas characterised by very
high flood risk or low adaptation capacity (see Figure 5.23 for example) rendered
these critical infrastructures to become highly vulnerable. Hence, the consequences
due to the severe weather conditions affecting the operation of electricity-dependent
infrastructures were influenced by geographically-confined strain, a term that
describes a removal of network component/s (Johansson and Hassel 2010). The
removal of geographically-located electrical points from rail yards, for example, to
reduce the flood impacts to the railway’s electrical system (Ford and Timmins 2011,
QFCI 2012) caused the railway network non-functional.
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Figure 5.22 The geographic interdependency of
electricity and sewerage networks
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As an example of direct or first order interdependency (Johansson and Hassel 2010),
the failure of electricity infrastructure (i.e. non-operational generators and
switchboards) directly affected the sewerage system and positioned its treatment
systems into critical failure (Lewis 2011 and QFCI 2012). Furthermore, the health
care facilities were also at risk of being cut of electricity supply due to flooding,
which would have necessitated the evacuation of all patients (Prado 2011, QFCI
2012).

On the other hand, the indirect or higher order interdependency (Johansson and
Hassel 2010) was explicitly characterised by the exposure of public to health issues
such as when contaminated sewage potentially leaked from private on-site sewerage
systems. Then, services of health care facilities were inaccessible due to flood
isolation and unavailability of electricity supply. Due to risk of power outage, the
evacuation of patients from the health care facilities was likewise infeasible due to
access of evacuation routes was completely lost from inundation (QRA 2011, QFCI
2012). In some cases, vehicle access, including ambulance access, to and from the
hospital was cut (Prado 2011a, 2011b, QFCI 2012). In the higher order
interdependency, the ripple effects of electricity failure were realised from electricity
failure down to inaccessibility of roads for emergency evacuation (see Figure 5.23).

nnnnnnnnnn saos00 01000 02000 503000
i L i i L L

Critical Infrastructure Interdependency Map
(Electricity, Road and Sewerage Networks)

s
T
6963090

T
easz00

T
sa0m00

casoma

T
Go55000

sssame
T
ssBe0n

Flood Risk Index

Low (1) Moderate (2) High (3) Very High (4) . Coordinate System:

— GDA 1994 MGA Zone 56
ctric
B [ Brisbanc River Meters

0 380 760 1820
Study Area

asmoos  ase000 sa0000 s0ta00 02000 563000

ssTo0

Figure 5.23 The geographic interdependency of
electricity, road, and sewerage networks

In this study, however, it can be postulated that indirect interdependency may not be
characterised solely on the basis of higher order interdependency. The January 2011
flood demonstrated that indirect interdependency may be described by a partial
disruption of the critical infrastructure services despite the failure of other dependent
infrastructure. An example was that the effects of failure of the communication
infrastructure to deliver the desired services to a healthcare facility of manageable
size may not be as enormous to that of the failure of electricity infrastructure to
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supply power to health care facilities across the flooded areas. The thesis behind this
argument is that direct or indirect interdependency would depend on the types of
critical infrastructures, the amount of services they provide, and the amount
demanded by other infrastructures. However, this theory agrees with Johansson and
Hassel’s (2010) argument that interdependent relationship of infrastructure systems
can be characterised either on macro- or micro-perspective.

Additionally, the poorly designed or maintained stormwater networks, in
combination with riverine flooding, provided limited flood mitigation benefits
(QFCI 2012). Stormwater flooding and backflow flooding of the stormwater
network caused basement damage to a number of high rise buildings and residential
properties particularly in the low lying areas of Brisbane and the central business
district (QFCI 2012). The functional failure of the stormwater network was further
exacerbated when the network was “illegally” connected to the sewerage network
(Lewis 2011, QFCI 2012). Thus, the undesirable effects to the sewerage system
were amplified once again to significantly bring on board the interconnected and
ripple effect issues on health, power outages, and problems on evacuation
management. Hence, this study can provide an analytical tool for monitoring the
connectivity, if any, between sewerage and stormwater infrastructures for regulatory
purposes (see Figure 5.24).
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Figure 5.24 The co-location map of stormwater and sewerage networks

Finally, most researchers neglected the concept of nil interdependency of critical
infrastructures and that it can occur despite they share geographical locations.
Taking the example of stormwater during the January 2011 flood, the operation of
the infrastructure did not depend mainly on electricity infrastructure. A word of
caution, however, unless the stormwater network was designed with electric pumps
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then the interdependency could have been existed. During the January 2011 flood,
no such case was reported with the Queensland Floods Commission of Inquiry
(QFCI). Hence, this observation was assumed to be factual.

In a nutshell, this study exemplified the interdependencies of urban community’s
critical infrastructures in relation to extreme weather event. Characterised of having
functional, geographical, direct, indirect, or even nil interdependencies, these
bilateral or unilateral relationships that aroused in the critical infrastructures due to
the January flood event in Brisbane are graphically summarised in Figure 5.25.
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Figure 5.25 The critical infrastructure interdependency matrix

5.3.3 Climate Adaptation Strategies/Resiliency Measures

The analyses of wvulnerabilities and interdependencies of critical infrastructure
systems (CIS) were demonstrated in this study. The effects of having the
infrastructures’ components removed or disrupted by the January 2011 flood in
Brisbane City were specifically examined. As the backbone of our society, it is
essential to improve the climate resiliency of these critical infrastructures in such a
way to maintain the interdependencies that exist among them.

The resilience of complex infrastructure systems has emerged as fundamental
concern for system managers and other stakeholders (McDaniels et al. 2008). In
Chapter 4, flood risk and climate adaptation capacity of the study area were assessed
for disaster risk reduction and climate adaptation. The developed model was applied
in identifying areas of low to very high flood risk and adaptation capacity to include
disaster risk reduction measures and climate adaptation strategies (see Figure 4.45
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and Table 4.3). The results of the analysis suggest of considering the following
disaster risk reduction measures and/or climate adaptation strategies:

e Mitigation on areas of low flood risk or very high climate adaptation
capacity;

e Mitigation to preparedness on areas of moderate flood risk and high climate
adaptation capacity;

e Mitigation to response on areas of high flood risk and moderate climate
adaptation capacity; and

e Mitigation to recovery on areas of very high flood risk and low climate
adaptation capacity.

In this section, details of mitigating measures for disaster risk reduction and/or
climate adaptation are outlined. We begin with electricity network and end up
summarising the hierarchy of climate adaptation strategies across the critical
infrastructure systems (CIS).

5.3.3.1 Electricity Network

Shared electricity network

Damage to shared electrical network infrastructure due to flooding disrupted the
supply of electricity to large numbers of people including non-flooded premises
(Arnold 2011, QFCI2012). Power was disconnected in flooded and selected non-
flooded areas as a precautionary measure. Learning from the breakdown of some
power stations (e.g. zone substations or bulk supply) due to flooding, it was
recommended that electricity service providers should consider the following
(Arnold 2011, Energex 2011, Sun 2011, and QFCI 2012) :

e Construction of critical electricity facilities above the defined flood level

(DFL);

e Implementation of flood resilience measures such as moving critical
equipment to higher locations, building bunds around substation, installing
sump pumps, scaling vents and replacing all local power sockets below the
DFL;

e Installation of connection points in the network for generators to supply
electricity to non-flooded customers; and

e Electrical conduits below the applicable DFL should be sealed and water
proofed to prevent floodwaters from flowing into them.

Customer-dedicated electricity network

Within the commercial and industrial premises, various customer-dedicated
electrical assets were inoperative during and after the floods. Generator circuits
located in building basements were isolated due to floodwaters and generated the
risk of being exposed to live electricity if switched on (McLeod 2011, QFCI 2012).
Due to these events, recommended adaptation and resiliency strategies included the
following (de Lange 2011, McLeod 2011 QRA 2011, DEWS 2012, and QFCI
2012):
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e Upgrading of generator circuits so that damaged parts can be isolated in any
future flood,;

e Electrical switchboards and substations should be placed on the higher level
of the building basement;

e Non-flood resilient buildings should require permanent lifting devices for
heavy equipment such as transformers and switchboards and 24-hour access
to remove circuit breakers and sensitive equipment; and

e In new high rise building, the design of electrical equipment should be raised
and located above the defined flood level (DFL).

The adaptation/resiliency measures for electricity network enumerated above should
be designed to avoid human exposure from electromagnetic fields by considering the
location, size and shape of the substation (DEWS 2012). To provide a new level of
robustness, the electricity grid should utilize more dispersed generation sources,
hydroelectric storage to store energy during periods of low demand, and greater
generating capacity at times of peak demand (Collins et al. 2011).

The principal damage to the sewerage system caused by flooding was the result of
failures of the electrical systems (generators and switchboards) which resulted in
critical failures of sewerage treatment systems (Lewis 2011, QFCI 2012). To
minimise future failures of the sewerage system, it was recommended to include in
the resiliency strategies the installation of removable plant electrical systems in
anticipation of the inundation (Clerke 2011, QFCI 2012), elevation of sewerage
plant’s electrical control panels, installation of back-up generators (Lewis 2011,
QFCI 2012), and relocation of major power generators to higher ground (Belz 2011,
QFCI 2012). Furthermore, in the construction and management of sewerage
infrastructure it was also recommended to consider the risk and cost/benefit
assessments to determine the vulnerability of electricity infrastructure to inundation
and the need for relocation to higher ground (QFCI 2012), if practicable.

Electricity supply to health care infrastructure such as hospitals was at risk of being
cut during the flood events, which would have necessitated the evacuation of all
patients (Prado 2011, QFCI 2012). It was recommended that draft assessment
criteria be included in the flood planning controls such that essential health care
infrastructures should be able to continuously function during and immediately after
a flood of a specified level of risk (QFCI 2012).

For other infrastructure operators who were dependent on electric power, some had
implemented measures to protect their electrical system prior to flooding. For
example, the Queensland Rail removed electrical points from rail yards to reduce the
flood impacts to the railway’s electrical system and ease of recovery after flood
(Ford and Timmins 2011, QFCI 2012).

5.3.3.2 Road and Rail Networks

The transportation networks of Queensland are critical to the supply of goods and
services. Over 9,000 km of road and 3,000 km of rail infrastructure were
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significantly affected by the 2010/2011 floods (QFCI 2012). To reduce the impacts
of future inundation to road networks, it was recommended to upgrade flood plain
transport infrastructure including the replacement of the concrete floodways and
building new bridges with higher approaches above the DFL; however, these should
be done with caution to reduce the consequential impact of future flooding upstream
(Brown 2011, QFCI 2012).

Before the onset of the 2010/2011 floods, the following pre-emptive measures were
applied and post-flood measures were recommended such that (Brown 2011, Ford
2011, Ford and Timmins 2011, Moore 2011, and QFCI 2012):

e Rail communication and signalling equipment rooms were raised one meter
above the highest known flood to reduce the impacts of floods to rail
network system;

e Pipes were installed under the railway line to prevent floodwaters from
overflowing and causing scouring and moved rolling stock away from areas
of possible flooding;

e For future rail network construction, it was recommended to design a ‘flood-
free’ rail network above the defined flood level (DFL) and the utilisation of
concrete pylons in the construction; or the design should be ‘flood-proof’ to
endure floodwater flows;

e For heavy-haul rail infrastructure, the recommended flood response should
include initiating a safety plan for large-scale disasters, purchasing of
specialised meteorological device for operational decisions, moving
locomotives and wagons to higher ground, and establishing a flood recovery
taskforce.

Access to evacuation routes for some hospital and aged care facilities was similarly
affected and completely lost due to inundation (QRA 2011, QFCI 2012). As earlier
discussed, the vehicle access, including ambulance access, to and from the hospital
was cut (Prado 2011a, 2011b, QFCI 2012). The event prompted a review of hospital
access and consideration in investing in the installation of helicopter pad (Prado
2011a, 2011b, QFCI 2012). It was also recommended to draft assessment criteria to
be included in the flood planning controls such that essential health care
infrastructures should continuously function during and immediately after a flood of
a specified level of risk (QFCI 2012).

