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Abstract

1. Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), constitutes a

major threat to many amphibian species worldwide. Predicting the species and

regions of highest geographical risk is critical for the early detection and

mitigation of chytrid emergence.

2. In this study, using a niche modelling approach, the most conducive habitat for Bd

within Sri Lanka (a high-risk zone) was modelled. The distribution of 69 amphibian

species was then modelled and their overlap with the high-risk zone (areaBd) was

calculated.

3. Using areaBd and a biotic index (BI), created using ecological traits of each species,

a risk index (RI) was calculated. Using this RI, a high-risk species index (HRSI) was

developed to identify the species most at risk.

4. The results indicate that the high elevations of Sri Lanka (>600 m a.s.l.) are highly

conducive for Bd. The HRSI includes 35 species, with Minervarya greenii being the

species most at risk. All species in the HRSI are globally Critically Endangered

(n = 14) or Endangered (n = 21).

5. We propose active conservation measures such as the routine monitoring of HRSI

species and other proactive measures to identify and prevent the spread of Bd.

We believe our findings would promote the establishment of pre-emptive

mitigation measures both within Sri Lanka and elsewhere, to counter the threat of

chytridiomycosis and to conserve amphibian species.
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1 | INTRODUCTION

The world’s amphibian species are currently facing a myriad of threats

that challenge their survival. These include habitat loss and

degradation (Davidson, Shaffer & Jennings, 2002; Gallant et al., 2007),

the presence of pernicious chemicals in the environment (Hayes

et al., 2006; Wolmarans et al., 2021), and infectious diseases

(Leroy, 2004; Berger et al., 2005). Among the diseases that

threaten global amphibian populations, unarguably the greatest risk is

posed by chytridiomycosis, a disease caused by the fungal agent

Batrachochytrium dendrobatidis (Bd) (Bosch, Martıńez-Solano &

Garcıá-Parıś, 2001; Scheele et al., 2019; Fisher & Garner, 2020).

Since it first came under scientific scrutiny (Berger et al., 1998;

Longcore, Pessier & Nichols, 1999; Morell, 1999), Bd has been

detected from 1,375 species of amphibians (Olson et al., 2021) and

is responsible for the decimation of many amphibian populations

around the world (La Marca et al., 2005; Pounds et al., 2006;

Fisher & Garner, 2020). Given the virulence of the pathogen, it has

the ability to extirpate entire populations of amphibians (Lips,

Reeve & Witters, 2003; Muths et al., 2003) and has even

driven certain species, such as Eleutherodactylus jasperi and

Eleutherodactylus karlschmidti, to extinction (Burrowes, Joglar &

Green, 2004; Scheele et al., 2017). To date, the Bd-induced mass

mortality of amphibian populations has been recorded from

countries such as Puerto Rico (Burrowes, Joglar & Green, 2004),

Spain (Bosch, Martıńez-Solano & Garcıá-Parıś, 2001), Costa Rica

(Lips, Reeve & Witters, 2003), USA (Muths et al., 2003), and

Australia (Retallick, McCallum & Speare, 2004; Hero, Williams &

Magnusson, 2005).

Although these events have been reported since the late 1990s,

the prevalence and effects of Bd in Asia has only been investigated

since the late 2000s (McLeod et al., 2008; Une et al., 2008). Although

Bd is Asian in origin (O'Hanlon et al., 2018), biodiverse islands

surrounding the main continent, such as Sri Lanka, may be highly

susceptible to the threat posed by chytridiomycosis. Sri Lanka has

been separated from India for approximately 10,000 years

(Pethiyagoda & Sudasinghe, 2021), and the speciation of amphibians

has resulted in 86% endemism in frog species and 25% endemism in

frog genera. Home to 112 species of amphibians (Ellepola

et al., 2021), the species richness in the country, during recent times,

has led to studies that describe multiple species at a time

(Meegaskumbura, Manamendra-Arachchi & Pethiyagoda, 2009;

Wickramasinghe et al., 2013b). The remarkably high endemism within

the island has led some authors to raise concern over considering

Sri Lanka and the Western Ghats as a single biodiversity entity

(Bossuyt et al., 2004). However, juxtaposed on Sri Lanka’s high

amphibian diversity is a high rate of extinction with 18 species

already considered recently extinct (Manamendra-Arachchi &

Meegaskumbura, 2012; Meegaskumbura et al., 2012; de Silva,

Ukuwela & Chathuranga, 2022).

