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Abstract 

This work concerns an exploration of the ability of various metal screens to contain 

both fire radiant heat flux and firebrand attacks in a wildfire. Wildfires are a growing 

concern in many parts of the world today. Fighting wildfires is a highly complex and 

dangerous venture due to their unpredictable nature and fast propagation velocity 

caused by firebrand attack and radiant heat flux. The unchanged trends of losses 

indicate the inefficiency of current firefighting techniques and motivate the 

development of new techniques that are capable of effectively containing wildfires 

and therefore avoiding losses. 

Metal meshes are currently being used as flame arrestors and their practice in fire 

engineering sector has precedent. Metal screens are used with limited applications to 

protect structures in wildfire-prone areas. The Australian Standard for construction in 

bushfire-prone areas mandates covering all house openings by metal meshes to 

minimise the penetration of firebrands into the structures and contain the effect of 

fire radiation. Likewise, American standards such as the California residential code 

mandate screens to cover house ventilation openings in order to contain firebrands 

and flame impingements. Similar recommendations are evident in standards 

published by the International Code Council (ICC) and the National Fire Protection 

Association (NFPA) for structures in wildfire-prone areas. All indications imply that 

metal screens have a potential to contain wildfires’ propagation mechanisms. 

Therefore, it is expected that metal screens can be effective as barriers in containing 

the wildfires. This study aims to investigate the potential of metal screen to be used 

as wildfire barriers. 

In this study, the performance of various metal screens to contain both fire radiant 

heat flux and firebrand attacks was explored in two steps. In the first step, an 

experimental setup using a light source and UV-visible spectrometer was designed 

and manufactured to determine the direct radiant flux through square woven wire 

screens with porosities ranging from 41% to 66%. The tunnel-vision effect of screens 

was measured and an empirical correlation between screen porosity and the angle of 

tunnel vision was developed. The results indicate that screens are able to block 

radiation more than the value suggested by their porosity, and more importantly, 

screens are more effective for larger radiant sources. Three empirical formulas were 
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presented to calculate the direct radiant heat flux of different size fires through 

screens. 

In the second stage, an Ember Shower Simulator (ESS) was developed to study the 

performance of various metal screens against firebrand attacks. The ESS is capable 

of generating firebrands from various types of vegetation and performing 

experiments with low porosity screens at relatively high wind speeds. In a series of 

experiments, the effects of screen opening size, opening shape, wire diameter, screen 

manufacturing type and orientation of screens with respect to the firebrand flow on 

their performance against a Eucalyptus leaf firebrand shower were investigated. 

Further in this study, the combined effect of screen with different opening sizes and a 

buffer zone behind the screen was examined. 

Two important mechanisms of firebrands passing through the screens were 

identified. Some firebrands shatter into smaller firebrands called secondary 

firebrands and then pass the screen opening. Some others that are less vulnerable 

keep burning behind the screen to reduce their size and pass through the screen 

opening. The screen opening size and wire diameter were found to have a great effect 

on the shattering intensity and the size of firebrands leaving the screen. Flat screens 

had a lower shattering intensity with respect to woven screens. An inclined screen 

increased the retention of firebrands behind screens in comparison with a vertical 

screen. This study could confirm that buffer zones are effective in improving the 

protection of objects shielded by a screen against firebrands. The experiments 

showed a relation between screen opening size and the size of the buffer zone as 

more firebrands quenched within the buffer zone for smaller opening size screens. It 

was found that the combination of buffer zone and screen remarkably reduced the 

number and size of firebrands on the fuel bed. As a result, the number of firebrand-

induced ignitions significantly decreases in comparison with the condition that the 

screen is absent. 

A discussion on the effectiveness of screens to contain the two propagation 

mechanisms is provided. Based on the discussion, it was found that metal screens are 

effective in containing the fire radiant heat flux and to considerably reduce the safety 

distance from a fire. The screens are efficient in substantially mitigating firebrand 

showers when a relatively short buffer zone is established. The results imply that 



iii 
 

screens may be capable of eliminating the risks of both firebrand attacks and radiant 

heat flux if an appropriate buffer zone is established. 
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Chapter 1  

 

Introduction  

1.1. Opening 

This study aims to assess the potential of metal screens as an additional technique to 

combat wildfires. The research focuses on two most important mechanisms of 

wildfire propagations: firebrand attacks and fire radiation, with an investigation of 

the capability of metal screens to act as fire barriers against these. Following in this 

chapter, the details about the background, motivation and aims and objectives of the 

study are presented.   