For residential properties situated on low lying access routes and isolated by
floodwaters, the situation gave little or no opportunity for residents to evacuate their
families or remove belongings (Leighton 2011, QFCI 2012). It was recommended
that assessment criteria should include flood planning controls that address both the
prospect and impact of isolation or hindered evacuation (QFCI 2012).

5.3.3.3 Sewerage Network
Floods and backflows discharged untreated sewage through overflow relief

structures into some residential areas, public parks and waterways into some private
properties (QFCI 2012). To reduce the impacts of sewage discharge, pre-emptive
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measures such as sandbagging and blocking the entry points below previous flood
levels to prevent floodwater causing backflow (Norman 2011, QFCI 2012), and
lifting the low-lying pump stations to higher elevations to improve flood resilience
(Smith 2011, QFCI 2012) were operationalised. A significant pre-emptive measure
that facilitated flood resiliency for the sewerage infrastructure was the design of
some pumping stations with a gravity-driven sewerage network which continuously
provided service even without a functioning electrical system (Clerke 2011, QFCI
2012).

To alleviate public health issues from sewage discharge in anticipation of future
flooding, the recommended strategies include (Belz 2011a, 2011b, Lewis 2011, and
QFCI 2012):

e Modelling of peak wet weather flow in a sewer thirty (30) times the average
dry weather flow through its network during extreme weather events;

e Construction of plant with reserve storage capacity for sewage and back-up
generators with overflow relief structures and submersible pumps and
motors;

e Sealing and pressurising the sewerage pipe network, redesigning the
overflow relief gully caps, securing manhole covers, and installation and
maintenance of sewage reflux valves to prevent stormwater flowing into the
sewerage system; and

e Enhancing sewer planning in areas prone to flooding or stormwater flow.

Policy wise, it was further recommended to avoid the ‘common’ practice of
directing or connecting stormwater to sewerage infrastructure (Lewis 2011, QFCI
2012) and conduct an educational program to raise public awareness that this
practice was illegal and impeded the normal operation of sewerage infrastructure
(QFCI 2012).

During the flooding, floodwaters may had been contaminated by sewage leaking
from private on-site sewerage systems (e.g. septic tanks) and posed public health
issues. Hence, it was recommended that criteria should be included as a requirement
that the risk of leakage from private on-site sewerage systems during floods be
minimised (QFCI 2012). To improve sewerage infrastructure resiliency, sewage
reflux valves on private properties should be installed and properly maintained
(Brumby 2011, QFCI 2012). Also crucially considered in the recommendation was
the proposed involvement of distributor-retailers, developers, local governments,
and property owners in the land use and infrastructure decision-making process
(Lewis 2011, QFCI 2012).

5.3.3.4 Water Supply Network

Table 5.7 identified the highly and very highly vulnerable water supply network
assets that can be potentially harmed in the future floods. Without the mitigation
measures, the possible implications for water supply infrastructure include reduced
security of supply and increased risk of fluvial flooding to water supply/treatment
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infrastructure (DEFRA 2011). As such, climate threats to water supply should be
managed according to some lessons learned such as (Collins et al. 2011):
e To focus on new inter-disciplinary approaches by integrating social and
economic solutions with the current engineering solutions;

e To implement distributed water systems rather than centralised water
systems;

e Water recycling with conscious on energy implications of recycling water;

e Use of smart meters and intelligent pipework to reduce leakage, monitor
turbid water, among others.

During the 2010/2011 floods, the supply of drinking water was maintained to meet
the demands of consumers in south-east Queensland. However, this was constrained
by the suspension of water treatment operations at Mt. Crosby and North Pine dam
(QFCI 2011). To improve the quality of water during flood events specifically in the
South East Queensland and Brisbane areas, Keller (2013) recommended an
engineering modification by adding high quality water from the Advanced Water
Treatment Plants (also known as water recycling plants) directly into the water
treatment plant (i.e. Mt. Crosby Plant) rather than the Wivenhoe Dam. Accordingly,
the advantages of this significant change include the following (Keller 2013):

e Generating up to 50% of its usual water production directly from the
recycled water;

e “Dirty” river water could have been taken in and treated with the dilution
from the purified recycled water;

e Pumping energy would be substantially less by not going to the dam, the
high water quality could be maintained, and it would avoid losses
through evaporation and infiltration from the dam.

5.3.3.5 Stormwater Network

Stormwater flooding and backflow flooding of the stormwater network caused
basement damage to a number of high rise buildings and residential properties
particularly in the low lying areas of Brisbane and the central business district (QFCI
2012).
Some future adaptation and resiliency strategies for stormwater infrastructure should
consider the following (Bannan 2011a, 2011b, Cuerel 2011, Sun 2011, White 2010,
Winders 2011, and QFCI 2012):

e Upgrade of older stormwater network system capacity to ensure desired

services to the current population and level of development;

e Basements should be built with a higher level of flood immunity;

e Stormwater connections should be fully sealed to ensure that there is no
probability of backflow into basements;
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e Regular maintenance such as the need for culverts to be inspected for debris;

e Detention basins should be mowed and vegetation should be managed in
natural ways;

e Use of remote-controlled vehicles with cameras to inspect pipe network
located underground;

o Installation and/or retrofitting of backflow prevention devices to stormwater
outlets such as flap gates, duckbill valves, and mechanically operated valves;

e Consideration of flood resilience of basements in the planning schemes;
e Areas susceptible to backflow flooding should be made aware of risk; and

e Stormwater systems which are part of council and state-owned roads and
perform dual functions such as parklands that operate as overland flow paths
should be designed and managed in reference to state and national policies.

In the upgrade and optimisation of existing stormwater networks, land development
processes should ensure that there is no increase to the runoff downstream (QFCI
2012). Where land is built up with fill prior to the construction, it should be ensured
that there should be no impacts to new development by way of ponding or runoff to
adjoining properties (Kelly 2011, QFCI 2012).

5.3.3.6 Building Properties (Residential, Commercial, and Industrial)

Some residential properties were also isolated by floodwaters and some commercial
properties (e.g. shopping centres) were inundated (Flegg 2011, QFCI 2012) by the
2010/2011 floods. For consideration in the future planning schemes, the minimum
floor levels of habitable and non-habitable rooms of residential houses were
recommended to build to a specified level of immunity (BCC 2011, QFCI 2012) and
include consistency in height between the proposed building and the existing
streetscape (ICC 2011, QFCI 2012). The design of residential buildings was
suggested to include the use of water resistant materials of a non-structural nature
(Brumby 2011, QFCI 2012). Setting a mandatory minimum freeboard level across
the state or a higher freeboard in cases of high measure of uncertainty surrounding
the estimated flood level (Reynolds 2011, QFCI 2012) was also recommended.

Other lessons learned from the 2010/2011 floods were that commercial buildings in
low-lying precincts which were fitted with louvre windows for easy removal and
partition walls built out of besser block (Cox 2011, QFCI 2012) were found to be
flood resilient. Others benefited from the comprehensive evacuation plan coupled
with building improvements such as walls constructed out of modern fibrous
cement, use of acrylic water-based paint, raised electricity supply points and the use
of flood resistant floor materials (White 2011, QFCI 2012). Some residential
buildings built on the edge of a river were designed to ensure that built-in furniture
were not placed in the downstairs area and that water resistant materials were used
for the doors and walls of the lower levels (Scragg 2011, QFCI 2012).
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The location of electrical assets such as switchboards and back-up power supplies
was recommended to mitigate the effects of future floods (Queensland Development
Code 2011, QFCI 2012). Conduits of electrical cables were recommended to be
sealed and waterproofed (Sun 2011, QFCI 2012) to prevent stormwater from
flowing into the building basements.

To significantly minimise the risk posed by flood to lives and properties, some local
governments in Queensland currently operate “property buy-back” and “land swap”
programs. The former involves the voluntary selling of privately owned properties
which are prone to flooding to the local or state government and re-use for purposes
other than residential (Lord Mayor’s Taskforce on Suburban Flooding 2005, BCC
2011, QFCI 2012). The land swap program, on the other hand, allows eligible
property owners to “swap” their flood hazard land for land situated above the 2011
flood levels which was purchased by the local government (Simmonds 2011, QFCI
2012).

5.3.3.7 Hierarchy of critical infrastructures’ climate adaptation strategies

As a system, urban community and its critical infrastructures require a robust
framework to foster the dimensions of system resilience (McDaniels et al. 2008).
And there are numbers of methods that were developed for prioritising critical
interdependent infrastructures to protect them from human threats and increase
climate resiliency like the works of Wang et al. (2012), McDaniels et al. (2008), and
Moteff (2005). To cope specifically with climate change, Australia established the
Climate Change Adaptation Infrastructure Project which includes developing the
standard climate change adaptation system (DEFRA 2011). This study, however,
established the hierarchical framework of understanding climate resiliency for
critical infrastructures in relation to actual extreme climatic events - the 2010/2011
floods in Queensland.

Figure 5.26 illustrates and summarises the hierarchy of interdependent infrastructure
adaptation and resiliency actions operationalised during the 2010/2011 floods in
Queensland. This inverted pyramid signifies that pre-emptive and post-flood
measures to increase infrastructure adaptation and resiliency are graded from long-
term measures (e.g. elimination) down to short-term measures (e.g. protection).

Long Term

Isolation

Modification

Administration

Short Term

Figure 5.26 The hierarchy of infrastructure interdependency’s climate adaptation and resiliency
measures in Queensland in response to 2010/2011 floods
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Ideally, the most effective measure to mitigate flood risk is to eliminate the flood
hazard. However, this was an expensive adaptation and resiliency strategy
considering that the “removal” of infrastructure systems from flood hazard areas is a
financially-exhaustive measure. The “property-buy-back” and “land swap” programs
to “remove” the risk associated to flooding were the examples of risk elimination
strategies.

When risk elimination was not a viable option, isolation was another adaptation and
resiliency strategy option such as the installation of removable or hoisted electrical
points from rail yards to reduce flooding impacts. When flood control measures
involved the replacement of old infrastructure materials with flood resistant
materials, this strategy substituted the infrastructure system to increase flood
resiliency. When this substitution strategy could not be implemented, augmentation
of new materials to the infrastructure system was another adaptation and resiliency
strategy. An example was the installation of back-up generators to provide
continuous electricity supply to non-affected areas and temporary mobile stations for
the continuation of telecommunication services.

There were recommendations to redesign or modify infrastructure to withstand flood
hazards. Examples were the proposed upgrade of old stormwater networks to
accommodate the current needs of the population being served and the installation of
additional pipes under the railway line to prevent floodwaters from overflowing
(among others).

In a recommendation made by QFCI (2012), the implementation of flood mitigation
policies in the future should consider some administrative and development
measures such as the prohibition of direct connection of stormwater infrastructure to
sewerage infrastructure to reduce inter-dependency. Whenever policy gaps emerged,
policy amendments should adhere with the flood safety and resiliency standards.
When all the above pre-emptive strategies were not feasible, protective measures
were adopted to increase infrastructure adaptation and resiliency. This was shown by
using sandbags around sewerage pump stations, and blocking sewer entry points
below previous flood levels. However, protective measures offered the least
effective form of adaptation and resiliency strategy considering that this did not fully
mitigate the flood risk.

5.4 Summary and Conclusion

Set within the four dimensions of critical infrastructure interdependency, this
Chapter discussed the significance of GIS-based vulnerability assessment of critical
infrastructure systems (CIS) both at single system level and interdependency or
“system of systems” level. As a novel tool, this allowed identifying the
vulnerabilities, interdependencies, and cascading effects of critical infrastructures
due to January 2011 flood in Brisbane. Furthermore, climate adaptation strategies to
increase the resiliency of CIS were also outlined in this Chapter.