Given the recently accelerated rate of extinction within

Sri Lanka, the spread of Bd could be catastrophic. Despite this

veritable risk, there is a paucity of information on the status of

chytridiomycosis in Sri Lanka and the dynamics of a potential

outbreak, except for a study that identified a few infected

individuals (Swei et al., 2011). The present study aimed to answer

two questions that are critical to devise future screening processes

and risk mitigation efforts.

1. Which areas within Sri Lanka would constitute the ideal

habitat for the establishment and spread of Bd (i.e. the

high-risk zone)?

2. Which Sri Lankan amphibian species are at a higher risk of

contracting Bd and manifesting its subsequent effects (i.e. the

high-risk species index)?

The answers to these questions are of value for establishing

pragmatic and pre-emptive measures against a potential future

outbreak of chytridiomycosis in Sri Lanka.

2 | METHODS

A niche modelling approach was used to evaluate potential areas

within Sri Lanka that would constitute the ideal habitat for the

establishment and spread of Bd (i.e. the high-risk zone). The

distribution of 69 species of frogs (see below for a justification of

their selection) in Sri Lanka was then modelled to determine their risk

of contracting Bd and manifesting its subsequent effects (risk index,

RI). The percentage overlap of the high-risk zone and amphibian

species ranges (areaBd) were calculated. A biotic index (BI) –

incorporating both life history and elevation to predict the

susceptibility of Sri Lankan frogs to Bd infection – was then

calculated. Finally, to evaluate the risk of a given species being

infected by Bd, the ‘risk factor’ was calculated using the BI and areaBd.

The RI was assigned according to the risk factor.

2.1 | Modelling of the most conducive
environmental range of Bd (high-risk zone) within
Sri Lanka (methods discussed in detail in Appendix S1)

Climate information from six bioclimatic variables was obtained,

based on Rödder et al. (2009): ‘annual mean temperature’,
‘maximum temperature of the warmest month’, ‘minimum

temperature of the coldest month’, ‘annual precipitation’,
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‘precipitation of wettest month’, and ‘precipitation of driest month’
(data downloaded on 15 May 2020 from https://worldclim.org).

In addition, the relevant ‘elevation’ data were also obtained (http://

www.diva-gis.org/Data). Through a literature survey of

11 publications, 32 locations were identified in Asia where Bd has

been reported in the wild (Appendix S1; Figure S1; Table S1). The

maximum entropy algorithm available in MaxEnt 3.4 (all variable

layers were at 1 km � 1 km resolution on WGS84 longitude–

latitude projections) was used to model the distribution, and an

occurrence probability of >0.5 was used to model the high-risk zone

for Bd within Sri Lanka.

2.2 | Developing risk index for Sri Lankan
amphibians (methods discussed in detail in
Appendix S1)

2.2.1 | Species distribution modelling for frogs

Of the 112 frog species recorded in Sri Lanka (Ellepola et al., 2021), the

93 extant species were considered in this study. The 18 extinct species

were discounted as their distributional ranges have not been well

documented (de Silva, Ukuwela & Chathuranga, 2022), whereas

Hoplobatrachus tigerinus was discounted as its occurrence is now

refuted (Dutta, 1997; Batuwita et al., 2019). Occurrence data over a

30-year period (1990–2020) was collected and supplemented with

data from the literature. For the first analysis, species with more than

seven distinct location records were used based on Hernandez et al.

(2006) and van Proosdij et al. (2016), which resulted in 69 species being

selected. The species with fewer than seven location records were all

range-restricted species (de Silva, Ukuwela & Chathuranga, 2022) and

were analysed separately. Using 1,819 observations from 334 locations

of the selected 69 species, species distribution models (SDMs) for each

species were created. When building these models, ‘human population

density’ (https://open.africa/dataset/sri-lanka-population-density-

2015), ‘tree cover’ (http://earthenginepartners.appspot.com/science-

2013-global-forest/download_v1.2.html), and ‘amphibian endemic

regions of Sri Lanka’ (adapted from MoMD&E, 2019 were used, in

addition to the data used for modelling the high-risk zone (results of

SDMs presented in Appendixes S2 and S3).

