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Abstract: Bushfires have been a key concern for countries such as Australia for a long time. These 

must be mitigated to eradicate the associated harmful effects on the climate and to have a sustaina-

ble and healthy environment for wildlife. The current study investigates the 2019–2020 bushfires in 

New South Wales (NSW) Australia. The bush fires are mapped using Geographical Information 

Systems (GIS) and remote sensing, the hotpots are monitored, and damage is assessed. Further, an 

Unmanned Aerial Vehicles (UAV)-based bushfire mitigation framework is presented where the 

bushfires can be mapped and monitored instantly using UAV swarms. For the GIS and remote 

sensing, datasets of the Australian Bureau of Meteorology and VIIRS fire data products are used, 

whereas the paths of UAVs are optimized using the Particle Swarm Optimization (PSO) algorithm. 

The mapping results of 2019–2020 NSW bushfires show that 50% of the national parks of NSW were 

impacted by the fires, resulting in damage to 2.5 million hectares of land. The fires are highly clus-

tered towards the north and southeastern cities of NSW and its border region with Victoria. The 

hotspots are in the Deua, Kosciu Sako, Wollemi, and Yengo National Parks. The current study is the 

first step towards addressing a key issue of bushfire disasters, in the Australian context, that can be 

adopted by its Rural Fire Service (RFS), before the next fire season, to instantly map, assess, and 

subsequently mitigate the bushfire disasters. This will help move towards a smart and sustainable 

environment. 

Keywords: bushfires; disaster management; spatiotemporal analysis; unmanned aerial vehicles; 

UAV path planning; geographical information systems; New South Wales Australia 

 

1. Introduction and Background 

Disasters around the globe have been impacting the global economies since the dawn 

of time. These disasters include earthquakes, floods, hurricanes, tornados, landslides, tsu-

namis, bushfires, and others [1]. Disasters result in the loss of lives, properties, real estate, 

and livestock, with serious consequences for the economic development of the affected 

countries. Accordingly, critical infrastructure, communications, real estate, vegetation, 

and forests are lost, in addition to the lives that hinder regional development. The reason 

behind frequent and recurring fire seasons is attributed to climate change [2–4]. Climate 

change, deforestation, growing urban development, and utilization of combustible 

sources are increasing the global temperatures in countries around the world. This gives 

rise to bushfires and extreme weather [5]. Consequently, the global fire seasons are getting 

prolonged, and the daily temperatures are rising, which are predicted to worsen and be 

Citation: Ullah, F.; Khan, S.I.; 

Munawar, H.S.; Qadir, Z.;  

Qayyum, S. UAV Based  

Spatiotemporal Analysis of the 

2019–2020 New South Wales  

Bushfires. Sustainability 2021, 13, 

10207. https://doi.org/10.3390/ 

su131810207 

Academic Editors: Marc A. Rosen 

and Eben Broadbent 

Received: 14 June 2021 

Accepted: 10 September 2021 

Published: 13 September 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Sustainability 2021, 13, 10207 2 of 35 
 

more severe if climate change issues are not addressed [6,7]. In the era of demands for 

global sustainability, it is imperative to address such climate issues. 

Globally, bushfires and wildfires burn approx. 4% of the global land surface each 

year, which amounts to approx. 30–46 million km2 of the global land surface [8]. However, 

due to its limited direct impact on individuals, it does not attract wider attention from the 

media that is sometimes more focused on reporting only the tragic impacts of such fires 

that directly impact human lives. As a result, these fires sometimes go unnoticed by the 

world and are only discussed and addressed in the affected country. In the last two dec-

ades, extreme bushfire incidents have been observed worldwide, causing immense eco-

nomic, social, and environmental loss. The trend of these fires is increasing, and in recent 

years, this natural disaster has been experienced in the regions where the fires are an un-

usual event. These include Brazil, Bolivia, Chile, Sweden, and the Arctic Circle [9,10]. 

In Australia, bushfires are a frequent phenomenon due to their geographic location, 

varying temperatures, and other natural causes [5]. The deadliest fires in Australian his-

tory occurred in 1851, 1939, 1983, 2009, and recently in 2019–2020. As per the report of 

conversation.com.au, the costs of bushfires have passed $100 billion in Australia, making 

it the costliest natural disaster [11]. Australia’s 2019–2020 bushfire season, known as the 

Black Summer Fires, is regarded as one of the worst bushfire events in the country’s his-

tory that had serious impacts on wildlife, forests, agricultural land, and public properties. 

It impacted infrastructure in the states of New South Wales (NSW), Victoria, Queensland, 

and others. The Black Saturday fires alone burnt 430,000 hectares of land. Overall, the 

Black Summer fires burnt 10.7 million hectares, equivalent to an area of the size of South 

Korea or Scotland and Wales combined. 

Further, more than a billion wildlife animals have been killed, and over 2000 homes 

were destroyed due to these bushfires [12]. The major causes of the 2019–2020 bushfires 

included the extended drought conditions, which left dry bushlands and forests that acted 

as extremely dry and spatially contiguous fuel spreading through forested regions of 

NSW stretching from Queensland to Victoria. Several large-scale climate drivers contrib-

uted to this dryness of 2019 summer, including a strong and long-lived positive Indian 

Ocean Dipole and negative Southern Annular Mode. Further, the dryness of the landscape 

was also influenced by reduced cool-season rainfall and other long-term climate trends. 

Due to extreme fires, it was challenging to quickly detect and extinguish new ignitions in 

remote areas where they started, resulting in delayed responses that fuelled the intensity 

of existing fires and strained the resources. Further, the intensified and dense smoke, due 

to multiple fire events, made it impossible to know where the fire edge was with precision 

because line scanner aircraft could not fly, and alternate infra-red scanning was a low 

resolution or unavailable. These issues made the firefighting more difficult, and the fires 

grew out of control. The limited capacity to fight fires at night led to many fires taking big 

runs at night and early mornings, causing havoc in the Australian states of NSW, Victoria, 

and their border regions [13]. 

NSW is selected as the study area due to its history of bushfire events. It experiences 

frequent fires due to its widespread vegetation and bushes that fuel draughts and extreme 

temperatures. Table 1 shows some of the impactful fire seasons in NSW since 1965. In 

1965, NSW observed 251,000 hectares of damage, damaging 59 homes, and causing three 

fatalities [14]. In the 1984–85 fire season, much of the damage was experienced in the loss 

of livestock and $40 million economic loss [15]. Similarly, in 2013, the Warrumbungle fires 

impacted 53 houses, 118 buildings, and damaged agricultural infrastructure and build-

ings. The 2017 Wentworth falls winter fires damaged an area of 52,000 hectares and de-

stroyed 35 homes. The statistics signify that, though the human loss due to these fires in 

the past had been low, the property and economic loss had been severe in each fire event. 

Further, in the growing era of sustainability and wildlife protections, it is imperative to 

devise plans that reduce the impacts of such fires on global climate, wildlife, and public 

properties. Nevertheless, the latest fires associated with the Black Summer event had been 

tragic in all aspects for the state of NSW and Australia in general. These have resulted in 
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the loss of 33 lives, 10.7 million hectares of land burnt, more than 2400 homes destroyed, 

and more than a billion wild animals lost [13]. 

Table 1. Major bushfires in New South Wales from 1965 to 2020. 

