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Federated learning for edge computing is a promising solution in the data booming era, which leverages the
computation ability of each edge device to train local models and only shares the model gradients to the central
server. However, the frequently transmitted local gradients could also leak the participants’ private data. To
protect the privacy of local training data, lots of cryptographic-based Privacy-Preserving Federated Learning
(PPFL) schemes have been proposed. However, due to the constrained resource nature of mobile devices and
complex cryptographic operations, traditional PPFL schemes fail to provide efficient data confidentiality and
lightweight integrity verification simultaneously. To tackle this problem, we propose a Verifiable Privacy-
preserving Federated Learning scheme (VPFL) for edge computing systems to prevent local gradients from
leaking over the transmission stage. Firstly, we combine the Distributed Selective Stochastic Gradient Descent
(DSSGD) method with Paillier homomorphic cryptosystem to achieve the distributed encryption functionality, so
as to reduce the computation cost of the complex cryptosystem. Secondly, we further present an online/offline
signature method to realize the lightweight gradients integrity verification, where the offline part can be securely
outsourced to the edge server. Comprehensive security analysis demonstrates the proposed VPFL can achieve data
confidentiality, authentication, and integrity. At last, we evaluate both communication overhead and computation
cost of the proposed VPFL scheme, the experimental results have shown VPFL has low computation costs and
communication overheads while maintaining high training accuracy.

1. Introduction sufficient local services through the whole cloud service architecture [8,

9]. Therefore, the bottleneck of computation and communication for

With the development of Artificial Intelligence (AI) chips and algo-
rithms, Internet-of-Things (IoT) infrastructures are widely deployed in
multiple areas including vehicle networks [1], medical devices [2], smart
grids [3], and smart cities [4]. However, the traditional cloud computing
architecture is hard to meet the requirements during the data-processing
for the real-time services due to the limitation of network bandwidth and
privacy concerns [5]. To overcome the limitations, edge computing [6,7]
has been introduced into the computation paradigm of IoT. It introduces
an Edge Server (ES) for local processing which processes the raw data
with aggregation, mining, or sharing tasks. In edge computing, ES plays
an important role as a preliminary processing device that provides
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traditional cloud-based architecture can be solved.

Recently, to achieve edge intelligence, Federated Learning (FL) has
been envisioned as a novel technology to provide the ability on pro-
cessing big data and protecting user privacy [10,11]. As shown in Fig. 1,
FL only requires the end devices to train a local model on each device and
upload the local model updates such as gradients or weights to the central
server [12]. Although the FL can provide the basic privacy guarantee,
participants' local training data is still under high leaking risks if they
upload the model parameters to an untrusted server [13], such as
gradient inference attacks [14] or model inversion attacks [15]. Recent
research demonstrates that the untrusted server has the ability to recover
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All the local model are aggregated and averaged to update the global model
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Fig. 1. Federated learning framework with edge computing.

the user's local data from the uploaded model gradients or weights [16,
17]. The untrusted server can observe the model structure, initial pa-
rameters, and the changes of the gradients or training labels, so as to
reveal private information from participants by using adversarial tech-
niques [18] [-] [21].

Another security challenge in federated learning for edge computing
is that the participants cannot be fully trusted either [22]. The untrusted
nodes may leak the data from other participants, poisoning the global
models and destroying the gradients aggregation protocol [23]. Addi-
tionally, the malicious users may also be able to listen to the communi-
cation channel among the participants, and try to modify the upload
gradients, create fake signatures, or destroy the normal gradients trans-
mission procedure by initialing a relay attack. To protect the user privacy
from untrusted nodes, many Privacy-Preserving Data Aggregation
(PPDA) approaches have been proposed [24-31]. Most of the approaches
apply homomorphic cryptosystem to demonstrate the specific functions,
such as sum, max or min to guarantee the data privacy.