2.2.2 | Calculation of percentage of Bd overlap
range (areaBd)

The predicted distribution of each of the 69 species was used to

create a layer with an occurrence probability of >0.5, which was

superimposed on the high-risk zone map to calculate the percentage

overlap area (areaBd) for each species (Appendix S4). A proxy value of

30% for areaBd was used to select species with the greatest

susceptibility to Bd infection. For the range-restricted species, their

areaBd was considered as 100% if their known localities (such as the

type locality) were within the high-risk zone.

2.2.3 | Calculation of life-history score for each
species

For each species, a life-history score was calculated following a

qualitative approach based on the authors’ expertise and published

literature. Six habitat types used by adult frogs and three

habitat types used by their larvae were identified (Table 1).

Each habitat type was then assigned a score based on its

conduciveness for Bd (Johnson & Speare, 2003; Lips, Reeve &

Witters, 2003; Lips et al., 2006; Rowley & Alford, 2007; Swei

et al., 2011). Adult amphibians have a greater risk of Bd infection

and subsequent mortality than tadpoles (Rachowicz &

Vredenburg, 2004; Garner et al., 2009), and a formula reflecting

this fact was used to calculate the life-history score (for details,

see Appendix S5):

life�history score of a species¼ life�history score of tadpole
þ life�history score of adult�2ð Þ:

2.2.4 | Calculation of altitude score for each species

Three different altitude classes for the distribution of Sri Lankan

amphibians were identified, congruent with Batuwita et al.

(2019): A, 0–800 m a.s.l.; B, >800–1,700 m a.s.l.; C, >1,700–

2,500+ m a.s.l. Non-additive values were assigned for each species

according to their distribution within these classes. This calculation

reflects how higher Bd prevalence is associated with higher

altitudes (Drew, Allen & Allen, 2006; Whitfield et al., 2012;

Sapsford, Alford & Schwarzkopf, 2013) (for details, see

Appendix S5).

TABLE 1 Life-history stage, habitat type, and assigned scores
used for the calculation of the biotic index (BI).

Life-history

stage Habitat Score

Tadpole/

larva

Moist terrestrial 1

Tadpole/

larva

Pond 2

Tadpole/

larva

Stream 3

Adult Stream (small flowing water habitats) 5

Adult Stream + pond 4.5

Adult Ponds (small still water habitats) 4

Adult Stream associated (boulders and vegetation

bordering streams)

3

Adult Moist terrestrial (paddy fields, marshy areas) 2

Adult Terrestrial, breeds in streams and ponds 1.5

Adult Dry terrestrial (dry terrestrial habitats) 1

de MEL ET AL. 775
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2.2.5 | Model building and developing the BI for
Sri Lankan frogs

Considering susceptibility as the response variable and life-history

score and altitude score as predictor variables, a generalized linear

model with a binomial error structure was built to predict the

susceptibility of frogs to Bd infection. Twenty-nine frog species from

other countries infected with Bd were selected and data from

published sources were extracted to calculate their life-history scores

and altitude scores (Appendix S5). These species were given a

susceptibility value of ‘1’, whereas all local species used in our model

were given a value of ‘0’.

2.3 | Calculating risk factors (RFs) and developing
the RI and high-risk species index (HRSI) for Sri Lankan
frogs

To calculate the RFs for the Sri Lankan frog species to indicate how

susceptible a given species is to Bd infection, the RF formula by

Rödder et al. (2009) was used:

RF¼ BI�100ð Þ� areaBd=10,000ð Þ,

where, BI is the biotic index or predicted risk derived from the model,

and areaBd is the percentage of an amphibian species’ distribution

that overlaps with the area of the high-risk zone (with Bd occurrence

probability of >0.5). The BI values were not standardized as they

ranged from 0 to 1. A higher RF value indicates a higher risk of Bd

infection. The highest positions in the RI were assigned to species

with the highest RF values.

