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Abstract 

Southeast Queensland has experienced a reduction in annual rainfall over 

the last 40 years of about 200mm and evidence is emerging that links global 

warming to declines in sub-tropical rainfall. Population growth in the same 

region has remained above the national average since 1986 and level 5 water 

restrictions where enforced as dam levels dropped to 16.7% in 2007. Dam 

levels for the region returned to full capacity by the end of 2010 due to 

several consistent years of rainfall and runoff. However, regional water 

supply managers still require information of future rainfall, more specifically 

if there will be a continuation of the observed long term drying trend.  

 

One of the tools that can assist the water supply industry in managing future 

water needs are Global Climate Models (GCM’s). These deliver projections of 

future rainfall but on a scale that is unable to resolve regional physical 

processes as well as other features that determine local rainfall, such as 

topography and land surface composition. For example, the catchments of 

Upper Brisbane and Stanley in Southeast Queensland are located adjacent to 

one another. Despite their proximity, average annual rainfall substantially 

varies from 840mm at one station in the Upper Brisbane catchment to 

1700mm at one location in the Stanley catchment. GCM’s with spatial 

resolutions of several hundred kilometres are unable to supply regional 

rainfall information at a usable scale for policy makers.  
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Downscaling methods are employed to refine GCM’s scale to a regional 

level. Statistical downscaling by linear regression of projected climate 

predictor variables on a monthly basis is used in this thesis to conduct an 

analysis of future rainfall at three stations in Southeast Queensland. 

 

Statistical downscaling models provided average monthly rainfall for 

Peachester of 144.7mm/month, which is a good match for the observed 

average total of 142.8mm/month. Improvements are made over the rainfall 

totals derived from GCM data at the nearest grid point of 75.7mm/month. 

This location plays an important role in receiving the majority of the region’s 

rainfall and providing a significant portion to the regions dams. Average 

rainfall at the other two locations of Mount Brisbane and Crow’s Nest were 

adequately described by the GCM output at the nearest grid point and were 

not improved upon by implementing the statistical downscaling techniques. 

The use of specific humidity in the climate models proved an unstable 

climatic predictor variable which created overestimations. Both GCM and 

statistical downscaled models project rainfall in the region to remain 

relatively constant over the next 30 years with only a small decrease in 

average annual rainfall of 4 to 5%. 
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Chapter 1: Research issues 

1.1 Introduction 

 

Much of the success of human civilisation can be credited to the use of fossils 

fuels. It has provided a relatively cheap form of energy to supply our 

heating, electricity and transport needs and powers our farms and industry. 

The rapid growth of the human population since the 1800’s using this ‘cheap’ 

form of energy has not come without some cost though. The emissions 

produced have increased atmospheric greenhouse gas (GHG) levels above 

naturally occurring concentrations, tipping the Earth’s energy balance in 

favour of trapping heat in the climate system (Pittock, 2009). 

 

Greenhouse gases including water vapour, carbon dioxide, methane, nitrous 

oxide and halocarbons (CFC’s) are an essential part of the climate system 

because they absorb heat radiated by the Earth back into space. Without 

them, this heat energy would be lost and the temperature of the Earth would 

drop to a level that would be too low to sustain life as we know it. However, 

the naturally occurring concentration of these gases in the atmosphere 

creates a climate system where, on average, outgoing heat is equivalent to 

the amount of heat that enters, thereby keeping the Earth’s temperature in 

relative stasis (Raupach & Fraser, 2011). Despite these gases only making up 

a very small proportion of the overall gases in the atmosphere, their 
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influence on the entire system is amplified because of the efficiency with 

which they trap heat combined with the fine balance of the Earth’s climate 

system. Human introduced GHG’s may only be a small fraction of the total 

GHG naturally produced each year, but this small addition increases 

atmospheric global greenhouse gas concentrations and impacts on the global 

climate (IPCC, 2007).  

 

The 2007 Intergovernmental Panel for Climate Change (IPCC) 4th Assessment 

Report (IPCC, 2007) states that the observed increase in global temperatures 

since the mid 20th century is very likely due to the observed increase in 

anthropogenic GHG concentrations. Future changes to the climate may 

already be inevitable, and adaptation practices need to be devised in order to 

continue to provide society with the essentials such as food, water, housing 

and health care (CSIRO-BoM, 2007). 

 

The social and economic consequences of climate change have been assessed 

recently in reports by Stern (2006) in the United Kingdom and by Garnaut 

(2008) and Garnaut (2011) in Australia. The Garnaut report of 2008, 

documents the possible impacts of increased temperatures on the Australian 

environment, primary industries, human health, settlement and 

infrastructure and what mitigation strategies need to be implemented to 

reduce the impact of climate change. The economic cost and benefit of 
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mitigation strategies are revised in the updates 2011 report. Weitzman (2009) 

investigates the complex topic of determining if the cost of mitigation 

exceeds associated economic benefits.  

 

One way in which the climate system has begun to change over recent 

decades is atmospheric circulations and rainfall distributions have trended 

away from the historical average towards a generally wetter world 

(Alexander et al., 2006). Spatial distribution of rainfall is also influenced in 

climate change models with an increase in annual rainfall at the high 

latitudes and a decrease in the sub-tropical latitudes (Meehl et al., 2007; 

Zhang et al., 2007). In Australia the trend in rainfall from the Bureau of 

Meteorology (BoM) over the last 40 years has been towards wetter conditions 

in the northwest and drier conditions in the east, southeast and southwest of 

the country (Fig. 1.1). 

 

Figure 1.1: Australian Annual Rainfall trends, from 1970-2011. Southeast Queensland 
(Region of study) highlighted by red box. Source: BoM, 2011. 
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According to the Australian Bureau of Statistics (ABS) census of 2006, most 

of Australia’s population is concentrated on the eastern seaboard (Figure 

1.2), the same region that has experienced a significant reduction in 

precipitation over the last 40 years and no study has investigated the cause of 

this strong drying trend (Nicholls, 2006). Freshwater supplied from rainfall 

and runoff into dams did not meet the increasing demand and by the start of 

2008 water restrictions were imposed in many regions. Future projections of 

increased periods of drought, higher temperatures and evaporation in the 

region will decrease the ability of our current systems to continue to provide 

an adequate supply under climate change scenarios (BoM-QCCCE, 2011). 

 

Figure 1.2: Australia’s Population Distribution as at the 2006 Census. Source: ABS, 2006 
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Australia’s water resources in general have high vulnerability to climate 

change scenarios (Preston and Jones, 2006; Cheiw & McMahon, 2002; Timbal 

& Jones, 2008). Alternative water sources such as recycled sewage, 

groundwater and desalination are being investigated as possible resources in 

order to supplement the dwindling supplies from rainfall and run-off 

(Kaspura, 2007). Household water demands in Brisbane, Sydney, Melbourne 

and Perth can be met by combining dam supplies with water sourced from 

rooftop stormwater (Coombes & Barry, 2007). Some new housing 

developments now take water management issues more seriously, with 

different drainage systems to separate sewage from grey water which can be 

reused in the garden or to flush toilets (McAlister et al., 2004). 

 

Rainfall in Southeast Queensland rainfall has varied significantly over recent 

decades typically subjected to periods of drought broken up by episodes of 

extreme rainfall events. Receiving ‘average’ rainfall totals in the region has 

become unusual with excursions from these totals becoming the norm. 

Managing water resources in the region is made more difficult as the region 

also undergoes one of the country’s highest growths in population (Pacific 

Southwest Strategy Group, 2007). The period from 2001 to 2007 was one of 

marked low rainfall and the region’s water resources barely managed to 

cope, dam levels dropped below 20% (SEQWater, 2011).  With water on the 

verge of running out, the state government quickly implemented a water 

management plan linking 12 dams, at some considerable cost. In 2011, with 
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dams overflowing, water consumers are still paying the high cost for the 

rapid implementation of the water grid that is said to ‘drought proof’ the 

region.  

 

Decision makers not only have to deal with inconsistent annual rainfall but 

complicating the issue further is how climate change may impact on future 

rainfall events. The last 40 years has seen a marked reduction in average 

annual rainfall, though over a 100 year period the annual reduction is less 

significant (BoM, 2011). The question still remains whether the dry period of 

the last 40 years is typical of the region, and 40 years is not long enough to 

detect multi-decade cycles, or is the reduction in rainfall, in fact a precursor 

to future climatic conditions.  

 

To assist in determining future rainfall patterns, scientists employ the help of 

global climate models (GCM’s) to simulate atmospheric conditions of the 

future. Climate models are more accurate at simulating large scale climatic 

parameters like air pressure and wind direction, but precipitation is more 

difficult as it can vary significantly within climate model grid points. 

 

The grid points of a GCM are the positions on the globe where the 

projections are made. They are spaced out around the planet, hundreds of 
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kilometres apart, with actual distances between points varying between 

models from 200 to 400km. ‘Raw’ GCM output lacks required spatial 

resolution to represent local features such as topography, land cover and 

water courses which can influence rainfall. Basing long term water 

management decisions using ‘raw’ climate model output, makes it difficult to 

know what actions, if any, should be taken to work towards a more 

sustainable use of the region’s water resources. Downscaling of this data is 

being employed to provide improved projections of future rainfall on a scale 

that is useful for the management of smaller regions. 

 

1.2 Theory behind this research 

 

To make precipitation projections from climate models more useful, 

downscaling methods can be applied to the climate model output. 

Downscaling is a process that takes climate model output and increases the 

resolution of the data to a more regional basis, up to 5km² in some cases or 

can provide information at a specific location.  

 

Downscaling methods can be broken up into dynamical and statistical 

techniques. Dynamical downscaling involves nesting a regional climate 

model inside GCM grid points, and is forced at the edge of its domain by 

Global Climate Model simulations with boundary conditions provided by 

Global Climate Model simulations. With the ability to simulate atmospheric 



8 
 

physics at a higher resolution it gives a more accurate representation of 

climatic processes on a regional scale.  

 

Statistical downscaling uses statistical probability to link observed regional 

rainfall with large scale climatic parameters. One method produces 

mathematical equations or statistical models that estimate rainfall based on 

other climate variables. This process assumes that future atmospheric 

composition and chemistry will produce rainfall in a similar fashion to 

previous atmospheric conditions.  It is more simplistic than dynamical 

downscaling but requires a lot less computer power and programming. 

 

The statistical models produced by these methods contain both independent 

and dependent variables. In the case of this thesis the independent variables 

are the large scale climatic conditions, or predictors. The dependent variable, 

or predictand, is rainfall. 

 

This statistical downscaling method will be used to test if the extreme drying 

trend of Southeast Queensland over the last 40 years will continue over the 

coming decades under climate change scenarios. Statistical downscaling is 

more useful in regions with consistent annual rainfall than regions that 

experience large variations from year to year. This is one downfall of using 

this method and to help overcome this issue the results are broken down into 

monthly values to capture climatic variation that may occur within seasons. 
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1.3 Aims and Objectives 

 

The initial motivation for this study was the dire situation that faced 

southeast Queensland water resources at the end of 2006. After six years of 

below average rainfall combined with the pressures of supplying an 

increasing population, water resources fell to record lows and serious 

consideration was given to alternative water sources. How long would the 

drought continue for? How will our water resources cope if this recent dry 

period is the beginning of future conditions under climate change scenarios?  

Planning for future growth in the region will benefit from improved 

precipitation projections and this can be provided by implementing 

statistical downscaling techniques to improve the resolution of CGM output. 

 

The objective of this study is to statistically downscale GCM projection data 

over Southeast Queensland (Figure 1.1) to provide an improved estimate of 

future rainfall in two Southeast Queensland catchments and determine if the 

recent drying trend will continue into the coming decades. It aims to do this 

by linking observed monthly rainfall at the stations of Crow’s Nest, Mount 

Brisbane and Peachester with climatic predictors, such as air pressure and 

wind direction, from around the region via a linear regression analysis. 
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1.4 Outline of thesis 

 

The topics discussed above will be covered more deeply in future chapters. 

In chapter 2 the current knowledge will be investigated via a literature 

review on the work. This will demonstrate a gap in our understanding of 

future rainfall trends in Southeast Queensland and chapter 3 will detail the 

data collection and the methodology used to derive the rainfall projections. 

The results from that research will be presented in chapter 4 which will 

provide both results and an interpretation. The implications of these results 

to current knowledge and a conclusion will be included in Chapter 5.  
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Chapter 2: Background Literature 
 

2.1 Introduction 

This literature review documents current information on the Australian 

climate and that of Southeast Queensland. Recent Australian rainfall trends 

are investigated as is the reduction of Southeast Queensland rainfall that led 

to unprecedented low dam levels for the region. Rainfall projections from 

Global Climate Models (GCM) are examined and the possibility of 

improving the spatial resolution of these projections using downscaling 

methods to provide information that is useful on a regional scale. Different 

downscaling methods will be examined to determine an appropriate method 

to improve rainfall projections for Southeast Queensland. 

 

2.1.1 The Climate of Australia 

Australia is a large landmass but the inhospitable climate renders most of the 

area uninhabitable for large communities. Under the Koppean climate 

classification system, 70% of the country is under either desert or grassland 

(Figure 2.1). These regions have infertile soils and erratic rainfall making it 

difficult, if not impossible, to settle. (CSIRO BoM, 2007) 
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Figure 2.1: The Climate zones of Australia (1961 – 1990) based on a modified Koeppen 
classification system. Source: BoM, 2011 

It is no coincidence that the country’s population is concentrated around the 

eastern coastline (Figure 1.2) where the climate is moderated by moist air; 

receives the majority of the rainfall (Figure 2.2) and contains fertile soils for 

food production.  

 

Figure 2.2: Average annual rainfall of Australia (1961 – 1990) coincides with the areas of 
largest concentration of population Source: BoM 2011 
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Figure 2.2 displays the average annual rainfall for Australia over the period 

1961 to 1990. The majority of the country receives less than 500mm/year, 

leading to the creation of desert and grassland conditions covering 70% of 

the country as shown in Figure 2.1. The population of Australia is distributed 

(Figure 1.2) in the areas that receive above 800mm/year, i.e. entire eastern 

coastline and south-western tip. The north of the country receives ample 

rainfall to support large communities, but is also subject to high 

temperatures and humidity with possible cyclonic conditions during 

summer. 

 

The large landmass of Australia is subject to various natural climatic drivers 

influencing different regions throughout the year. Different regions can also 

be impacted in different ways by the same climate driver (Risbey et al., 2009).  

These multiple influences also interact with one another to create a rainfall 

climatology which can vary not only from year to year but also decade to 

decade (Meinke et al., 2005). This can make it difficult to separate natural 

variability from that being imposed by climate change. 

 

Figure 2.3 (BoM, 2011) features the major climate drivers and synoptic 

systems that influence the Australian climate. The drivers featured in this 

section include the El Niño Southern Oscillation (ENSO), Interdecadal Pacific 
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Oscillation (IPO), Indian Ocean Dipole (IOD), Sub-tropical Ridge (STR), 

trough systems and the Southern Annular Mode (SAM).  

 

Figure 2.3: A diagram of the Australian Climate Drivers. Source: BOM 2011.  

 

The El Nino Southern Oscillation (ENSO) refers to the oscillation of warm sea 

surface temperatures from the western equatorial Pacific across to the east 

(Ropelewski & Halpert, 1987). The naturally occurring ‘Pacific Warm Pool’ 

located in the western Pacific creates convection in the atmosphere over the 

region. Conversely, in the central and Eastern Pacific, relatively cooler 

surface waters create a region of sinking air which then travels back toward 

the low pressure area in the west. This surface flow towards the west and 

upper level flow towards the east, referred to as the Walker Circulation or 

‘Trade Winds’, are strengthened or weakened depending on the temperature 

differential between the two regions. When the temperature differential is 

less pronounced, under El Niño conditions, the flow is weakened and less 
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moist air is directed towards the eastern Australian coastline, consequently, 

less rainfall is likely (Allan et al., 1996; Wang & Hendon, 2007). When the 

natural state is amplified by anomalous warm water in the western Pacific, a 

La Niña event, the Walker Circulation is strengthened and wetter conditions 

over eastern Australia prevail. 