However, there are still many practical challenges that need to solve
when applying PPDA schemes to federated learning scenarios. The first
challenge is to overcome the high communication delay when processing
the real-time training tasks, based on the nature of frequent communi-
cation for edge computing IoT systems. Secondly, data authentication
and verification schemes are crucial to prevent external attacks such as
modifying gradients or labels, forging signatures, and replaying attacks.
Lastly, to process a large amount of authentication and verification re-
quests, huge computation resources are needed which exhausts the
resource-constrained IoT systems. Therefore, a novel lightweight PPDA
approach is desirable to reduce the computational cost and fulfill the
privacy-preserving requirements.

In this paper, we propose a verifiable privacy-preserving federated
learning scheme, named VPFL, for edge computing systems by combining
the Paillier homomorphic cryptosystem, DSSGD approach, and online/
offline signature method. Firstly, the DSSGD approach is used to realize
the distributed encryption property during the local training stage, so as
to reduce the computation costs of the cryptosystem. Then, the security of
the server-side gradients aggregation can be guaranteed by using the
additive homomorphic property of the Paillier cryptosystem. Moreover,
to further verify the gradients’ integrity in federated learning, a light-
weight online/offline signature method is utilized to shift the integrity
verification tasks into the edge server. Therefore, the heavy computation
costs can be reduced and more suitable for resource-constrained edge
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computing framework. The main contributions of this paper are as
follows.

e We propose a verifiable privacy-preserving federated learning scheme
(VPFL) based on the Paillier homomorphic cryptosystem and
distributed selective SGD method. Each participant's gradient vector
can be divided into different shards and encrypted in a distributed
manner.

e We present an online/offline signature method to realize lightweight
integrity verification during the gradients transmission stage. The
mobile devices are only required to execute simple online processes
while most time-consumed offline operations are safely outsourced to
the edge servers.

e We provide a comprehensive security analysis to illustrate how the
VPFL scheme can achieve data confidentiality, authentication, and
verifiability. Exhaustive experimental evaluations demonstrate that
the VPFL scheme can realize high performance on accuracy and
efficiency.

The rest of our paper is organized as follows. The related works are
summarized in Section 2, followed by the preliminaries in Section 3. The
proposed VPFL is detailed in Section 4. Section 5 and Section 6 analysis
the security and system performance, respectively. Section 7 gives the
summary and future work.

2. Related work

For the privacy-preserving data aggregation and integrity verification
methods, previous works mainly focused on applying the homomorphic
cryptosystem to secure data aggregation in different application sce-
narios [24-30]. Some researchers applied different homomorphic
encryption methods to construct PPDA approaches, such as additive and
multiplicative homomorphism [24-26]. To prevent internal attacks, Fan
et al. [27] added the blinding factors in the encryption step to enhance
the privacy guarantee. Additionally, Ni et al. [28,29] proposed PPDA
approaches with random noisy technique and trapdoor hash function,
which can verify data integrity during ciphertexts transmission.

To protect the privacy of participant's local training data, many PPFL
approaches have been proposed [32-38]. For examples, Xu et al. [32]
proposed HybridAlpha which applies functional encryption-based SMC
protocol for PPFL. In addition, Chen et al. [33] designed a
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training-integrity protocol based on the Trusted Execution Environment
(TEE) to prevent attacks. Wei et al. [34] proposed a user-level differential
privacy scheme by adding the crafted noises to local gradients during the
uploading procedure. Li et al. [35] proposed a chained Secure
Multi-party Computing-based federated learning to prevent the data
leaking of the shared models. To prevent the data leak in industrial
artificial intelligence, Hao et al. [36] proposed privacy-enhanced feder-
ated learning which is able to prevent the data leaking via colluded
entities.

Besides, to guarantee the integrity of local model gradients, the
Verifiable Federated Learning (VFL) was proposed by Fu et al. [37] which
applied Lagrange interpolation to verify the aggregated gradients. Guo
et al. [38] proposed VERIFL which is specially designed for limited
bandwidth and high-dimensional gradients federated learning partici-
pants. Zhang et al. [39] presented a lightweight batch encryption method
in a federated learning framework, which can encode a batch of gradients
into a long integer data type. In Ref. [40], the authors presented a
privacy-preserving and verifiable federated learning scheme to process
the shared gradients by combining the Chinese Remainder Theorem and
Paillier homomorphic encryption. However, the aforementioned ap-
proaches only consider user privacy and data integration for federated
learning, and the computational cost of the system had been ignored.