1.2. Wildfire impacts and complexity 

Wildfires are devastating in terms of the scale of human and financial losses. The 

concern over wildfires is growing since their occurrences have become more 

frequent in many parts of the world. For example, in Australia, outburst of wildfires 

took the lives of 696 people between 1850 and 2001 (CSIRO 2007). In 2009, the 

worst wildfire in the history of the country occurred  in the state of Victoria and 

killed 173 people in only two days (Cruz et al. 2012). The total losses in that event 

exceeded four billion Australian dollars (Australian Institute of Criminology 2009). 

In Europe, more than 85% of wildfires happen mainly in Mediterranean regions 
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(San-Miguel-Ayanz et al. 2012). In Portugal, in the period from 2003 to 2005, 

wildfires caused the deaths of 39 people across the country (San-Miguel-Ayanz et al. 

2013). Wildfires also killed 186 and 20 people in Spain and France respectively in 

the period 1982–2007 (Viegas 2009). In the United States, wildfires took the lives of 

10 people between 1975 and 1994 (Mileti 1999). The insured losses within that 

period were also reported to be around $US3.1 billion. 

The frequent occurrence of fires in the global scale shows that the number of fires is 

increasing. Wildfires can be tragic when they move toward Wildland-Urban Interface 

(WUI) areas. The fires intensely attack these areas and can burn dwellings and kill 

humans. The concern over fires in WUI areas is growing due to increasing 

population in these areas (Hammer et al. 2009). The growing population causes the 

development of more houses and infrastructure in WUI areas and leads to greater 

human and financial losses at the time of fire. Also, it is well known that climate 

change has a great effect on increasing frequency and intensity of wildfires due to 

rise in global average temperature (Fried et al. 2004). As the problem posed by 

climate change is expected to grow, wildfires are expected to become more frequent 

and have a greater impact on WUI communities. This will jeopardise lives and assets 

in many areas, especially in parts of Europe, North America and Australia which 

have already shown records of significant losses.  

The complexities associated with wildfires arise from their enormous size and rapid 

propagation. There are reports that firefighters lost their lives as they were trapped by 

a rapid fire spread that even didn’t allow them to climb a few metres to reach their 

truck (Xanthopoulos 2007). Haynes et al. (2010) also provided a review of fatalities 

in Australian bushfires which shows that many people were trapped on the roads by 

the rapid propagation of fire after they evacuated from their houses late. The rapid 

propagation of fires also were reported by many post-fire investigations 

(Maranghides and Mell 2011; Butler et al. 1998). Cohen (2010) explains the problem 

of Wildland-Urban Interfaces areas are due to fire rapidly attacking these areas and 

burning a number of houses simultaneously through extensive ember attacks and heat 

exposure of long and intense flames. The massive number of house fires overwhelms 

firefighters’ efforts and causes them to lose control of wildfires, leading to a disaster. 

Leonard et al (2004) classified ember attacks and radiant heat flux as key fire 

propagation mechanisms (Leonard et al. 2004). These factors have also been 
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identified as fire spread mechanisms and the direct cause of house ignitions in other 

research and reports (Tolhurst and Howlett 2003; Ramsay, Rudolph, and Rudolph 

2003; Building, Commission, and Victoria 2010).   

1.3. Current status of controlling wildfires 

In the previous section, the significant losses of wildfire incidents and their growing 

trends were reviewed, and firebrand attack and fire Radiant Heat Flux (RHF) were 

introduced as key fire propagation mechanisms. Fire “embers” or “brands” are 

airborne debris which are sourced from burning vegetation that may fly kilometres 

ahead of fire front by means of the air stream (Chandler et al. 1983; Wells 1968). 