Sr. Year Fire Events Area (Hectares) Deaths Property Damage Sources 

1. 1965 
Southern Highlands 

Bushfire 
251,000 3 59 homes [14] 

3. 1980 Waterfall Bushfires 1,000,000 5 14 homes [16] 

4. 
1984–

1985 
NSW Fire season 3,500,000 5 

0 homes, 40,000 livestock, and $40 

million economic damage 
[15] 

5. 1994 Eastern seaboard fires 400,000 4 225 homes [17] 

6. 2002 
Black Christmas bush-

fires 
753,314 0 121 homes [18] 

7. 2006 
Jail Break Inn Fire, 

Junee 
30,000 0 

7 homes, 4 non-residential build-

ings 
[19] 

8. 2006 
Pulletop bushfire, 

Wagga Wagga 
9000 0 

2 homes, 2500 livestock, 3 vehicles, 

50 km of fencing 
[20] 

9. 
2006–

2007 

Australian Bushfire sea-

son 
1,360,000 8 

83 homes, 20 non-residential build-

ings 
[21] 

10. 2013 Warrumbungle 54,000 0 

53 homes, 118 other buildings, Ag-

ricultural equipment, and infra-

structure at Siding Spring Observa-

tory 

[22] 

11. 2013 2013-NSW fires 100,000 1 
208 homes, 40 non-residential 

homes 
[23] 

12. 2017 
Wentworth falls Winter 

Fire 
52,000 0 35 homes [24] 

13. 
2019–

2020 
Black Summer 1,700,000 33 

2439 homes, more than billion wild 

animals lost 
[13] 

The state of NSW used several remote sensing techniques during the 2019–2020 fire 

seasons to assess the fire damages. Fire and land management agencies at state and federal 

levels have remote sensing capabilities that provided useful information during the plan-

ning, preparation, and response phases of the 2019–2020 bushfire season. NSW rural fire 

service (RFS) uses remote sensing technologies in various ways. In a report, NSW RFS 

reported that its firefighters on the ground and in vehicles provided the best intelligence 

they could on fires, considering the extent and scale of the fires. Further, it found camera 

platforms on helicopters with infra-red and high-definition imagery useful. Further re-

mote sensing data from multispectral scanning devices (‘line scanners’) mounted on con-

tracted fixed-wing aircraft was particularly helpful in assessing bushfire movements, 

spread, and damages [25]. The NSW RFS reports that, across 165 days during the 2019–

2020 season, a total of 565-line scanning flights were flown, amounting to 7469 flight 

hours. 

Another high potential solution to addressing the Australian bushfires emergencies 

is UAV usage that does not rely on human pilots and has very little potential for data 

losses. UAVs have been used in various fields such as smart cities, real estate, property 

management, healthcare, construction, agriculture, and others [26–32]. These have been 

extensively explored in addressing disaster situations such as emergency evacuation path 

planning, flood response, and others [33–36]. 

Given that they do not require the presence of human resources, such vehicles can be 

readily made available to use in case of emergencies such as bushfires. UAVs are thus 

ideal tools that have been used in a post-disaster scenario. For example, in March 2015, 
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when Tropical Cyclone Pam, a category 5 storm, struck Vanuatu, UAVs were employed 

for mapping areas to assess the damage [37]. Similarly, when Typhoon Haiyan affected 

Philippines in November 2013, UAVs were used for aerial imaging to get real-time infor-

mation on the disaster with the help of aerial imaging and the development of future 

frameworks for emergency response planning [38]. In a recent study, these have been pro-

posed to be used for bushfires in Victoria Australia [5]. 

Owing to the nature of the frequently occurring bushfires in Australia and NSW, the 

current study aims to develop a novel framework for assessing the bushfires and applies 

UAV swarm knowledge for better decision-making and pertinent hazard mitigation strat-

egies. It uses a geographical information system (GIS) based assessments of the fire hot 

spots of NSW. Further, an unmanned aerial vehicle (UAV) based framework is presented 

to monitor the bushfire hotspots and instigate immediate rescue measures for minimizing 

the impacts of these bushfires. The paths of the UAVs are optimized for effective moni-

toring of the affected areas with the potential to deliver any information, ration, or first 

aid kits. Specifically, the PSO model, available at https://www.mathworks.com/matlab-

central/fileexchange/69027-simulation-of-particles-in-particle-swarm-optimization (ac-

cesed 9 August 2021) has been used in the study as a base model that has been considera-

bly modified and expanded to suit the needs of the current study. 

The rest of the paper is organized as follows. Section 2 presents the potential tools 

and techniques to help bushfires management. These include the GIS and remote sensing 

tools and UAVs. Section 3 presents a comprehensive overview of the methodology of the 

current study and lists key assumptions, constraints, and model codes used in the study                                                               

for UAV routing problems. Section 4 discusses the key results of the GIS-based assessment 

of the fire hotspots and the routing results for UAV path planning. Finally, Section 5 con-

cludes the study and presents the future directions to build upon the current study. 

2. Potential Tools and Techniques for Bushfires Management 

Satellite data obtained through GIS and remote sensing is a widely used primary 

source of information for the active mapping of fire and burned areas at regional to global 

scales. The Moderate-resolution Imaging Spectroradiometer (MODIS) from NASA Terra 

and Aqua satellites were the first satellite-borne sensors with the ability of monitoring fire 

radiative energy (FRE) release rate, or power (FRP), quantitatively on a worldwide scale. 

Researchers around the globe have used these to assess wildfires [39,40]. Two kinds of 

satellite data are used to detect fire events: active fire and burned area products [41]. 

Burned area products are based on the variations in the reflectance or with the combina-

tion of reflectance and active fires [42,43]. In comparison, active fire products are depend-

ent on the detection of thermal anomalies [44]. 

The GIS tools that enable the monitoring of bush fire hotspots are kernel density and 

Getis-Ord Gi* hotspot analysis. The kernel is a widely used estimator that helps generalize 

or smoothen discrete point data into a continuous surface area [45]. On the contrary, Getis-

Ord uses the Gi* statistics to calculate the degree of correlation of weighted features in the 

specific distance threshold. It can be used to identify the clustering pattern in the study 

area [46,47]. Gi* statistics benefit from concurrently capturing the frequency of the events, 

the corresponding values, and the spatial relationship [46]. These simple yet efficient GIS 

tools have extensive applications as spatial, such as and cluster analysis tools in bushfire 

hazard management. Accordingly, remotely sensed data coupled with GIS tools could 

facilitate the local administrations to reduce natural disasters such as bushfires [42]. 

In NSW, remote sensing is an invaluable aid in predicting the weather, climate and 

assessing fire location. It has been used to assess fire conditions, extent, and behaviour by 

the NSW Rural Fire Service (RFS) in the 2019–2020 bushfire season. However, Australia’s 

capabilities in this field have not been harnessed to fight bushfires swiftly and properly. 

Currently, these tools are only used after a fire is initiated due to a lack of automation and 

implementation in Australian contexts. Remote sensing must be properly adopted for au-

tomatic sensing of fire for big fire-risk seasons. The positive points are that Australia has 
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developed infrastructure and defence agencies that are already using remote sensing tech-

niques, which can be shared with other departments for bushfire management. The key 

improvement areas include the enhanced capability for early detection of new ignitions, 

real-time tracking of the fire edge progression and intensity as it spreads, and a better 

understanding of vegetation and fuel load issues before the fires start. Such remote sens-

ing can monitor and analyse the causal factors of a bush fire, inform the planning depart-

ment to prepare for, and promptly respond to a bushfire event. Accordingly, a spatial 

technology acceleration program is needed in NSW (and Australia) to maximize the in-

formation available from all the various remote sensing technologies currently used. 

For 214 days, from 10 August 2019 to 11 March 2020, NSW RFS flew its line scanning 

aircraft for at least some time on 88% of days. These line scanning techniques produce 

good quality imagery above active bush fires, making it possible to see details of the fire 

edge, its extent, and intensity. Such imagery helped NSW RFS make informed decisions 

about resource commitments and public warnings during fire events at the height of the 

2019–2020 bushfire season. Not downplaying the efforts of the NSW RFS, the destruction 

levels are still well above the acceptable levels, and the techniques must be revised and 

improved to minimize the level of destruction. Accordingly, more line scanning and re-

mote sensing techniques can help improve disaster response. Given the relatively low 

number of aircraft available, and the number of large fires raging simultaneously, only a 

relatively small number of line scanner ‘snapshots’ of each fire had been possible in the 

Black Summer. This is a serious drawback given the highly dynamic and dangerous na-

ture of these fires. Further, a drawback of any sensor mounted on piloted, fixed-wing air-

craft is that the sensor is useless when the plane cannot fly, as smoke/dust/fog makes fly-

ing impossible. The NSW RFS estimates that there were 26 days between 10 August 2019 

and 11 March 2020 when line scanning aircraft could not be used at all due to ambient 

conditions affecting visibility or resourcing considerations. It is important to note that 

these figures do not include instances where scanned imagery was insufficient or where 

scans could not be completed frequently. While this is a relatively small period (12%), this 

inability to fly can be an issue when information about new ignitions, edges, and spread 

is needed instantly. Thus, it is imperative to explore new techniques and improve the ex-

isting ones for better bushfire management. A candidate for this is the usage of a UAV. 