Computation costs of cryptography have drawn the attention of re-
searchers recently, where many PPDA methods with low costs of cryp-
tography have been proposed. A smart grid system that can predict the
electricity demand for a certain cluster of houses with a lightweight
PPDA system has been proposed [41]. This approach can fulfill both
privacy-preserving requirements and low communication costs. Xu et al.
[42] firstly focus on resisting data link attacks and proposed a data ag-
gregation and classification approach for vehicular sensing systems.
Guan et al. [43] proposed work on certifying local IoT devices and fog
nodes by multiple authorities for fog-enhanced IoT. In our early work
[44], we proposed a Double Trapdoor Chameleon Hash (DTCH) based
online/offline signature and verification approach to reduce the
computational costs of verifying data integrity.

However, the aforementioned works did not consider the high
computational cost of signature and verification operations for data
integrity. Therefore, the proposed VPFL includes a novel lightweight
PPDA method that can provide a lightweight data integrity verification
service with user data privacy protection mechanism for edge computing-
enabled federated learning IoT systems.

3. Preliminary

In this section, we briefly introduce several definitions and notations
used in our proposed VPFL scheme, including bilinear pairs, Paillier
homomorphic cryptosystem, and online/offline signatures.

3.1. Bilinear pairs

With prime order p, G and Gr present two multiplicative cyclic
groups, where g represents a generator of group G. According to Boneh
et al. [45], a nodegenerated and computable bilinear mape: G x G —
Gr should satisfies the following three properties:

1. Bilinear: e v?) = e(u,»)®, where u,v € G,a,b € Z;.
2. Nondegenerate: e(g,g) # 1g,, where g € G.
3. Computable: e(u, v) can be efficiently computed.

To evaluate the security of VPFL, we give the following definition and
theorem.

Definition 1. ¢-SDH: Given two elements (m,x) € Z; , g-Strong Diffie-
Hellman can be defined as calculating a pair (m, %,). The ¢-SDH is a (g,
t, €)-hard problem when Eq.1 holds for any t-time adversary .A.
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Pr {A(g,g‘,g(“z), ...,g(‘”)) = (m, Zx)] <e (€8]

3.2. Paillier homomorphic cryptosystem

We utilize the advantage of Paillier homomorphic cryptosystem [46]
which is able to achieve additive homomorphism property to guarantee
the model confidentiality during the model aggregation on the central
server. Paillier homomorphic cryptosystem can be divided into the
following steps.

1. Key Generation: Initially, selecting two primes (p, q) to compute the
Carmichael function and RSA modulusas A= (p — 1)(q — 1) and n =
pq, respectively. Further calculating the private element u =

(R(g*mod nz))fl, where R(u) = 2.

. Encryption: Given a plaintext m; € Z,, the encryption algorithm out-
puts the ciphertext as ¢; = g™ -r"mod n?, where gcd(r, n) = 1.

. Aggregation: On receiving multiple ciphertexts c;, the aggregation al-
gorithm calculates the aggregated ciphertext as ¢ = [[;cimod n2.

. Decryption: On receiving c, the decryption algorithm computes the

aggregated plaintext as m = £ ;m; = R(c*mod n?)umod n.

3.3. Online/offline signatures

For achieving online and offline properties, we utilize a useful Double
Trapdoor Chameleon Hash (DTCH) function [47] to divide a complete
signature mechanism into two phases. Firstly, DTCH selects two elements
y,2 € Z;l and randomly generates (a, b, ¢) from chameleon hashes. Then,
it computes Hgy(a, b, ¢) = g2 -gb- g5, where g = gJ, g5 = g¢. DTCH
function satisfies three properties of computable, collision resistance, and
trapdoor collision, which have been proved at length in Ref. [47].

In this paper, we applied the “hash-sign-switch” approach with the
aforementioned DTCH function to construct the online/offline signature
method, which can be represented as the following algorithms.