 

The relative position of the warm pool of water in the equatorial Pacific 

creates ENSO events with different impacts on the climate. The ENSO 

Modoki Index refers to a warm pool of water located in a more central 

equatorial Pacific region (Ashok & Yamagata, 2009), an anomaly that has 

shown to influence seasonal Australian rainfall (Ashok et al. 2009; Taschetto 

& England 2009; Langford et al., 2011) 

 

The Southern Oscillation Index (SOI) can provide a measure of the relative 

strength of the El Niño or La Niña event. The index is derived from average 

monthly air pressure differences between Darwin and Tahiti and is 

connected to seasonal rainfall variations. This connection can be further 

refined by dividing the SOI values for two sequential months up into phases. 

These phases then have the ability to predict rainfall for the coming months 

not only over Australia but also over entire planet (Stone et al. 1996).  
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The Interdecadal Pacific Oscillation (IPO) is a temperature differential across 

the Northern Pacific Ocean. Despite being in a different hemisphere, the 

affects are still felt in Australia due to the ability of the phenomenon to 

strengthen or weaken the ENSO signal (Chiew and Leahy 2003, Micevski et 

al. 2006, Speer 2008).  

 

The temperature differential across the Indian Ocean, referred to as the 

Indian Ocean Dipole (IOD), influences Australian rainfall over the north, 

west and south of the country. This driver has trended towards more 

positive phases since the 1950’s and this may have contributed to drier 

conditions in southern Australia during winter (Cai et al. 2009). 

 

The Sub-tropical Ridge is an area of down welling air at the southern 

extremity of the Hadley Cell. The area of high pressure stretches across the 

latitudes of approximately 30° to 40°. This ridge is made up of high pressure 

systems that have the ability to “block” oncoming storm fronts that can 

deliver significant quantities of rainfall throughout the warmer months.  

 

Studies have been carried out to determine whether this atmospheric system 

has been making a pole ward shift. Gibson (1992) found a pole ward shift in 

the position of the Ridge created by global warming. Increased convection at 
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the equator brought about by global warming affects the Hadley Cell 

circulation which alters where the down welling component of the Cell 

occurs. Later, Thresher (2002) found natural decadal variation in the Sub-

tropical Ridge and this was later back by Drosdowsky (2005) who found no 

statistically significant shift. More recently Williams and Stone (2009) did 

find evidence of a pole ward trend in the ridge’s position. 

 

Trough Systems are semi-permanent depressions in the upper atmosphere 

causing instability and subsequent rain during the warmer months of the 

year. The heat of the day deepens the trough and creates rain and storms to 

the east of its position. The position of the upper level trough can influence 

the amount of rainfall received by surface frontal systems and also are 

involved in the creation of cut-off lows (BoM 2011, Dowdy et al. 2011). 

 

Cut-Off Lows are low pressure systems forming at sea level adjacent to the 

coastline. East coast lows refer to these systems forming adjacent to the East 

coast of Australia. They are an important rain producing synoptic feature on 

the coastal Australian climate (Hopkins and Holland 1997, Speer 2008).  

 

The Madden Julian Oscillation (MJO) operates over the warmer months on a 

20 to 40 day cycle and describes moist air travelling from the eastern Indian 
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Ocean in a south-easterly direction across Australia. This moist air penetrates 

into Australia and impacts on rainfall over the country. (Donald et al. 2006) 

 

The Southern Annular Mode is large scale atmospheric circulations to the 

south of Australia and over Antarctica. The primary influence on Australian 

weather is through the impact it has on the position of the extra-tropical 

cyclones (low pressure systems at mid to high latitudes) and cold fronts 

(Meneghini et al. 2007) which impacts on temperatures and precipitation in 

Australia (Hendon et al., 2007). SAM is also linked to ocean currents around 

Australia which can have influence on rainfall. (Gillet et al. 2006, DNRW 

2007) 

 

As mentioned at the start of this section, the interaction between the 

numerous climate drivers creates climate variability that can occur over 

months, season, years and decades (Power et al. 1999a, White et al. 2003, 

Meinke et al. 2005). This variability makes it difficult to distinguish if the 

recent dry periods experienced in Australia are the caused by natural climate 

variability or have been imposed by human induced climate change. Hunt 

(2009) found droughts of 8 years or more are part of the natural Australian 

climate cycle at three different regions in Australia. 
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The impact of climate change on the climatic drivers influencing Australian 

rainfall has begun to leave its mark on the Australian rainfall regime. 

Australian rainfall, on average, is trending towards more extreme events and 

away from periodic rainfall (Smith 2004, Alexander et al. 2007). Over the past 

decades the significant winter drying trend experienced in Southwest 

Western Australia has been partly attributed to an increase in greenhouse gas 

concentration (Hope et al 2006, Christensen et al. 2007, Cai et al. 2009).  This 

drying trend may also be extending over to Southeast Australia as well 

(Murphy and Timbal 2008, Hope et al. 2009). The increase in annual rainfall 

over the Northwest of the country may also be due to man made sources, 

with activity in Southeast Asia increasing atmospheric aerosols in the region 

(Nicholls 2006). The same review noted that no study had investigated the 

cause of the strong drying trend over the East of the continent, and this was a 

region of economic importance because of large population base. 

 

2.1.2 The Climate of Southeast Queensland 

 

Southeast Queensland is located on the eastern seaboard of Australia at 

latitude 27°S. It typically experiences warm wet summers [30°C, 

110mm/month] and mild dry winters [19°C, 40mm/month] (BoM 2011). The 

majority of the significant rainfall events in the region come from tropical 

depressions or monsoonal trough systems (Wilson et al. 2010), but can also 

be subjected to high intensity rainfall events. The impact of the Australian 
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climate phenomenon on Southeast Queensland at different times of the year 

will be discussed in this section. 

 

SOI can be linked to decadal variations in Southeast Queensland with a 

correlation coefficient of greater than 0.4 (Power et al. 1999b) is also linked to 

runoff in Northern NSW and Southern QLD (Cheiw & McMahon 2003).  

 

The IPO strengthens the SOI signal, making the SOI a more reliable indicator 

for ensuing rains in the Southeast Queensland region. Anecdotally the dams 

of Southeast Queensland began to fill (as will be shown in Figure 2.9) at a 

similar time as the IPO switched from positive to negative in September 

2007.  

 

The position of the Subtropical Ridge during spring and summer months 

impacts on rainfall in Southeast Queensland (Williams and Stone, 2009). The 

further poleward the subtropical ridge is positioned in the warmer months is 

statistically correlated with higher rainfall for that period. 

 

The inland trough interacts with Southeast Queensland rainfall over the 

summer months. The position of the trough can result in several consecutive 
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days of afternoon rain and thunderstorms, an important component of 

annual rainfall for the region (Queensland Farmers Federation, 2008).  

 

Cut-off Lows are a critical source of rainfall for the catchments east of the 

Great Dividing Range (Dowdy et al. 2011), which includes the catchments of 

Southeast Queensland. They provide significant rainfall events through-out 

the year, primarily from March to October (Queensland Farmers Federation, 

2008) and can be an important water source through the cooler months, as 

shown in Figure 2.4.  

  

Figure 2.4: Two Winter Rainfall Events for Southeast Queensland produced by East Coast 
Lows on 8th June and 24th August 2007. Source: BoM 2011. 

 

The influence of the Madden Julian Oscillation (MJO) on rainfall in Southeast 

Queensland is to enhance rainfall as the circulation anomaly passes over the 

region in to western Pacific Ocean, where it proceeds to suppress rainfall for 

the region (Donald et al. 2006). 

 



22 
 

Despite the fact that both the Indian Ocean Dipole (IOD) and Southern 

Annular Mode (SAM) are large climate drivers that impact on the majority of 

Australian rainfall, their impact on the Southeast Queensland Region is only 

minor (Cai et al. 2009, Meneghini 2007). 

 

 2.1.3 Rainfall Trends of Southeast Queensland  

 

Australian Bureau of Meteorology (BoM) rainfall trends maps from 1970 to 

2011 show a reduction in average annual rainfall in the east of the continent 

of up to 50mm/year every decade (Figure 2.5). According to these rainfall 

trend maps, southeast Queensland catchments are located in one of the worst 

affected regions, experiencing a reduction in annual rainfall over the last 40 

years of approximately 200mm. However this statistic may be biased by long 

term cycles in regional rainfall; the second half of the 20th century was wetter 

than the first and the 110 year average shows a smaller reduction in annual 

rainfall of less than 50mm (Fig. 2.5). Australia has a large amount of natural 

climate variability, which may occur over long time scales, making it difficult 

to attribute recent drying trends to anthropogenic global warming (BoM 

2011). This makes the task of planning future water resources very difficult 

and highlights the need for improved precipitation projections.  
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Figure 2.5: Australian Annual Rainfall trends, from 1900-2011. Source: BoM 2011. 

 

Discerning whether the recent drying trend over Southeast Queensland is 

merely a natural part of the regions climate variability or the beginnings of 

human induced climate change is still unproven one way or the other. 

Increased greenhouse gas concentrations in the atmosphere have raised 

temperatures which strengthens the severity of naturally occurring 

prolonged dry periods (Nicholls 2004), contributing to making the 2001 - 

2007 drought one of the worst on record.  

 

2.1.4 Southeast Queensland Dam Catchments 

 

Twenty-three dams contribute to southeast Queensland’s water supply. Since 

2008 twelve of these dams are now linked to assist in securing a reliable 

water supply for the region into the future (SEQWater 2011). The regions 

dams provide freshwater to Brisbane, Ipswich, Logan, Gold Coast and west 
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to Esk, Gatton, Laidley, Kilcoy and Nanango servicing a population of about 

3 million (ABS 2010). Tarong North and Swanbank power stations also 

derive their water needs from the same supply. 

 

The two largest dams providing water to southeast Queensland are the 

Wivenhoe Dam (1,165,238 ML capacity), fed by the Upper Brisbane 

catchment and Somerset Dam (379, 849 ML capacity) fed by the Stanley 

catchment (Fig. 2.6). Somerset Dam was constructed in 1959 specifically for 

the purpose of water storage and collects runoff from an area of about 

1,340km². Wivenhoe, completed in 1984, has the largest catchment of 

7,020km² and was constructed for both water storage and flood mitigation 

purposes (SEQWater, 2011).  These two dams alone contribute to 

approximately 70% of the total water storage volume for all the 23 dams in 

the region (1,545,087/2,220,181Ml).  

 

The Upper Brisbane and Stanley catchments are located to the northwest of 

Brisbane in southeast Queensland between the D’Aguilar and Great Dividing 

Ranges (Figure 2.6). These ranges create topographical features that influence 

rainfall in the region. To the east, the D’Aguilar range provides a small rain 

shadow effect from the adjacent coastline, but in return it captures rain from 

storm systems moving in from the southwest. This creates an imbalance in 

rainfall received over the two catchments with the upper reaches of the 



25 
 

Stanley Catchment receiving more. Most of the area within the catchments is 

under agricultural production because of the fertile soils and gentle terrain.  

 

 

Figure 2.6: The Upper Brisbane Catchment feeds into Wivenhoe Dam and the Stanley 
Catchment feeds into Somerset Dam, which, in turn, also feeds into the Wivenhoe Dam. 
Three stations that will be the focus of this research have been included (Crow’s Nest, Mount 
Brisbane and Peachester). Source: Southeast Queensland Healthy Waterways, 2008. 

 

Crow’s Nest 

Mount Brisbane 

Peachester 

Brisbane 

Brisbane  . 
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The Stanley catchment provides the majority of water despite being only one 

fifth of the size of the Upper Brisbane catchment. This shows the effect that 

topography and distance from the coastline has on regional precipitation. So, 

despite being situated next to each other, the Upper Brisbane and Stanley 

catchments can regularly experience different rainfall events. Annual rainfall 

averages for Peachester in the Stanley catchment is 1707.1mm, compared to 

844mm for Crow’s Nest in the Upper Brisbane catchment (BoM, 2011). These 

variations in rainfall are not evident in the coarse CGM resolution and can be 

made more apparent using downscaling techniques. 

 

The recent drought (2001 – 2007) had a strong impact on the catchments. The 

drought can be considered the worst on record for the region, even worse 

than the Federation Drought (1898 – 1903) when comparing rainfall deficit 

(Fig 2.7) (Department of Natural Resources and Water (DNRW), 2007).  

 

Months since April 1898 (– – – –) and April 2001 (–––––) 

Figure 2.7: Comparison of the accumulated rainfall deficit in the catchment area to the west 
of Brisbane during the current drought (from April 2001 to January 2007) with the previous 

worst drought (from April 1898 to April 1903). (Source: DNRW 2007) 

mm 
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In the seven years from 2001 to 2007 dam water storage levels in southeast 

Queensland decreased from 100% to less than 20% (Fig. 2.8) (SEQWater, 

2011). Level 5 water restrictions were brought in for the first time and the 

situation became dire. With no reprieve in sight, the question could be asked 

as to whether this was the first signs of climate change in the region and was 

also the impetus for this research. 

 

Figure 2.8: The decrease in Southeast Queensland Grid Three Dam Levels which includes 
Wivenhoe and Somerset Dams between 2001 and 2007. The scale on the left is percentage of 

full capacity. Source: SEQWater 2011. 

 

The La Nina event of 2007/08 delivered torrential rain to the region with 

flooding in Sunshine Coast, Gold Coast and Northern NSW though the 

majority of this rain missed the Upper Brisbane and Stanley catchments. By 
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the end of 2008 dam levels were back up over 45% and continued to rise 

through 2009 to reach over 75%. However, some localities in southeast 

Queensland, such as Toowoomba, still remained in a dire situation with 

combined dam totals below 10% at the end of 2009 (SEQWater, 2011).  

Figure 2.9: Southeast Queensland Grid Three dam levels from 1994 to 2011, shows recovery 
of dam level after 2007. Source: SEQWater 2011. 

 

Figure 2.9 shows water being released from Wivenhoe Dam in October of 

2010, the first time in ten years (SEQwater, 2011). The region went on to 

experience severe flooding in January 2011, which cost numerous lives in a 

terrible flash flood in Toowoomba and the Lockyer Valley. This event did 

return the regions dams to full supply but at a heavy cost to the community. 

In addition to the loss of life, many thousands of houses were inundated in 

Brisbane and Ipswich as the ensuing flood waters travelled downstream. The 
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Lockyer Creek and the Bremer River both experienced record flooding and 

the flood mitigation capacity of the Wivenhoe Dam was exceeded all at the 

same time. 

 

2.2 Research problem  

 

Severe drought followed by severe flood has taken its toll on the community. 

Projections of future rainfall events need to be assessed to find what is in 

store for the future of the region. The projections of future events vary and 

this will be briefly discussed in the following section. 

  

2.2.1 Precipitation Projections 
 

Global Climate Models (GCM’s) are used to project future climatic 

conditions. Current projections for Australia suggest rainfall intensity will 

increase, due to the projections of a decrease in the number of rain days but 

the overall average rainfall is to remain relatively constant (CSIRO-BoM, 

2007). Current rainfall projections for Queensland from coarse resolution 

GCM’s under a greenhouse gas enriched environment show 80% projecting 

little or no change. The remaining 20% are divided between less rainfall and 

more rainfall (Walsh et al., 2004; CSIRO-BOM, 2007) (Fig. 2.10).  
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Figure 2.10: IPCC models of percentage change in annual Queensland rainfall by 2030 under 
3 different emission scenarios. 10% of the models (10th percentile) suggest drier conditions 
can be expected, whilst another 10% (90th percentile) project an increase in annual rainfall. 

(Source: CSIRO-BoM 2007) 

 

Water resources are expected to be detrimentally affected in the future by 

longer droughts and increased evaporation (CSIRO-BoM, 2007). Rainfall in 

Southeast Queensland is projected to decrease by about 5% with a 6% 

increase in evaporation. At this rate, the region will suffer a shortfall in water 

supply of between 97,000 and 308,000 Ml/year by 2050 depending on 

population growth, adaptation measures and the overall impact of climate 

change (BoM-QCCCE, 2011).  

 



31 
 

Further impacting on the future Southeast Queensland climate are studies 

showing that there will be a drying trend in the subtropics under a 

greenhouse gas enriched environment, so this recent drying trend may 

indeed be indicative of what is to come as suggested by model projections 

(Meehl et al., 2007; Held, 2006; Zhang et al., 2007).  

 

2.3 Current methodologies 

 

As shown in the section above, the variation between GCM’s in rainfall 

projections demonstrates the difficulty involved in recreating the complex 

nature of precipitation. This difficulty is made even more extreme when 

making rainfall projections on a regional scale. This section investigates the 

different methods that can be employed to assist in regional rainfall 

simulations and projections. 