Wind speed has a great impact on severity of firebrand attacks. Chen (2004) noted a 

wind speed of 18 m/s for the Canberra fire in 2003 and Butler et al. (1998) noted 

wind speeds ranging between 13-20 m/s for the South Canyon Fire in Colorado in 

1994. These burning brands fall on the ground and start spot fires. The process which 

is called firebrand or ember “spotting” induces a number of spot fires and spreads 

fire in a vast area surrounding the fire front. Firebrand spotting is the main cause of 

house destruction during wildfires (Chen 2004; Wang 2006 ; Stephen L. Quarles et 

al. 2010) and induces ignition by landing on houses or entering the structure via 

house openings or broken windows (Barrow 1944; Long and Randall 2004; Poon and 

England 2002) from excessive fire radiant heat exposure (Ramsay et al. 2003). The 

fire intensity can reach 100 MW/m (Wahlquist 2006) and has a large role in drying 

the surrounding areas and creating suitable conditions for possible ignition by 

firebrands or flame impingement. The radiant heat flux can itself be a source of 

ignition in cases of long exposure. Butler and Cohen (1998) reported a radiation 

intensity of 80 kW/m2 for a 20-metre-wide fire. Cohen (2004) investigated the fire 

radiation and showed that the intensity varies from 80 kW/m2 at a distance of 10 

metres to 20 kW/m2 at a distance of 40 m from the fire front. This is extremely high 

since human skin experiences pain at an intensity level greater than 2 kW/m2 and 

skin burns instantly at an intensity of 12 kW/m2 (Valendik and Kosov 2008). 

Moreover, timber can be ignited after a long exposure to a radiant intensity of 12.6 

kW/m2 and above, and mechanical failure of steel structures is expected to take place 

at an intensity of nearly 25 kW/m2 (Zárate et al. 2008). 
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Existing suppression techniques are unable to protect people and houses when 

wildfires fiercely attack WUI areas and burn a number of houses simultaneously 

(Cohen 2010). The ground firefighting operation is not quite effective in this type of 

fire due to severe ember attacks, fire radiation and rapid changes of fire behaviour 

which jeopardise the lives of exhausted firefighters. Also, there is doubt over the 

effectiveness of aerial firefighting as the efficiency is estimated to be only 5%-15% 

(Pekic 2007). One of the major problems of aerial firefighting is that water is 

dropped in an uncontrolled manner and a high proportion of water is evaporated 

before reaching the fire core. Moreover, water bombardment by aerial firefighting in 

WUI areas is limited due to vulnerability of houses and people. An example is the 

death of a fire crew due to water drops by a helicopter in Greece (Xanthopoulos 

2007). The application of chemical retardants instead of water as quenching agent is 

associated with difficulties because of health and safety concerns for humans and the 

environment (Kalabokidis 2000). Besides this hurdle, special transport equipment is 

required to deliver large quantities of chemical retardants to remote areas (Pekic 

2007), which draws questions over their cost justification. 

In terms of management, many codes and guidelines provide strategies to secure the 

safety of people and houses in WUI areas, such as the International Urban-Wildfire 

Interface code (International Code Council (ICC) 2012), California Residential code 

(California Residential Code 2014) and the Australian Standard for construction in 

bushfire prone areas (AS3959-2009)(Standards Australia 2009). However, these 

standards and codes have been determined using minimal scientific investigations 

and data, and therefore their effectiveness is poorly known (Stephens et al. 2009). 

Also, the unchanged trend of house destructions (Chen 2004;Stephens et al. 2009) 

raises alerts that the codes’ implementation has not been efficient as initially 

expected. In addition, some argue the cost of modification of current houses in fire-

prone areas is an obstacle to correct implementation of standards (Ian Weir 2015; 

Mitchell 2006; Mitchell and Patashnik 2006). Other guidelines such as prescribed 

fuel management or reducing availability of fuels in ignitions zones around houses 

are suggested. While they might be effective in avoiding fire propagation through 

radiation and flame impingement, they cannot avoid ignitions of houses by firebrand 

attack (Cohen 2000). Firebrands can easily fly over the ignition zones and land on 

houses, thereby starting fires.  
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All evidence implies that an efficient protective technique which saves houses and 

residents is missing. In recent years, attempts to develop new misting systems that 

meet the drastic wildfire environment have been made. A new sprinkler system 

“WEEDS” has been designed and tested to quench wind-driven firebrands and to 

prevent house ignition (Mitchell 2006). The system was mounted on a house during 

Cedar fire in California and the house survived during and after the passage of the 

fire front. However, the author could not verify that the house survival was the 

outcome of WEEDS or other factors; there were no observations during the passage 

of the fire front. The water spray systems in general are not accepted by fire agencies 

as a protection method because of many issues associated with their efficiency and 

other factors such as their dependency on municipal water and electricity supply 

(Mitchell and Patashnik 2006). 