1. System Setup: It takes a random parameter 1 as input, and outputs the
signature and verification key pair as (Sigs, Verpi).

. Offline Signature: It takes (Sigy, Veryy) as inputs, and outputs Xo and
SI, which represents the offline signature report and state
information.

. Offtine Verification: It takes (Verpk), Zof as inputs, and outputs the
offline verification results (accept or reject).

. Online Signature: It takes (Sigs, SI, m) as inputs, and outputs the online
signature report ;.

. Online Verification: It takes (Veryk, m, Zon, Zof) as inputs, and outputs
the online verification results (accept or reject). In this way, the on-
line/offline signature of a certain message m is defined as = = (Zof,
2on)~

Note that, the bilinear pairs can provide the mathematical basics and
generate the key materials. Besides, the Paillier homomorphic crypto-
system is used to guarantee the data confidentiality of the local training
gradients, while the online/offline signature is a key technology to ach-
ieve data integrity during the parameter transmission phases. In the next
section, we will show the details about how to apply the Paillier homo-
morphic cryptosystem and online/offline signature to the federated
learning algorithm.

4. Our proposed VPFL scheme
4.1. Overview of VPFL scheme

As shown in Fig. 2, our proposed VPFL scheme consists of four
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entities: Mobile Device (MD), Edge Server (ES), Central Server (CS), and
Key Materials Generator (KMG).

1. MD: a set of participants that join in the federated learning protocol
by training the local model on the sensed data. During the training
procedure, all the participants transmit the local ciphertexts to the
edge server and verify the correctness of the aggregated ciphertext.

. ES: a set of relay units that execute the outsourced online/offline
signature and verification processes. In this way, the communication
overheads of MD can be reduced since the local ciphertexts are sent to
the nearby ES instead of the long-term distance central server.

. CS: a central entity that verifies and aggregates all the received local
ciphertext. It also generates the aggregation signature and sends it to
the MD along with the aggregated ciphertext.

4. KMG: a fully trusted entity that bootstraps the VPFL system and
generate the key materials, including the Paillier public and private
key pair, hash functions, random elements et al. We assume that the
key materials can be secretly transmitted among different VPFL en-
tities through a secure communication channel.

In Fig. 2, the overall procedure of the VPFL scheme is divided into the
following five phases: initialization phase, registration phase, local training
phase, aggregation and decryption phase, and global update phase. In the
next subsections, we will show the details of the above-mentioned
different phases.

4.2. Initialization phase

In the proposed VPFL, a trusted entity (KMG) exists that is responsible
for bootstrapping the federated learning and transferring the crypto-
graphic information to MD and CS. Note that, KMG only joins the system
initialization and will not involve in the further processes.

For key materials generation (KMG execution):

1. Draw a random number p; and a bilinear mape : G x G — G, where
|p1| = k1 and (k, k;) are two security parameters.
. Generate Paillier cryptosystem key pair (pk, sk) = (n, g), (4, ), three
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3. Compute e(g;,g1)* and ¥ = g%, where &, X € Z;l, Q € G are three

randomly generated elements.
4. Release the initialized key materials to MD as

|

(4,4,p,9, @,

G, GTJ n,pi,8 0,7,

km:{ : @
e(gr,81)", Ho, Hy, Hy, Ho,

5. Assign the master key mk =
transmission channel.

X) to CS through a secured

4.3. Registration phase

When a new user i joins the VPFL system, i needs to register and
authenticate its identity first. Once the authentication succeeds, it is
required to generate the offline signature and transmit it to CS.