 

2.3.1 Global Climate Models 

 

Global climate models (GCM’s) simulate the Earth’s climate system by 

dividing it up into a three dimensional grid and applying mathematical 

equations to solve the basic laws of physics, fluid motion and chemistry. The 

size or resolution of the grid differs between models but is on an 

approximate scale of 250km x 250km. The IPCC used output from 31 GCM’s 



32 
 

in its recent assessment report on the state of the climate (IPCC, 2007) and 

these results are drawn from contributions made from climate organisations 

around the world to the Coupled Model Intercomparison Project (CMIP3). 

 

Some atmospheric components are too complex or too small to be physically 

resolved by the low resolution (approx. 60,000km²) of the CGM’s, e.g. 

topography, clouds, storm fronts. The physical processes that drive these 

components need to be parameterised and are represented in GCM’s using 

simplified models. Different parameterisations between different models can 

result in variations in output. Despite the disagreements between models, 

GCM’s are still our best tool for simulating and projecting the climate 

system. 

 

The ability of a model to accurately simulate observed climatic conditions in 

a certain region can be measured statistically and is referred to as the model’s 

“skill”. There are many different measures of skill; each involves comparing 

simulations and forecasts with the corresponding observed value (Wilks, 

2006). The simplest method of calculating skill, using only a correlation 

coefficient, does not take bias into account. Other methods involve mean 

square error (MSE) and the relevant correct and incorrect forecasts of climatic 

projections (Murphy & Epstein, 1989). Skill also varies between models for 

different locations and different times of the year. Models with the highest 
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level of skill at simulating observed conditions are assumed to have a better 

ability of making realistic projections. 

 

Many climatic components are involved in producing the correct 

atmospheric conditions that result in rainfall events. Atmospheric 

circulations are driven by interactions between the ocean, atmosphere, 

cryosphere, biosphere and local landscape. The inherent complexity and 

randomness of the atmospheric circulation make it difficult for coarse 

resolution GCM data to accurately simulate regional rainfall and for some 

applications the data requires downscaling methods to increase the 

resolution. 

 

2.3.2 Downscaling Methods 

 

Downscaling involves processes that increase the resolution of GCM output 

to resolve important sub-grid details that have a significant impact on local 

climate variables. Resolution of most GCM data grids are typically on a scale 

of approximately 60,000km² (250km x 250km), but can be as much as 

160,000km². This is problematic when using GCM data to determine 

projected rainfall for individual catchments which are in the order of 1000’s 

of km². Downscaling of the low resolution GCM output is essential when 

applying climate projections to regional management issues. 



34 
 

Dynamical and Statistical techniques are the two primary methods used for 

downscaling data from coarse resolution models. Dynamical downscaling 

involves nesting a high resolution Regional Climate Model (RCM) in a coarse 

resolution GCM (Murphy, 1999; Leung et al., 2004). The nested model uses 

boundary conditions obtained from GCM’s as input and makes calculations 

from that data to determine climatic conditions within the region over which 

the RGM is situated. This technique requires a high level of computer power 

and prowess. Statistical downscaling involves statistically representing 

desired fields from course resolution GCM data. Both dynamical and 

statistical downscaling methods have advantages and disadvantages with 

studies carried out to compare the two different processes to highlight the 

various positives and negatives of each (Wilby et al., 2004; Fowler et al., 2007; 

Murphy, 1999). 

 

Statistical downscaling is more economical, less computer intensive and can 

be more easily transferred between regions, and different statistical rules 

need to be built up for each region. Site specific information is also able to be 

provided, which can be useful in climate change impact studies (Wilby et al., 

2004). It does, however, require a large amount of accurate data to begin 

with, an appropriate choice of predictors and the assumption that the 

relationship between these predictors and the predictand will remain the 

same in the future. Dynamical downscaling is much more computer 

intensive, has a limited number of scenario ensembles and is strongly 
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affected by boundary conditions, but does produce fine resolution 

information based on physically consistent processes (Fowler et al., 2007).  

 

Dynamical downscaling is more effective at simulating rainfall in regions 

with summer dominated rainfall than statistical methods because of its 

ability to capture mesoscale structure in the climate responsible for summer 

convective rainfall (Murphy, 1999). Statistical downscaling is effective at 

capturing temperature variations but requires regions with consistent 

weather patterns to simulate rainfall. Seasonal rainfall variability can also be 

captured by statistical downscaling methods where there is a strong link 

between rainfall and climatic predictors at specific times of the year as with 

Southwest Western Australia (Timbal, 2004; Charles et al., 2004) and South 

Australia (Timbal & Jones, 2008). 

 

2.3.3 Statistical Downscaling 

 

There are numerous types of statistical downscaling methods most of which 

essentially link large scale climatic conditions to local scale variables. These 

climatic predictors do not vary significantly on a regional scale and are better 

simulated in the coarse GCM resolution. Rainfall projections for specific 

locations can be improved by correlating rainfall with climatic predictors, 

assuming that future atmospheric conditions produce similar rainfall events 
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and that no new influences on regional rainfall develop. Though this 

assumption may be flawed in the long term as atmospheric composition 

become altered in ways never seen before, so future conditions may not 

follow what has happened previously (Milly et al., 2008). However, robust 

selection of climate predictors with a physical basis for driving local 

predictands, such as rainfall, can provide projections comparable to 

dynamical model projections (Timbal et al., 2008) 

 

The main statistical downscaling techniques can be divided into the three 

groups: weather classification schemes, regression models and weather 

generators (Wilby et al., 2004). Each method has their relative strengths and 

weaknesses.   

 

Weather classification or weather typing schemes group days into similar 

synoptic events and relates those with local conditions such as temperature 

and precipitation. In Australia this system has been used to investigate a 

reduction in winter rainfall in southeast Australia (Timbal & Jones, 2008), 

rainfall decline in southwest Western Australia (Hope et al., 2006) and the 

reduction in rainfall extremes on the east coast (Speer, 2008). 
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Winter rainfalls in areas of Victoria and South Australia have experienced 

declines from the long term average since 1977. These observed reductions in 

rainfall were linked to changes in large scale atmospheric components of 

mean sea level pressure (MSLP) and precipitable water using weather 

classification methods. Future projections using five models under climate 

change scenarios found that this trend may continue, more so in late winter 

and early spring. This is expected to impact on Melbourne’s water supply as 

runoff will decrease at a faster rate than rainfall (Timbal & Jones, 2008). 

 

Since the late 1970’s, the southwest of Western Australia has also undergone 

a significant reduction in winter rainfall. This has been attributed to an 

increase in high pressure systems over the continent and a reduction in the 

amount of troughs associated with wet conditions. The study used a self-

organising map of 20 different synoptic types to make its conclusions (Hope 

et al., 2006). 

 

An investigation into decreased extreme rainfall events in eastern New South 

Wales since 1977 divides rain bearing systems into four different types; 

inland low pressure and trough systems and coastal low pressure and trough 

systems. The study found a general increase in MSLP off the eastern 

Australian coastline was responsible for the number of low pressure systems 

developing in the region and delivering rain. Links are also made with the 
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timing of this reduction in rainfall to a change to IPO ‘warm phase’ (Speer, 

2008).  

 

Regression models link local climate variables with large scale atmospheric 

forcing by the use of a regression analysis. This method produces a statistical 

equation which can incorporate one or several large scale climatic predictor 

to estimate the local scale variable. Regression models are simple to apply 

and have been used worldwide to produce both temperature and 

precipitation simulations and projections.  

 

It was mentioned earlier that it is possible for adjacent catchments to receive 

different quantities of rain. A location’s proximity to the coastline and 

mountain ranges has a significant effect on annual precipitation. Statistical 

relationships exist between topography and precipitation patterns. Slope, 

orientation, elevation and exposure all influence localised rainfall (Basist et 

al., 1994). Atmospheric variables and terrain characteristics can also be 

incorporated to downscale NCEP (National Centre for Environmental 

Prediction) data to make correlations with precipitation on a regional scale 

(Kyriakidis et al., 2001). 
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Different predictors are also more effective at different locations and for 

different times of year. Numerous predictors were tested and a combination 

of mean sea level pressure (MSLP) and preciptable water (PWTR) best 

simulated observed rainfall events in southwest Western Australia (Timbal, 

2004). MSLP has a close association with rainfall variation of southern 

Australia (Li & Smith, 2009).  

 

One regression study over eastern Canada identified correlations between 

observed temperature and rainfall values obtained from specific weather 

stations with the climatic predictors mean sea level pressure (MSLP), 

humidity, geopotential height and airflows (Hessami et al., 2008).  

 

 Weather generators use stochastic models based on a gamma distribution for 

rainfall amounts and a Markov chain for transition probabilities between 

states. They are able to generate daily and sub-daily information and 

produce a long series of data which can capture extreme events. Weather 

generators have been used to investigate precipitation in both the U.K and 

Canada. 

 

The Streamflow of the Thames in the U.K. was investigated using Stastical 

DownScaling Model (SDSM) which incorporates both a stochastic weather 
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generator and regression based downscaling methods. The flows were 

projected to decrease mainly due to an increase in potential evaporation 

which has the possibility of impacting on the region’s water supply (Diaz-

Nieto & Wilby, 2005). 

 

A Canadian study evaluated the ability of two stochastic weather generators 

to reproduce daily climate scenarios at three stations across the country to 

determine their suitability for climate change impact studies. The weather 

generator with 2nd order transition probabilities was more able to simulate 

wet/dry spell periods, and hence define monthly rainfall (Qian et al., 2005).   

 

2.4 Conclusions 

 

There is a need for water resources in Southeast Queensland to be better 

managed in the future to prevent dams dropping to seriously low levels 

again still provide flood mitigation. Both Australia’s and Southeast 

Queensland water resources are highly vulnerable to climate change 

scenarios (Preston & Jones, 2006). Increased temperatures, higher 

evaporation and longer droughts reduce stream flow more significantly than 

reductions in rainfall. Having reliable and robust rainfall projections are 

important when planning water resource management strategies that will 

adapt to changes in the regions rainfall regime. Statistical downscaling 
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methods will be used to increase the resolution of GCM output to provide 

rainfall projections on a regional scale for southeast Queensland. Whilst 

dynamical downscaling methods do provide more robust rainfall 

simulations, the expertise and computer power required for these methods is 

beyond the scope of this analysis. 
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Chapter 3: Data and Methodology 
 

3.1 Introduction 

 

The statistical downscaling technique of linking rainfall to climate predictor’s 

by utilising linear regression will be used in this study. Linear regression is 

used with some efficacy for seasonal simulations in regions where rainfall is 

dictated primarily by one or two climatic variables, as occurs for winter 

rainfall in Mediterranean climates such as the climate of Southwest Western 

Australia (Charles et al., 2004).  Applying this method to simulate rainfall in 

the sub-tropics is a simplistic method of expressing the numerous vectors 

through which rainfall is received in such areas. Rainfall will be linked with 

climatic predictors on a monthly basis. This is hoped to enhance the ability of 

this method to detect both annual and intra-seasonal variations in rainfall 

climate drivers for the region. 

 

The steps involved are: 

1. Correlate National Centre for Environmental Prediction (NCEP) 

predictor variables from around the region with observed rainfall for 

each month at the three selected stations.   

2. The NCEP predictor variables with highest correlation coefficients for 

each month are linked to observed rainfall totals via linear regression 

to produce a statistical model. Each station will then have its own site 

specific statistical model for each month of the year. 
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3. Use NCEP predictor variables in the statistical models to test the 

models ability to recreate observed monthly rainfall totals. 

4. Use GCM values for the predictor variables in the statistical models to 

find the efficacy of the models to recreate long term rainfall averages. 

5. Use projected GCM values for the predictor variables in the statistical 

models to make 30 year rainfall projections at the three selected sites. 

 

3.2 Data Sources 

 

Monthly rainfall data for the stations used in the study were obtained from 

the Australian Bureau of Meteorology (www.bom.gov.au). Forty weather 

stations in the region were analysed to find the most complete rainfall 

records. The stations of Crow’s Nest, Mount Brisbane and Peachester (see 

Figure 2.6) were selected because they have some of the most complete 

records and are representative of the region.  

 

Climatic predictor data were obtained from the National Centre for 

Environmental Prediction (NCEP) / National Centre for Atmospheric 

Research NCAR Reanalysis Project. The predictors tested were geopotential 

height, precipitable water, relative and specific humidity, and zonal and 

meridional wind speed. 
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The projected values for the selected climatic predictors come from the six 

Global Climate Models in section 3.3.5. Their data was obtained from the 

World Climate Research Programme – Climate Model Intercomparison 

Project (WCRP – CMIP3) multi-model dataset archive at Program for Climate 

Model Diagnosis and Intercomparison (PCMDI) website.  

 
 

3.3 Transformed Data 
 

Linear regression analysis requires data that is normally distributed and 

monthly rainfall totals do not comply with this format. A log transformation 

of monthly rainfall data was undertaken to create a normal distribution.  

 

The statistical models developed used NCEP data with specific humidity 

values given in the form of gm/m3. However, GCM specific humidity output 

is given as standardised values which cause problems if these values are 

inserted into the statistical models. The distributions of the GCM specific 

humidity values from 1948 to 2000 are adjusted using a linear transformation 

so they resemble the NCEP distributions over the same period. 

 

The linear transformation takes the mean and standard deviation of the 

NCEP and GCM values of specific humidity data and calculates a linear 

equation (Y=aX + b) that was applied to the GCM values and changes them 
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into data (GCM’) on the same scale (with rounding error) as the NCEP data 

from which the statistical models are derived. The format is as follows: 

 

a = σ (GCM) / σ (NCEP) 
 

    _____          _____ 
b = GCM – (a . NCEP) 

 
 

GCM’ = a . GCM + b 
 

 

σ (GCM) –  Standard deviation of the GCM values 

σ (NCEP)  -  Standard deviation of NCEP values 

_____ 
GCM  - Mean of GCM values 
 
_____ 
NCEP  - Mean of NCEP values 
 

GCM’  - Transformed GCM value 
 
 
GCM  - Original GCM value 

 

This transformed list of GCM values for specific humidity (GCM’) was used 

in the statistical models to provide 20th Century rainfall simulations and 

make 21st Century projections. 
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3.4 Missing Data  
 

In the event that rainfall was not recorded for one or more days of a 

particular month then the entire month is excluded from the Bureau of 

Meteorology records. The rainfall for the missing day is included in daily 

rainfall records the following day as an accumulated value. Monthly Rainfall 

data found to be missing were amended by accessing daily rainfall values 

and manually calculating monthly rainfall using the accumulated values. The 

amended values were then compared to the nearby stations to check no 

erroneous values were entered. 

 

3.5 Research procedures 

 

The following section describes the details of the data and research 

procedures used in the thesis to produce and apply the statistical models for 

rainfall projections. 

 

3.5.1 Time Frame 

 

Regression analysis of rainfall benefits from using the longest reliable time 

series possible (Fowler et al., 2007). This can be problematic as the more 

historic the records become, the less reliable climate predictor records can be. 

NCEP/NCAR climate predictor data begins at 1948 and continues through to 
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2000. This will be the same start and finish times over which the correlations 

and regression analysis were made in this thesis. Finishing in 2000 also 

coincides with the end of the 20th Century simulations provided by the 

GCM’s, though this time frame will miss the 2000 – 2006 drought it is more 

used as a calibration period. 

 

3.5.2 Site Selection 

 

Applying statistical downscaling methods to precipitation requires high 

quality rainfall records to produce accurate simulations (Fowler et al., 2007). 

The calibration of the downscaling models is dependent upon a reliable 

relationship between climate predictor variables and observed rainfall. 

Inaccuracies in rainfall data will be magnified in rainfall simulations 

produced by statistical models that fail to completely grasp the link between 

predictor variables and regional rainfall. The Upper Brisbane and Stanley 

catchments shown in Figure 2.6 have approximately 40 weather stations 

reporting to the Bureau of Meteorology. Monthly rainfall records were 

investigated to determine which stations had the most complete rainfall 

records and also represented eastern, central and western locations within 

the catchments. Three stations were selected that fit those two criteria; those 

of Crow’s Nest, Mount Brisbane and Peachester (Figure 2.6). 
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Creating a point value analysis rather than a pattern or gradient field is less 

informative but still provides some details on the ability to simulate rainfall 

in the region using multi-variate linear regression on monthly data. The 

statistical models provided assume independence between sites and thus can 

assist in verifying that the predictor variables selected are appropriate. 

 

3.5.3 Predictor Selection 

 

The method used to simulate precipitation relies on finding large scale 

predictors that have a strong association with observed rainfall. Rainfall in 

the region is driven by numerous phenomena at different times of the year. 