1.4. Metal screens as a potential solution 

For many years, screens have been used as filters and sieves. Perforated metals 

(porous metals) are being used as filters in electronic and optics to block waves. 

Application of metal mesh in fire engineering is not unprecedented and flame 

arrestors on Bunsen burners or in combustion engines are examples. Metal meshes 

are also currently being utilised in wildfire-prone areas as mandated by codes and 

regulations to cover vents (California Residential Code 2014), doors, windows and 

gutters (Standards Australia 2009). The intention is to avoid or at least limit firebrand 

intrusion and radiant heat flux, or in some cases the flame impingement into the 

houses. It is noteworthy that metal screens are likely to be effective in minimising all 

mechanisms of fire propagation, which is reason to assume there is a real possibility 

of success in applying them as fire barriers. 

1.5. Background on the potential of metal 

screens 

The potential of mesh screens in saving houses from wildfires was initially stated in 

a post-fire investigation of the Beaumaris fire in Australia in 1944 (Barrow 1944). 

The author stated in his report that the house openings covered with wire screens and 

fly wires nets had provided significant resistance against the burning debris 

penetration. The idea of metal mesh application in wildfire protection was well 
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supported some decades later when Grantham (1984) suggested that the possible 

application of metal mesh for bushfire protection since they were already used as 

flame arrestors. The idea was supported by reports from a bushfire incident stated 

that screen fences ceased fire propagation toward a military base in Surrey, UK. The 

author also addressed reports on a similar incident in Australia where a house 

surrounded by a wire mesh fence survived from the fires, while nearby houses 

completely destroyed.    

Currently, using metal mesh is mandated by many codes and regulations for 

construction at wildfire-prone areas as mentioned previously. The Australian 

standard for construction in wildfire-prone areas mandates covering house openings 

such as windows and eave ventilations by screens with a maximum aperture size of 2 

mm (Standards Australia 2009). Also, based on the residential code of California, 

any vents in houses shall be covered by screens with an aperture size in the range of 

1.6–3.2 mm (California Residential Code 2014). The National Fire Protection 

Association (NFPA) provided a compulsory standard for reducing structure ignition 

hazard from wildland fire by covering external ventilation openings with screens 

with an opening size of 6.3 mm (National Fire Protection Association 2008). 

Similarly, the international Urban-Wildland Interface code also mandated 

construction of buildings in these areas to cover vents using screens with a maximum 

aperture size of 6.4 mm (International Code Council (ICC) 2012).  

In addition to reports and standards, some recent research has focussed on wire 

screen resistance capability against wildfire propagation factors. A computational 

work by Sharifian and Buttsworth (2008) addressed the capabilities of metal meshes 

in containing the direct radiant heat flux of fires. The authors stated that shielding an 

object with screen against a radiant flux of approaching fire divides radiant heat flux 

into two distinct types. The first is the radiation that passes through the screen cell 

openings and reaches the object: Direct Radiant Heat Flux (DRHF). A portion of 

radiation which is blocked by metal screen causes a temperature rise in the screens 

and makes the screens a radiation source. This type of radiation is called Indirect 

Radiant Heat Flux (IRHF). Sharifian and Buttsworth numerically modelled single 

woven wire screens with various porosities between a fire and an object, and 

calculated the view factor. They found the blockage of DRHF is more than what the 

porosity values suggest. Also, double layers of woven wire screens with identical 
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porosities were modelled and the results showed that double layer screens with lower 

porosities can significantly block DRHF, while the drag force penalty can be 

negative for the second screen (Sharifian and Buttsworth 2010). The authors also 

declared in another computational work that if the object is too close to the metal 

screen, the total RHF would be equal to or greater than the RHF without using 

screens owing to the increased effect of IRHF (Sharifian and Buttsworth 2005). This 

resulted in a recommendation of a minimum standoff distance based on screen cell 

size that mitigates the effect of IRHF.  