The methodology presented in this Chapter will provide significant information to
government-owned corporations, critical infrastructure systems managers, and other
concerned stakeholders to:
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e identify infrastructure assets that are highly critical;

e identify vulnerable infrastructures within areas of very high flood risk and
low climate adaptation capacity;

e determine the level of flood risk and expected flood consequences to
individual assets and integrated infrastructures;

e identify ways of reducing flood risk and extreme climate events; and

e prioritise disaster risk reduction (DRR) measures and climate adaptation
(CA) strategies.

After having assessed the vulnerability and analysed the interdependency of the
critical infrastructures, the final question addressed in this study focused on
assessing the optimality of natural disaster risk reduction polices and/or climate
adaptation strategies. This issue is fully discussed in Chapter 6.
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Chapter 6

SPATIAL MODELLING OF NATURAL DISASTER RISK
REDUCTION POLICIES WITH MARKOV DECISION
PROCESSES

6.1 Introduction

Chapter 5 comprehensively discussed the flood disaster risk reduction measures and
specific climate adaptation strategies for the urban community in general and critical
infrastructures in particular. However, mitigating the devastating effects of floods to
the community and critical infrastructures entails competing financial requirements
from various levels of government. Hence, the main contribution of this Chapter is
to provide the methods of assessing the financial optimality of disaster risk reduction
measures or climate adaptation strategies by integrating the tool called Markov
Decision Process(es) (MDP) with geographic information system (GIS). As
comprehensively discussed in Chapter 2 (Literature Review), this approach has
never been used in flood mitigation decision making in Australia and elsewhere.

The 2010/2011 floods in Queensland inflicted significant damages to government’s
critical infrastructures, private properties and businesses. In a joint report prepared
by The World Bank and Queensland Reconstruction Authority (QRA) (2011), they
observed the following (World Bank and QRA 2011):

e the adverse impacts of flooding to the State reached at least AU$15.7 billion;

e the amounts indicated by the federal and State governments for rebuilding
the flood-affected areas were AU$5.6 billion and AU$2.1 billion,
respectively; and

e the State governments’ share includes the AU$3.9 billion expenditures from
the Natural Disaster Relief and Recovery Arrangements (NDRAA).

The Disaster Management Act 2003 provides the legal basis for the Queensland’s
disaster management arrangements which had been established in three levels of
hierarchy: the State Disaster Management Group, district disaster management
groups, and local disaster management groups (Queensland Government 2011). The
Queensland Reconstruction Authority (QRA) (2011) identified four disaster risk
reduction measures that are being implemented in Queensland: mitigation,
preparedness, response and recovery. Each of these measures has corresponding
natural disaster related expenditures from the Commonwealth and State
Governments which were instrumental in operationalising the Markov Decision
Process.

Markov Decision Process (MDP) relies on theory to model feasible action with
associated transition matrix containing the probabilities that performing the action in
state s will move the system to state s” (Schapaugh and Tyre 2013). As a stochastic
process, MDP is a decision-making model for finding optimum policy under
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certainty (White 111 and White 1989; Eun-Kim 1994; Dufour and Prieto-Rumeau
2014).

Several studies were conducted to model decision-making problems in different
areas, such as finding optimum hydro-power production (Lamond and Boukhtouta
1996), maintenance policy of repairable power equipment (Tomasevicz and
Asgarpoor (2009), inventory control problem for optimal ordering decisions (Ahiska
et al. 2013), and natural resources conservation and management (Williams 2009).

In the field of disaster risk management, MDP was used in optimising open space
for emergency response (Li et al. 2013). From the thorough review of related
literature, the studies on optimising expenditures for natural disaster risk reduction
have never been substantially explored. In this current study, a new way of dealing
with uncertainty in the state transition function was introduced by using existing
records on government expenditures for natural disaster risk reduction measures,
social discounting factors, and total business loss during the January 2011 flood in
the study area with the MDP environment. Thus, this study explored the novel
approach of combining MDP with GIS to find the optimum natural disaster risk
reduction policies that were implemented by the Commonwealth and State
governments in Australia.

Further discussions on the research issues and the choice of MDP as analytical tool
in this study are found in the subsequent sections and in Chapter 2 (Literature
Review).

6.2 Research Methods

6.2.1 Setting the Markov Decision Processes (MDP) Algorithms

In principle, improving disaster risk reduction (DRR) measures and reducing the
associated costs of climate adaptation strategies are the current top priorities for any
flood-prone communities and critical infrastructure utilities. In an increasingly
competitive financial environment, government expenditures should be spent
optimally without losing the efficacy of the finest delivery of infrastructure service
to communities. However, providing disaster-related services to urban community
and management of critical infrastructures are confronted with many challenges in
this highly competitive era: rising cost of disaster risk reduction measures,
increasing demand on land and utilities, maintaining high levels of reliability and
infrastructure services quality, and managing aged facilities, among others.
Therefore, the fitness of the urban community and critical infrastructures can be
measured when they can withstand the damaging effects of natural disaster like
floods. It is of high importance that flood disruption should be maintained at the
minimum; otherwise, lives, properties and business revenues would be positioned at
very high risk from losing.

In this section, a spatial modelling to find optimal decisions for disaster risk
reduction (DRR) was examined by setting up the problem as a Markov decision
process (MDP). In general, MDP is a 4-tuple (S, A, R, T) mathematical framework
where (Chan and Asgarpoor 2006):
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S = a set of system states s;

A = a set of available actions a;

R = a set of state- and action-dependent immediate rewards or costs R(s, a,
s’); and

T = a set of state- and action-dependent transition probabilities T(s, a, s’).

Following Chan and Asgarpoor’s (2006) framework, the quantitative analysis of
disaster risk reduction (DRR) measures was based on the assumption that the
consequences of the measures employed are non-random. This suggests that for a
given disaster risk reduction cost and the random flooding to urban community and
critical infrastructures have no bearing on the frequency of implementing DRR. This
study also assumed the process of stationary (i.e. time-independent); hence, the
MDP’s system states (i.e. past, present, and future) were considered independent
from each other.

Figure 6.1 is the schematic representation of MDP used in the study. How each of
the components operates is fully discussed in the subsequent sections.

Legend

— [T(s,al,s")*Rs,al s )+(y*V(s)]
— [T(5,a2,s")*R(s,a2,s")+y*V(s')]
b [T(s,a3,s)*R(s,a3,s ) +(y*V(s")] Very High
Risk

—> [T(s,a4,s) *Ris,ad,s )+ V(s")]

Figure 6.1 The schematic diagram of MDP used in the study (The red, green, blue, and purple arrows represent
the combined transition probability, reward, & discounting factor for actions 1 (mitigation), 2 (preparedness), 3
(response), & 4 (recovery), respectively)
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6.2.1.1 State variables

The flood risk state of the system (i.e. urban community and critical infrastructures)
was examined with four random variables which correspond to the four levels of
flood risk, i.e. s € S = {1, 2, 3, 4}, where S is a finite state set. The first, second,
third, and fourth levels are represented by the low flood risk condition level (s; = L),
moderate flood risk condition level (s, = M), high flood risk condition level (s3 = H),
and very high flood risk condition level (s, = VH), respectively. Figure 4.36 from
Chapter 4 was chosen to represent the state of the system considering that the figure
provides the comprehensive spatial component of the study area’s integrated
infrastructure system.

Alternatively, this study can also use the climate adaptation capacity of the urban
community and integrated infrastructure (see Figure 4.42 from Chapter 4) as the
state of the system. However, this study opted to use Figure 4.36 as briefly described
above.

6.2.1.2 Action variables

Four (4) decision variables were utilised in setting up the finite actions a € A(s) set
at s € S. These action variables include the four disaster risk reduction measures
outlined in the Queensland State Disaster Management Plan 2011 (EMQ-DCS
2011): mitigation (a;), preparedness (a;), response (as), and recovery (as). The
Emergency Management Queensland - Department of Community Safety (EMQ-
DCS) (2011) defined these risk assessment components as follows:

Mitigation is a risk treatment process that is linked to recovery that allows
opportunity to build resilient communities through (1) the design and
provision of more resilient new or updated infrastructures and services, (2)
preparation of communities and response agencies and arrangements in
place, (3) partnerships between sectors and community education to promote
resilience activities, and (4) promotion of clear understanding of hazards,
their behaviour and interaction with vulnerable elements;

Preparedness is building capability and resilience to ensure that the
community and all functions and services that are needed to better manage
the consequences of a disaster. This may take in the form of community
education and awareness, resilience, disaster management planning, training
and education, exercises, and communication.

Response involves the conduct of activities and appropriate measures
necessary to respond to an event with immediate relief and support. Disaster
response activities include:

e Operational planning

e Response

e Declaration of disaster situation

e State disaster coordination

e Hazard analysis and modelling

e Warnings
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e Resupply

e Logistics support

e Evacuation management

e Search and rescue

e Emergency medical retrieval

e Offers of assistance

e Financial management and NDRRA cost substantiation
e Situational reporting

e Emergency supply

e Impact assessment

e Mass casualty and mass fatality management
e Debriefs, review and assessment

Recovery involves disaster relief by providing immediate shelter, life support and
human needs to persons affected by, or responding to, a disaster. As part of the
broader disaster recovery set out in the Queensland Recovery Guidelines, this phase
of disaster management involves coordinated process of supporting affected
communities in the reconstruction of physical infrastructure, restoration of the
economy and the environment, and support for the emotional, social and physical
wellbeing of those affected.

It was recognised in this study that these four phases of disaster management were
not mutually exclusive and they overlap with each other; however, each had been
used in the analysis as distinct action variable for the purpose of computational
simplicity. Furthermore, this study also excluded the post-disaster assessment
activities.

The quantitative analysis of the action variables for the MDP was based on the
historical 12-year (1990-2002) government expenditure analyses prepared by the
Australian Government Department of Transport and Regional Services (2004) as
summarised in Tables 6.1 to 6.3.

Table 6.1 Total government expenditure by category 1990/91-2001/02

Year Preparedness & Relief/ Mitigation Other related Aggregate
Response Recovery expenditure Expenditure
($M) (%) GM) | ) | M) | (%) ($M) (%) ($M)
2001/02 433 55 274 35 63 8 21 3 791
2000/01 454 46 430 42 106 10 23 2 1014
1999/00 397 49 306 38 92 11 20 2 814
1998/99 340 47 294 41 73 10 13 2 720
1997/98 379 52 268 37 68 9 14 2 730
1996/97 296 57 152 29 61 12 10 2 519
1995/96 246 63 80 20 57 15 9 2 392
1994/95 230 64 68 19 55 15 9 2 362
1993/94 207 56 107 29 47 13 9 2 369
1992/93 182 59 88 29 29 9 8 3 306
1991/92 172 46 172 47 20 5 6 2 371
1990/91 167 32 334 63 20 4 6 1 527
Total 3503 626 2573 429 691 121 148 25 6915
Ave, 292 52 214 36 58 10 12 2 576

Source: Australian Government Bureau of Transport and Regional Economics (BTRE) 2002
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Table 6.2 Total commonwealth expenditure by category 1990/91-2001/02