UAVs have been used in bushfires assessment, in bushfire hotspot detection [48], and 

economic evaluation of wildfires through UAVs [49]. Similarly, conceptual discussions 

have been retrieved from literature as relevant to fire monitoring with UAVs through cog-

nitive human-machine interfaces and interactions [50], as well as remote sensing, to assess 

grapevine canopy damage due to fire smoke [51] and improve readiness for the next major 

bushfire emergency [52]. In the case of Australia, these have been proposed to assess bush-

fires in the state of Victoria [5]. 

Different types of algorithms exist for planning and optimizing UAV paths efficiently 

and effectively to reduce associated costs. These include Java-based algorithms, such as 

greedy, inter-route, intra-route, Tabu, and particle swarm optimization (PSO) [53,54]. 

Other studies have used Ant Colony Optimization (ACO) and Genetic Algorithm (GA) 

techniques. However, PSO has never been used for path planning of UAVs for bushfire 

assessment in NSW Australia, which is a humble contribution of the current study. PSO 

is a heuristic method that starts its search process using an initial particle population [55–

57]. Each particle represents a potential solution to the problem [58]. There is a multi-

dimensional search space where these particles move around until they reach a constant 

state or the computational constraints are fully exhausted. PSO mimics the behaviour of 

birds in a flock or sheep in a herd [59]. It is based on a collection of particles in a swarm 

where each particle represents a possible solution to the problem. Due to its established 

advantages, PSO has been utilized in the current study, taking advantage of its ease of 

implementation, few parameters to adjust, robust, higher efficiency in finding the global 

optima, converge quicker, short computational time, and no overlapping. 
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A comprehensive, optimized UAV system has not been proposed, to date, in the rel-

evant literature for assessing bushfires issues and subsequent management in the Aus-

tralian context. This gap is targeted in the current study, where the applications of UAVs 

are proposed and tested in the NSW region of Australia that is prone to frequent bushfires. 

Overall, the current study uses a mix of remote sensing and GIS for bushfire hotspot as-

sessments and develops a UAV based optimized path system for instigating a swift emer-

gency response to help mitigate bushfire disasters. Burnt locations and hotspots of 2019–

2020 bushfire season in the NSW are assessed using GIS tools and remote sensing data of 

VIIRS. Further, the statistical significance of these fire events, using the geostatistical tool 

of Getis Ord Gi* statistics, is also assessed to discuss the impact of damage by the 2019–

2020 fires. 

3. Materials and Methods 

This study follows a systematic approach for addressing the bushfires disasters in 

NSW regions of Australia. A four stepped method is adopted in the current study, as 

shown in Figure 1. In the first step, a review of the data available about global and Aus-

tralian bushfires is conducted, as evident from the introduction section of the current 

study. This is augmented with the data about fires in NSW. Afterward, GIS, remote sens-

ing applications, and UAVs for bushfire assessments are discussed in the section of tools 

and techniques available for bushfire assessment. In the second step of the current study, 

GIS-based assessments and burnt area monitoring are performed using data from VIIRS, 

and a UAV-based bushfire assessment framework is presented. In step three, the paths of 

UAV swarms are optimized using the PSO algorithm to identify the shortest possible 

paths for covering the bushfires area. In the fourth and final step of the study, the GIS-

based bushfire monitoring reports are presented along with the regression analysis for 

bushfires-related socio-economic loss assessments. Lastly, the PSO-based UAV optimiza-

tion results are presented to discuss the best routes for UAVs in mitigating bushfires dis-

asters and instigating a swift response. 
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Figure 1. Methodology of the current study. 

3.1. Study Area 

The case study area of the current study is the state of NSW, Australia. The state is in 

the southeast of Australia on the eastern coast. It houses Sydney, the most populated city 

in Australia, and is among the top revenue-generating states in Australia. The area of 

NSW is 801,150 km2 and has a population of approx. 8.092 million as of 2020. Vegetation 

bushlands cover over 80% of NSW and forests, as shown in Figure 2a, making it a frequent 

bushfire experiencing state. The motivation to choose the NSW for this study is that the 

state was set ablaze in the recent Black Summer fires and has reported the highest loss 

among all Australian states. The state observed 10,520 fire incidents in its various parts, 

destroying 75% of the total infrastructure losses of the Black Summer fires. Figure 2b pro-

vides the total fire events for NSW, based on GIS and remoting sensing, using the data 

from VIIRS sensors. 
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Figure 2. New South Wales map with total fire events from the VIIRS sensors. 

3.2. Study Datasets 

Table 2 summarizes the dataset used in the study. The primary dataset used for this 

study is the National Oceanic and Atmospheric Administration (NOAA) data of the VIIRS 

fire product. The VIIRS empowers operational environmental monitoring and numerical 

weather forecasting. It has 22 imaging and radiometric bands covering wavelengths from 

0.41 to 12.5 microns. It provides sensor data records for more than twenty environmental 

data records such as the clouds, sea surface temperature, ocean colour, polar wind, vege-

tation fraction, aerosol, fire, snow and ice, vegetation, etc. The on-orbit verification in the 

postlaunch check-out and intensive calibration and validation have shown that VIIRS is 

performing very well. It has been used in the current study due to its precise resolution of 

detecting the smallest fires. The VIIRS sensor identified 10,446 fires, including minor and 

major fires, within NSW for the 2019–2020 Black Summer time. Apart from the fire prod-

uct, climatic data for mean temperature, mean rainfall, and Forest Fire Danger Index 

(FFDI) are acquired from the Australian Government Bureau of Meteorology. This data is 

used to study the underlying climatic conditions responsible for these bushfires. These 

datasets monitor the burnt area and bushfire hotspots in the NSW region for the Black 

Summer period. 

Table 2. The datasets used for the study. 

Data Type Date of Acquisition Source 

Fire points VIIRS 14 October 2020 
Fire Information for Resource Management Sys-

tem (FIRMS) 

Temperature 
Mean Temperature 

Deciles 
14 October 2020 Australian Government Bureau of Meteorology 

Rainfall Rainfall Deciles 14 October 2020 Australian Government Bureau of Meteorology 

Forest Fire Danger In-

dex (FFDI) 
FFDI Deciles 14 October 2020 Australian Government Bureau of Meteorology 

3.3. GIS Analyses of the NSW Bushfires 

Figure 3 provides the methodology flowchart to monitor the burnt area and map 

bushfire hotspots in the study area. The data and annual reports, from the Australian Bu-

reau of Meteorology, of the region of interest were acquired. An in-depth review and as-

sessment were used to relate and understand the fire patterns and areas identified in the 
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analysis. Accordingly, four key steps were performed: burned area mapping, fire cluster-

ing, hotspot monitoring, and environmental conditions and impact. 

 

Figure 3. Methodology flowchart for mapping the bushfires hotspots in NSW. 

For mapping the burnt area, ArcGIS software is used in which the interpolated pe-

rimeters from the monthly accumulated fire points are generated using a convex hull ag-

gregation with the ‘aggregate points’ tool. The convex hull algorithm assigns an area in-

cluding the clusters of points (minimum 3) at user-defined aggregation distance. Three 

aggregation distances, 1 km, 2 km, and 5 km, are tested for the fire delineation. These 

distances are chosen depending on the spatial resolution of the active fire products from 

the VIIRS-375 m resolution. The idea is to visualize the total burned area due to the fires 

in the NSW region. The validation of the fire samples is performed using visual interpre-

tation from Google Earth imagery. The High/Low Clustering (Getis-Ord General G) pro-

vides the fires’ gathering pattern that is used to measure the extent of clustering in the fire 

data. 