The monsoonal trough and cut-off low’s can be detected in GCM output with 

wind direction and geopotential height, which is a measure of air pressure. 

The ENSO signature can be found in the wind direction and general water 

content of the atmosphere. Predictor selection will also be aided by previous 

studies by Charles et al. (2004), Kyriakidis et al. (2001) and Timbal and Jones 

(2008) using regression analyses. Six climatic predictor variables are chosen 

for this study. They are Precipitable water, Geopotential Height, Relative 

Humidity, Specific Humidity, Zonal wind speed and Meridional wind speed. 

 

Precipitable (Prw) water is a measure in kg/m² of how much water is in a 

column of the atmosphere stretching from the ground up. Geopotential 
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Height (Z) measures in m the height of a specified pressure level above the 

surface of the Earth. For the purpose of this research the specified pressure 

level will follow the Z abbreviation, e.g. Z850 is the height in meters of the 

850hPa pressure level above the ground. As air pressure increases over a 

region, the value of geopotential height also increases. 

 

Relative Humidity (RH) is a percentage measure of how saturated the 

atmosphere is with water vapour. At 100%, the atmosphere can absorb no 

more water vapour at that temperature and pressure. The pressure level will 

follow the RH abbreviation. This also applies to Specific Humidity (q), which 

is a measure of how many grams of water are in 1kg of atmosphere, i.e. 

g/kg. Examples of a relative and specific humidity value that may follow in 

this thesis are RH400 (relative humidity at the 400hPa level) and q600 

(specific humidity at the 600hPa level). 

 

Zonal wind speed (u) is a measure in m/s of the wind speed in the west to 

east direction (westerly wind). A negative value of zonal wind speed denotes 

a flow in the opposite direction i.e. an easterly flow from east to west. Again 

for the purpose of this research, zonal wind speeds are taken at nine different 

levels in the atmosphere from 850hPa up to 10hPa, and the level follows the 

u abbreviation, e.g. u850 is zonal wind at the 850hPa level.  
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Meridional wind (v) is also measured in m/s, but this time a southerly flow 

is measured, i.e. wind travelling from south to north. Air pressure level at 

which the wind speed is taken again follows the zonal wind speed levels and 

the same abbreviation applies. 

 

These selected predictors were correlated with monthly rainfall records at 

each station to determine which predictor(s) had the highest correlation with 

rainfall totals for each month of the year (Appendix A). The values of these 

coefficients of determination vary for each month from values as low as 0.47 

up to 0.76 at a 95% level of significance. All values included in the regression 

analyses had the highest correlation for that month of all predictors tested. 

 

 

The spread of the predictors covers the region from 20°S and 145°E to 32.5°S 

and 160°E at a spacing of 2.5° longitude and latitude (Figure 3.1), and were 

taken at eight levels and 42 locations using the predictors. The location of the 

catchment is approximately in the middle of the spread at 27.5°S 152°E. 

Predictors exhibiting highest correlation with rainfall are then used in linear 

backward stepwise regression to produce statistical models that simulate 

rainfall. 

 

Backward stepwise regression starts with all the selected variables and 

removes one at a time to find which combination provides an equation that 
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best simulates the predictand, in this case monthly rainfall. This method is 

best used with a small number of predictors that have undergone a pre-

selection process, such as identifying which predictor is most highly 

correlation with monthly rainfall, and it is unknown which variables need to 

be used in the statistical equation. Other statistical methods including 

forwards stepwise regression and forced entry are not employed in this 

analysis because they require a large number of variables with unknown 

relevance for the former and a complete set of variables with known 

relevance for the latter. 

 

 

 

Figure 3.1: Grid Point locations where NCEP climate predictors were taken and correlated 
with observed monthly rainfalls. Source: Google Earth 2011 
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3.5.4 Regression Analysis 

 

Each monthly set of predictors and rainfall observations was used in a 

backward stepwise regression analysis in the statistical program “R” version 

2.11.1 (2010). The output is an equation that estimates monthly rainfall 

through the value of the large scale climatic predictor variables. The resulting 

equation is the statistical model and is of the form: 

 

Monthly Rainfall [mm] = 1 x CP1 + 2 x CP2 + ... + n x CPn + constant 

 – coefficient of variable 

CP – Climate Predictor variable 

Constant – the y intercept of the regression line 

 

Each month has a different number of climate predictor variables depending 

on the relative influence the regression model assigns between each variable 

and monthly rainfall. Too many climate predictor variables in the regression 

analysis will confuse the regression analysis and the coefficient of the 

variable will not display the correct sign of that variable’s impact on rainfall. 

For instance, if geopotential height is selected as a component of a statistical 

model and its coefficient has a positive indice then this would be incorrect as 

a negative relationship exists between geopotential height and rainfall, i.e. as 

geopotential height decreases rainfall should increase. It should be noted the 

short lived intense rainfall events may be unable to be replicated by using 
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this method as climate predictors averaged over a month may not indicate an 

extreme occurred. 

 

To ensure the coefficients in the statistical models developed are of the 

correct nature, each were checked with the corresponding predictor variable 

to make sure it displays the correct influence on rainfall. The full list of 

statistical models for each month at the three stations can be found in 

Appendix B. The following example is provided to more clearly explain the 

point: 

January rainfall for Crow’s Nest = 28.33977 - 0.01758.Z850 + 0.04212.RH850 

The Z value (Geopotential Height) has a negative coefficient (-0.01758) and 

this is correct as the Z value increases, one would expect rainfall to be 

reduced. The same follows for the RH (Relative Humidity) variable which 

has a positive coefficient (+0.04212) and this holds as rainfall will be more 

prevalent with more moisture in the atmosphere. 

  

3.5.5 GCM Selection 

 

Numerous models were employed to produce an ensemble of projections, 

which increases the confidence in the output. Model selection was assisted 

Suppiah et al. (2007) and by the author’s previous unpublished work carried 
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out at the Queensland Centre for Climate Change Excellence that measured 

the ability of 31 climate models to simulate regional Australian rainfall. The 

selected models are listed below with characteristics highlighted in Table 3.1; 

Center National de Recherches Meteorologiques - (CNRM - cm3) 

Commonwealth Scientific and Industrial Research Organisation - 

(CSIRO Mk3.5) 

Goddard Institute for Space Studies - (GISS - er) 

Geophysical Fluid Dynamics Laboratory - (GFDL Mk2.1) 

Centre for Climate System Research - (MIROC - medres) 

Canadian Centre for Climate Modelling and Analysis - (CCCMA - t63) 

 

Suppiah et al. (2007) found the CNRM – cm3, CSIRO, GFDL Mk2.1 and the 

MIROC – medres models were among the best performing GCM’s to 

reproduce Australian average 1961 – 1990 patterns of temperature, rainfall 

and mean sea level pressure. In the authors previous unpublished research at 

QCCCE, the models CCCMA – t63 and GISS – er also performed well at 

simulating rainfall averages in Queensland. 

 

 

 

 

 

 



55 
 

Table 3.1: Table of Global Climate Models (GCM’s) used to extract climate predictor data 
from that will be incorporated into the statistical models. Resolution is in degrees latitude 
and longitude, number of atmospheric layers, years over which data is produced and the 
number of external forcings used in GCM besides atmosphere, ocean, sea ice and prescribed 
land/vegetated surface. Source: Adapted from Suppiah et al. 2007.  
 

Model 
(Country of 

Origin) 

Resolution Atmospheric 
Levels 

Data External 
Forcings 

CCCMA – t63 
(Canadian) 

2.8 x 2.8 31 1850 – 2100 Na 

CNRM – cm3 
(French) 

2.8 x 2.8 45 1860 -2099 4 

CSIRO mk 3.5 
(Australian) 

1.9 x 1.9 18 1871 – 2100 3 

GISS – er 
(U.S.A) 

4.0 x 5.0 15 1880 – 2100 11 

GFDL mk 2.1 
(U.S.A) 

2.5 x 2.0 24 1861 – 2100 8 

MIROC – 
medres 

(Japanese) 

2.8 x 2.8 20 1850 – 2100 10 

 

External forcing applied in the GCM calculations include well-mixed GHGs, 

ozone, sulfate (direct), sulfate (indirect), black carbon, organic carbon, 

mineral dust, sea salt, land use, solar irradiance and volcanic aerosol. While 

the GISS – er model has the lowest resolution of all GCM’s it does use the 

greatest number of external forcing of the selected model which assists in the 

ability to replicate real world results as will be shown in the results section 

4.2.2. 

The grid points of each GCM differ from the NCEP coordinate system and 

are taken at the nearest point to the NCEP data. The full list of changes in 

coordinates is tabled in Appendix C. 
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3.5.6 Precipitation Simulations 

 

To check the accuracy of the statistical models that are developed, NCEP 

values for the climate predictors were inserted back into the models and the 

monthly rainfall values obtained were compared with the observed values 

from 1948 to 2000 in section 4.2.1. This process was then repeated with the 

GCM simulated values for the climate predictors over the same period and 

the results were again compared with the observed values. This assisted with 

attributing a level of confidence with each model, and how much value can 

be placed on their projections of 21st century precipitation in section 4.2.  

 

3.5.7 Precipitation Projections  

 

Precipitation projections were made by inserting 21st century projected 

climate predictor values into the statistical models developed by the 

regression analysis. This output was used to construct long term means for 

each station to provide an indication of whether drying trends will continue 

by looking at projected rainfall over the next 30 years (Section 4.3). A 

snapshot at 30 year intervals of average monthly rainfall over the next 90 

years was also made in section 4.3.2 using the GCM’s. The statistical models 

used in these long term projections were the ones that perform best at 
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recreating average monthly rainfall for the second half of the 20th Century 

(section 4.2.3).  
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Chapter 4: Results 
 

4.1 Introduction 
 

The main objective of this study is to investigate if the recent drying trend 

Southeast Queensland over the last 40 years will continue into the coming 

decades. The statistical downscaling method selected is a relatively simple 

process to try and explain the complex systems described in chapter 2 that 

are involved in the production of subtropical rainfall that occurs over 

southeast Queensland. The hope is that the methodology will capture any 

significant changes in atmospheric dynamics. The statistical rainfall models 

was first checked for their ability to simulate month to month rainfall using 

the original NCEP data as input in order to verify the equations were capable 

of simulating rainfall in the region. These equations then had GCM data used 

as input and long term means were compared to observed rainfall from the 

three stations. Models whose downscaled data performs best at simulating 

observed rainfall can then be focused on for more realistic projections. 

 

The results from this research are presented in section 4.2 which shows the 

ability of the regression models to simulate observed rainfall totals at the 

three stations. Observed and simulated monthly rainfall totals using NCEP 

climate predictor data were graphed for the period 1948 to 2000 and 

coefficient of determination values are provided. Section 4.3 then uses 

climate predictor values from the six chosen GCM’s as input for the statistical 
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models and provides long term rainfall averages. These long term averages 

were compared with averages taken from the GCM monthly rainfall totals at 

the nearest grid point and rainfall averages provided by observed data 

derived from selected weather stations. Projected climate predictor values 

were inserted into the statistical models and the subsequent annual monthly 

rainfall projections are presented in section 4.4. 

 

4.2 20th Century Rainfall simulations 
 

The statistical models (Appendix B) were produced by linking NCEP values 

for climate predictors with rainfall from the three stations. The month to 

month values for the NCEP predictors were reinserted back into the 

equations to test their ability of producing rainfall values that accurately 

simulate observations. 

 

20th Century GCM values for climatic predictor variables were then used as 

input into the equations. These values were unable to match month to month 

NCEP values, but models that can emulate the distributions of these values 

will have the ability to provide an accurate example of long term rainfall. It is 

hoped that these simulations will be an improvement over the GCM rainfall 

simulations at the nearest grid point. 
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4.2.1 Testing Statistical Models with NCEP Data 
 

In this section, monthly rainfall totals derived using climatic predictors in the 

statistical models were compared with the observed rainfall at the stations of 

Crow’s Nest, Mount Brisbane and Peachester. The statistical models were 

produced through a regression analysis between NCEP climatic predictors 

and monthly rainfall totals. These NCEP climatic predictor values were then 

reinserted back into the statistical models to test the relationship between the 

monthly rainfall values obtained from the models and real life observations. 
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Figure 4.1: Comparison of Observed rainfall [mm] [blue] at Crow’s Nest for the periods (a) 1948 – 
1960, (b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the 

statistical downscaled models [red]. Coefficient of Determination for the two sets of data provided in 
(f). 
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In Figure 4.1(a) the period from 1950 to 1956 was marked by high monthly 

rainfalls at Crow’s Nest in the years 1950, 1951, 1954, 1955 and 1956. The 

rainfall totals from the statistical downscaled model simulations 

overestimated the amounts in the years 1950, 1954 and 1956. Monthly 

rainfall was also overestimated in 1953 despite the fact that this year 

experienced only average rainfall. In general, there is a strong spread with 

high rainfall amounts. 

 

The heavy winter rainfall event in August 1965 (Figure 4.1(b)) was not 

picked up in the monthly climate predictors and the simulation 

underestimated the rainfall total for that month by over 200mm. There was 

also a large overestimation by the model in the winter (June) 1967 by a 

similar margin of around 220mm. 

 

Figure 4.1(c) shows the ability of the models to capture the heavy rainfall 

events of both 1971 and 1974. Marginal misses of around 100mm were found 

in 1975 and 1978, otherwise the models proved to be an effective means of 

simulating rainfall over the period 1970 to 1980. 

 

The period 1980 to 1990 (Figure 4.1(d)) is characterised by a general 

underestimation of rainfall totals by the statistical models. Of note was the 

high rainfall in May and June of 1983 which the models were not able to 

detect, but they did go some way in picking up the higher than normal total 
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in 1988. However, this was then followed by an inability to recreate the 1989 

and 1990 totals. 

 

The models made an overestimation in late winter (August) of 1993 and 

missed the 1996 and 1999 events by around 200mm (Figure 4.1(e)). 
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Figure 4.2: Comparison of Observed rainfall [mm] [blue] at Mount Brisbane for the periods (a) 1948 – 1960, 

(b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the statistical 
downscaled models [red]. Coefficient of Determination for the two sets of data provided in (f). 

 

Figure 4.2(a) shows the statistical models captured 2 of the 3 heavy rainfall 
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In Figure 4.2(b) the high rainfall observed in 1964 was not matched in the 

models, nor was the winter (August) event in 1965. Despite the model not 

matching the exact total in 1968 the observed and simulated totals were both 

at a peak in that same month over the period 1960 to 1970. 

 

The high rainfall in 1971, 1974 and to a lesser extent in 1973 are simulated by 

the models in Figure 4.2(c). The December total in 1976 is under estimated by 

the model by just less than 200mm and in May of 1977 by over 100mm. 

 

The graph in Figure 4.2(d) shows again as in Figure 4.1(d) that rainfall 

simulations for the period 1980 to 1990 are consistently below observed 

values. There is a slight overestimation in the winter (June) of 1987 and an 

underestimation for the 1988 and more so for the 1989 high rainfall events.  

 

Figure 4.2(e) shows a strong overestimation by the models for the monthly 

total in May of 1990. The models then go on to miss the high winter totals in 

May of 1995 and June 1996. There is also a significant miss in March of 1999 

by over 200mm. 
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Figure 4.3: Comparison of Observed rainfall [mm] [blue] at Peachester for the periods (a) 
1948 – 1960, (b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data 

derived from the statistical downscaled models [red]. Coefficient of Determination for the 
two sets of data provided in (f). 
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Figure 4.3(a) displays the observed and simulated rainfall totals for 

Peachester from 1948 to 1960. It shows the high rainfall experienced in 

March 1950 was matched by the model but then went on to overestimate the 

April rainfall for the same year. As with Figures 4.1(a) and 4.2(a) there is a 

strong overestimation in March of 1954, this time by a margin of 700mm. The 

model was able to capture the 1955 event and less so for the 1956 event, 

though this was an overshoot by 400mm. The model was able to accurately 

simulate the period from 1958 to 1959. 

 

The period from 1960 to 1970 is presented in Figure 4.3(b) and shows the 

model made a significant miss of the rainfall totals received in the summer of 

1964. The model goes on to overestimate rainfall in 1967 and underestimate 

the 1968 totals. 

 

There is a good match between the model and observations between 1970 

and 1976 (Figure 4.3(c)). Of note is the close relationship between the totals 

for the 1971, 1973 and 1974 high rainfall. The 1972 event is underestimated 

by around 200mm but there is still a noticeable response from the climate 

predictors for that event.  