Year Preparedness & Relief/ Mitigation Other related Aggregate
Response Recovery expenditure Expenditure
($M) (%) GM) | (%) | M) | (%) ($M) (%) ($M)
2001/02 0.1 0 194.0 89 15.2 7 13.8 6 223
2000/01 12.9 4 263.3 78 46.6 14 13.9 4 337
1999/00 13.4 7 123.8 67 40.9 22 11.7 6 189
1998/99 9.8 6 108.4 70 29.4 19 7.0 5 155
1997/98 8.5 4 146.9 77 28.9 15 6.9 4 191
1996/97 8.2 11 30.2 41 28.6 39 7.3 10 74
1995/96 8.4 17 4.6 9 29.1 59 7.1 14 49
1994/95 7.7 18 2.2 5 25.5 61 6.6 16 42
1993/94 7.9 18 5.2 12 24.1 55 6.4 15 44
1992/93 0.1 0 10.3 64 na 5.8 36 16
1991/92 0.1 0 59.0 91 na 5.7 9 65
1990/91 0.1 0 163.5 97 na 5.7 3 169
Total 77.2 85 1111.4 | 700 268.3 291 97.9 128 1554
Ave. 6.4 7 92.6 58 22 24 8 11 129

Source: Australian Government Bureau of Transport and Regional Economics (BTRE) 2002

Table 6.3 Total state and territory government expenditure by category 1990/91-2001/02

Year Preparedness & Relief/ Mitigation Other related Aggregate
Response Recovery expenditure Expenditure
(M) %) | M) | %) | M) | ) | M) | (%) (M)
2001/02 433 76 80 14 48 8 6.7 1.2 568
2000/01 441 65 167 25 60 9 9.5 1.4 677
1999/00 383 62 183 29 51 8 8.0 1.3 625
1998/99 331 58 185 33 43 8 6.5 1.1 566
1997/98 371 69 121 22 40 7 7.3 1.4 539
1996/97 288 65 122 27 33 7 2.7 0.6 444
1995/96 237 70 75 22 28 8 2.0 0.6 341
1994/95 223 70 66 21 29 9 2.0 0.6 318
1993/94 199 62 101 31 23 7 2.4 0.8 323
1992/93 182 63 77 27 29 10 2.5 0.9 288
1991/92 172 56 113 37 20 7 0.6 0.2 305
1990/91 167 47 170 48 20 6 0.6 0.2 357
Total 3427 763 1460 336 424 94 50.8 10.3 5351
Ave. 286 64 122 28 35 8 4 0.85 447

Source: Australian Government Bureau of Transport and Regional Economics (BTRE) 2002

6.2.1.3 State transition probabilities

Given the phases of disaster risk management which are clearly defined in the
Queensland State Disaster Management Plan 2011, the identification of the best
available state transition probabilities for MDP was the next critical step considered
in this study.

The underlying Markov processes that define the state transition probabilities for
this study were associated with the average percentage of the government
expenditures by category as presented in Tables 6.1 to 6.3. From Table 6.1 for
example, it was assumed in this study that the probabilities that the combined
government expenditure for Natural Disaster Relief and Recovery Arrangements
(NDRRA) will be spent for mitigation (a1), preparedness (a,) and response (as), and
recovery (a4) are 10%, 52%, and 36%, respectively. Table 6.4 summarises the state
transition probabilities used in the study. The ‘other related expenditure’ was
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excluded from the analysis because of its ambiguity into which this expenditure will

be categorised.

Table 6.4 The state transition probabilities used in the MDP analysis

Action Variable Transition Probability (T(s, a, 5”))
Combined Government | Commonwealth | State/Territory
Expenditure Government Government
Expenditure Expenditure
Mitigation (a;) 0.10 0.24 0.08
Preparedness (a,) 0.52 0.58 0.28
and Response (a3)
Recovery (a4) 0.36 0.07 0.64

The state transition probability was denoted in this study as T(s, a, s’) being the
probability of the current state s given an action a will lead to the future state s’.
Through this definition, it was further assumed in this study that a particular state of
the system (e.g. very high flood risk) will be reduced to a future state (e.g. high,
moderate or low flood risk) if particular action (e.g. a;, a,, as or as) will be
implemented to mitigate the disaster. However, a caution should be stated upfront
that the identified disaster risk management actions in this study cover all types of
natural disasters and flood mitigation is only part of it.

6.2.1.4 Reward variables

Denoted in this study as R(s, a, s’), the reward variables of the MDP were based on
the best available lost earnings by business impacted by the 2010/2011 floods. In
January 2011 and six months after the natural disasters (i.e August 2011), the
Chamber of Commerce and Industry Queensland (CCIQ) conducted surveys to
determine the cost of damage and total lost earnings to business directly and
indirectly affected by the Queensland floods. The pieces of information from Tables
6.5 and 6.6 were instrumental in the determination of the reward standardised rate
(RSR).

Table 6.5 The total lost earnings for businesses impacted by the Queensland floods

Earning Bracket Directly Indirectly Directly Indirectly
%) Impacted Impacted Impacted Impacted
(January 2011) (January 2011) (August 2011) (August 2011

% RSR % RSR % RSR % RSR

1-4,999 1.8 0.25 2.3 0.33 3.2 0.22 - 0.08

5,000 — 9,999 9.1 (H) 5.4 (L) 1.6 (H) - (L)
10,000 — 19,999 2.7 14.7 6.3 4.0
20,000 — 49,999 20.0 27.1 12.7 4.0
50,000 — 99,999 17.3 17.1 20.6 8.0

100,000 — 499,999 25.4 0.25 23.3 0.17 30.2 0.28 60.0 0.42

500,000 — 999,999 8.2 (VH) 3.9 (M) 7.9 (VH) 8.0 (M)
1,000,000 + 15.4 6.2 17.5 16.0

Total 100 0.50 100 0.50 100 0.50 100 0.50

Source: Chamber of Commerce and Industry Queensland 2011
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Table 6.6 The total lost earnings as a percentage of annual turnover for businesses impacted
by the Queensland floods

Annual Turnover Directly Indirectly Directly Indirectly
Classification (%) Impacted Impacted Impacted Impacted
(January 2011) (January 2011) (August 2011) (August 2011
% RSR % RSR % RSR % RSR
1-9 53.6 0.40 56.2 0.39 60.7 0.38 39.3 0.30
10-19 25.8 (H) 22.3 (L) 14.3 (H) 21.4 (L)
20-49 13.4 0.10 20.5 0.11 14.3 0.12 25.0 0.20
50 + 7.2 (VH) 0.9 (M) 10.7 (VH) 14.3 (M)
Total 100 0.50 100 0.50 100 0.50 100 0.50

Source: Chamber of Commerce and Industry Queensland 2011

The reward standardised rate (RSR) is referred in this study as the statistical measure
of the rate of lost earnings by businesses impacted by the floods. This was computed
by the following equation:

Lost Earning Rate for Flood Risk Level

Reward Standardised Rate (RSR) = (Z )100% . Eq.6.1

¥ Total Lost Earning Rate

In determining RSR, preliminary assumptions were considered. Table 6.5 classifies
the total lost earnings of businesses into directly and indirectly impacted by the
Queensland floods from the surveys conducted in January 2011 and August 2011.
The indirectly affected earning brackets of $1 — 99,999 and $100,000 — 1,000,000+
were assumed to be within the areas of low flood risk level and moderate flood risk
level, respectively. Within the same earning brackets classified as directly affected
by floods, it was assumed to be within the areas of high and very high levels of flood
risk. The same assumptions were applied to Table 6.6. However, the bracket
assignments of the total lost earnings directly and indirectly affected by floods were
based on the percentage of annual turnover.

Using the RSR in assigning the reward variable R(s,a,s’) for MDP, this study
considered the flood risk levels as the current states of the system with disaster risk
reduction (DRR) measures as action variables and government expenditures as
transition probabilities. For a given flood risk level (s) managed by an action
variable (a) by using the government expenditure (t) to maintain or alleviate the
current state of the system, three (3) possible example scenarios were assumed:

Scenario 1: If the state of the system was assumed to maintain its current
condition, then the system was considered to gain and maintain the current
reward, either negative or positive final reward;

Scenario 2: If the current state of the system was assumed to improve, then
the system was considered to gain a positive reward; and

Scenario 3: If the current state of the system was assumed to get worse, then
the system was considered to gain a negative reward.

Given the current state of the system, assigning the final rewards to manage the
disaster risk through the action variables that will lead to the future state of the
system (R(s,a,s’)) was considered dependent on the system’s condition of recovery
or loss of earnings. To mathematically operationalise the system of rewarding, the
following examples are provided below.
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Example 1
State of the System: Very High Flood Risk (VH)
Action Variable: Mitigation a;
Transition Probability: 10%, 24% or 8%

In a very high flood risk condition (VH) with action variable a; using the
corresponding transition probability from any government expenditure for example,
four possible scenarios were generated. If the current state VH was assumed to
remain VH in the future after action a; was implemented, a negative reward of -0.25
was maintained. If the current state was assumed to improve to high (H), the system
was supposed to recover a 0.25 reward but because it lost 0.25 during the current
state, then the system was expected to gain a 0 final reward. If the system was
assumed to improve to moderate (M), the system was supposed to recover a 0.25
reward but because it lost 0.17 during the current state, then the system was
expected to gain 0.08 as a positive final reward. If the system was assumed to
improve to low (L), the system was supposed to recover the 0.25 reward but because
it lost 0.33 during the current state, then the system was assumed to gain -0.08 as a
negative final reward. The same principles were applied to action variables a,, as,
and a4 and corresponding transition probabilities.

Example 2
State of the System: High Flood Risk (H)
Action Variable: Preparedness (a)
Transition Probability: 52%, 58%, or 28%

In a high flood risk condition (H) with action variable a, using the corresponding
transition probability from any government expenditure, the following possible
scenarios were generated. If the current state H was assumed to worsen to VH in the
future despite after action a, was implemented, a double negative reward of -0.50
was expected: one from the high flood risk condition and the other one from very
high flood risk condition. If the current state was assumed to remain high (H), a
negative reward of -0.25 was maintained. If the system was assumed to improve to
moderate (M), the system was supposed to recover a 0.25 reward but because it lost
0.17 during the current state, then the system was expected to gain 0.08 as a positive
final reward. If the system was assumed to improve to low (L), the system was
supposed to recover the 0.25 reward but because it lost 0.33 during the current state,
then the system was expected to gain -0.08 as a negative final reward. The same
principles were applied to action variables a;, as, and a, and corresponding
transition probabilities.

Example 3
State of the System: Moderate Flood Risk (M)
Action Variable: Response (a3)
Transition Probability: 52%, 58%, or 28%

In a moderate flood risk condition (M) with action variable as using the
corresponding transition probability from any government expenditure, the
following possible scenarios were generated. If the current state M was assumed to
worsen to VH in the future despite after action a; was implemented, a double
negative reward of -0.42 was expected: one from the moderate flood risk condition
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and the other one from very high flood risk condition. If the current state M was
assumed to worsen to H in the future despite action az was implemented, also a
double negative reward of -0.42 was expected: one from the moderate flood risk
condition and the other one from high flood risk condition. If the current state was
assumed to remain moderate (M), a negative reward of -0.17 was maintained. If the
system was assumed to improve to low (L), the system was supposed to recover the
0.17 reward but because it lost 0.33 during the current state, then the system was
expected to gain -0.16 as a negative final reward. The same principles were applied
to action variables a;, az, and a4 and corresponding transition probabilities.

Example 4
State of the System: Low Flood Risk ()
Action Variable: Recovery (a4)
Transition Probability: 36%, 7%, or 64%

In a low flood risk condition (L) with action variable a, using the corresponding
transition probability from any government expenditure, the following possible
scenarios were generated. If the current state L was assumed to worsen to VH in the
future despite after action a, was implemented, a double negative reward of -0.58
was expected: one from the low flood risk condition and the other one from very
high flood risk condition. If the current state L was assumed to worsen to H in the
future despite after action a, was implemented, also a double negative reward of -
0.58 was expected: one from the low flood risk condition and the other one from
high flood risk condition. If the current state L was assumed to worsen to M in the
future although after action a, was implemented, also a double negative reward of -
0.50 was expected: one from the low flood risk condition and the other one from
moderate flood risk condition. If the current state was assumed to remain low (L), a
negative reward of -0.33 was maintained. The same principles were applied to action
variables a;, a, and as and corresponding transition probabilities.