For user registration (MD execution):

1. Draw x; € Z; as the signature key Sigy and y; =
cation key Very.
= H;(k{||ID;||SIy), where k; € Z; is a blind factor and ID;
represents participant i's identity.
. Compute o; = g7 and p; = ¢; — x;Ha(ay).
. Send the registration material {y;, @;, f;} to CS.

g* € G as the verifi-

. Compute ¢;

For identity authentication (CS execution):

- Ho(a;
— gflyi (o)
. Compute ak; = (g,%-y%, Q% g %) as the authenticated key of partici-
pant i, where t; € Z;l

1. Check the correctness of equation o;

. Broadcast the registration material {y;, a;, f;}.
For offline signature generation (MD execution):

1. Draw (y,2,s;,u) € Z,,.

* — — 0% i i — .G AT
secure cryptographic one-way hash functions Hp:{0,1} — G, 2. lCornlp ute g gJIV » & = g{ and keep state information SI = (e; s; u) in
A N . ocal.
H; :{0,1} - Z,, Hy: G - Z,, and one Chameleon hash function . .
1 ] 1 p> 112 P’ 3. Compute the BLS signature [48] based on DTCH function as
Hgy, : ZP] - G.
LS X
P = (Ho(Hen, (€1, 51, 1)) )" 3
Aggregated Aggregated
ciphertext plaintext
cs
PR ‘ Aggregation and decryption | S KMG
-
' d
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Fig. 2. The architecture and system model of VPFL scheme.
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4. Compute the offline signature as

S0 = (55|

H.,

ID,||S1) 4

which is sent to ES.
5. Send the online verification key Ver,, = (g1, g2, g3) to CS.

4.4. Local training phase

In this phase, ES will batch verify all the received offline signatures

fof . Then, MD executes the local training processes based on the DSSGD
method [49] and encrypt the local model gradients to generate the ci-
phertexts. Finally, the local report will be sent to CS along with the online
signature X"

For offline signature verification (ES execution):

1. Check the correctness of equation e(g,>P5) = e(y;, Ho(He,)) by
using Very..

2. Batch verify the offline signature by determining whether the
following equation is true

ﬁ e(yi,Ho(Hu,)) =€ <gl 7 ﬁ Z[I_iLS)

i=1 i=1

)

3. If the above equation holds, return accept, otherwise return reject.
For local ciphertext generation (MD execution):

1. Compute gradient vector in a certain communication round of
federated learning as

gV =V, L(w,d);d €D (6)

2. Split the weight w; and gradientgrasw, = (W}, ..., w") and g = (g},...,
&)

3. Compute local parameters: wﬂl

— il
4. Generate local model updates: Lgl = wg —w,
5. Compute the local ciphertext as

(i)
¢

= g(th). () "mod n?;v" € Z, @

For online signature generation (MD execution):

1. Compute u; = <(ei —cﬂ )+ (i —si )y + uiz)z’l, where s; € Z;l.

2. Generate online signature as =" = (s;,u; ).
(@)

3. Send the local ciphertext c,,

, and online signature %" to CS.

4.5. Aggregation and decryption phase

In the aggregation and decryption phase, CS first verify the validity of
all the received online signatures X". Then, it aggregates all the local
ciphertexts and executes the decryption algorithm to extract the aggre-
gated model updates in plaintext form.

For online signature verification (CS execution):

1. Verify the correctness of X" by determining whether the following
equation is true

He(riy si,u:) = Hoy(ciy 51,147 ®

2. If the above equation holds, return accept, otherwise return reject.
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For aggregation and decryption (CS execution):

1. Compute the aggregated ciphertext as

Nyl

i
Crel = Hcfll mod n?
i=1

9

M1 o7 (i) ;
2. Transfer ¢;y1 to gZifll(LHl) . H:l:ll (VEO)H mod n2, which is a standard
Paillier encryption form.

3. Decrypt the aggregated ciphertext ¢, as

R(c;+1*mod n?)

L =—ml 208 )
17 "R(g'mod n?)

mod n

(10)

4.6. Global update phase

In this phase, CS further average the aggregated plaintext L;.; to
generate a new global model as

G(glohn[)

o _ Gﬁglobal) 4

1
Ly an
1

Ney

When a next communication round t + 1 starts, each participant i updates
it local model parameters w1y based on w1 < w8 — i -Gg‘ibal).
The whole VPFL procedure will not end until the global model w&be

tends to convergence.
5. Security analysis

5.1. Verifiability of signature

Theorem 1. In the VPFL scheme, if all the entities can execute the algorithm
honestly, the online signature verification and offline signature verification
phases could also be computed correctly.