2.3.1 | Including range-restricted species in the
HRSI

The RF value was calculated and the RI position was assigned when

the areaBd for the range-restricted species within the high-risk zone

(n = 21) was 100%, as mentioned above.

3 | RESULTS

3.1 | Most conducive geographical range for Bd
within Sri Lanka (high-risk zone)

According to the output of the averaged model (n = 15), the

permutations with highest importance were ‘precipitation’,
‘elevation’, and ‘precipitation of the wettest month’ (Appendix S2).

This resulted in a significant proportion of the Central Highlands, the

Knuckles Massif, and the Rakwana Hills, which constitute the area

>600 m altitude in Sri Lanka, being identified as ideal habitat for Bd

(Figure 1). The region that is suboptimal for Bd prevalence, which

constitutes 92.4% of the country (Figure 1), encompasses the entire

dry zone and most of the intermediate zone (Diyabalanage

et al., 2016; Pethiyagoda & Sudasinghe, 2021).

3.2 | HRSI of Sri Lankan amphibians

Of the 35 species constituting the HRSI (Table 2), 100% are endemic

to Sri Lanka. Species in the HRSI comprised eight genera: Adenomus,

Ichthyophis, Lankanectes, Microhyla, Minervarya, Pseudophilautus,

Taruga, and Uperodon. The majority of the species (n = 26) belong to

the genus Pseudophilautus. The other nine species include two each

from the genera Microhyla and Taruga, and a single species each from

the genera Adenomus, Ichthyophis, Lankanectes, Minervaya, and

Uperodon. The largest RF value and consequent highest position in

the HRSI was assigned to Minervarya greenii (Figure 2), whereas the

10th greatest RF value and the 10th highest position was assigned to

Adenomus kandianus. All species in the HRSI are globally Endangered

(n = 20) or Critically Endangered (n = 15) (IUCN, 2022). In addition,

Ichthyophis orthoplicatus, Microhyla karunaratnei, Microhyla zeylanica,

Pseudophilautus ocularis, and Uperodon palmatus are considered

Evolutionarily Distinct and Globally Endangered (EDGE) species

(ZSL, 2015). Of the rest of the 48 species possessing an areaBd,

31 species are threatened with extinction (15 Vulnerable,

13 Endangered, and three Critically Endangered) (IUCN, 2022).

Of the 69 species modelled, only seven had no range overlap

with the high-risk zone and all seven species are listed as Least

Concern (IUCN, 2022). Of these seven species Microhyla mihintalei

and Uperodon rohani are endemic to Sri Lanka (de Silva, Ukuwela &

Chathuranga, 2022). Three other range-restricted species –

Ichthyophis pseudangularis (Vulnerable), Polypedates ranwellai

(Endangered), and Pseudophilautus conniffae (Endangered) – had no

range overlap with the high-risk zone.

4 | DISCUSSION

The results indicate that the region above 600 m a.s.l. of Sri Lanka is

highly conducive for the establishment and spread of Bd and

constitutes the high-risk zone; they also show that at least 89% of

Sri Lanka’s frogs have at least some range overlap with environments

climatically suited to Bd (83 out of 93 extant species). Significant

overlap between occurrence ranges and areas conducive for Bd

establishment is evident in species living at high altitudes. The

35 species at highest risk are already globally Critically Endangered

(n = 14) or Endangered (n = 21) (IUCN, 2022). This suggests that

research is needed to monitor the prevalence and spread of Bd,

especially within this geographical region of Sri Lanka and within

populations of these species.

The high-risk zone (Figure 1) comprises three out of the five

amphibian zones of Sri Lanka (Batuwita et al., 2019; MoMD&E, 2019):

the Central Highlands, the Knuckles Massif, and the Rakwana Hills.