The effect of screens on blocking firebrand attacks has been studied by a few 

researchers. Manzello et al. (2007) used a firebrand generator (NIST dragon) to study 

the effect of three screens with aperture sizes of 6 mm, 3 mm and 1.5 mm in blocking 

firebrand penetration into the vents. They found that the firebrands did not quench in 

the presence of screens and burnt until they could fit through the screens. The 

penetrated firebrands could ignite materials placed behind the screens. In subsequent 

work, Manzello and his colleagues conducted the same study in more detail using 

screens with cells sized 1.04–5.72 mm (Manzello et al. 2010; Manzello et al. 2011) 

and found similar results. They also discovered that screen cell size has a significant 

effect on the number and sizes of passing firebrands. Despite the penetration of 

firebrands through the screens, authors concluded that the metal screens are effective 

to mitigate the risk of firebrand attacks.   

1.6. Potential benefits of metal screen 

application 

The review on current application of metal screens strongly suggests their possible 

potentials as fire barriers. Due to possible high costs and negative visual impacts, 

temporary fencing is likely to be the more viable option. The temporary application 

of screens as a fire barrier has several potential advantages in comparison to the 

conventional techniques of cutting trees and spraying water. The first advantage is 

that screens have the potential to stop wildfires regardless of their intensity. 

Wahlquist indicated that the maximum intensity fire that could be extinguished using 

current techniques is about 2.5 MW/m of fire front but big wildfires can be up to 100 

MW/m of fire front (Wahlquist 2006). The proposed technique is not particularly 

sensitive to fire intensity if an appropriate material is selected for the screen. The 
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second advantage is related to transportation. In comparison to water, metal screens 

do not need a container – transportation of solids is much easier than transportation 

of liquids. Metal screens can be stored in wildfire prone areas without risk of 

degradation. It should be possible to re-use screens or to redeploy them to other sites 

during a wildfire event. The third potential advantage in the use of metal screens as 

wildfire barriers is the significant weight advantage at higher fire intensities in 

comparison to currently available techniques. Robertson et al. (1997) and Alexander 

(2001) estimate the amount of water required to extinguish a fire in a balsam fir slash 

forest would be about 5.57 litre/m2. The weight of 1 m2 of stainless screen which 

complies with AS 3959-2009 is about 0.5 kg which is the equivalent of 0.5 litre/m2 

of water. This weight remains unchanged for higher intensity fires. The fourth 

advantage is that the proposed system provides a safer work environment for fire-

fighters, volunteers and property owners. It should be possible to deploy metal screen 

barriers well ahead of fire arrival, in contrast to fighting fires with water which 

generally requires personnel in the vicinity of the fire. Deployment well ahead of fire 

arrival would reduce the possible risks to fire-fighters, volunteers or time 

miscalculation by property owners. The required mass of metal screen is defined by 

the length of the fire front and the height that it should cover, while in the case of 

conventional techniques it is the burning area and the height of vegetation that define 

the amount of required time to suppress or extinguish the wildfires. For example, as 

vegetation height increases, the conventional techniques require greater time and 

effort to suppress the fire, but this does not significantly affect the required screens 

and mounting time for the proposed technique. This is the fifth advantage of metal 

screens. The metal screen barriers may also have some advantages for industrial or 

urban fires. One of the main concerns during such situations is the propagation of fire 

to nearby buildings. Due to building roofs, aerial firebombing is not practical. In 

industrial or urban situations, the screen barrier technique could be a much faster 

method of containment than conventional techniques. The aerial deployment of metal 

screens using helicopters (fitted with the appropriate equipment) has the potential to 

contain fire more quickly. 

1.7. Research gap 

Previous work is not sufficient to confirm the potential of metal screens to be 

employed as wildfire barriers. Some information became available from the 
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observations that do not provide firm and conclusive evidence. The research study on 

square woven wire screens against fire direct radiant heat flux indicated the 

significant capabilities of woven wire screens in containing DRHF due to their tunnel 

vision effects (Sharifian and Buttsworth 2008). However, the computational results 

have never been experimentally verified.  