 

The high rainfall total observed in 1981 is matched in the models but there is 

a strong miss for the 600mm total in 1982 with the models providing total of 

200mm. The period of low rainfall from 1986 to 1988 did translate into the 
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simulated rainfall, though the exact tracking was off, the averages between 

the two totals for that phase are similar. There is a very good match for the 

high 1988 total but then a strong miss for the 1989 event with the simulation 

giving a total 600mm less than the observed 1000mm. 

 

 

Overall, the models displayed modest values for coefficient of determination 

but the values are an improvement over values obtained directly from GCM 

output at the nearest grid point (Appendix D). Peachester has the highest 

coefficient of determination value of 0.6232 (Figure 4.3(f)) and Mount 

Brisbane the lowest with an R² value of 0.4746 (Figure 4.2(f)). The outlier 

value of 1954 of 400mm contributed some of the Mount Brisbane value being 

the lowest, as would the strong clumping of correlations. Crow’s Nest 

coefficient of determination value of 0.5267 (Figure 4.1(f)) also would have 

suffered from the models strongly overestimating monthly rainfall on at 

least 5 occasions. 

 

4.2.2 Testing GCM Data with Observations 
 

Values for monthly rainfall obtained from GCM’s at the grid point nearest 

the locations of interest for this study are compared to observations from 

those stations. The full series of graphs can be found in Appendix D, results 

of which have been summarised below in Tables 4.1 and 4.2. 
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Table 4.1: R² values for the correlation between observed rainfall (1950 to 2000) at Crow’s 
Nest, Mount Brisbane and Peachester and values derived directly from the 6 chosen climate 

models at the nearest grid point. 
GCM Crow’s Nest Mount Brisbane Peachester 

CCCMA – t63 0.00003 0.00002 0.00004 

CNRM – cm3 0.1186 0.0878 0.0807 

CSIRO – mk 3.5 0.0892 0.0763 0.1013 

GISS – er 0.0995 0.0682 0.0530 

GFDL – mk 2.1 0.0142 0.0100 0.0120 

MIROC - medres 0.0375 0.0305 0.0360 

 

Table 4.2: Mean and standard deviation [mm/month] of rainfall over the period 1950 to 
2000 for Crow’s Nest, Mount Brisbane and Peachester, and from rainfall values derived 

from the 6 chosen models at the nearest grid point. 
GCM Mean Standard Deviation 

Crow’s Nest 73.14 64.85 

Mount Brisbane 70.22 67.80 

Peachester 145.62 156.53 

CCCMA – t63 49.65 45.61 

CNRM – cm3 76.03 71.22 

CSIRO – mk 3.5 58.86 65.38 

GISS – er 94.31 76.97 

GFDL – mk 2.1 50.55 52.15 

MIROC - medres 74.10 57.93 
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The R² values obtained in Figures 4.1 (f), 4.2(f) and 4.3(f) of between 0.4746 

and 0.6232 are a strong improvement in the value of the coefficient of 

determination obtained from comparing observed rainfall totals with those 

derived from GCM 20th century simulated values at the nearest grid point 

(Table 4.1). This is not to discount the viability of GCM simulated rainfall 

totals, as they have some ability to approximate rainfall distributions with 

means and standard deviations approaching those observed at the 

designated grid point (Table 4.2). However, the ability for GCM models to 

produce real world temporal and spatial variations on a month to month 

and regional basis is far too complex for current computer systems and 

models to reproduce. This is made more evident in a region where rainfall 

variability produces values for standard deviation higher than mean rainfall 

as seen in Table 4.2 at Peachester.  This fact makes it difficult to make direct 

comparisons between GCM and observed rainfall totals but nevertheless the 

results show an improved reproduction over the exact GCM month to 

month totals. Peachester monthly totals are also unable to be replicated by 

the GCM output as totals at this specific site are not representative of the 

region as a whole.  

 

The statistical models produced in this research are one method to fill the 

gap that exists between raw GCM output and regional precipitation 

simulations. The following section will provide rainfall simulations derived 

from the statistical downscaling methods over the last half of the 20th century 
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and compare the values to those derived directly from GCM output and to 

observed monthly rainfall totals. 

 

4.2.3 Testing Statistical Models with GCM Data 
 

In section 4.2.1 the climate models were tested using monthly NCEP climate 

predictor values. This section goes on to use GCM 20th Century values for 

climate predictors as input for the statistical models to find what 

improvement, if any, these models have over the raw CGM rainfall 

simulations at the nearest grid point. As shown in Tables 4.1, GCM’s are 

unable to reproduce exact month to month climate predictor values but a 

better able to provide an approximation of mean and standard deviation 

(Table 4.2). To allow for this, the 20th Century rainfall simulations derived 

from GCM data are presented as long term means. The following graphs 

show observed long term (20 year) rainfall at each station, the long term 

GCM rainfall value at the nearest grid point and the values derived from the 

statistical models using GCM climate predictor values from the six chosen 

models. 
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Figure 4.4: A comparison of GCM monthly rainfall [mm] simulations at the nearest grid 

point, data obtained from downscaling GCM output and observed rainfall. The simulations 

are 20 year running means taken at Crow’s Nest, Mount Brisbane and Peachester. The GCM 

used is the MIROC – medres model from Japan. 
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Figure 4.4 shows precipitation in [mm] for three locations, i.e. Crow’s Nest, 

Mount Brisbane and Peachester for the period 1965 to 2000. It is comparison 

between data statistically downscaled, those observed at the actual location, 

and those directly obtained from the GCM at the nearest grid point.  

 

Observed rainfall averages range from 70 mm to 80mm at Crow’s Nest and 

Mount Brisbane and 140 to 150 mm/month for Peachester. The first two 

stations are matched by simulated values at the nearest grid point derived 

from the MIROC – medres GCM which also range from approximately 70 to 

80mm/month. Downscaled values at Crow’s Nest are between 85 and 

100mm/month which overestimates observed values by 5 to 20mm/month. 

Values from the statistical models for Mount Brisbane are on par with both 

the observed rainfall totals and the GCM data at the nearest grid point. 

 

The statistical downscaling methods prove to be an effective means of 

simulating long term rainfall averages at Peachester. The models provided 

monthly rainfall totals of between 140 to 160mm/month which closely 

tracked the observed long term means. These results are a significant 

improvement over monthly GCM rainfall totals from the nearest grid point, 

which underestimated rainfall by approximately 80mm/month. This 

improvement is an example of how the statistical downscaling methods in 

this research can provide useful climate information on a regional scale. 
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Figure 4.5: A comparison of GCM rainfall simulations at the nearest grid point and data 

obtained from downscaling GCM output with observed rainfall. The simulations are 20 year 

running means taken at Crow’s Nest, Mount Brisbane and Peachester. The GCM used is the 

GFDL –  Mk2.1 model from the U.S.A. 
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The American GFDL – Mk 2.1 GCM in Figure 4.5 tended to underestimate 

the observed values, whereas the downscaled values were an overestimation. 

The downscaled values are a slight improvement for Peachester and Crow’s 

Nest, but rainfall for Mount Brisbane is better tracked by the raw GCM data. 

 

Observed rainfall totals for Crow’s Nest are between 65 and 80mm/month 

and this is underestimated by the GCM rainfall data at the nearest grid point 

20mm/month which vary from 40 to 55mm/month. The downscaled data 

overestimated the observed values by approximately the same amount with 

values ranging from 80 to 100mm/month. There is some improvement with 

the lower end of the range of the downscaling simulation providing values 

that match the upper value of the observed totals of 80mm/month. 

 

Mount Brisbane also experienced long term rainfall total between 1970 and 

2000 of between 65 and 80mm/month, which again are underestimated by 

the GCM by around 20mm/month. Though the GCM values are a better 

match for observed totals when compared to the downscaling models which 

range from 100 to 120mm/month. The discontinuities are created by high 

values for specific humidity and this will be discussed in Chapter 5.2. 

 

Peachester rainfall averages from 140 to 150mm/month which is 

significantly above the GCM values of 40 to 55mm/month. As with the 

Crow’s Nest rainfall values, the lower end of the statistically downscaled 
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model values matches the upper end of the observed totals. The simulated 

rainfall totals provided by the models gave values of 150 to 200mm/month. 
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Figure 4.6: A comparison of GCM rainfall simulations at the nearest grid point and data 

obtained from downscaling GCM output with observed rainfall. The simulations are 20 year 

running means taken at Crow’s Nest, Mount Brisbane and Peachester. The GCM used is the 

GISS - ER model from NASA. 
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Figure 4.6 shows rainfall values for Crow’s Nest and Mount Brisbane were 

overestimated by both the GISS – ER model and the statistical downscaled 

models. No improvement is made by the statistical downscaled values over 

the values obtained by the raw GCM data at the nearest grid point.  

  

Crow’s Nest values are approximately the same for both GCM and 

downscaled simulations, 85 to 100mm/month for the GCM data and 90 to 

110mm/month for the downscaled data. The observed long term values for 

the same period are 65 to 80 mm/month for both stations.  

 

Mount Brisbane downscaled values between 110 and 140 mm/month are a 

larger overestimation compared to the raw GCM data at the nearest grid 

point.  

 

Observed Peachester rainfall ranges from 140 to 150mm/month and these 

values split the two simulations down the middle with the raw data an 

underestimating by approximately 50mm/month. The downscaling data 

proved to be an overestimation with rainfall values ranging from 200 to 

220mm/month, which again missed the observed totals by approximately 

50mm/month. 
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Figure 4.7: A comparison of GCM rainfall simulations at the nearest grid point and data 

obtained from downscaling GCM output with observed rainfall. The simulations are 20 year 

running means taken at Crow’s Nest, Mount Brisbane and Peachester. The GCM used is the 

CCCMA – CGCM t63 model from Canada. 
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The Canadian model CCCMA – CGCM t63 underestimated all three stations, 

with some improvement seen with the downscaled Peachester simulation 

over the raw GCM output (Figure 4.7). The downscaled simulations for the 

other two stations only increased the underestimation over the GCM output; 

however these two simulations closely track one another.   

 

Crow’s Nest observed rainfall totals between 65 and 80 mm/month are 

underestimated by the GCM rainfall data at the nearest grid point which give 

values of approximately 50mm/month.  This underestimation is further 

extended with the values obtained from the statistical downscaling models of 

between 40 to 50mm/month. 

 

The observed rainfall values at Mount Brisbane of 65 to 80mm/month are 

again underestimated by the GCM data by between 15 and 30mm/month. 

As with the Crow’s Nest rainfall values, downscaling further exceeds this 

underestimation by 25 to 30mm/month. 

 

The statistical model improved the rainfall simulation provided by the raw 

GCM data at Peachester. The model produced rainfall totals of between 110 

and 135mm/month which is a significant improvement over the GCM total 

of approximately 50mm/month when compared to the observed rainfall 

values of 140 to 150mm/month.  
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Figure 4.8: A comparison of GCM rainfall simulations at the nearest grid point and data 

obtained from downscaling GCM output with observed rainfall. The simulations are 20 year 

running means taken at Crow’s Nest, Mount Brisbane and Peachester. The GCM used is the 

CNRM – CM3 model from France. 
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The French model CNRM – CM3 shows a good ability to track observed long 

term mean rainfall for Crow’s Nest and Mount Brisbane, but underestimated 

Peachester rainfall (Figure 4.8). The statistical downscaled data displays a 

large overestimation at all three stations and at no stage is a better 

representation of observed conditions. 

 

Observed long term rainfall totals at Crow’s Nest of 65 to 80mm/month are 

well simulated by the GCM rainfall at the nearest grid point which also 

ranges from 65 to 80mm/month. The statistical model provided totals of 

between 125 to 160mm/month which are a significant overestimation by 60 

to 80mm/month. 

 

This overestimation is further increased when comparing data from the 

statistical downscaling models with observed totals for Mount Brisbane of 65 

to 80mm/month. The results from the models of 140 to 180mm/month is up 

to 100mm/month over what was experienced for the region and is far better 

expressed using the GCM rainfall totals at the nearest grid point, i.e. 65 to 

80mm/month. 

 

Despite the fact that the observed rainfall totals for Peachester are generally 

higher than those provide by the raw GCM data at the nearest grid point, the 

GCM data more closely matches the observed totals when compared to totals 

from the downscaling model. Observed totals for Peachester of between 140 
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and 150mm/month are around 80mm/month higher than the GCM data, but 

this is a closer match than the downscaling model values of between 230 and 

330mm/month. 
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Figure 4.9: A comparison of GCM rainfall simulations at the nearest grid point and data 

obtained from downscaling GCM output with observed rainfall. The simulations are 20 year 

running means taken at Crow’s Nest, Mount Brisbane and Peachester. The GCM used is the 

CSIRO – Mk 3.5 model from Australia. 
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The CNRM results are somewhat replicated by the CSIRO Mk 3.5 GCM 

(Figure 4.9). Observed long term rainfall is well simulated by the raw GCM 

data at the nearest grid point, but the predictor variables provide a strong 

overestimation when used in the statistical downscaled models. 

 

The observed values for Crow’s Nest and Mount Brisbane of between 65 to 

80mm/month are slightly underestimated by the GCM totals of 50 to 

55mm/month. This is significantly better than the statistical downscaled 

values of 250 and 450mm/month for Crow’s Nest and 160 to 200mm/month 

for Mount Brisbane.  

 

As in Figure 4.8 the Peachester rainfall total of 140 to 150mm/month is 

underestimated by the GCM value at the nearest grid point of 50 to 

55mm/month, but again this is closer than the values provided by the 

statistical model which is in the range of 300 to 375mm/month. 

 

In summary the downscaling methods employed in this research only 

proved to be an improvement over the raw GCM data at the nearest grid 

point on a handful of occasions, in general they provided an overestimation 

of observed totals. The best match for the downscaling model was achieved 

at Peachester using predictor variables provided by the MIROC – medres 
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GCM. This example not only matched the observed range of values for that 

region but also tracks the rainfall trend experienced over the period 1970 to 

2000.  This fact highlights the ability of that particular GCM to recreate 

values for climate predictor variables over Southeast Queensland and the 

surrounding region. The climatic predictor variables are shown to be an 

effective means of simulating rainfall in section 4.2.1 and the following 

section will investigate how projected changes in these predictor variables 

(Appendix E) will influence regional rainfall over the coming decades. 

 

4.3 Rainfall Projections  
 

Rainfall projections are the core focus of this thesis and the following section 

will provide relevant graphics depicting the expected changes in monthly 

rainfall. As part of the investigation to see if the recent 40 year drying trend 

over the region will continue over the next decades, projected values for 21st 

Century predictor variables shown in Appendix E are used as input into the 

statistical models. The models are designed to apply the appropriate weight 

to each variable and calculate monthly rainfall for the next 30 years. Some 

consideration needs to be taken in account for the inability of these statistical 

models to reproduce legitimate monthly rainfall totals when projected values 

for predictor variables exceed those experienced in the past. Essentially the 

models have no precedent to make a rainfall simulation from so exact totals 

may not hold true, but general trends will be highlighted. 
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4.3.1 Rainfall Projections (2010 -2040) 
 

 

 

Figure 4.10: Rainfall projections for Crow’s Nest using GCM data as 
input into statistical downscaled models. Monthly rainfall totals [mm] 

are provided as a 10 year running mean. 

 

Figure 4.10 shows the projections from the downscaled models for Crow’s 

Nest over the period of 2010 to 2040. Little trust can be put into these 

projections given that none of the downscaled models captured the long term 

mean for this location (Figures 4.4 to 4.9). However, downscaling the GFDL 

model did come closest to tracking the observed long term mean, though 

with an overestimation of just under 20mm/month (Figure 4.5). The 

projection in Figure 4.10 from downscaling this model suggests the average 

annual rainfall for the region will remain relatively constant at 

75mm/month. 
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Downscaled values for the remaining models all project an increase in 

rainfall in the range of 20mm/month for the CCCMA – t63 GCM up to 

120mm/month when the climate data is downscaled for the CNRM – cm3 

GCM. 

 

Figure 4.11: Rainfall projections for Mount Brisbane using GCM data as 
input into statistical downscaled models. Monthly rainfall totals [mm] 

are provided as a 10 year running mean. 

 

Mount Brisbane long term rainfall was best captured by downscaling the 

MIROC – medres model (Figure 4.4), and this simulation goes on to suggest a 

slight increase in average annual rainfall for that location from just under 

60mm/month up to 70mm/month (Figure 4.11). 