The z-score and p-value depict the statistical significance of the null hypothesis. In 

this case, the null hypothesis states that the values linked with each feature are distributed 

randomly. For monitoring the hotspots, Getis-Ord local Gi* spatial statistics is performed 

to see the statistical significance of the fire incidents. Before the incremental spatial auto-

correlation tool is operated, beginning distance and distance increment must be set. Cal-

culate Distance Band from the Neighbor Count tool is used to monitor these parameters. 

The tool gives the minimum, average, and maximum distance at which each point has at 

least one neighbour. The resultant maximum distance is used as the beginning distance, 
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whereas the average distance achieved from the tool is used as the distance increment. 

Later, the incremental spatial autocorrelation tool is used to measure data grouping in 

space. The tool gives an output in the form of a graph of increasing distances and their 

corresponding z scores. 

The clustering distance is subsequently used in the Getis-Ord Gi* analysis as a dis-

tance band or radius. The Getis-Ord local statistic is calculated using Equations (1)–(3). 
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where xj is the attribute value for feature j, wi.j is the spatial weight between the feature i 

and j, and n is the number of features. �̄ is the mean of all measurements, and S is the 

standard deviation of all measurements. The Gi* is a zone, after which no more calcula-

tions are required. The Gi* statistic returned for the features in the fire datasets is a z-score. 

For the z-scores to be statistically significant, the higher the z-score value, the more intense 

the cluster will be, hence classifying it as a hot spot. Consequently, the cluster will have 

low values for statistically strong negative values, identifying it as a cold spot. Thus, the 

spots can be classified into hotspots or cold spots for assessing the fires. Lastly, a linear 

regression analysis is performed, with the response variables of the burned area, fire inci-

dents, fatalities, and the predicting variable as the fire season (year). Positive and negative 

relationships are represented as increasing and decreasing trends, respectively. 

3.4. PSO for UAVs Path Planning in Bushfires Monitoring 

PSO is a metaheuristic algorithm that works on the principle of finding, generating, 

and searching for the shortest path. In this study, the PSO algorithm is used to monitor 

the bushfire area. It is quite challenging, in bushfires, to reach the allocated area and hover 

back to the depot. In the relevant literature, compared to the existing algorithms such as 

ACO and GA, PSO is favoured to generate the shortest distance with enhanced collision 

avoiding capability [60,61]. Moreover, it is the best possible approach to significantly find 

the shortest distance in optimum time [62,63]. In the current study, the PSO optimization 

algorithm used in UAV Bushfire Application is inspired by “Seyedali Mirjalili (2021). Sim-

ulation of particles in Particle Swarm Optimization”, available at (https://www.math-

works.com/matlabcentral/fileexchange/69027-simulation-of-particles-in-particle-swarm-

optimization, accessed on 9 August 2021). The document was accessed on 9 August 2021. 

Significant changes have been made to the source code, including changing the parame-

ters, e.g., handle points, maximum iterations, population size, inertial weight, as well as 

personal and global learning coefficients that have been modified to be used in our specific 

application where the particles are the UAVs in a swarm. Specifically, three-point handles 

have been used in the current study compared to the source code. The function used in 

the current study is for five obstacles with different positions and diameters, which are 

some of the novel additions and modifications, of the current study, to the source code. 

Furthermore, based on the computation time and transportation cost, the current study 

considers the best path for UAVs to reach the affected area in the least time. For this pur-

pose, the number of obstacles has been increased to five to make a complex environment 

for UAVs to reach the destination. 
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The flow chart in Figure 4 shows the simulation model for the PSO algorithm. Ini-

tially, the start and target points are determined for UAVs to fly from the depot (start) and 

reach the target location. In step 2, the population size and parameters are set for particle 

velocity, time steps, and personal and global learning coefficient. In step 3, the PSO algo-

rithm model is run to maximize the affected area coverage based on the cost function gen-

erated in step 4. As a result, the random paths are generated, and the shortest path is 

selected based on the maximum iterations. 

 

Figure 4. PSO simulation model. 

Figure 5 provides a five-stepped framework for bushfire detection using UAVs 

through the PSO algorithm. In step 1, the control unit is notified regarding the affected 

region where the bushfire is ignited using field and satellite sensors. In step two, the con-

trol unit/van is sent to the nearest safe area of the bushfire. This is done to avoid unneces-

sary battery losses of the UAVs due to the hovering of UAVs as they have limited battery 
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power. It further ensures high endurance and better wireless communication with the 

UAV due to the shorter distance. In step 3, the GPS coordinates of the UAVs are set, and 

the required data is embedded to cover the targeted location for bushfire damage detec-

tion. In step 4, the PSO algorithm is initialized to determine the shortest path between the 

start point and the end destination, retrieving the data in lesser time and minimum trans-

portation distance. Based on the shortest path calculated, the UAV swarm assigns the task 

to each other to minimize the energy consumption and better monitoring time. In the final 

step, the real-time fire is monitored using cameras and sensors attached to the UAV. The 

data is shared with the control unit in real-time, where it can be shared with all concerned 

departments. A rescue relief team is notified instantly to reduce the effects of bushfires. 

 

Figure 5. Schematic illustration of Bushfire Detection using PSO. 

Figure 6 illustrates the pseudocode and demonstrates the trajectory of UAVs from 

determining the maximum area coverage. In Figure 6, it is assumed that the B1, B2 are the 

Barriers, UAV1, UAV2, and UAV3 are the UAVs, while P1–P10 are the locations to be 

covered by the UAVs. The first step involves determining the target location, which is, 

identifying the fire zone. The UAVs initialize themselves from P1 to compute the feasibil-

ity paths in Step 2. These UAVs are launched from the control units or vans present in the 

vicinity of the fire zone. To minimize the transportation distance, the UAVs communicate 

with neighbouring UAVs and determine the shortest path possible in Step 3. In Step 4, the 

optimization method is adopted, where three of the PSO algorithm functions are run to 

maximize the area coverage, minimize the distance to the target, and minimize the num-

ber of active UAVs. As a result, an efficient and cost-effective disaster management strat-

egy is devised whereby the UAVs can cover the maximum area in the shortest possible 

time, as given in Step 5, and where all the locations from P1 to P10 are covered by the 

three UAVs using PSO. This way, the barriers in the paths are avoided, as evident from 
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B1 and B2 in Figure 6, and an efficient maximum area coverage strategy is used to get data 

from the target zone.  

 

Figure 6. Routing mechanism to calculate best transportation distance using PSO. 

The area assignment for UAVs is based on the longitude and latitude coordinates 

using GPS technology [64,65]. Table 3 lists the parameters and assumed values of these 

parameters to assist the PSO algorithm. The inertia weight determines the contribution 

rate of a particle’s previous velocity to its velocity at the current time step that is consid-

ered as 0.8 in the current study. The inertia weight damping ratio is assumed as 0.96. The 

personal learning coefficients and the global learning coefficients to fit the maximum area 

curve are 1.25. These values are taken from the studies of Mirjalili et al. [66] and Mirjalili 

et al. [67] based on the optimum results achieved. 

Table 3. The PSO parameters and their values. 

Parameter Values 

w = 0.8 Inertia Weight 

wdamp = 0.96 Inertia Weight Damping Ratio 

c1 = 1.25 Personal Learning Coefficient 

c2 = 1.25 Global Learning Coefficient 
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3.5. Proposed Model 

The parameters and functions of the proposed model are presented in Table 4. 

Table 4. Model parameters and functions. 

Parameters Functions 

D Set of depot sites 

T Set of target sites 

0, n + 1 The start and end depots of the drone 

V V = D ∪ T∪ (0) ∪ (n + 1) 

R Set of UAVs 

qi Requested demand for each target site � � T   

qr Capacity of drone � � R 

Pr Time required for UAV to cover area � � R 

ai. bi 
Time window during which the UAV reaches the target 

site 

tij Time to travel from i to j,  � � V 

r Maximum time lag between consecutive deliveries 

The UAV starts its trip at a central (source) depot and travels between the depot and 

target sites. At the end of mission completion, the UAV returns to an end (sink) depot 

(which may or may not be the same as the starting depot). This routing problem can be 

modelled on a directed, weighted graph G (V, A); consisting of vertex set V= {0} ∪ T ∪ {n+ 

1}, where vertices 0 and n + 1 are resp. to the source and sink depots. The UAV must reload 

in between 2 deliveries. This has been accounted for in the arc costs. Optionally, a positive 

load time for the UAVs can be added to the arcs between two target sites. The arc set A is 

defined as follows: 

 The source-sink depots have outgoing resp. incoming edges to/ from all other verti-

ces. 