The importance of these regions as local amphibian hotspots is
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illustrated by the many new species described from them in the

recent past (Manamendra-Arachchi & Pethiyagoda, 2005;

Meegaskumbura & Manamendra-Arachchi, 2005; Meegaskumbura &

Manamendra-Arachchi, 2011; Wickramasinghe et al., 2013b;

Senevirathne et al., 2018), as well as the rediscovery of species

(Wickramasinghe et al., 2013a). Thus, the spread of Bd in these areas

could have devastating consequences for the amphibians of Sri Lanka.

The present scientific consensus is that Bd is Korean in origin, and

mainland Asian frog populations have a low prevalence and load of Bd

(O'Hanlon et al., 2018; Sreedharan & Vasudevan, 2021). However,

Sri Lanka is an island where the biota speciated in isolation for at least

the last 10,000 years, with 86% endemism in frogs (Pethiyagoda &

Sudasinghe, 2021). The high endemism suggests that Sri Lankan frogs

may not share the same response to Bd as mainland Asian frogs, and

although it is known that Bd occurs in Sri Lanka, its effects on frogs

are completely unknown. In addition, although the long-standing co-

evolution between endemic Bd strains and mainland Asian amphibians

has allowed the pathogen to become hypovirulent within the Asian

region (Swei et al., 2011; Bataille et al., 2013; James et al., 2015), Bd

can also hybridize among strains, creating hypervirulent strains (Farrer

et al., 2011; Greenspan et al., 2018; Byrne et al., 2019). Therefore, the

introduction of a strain such as Bd-GPL (global pandemic lineage),

responsible for the mass mortality of amphibians (O'Hanlon

et al., 2018), or a hypervirulent hybrid strain, on an island with high

endemism such as Sri Lanka could prove catastrophic.

The amphibians inhabiting the highlands of Sri Lanka, with a high

areaBd, face a plethora of additional environmental challenges

(IUCN, 2022); indeed, 18 species have recently become extinct. The

F IGURE 1 Heat map of the probability of Bd prevalence within Sri Lanka (left); high-risk zone of Sri Lanka (right).

de MEL ET AL. 777
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precise cause of these extinctions remains unknown but habitat loss in

the highlands is suspected (Perera, 1975; Wickramagamage, 2017). The

species most at risk from Bd infection share certain ecological traits

(Appendix S5), such as aquatic life stages and restricted distributions

(La Marca & Reinthaler, 1991; Ron et al., 2003; La Marca et al., 2005;

Bielby et al., 2008; IUCN, 2020a; IUCN, 2020b). These factors reflect

the results of this study, in which the highest ranked frog in the HRSI

(M. greenii; Table 2), has a pond-dwelling adult life stage and small

extent of occurrence, restricted to the highest elevations of the country

(Appendix S5). In addition, all species ranked second in the HRSI

(Pseudophilautus frankenbergi, Pseudophilautus jagathgunawardanai,

Pseudophilautus newtonjayawardanei, Pseudophilautus puranappu,

Pseudophilautus sirilwijesundarai, and Pseudophilautus stellatus) have

highly restricted ranges within the highest elevation classes

(Appendix S5). It is likely that other species are also vulnerable, such as

Lankanectes pera, which inhabits streams and has a small range of

occurrence, yet the distribution of these occurrence localities among a

comparatively broad elevational range lowered its ranking. Species with

overlap in the climatically suitable zone for Bd may still suffer partial

declines that can threaten populations. For example, in Australia the

partial climatic suitability of frogs in the wet tropics caused drastic

range contraction in many species (McKnight et al., 2017).

The fact that the high-risk zone is heavily exploited for agriculture

(Wickramagamage, 1998; Weerawardhena & Russell, 2012) may

contribute to the persistence of pesticides in these environments.

Pesticides have been linked to lowered immunity in amphibian species

(Christin et al., 2004; McCoy & Peralta, 2018), which can interact with

disease to cause greater impacts. These interactive threats provide

even greater risks to the restricted range species.