6.2.1.5 Policy Iteration

For this study, the MDP was designed to find an optimal policy as a function of
current states S and action variables A. The fundamental operation involved was the
calculation of the expectimax value of the current state using the expected utility
(V*(S)) under optimal action and the average sum of discounted rewards (Abbeel
2013). This operation utilised the Bellman equations and recursive definition of the
expected utility to find the optimal policy 7 s represented by the following
relationships (Abbeel 2013 and Chang 2013):

Vi =maxaea Vi atall se S Eq. 6.2
Ve =2 T(s,a,s)[R(s,as) +yVe(s)] Eg. 6.3.
T's = argmax ). T(s,a,s")[R(s,a,s") +yV2(s)] Eq. 6.4

where y ¢ (0, 1) is the discounting factor.
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6.2.1.6 Discounting factors

From Eq. 6.4, the use of discounting factor y ¢ (0, 1) was based on a given time
interval the value of money increases by a fraction x. Pfeiffer (2009) described this
representation as the potential earning if the money were invested, i.e., one dollar
now is worth 1 + x dollars at the end of one period or worth (1 + x)" dollars after n
periods. This means that an extra dollar invested today will grow to more than a
dollar tomorrow, a fact that according to Harrison (2010) reflected in positive
market interest rates.

In this study, the selection of discounting rates from the work of Harrison (2010) and
proposed to perform sensitivity testing of 3, 8 and 10% — accordingly, representing
the weighted average riskless rate of return, the weighted average rate of return and
rate of return for a riskier asset.

Figure 6.1 presented above summarises the MDP used in the study with four states
and four action variables. The arrows from the figure signify the sixty four (64)
combinations of solving the optimal policy by defining the future state of the system
(s’) given the current states (s), transition probabilities, rewards, discounting rates,
and expected utility.

6.2.2 Integration of Markov Decision Processes (MDP) with
Geographic Information System (GIS)

The core problem of MDP is to find the optimal policy for the decision makers. In
this study, it is about finding the optimal natural disaster risk reduction measures
implemented by the State/Territory and Commonwealth governments of Australia.
In the absence of the best available data for flood disaster risk management, natural
disaster is defined in this Chapter as the one, or combination, of the following
natural hazards: bushfire, earthquake, flood, storm, cyclone, storm surge, landslide,
tsunami, meteorite strike, or tornado; excluding drought, frost and heat wave
(DOTARS 2002). The advantage of using the “all hazards” approach is the
development of consistent arrangements with future directions and will enhance
Australia’s capacity to deal with a wide range of emergencies (DOTARS 2002).
Figure 6.2 summarises the method of finding the optimum disaster risk reduction
policy with MDP and GIS.
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Figure 6.2 A sample schematic diagram of finding optimum natural disaster risk reduction policy with MDP and GIS
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The process started by incorporating the MDP variables into the flood risk map (see
Figure 4.38 from Chapter 4). Then Equations 6.2 to 6.3 were applied in calculating
the expected utility values V(s’) and finding the optimum disaster risk reduction
policy. In using these equations, transition probability (e.g. T(s,as,s’) = 0.36),
reward variable (e.g. R(s,a4,8’) = -0.25), discounting factor (e.g. y = 0.03), and
initial expected utility V(s’) (i.e. 0) were assigned appropriately according to the
current state of the system (s), action variable (a), and future state of the system (s’).
In assigning the MDP variables, each current state (e.g. very high) with
corresponding action variable (e.g. a;) was combined with the four levels of future
state (e.g. low, moderate, high and very high risks). The sum of each output was
calculated to select which of each level received the expected maximum utility value
(expectimax). The chosen expectimax was then used as the new expected utility
V(s’).

For each level, a recursive learning process was then operationalised until the
succeeding expectimax values were found to be equal or nearly equal to the
preceding expectimax values. Then the expectimax search was terminated at this
instance and the optimum policy (z's) was finally selected. The procedure has
reached the convergence point of optimal policy (Pfeiffer 2009). In this study, the
convergence of expected utility values was established at the fourth level of
iteration.

6.3 Results and Discussions

This study applied the above algorithms to several conditions to test the sensitivity
of changing or modifying MDP variables. Sensitivity tests were done in 36 scenarios
as summarised in Appendix 3. Five hundred seventy six (576) maps were generated
from the different MDP scenario analyses; however, only 24 maps are shown in this
thesis representing scenarios 5, 17, and 29 (see Figures 6.3 to 6.6 and Appendices
4.1 to 4.8). Table 6.7 summarises the selected MDP scenarios presented in this
Chapter.

Table 6.7 The summary of selected MDP scenarios presented in this Chapter

Scenario | Transition Probability Discount Reward
T(s,a,5") Factor (y) R(s,a,s’) Survey Date

5 Commonwealth 8% Total lost earnings for January 2011
government expenditure businesses

17 State government 8% Total lost earnings for January 2011
expenditure businesses

29 Combined government 8% Total lost earnings for January 2011
expenditure businesses

Given the above scenario information, the MDP models were mapped in GIS. The
solution processes were made through the combination of attribute table calculation
and Model Builder techniques in ArcGIS 10. For purposes of discussion and
presentation in this Chapter, scenarios 5, 17, and 29 were selected. Common to these
scenarios was the use of 8% discounting factor and the January 2011 total lost
earnings for businesses in the MDP analysis. However, the dissimilarity of these
scenarios was based on government expenditures: the first, second, and third set of
scenarios were applied to test the Commonwealth government expenditure, State
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government expenditure, and combined government expenditure for disaster risk
reduction, respectively. Figures 6.3 to 6.6 and Appendices 4.1 to 4.8 show the GIS-
generated expected utility maps.

For MDP scenario 5, doing action 1(i.e. mitigation) given the current states of flood
risk (i.e. low, moderate, high, and very high) with the expected future state of being
either to remain or worsen to very high (VH) future state of flood risk, the
expectimax value is -0.0931 (see Figure 6.3 upper left). Furthermore, doing actions
2 and 3 (i.e. preparedness and response) and 4 (i.e recovery), the expectimax values
under the above conditions are -0.1781 and -0.0506, respectively (see Figure 6.3).
From these values, the policy is said to be at its optimum for action 4 being the
expectimax (i.e. -0.0506) is at the highest.

Doing actions 1, 2 and 3, and 4 given the current states of flood risk with the
expected future state of being either to improve (e.g. from very high flood risk to
high), remain (e.g. high to high), or worsen the state (e.g. from low or moderate
flood risk to high), the expected utility values for each action are -0.2131, -0.4681, -
0.0856, respectively. These findings show that the expectimax value of -0.0856
represents action 4 as the optimum policy (see Figure 6.4). Moreover, doing once
again the four actions given the current states of flood risk with the expected future
state of being either to improve (e.g. very high or high flood risk to moderate),
remain (e.g. moderate to moderate), or worsen (e.g. low to moderate), the identified
optimum policy was action 4 with expectimax value of -0.1150 (see Figure 6.5).
Finally, Figure 6.6 shows that the optimum policy under this scenario is also action
4 with expectimax value of -0.1724.

The consistency of these findings shows that the Commonwealth government
expenditure had been utilised optimally to focus on recovery from natural disaster.
This finding agrees with the impression that as soon as a disaster is declared, federal
funds are made available to rebuild and re-make flooded communities to “pre-
disaster” conditions (Hussey and Pittock 2013). However, the State government
utilised its disaster risk management expenditure in a different way. Bringing the
current states of flood risk to either very high, high, moderate, or low flood risk
using the four action variables generated expectimax values of -0.0579, -0.0979, -
0.1315, and -0.1971, respectively (see Appendices 4.1 to 4.4). These values
represent action 1 (i.e. mitigation) as the optimum policy. In interpreting MDP
scenario 17, this implies that the State government expenditure was optimally
utilised to focus on mitigation measures to reduce the severity of natural disasters.

When the Commonwealth and State government expenditures were combined, the
expectimax values also exemplified action 1 as the optimum policy as shown in
Appendices 4.5 to 4.8. MDP scenario 29, together with MDP scenario 17, showcase
and confirm an expected result of having action 1 (i.e. mitigation) as the optimum
policy. In Australia, the governments considered flood mitigation as one of the
important aspects of flood disaster risk reduction measures as comprehensively
provided in the four recent reviews of flood mitigation and adaptation. These inlcude
the Queensland Floods Commission of Inquiry, Brisbane City Council’s Flood
Response Review, Inquiry into Flood Mitigation Infrastructure in Victoria, and the
Victorian Floods Review (Hussey and Pittock 2013).

158



Chapter 6 Spatial Modelling of Natural Disaster Risk Reduction Policies with MDP

As such, the results from the MDP scenarios will implicate on how natural disaster
risk reduction funds will be optimally used in the future and will give reflections on
the effective implementation of flood mitigation given the government expenditures.
The presented application of Markov Decision Processes (MDP) is a novel
optimisation model for flood risk management. A Markov process-based
methodology allows a computationally feasible integration of a complex physical
model with economic variables (Freier et al. 2011). In this study, the flood risk
model was integrated with economic variables (e.g. government expenditures,
discounting factors, and total lost earnings for businesses) to find the optimal natural
disaster risk reduction policy within a GIS environment. In the application to critical
electricity infrastructure, for example, the optimum policy (e.g. maintenance)
maximises benefits (Chan and Asgarpoor 2006). Assuming that the urban
community and the infrastructure system are in a very high (VH) flood risk state
under MDP scenarios 1, 2, 4, 5, 6, 8,9, 10 12 (see Table 6.9) to shift its policy from
recovery to mitigation, the results could reduce the severity of natural disasters.
There is evidence that the estimated benefits of flood mitigation measures in terms
of tangible savings are substantial such as (BTRE 2002):

e Land use planning is estimated to save around $29 million in direct and
indirect costs under a 1 per cent AEP flood;

e Altering the way infrastructure is designed and constructed can be a very
cost-effective mitigation measure; and

e Community awareness and preparedness of businesses saved more than
80% of potential flood damage.
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Figure 6.5 The MDP scenario 5 expected utility maps for moderate (M) flood risk future state using mitigation
(upper left), preparedness and response (upper right and lower left), and recovery (lower right) action variables
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Figure 6.6 The MDP scenario 5 expected utility maps for low (L) flood risk future state using mitigation (upper left),

preparedness and response (upper right and lower left), and recovery (lower right) action variables
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Furthermore, the identification of optimum policies can also be ranked using the
expectimax values. MDP 5 scenarios demonstrate that recovery (ay) is priority over
mitigation (a;) then preparedness and response (a; and az). On the other hand, MDP
17 scenarios exhibit a pattern of priority such that mitigation (a;) is priority over
preparedness and response (a, and as) then recovery (a4). For MDP 29 scenarios,
mitigation (a;) is priority over recovery (a,) then preparedness and response (a, and
as). These observations are summarised in the following matrix.

Table 6.8 The pattern of disaster risk reduction optimum policy

MDP Scenario Pattern of Optimum Policy
5 as >a; >apandas
17 a; >azandas > ay
29 a; >ay >azand as

Table 6.9 is provided to summarise the expectimax values and corresponding
optimum policies across the 36 MDP scenarios. The results of the MDP analysis
were found consistent whether the assigned reward variables were based on January
2011 and August 2011 surveys. However, the readers are cautioned in interpreting
the values and using the optimum policies considering that the MDP variables were
limited based on the following:

e The MDP analysis was mainly based on natural disaster risk management
expenditures by the governments and not the actual risk reduction measures;

e The reward and discounting factors were established on the basis of existing
literature with corresponding assumptions as comprehensively presented
above.