 There is an arc (i,j) for all i; j ϵ T; i ≠ j. 

The arc costs are as follows: 

 T0,i = minpϵP ti,p + tp,j for all i ϵ T 

 Ti,j = minpϵP ti,p + tp,j for all i, j ϵ T 

 Ti,n+1 = ti,n+1. 

 T0,n+1 = 0. 

The routing constraints can be modified as follows: 

���. � �� ��

� ∈�

   (4)

� .

� ∈�∈��(�)

� �� ���R ≥ ����           ∀ � � T 

.

 (5)

Constraint (5) ensures that enough area is covered at the target site. 

� �0�� =

�∈��(�)

�  ��, � + 1, � = 1           ∀ � � R

� � �(���)

 (6)

� ���� =

�∈��(�)

�  ��, �, �           ∀ � � T, � � R

� � ��(�)

 (7)

Constraints (6) and (7) determine the shape of a feasible tour: a tour starts at the 

source depot, visits a target site, and finally returns to the sink depot. Constraints (7) are 

the flow preservation constraints. Further, between two consecutive visits, starting, pro-

cessing, and travel times must be considered (Constraint (8)). 
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��
� + ��� − M �1 − �����  ≤  ��

�
− ��                  ∀ �, � � V, � � R (8)

�����  ≤  ��
�

 ≤  ��                                  ∀ � � V, � � R (9)

A target i ϵ T cannot be visited before ai, and the assigned task must be completed 

before bi (Constraint (9)). The remaining Constraints (10)–(12) restrict the domains of the 

variables. 

���� ϵ { 0, 1}                                                ∀ �, � � V, � � R (10)

��
� ϵ Z ≥  0                                                    ∀ � � V, � � R (11)

�� � { 0, 1}                                                         ∀ � � T (12)

where, ���� is a binary variable, indicating whether UAV r travels from i to j. Integer var-

iable ��
�, i ϵ T, r ϵ R, record the time that UAV r finishes its delivery to target site i. For 

notation purposes, δ− (.) resp. δ+(.) denote the incoming resp. outgoing neighbourhood sets. 

The maximum time lag requirements between multiple tasks completed for a single site 

can be schedules as below: 

���. � �� ��

� ∈�

 (13)

� .

�∈�� � ��\ {�}

�  �� ���
�  ≥ ��  ��         ∀ � � T 

.

 (14)

Constraint (14) ensures that assigned tasks have been completed at each target site. 

� ����  
� = 1   ∀ � � V

� ∈��

 (15)

Constraints (15) and (16) are used to sequence the UAVs. A UAV can only be used 

once for every target site, and whenever it is used, its delivery must be succeeded by an-

other delivery (possibly a delivery by the dummy UAV r0) (Constraint (15)). The dummy 

UAV must be scheduled (Constraint (16)). 

� ���  
� =  � ���  

�                ∀ �, � � R, � ≠ �, �

� ∈�� \{�}

 � V

� ∈�� \{�}

 
(16)

Constraint (17) is the flow preservation constraint. Together with Constraint (16), 

these constraints enforce that all assigned tasks are scheduled consecutively. Thus, each 

task has exactly one successor and one predecessor. 

��
� −  M �1 − ���  

� �  ≤  ���
�  −  ��                      ∀ �, � � R, � ≠ �, � � V (17)

Constraint (17) links the completion time variables �� 
�  and the sequence variables 

��� 
� , thereby enforcing that tasks performed do not overlap in time. 

��
�– ��  ≤  ��  

� + � +  M �1 − ���
�  �                        ∀ �, � � R, � ≠  �, � � V       (18)

Constraint (18) enforces a maximum lag time between consecutive assigned tasks. 

�����  ≤  ��
�

 ≤  ��                               ∀ � � V, � � R (19)

Constraint (19) ensures that assigned tasks performed by the UAVs are scheduled 

within the time window. The remaining Constraints (20)–(22) restrict the domains of the 

variables. 

���  
� ϵ { 0, 1}                                ∀ � � V, �, � � R (20)

��
� ϵ Z ≥  0                             ∀ � � V, � � R (21)
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�� � { 0, 1}                         ∀ � � T  (22)

The binary variable ��� 
�  is equal to one if UAV � � R completes its tasks immedi-

ately before UAV � � R to target site � � �; otherwise, the value is zero. In this model, r0 

represents a dummy drone, R0 = R U {r0}. A feasible solution is obtained at the intersection 

of the routing and scheduling polytopes. Connecting the two polytopes is accomplished 

via the linking constraints: 

� ���  
� =  � ����                         ∀ � � R, �

� ∈ � 

 � T

� ∈�� \{�}

 
(23)

Note that Constraints (14) and (17) in the route are identical to Constraints (5) and (9) in 

the schedule, respectively, and are consequently dropped. 

A disadvantage of the current model is that a single UAV cannot visit the same target 

site more than once. This restriction is unrealistic as, often, a UAV can travel back and 

forth between the depot and a target site. When the binary variables ���� are replaced by 

equivalent integer variables, indicating the number of times UAV R travels from i to j, one 

can still distinguish the routes. However, expressing the scheduling constraints becomes 

difficult in this case. Two options exist to address this issue: either the distinct trips made 

by a single UAV are enumerated (e.g., UAV R travels from i to j during trip t), or the visits 

to a target site are enumerated. The latter solution is applied in assignment-based formu-

lations for scheduling problems. This model is adjusted to our notation as below: 

Let D and T be defined as above. In addition, for each target site � � T, a new ordered 

set consisting of visits to the target site, ��  = {1…..n(i)}, is defined where n(i) = 

[��/min
� ∈�

(��)] is an upper bound of visits required by the target site i. A shorthand notation, 

��
� will be used to denote visit j for target i. A time window [��, ��] is associated with each 

visit e � ��,  � � T which is initialized to the time window for the corresponding site � � T 

i.e., [��, ��] = [��,��] for all � � T, e � ��. Finally, W = �� � ��� is the combination of all the 

visits. 

Let directed weighted graph be G (V, A); consisting of vertex set V= {0} ∪ W ∪ {n + 1}. 

Its arc set is defined as follows: 

 The source-sink depots have outgoing resp. incoming edges to/from all other vertices 

 A delivery/trip node ��
�  has a directed edge to a trip node ��

� if h < j, i ϵ T, h, j ϵ ��. 

 There is a directed sedge from ��
�  to ��

�
, i ≠ j, except if ��

�
 needs to be scheduled ear-

lier than ��
� . 

The arc costs are as follows: 

 ��, ��
� = minpϵP ���,� + ���,� for all ��

� ϵ W. 

 � ��
�

 ��
�
 = minpϵP ���,�+ ���,� for all ��

�  ��
�
 ϵ W ��

�  ≠ ��
�

. 

 � ��,���
�  = ���,���. 

 ��,��� = 0. 

The entire model becomes, 

���. � �� ��

� ∈�

 

� �0��

� ∈ ��(�)

�  ��, � + 1, � = 1           ∀ � � R

� ∈ ��(���)

 (24)

� ��, �, � =

�∈��(�)

�  ��, �, �           ∀ � � �, � � R

� � ��(�)

 
(25)

� (�, 1) ≤   1                  ∀ � � � (26)
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Constraints (24)–(26) are the common vehicle routing constraints defining the start-

ing and ending location of the tour, flow preservation, and the number of times the UAV 

can visit the site. 