 

Data from the downscaled CSIRO mk3.5 GCM projects an increase in rainfall 

for Mount Brisbane over the next 30 years from 110mm/month to 

160mm/month. Though referring back to the 20th Century simulation values 
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provided by this model (Figure 4.9), this result can be considered to be a 

large overestimation. The remaining models all project little or no resultant 

change to average monthly rainfall between now and 2040. 

 

 

Figure 4.12: Rainfall projections for Peachester using GCM data as input 
into statistical downscaled models. Monthly rainfall totals [mm] are 

provided as a 10 year running mean. 

 

Simulated rainfall at Peachester using the downscaling models was over and 

above the best simulation in the entire study. The MIROC – medres model 

provided data on predictor variables resulting in a far improved simulation 

of long term rainfall for the region over the raw GCM rainfall value at the 

nearest grid point (Figure 4.4).  

 

The downscaled projections using the statistical model and the predictor 

variables from the MIROC – medres GCM show average annual rainfall for 
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the region is likely to remain relatively constant at around 150mm/month, if 

anything, a slight decrease to 145mm/month (Figure 4.12).  

 

This scenario is backed up by the results from downscaling the GFDL model, 

which also showed improvements on simulating observed long term means 

for Mount Brisbane (Figure 4.5). This statistical model projects rainfall will 

remain constant over the next 30 years, again with values of 145 to 

150mm/month. 

 

Downscaling the GISS – er and CCCMA – t63 GCM’s also produce results 

that project rainfall at Peachester will remain constant until the year 2040. 

The data produced from using predictor variables from the CSIRO mk3.5 

and CNRM – cm3 in the statistical model for Peachester expect rainfall to 

increase for that region over the next three decades by 50 to 75mm/month. 
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Figure 4.13: Rainfall projections from the GCM’s at the nearest grid point. Monthly rainfall 
totals [mm] are provided as a 10 year running mean. Values for GISS – er are unavailable. 

 
 

Figure 4.13 shows rainfall projections from the raw data provided by the 

GCM’s at the nearest grid point. This has some bearing on the analysis of 

future rainfall projections as the simulations for Crow’s Nest and Mount 

Brisbane using the raw data from the three of the GCM’s output closely 

matched the observed long term means for those two stations. This allows 

some credit to be put into the projections made from these GCM’s when it is 

shown to perform well at simulating 20th Century long term rainfall. Also, 

these projections can be used to validate or discredit the results obtained 

from the statistically downscaled models. 

 

Long term Crow’s Nest rainfall is well described by the raw output from the 

nearest grid point by the models CNRM – cm3, CSIRO mk3.5 and to a lesser 

extent GFDL mk2.1 (Figures 4.8, 4.9 and 4.5). The CNRM – cm3 model 
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projects a slight decrease of 5mm/month over the coming decades from 85 to 

80mm/month. This reduction is also replicated by the GFDL mk2.1 GCM 

with monthly rainfall totals also reducing by 5mm/month from 45 to 

40mm/month over the next 30 years. The CSIRO mk3.5 rainfall projections 

display a slight increase in average monthly rainfall of 10mm/month from 50 

to 60mm/month.  

 

Mount Brisbane long term rainfall was also simulated best by the GFDL and 

CNRM models (Figures 4.5 and 4.8). As with the Crow’s Nest projections 

average annual rainfall will decrease slightly by about 5mm/month. These 

back up results obtained from the downscaled models with little or no 

change in average annual rainfall in the region, and show no indication of a 

continuation of the significant drying trend seen over the last 40 years. 

 

4.3.2 Long Term Rainfall Projections 
 

It can be argued that regional rainfall projections beyond 30 years enter the 

realm of uncertainty as the exact nature of how climate change will impact 

on the Earth’s climate system in the long term is still not fully understood. 

Never the less, this section will provide snapshots of projected average 

monthly rainfall for the years 2010, 2040, 2070 and 2100. Rather than using all 

the models investigated in this research only the ones that were found to 
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perform the best in section 4.2.2 at each location will be employed to create 

these projected rainfall simulations.  

 

Table 4.3: Projected average monthly rainfall [mm] for Crow’s Nest over the Century taken 
from the three GCM’s that were found to most closely match observed long term rainfall 
averages in section 4.2.2 for the second half of the 20th Century. Averages are taken from the 
previous 10 years leading up to the snapshot date. 

Model 2010 2040 2070 2100 

Observed 71.86    

CNRM – cm3 
GCM 

87.33 74.89 70.78 63.88 

MIROC – medres 
GCM 

75.73 73.62 89.24 103.99 

CSIRO mk3.5 
GCM 

52.56 61.65 48.64 44.67 

 

Table 4.3 lists projected monthly rainfall averages for Crow’s Nest over the 

coming century with a snapshot at every 30 years. Each model has a different 

perception of what will transpire with CNRM – cm3 and CSIRO mk3.5 

projecting decreases of 25mm/month and 8mm/month. Even within these 

two similar outcomes, the pattern of final decrease varies with the CNRM – 

cm3 GCM projecting a consistent decrease at each 30 year snapshot and the 

CSIRO mk3.5 first expecting an increase between 2010 and 2040 and then 

continuing on with decreases. The MIROC – medres GCM reverses the 

CSIRO mk3.5 scenario with initially a decrease between 2010 and 2040 and 

then a strong increase over the next 60 years of 30mm/month. 
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Table 4.4: Projected average monthly rainfall [mm] for Mount Brisbane over the 21st 
Century. Projection are taken from the two GCM’s that were found to most closely match 
observed long term rainfall averages and one downscaled model in section 4.2.2 for the 
second half of the 20th Century. Averages are taken from the previous 10 years leading up to 
the snapshot date. 

Model 2010 2040 2070 2100 

Observed 69.86    

CNRM – cm3 
GCM 

87.33 74.89 70.78 63.88 

MIROC – medres 
GCM 

75.73 73.62 89.24 103.99 

MIROC – medres 
Downscaled 

55.77 73.35 90.14 150.79 

 

Average monthly rainfall snapshots for the coming century at Mount 

Brisbane for the two selected GCM’s are again inconsistent by the same 

amounts as with the Crow’s Nest outlook. The projections from the 

downscaled data derived from the MIROC – medres GCM shows a very 

strong increase at each 30 year interval of 20, 20 and finally 60mm/month. 

The increases appear too large to be believed and are probably due to the 

inability of the statistical downscaling methods employed to incorporate 

climate predictor values outside of those included in the original regression 

analysis. The impact of other external climate forces not included in the 

statistical models but which affect rainfall totals also contribute to the results 

being larger than may occur in the real world. 
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Table 4.5: Projected average monthly rainfall [mm] for Peachester over the Century taken 
from the two downscaled models were found to most closely match observed long term 
rainfall averages in section 4.2.2 for the second half of the 20th Century. Averages are taken 
from the previous 10 years leading up to the snapshot date. 

Model 2010 2040 2070 2100 

Observed 142.84    

MIROC – medres 
Downscaled 

144.71 138.42 181.22 251.17 

GFDL mk2.1 
Downscaled 

158.63 141.20 144.43 129.87 

 

Table 4.5 uses only downscaled models to make the rainfall projections from 

data obtained from the MIROC – medres and GFDL mk2.1 GCM’s. 

Downscaling the MIROC – medres data for the 20th Century provided 

excellent results at simulating observed average monthly rainfall values. This 

model projects a decrease in monthly rainfall of around 6mm/month 

between 2010 and 2040, but then continues on to foresee very strong increase 

in rainfall for the second half of the 21st Century of 50mm/month between 

2040 and 2070 finishing with a 70mm/month increase by the year 2100. As 

with downscaled MIROC – medres results for Mount Brisbane in the 

previous table, the results beyond the year 2040 seem to become erroneous. 

 

The GFDL mk2.1 downscaled data shows first a decrease of 18mm/month by 

2040, then an increase of 3mm/month at 2070 and a subsequent decrease at 

the year 2100 of 15mm/month. Despite the fact that the results from 

downscaling the GFDL mk2.1 GCM data are within the realm of possibility, 

the inconsistency across all models at the three different locations makes long 
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term rainfall projections difficult to rely on, especially for the projections 

made by the downscaling methods used in this research. 
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Chapter 5: Discussion and Conclusion 
 

5.1 Introduction 
 

The above results will be discussed in terms of current literature and in how 

they answered the original questions posed. Limitations on the work will be 

mentioned and what areas of further research are important in providing 

precipitation projections to best manage future water resources for Southeast 

Queensland. 

 

5.2 Discussion 
 

Section 4.2.1 validated the statistical downscaling models using the climate 

predictors from the NCEP climate data archive to replicate monthly rainfall 

totals from the second half of the 20th Century. The results tracked monthly 

variation in rainfall with a relatively high coefficient of determination 

(Figures 4.1, 4.2 and 4.3) when compared to results obtained directly from the 

GCM output (Appendix D). This is to be expected as the same NCEP data is 

used to calibrate the models. It shows that regional rainfall in the sub-tropics 

can be simulated through a regression between the rainfall and predictors on 

a monthly basis. The months where strong rainfall totals are missed by the 

statistical model simulations may be due to short but intense rainfall events. 

The associated changes in climate predictors during these events may be 
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hidden in the overall average value for the month, thus making the rainfall 

event undetectable to the downscaling models. 

 

Comparing R² values in section 4.2.1 with values provided in Table 4.1 

between monthly rainfall and GCM rainfall simulations shows a vast 

improvement in R² values using the statistical downscaled models in the 

order of 10. This also shows that recreating actual rainfall totals on a month 

to month basis in real time is above the capabilities of the GCM’s. However, 

the GCM’s are able to produce values for monthly rainfall with similar 

means and standard deviations to those observed in the real world (Table 

4.2). This ability to reproduce the observed distribution of climate variables is 

utilised in the downscaling models by creating simulations of long term 

means.  

 

The comparison of average monthly rainfall simulations for the second half 

of the 20th Century between the GCM’s and the downscaled models in 

section 4.2.3 has mixed results. GCM’s that did provide data for the statistical 

models resulting in a close match between observed and simulated monthly 

rainfall averages also performed well on their own without the aid of 

statistical downscaling. The only exception to this is the Peachester site 

which has consistently higher rainfall totals than those provided by all the 

GCM’s tested at the nearest grid point. The surrounding topography and 
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proximity to the coastline provide that particular region with a higher than 

average rainfall than the rest of the catchments. As an example, the nearby 

location of Crohamhurst recorded Australia’s highest 9am to 9am rainfall 

total, though this occurred in 1893 and as such, the exact total was not subject 

to quality control. Though high totals are not a one off for the locality which 

is geographically well placed and designed to enhance rainfall. 

 

The rainfall projections of only six models in section 4.3.1 may not be enough 

to obtain a confident idea of future rainfall trends. This can be overcome by 

focusing on the models better able to simulate 20th Century observations in 

section 4.2.2, as more faith can be put in their projections. This seems to hold, 

with those models projecting small changes in average monthly rainfall, 

rather than extreme increases that are found using less reliable models. None 

of the simulations, good or bad, foresee a continuation of strong decreases in 

regional rainfall. 

 

At no stage do the long term rainfall projections for projections for the next 

90 years agree with one another, and this makes it difficult to know what can 

be expected in the long term. One can assume that extremely large increases 

in monthly rainfall are unreasonable. Looking at small changes, some up, 

some down and some stay the same. As mentioned in section 4.3.2, the long 
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term effects of climate change on regional rainfall is not fully understood, 

and this is reflected in regional precipitation projections over the long term. 

 

Downscaling climate predictors from the CNRM – cm3 and CSIRO Mk 3.5 

GCM’s produced large variations and discontinuities between the simulated 

rainfall averages and observations. This is brought about by an over 

sensitivity in the statistical models to the values of specific humidity. The 

value of this variable from the GCM’s has been transformed to fit the 

distribution of the same NCEP variable. The range in the specific humidity 

standardised values provided by the CNRM – cm3 and CSIRO Mk3.5 GCM’s 

are both 0.00127 (0.00052 to 0.00179 and 0.00077 to 0.00212). Compare this 

with the range in specific humidity values from the MIROC – medres GCM 

of 0.00083 (0.00032 to 0.00115). The larger range in the first two GCM’s 

creates a linear transformation equation that is sensitive to projected values 

outside of those used in the formation of the original statistical models. i.e. 

values for specific humidity do not need to change much for a large change 

in expected rainfall. This issue may have been overcome by using dewpoint 

depression which is more stable than specific humidity. 
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5.3 Conclusion 
 

On average, projected annual precipitation changes have been quantified for 

Southeast Queensland by CSIRO BoM (2007), giving a value of a 3% to 5% 

decrease by the year 2050. This total matches values found in the best 

simulation from this study; Peachester rainfall provided by the MIROC - 

medres GCM output provides a decrease in monthly rainfall of around 4% 

by 2040. 

 

Therefore monthly regression analysis of rainfall with climatic predictors can 

be used with some success in the sub-tropics provided values for the 

predictor variables obtained from GCM output is an accurate simulation of 

real world observations. This occurred with the Japanese MIROC – medres 

model which incorporates 10 additional climate forcing variables above 

atmosphere, ocean, sea ice and land use in its calculations which is at the 

upper end of GCM complexity (Table 3.1).  

 

Using the MIROC – medres model to provide climate predictor data to 

simulate rainfall at Peachester proved an effective means of replicating long 

term rainfall averages. This example not only tracked long term rainfall 

closely but also was a clear improvement over the rainfall data obtained from 

the raw GCM output at the nearest grid point. 
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It can be argued that the long term rainfall mean at Peachester was simulated 

by the raw GCM data but with an underestimating bias, and this could be 

remedied by adjusting the data up to meet the observed long term average. 

However, this does not detract from the fact that the statistical models 

created using monthly regressions of rainfall and predictors are able to 

provide a simulation of rainfall averages for that location.  

 

It can also be argued that the strong Peachester result was due to luck, as the 

rest of the statistical models gave both higher and lower rainfall total than 

those observed. However, the close match between observed average rainfall 

at Peachester and those provide by downscaling the MIROC – medres data 

continued on to 2010. This is shown in Table 4.5 with a 2mm/month 

variation between the two values. 

 

5.3.1 How does the data answer the original research question? 
 

The original question and motivation for this research was whether recent 

decreases in rainfall over southeast Queensland would continue into the 

future. Rainfall projections using the models that provided realistic 

simulations suggest little change in average annual rainfall for the region. 

This is in agreeance with the better performing GCM output of the ones 
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selected in this analysis and the 50th percentile of climate model projections 

from the IPCC assessment reports.  

 

The significant dry period from 2001 to 2008 was of concern as water 

resources dipped to very low levels and it seemed to follow a significant 

drying trend that had been occurring over the last 40 years. This drying trend 

has recently started to balance out over the period 2008 to 2012 culminating 

in two consecutive wet summer periods of 2011 and 2012. The 2011 summer 

was marked by an extreme rainfall event causing loss of life, inundation of 

thousands of properties and many millions of dollars damage to local 

infrastructure. 

 

Projections of little change in overall annual rainfall for the region may in 

fact be accurate given what has been experienced over the last decade. 

Despite long term annual averages not undergoing any significant changes, 

fewer wet days (CSIRO - BoM, 2007) means the manner in which the rainfall 

is delivered is becoming increasingly important.  

 

5.4 Implications for policy or practice 
 

Water resource managers can take some solace in that the recent strong 

drying trend over the last 40 years may be part of a natural cycle, but 
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managing dam levels through extended periods of drought, and when to 

release water during extreme rainfall events will rely on accurate estimations 

of the duration of dry periods and seasonal rainfall totals. 

 

5.4.1 How does the data contribute to the field of study? 
 

 

Simulating long term monthly rainfall totals in the Peachester region are 

improved by the implementing statistical downscaling techniques on data 

provide by the MIROC – medres and GFDL Mk 2.1 GCM’s. 

 

The poorly investigated drying trend experienced over Eastern Australia and 

Southeast Queensland may indeed be part of a multi-decadal natural 

variation in the climate. Current rainfall projections for the region say annual 

rainfall may only experience a slight decrease, projections which are backed 

up by the regression analysis of climate predictors undertaken in this thesis. 