Table 6.9 Summary of the expectimax values and optimum policies across the MDP scenarios
Expectimax Value of Future Flood Risk

Scenario (Vs) Optimum Policy
VH H M L
1 -0.0274 | -0.0624 | -0.0918 | -0.1492 | Recovery (a4)
2 -0.0599 | -0.0529 | -0.0886 | -0.1628 | Recovery (a4)

3 -0.0479* | -0.0641 | -0.1089 | -0.0963 | Mitigation (a;)* and
Recovery (a4)

4 -0.0562 -0.08 -0.101 | -0.1444 | Recovery (as)

5 -0.0506 | -0.0856 | -0.115 | -0.1724 | Recovery (a4)

6 -0.0855 | -0.0785 | -0.1142 | -0.1884 | Recovery (a4)

7 -0.0702* | -0.0864 | -0.1312 | -0.1186 | Mitigation (a;)* and
Recovery (a4)

8 -0.083 -0.1068 | -0.1278 | -0.1712 | Recovery (a4)

9 -0.0629 | -0.0979 | -0.1273 | -0.1847 | Recovery (as)

10 -0.099 -0.092 | -0.1277 | -0.2019 | Recovery (as)
11 -0.0820* | -0.0982 | -0.143 | -0.1304 | Mitigation (a1)* and
Recovery (as)

12 -0.0972 | -0.121 | -0.142 | -0.1854 | Recovery (as)

13 -0.0313 | -0.0713 | -0.1049 | -0.1705 | Mitigation (a;)
14 -0.0685 | -0.0605 | -0.1013 | -0.1861 | Mitigation (a1)
15 -0.0226 | -0.0722 | -0.1234 | -0.109 | Mitigation (a;)
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Expectimax Value of Future Flood Risk
Scenario (Vs’) Optimum Policy
VH H M L
16 -0.0643 | -0.0915 | -0.1155 | -0.1651 | Mitigation (a;)
17 -0.0579 | -0.0979 | -0.1315 | -0.1971 | Mitigation (a;)
18 -0.0977 | -0.0897 | -0.1305 | -0.2153 | Mitigation (a;)
19 -0.0456 | -0.0952 | -0.1464 | -0.132 | Mitigation (a;)
20 -0.0949 | -0.1221 | -0.1461 | -0.1957 | Mitigation (a;)
21 -0.0719 | -0.1119 | -0.1455 | -0.2111 | Mitigation (a;)
22 -0.1132 | -0.1052 | -0.146 | -0.2308 | Mitigation (a;)
23 -0.0577 | -0.1073 | -0.1585 | -0.1441 | Mitigation (a;1)
24 -0.1111 | -0.1383 | -0.1623 | -0.2119 | Mitigation (a;)
25 -0.0392 | -0.0892 | -0.1312 | -0.2132 | Mitigation (a;)
26 -0.0856 | -0.0756 | -0.1266 | -0.2326 | Mitigation (a;)
27 -0.0283 | -0.0903 | -0.1543 | -0.1363 | Mitigation (a;)
28 -0.0803 | -0.1143 | -0.1443 | -0.2063 | Mitigation (a;)
29 -0.0723 | -0.1223 | -0.1643 | -0.2463 | Mitigation (a;)
30 -0.1221 | -0.1121 | -0.1631 | -0.2691 | Mitigation (a;)
31 -0.057 -0.119 -0.183 | -0.165 | Mitigation (a;)
32 -0.1186 | -0.1526 | -0.1826 | -0.2446 | Mitigation (a;)
33 -0.0899 | -0.1399 | -0.1819 | -0.2639 | Mitigation (a;)
34 -0.1414 | -0.1314 | -0.1824 | -0.2884 | Mitigation (a;)
35 -0.0722 | -0.1342 | -0.1982 | -0.1802 | Mitigation (a;)
36 -0.1389 | -0.1729 | -0.2029 | -0.2649 | Mitigation (a;)

Interestingly, the results presented in Tables 6.8 and 6.9 are particularly useful in
determining the funding priorities of the Australian governments in terms of natural
disaster risk reduction. MDP scenarios 1 to 12, for example, give an indication that
the Commonwealth government expenditure focused on recovery which comes in
agreement with the findings of Insurance Australia Group (IAG). Accordingly, its
spending on mitigation initiatives represents around only 3 per cent of what it
spends on post-disaster recovery and reconstruction (IAG 2013). The Productivity
Commission also highlighted that compared to the $6.7 billion spent on disaster
recovery over the last 6 years, only $0.18 billion was spent on disaster mitigation
(Milne 2013). It was further estimated that 80% of post-disaster relief and recovery
expenditures are outlaid by the Australian government (Deloitte Access Economics
2013).

The implications of the above findings require the need to re-examine the
sufficiency of cost associated with the natural disaster risk mitigation as optimum
policy implemented by the State government (see MDP scenarios 13 to 24 for
examples). If full consideration be given to prioritise pre-disaster mitigation
activities, it will reduce the public money spent on post-disaster recovery in the
future and would generate budget savings in the order of $12.2 billion for all levels
of government (Deloitte Access Economics 2013). If the combined government
expenditure on natural disaster mitigation (see MDP scenarios 25 to 36) will be
successfully implemented, the future cost of natural disaster relief and recovery
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could be reduced by 50% by 2050 with a Benefit-Cost Ratio (BCR) of around 1.25
(Deloitte Access Economics 2013).

Based on the above findings, there was a clear indication that the results of the MDP
analysis in this study established an agreement with the previous economic analysis.

6.4 Summary and Conclusion

This Chapter started with the identification of the Markov Decision Processes
(MDP) variables. These include the flood risk states, action variables, discounting
factors, and reward variables which were generated from the initial flood risk
analysis and available literature. These variables were integrated in the GIS
environment through the Model Builder with ArcGIS 10. Combined with the
attribute table calculation technique, the expected utility values for each flood risk
level and the maximum expected utility (expectimax) values were generated. The
optimum policy for natural disaster risk management was then identified based on
the highest expectimax value. Results revealed that the Commonwealth government
optimised the use of its natural disaster risk expenditure to recovery while the State
government focused on mitigation.

The use and integration of MDP with GIS in finding the optimum policy will
provide benefits to natural disaster risk managers and decision-makers in a variety of
ways such as:

1. allocation of optimum expenditure for natural disaster risk management;

2. visual representation MDP-based flood risk scenarios given the current
states and expected future states; and

3. finding optimum natural disaster risk reduction policy for decision-making
and implementing alternative courses of action.

The methodology presented in this study allowed a spatial representation and
computationally feasible integration of a complex flood disaster risk model with
government expenditures and business earnings. The insights from this integrated
approach emphasised the viability of finding optimum expenditures, and the need to
re-examine if necessary, in implementing natural disaster risk reduction policies and
climate adaptation strategies.

Finally, the findings of the MDP analysis illustrated an opportunity to empirically
elucidate how the Australian governments spent its natural disaster risk reduction
budget. Apparently, there was a clear indication and greater agreement that
mitigation is the optimum policy to reduce the risk from natural disasters; however,
this finding was inconsistent when looking at the Commonwealth government
budget only. The MDP scenario analysis and economic analysis reached an
agreement on this regard.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

This study aimed to investigate the vulnerability and interdependency of urban
community’s critical infrastructures using an integrated approach of flood risk and
climate adaptation capacity assessment in conjunction with newly developed
spatially-explicit analytical tools. To achieve this goal, three specific objectives
detailed in Chapter 1.3 were addressed in Chapters 3 through 6. This last Chapter
presents the summary of the findings and offers conclusions and recommendations
for future research works.

7.2 Summary of Findings

The study provided novel knowledge and fresh insights on natural disaster risk
assessment of an urban community and its critical interdependent infrastructures.
This yielded new information on how the assessment was made possible through the
integration of spatial analytical tools, artificial intelligence (i.e. Self-Organising
Neural Network (SONN), network theory, and optimisation technique like the
Markov decision processes (MDP).

The study from Chapter 3 served as the “gateway” for the modelling of flood risk
and climate adaptation capacity. It scoped the spatial analytical tools that allowed
the transformation and standardisation of flood risk and climate adaptation capacity
indicating variables sourced in various data representations. The major outputs were
the generation of 5m gridded indicating variables representing hazard, physical
vulnerability, social vulnerability, and exposure indicating variables of the urban
community and its critical infrastructures.

From the analysis in Chapter 4, the development of flood risk and climate
adaptation capacity metrics was detailed. The following were the major findings:

e There was an inverse relationship between the degree of flood risk and
climate adaptation capacity of the studied urban community by infrastructure
category. The areas occupied with very high flood risk metrics were found to
have low climate adaptation capacity metrics. However, caution should be
emphasised that representing flood risk with climate adaptation capacity or
vice versa could give misleading results. This is because the areas being
occupied with very high flood risk are larger than the areas being occupied
by low adaptation capacity across infrastructure categories;

e The majority of the study area revealed negative climate adaptation capacity
metrics (minimum of -22.84 to < 0) which indicate that the resources (e.g.
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socio-economic) are not enough to increase climate resiliency of the urban
community and its critical infrastructures;
The developed metrics were used to identify disaster risk reduction measures
and/or climate adaptation strategies as follows:
= Mitigation on areas of low flood risk or very high climate adaptation
capacity
= Mitigation to preparedness on areas of moderate flood risk and high
climate adaptation capacity
= Mitigation to response on areas of high and moderate climate
adaptation capacity; and
= Mitigation to recovery on areas of very high flood risk and low
climate adaptation capacity.
Finally, the results from the analysis allowed generating a model newly
identified in this study as flood risk-adaptation capacity index-adaptation
strategies (FRACIAS) linkage model.

The methods used in assessing the vulnerability of critical infrastructures for
interdependency analyses were outlined in Chapter 5. The analyses were performed
into two levels: single or individual infrastructure level and interdependency level.
For the single system level, the notable findings were:

Electricity supplies were disrupted along the 627km (75%) and 212km
(25%) transmission lines in the North West and South East portions of the
study area during the January 2011 flood,;

Approximately 170km (47%) of road and 2.5km (38%) of rail networks were
identified to be highly vulnerable within areas of very high flood risk and
low adaptation capacity. Using these information in emergency evacuation
management, the evacuation route analysis revealed that 21km and 20.7km
travel distances were calculated to travel to the first evacuation centre (i.e.
RNA Show Grounds) and second evacuation centre (i.e. QEIIl Stadium),
respectively;

In the water supply infrastructure analysis, turbid water may found to flow
along 246km (56%) water distribution lines;

Sewerage networks’ main trunk, reticulation and pressure rising system were
affected during the January 2011 flood by 91% (33km), 78% (32km), and
81% (16km), respectively.

Finally, 87km (19%) of stormwater pipes were also affected by the flood
event.

For the interdependency level, the following were the major findings:

The direct or first order interdependency of electricity infrastructure with
sewerage infrastructure positioned the latter into critical failure due to the
failure of the former infrastructure. This interdependency was also found to
propagate to health care facilities;

The higher order interdependency was also represented showing the ripple
effects of electricity failure down to inaccessibility of roads for emergency
evacuation;

The co-location representation of highly vulnerable stormwater and sewerage
networks provided an analytical tool for monitoring the “illegal” connections
between these infrastructures;
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e In general, the infrastructure interdependencies of the urban community’s
critical infrastructures were categorised into direct, indirect, and nil
interdependencies;

e The hierarchy of interdependent infrastructure adaptation and resiliency
actions during the 2010/2011 floods in Queensland were identified to have
an inverted pyramid structure such that pre-emptive and post-flood measures
were graded from long-term measures (e.g. elimination) down to short-term
measures (e.g. protection).