� (� + 1, 1) ≤  �(�, 1)                  ∀ � � �, � � {1, … . . , �(�) − 1} (27)

� �(�, ��) ≥

�∈��

 �� ��
                                                 ∀ � � T   (28)

Furthermore, Constraint (27) orders the visits: a delivery ����
�  cannot me performed 

whenever delivery ��
� has not been made. This constraint, in conjunction with constraint 

(32), implements the maximum time lag between consecutive deliveries. The sum of ca-

pacities of the vehicles performing the deliveries for sites � � T should cover the demand 

(Constraint (28). 

��  −  M �1 − ���� �  ≤   �� − ��  − ���               ∀ (�, �)� �, � ≠  0, � � R (29)

��–  M �1 − ���� �  ≤  ��  − ���                      ∀ (0, �)� �, � � R (30)

��  −  S (i, �� )  ≥  ��                          ∀ �  � �     (31)

����–  S (j +  1, �� ) −  ��  ≤  �                    ∀ � � T, � � {1, … . . , �(�) − 1} (32)

����  ≥  �� + S (j, ��)                      ∀ � � T, � � {1, … . . , �(�) − 1} (33)

Finally, Constraint (33) ensures that visits to the same customer/point do not overlap 

in time 

��  ≤  ��  ≤  ��                              ∀ � � � (34)

Constraints (29)–(34) enforce the necessary scheduling restrictions. Delivery cannot 

be made outside the site’s time window (Constraints (31) and (33)); travel times need to 

be accounted for (Constraints (29) and (30)). 

���� ϵ { 0, 1}                     ∀ (�, �) � �, � � R (35)

�� � { 0, 1}                           ∀ � � T (36)

where, S(i, α) = ∑ � ∈ R  ∑ � ∈ � + (�)� ����  for all i  � �.  Binary variables Xijr denote 

whether UAV r ϵ R travels from i to j, �, � � �. Binary variables �� record the time that 

delivery i � � is completed. Additionally, ���� records the makespan of the schedule. 

Finally, Boolean variables ��, denote whether customer i ϵ T is serviced. 

4. Results and Discussions 

As presented in the method section, the results of GIS, remote sensing, and the PSO-

based proposed model are presented in this section. 

4.1. Monitoring the Burnt Area 

NOAA’s sensor, VIIRS fire product with 375 m resolution, is used to aggregate the 

perimeters of the fire with distances of 1 km, 2 km, and 5 km, as shown in Figure 7. The 

examples show the extent of the land damaged by the Black Summer fire season, where 

the burnt areas are shown in red colour. The maps show that the eastern part of the state 

is most affected by the fires. Significant, and more impactful, fire events have hit the cities 

along the coast, including Sydney, Coffs Harbour, New Castle, and Wollongong. The 1 

km aggregates show that the sporadic distribution of the fires is largely spread throughout 

the state, as evident from Figure 7a. It depicts that each fire event has caused widespread 

damage. Likewise, the 2 km and 5 km aggregates show the land damages of the respective 
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distances as shown in Figure 7b,c, respectively. The 5 km aggregates give the best depic-

tion of the burnt area. The areas shown in this map include the southeastern region that 

connects NSW with the State of Victoria. 

 

 

(a) 

(b) 
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Figure 7. Examples of aggregates of varying distances using the VIIRS dataset. (a) Fire distance 1 

km (b) Fire distance 2 km (c) Fire distance 5 km. 

Additionally, the northern parts of the NSW are also heavily destroyed by these fires. 

Upon visual validation of the output with the Google Earth imagery, it is found that 50% 

of the national parks of NSW are impacted by the 2019–2020 fire season. This is in line 

with the NSW report that states a significant impact on NSW vegetation. These fires have 

resulted in damage of 2.5 million hectares of the state’s national parks [68]. 

4.2. Fire Clustering Patterns and the Significance 

Figure 8 shows the level of clustering in the fire data, based on Get-Ord General G 

statistics generated through ArcGIS. The z-score is based on the randomization of the null 

hypothesis calculation. The distance method for the clustering analysis is Euclidean dis-

tance assessed based on inverse distance. The distance threshold for the state of NSW 

bushfire events is found to be 148,828.07 m. The higher z-score of 5.90 depicts a less than 

1% likelihood that the events’ highly clustered pattern could be attributed to random 

chance. Therefore, these fire events are significantly high clustered along the entire state. 

Very strong clustering patterns can be visualized in Figure 8 towards the north and south-

eastern cities of NSW. Particularly in the southern parts, the clustering trend is quite pro-

nounced mainly because the epicentre of the fire is near the Victoria NSW border region. 

(c) 
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Figure 8. Graph showing the level of clustering in the fires of Black Summer Fire Season and General 

G Summary. 

The statistical data generated by ArcGIS is presented in Table 5. As the z-score value 

is positive, and the observed General G index is larger than the expected General G index, 

high values for the attribute are clustered in the study area. Thus, more evenly distributed 

fires are experienced in NSW. Therefore, the null hypothesis is accepted as evident from 

the p-value of 0.07, which shows statistical significance when the p-value is greater than 

0.05. Hence, it is confirmed that all the values linked with each feature are distributed 

randomly. 

Table 5. The statistical values of the data obtained from ArcGIS. 

Assessment Value 

Observed General G 0.02 

Expected General G 0.005 

Variance 0.0 

Z-Score 5.9 

p-value 0.07 
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4.3. Monitoring of Bushfire Hotspots 

The hotspot analysis, based on the Getis Ord Gi* statistics, is performed on the ag-

gregated features of 5 km for ease of computation. Figure 9a shows the fire hotspots rang-

ing in five categories: strong cold spots shown in dark blue, cold spots shown in light blue, 

nonsignificant spots shown in yellow, hotspots shown in orange, and strong hotspots 

shown in the red colour. Most of the NSW is covered sporadically with strong cold spots, 

primarily concentrated in the Pilliga Nature Reserve, Wollerni National Park, Yengo Na-

tional Park, and the coastal regions in the north. Statistically, not-so-significant fire spots 

could be observed in Blue Mountain’s National Park and Morton National Park. Strong 

hotspots of bushfires are observed in the Deua National Park, situated in the southern 

part of the state. Some of the clear hotspots could also be observed in the Kosciu Sako 

National Park. 

Similarly, Figure 9b illustrates the graph based on the z-score stats of the Get-Ord Gi* 

analysis. The graph gives an insight into the types of bushfire hotspots. The number of 

fires is plotted on the x-axis against their respective z-score values on the y-axis. The blue 

colour is densely populated across the study area and depicts that more than half of the 

state is included in the cold spots or strong cold spots. Some random parts of the state 

bushfires are shown in yellow, depicting that these events are not statistically significant. 

The relatively low z-score of 2.8–4.1 can be seen in the orange colour, which shows a good 

clustering of hotspots. On the contrary, the strong z-score values above 4–10.5 depict 

strong clusters of severe hotspots in the study area. Though these strong hotspots are not 

so thickly populated across the study area, they impacted the fires throughout the state. 

 

(a) 
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Figure 9. (a) Delineation of hotspots and cold spots, based on the Getis-Ord Gi* Statistics, (b) the z-

score graph of the hotspots of the study area. Note: blue shows the cold spots, yellow shows the 

statistically nonsignificant spots, and red shows the strong hotspots. 

Figure 10 shows the complete picture of the bushfire hotspots in the state of NSW. 

The graduated size of circles shows the intensity of the hotspots across the study area. The 

map shows that the fire events have severely hit the eastern regions of NSW. Minor 

hotspots of bushfires are densely and randomly dispersed throughout the study area. The 

noteworthy and more impactful hotspots are shown in a bigger circle in southeastern 

NSW. These include the Deua National Park, Morton National Park, and Kosciu Sako Na-

tional Park. Other larger hotspots are in the northeast in the Wollerni and Yengo National 

Parks. These regions were already at risk of fires, considering the weather conditions of 

hot maximum temperatures, dry and humid incidents, and the prevalent fire weather sit-

uations. Further, it points out that the upcoming fire events will be more frequent and 

severe than ever recorded before [6]. Thus, the government must act and put measures in 

place before the next fire event. 

(b) 
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Figure 10. (a) Hotspots of bushfires in the 2019–2020 fire season. (b) The eastern side shows strong hotspots for fires and 

the spatial directional distribution of the fires. 