Proof. For offline signature verification phase, ES checks all the
received offline signature e(gy,2PS) by using the batch verification
method. We prove Eq. (5) through the following derivation process:

[T et Hutta)) = T et io(ta)

= He(gl,ZfLS) = e(gl,HZf“)
i=1 =

For online signature verification phase, CS checks all the received
online signature X"
Hu(ci,si,u;' ) holds. We prove Eq. (8) through the following derivation
process:

(12)

(s{,u;') by determining whether H(r;,s;, u;)

Ho(crysi,ui) = g7 -85 -84
=g (g,;')xf _gi((n76,)+(J,7S.‘),v+tl,z)z !

=g (8D g () g (13)
= ()" (&))" (&) =gl & &Y
= r/;(h‘;&‘»%‘)

5.2. Participant authentication

Theorem 2. In the VPFL scheme, each participant’s identity ID; can be
efficiently authenticated by CS, while the private identity information will not
be leaked to any entity.

Proof. In the registration phase of the VPFL scheme, we utilize a
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simple extended Schnorr’s signature method based on discrete logarithm
problem [50], to authenticate the identity ID; of each participant. Spe-
cifically, CS authenticates the identity of i based on the received regis-
tration material {y;, a;, f;} as

Hy (a;
g/]}lY, 2 (ai)

ri—xiHs(a; XiHy (a;
— gl | gutn(a)

=gi=u a4
The security of authentications rely on the unforgeable of registration
material {a;, ;}. In VPFL, we utilize a blind factor k; and the hash func-
tion H; to hide the participant i's identity information ID; and hash
function value e;. Without ID; and e;, the adversary has no way to obtain
the signature key x; € Z;, thus guarantee the security of participants’

authentication in the proposed VPFL scheme.
5.3. Confidentiality and privacy-preserving

Theorem 3. In the VPFL scheme, if the Paillier cryptosystem is proved to be

secure, the ciphertext cgl can prevent the gradients information Lgl from
being leaked to the internal and external adversaries.

Proof. In the local training phase of the VPFL scheme, a Paillier
encryption method is used to transfer all the local gradients L(i)1 to the

t+
ciphertext cgl. Whenever C£i+)1 is transmitted to CS, it firstly aggregates

all the received ciphertexts as c;1. Then, CS can derive the aggregated

plaintext L, from c. 1, since ¢,11 = gz.'":] @) . HE’ (vfi))n mod n? is
also a valid ciphertext form of Paillier cryptosystem. In this situation, the
decryption key (4, u) consists of two random variables which are specific
in each communication round and invisible to any internal and external
adversary. Moreover, each individual’s gradient information L§i1 can be
protected since CS can only obtain the aggregated plaintext L. ;. In
summary, our proposed VPFL scheme can offer confidentiality and

privacy-preserving for the participants’ local gradients.
5.4. Integrity verification

Definition 2. EU-CMA: We say an online/offline signature method is
existential unforgeability under chosen message attacks [31,51] if an
adversary A can successfully forge a signature ¥ through multiply queries
to the signature oracles (=, %) with a probability of no less than

Pra = Pr| Ver,(pk,in,£) = 1 : (pk, sk); (i, £) « AE"") (15)

Theorem 4. In the VPFL scheme, the embedded online/offline signature
scheme is (z, €, q1, q2) secure against EU-CMA if the there exists a challenger C
that can compute the q-SDH problem with a non-negligible probability £ > £
%2 in polynomial time.

Proof. According to the Definition 2, EU-CMA represents an adversary
A tries to forge a valid signature 3 of the target message i by multiply
querying the online/offline signature oracles (=", ). We turn the
above problem into an adversary-challenger game based on the Defini-

tion 1. That is, the adversary A obtains a set of q-SDH instances (g,g",
%2
g,
by constructing a new valid online/offline signature & = (ﬁan,ioﬁ ). The
detailed proof process of Theorem 5 can be found in our previous work in
[31]. Here, we give a brief description of the proof process as follows.