Finally, the study in Chapter 6 outlined the methods used in finding the optimum
disaster risk reduction policies with Markov Decision Processes (MDP). The
significant findings revealed that the Australian Commonwealth government
expenditure had been utilised to focus on recovery from natural disaster while the
State government focused on mitigation. However, when commonwealth and state
government expenditures for natural disaster risk reduction were combined,
mitigation was found to have been the optimum expenditure policy. These findings
were consistent across different MDP scenarios. The patterns of disaster risk
reduction optimum natural disaster risk reduction policy was also noted by ranking
the MDP’s expectimax values. The findings of the MDP analysis illustrated an
opportunity to empirically elucidate how the Australian governments spent its
natural disaster risk reduction budget. Apparently, there was a clear indication that
mitigation was the identified optimum policy to reduce the risk from natural
disasters; however, this finding was inconsistent when looking at the
Commonwealth government budget only. The MDP scenario analysis and economic
analysis reached an agreement on this regard.

7.3 Conclusions

This research proved the hypothesis that “Spatially explicit flood risk and climate
adaptation capacity models can provide sets of information that are useful in
planning and developing strategies from the potential effects of extreme flood event
to the physical assets (human settlement and critical infrastructure systems) of an
urban community.

In the aspects of technical contribution, usefulness, and innovation, the findings
from this study were equal to or exceeded all other studies reported in the literature
due to the following reasons:

e The analyses set a comprehensive techniques from transforming and
standardising flood risk and climate indicating variables to generating flood
risk and climate adaptation capacity metrics and finding optimum natural
disaster risk reduction policy with the usage of geographic information
system and remote sensing;

e The network model of evaluating the interdependency of critical
infrastructures rendered suitable for analysing large-scale interdependent
infrastructures;

e The study was able to systematically analyse the linkage amongst the
different drivers and factors exposing an urban community and critical
interdependent infrastructures to extreme climatic event. This showed a great
promise on finding ways on how to increase its climate resiliency;
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e Through this novel methodology, this study revolutionised the old
compartmentalised methods of assessing the flood risk and climate
adaptation capacity of flood plain areas worsened by the absence of critical
infrastructure interdependency in the geographic analyses; and

e Finally, the nexus between the descriptive and prescriptive modelling
techniques with GIS-enabled application to climate risk assessment is the
main contribution of this thesis to the body of knowledge.

A number of advantages can be generated from the above studies. The first thing is
the feasibility of integrating critical infrastructure interdependency analysis in
setting up a comprehensive floodplain management system. This will significantly
help in reducing the number of properties and the built environment being exposed
to extreme climatic event such as flood. Furthermore, in a highly competitive
environment where financial resource is scarce, natural disaster risk reduction
expenditures should be optimally used. In agreement with the established economic
principle, the Markov Decision Process (MDP) analysis has shown a great promise
of finding the optimum disaster risk reduction policy. This approach will greatly
benefit households, businesses, and different levels of government in finding “best”
solutions to reduce life, insurance, business earnings, and property losses from
natural hazards and maximise long-term benefits.

In relation to other studies such as those conducted by Balica et al. (2013), the
parametric model used in this study is constrained on the availability of hazard,
vulnerability, and exposure datasets. The advantage of using this approach is the
simplified way of integrating flood risk, climate adaptation capacity, and adaptation
strategies which had been, apart from being understood as a complex system, treated
separately in the past. However, this study can only be applicable on small study
areas with datasets of high level of accuracy. Although applicable in the regional
and national scales, the resolution and accuracy of datasets can be a significant issue
and the tasks involved (e.g. utility network modelling and critical infrastructure
interdependency analysis) can be enormous considering that the analysis involved is
up to point geographic level. Furthermore, taking high resolution datasets involved a
considerable amount of financial resources. Section 7.4 below provides other
limitations of this study.

7.4 Recommendations for Future Works

The following analyses were found limited in this study; hence, recommended for
future works:

e Integration of hydrologic and hydraulic components, historical flood events,
and climate change factors in the analysis on a catchment scale;

e Inclusion of other critical infrastructures in the analysis such as information
and communications technology (ICT), financial, food supply, and other
networked infrastructures;

e Collection of MDP variables from primary sources; and

e Consideration of ecological/non-structural approaches in disaster risk
reduction and climate adaptation strategies in the analysis.
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Chapter 3

APPENDICES

Appendix 1 Selected indicating variables processed with fuzzy logic and corresponding FMVs

Vulnerability (and Risk) Classification

Fuzzy s(u: @, B, v)
Risk Indicating Membershi Low | Modera High Very High
Component Variable p Operation (Y1) te B=<u< u=7y)
(a<su< Y)
P)
Hazard Flood Hazard Small See Table 3.4
Physical Estimated Period Large 51-105 | 105-128 | 128-138 138-161
Vulnerability of Settlement 0.15- 0.77- | 0.85-0.86 0.86-0.94
0.77 0.85
Population by Age Large 8.70- 13.73- 15.34- 20.38-36
13.73 15.34 20.38 0.60-0.92
0.01- 0.23- | 0.38-0.60
0.23 0.38
Total Counts of Small 10771- | 4394- | 1800-745 745-316
Registered 4394 1800 0.99- 0.994-1.00
Businesses 0.03- 0.92- 0.994
0.92 0.99
Education Small 74-71 71-70 70-66 66-58
0.36- 0.42- | 0.43-0.49 0.49-0.65
0.42 0.43
IEO Small 1227- 1175- 1160- 1143-1092
1175 1160 1143 0.88-0.97
0.03- 0.47- | 0.73-0.88
0.47 0.73
IER Small 1144- 1026- 953-908 9088-80
1026 953 0.73-0.88 0.88-0.97
0.03- 0.47-
0.47 0.73
IRSAD Small 1158- 1115- 1089- 1047-978
1115 1089 1047 0.88-0.97
Social 0.03- 0.47- | 0.73-0.88
Vulnerability 0.47 0.73
IRSD Small 1129- 1094- 1082- 1048-945
1094 1082 1048 0.88-0.97
0.03- 0.47- | 0.73-0.88
0.47 0.73
Insurance  (Home Large 415- | 485-543 | 543-591 591-632
& Content in 485 0.52- | 0.65-0.76 0.76-0.84
$’000) 0.49- 0.65
0.52
Persons in Need of Large 0.90- 1.67- | 2.22-2.99 2.99-4.10
Assistance 1.67 2.22 0.29-0.49 0.49-0.92
0.01- 0.20-
0.20 0.29
Without Vehicles Large 3.5-13 13-17 17-22 22-31
0.00- 0.23- | 0.54-0.76 0.76-0.95
0.23 0.54
Residential Tenure Large 12-40 40-53 53-58 58-70
- Renting 0.01- 0.68- | 0.80-0.82 0.82-0.94
0.68 0.80
Total Building Small 341-54 | 54-31 31-29 29-6
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Vulnerability (and Risk) Classification

Fuzzy s(u: 0. . v)
Risk Indicating Membershi Low | Modera High Very High
Component Variable p Operation u<sw te B=su< (u>y
(a<u< )
)
Value ($°000) 0.03- 0.08- | 0.94-0.99 0.99-1.00
0.08 0.94
Unemployment Large 1.70- 3.39- 5.53-8.26 8.26-10.40
Rate 3.39 5.53 0.18-0.77 0.77-0.91
0.00- 0.04-
0.04 0.18
Volunteers Small 29- 26.68- 23.68- 19.86-15
26.68 23.68 19.86 0.54-0.87
0.20- 0.34- | 0.40-0.54
0.34 0.40
Weekly  Personal Large 18.30- | 25.63- 29.20- 36.54-51.60
Income 25.63 29.20 36.54 0.39-0.88
0.04- 0.19- | 0.24-0.39
0.19 0.24
Flooded Large 0-88 | 88-1646 1646- 3205-3293
Residential and 0.17- 0.24- 3205 0.99-1.00
Commercial 0.24 0.92 0.92-0.99
Properties
Estimated Resident Large 1347- 5781- 8525- 11270-15704
Exposure Population 5781 8525 11270 0.91-0.98
0.01- 0.51- | 0.77-0.91
0.51 0.77
Population Growth Large 0-1.32 1.32- | 2.49-3.81 3.81-5.30
Rate 0.21- 2.49 0.98-0.99 0.99-1.00
0.86 0.86-
0.98

Note: Upper values are the original attribute values and lower italicised values are the fuzzy membership values
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Appendix 2 Calculated global Moran’s | statistics of flood risk and adaptation capacity indicating variables

Hazard Indicating Variables

HAZARD INDICATING VARIABLES

Distance . . - . -

(m) Biological Building Damage Chemical Electricity
| Zi | Zi | Zi | Zi

100 - - - - - - 0.71 59.05
200 - - 0.24 139.99 - - 0.67 79.62
300 - - 0.20 143.04 - - 0.65 97.26
400 - - 0.13 114.95 - - 0.61 110.06
500 - - 0.10 98.79 - - 0.48 105.68
600 - - 0.06 79.44 - - 0.39 100.78
700 - - 0.04 55.28 0.68 | 21.51 | 0.33 97.36
800 - - 0.03 44,94 0.68 | 24.03 | 0.26 87.80
900 - - 0.03 49.14 0.69 | 26.10 | 0.22 80.55
1000 - - 0.03 55.16 0.69 | 27.28 | 0.18 73.83
1100 - - 0.02 49.84 0.69 | 29.16 | 0.15 65.70
1200 - - 0.02 44.40 0.68 | 28.93 | 0.12 59.97
1300 - - 0.01 23.46 0.65 | 28.20 | 0.11 55.44
1400 - - 0.00 4.48 0.62 | 27.88 | 0.09 50.05
1500 0.24 18.97 | 0.00 -5.16 0.54 | 25.69 | 0.08 45.12
1600 0.22 18.24 0.48 | 24.24 | 0.06 40.00
1700 0.22 19.08 0.41 | 23.84 | 0.05 35.94
1800 0.20 19.53 0.35 | 23.34 | 0.04 32.47
1900 0.20 21.21 0.33 | 23.70 | 0.03 25.30
2000 0.20 22.38 0.29 | 22.83 | 0.02 18.79
2100 0.18 21.60 0.27 | 22.81 | 0.02 18.09
2200 0.14 19.68 0.24 | 22.15 | 0.02 15.95
2300 0.10 16.88 0.23 | 21.97 | 0.02 17.44
2400 0.07 13.12 0.19 | 20.50 | 0.01 15.80
2500 0.04 9.84 0.13 | 18.22 | 0.01 11.56
2600 0.03 8.06 0.11 | 16.99 | 0.00 5.10
2700 0.01 5.16 0.06 | 14.52 | 0.00 -2.70
2800 -0.01 -0.72 0.02 | 11.39
E(I) -0.0092 -0.00026 -0.0154 -0.0012
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Physical Vulnerability Indicating Variables