  

(a) 

(b) 
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4.4. Regression Analysis of the Black Summer Fires 

Most of the northern and central areas of the NSW have observed extremely low pre-

cipitation in the year 2019. Some of these locations recorded the driest conditions in his-

tory. Lower rainfalls impacted the water resources and the associated firefighting mitigat-

ing measures [69]. By the start of August, almost the entire NSW was stricken by severe 

drought (55%), observing drought conditions (23%), and experiencing extreme droughts 

(17%). The initial ‘Section 4.4 emergency’ was declared on 10 August 2019 [70]. Addition-

ally, adequate soil moisture deficits and prevalent winds facilitated the considerable fre-

quency of fire events [71]. A total area of 5,595,739 hectares was burnt, destroying 2475 

houses, and causing 25 casualties by 10,520 fire incidents in NSW, as shown in Figure 11. 

 

Figure 11. The numbers of fire events in each season in NSW since 2001. (Note J-01 means January 2001, J-02 means January 

2002 and so on. The x-axis shows the month and year, whereas the y-axis shows the number of fires.). 

These fires of NSW made a record of burning more area than any other fire season in 

the past two decades, as seen in Figure 11, that the authors compiled based on the data 

available online. Figure 11 shows data for January of each odd calendar year starting from 

2001 till 2019, where the number of fires is plotted. The 2019 fires have been the worst 

disaster in terms of the number of fires and areas burnt. The year 2012 had the least burnt 

area and lower numbers of fire, followed by 2008 and 2004. 

Figure 12 shows the data for houses burnt and the fatalities of various fires in NSW 

since 2001. All the data is plotted for the reports of January of the particular year. The 

authors compiled the data based on online information and reports of the parliament of 

Australia and NSW RFS. The Black Summer fire season has been an extraordinary disaster 

where the burnt area, fatalities, and damaged houses are more significant than the previ-

ous years. Before the 2019 season, the notable instances are 2001 and 2002 fires, with 250 

houses damaged and two fatalities each. The 2013–2014 fires resulted in the loss of three 

lives and damages to 350 houses. Similarly, 2013 and 2017 also resulted in the loss of two 

lives and damages to approx. 200 properties. 
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Figure 12. Bushfire impacts on houses and fatalities in each fire season in NSW since 2001. (Note: J means January, A 

means April, O means October, and D means December. The numbers after J, A, O, D refers to the year of data points). 

(a): Number of houses burnt in various months since 2001 (the x axis shows the months and years, whereas the y-axis 

shows the number of burnt houses). (b): Number of lives lost each year since 2001 (the x axis shows the months and years, 

whereas the y-axis shows the number of fatalities). 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

J-98 A-01 J-04 O-06 J-09 A-12 D-14 S-17 J-20 M-23

(a)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

J-01 J-02 J-03 J-04 J-05 J-06 J-07 J-08 J-09 J-10 J-11 J-12 J-13 J-14 J-15 J-16 J-17 J-18 J-19 J-20

(b)



Sustainability 2021, 13, 10207 26 of 35 
 

In Table 6, before the Black Summer fires, the trend of the burnt area showed a neg-

ative slope, transitioning into a positive with the 2019–2020 fires, signifying a p-value of 

0.019. The frequency of fires has been decreasing until 2012 that started to increase post-

2012. It showed a positive trend for the dataset with a greater slope for 2001–2020. The 

data analysis shows a positive linear relationship between the fire events and the burnt 

area that is found to be statistically significant with a p-value of 0.59. A regression line for 

the house damaged over the years shows a positive slope. It shows a statistically signifi-

cant p-value of 0.12. Due to the 2019–2020 fire season data, a statistically significant output 

with a p-value of 0.54 is obtained. Fatalities are estimated to be about 1% of the houses 

damaged. This dataset shows an error of 0.36 for the fatalities. The results are similar to 

an extensive study performed by Filkov et al. [72], where the researchers explored the 

impact of the recent fires on the houses and lives lost. 

Table 6. Regression Analysis for 2001–2020 fire seasons in New South Wales. 

Impact Factors Standard Error p r R2 

Fire Season (y) vs. Burnt Area (x) 1,288,108 0.019 0.59 0.35 

Fire Season (y) vs. Houses Loss (x) 52,737 0.12 0.39 0.15 

Fire Season(y) vs. Life Loss (x) 5.30 0.11 0.40 0.16 

Burnt Area(y) vs. Fire Season (x) 1639 2.75 × 10–19 0.59 0.31 

Life Loss (y) vs. Houses Loss (x) 0.36 0.54 0.99 0.99 

4.5. UAV Routing Results 

As discussed in the Method Section, the UAVs’ paths were optimized using the PSO 

algorithm to have the shortest possible distance for monitoring the fire events. For doing 

this, different cases are considered in the target area of NSW Australia. Varying iterations, 

number of UAVs, computation time taken by the control unit, and the best (shortest) travel 

distance for UAVs are presented in Table 7. The iterations include 50, 100, 200, 300, 400, 

and 500, whereas the number of UAVs is varied between 20, 40, 60, 80, and 100 for each 

iteration. From Table 7, in most of the cases, 20 UAVs give the best results for computation 

speeds, and 100 UAVs give the best transportation distance to be covered (shortest dis-

tance). The computation time ranges from 14.64 s for 20 UAVs and 50 iterations to 137.37 

s for the same number of UAVs with 500 iterations. On average, the optimized distance is 

around 12.81 km of area, which is a considerable distance, considering the limited battery 

operating time of the UAV. This shows that the more UAVs there are in the swarm, the 

better the results will be, as the UAVs can communicate with more UAVs in the swarm 

and share the workload more efficiently. Thus, depending on the area to be covered, the 

UAVs in the swarm should be increased. The values are generated through the MATLAB 

code for PSO to optimize the UAV routes. 

Table 7. Test cases with the number of iterations, UAVs, elapsed computation time, and optimized distance. 

No. of Iteration (I) Number of UAVs (n) Elapsed Time(s) Best Transportation Distance (km) 

50 

20 14.64 12.89 

40 16.24 12.97 

60 18.49 13.24 

80 20.34 13.18 

100 22.07 12.81 

100 

20 28.36 13.08 

40 32.65 12.85 

60 35.65 12.92 

80 40.03 13.16 

100 43.20 12.80 

200 20 57.37 12.82 
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40 63.72 12.80 

60 71.12 12.86 

80 78.85 12.91 

100 85.14 12.80 

300 

20 85.37 13.24 

40 96.17 13.33 

60 106.80 13.34 

80 116.07 13.21 

100 128.06 12.82 

400 

20 110.97 13.09 

40 123.71 13.01 

60 139.32 12.86 

80 152.12 13.19 

100 167.84 12.80 

500 

20 137.37 13.20 

40 153.32 13.21 

60 173.50 13.01 

80 191.89 12.85 

100 204.85 12.82 

There is a trade-off between computational time and transportation cost. Moreover, 

considering the number of iterations to be 200 and 400 for 100 UAVs, the best transporta-

tion distance is the same (12.80 km); however, the elapsed time is 85.14 and 167.84 s. This 

shows that the time can vary even with the same cost; hence, there is no universal rule for 

selecting a definite number of UAVs or inferring that the maximum number of UAVs will 

give minimum cost in all cases. 