4.1 | Implementation of pre-emptive conservation
strategies

The prescient implementation of pragmatic conservation and

management efforts to identify the distribution and curtail the spread of

Bd at the onset is important. Refuges of disease can provide important

safe havens for threatened species (Stockwell et al., 2015; Bower

et al., 2017). As Bd tends to spread along frequently traversed pathways

(Pauza, Driessen & Skerratt, 2010), we propose protocols to disinfect

the footwear of all foreign visitors when entering the country. This is

economically undemanding and can be readily implemented using

disinfectant mats (Amass et al., 2006; Allen et al., 2010). This could also

be implemented at locations such as Horton Plains National Park,

Adam’s Peak, and Knuckles, where visitors traverse on foot. In addition,

disease surveillance and long-term amphibian monitoring programmes

(Ray et al., 2022) should be established within these high-risk zones, to

allow the detection of both Bd infections (Seimon et al., 2017) and their

related impacts (Russell et al., 2019). Implementation of biosecurity

protocols coupled with research to quantify the current status of Bd

impacts in Sri Lanka could identify the proximate causes of declining

species, and shape priorities in conservation.

TABLE 2 High-risk species index (HRSI) for Sri Lanka.

RI areaBd BI RF Species

1 100 0.9990 0.9990 Minervarya greenii

2 100 0.9977 0.9977 Pseudophilautus frankenbergi*, Pseudophilautus

jagathgunawardanai*, Pseudophilautus newtonjayawardanei*,

Pseudophilautus puranappu, Pseudophilautus

sirilwijesundarai*, Pseudophilautus stellatus*

3 100 0.9911 0.9911 Microhyla karunaratnei*, Taruga fastigo

4 100 0.9889 0.9889 Pseudophilautus caeruleus, Pseudophilautus decoris*,

Pseudophilautus lunatus*, Pseudophilautus ocularis,

Pseudophilautus poppiae, Pseudophilautus samarakoo*,

Pseudophilautus simba*, Pseudophilautus steineri*,

Pseudophilautus stuarti*

5 99.28 0.9929 0.9858 Pseudophilautus sarasinorum

6 100 0.9824 0.9824 Lankanectes pera*

7 100 0.9618 0.9618 Ichthyophis orthoplicatus*

8 100 0.9574 0.9574 Microhyla zeylanica, Taruga eques, Uperodon palmatus

9 100 0.9471 0.9471 Pseudophilautus alto, Pseudophilautus asankai, Pseudophilautus

dayawansai*, Pseudophilautus femoralis, Pseudophilautus

hankeni*, Pseudophilautus microtympanum, Pseudophilautus

mooreorum*, Pseudophilautus schmarda, Pseudophilautus

semiruber*, Pseudophilautus viridis

10 94.80 0.9725 0.9219 Adenomus kandianus

Note: *range-restricted species.

Abbreviations: areaBd, overlap of >0.5 of distribution model of species within the high-risk zone (>0.5 occurrence probability of Bd) of Sri Lanka; BI, biotic

index (the susceptibility of a species calculated using life history and occurrence elevation); RF, risk factor (calculated using areaBd and BI).
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4.2 | Global impact

In light of the recent detections of Bd in the Asian region (Fu &

Waldman, 2019; Rahman et al., 2020; Sreedharan &

Vasudevan, 2021), and the already established spread of Bd in other

parts of the world (Mendelson et al., 2006; Azat et al., 2022), the

methods discussed here would enable scientists and policymakers to

identify species and regions in need of immediate conservation

action. In areas such as the Western Ghats and Taiwan, the existing

high diversity of amphibians (Sankararaman et al., 2021; Schmeller

et al., 2022) is already facing a myriad of challenges (Sankararaman

et al., 2021), including Bd (Dahanukar et al., 2013; Thorpe et al., 2018;

Schmeller et al., 2022). Therefore, the identification of species at high

risk of Bd infection in such areas would allow researchers to employ

cost-prohibitive tests such as polymerase chain reaction (PCR)

(Thomas et al., 2021) more efficiently and in a more focused manner.

In tandem with already existing (Rodríguez-Rodríguez et al., 2020) and

novel conservation strategies (Button & Borzée, 2021), this

could have a significant impact in curtailing future Bd outbreaks

around the world.
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vouchers was performed following established protocols (Beaupre

et al., 2004) and under government research permits (WL/3/2/79/15

and R&E/RES/NFSRCM/2016-02).
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