PHYSICAL VULNERABILITY INDICATING VARIABLES
Distance Electricity Sewerage Stormwater | Water Supply
(m) Building FSI Network Network Network Network
[ Zi [ Zi [ Zi [ Zi [ Zi
100 - - - - - - - - - -
200 0.08 86.78 - - - - - - - -
300 0.05 69.66 - - - - 0.04 | 4453 | 0.11 | 142.38
400 0.03 60.91 15.64 - - 0.03 | 49.16 | 0.10 | 172.77
500 0.02 55.31 17.15 - - 0.03 | 48.30 | 0.09 | 197.32
600 0.02 52.13 18.04 - - 0.02 | 46.09 | 0.08 | 212.99
700 0.02 59.64 19.88 - - 0.02 | 43.54 | 0.08 | 224.38
800 0.02 66.35 21.79 - - 0.01 | 39.64 | 0.07 | 232.32
900 0.01 60.75 21.35 | 0.04 | 30.57 | 0.01 | 35.28 | 0.07 | 238.26
1000 0.01 56.00 21.71 | 0.04 | 28.77 | 0.01 | 30.67 | 0.06 | 240.80
1100 0.01 57.64 21.29 | 0.03 | 27.89 | 0.01 | 25.31 | 0.06 | 240.05
1200 0.01 63.75 22.79 | 0.03 | 26.47 | 0.01 | 21.88 | 0.05 | 235.76
1300 0.01 66.87 23.12 | 0.03 | 25.14 | 0.00 | 14.84 | 0.04 | 230.36
1400 0.01 65.34 2477 | 0.02 | 23.33 | 0.00 | 10.03 | 0.04 | 225.32
1500 0.01 66.00 2538 | 0.02 | 23.18 | 0.00 | 5.39 | 0.04 | 216.77
1600 0.01 64.02 26.09 | 0.02 | 2245 | 0.00 | 0.85 | 0.03 | 209.28
1700 0.01 63.04 25.08 | 0.02 | 21.08 0.03 | 201.93
1800 0.01 67.39 23.72 | 0.01 | 19.44 0.03 | 195.88
1900 0.01 69.00 23.37 | 0.01 | 18.26 0.02 | 188.69
2000 0.01 69.34 22.38 | 0.01 | 1857 0.02 | 180.34
2100 0.01 72.74 21.1 | 0.01 | 18.15 0.02 | 172.21
2200 0.01 76.08 19.41 | 0.01 | 16.77 0.02 | 163.41
2300 0.01 76.96 17.04 | 0.01 | 16.49 0.02 | 154.94
2400 0.01 77.97 14.04 | 0.01 | 15.86 0.01 | 147.22
2500 0.01 78.68 11.41 | 0.01 | 14.85 0.01 | 139.86
2600 0.01 79.24 9.73 | 0.01 | 14.24 0.01 | 132.70
2700 9.18 0.01 | 12498
2800 6.93 0.01 | 117.01
2900 4.24 0.01 | 109.92
3000 2.91 0.01 | 104.18
3100 1.47
3200 0.57
3300 -0.29
E(I) -0.000059 -0.00034 -0.0003 -0.00008 -0.00007
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Social Vulnerability Indicating Variables

Distance SOCIAL VULNERABILITY INDICATING VARIABLES
(m) Access to Emergency Services Emergency Response
[ Zi [ Zi

2600 0.31 14.02 0.31 14.35
2700 0.31 14.58 0.31 14.92
2800 0.29 14.61 0.29 14.96
2900 0.30 15.83 0.30 16.92
3000 0.30 16.26 0.30 16.58
3100 0.28 16.02 0.28 16.29
3200 0.27 16.20 0.26 16.41
3300 0.24 15.40 0.24 15.56
3400 0.23 15.09 0.22 15.20
3500 0.22 15.02 0.21 15.13
3600 0.19 14.09 0.19 14.21
3700 0.18 13.26 0.17 13.37
3800 0.16 12.64 0.16 12.70
3900 0.15 12.12 0.14 12.21
4000 0.13 11.63 0.13 11.70
4100 0.12 10.78 0.11 10.86
4200 0.10 9.60 0.09 9.47
4300 0.08 8.80 0.08 8.60
4400 0.07 8.16 0.07 8.00
4500 0.06 7.23 0.06 7.25
4600 0.04 5.70 0.04 5.72
4700 0.03 4,55 0.02 4.56
4800 0.01 2.94 0.01 2.88
4900 0.01 2.72 0.01 2.75
5000 0.00 2.04 0.00 2.03
5100 -0.01 0.44 -0.02 0.42
5200 -0.02 -0.22 -0.02 -0.19
E(I) -0.0189 -0.0185
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Exposure Indicating Variables

EXPOSURE INDICATING VARIABLES

Distance Electricity Heritage Sewerage Stormwater Water
(m) Services Sites Services Services SS upply
ervices

| Zi ' Zi | Zi I Zi I Zi
100 035 | 32.24 028 | 19.68 | 0.38 | 57.97 - -
200 027 | 56.34 023 | 27.94 | 029 | 81.36 - -
300 023 | 69.17 019 | 34.49 | 023 | 101.65 | 0.73 | 48.12
400 0.19 | 79.80 0.16 | 38.02 | 0.20 | 113.62 | 62.00 | 64.45
500 016 | 83.42 014 | 41.94 | 018 | 122.64 | 0.54 | 74.40
600 014 | 8516 | 061 1002 | g1 | 4496 | 0.5 | 12966 | 0.50 | 77.03
700 012 | 8526 |053 |1222 | 011 | 4744 | 014 | 13245 | 0.42 | 80.40
800 010 | 8324 |053 1222 | 010 | 4843 | 0.12 | 130.98 | 0.38 | 80.95
900 013 | 9598 |053 |1222 | 009 | 49.22 | 0.10 | 126.06 | 0.34 | 81.23
1000 | 007 | 7332 |043 | 1242 | 0908 | 4922 | 0.08 | 12054 | 0.30 |81.21
1100 | 006 | 6592 |035 | 1290 | 907 | 4841 | 0.07 | 114.23 | 027 | 80.22
1200 | 005 | 5968 |035 |1290 | 006 | 4762 | 0.06 | 106.14 | 0.25 | 79.43
1300 | 004 | 5300 |03l 1280 | 0op | 46.03 | 0.05 | 99.49 | 0.22 | 78.06
1400 | 003 | 4720 |029 1300 | 005 | 4442 | 005 | 9468 | 0.20 | 77.04
1500 | 002 | 4250 |925 | 1297 | 004 | 4203 | 004 | 9252 | 0.18 | 75.82
1600 | 002 | 3775 | 025 | 1297 | 004 | 3981 | 0.04 | 9168 | 0.16 | 74.18
1700 | 002 | 3349 |022 1296 | 003 | 3741 | 0.04 | 90.88 | 0.15 | 72.45
1800 | 002 | 3094 |022 129 | 0p3 | 3529 | 0.03 | 91.37 | 0.14 | 71.36
1900 | 001 | 2908 |019 |1314 | 0902 | 3280 | 0.03 | 9388 | 0.13 | 69.87
2000 | 001 | 2847 |018 1323 | 902 | 3122 | 003 | 96.92 | 0.11 |68.14
2100 | 001 | 2859 |017 | 1313 | 902 | 29.44 | 003 | 10028 | 0.11 |67.12
2200 | 001 | 3023 |017 | 1313 | 902 | 2777 | 003 | 104.76 | 0.10 | 65.36
2300 | 001 | 3167 |015 | 1289 | 0902 | 2667 | 0.03 | 108.77 | 0.09 | 64.17
2400 | 001 | 3461 |013 | 1277 | 901 | 2521 | 003 | 114.10 | 0.08 | 62.90
2500 | 001 | 3832 |012 |1276 | 901 | 2386 | 0.03 | 117.38 | 0.07 | 61.26
2600 | 001 | 4401 |012 1275 901 | 2318 | 003 | 121.11
2700 | 001 | 49.93 |011 1274 | 901 | 2267 | 002 | 122.10
2800 | 001 | 5491 |010 1238 | gp1 | 2216 | 0.02 | 123.25
29000 | 001 | 6038 |010 1238 | go1 | 2004 | 002 | 122.12
3000 | 001 | 6532 |009 |1224 | 901 | 2269 | 0.02 | 119.60
3100 | 001 | 6894 |008 |12.30
3200 | 001 | 7076 |0.08 |12.30
3300 | 001 | 7136 |007 |11.82
3400 | 001 | 7144 |006 |11.72
3500 | 001 | 7006 |006 |11.53
() -0.00023 -0.0083 -.00004 -0.0002 -0.00092
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Chapter 6
Appendix 3 The summary of different MDP scenarios tested in the study
Scenario Transition Discount Reward
Probability Factor R(s,a,s’) Survey Date
T(s.as’) )
1 Commonwealth 3% Total lost earnings January 2011
government for businesses
expenditure
2 Commonwealth 3% Total lost earnings January 2011
government as a percentage of
expenditure annual turnover for
businesses
3 Commonwealth 3% Total lost earnings August 2011
government for businesses
expenditure
4 Commonwealth 3% Total lost earnings August 2011
government as a percentage of
expenditure annual turnover for
businesses
5 Commonwealth 8% Total lost earnings January 2011
government for businesses
expenditure
6 Commonwealth 8% Total lost earnings January 2011
government as a percentage of
expenditure annual turnover for
businesses
7 Commonwealth 8% Total lost earnings August 2011
government for businesses
expenditure
8 Commonwealth 8% Total lost earnings August 2011
government as a percentage of
expenditure annual turnover for
businesses
9 Commonwealth 10% Total lost earnings January 2011
government for businesses
expenditure
10 Commonwealth 10% Total lost earnings January 2011
government as a percentage of
expenditure annual turnover for
businesses
11 Commonwealth 10% Total lost earnings August 2011
government for businesses
expenditure
12 Commonwealth 10% Total lost earnings August 2011
government as a percentage of
expenditure annual turnover for
businesses
13 State government 3% Total lost earnings January 2011

expenditure

for businesses
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Scenario Transition Discount Reward
Probability Factor R(s,a,s’) Survey Date
T(s,as") )
14 State government 3% Total lost earnings January 2011
expenditure as a percentage of
annual turnover for
businesses
15 State government 3% Total lost earnings August 2011
expenditure for businesses
16 State government 3% Total lost earnings August 2011
expenditure as a percentage of
annual turnover for
businesses
17 State government 8% Total lost earnings January 2011
expenditure for businesses
18 State government 8% Total lost earnings January 2011
expenditure as a percentage of
annual turnover for
businesses
19 State government 8% Total lost earnings August 2011
expenditure for businesses
20 State government 8% Total lost earnings August 2011
expenditure as a percentage of
annual turnover for
businesses
21 State government 10% Total lost earnings January 2011
expenditure for businesses
22 State government 10% Total lost earnings January 2011
expenditure as a percentage of
annual turnover for
businesses
23 State government 10% Total lost earnings August 2011
expenditure for businesses
24 State government 10% Total lost earnings August 2011
expenditure as a percentage of
annual turnover for
businesses
25 Combined 3% Total lost earnings January 2011
government for businesses
expenditure
26 Combined 3% Total lost earnings January 2011
government as a percentage of
expenditure annual turnover for
businesses
27 Combined 3% Total lost earnings August 2011
government for businesses
expenditure
28 Combined 3% Total lost earnings August 2011
government as a percentage of
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Scenario Transition Discount Reward
Probability Factor R(s,a,s’) Survey Date
T(s,as’) @)
expenditure annual turnover for
businesses
29 Combined 8% Total lost earnings January 2011
government for businesses
expenditure
30 Combined 8% Total lost earnings January 2011
government as a percentage of
expenditure annual turnover for
businesses
31 Combined 8% Total lost earnings August 2011
government for businesses
expenditure
32 Combined 8% Total lost earnings August 2011
government as a percentage of
expenditure annual turnover for
businesses
33 Combined 10% Total lost earnings January 2011
government for businesses
expenditure
34 Combined 10% Total lost earnings January 2011
government as a percentage of
expenditure annual turnover for
businesses
35 Combined 10% Total lost earnings August 2011
government for businesses
expenditure
36 Combined 10% Total lost earnings August 2011
government as a percentage of

expenditure

annual turnover for
businesses
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Appendix 4 The MDP expected utility maps for scenarios 17 and 29

Appendix 4.1 The MDP scenario 17 expected utility maps
for very high (VH) flood risk future state
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Appendix 4.2 The MDP scenario 17 expected utility maps

for high (H) flood risk future state
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Appendix 4.3 The MDP scenario 17 expected utility maps
for moderate (M) flood risk future state
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Appendix 4.4 The MDP scenario 17 expected utility maps

for low (L) flood risk future state
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Appendix 4.5 The MDP scenario 29 expected utility maps
for very high (VH) flood risk future state
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Appendix 4.6 The MDP scenario 29 expected utility maps

for high (H) flood risk future state
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Appendix 4.7 The MDP scenario 29 expected utility maps
for moderate (M) flood risk future state
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Appendix 4.8 The MDP scenario 29 expected utility maps

for low (L) flood risk future state
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