Assuming the adversary A already queried g;-th offline and g»-th online
signatures of the target message m (represent as (igj?( , ﬁZ:)) and
gmgsgsit = gmigigy’ for some i€ {1,...,q2}, or § #s; happened. Then,
the challenger C forges one of the double trapdoors y or z, and further

...,g(") from the challenger C, which can solve the g-SDH problem
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generates a new Chameleon hash function value H,,. So far, we know
that the probability of grg,Sgsit = g™ g; g5 occurred is no less than &/3
and $ = s; happened is 1/p. Therefore, for online signatures that have
been queried g5 times, the probability of § = s; occurred is no more than
qa2/p. We say that if the adversary A can successfully forge a new

signature £ = (i, £ (3, ﬁ),ﬁoff (z,€,5,01)) that meets the condition of
gmg,sgslt = gMigigy, then the challenger C can also compute
v =y = (-m) + (@-u)z)(s — )"
(u; —@1)~" correctly. That means the challenger C can solve the q-SDH
problem with a minimum probability of ¢/3 — qo/p. In this way, the
Theorem 5 is proved since the above conclusion of challenger C is con-
trary to the Definition 1.

or 7=2g=((M—m)+ (§—s;)2)

6. Performance analysis

This section evaluates the performance of the proposed VPFL scheme
from the computational complexity, communication overhead, and per-
formance on federated learning, respectively. For the computational
complexity evaluations, we compare our proposed VPFL scheme with the
other three recently related works [37,39,40]. For the communication
overhead evaluations, we choose two traditional data aggregation
methods [25,28] to comparably demonstrate the effectiveness of the
VPFL scheme.

6.1. Dataset and experimental setup

We use a benchmark dataset MNIST for our experiment, which is
consist of 70000 instances of handwriting digits, which consists of 60000
training images and 10000 testing instances. For the experimental set-
tings, we apply the pairing-based cryptography (PBC) library to measure
the costs of the Paillier cryptosystem. The RSA modulus n and security
parameter p; are set to 1024 bits and 160 bits, respectively. For
comparing the classification performance, we apply the Convolutional
Neural Network (CNN) as the image classifier for the MNIST dataset. The
CNN structure includes two convolutional layers and two dense layers
with ReLU as the activation function, additionally, kernel size is set to 4
x 4. The result will go through a Softmax layer of the total 10 classes of
MNIST. All the experiments were conducted on Nvidia Quadro P4000
GPU and 32 GB RAM platform with Linux RHEL7.5 system.

6.2. Computational complexity of cryptosystem

There are several calculations required for the proposed VPFL, which
include two exponentiation operations in Z,: to generate ciphertext c;
and three multiplication operations in G to calculate the online signature
22", The online signature will be verified by ES, where all the collected
ciphertexts will also be aggregated by ES by using the aforementioned
exponentiation and multiplication operations in G and Z,.. Furthermore,
the aggregation signature 44 will be generated by one one exponenti-
ation operation in G on ES. The generated Xag will be sent to CS and
verified by CS, where it decrypts the aggregated ciphertext ¢ to obtain the
sum plaintext of the previous operations.

The complexity analysis above proves that cryptographic operations
and signature operations require less time-consuming in terms of MD.
Fig. 3(a) compares the overall computational cost among the four ap-
proaches. The results show that the computational cost of the proposed
VPFL is significantly lower than other three approaches [37,39], and
[40]. In which the proposed VPFL shift the time-consuming complex
operations into the offline phase. Fig. 3(b) compares the time cost ten-
dency of signature and verification parts. It is clear that the time cost of
verification and signature operations in the proposed VPFL is almost 50%
lower than the other three methods.
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Fig. 3. Computational complexity of cryptosystem compared with [37,39], and [40].