 

5.5 Limitations 
 

The fact that only one month of the year had air pressure included in its 

statistical model (Appendix B) is of concern as this variable may become 

more influential in the future with a pole ward expansion Hadley cell and 

increased air pressure over sub-tropical regions (Meehl et al., 2007). 
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Average annual rainfall in the future will not change significantly but will be 

delivered on fewer days, meaning longer periods without rain and when it is 

received it will be in heavier falls (Christensen et al., 2007). This analysis is 

limited by its inability to detect extreme events such as long dry periods and 

heavy rainfall events. There is where using the weather generator statistical 

model may be more beneficial, as it has the ability to detect extreme events. 

 

Also, the ability of regression analysis is limited under future climate change 

scenarios as atmospheric chemistry and physics may be altered the 

regression analysis is based on historical connections between predictors and 

rainfall.  

 

5.6 Further research 
 

Rather than choosing GCM’s with the best ability at simulating rainfall, this 

research could be improved by determining which GCM is best able to 

simulate each climatic predictor for each month. By selecting GCM’s with a 

superior ability at recreating NCEP values for predictor variables the 

accuracy of the input data into the statistical models would then improve 

and subsequently improve the simulations. 
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Further improvements in the simulations could also be made by taking into 

account the effect large scale climate drivers have on rainfall influences. The 

relative importance and impact of the climatic predictors on regional rainfall 

are altered depending on the state of the atmosphere. To allow for this, the 

ability of the models to track rainfall could be refined by calibrating the 

models with different regression analyses under various El Niña/La Niña 

and IPO scenarios. The impact these global scale climate variations have on 

influencing high intensity events in southeast Queensland would also 

improve the ability of this research to more accurately detect a larger 

proportion of the regions rainfall. 

 

The standard outputs from the CMIP3 data has difficulty in finding any 

effects GHG’s will have on rainfall over the coming decades and CMIP5 data 

may be better used, but was not available at the time of writing the thesis. 

 

Despite being beyond the scope of this thesis, the use of Dynamical 

downscaling which would provide more meaningful projected rainfall totals 

for the entire region than the results derived from this thesis. By accounting 

for actual physical atmospheric processes, Dynamical downscaling does not 

rely on what has happened previously to describe what will happen in the 

future, and this may become more relevant with climate change producing 

weather events that are beyond what has been experienced. 



107 
 

 

Also beyond the scope of this thesis is determining the return periods of 

extreme rainfall events would be important information in managing the 

region’s water resources. Also, the duration and likelihood of drought 

situations in the future will be helpful in setting realistic and sustainable 

water usage targets for the region. 
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 Appendix A: Monthly Climatic Predictors 
 

NCEP predictors are correlated with rainfall at the three stations for each 

month to improve the ability of the models to capture variations in rainfall 

drivers throughout the year. The values of the predictor variables are taken 

at 42 locations around the region and at 8 different height levels (see section 

3.3.3). The predictors with the highest correlation values for each station and 

each month are used in the regression analysis and are included in the 

following tables. The abbreviations are: Prw (Precipitable Water), Rhum 

(Relative Humidity), Shum (Specific Humidity), Uwnd (Zonal Wind), Vwnd 

(Meridional Wind) and Zg (Geopotential Height). The altitude is provided 

after the variable abbreviation in millibars, and the latitude and longitude 

coordinates are also given. 
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Table A.1: NCEP predictor variables with highest correlation to rainfall for each 
month at the Crow’s Nest Station at a 95% level of significance. q and RH: 
Specific and Relative Humidity, Prw: Precipitable Water, u and v: Zonal and 
Meridional Windspeed, Z: Geopotential Height. Altitude at which variable is 
taken follows the abbreviated variable as does the latitude and longitude 
coordinates. r values are in brackets. 

Monthly Climatic NCEP Predictors and their Location for Crow’s Nest. 
Predictors with Highest Correlation to Rainfall (1948 – 2000) are shown. 

Correlation Coefficient (r) included in brackets. 
 

January 
RH850 @ 

27.5°S 150°E 
(0.5707) 

  Z850 @ 
25°S 145°E     
(-0.6680) 

 
February 

q400 @ 
30°S 157.5°E 

(0.7682) 

Prw @ 
27.5°S 155°E 

(0.7317) 

v600 @ 
27.5°S 152.5°E 

(-0.7268) 

 

 
March 

q850 @ 
22.5°S 152.5°E 

(0.6945) 

Prw@ 
25°S 152.5°E 

(0.7059) 

  

 
April 

q850 @ 
30°S 157.5°E 

(0.7162) 

Prw @ 
27.5°S 155°E 

(0.6336) 

  

 
May 

q600 @ 
30°S 157.5°E 

(0.5268) 

Prw @ 
27.5°S 155°E 

(0.5129) 

v400 @ 
30°S 150°E 
(-0.5424) 

 

 
June 

q600 @ 
30°S 155°E 

(0.6335) 

Prw @ 
27.5°S 152.5°E 

(0.6583) 

v600 @ 
22.5°S 155°E 

(-0.5210) 

 

 
July 

q850 @ 
25°S 157.5°E 

(0.5958) 

 u850 @ 
30°S 152.5°E 

(-0.4590) 

 

 
August 

q850 @ 
27.5°S 155°E 

(0.6783) 

Prw @ 
25°S 155°E 

(0.6822) 

v600 @ 
30°S 152.5°E 

(-0.5348) 

 

 
September 

RH850 @ 
30°S 150°E 

(0.6177) 

Prw @ 
25°S 152.5°E 

(0.6207) 

  

 
October 

RH400 @ 
30°S 160°E 

(0.6861) 

Prw @ 
27.5°S 152.5°E 

(0.5674) 

  

 
November 

RH600 @ 
27.5°S 155°E 

(0.6020) 

Prw @ 
25°S 155°E 

(0.5514) 

  

 q850 @ Prw @ v400 @  
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Table A.2: NCEP predictor variables with highest correlation to rainfall for each 
month at the Mount Brisbane Station at a 95% level of significance. q and RH: 
Specific and Relative Humidity, Prw: Precipitable Water, u and v: Zonal and 
Meridional Windspeed, Z: Geopotential Height. Altitude at which variable is 
taken follows the abbreviated variable as does the latitude and longitude 
coordinates. r values are in brackets. 
 

December 22.5°S 160°E 
(0.4996) 

25°S 160°E 
(0.4781) 

32.5°S 155°E 
(-0.6625) 

Monthly Climatic NCEP Predictors and their Location for Mt. Brisbane. 
Predictors with Highest Correlation to Rainfall (1948 – 2000) are shown. 

Correlation Coefficient (r) included in brackets. 
 

January 
q400 @  

30°S 152.5°E 
(0.6305) 

 v600 @ 
27.5°S 150°E 

(-0.4773) 

Z850 @ 
25°S 145°E     
(-0.6650) 

 
February 

q400 @ 
30°S 157.5°E 

(0.7507) 

Prw @ 
27.5°S 155°E 

(0.7435) 

v600 @ 
30°S 152.5°E 

(-0.6821) 

u250 @ 
20°S 160°E 
(-0.6089) 

 
March 

RH850 @    
25°S 152.5°E 

(0.6170) 

 u850 @ 
32.5°S 152.5°E 

(-0.6207) 

Z850 @ 
22.5°S 152.5°E 

(-0.5048) 
 

April 
q850 @ 

30°S 155°E 
(0.6832) 

Prw @ 
30°S 155°E 

(0.6637) 

v250 @ 
32.5°S 150°E 

(-0.5386) 

 

 
May 

q600 @ 
30°S 157.5°E 

(0.6400) 

Prw @ 
27.5°S 157.5°E 

(0.6494) 

v250 @ 
32.5°S 152.5°E 

(-0.5533) 

 

 
June 

q600 @ 
30°S 155°E 

(0.5948) 

Prw @ 
27.5°S 157.5°E 

(0.6014) 

v250 @ 
30°S 152.5°E 

(-0.5032) 

 

 
July 

q600 @ 
25°S 160°E 

(0.5439) 

Prw @ 
25°S 157.5°E 

(0.5794) 

u400 @ 
30°S 152.5°E 

(-0.5054) 

 

 
August 

q850 @ 
27.5°S 155°E 

(0.6519) 

Prw @ 
27.5°S 155°E 

(0.6851) 

  

 
September 

RH850 @ 
27.5°S 150°E 

(0.5333) 

Prw @ 
25°S 152.5°E 

(0.4547) 

v400 @ 
30°S 150°E 

(-.4958) 

 

 
October 

q850 @ 30°S 
157.5°E 
(0.6537) 

Prw @ 
30°S 157.5°E 

(0.6513) 

  

 
November 

RH600 @ 
27.5°S 155°E 

(0.6020) 

Prw @ 
27.5°S 155°E 

(0.5173) 
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Table A.3: NCEP predictor variables with highest correlation to rainfall for each 
month at the Peachester Station at a 95% level of significance. q and RH: Specific 
and Relative Humidity, Prw: Precipitable Water, u and v: Zonal and Meridional 
Windspeed, Z: Geopotential Height. Altitude at which variable is taken follows 
the abbreviated variable as does the latitude and longitude coordinates. r values 
are in brackets. 

 
December 

q850 @ 30°S 
160°E 

(0.5808) 

Prw @ 
30°S 160°E 

(0.5370) 

v400 @ 
32.5°S 155°E 

(-0.5473) 

 

Monthly Climatic NCEP Predictors and their Location for Peachester. Predictors 
with Highest Correlation to Rainfall (1948 – 2000) are shown. Correlation 

Coefficient (r) included in brackets. 
January q400 @  

32.5°S 150°E 
(0.5530) 

 v600 @ 
32.5°S 155°E 

(-0.5227) 

Z850 @ 
25°S 145°E    
(-0.6838) 

February q400 @  
27.5°S 155°E 

(0.6745) 

Prw @ 
27.5°S 155°E 

(0.6937) 

v600 @ 
30°S 152.5°E 

(-0.7023) 

 

March q850 @  
22.5°S 152.5°E 

(0.7411) 

Prw @ 
25°S 152.5°E 

(0.7637) 

u850 @ 
32.5°S 152.5°E 

(-0.7528) 

 

April q850 @  
30°S 155°E 
(0.5782) 

Prw @ 
30°S 155°E 

(0.6272) 

u850 @ 
32.5°S 155°E 

(-0.5606) 

 

May q600 @  
27.5°S 157.5°E 

(0.5372) 

Prw @ 
27.5°S 155°E 

(0.5927) 

v250 @ 
30°S 152.5°E 

(-0.5796) 

 

June q600 @  
30°S 155°E 
(0.6183) 

Prw @ 
27.5°S 155°E 

(0.6705) 

u850 @ 
30°S 152.5°E 

(-0.565) 

 

July q850 @  
25°S 157.5°E 

(0.6620) 

Prw @ 
25°S 157.5°E 

(0.6744) 

u850 @ 
30°S 152.5°E 

(-0.6117) 

 

August q850 @  
22.5°S 155°E 

(0.5288) 

Prw @ 
27.5°S 155°E 

(0.6094) 

u850 @ 
32.5°S 157.5°E 

(-0.5705) 

 

September RH850 @  
25°S 150°E 
(0.6723) 

Prw @ 
25°S 152.5°E 

(0.6735) 

v400 @ 
32.5°S 150°E 

(-0.4344) 

 

October RH600 @  
25°S 155°E 

(0.6361) 

Prw @ 
30°S 157.5°E 

(0.5971) 

v600 @ 
30°S 157.5°E 

(-0.4775) 

 

November RH600 @  
27.5°S 155°E 

(0.5844) 

Prw @ 
27.5°S 155°E 

(0.5436) 
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Appendix B: Statistical Models used to calculate Monthly 
rainfall 

 

The following three tables provide the statistical models use to calculate 

rainfall for each month from the predictor variables at the selected stations. 

Abbreviations of predictor variables are as in Appendix A. The location 

where the predictor variable is taken at is not supplied but can be referenced 

from the Appendix A Tables. 

 
Table B.1: Statistical models used to calculate the natural log of each months rainfall 

from predictor variables at Crow’s Nest. 

Month Statistical Models used to calculate the natural log of 
monthly rainfall totals at Crow’s Nest 

January 28.33977 - 0.01758.Z850 + 0.04212.RH850 
February 3.8352 + 1.355.q400 – 0.1918.v600 

March -0.8521 + 0.1523.Prw 
April -3.03321 + 0.09927.Prw + 0.76882.q850 
May 1.8932 + 1.4848.q600 – 0.1452.v400 
June 0.1497 + 0.1913.Prw – 0.2344.v600 
July -1.327 + 1.12.q850 

August -2.7341 + 0.3017.Prw 
September -4.53533 + 0.1452.Prw + 0.09041.RH850 

October -1.1061 + 0.1455.Prw + 0.0637.RH400 
November 1.36708 + 0.08262.RH600 
December 4.7138 – 0.1636.v400 

 
 
 
 
 
 
 

December RH400 @ 
27.5°S 160°E 

(0.5593) 

Prw @ 
30°S 160°E 

(0.5150) 

v400 @ 
30°S 155°E 

(-0.6496) 
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Table B.2: Statistical models used to calculate the natural log of each months rainfall 
from predictor variables at Mount Brisbane. 

Month Statistical Models used to calculate the natural log of 
monthly rainfall totals at Mt. Brisbane 

January 33.9251 – 0.02029.Z850 + 1.4228.q400 
February 3.0016 + 2.0641.q400 – 0.1286.v600 

March -1.41128 – 0.15564.u850 + 0.08447.RH850 
April -2.16565 + 0.24051.Prw – 0.06495.v250 
May 1.3454 + 1.7419.q600 – 0.1242.v250 
June 3.1328 – 0.1782.v250 
July -3.6232 – 0.3387.Prw 

August -5.4947 + 0.4738.Prw 
September 0.78437 + 0.05597.RH850 – 0.22864.v400 

October -2.6414 + 0.3015.Prw 
November 0.83883 + 0.09399.RH600 
December 2.38278 + 0.08068.Prw – 0.08806.v400 

 
 
 
 

Table B.3: Statistical models used to calculate the natural log of each months rainfall 
from predictor variables at Peachester. 

Month Statistical Models used to calculate the natural log of 
monthly rainfall totals at Peachester 

January 42.18188 – 0.02444.Z850 – 0.1133.v600 
February 4.7202 + 1.2471.q400 – 0.2102.v600 

March 2.8276 + 0.07304.Prw – 0.23682.u850 
April 1.4429 + 0.1456.Prw – 0.138.u850 
May 0.3147 + 0.18232.Prw – 0.07609.v250 
June -2.9042 + 0.3437.Prw 
July 1.2367 + 0.8081.q850 – 0.227.u850 

August 2.0745 + 0.5479.q850 – 0.1986.u850 
September -0.34809 + 0.08108.RH850 – 0.18512.v400 

October 0.3671 + 0.0806.RH850 
November 2.70141 + 0.05792.RH600 
December 4.48261 + 0.02455.RH400 – 0.19171.v600 
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Appendix C: Shifts in Lat/Lon values from NCEP to GCM’s 
 

NCEP data is based on a 2.5° Latitude and Longitude grid and this does not 

necessarily transfer directly to the GCM’s which have grid points distributed 

on different scales. The following tables list all the NCEP grid points for the 

predictor variables used and the corresponding GCM coordinates for each 

model.  

 

Table C.1: NCEP Precipitable Water coordinates and the corresponding GCM coordinates. 

NCEP CCCMA-
t63 

CNRM-
cm3 

CSIRO 
mk3.5 

GISS-er GFDL 
mk2.1 

MIROC-
medres 

155°E 
30°S 

154.7°E 
29.3°S 

154.7°E 
29.3°S 

155.6°E 
30.8°S 

152.5°E 
30°S 

153.8°E 
29.3°S 

154.7°E 
29.3°S 

157.5°E 
30°S 

157.5°E 
29.3°S 

157.5°E 
29.3°S 

157.5°E 
30.8°S 

157.5°E 
30°S 

156.2°E 
29.3°S 

157.5°E 
29.3°S 

160°E 
30°S  

160.3°E 
29.3°S 

160.3°E 
29.3°S 

159.4°E 
30.8°S 

157.5°E 
30°S 

158.8°E 
29.3°S 

160.3°E 
29.3°S 

152.5°E 
25°S 

151.9°E 
23.7°S 

151.9°E 
23.7°S 

151.9°E 
25.2°S 

152.5°E 
26°S 

151.2°E 
25.3°S 

151.9°E 
23.7°S 

155°E 
25°S  

154.7°E 
23.7°S 

154.7°E 
23.7°S 

155.6°E 
25.2°S 

152.5°E 
26°S 

153.8°E 
25.3°S 

154.7°E 
23.7°S 

157.5°E 
25°S 

157.5°E 
23.7°S 

157.5°E 
23.7°S 

157.5°E 
25.2°S 

157.5°E 
26°S 

156.2°E 
25.3°S 

157.5°E 
23.7°S 

152.5°E 
27.5°S  

151.9°E 
26.5°S 

151.9°E 
26.5°S 

151.9°E 
27°S 

152.5°E 
26°S 

151.2°E 
27.3°S 

151.9°E 
26.5°S 

155°E 
27.5°S 

154.7°E 
26.5°S 

154.7°E 
26.5°S 

155.6°E 
27°S 

152.5°E 
26°S 

153.8°E 
27.3°S 

154.7°E 
26.5°S 
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Table C.2: NCEP Relative Humidity coordinates and the corresponding GCM coordinates. 