Figure 13 shows the iteration results for all test cases involving 100 UAVs. The opti-

mal UAV path for detecting bushfires is simulated in the MATLAB environment. For this 

purpose, a PSO algorithm is designed based on certain parameters such as iteration, pop-

ulation size, inertial weight, damping ratio, as well as personal and global learning coef-

ficient to calculate the best transportation distance. Figure 13a,c,e,g,i,k illustrates a 2D sce-

nario of UAV routing problem from starting point to destination. Blue circles are the ob-

stacles in the UAV trajectory. The best transportation distance and elapsed time are calcu-

lated based on the UAV hovering from the start to the destination, where the effect zone 

(bushfire) needs to be monitored. Three handle points, indicated in light red circles, are 

considered to smoothen the path from start to destination. The x and y-axis represent the 

lengths and widths of the plots or locations (P1 to P10). Figure 13b,d,f,h,j,l shows the best 

transportation distance, concerning number of iterations. In all the cases, the case study 

area’s optimized distance with 100 UAVs is 12.81 km, on average. When the iterations are 

increased from a specific point, the distance follows a straight path. In the case of the lower 

number of UAVs, the optimized distance is increased, which means lower productivity 

and more battery losses. Thus, it is advised to use more UAVs in the swarm for better 

results and less travel distances for swift disaster response. 
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Figure 13. The 2D trajectory of the UAVs routing and the shortest transportation distance for test cases with 100 UAVs. 
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Transportation distance for 400 iterations and 100 UAVs (k) 2D Scenario for 500 iterations and 100 UAVs (l) Transportation 

distance for 500 iterations and 100 UAVs. 

Figure 14 shows a swarm of UAVs deployed at a test zone at NSW with their starting 

points, destination point, and various possible routes. Using PSO, the Route 1 value is 

12.89 km with a computation time of 14.63 s. Route 2 takes 18.49 s and gives an optimized 

path of 13.24 km, whereas Route 3 has values of 12.80 km for the optimized path and takes 

22.69 s to be computed. Depending upon the scenario, if computation time is not the high-

est priority, R3 has the best results for the optimized path. However, if computation speed 

is the concern, Route 1 has the best values with just 14.63 s of computation time. Thus, the 

trade-off between computation speeds and optimized routes may be input into the control 

units through artificial intelligence or human presence. This decision can be taken in real-

time at the control unit or head office through remote administration. 

 

Figure 14. PSO-based optimized routes and computation speeds for UAVs in a test zone at NSW. 

Accordingly, the NSW and the rest of Australia can be covered through UAV swarms 

whose paths are optimized through PSO algorithms to tackle any bushfire disaster. The 

proposed system can be adopted by the NSW RFS to plan for upcoming fire seasons ac-

tively. The system, if adopted, can help save lives, reduce the bushfire impacts on proper-

ties and livestock, and save many species of wildlife from bushfire disasters. With the 

growing availability of UAVs, the proposed system will cost way less than the post-dis-

aster rehabilitation and repairs. Vigilant and swift policy making is required in this con-

text to help mitigate the harmful effects of bushfires disasters by adopting the proposed 

system. 

The area covered depends on the availability of UAVs and the technology level used 

in the UAVs. As far as the costs associated with the increased number of UAVs are con-

sidered, it can be estimated using the area coverage path planning, which depends on 

finding the route that covers every point within the target area of interest [73]. Particu-

larly, for our system, the costs of using an increased number of UAVs will be greatly de-

pendent on the area coverage path planning for our area of interest. 
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In various disastrous situations, many UAVs can be effectively deployed, as the util-

ity of UAVs is highly implicated and appreciated in such future situations. The UAVs can 

play promising roles in various relief efforts in natural disaster situations such as bush-

fires, storms, and earthquakes. Notably, UAVs can perform very crucial jobs as soon as 

disasters emerge. These tasks include identifying people in emergencies who require ur-

gent help. Greater evidence supports the fact that UAVs display several advantages over 

traditional searching and rescuing with a considerably higher speed. UAVs can perform 

additional roles, such as delivering the rescue ropes and life jackets in dangerous areas 

where ground-based rescue efforts are practically impossible and very difficult. These 

UAVs have an inherent ability to assess the damage caused to infrastructures such as 

roads, buildings, tunnels, bridges, etc. Different types of models can be effectively coupled 

with these systems. Some of the most prominent examples are the traditional continuum 

model, expand contract model, and disaster crunch model. The traditional continuum 

model is based on sequential stages, focusing on the activities associated with pre-disaster 

and post-disaster events. Our proposed systems can be effectively used if integrated with 

such types of models. The coupling of our systems to these models will speed up and 

enhance the projection, which will help attain an improved response from the governing 

bodies. If the governing bodies for disaster management extend their support, UAVs can 

be effectively used in natural disasters such as floods, bushfires, etc. 

During the post-disaster assessment, the battery life of the UAV plays a significant 

role in hovering time. In a recent study by Fotouhi et al. [74], the authors implemented a 

control strategy for confined Phantom 4 mobility using a DJI software development kit 

(SDK). Considerably, the speed of the UAV is directly proportional to the power utilized. 

The pertinent results shows that the power utilization abruptly reaches 167 W, as the UAV 

speed peaks to 10 m/s. 

UAV battery consumption is always an important issue to address, keeping the sus-

tainability of technology in mind. A solution for the UAV battery energy consumption is 

proposed in Selim and Kamal [75] using UAV Base Station (UAV-BS) and Powering Drone 

(PD). The PD provides the necessary charging for the hovering UAV-BS to make it more 

efficient for monitoring the affected area without going back to the depot and providing 

the optimum results. In the relevant study, during the initial timing block, from 0 to 1, the 

UAV-BS are initialized from 200 kJ capacity and consume the maximum energy to reach 

the allocated spot. 

5. Conclusions 

The current study investigated the devastating 2019–2020 Black Summer fires occur-

ring in NSW Australia. Using the case study of the NSW region of Australia, GIS and 

remote sensing analyses were conducted to map the burnt areas of NSW. The results high-

light that 50% of the national parks of NSW were impacted by the 2019–2020 fire season, 

resulting in damage to 2.5 million hectares of the state’s national parks. The fire clustering 

patterns indicated that these events are significantly, highly clustered in the entire state, 

where very strong clustering patterns can be visualized towards the north and southeast-

ern cities of NSW. The clustering trend is quite pronounced on the southern side of NSW, 

where it shares the border with Victoria. 

Similarly, the hotspot mapping shows that strong hotpots of bushfires are in the Deua 

National Park, situated in the southern part of the state, and the Kosciu Sako National 

Park. Other larger hotspots are in the northeast in the Wollerni and Yengo National Parks, 

which had been declared to be at risk by the government due to weather conditions of hot 

maximum temperatures, dry and humid incidents, and the prevalent fire weather situa-

tions. The government must act and enact measures before the next fire event; otherwise, 

the data trends show that upcoming fires could be more devastating than the Black Sum-

mer. 

A UAV-based bushfire monitoring system is proposed in the current study to moni-

tor the bushfires in NSW and instigate a swift response plan to minimize the losses. The 



Sustainability 2021, 13, 10207 32 of 35 
 

paths of the UAVs are planned and optimized using the PSO algorithm for avoiding bar-

riers in the path and covering the maximum area in the shortest possible time. The test 

results with 50, 100, 200, 300, 400, and 500 iterations and the number of UAVs varying 

between 20, 40, 60, 80, and 100 for each iteration show that 20 UAVs give the best results 

for computation speeds, and 100 UAVs give the best transportation distance to be covered. 

Thus, the more UAVs are there in the swarm, the better will be the results in most cases. 

These UAVs can communicate with more UAVs in the swarm and share the workload 

more efficiently if the number is higher. Thus, it is proposed to increase UAVs if more 

area is to be covered and monitored. 

The current study is limited to test cases without submission to field tests due to the 

non-fire seasons. In the future, it can be tested in the field, and real-time results can be 

assessed to test the in-field validity and performance of the proposed method. Neverthe-

less, it is a first step towards addressing a key issue of bushfire disasters in the Australian 

context that other countries in the world can adopt. For Australia and NSW, the RFS can 

adopt the proposed system and have the UAV swarm ready before the next fire season to 

instantly map, assess, and mitigate bushfire disasters. Further, it is recommended to de-

velop a shared, integrated platform for diverse data sources, intelligence, and information 

sharing across government organizations where useful data can be shared. New wildfire 

risk assessments should be conducted with high-resolution mapping technologies to as-

sess the current state of wildlife and help place protection measures in place. The scientific 

understanding of “megafires” should be enhanced through retrospective analysis and fire 

behaviour models, and associated inputs for real-time prediction should be investigated. 

These, when achieved in their true essence, will help lay the foundation of enhanced en-

vironmental sustainability for industry 5.0. 
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