6.3. Communication overhead of cryptosystem

For the evaluation of communication overhead, we set the RSA
modulus n and security parameter p; to 1024 bits and 160 bits respec-
tively. Then, we compare the communication overheads of two trans-
mission stages by using the numerical analysis method. Specifically,
there are two phases in the proposed VPFL which are MD to ES
communication (MD-to-ES) and ES to CS communication (ES-to-CS). MD
first generates a data report and sent to a edge server ES, which can be
represented as P; = ID;||c;|[SL;||={" in the MD-to-ES phase. The proposed
VPFL scheme can reduce the communication cost significantly since
traditional cloud computing requires each participant to upload their
reports individually. Fig. 4 compares the communication cost on both
two phases of the proposed VPFL and the other two approaches [25,28].
The results show that the proposed VPFL work more efficiently than [25,
28] when the number of users increases. Note that, the results in Fig. 4(b)
have no changes when the number of users increases, this is because
there is no correlation between communication costs and the number of
users in the ES-to-CS phase. Besides, since the received offline signatures
in the local training procedure are executed by using the batch verifi-
cation method, thus significantly reduces the number of communication
iterations between the edge server and each mobile device.

6.4. Performance on federated learning

We evaluate the performance of federated learning from two per-
spectives which are computational costs of cryptosystem and perfor-
mance of VPFL on MNIST dataset. Firstly, we evaluate the time cost of the
Paillier homomorphic encryption method with the change of lengths of
the gradient vectors. Fig. 5(a) illustrates that even though the times cost
increases when the number of gradients increases, however, it is still a
low time cost level for encryption and decryption operations. Moreover,
we also train a CNN model on the MNIST dataset to evaluate the
computational overheads of VPFL. Fig. 5(b) compares the trend of time
cost of the training procedure when the number of participants increases.

® VPFL ®Ref. [25] = Ref. [28]

L B
(,|I|||

200 400 600 800 1000
Number of Users

IS

Communication Overhead (Bits)
© w

(a) Communication overhead between MD and ES

The results show that the impact on encrypted training is slight, where
the result remains constant. In the meantime, the time cost of server-side
decryption and aggregation operations is kept low during the training
stage.

To further evaluate the performance of federated learning, we
perform an image classification task on the proposed VPFL with the
MNIST dataset. The classification accuracy will be measured over
different communication rounds. We construct the experiment in Pytorch
environment and set the number of participants i = 20. Fig. 6 shows that
the accuracy and loss of the proposed VPFL are very close to the results of
original federated learning. Therefore, the cryptographic operation in
VPFL does not sacrifice the performance of federated learning.

According to the above performance analysis, VPFL scheme has a low
burden on both communication overhead and computation cost, which
can be used in lots of smart IoT systems. For example, in a smart grid
system, the smart customers’ consumption information and electricity
bills cannot be directly uploaded to the central server due to privacy
concerns. By utilizing VPFL scheme, the private electricity information
can be encrypted and aggregated to realize privacy protection. Besides,
the signature and verification methods can also provide the integrity of
electricity information during the transmission procedure.

7. Summary and future work

In this paper, we proposed the VPFL scheme, a verifiable privacy-
preserving federated learning scheme for edge computing systems to
prevent local gradients from leaking over the transmission stage. The
VPFL allows each participant to encrypt the local gradients efficiently
through the Paillier cryptosystem and the central server can only observe
the ciphertexts of local updates. Meanwhile, we embedded the DSSGD
method into the VPFL scheme to reduce the computation cost of the
cryptosystem during the local training phase. Besides, we further pre-
sented an online/offline signature method to achieve lightweight
signature verification for local gradients’ integrity. At last, the compre-
hensive security analysis and experimental evaluations demonstrate that

® VPFL mRef. [25] = Ref. [28]
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Fig. 4. Communication overhead of cryptosystem compared with [25,28].
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Fig. 5. Computation cost of VPFL on MNIST dataset.
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the proposed VPFL scheme can realize privacy-preserving, lightweight
integrity verification, and high performance on accuracy and efficiency.
Since we combine the Paillier cryptosystem and signature method to
achieve confidentiality and integrity simultaneously, the tradeoffs be-
tween the privacy-preserving and computation costs are nonnegligible.
Fortunately, thanks to the mobile edge computing framework, the most
complex operations of the cryptosystem are outsourced to the edge
server, thus reducing the resource consumption of mobile devices. In
future work, we plan to study more complex neural networks and data-
sets to explore the personalized PPFL mechanisms.
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