NCEP CCCMA-
t63 

CNRM-
cm3 

CSIRO 
mk3.5 

GISS-er GFDL 
mk2.1 

MIROC-
medres 

157.5°E 
27.5°S 

157.5°E 
26.5°S 

157.5°E 
26.5°S 

157.5°E 
27°S 

155°E 
28°S 

156.2°E 
27.3°S 

157.5°E 
26.5°S 

160°E 
27.5°S 

160.3°E 
26.5°S 

160.3°E 
26.5°S 

159.4°E 
27°S 

160°E 
28°S 

158.8°E 
27.3°S 

160.3°E 
26.5°S 

150°E 
30°S 5 

149.1°E 
29.3°S 

149.1°E 
29.3°S 

150°E 
30.8°S 

150°E 
32°S 

148.8°E 
29.3°S 

149.1°E 
29.3°S 

160°E 
30°S 

160.3°E 
29.3°S 

160.3°E 
29.3°S 

159.4°E 
30.8°S 

160°E 
32°S 

158.8°E 
29.3°S 

160.3°E 
29.3°S 

150°E 
25°S  

149.1°E 
23.7°S 

149.1°E 
23.7°S 

150°E 
25.2°S 

150°E 
24°S 

148.8°E 
25.3°S 

149.1°E 
23.7°S 

152.5°E 
25°S 

151.9°E 
23.7°S 

151.9°E 
23.7°S 

151.9°E 
25.2°S 

150°E 
24°S 

151.2°E 
25.3°S 

151.9°E 
23.7°S 

155°E 
25°S  

154.7°E 
23.7°S 

154.7°E 
23.7°S 

155.6°E 
25.2°S 

155°E 
24°S 

153.8°E 
25.3°S 

154.7°E 
23.7°S 

150°E 
27.5°S 

149.1°E 
26.5°S 

149.1°E 
26.5°S 

150°E 
27°S 

150°E 
28°S 

148.8°E 
27.3°S 

149.1°E 
26.5°S 

155°E 
27.5°S 

154.7°E 
26.5°S 

154.7°E 
26.5°S 

155.6°E 
27°S 

155°E 
28°S 

153.8°E 
27.3°S 

154.7°E 
26.5°S 

 

Table C.3: NCEP Specific Humidity coordinates and the corresponding GCM coordinates. 

NCEP CCCMA-
t63 

CNRM-
cm3 

CSIRO 
mk3.5 

GISS-er GFDL 
mk2.1 

MIROC-
medres 

152.5°E 
30°S 

151.9°E 
29.3°S 

151.9°E 
29.3°S 

151.9°E 
30.8°S 

150°E 
32°S 

151.2°E 
29.3°S 

151.9°E 
29.3°S 

157.5°E 
30°S 

157.5°E 
29.3°S 

157.5°E 
29.3°S 

157.5°E 
30.8°S 

155°E 
32°S 

156.2°E 
29.3°S 

157.5°E 
29.3°S 

155°E 
22.5°S 5 

154.7°E 
23.7°S 

154.7°E 
23.7°S 

155.6°E 
23.3°S 

155°E 
24°S 

153.8°E 
23.3°S 

154.7°E 
23.7°S 

157.5°E 
25°S 

157.5°E 
23.7°S 

157.5°E 
23.7°S 

157.5°E 
25.2°S 

155°E 
24°S 

156.2°E 
25.3°S 

157.5°E 
23.7°S 

155°E 
27.5°S  

154.7°E 
26.5°S 

154.7°E 
26.5°S 

155.6°E 
27°S 

155°E 
28°S 

153.8°E 
27.3°S 

154.7°E 
26.5°S 
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Table C.4: NCEP Zonal Wind coordinates and the corresponding GCM coordinates. 

NCEP CCCMA-
t63 

CNRM-
cm3 

CSIRO 
mk3.5 

GISS-er GFDL 
mk2.1 

MIROC-
medres 

152.5°E 
30°S 

151.9°E 
29.3°S 

151.9°E 
29.3°S 

151.9°E 
30.8°S 

150°E 
32°S 

151.2°E 
29.3°S 

151.9°E 
29.3°S 

152.5°E 
32.5°S 

151.9°E 
32.1°S 

151.9°E 
32.1°S 

151.9°E 
32.6°S 

150°E 
32°S 

151.2°E 
33.4°S 

151.9°E 
32.1°S 

155°E 
32.5°S  

154.7°E 
32.1°S 

154.7°E 
32.1°S 

155.6°E 
32.6°S 

155°E 
32°S 

153.8°E 
33.4°S 

154.7°E 
32.1°S 

157.5°E 
32.5°S 

157.5°E 
32.1°S 

157.5°E 
32.1°S 

157.5°E 
32.6°S 

155°E 
32°S 

156.2°E 
33.4°S 

157.5°E 
32.1°S 

 

Table C.5: NCEP Meridional Wind coordinates and the corresponding GCM coordinates. 

NCEP CCCMA-
t63 

CNRM-
cm3 

CSIRO 
mk3.5 

GISS-er GFDL 
mk2.1 

MIROC-
medres 

150°E 
30°S 

149.1°E 
29.3°S 

149.1°E 
29.3°S 

150°E 
30.8°S 

150°E 
32°S 

148.8°E 
29.3°S 

149.1°E 
29.3°S 

152.5°E 
30°S 

151.9°E 
29.3°S 

151.9°E 
29.3°S 

151.9°E 
30.8°S 

150°E 
32°S 

151.2°E 
29.3°S 

151.9°E 
29.3°S 

155°E 
30°S 5 

154.7°E 
29.3°S 

154.7°E 
29.3°S 

155.6°E 
30.8°S 

155°E 
32°S 

153.8°E 
29.3°S 

154.7°E 
29.3°S 

150°E 
32.5°S 

149.1°E 
32.1°S 

149.1°E 
32.1°S 

150°E 
32.6°S 

150°E 
32°S 

148.8°E 
33.4°S 

149.1°E 
32.1°S 

152.5°E 
32.5°S  

151.9°E 
32.1°S 

151.9°E 
32.1°S 

151.9°E 
32.6°S 

150°E 
32°S 

151.2°E 
33.4°S 

151.9°E 
32.1°S 

155°E 
32.5°S 

154.7°E 
32.1°S 

154.7°E 
32.1°S 

155.6°E 
32.6°S 

155°E 
32°S 

153.8°E 
33.4°S 

154.7°E 
32.1°S 

155°E 
22.5°S  

154.7°E 
23.7°S 

154.7°E 
23.7°S 

155.6°E 
23.3°S 

155°E 
24°S 

153.8°E 
23.3°S 

154.7°E 
23.7°S 

150°E 
27.5°S 

149.1°E 
26.5°S 

149.1°E 
26.5°S 

150°E 
27°S 

150°E 
28°S 

148.8°E 
27.3°S 

149.1°E 
26.5°S 

152.5°E 
27.5°S 

151.9°E 
26.5°S 

151.9°E 
26.5°S 

151.9°E 
27°S 

150°E 
28°S 

151.2°E 
27.3°S 

151.9°E 
26.5°S 

 

Table C.6: NCEP Geopotential Height coordinates and the corresponding GCM coordinates. 

NCEP CCCMA-
t63 

CNRM-
cm3 

CSIRO 
mk3.5 

GISS-er GFDL 
mk2.1 

MIROC-
medres 

145°E 
25°S 

146.2°E 
23.7°S 

146.2°E 
23.7°S 

144.4°E 
25.2°S 

145°E 
24°S 

143.8°E 
25.3°S 

146.2°E 
23.7°S 
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Appendix D: 20th Century GCM Rainfall Simulations 

  

  

  
Figure D.1: Comparison of Observed rainfall [mm] [blue] at Crow’s Nest for the periods (a) 1948 – 1960, (b) 

1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CNRM – cm3 
GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.2: Comparison of Observed rainfall [mm] [blue] at Mount Brisbane for the periods (a) 1948 – 1960, 
(b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CNRM – cm3 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.3: Comparison of Observed rainfall [mm] [blue] at Peachester for the periods (a) 1948 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CNRM – cm3 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.4: Comparison of Observed rainfall [mm] [blue] at Crow’s Nest for the periods (a) 1948 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CCCMA – t63 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.5: Comparison of Observed rainfall [mm] [blue] at Mount Brisbane for the periods (a) 1948 – 1960, 
(b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CCCMA – t63 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.6: Comparison of Observed rainfall [mm] [blue] at Peachester for the periods (a) 1948 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CCCMA – t63 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.7: Comparison of Observed rainfall [mm] [blue] at Crow’s Nest for the periods (a) 1951 – 1960, (b) 

1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CSIRO Mk3.5 
GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.8:  Comparison of Observed rainfall [mm] [blue] at Mount Brisbane for the periods (a) 1951 – 1960, 
(b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CSIRO Mk3.5 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.9: Comparison of Observed rainfall [mm] [blue] at Peachester for the periods (a) 1951 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the CSIRO Mk3.5 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.10: Comparison of Observed rainfall [mm] [blue] at Crow’s Nest for the periods (a) 1948 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the GFDL Mk2.1 GCM 

[red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 

0

100

200

300

400

500

600

1948 1950 1952 1954 1956 1958 1960

R
ai

nf
al

l [
m

m
] 

Year 

Monthly Rainfall at Crows Nest (1948 - 1960) 

Simulated Rainfall Observed Rainfall

0

100

200

300

400

500

600

1960 1962 1964 1966 1968 1970

R
ai

nf
al

l [
m

m
] 

Year 

Monthly Rainfall at Crows Nest (1960 - 1970) 

Simulated Rainfall Observed Rainfall

0

100

200

300

400

500

600

1970 1972 1974 1976 1978 1980

R
ai

nf
al

l [
m

m
] 

Year 

Monthly Rainfall at Crows Nest (1970 - 1980) 

Simulated Rainfall Observed Rainfall

0

100

200

300

400

500

600

1980 1982 1984 1986 1988 1990

R
ai

nf
al

l [
m

m
] 

Year 

Monthly Rainfall at Crows Nest (1980 - 1990) 

Simulated Rainfall Observed Rainfall

0

100

200

300

400

500

600

1990 1992 1994 1996 1998 2000

R
ai

nf
al

l [
m

m
] 

Year 

Monthly Rainfall at Crows Nest (1990 - 2000) 

Simulated Rainfall Observed Rainfall

R² = 0.0142 

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350

O
bs

er
ve

d 
M

on
th

ly
 R

ai
nf

al
l [

m
m

] 

Simulated Monthly Rainfall [mm] 

Observed Vs Simulated Rainfall at Crow's 
Nest 

(e) 

(b) (a) 

(d) (c) 

(f) 



139 
 

  

  

  
Figure D.11: Comparison of Observed rainfall [mm] [blue] at Mount Brisbane for the periods (a) 1948 – 1960, 

(b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the GFDL Mk2.1 
GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.12: Comparison of Observed rainfall [mm] [blue] at Peachester for the periods (a) 1948 – 1960, (b) 

1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the GFDL Mk2.1 GCM 
[red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.13: Comparison of Observed rainfall [mm] [blue] at Crow’s Nest for the periods (a) 1945 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2003 with data derived from the GISS - er GCM 

[red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.14: Comparison of Observed rainfall [mm] [blue] at Mount Brisbane for the periods (a) 1945 – 1960, 
(b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2003 with data derived from the GISS - er GCM 

[red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.15: Comparison of Observed rainfall [mm] [blue] at Peachester for the periods (a) 1945 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2003 with data derived from the GISS - er GCM 

[red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.16: Comparison of Observed rainfall [mm] [blue] at Crow’s Nest for the periods (a) 1945 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the MIROC - medres 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.17: Comparison of Observed rainfall [mm] [blue] at Mount Brisbane for the periods (a) 1945 – 1960, 

(b) 1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the MIROC - 
medres GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Figure D.18: Comparison of Observed rainfall [mm] [blue] at Peachester for the periods (a) 1945 – 1960, (b) 
1960 - 1970, (c) 1970 – 1980, (d) 1980 – 1990 and (e) 1990 – 2000 with data derived from the MIROC - medres 

GCM [red]. Coefficient of determination for the two sets of data from 1948 - 2000 provided in (f). 
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Appendix E: Projected Changes in Climate Predictor Variables 
 

The table below depicts projected changes in the selected predictor variables 

over the coming century. A thirty year average is taken at the nearest grid 

point from the GCM’s used in this research. The MIROC – medres GCM title 

has been abbreviated to MIROC – med for the sake of keeping continuity of 

the cell size of the table. Predictor variables abbreviations are as above and 

the height of the variable is taken at 850mbar except for meridional wind 

speed (Vwnd) which had higher correlations at the 600mbar height 

(Appendix A). 
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Table E.1: Projected changes in climate predictors from 1980 to 2100 over region of interest. 
Values are a 30 year average taken at the nearest grid point to the region. Prw: Precipitable 
Water [kg/m²], Z850: Geopotential Height of 850mbar [m], RH and q: Relative and Specific 
Humidity at 850mbar[%][standardized value], u at 850mbar and v at 600mbar: Zonal and 
Meridional Wind speed [m/s]. 

Predictor Model 1980-2010 2010-2040 2040-2070 2070-2100 
Prw   CNRM – cm3 26.78 27.80 29.46 31.38 

GISS - er 25.86 27.41 28.92 30.58 
GFDL Mk2.1 22.03 23.15 23.55 24.58 
MIROC - med 23.82 25.79 28.08 30.74 
CCCMA - t63 20.05 21.17 23.08 25.07 
CSIRO Mk3.5 27.47 29.45 31.11 33.08 

Z850   CNRM – cm3 1534.71 1543.58 1551.96 1556.31 
GISS - er 1512.97 1517.05 1521.63 1526.10 
GFDL Mk2.1 1520.95 1528.27 1537.19 1542.57 
MIROC - med 1529.23 1536.71 1545.00 1554.22 
CCCMA - t63 1539.53 1545.24 1552.38 1556.12 
CSIRO Mk3.5 1539.43 1544.30 1551.88 1558.18 

RH   CNRM – cm3 64.50 63.02 62.27 62.88 
GISS - er 62.52 63.50 63.15 63.80 
GFDL Mk2.1 63.30 63.64 61.61 61.83 
MIROC - med 63.75 63.75 63.47 64.63 
CCCMA - t63 54.88 56.13 56.31 58.45 
CSIRO Mk3.5 60.71 61.00 58.75 58.74 

q   CNRM – cm3 0.0076 0.0079 0.0082 0.0087 
GISS - er 0.0070 0.0083 0.0087 00.93 
GFDL Mk2.1 0.0064 0.0068 00.70 0.0073 
MIROC - med 0.0094 0.0067 0.0072 0.0078 
CCCMA -  t63 0.0051 0.0056 0.0060 0.0065 
CSIRO Mk3.5 0.0063 0.0067 0.0071 0.0076 

u   CNRM – cm3 -1.63 -1.89 -1.89 -1.97 
GISS - er -1.13 -1.89 -2.00 -2.11 
GFDL Mk2.1 -1.92 -2.19 -2.00 -2.09 
MIROC - med -0.61 -0.43 -0.34 -0.50 
CCCMA - t63 -2.12 -2.38 -2.57 -2.97 
CSIRO Mk3.5 2.24 2.18 2.32 2.20 

v   CNRM – cm3 1.22 0.48 0.60 0.31 
GISS - er -0.26 1.43 1.59 1.70 
GFDL Mk2.1 0.06 2.92 3.43 3.23 
MIROC - med 0.51 1.61 1.55 1.33 
CCCMA - t63 1.59 1.96 2.12 1.78 
CSIRO Mk3.5 1.83 1.50 1.86 2.13 
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