The experiments on woven wire screens to cover vents against firebrands were 

completed without quantifying the effect of opening sizes. Previous studies argue the 

effectiveness of screens without a clear definition of effectiveness. Unlike screens 

placed on house vents, a standalone screen barrier can be erected in various 

arrangements. Available screens in the market have different opening sizes, wire 

diameters and porosities. Screens are also manufactured with different opening 

shapes such as rectangular, circular and square or fabricated as woven wires or as a 

flat sheet with holes. Moreover, the barriers can be arranged in any orientation with 

respect to an approaching fire and they can be erected with a buffer zone from an 

object. It is possible to arrange the screen in a multi-layer arrangement rather than a 

single-layer screen. The screens might have various performances in any of above 

arrangements that could change the conclusion on their potential in containing fire 

radiant heat flux and firebrands. Some configurations might hinder, while others 

promote, burning caused by firebrand and fire RHF. Therefore, further studies are 

needed to investigate and quantify the potential of metal screens under consideration 

for use as wildfire barriers and provide clear answers to the following questions: 

 Do screens have the potential to effectively protect objects by containing fire 

radiant heat flux? 

 Do screens have the potential to contain firebrand attacks and prevent 

objects’ ignition? 

1.8. Aims and Objectives  

The above mentioned potential of metal screens led to consider their broader use as 

fire barrier. The fire barrier with the support of scaffold poles and securing 

cables/wires can be temporarily erected on the approaching fire side or all sides of 

the property. They can also be temporarily or permanently mounted along the side of 

roads to prevent or limit fire propagation. The delivery of the screens to the intended 

site can be aerial or ground-based. There will be a need for cranes or specially 
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designed machineries to facilitate the prompt and professional installation. In the 

case of temporary installation, after the passage of fire front, the barriers will be 

dismantled and returned to stowage. There are many aspects to be considered before 

proceeding with the plan and putting it into practice. Those aspects such as cost-

effectiveness, drag force, design of special machineries, mounting mechanism, 

material properties at high temperature are beyond the scope of this study. The most 

important question to be conclusively answered prior to addressing the above issues 

is the extent of the effectiveness of the proposed fire barrier. 

The purpose of this study is to evaluate the potential of screens as a fire barrier and to 

provide useful information for their possible design. To be more specific, this study 

assesses the potential of screens in containing firebrand attacks and fire radiant heat 

flux. The objectives of the study are listed as follows: 

1. Develop an experimental formula to determine the correlation between screen 

porosities and RHF and compare the experimental formula with available 

computational formula 

2. Develop an apparatus that facilitates experimental studies of low-porosity 

screens against firebrand attacks at high wind speeds 

3. Find the relation between the opening size of single-layer screens and their 

capability to contain firebrand attacks 

4. Discover the impact of screen porosity on their potential to contain firebrands  

5. Determine the potential of screens with different opening shapes to contain 

firebrands 

6. Evaluate the effect of screens’ manufacturing type on minimising firebrand 

attack 

7. Assess the impact of angle between a single layer screen and firebrand flow 

on the containment of firebrands 

8. Assess the possible effect of buffer zone between screen and object on the 

protection against firebrand attacks  

1.9. Thesis Outline  

The thesis contains six chapters. Chapter 2 includes a thorough literature review of 

previous studies in two separate sections. In the first section, an introduction to RHF 

characteristics leads into studies related to metal screen and transmission of RHF 
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through screens. In the second section, a review of theoretical and experimental 

studies on firebrands and spotting mechanism are described followed by a review of 

the application of metal screens in containing firebrands.  

Chapter 3 reports the results of experiments on the ability of square woven wire 

screens to contain radiant heat flux. It includes the methodology and experimental 

setup at the beginning of the chapter. The chapter continues with an explanation of 

the tunnel-vision effect of screens, and then details the transmission of light intensity 

through the screen. At the end of the chapter, the experimental correlations are 

developed for the infinite light source and then the results are compared to those of 

computational correlations. 

The development and characterization of the Ember Shower Simulator (ESS) are 

explained in Chapter 4. The ESS is a combined wind tunnel and firebrand generator 

that was designed to facilitate experiments on metal screens’ performance against 

firebrand attacks. In the chapter, the design and development processes are described 

including a thorough discussion on the necessity of the design. The chapter also 

reports the characteristics and the performance of the ESS. 

Chapter 5 includes the results of experiments on metal screen performance against 

firebrand attacks using the ESS. The chapter begins with reports on the results of the 

experiments carried out on the performance of various screens to contain leaf 

firebrands. It continues with explaining the experimental investigation on a combined 

effect of buffer zone and screen in containing firebrands.  

The discussion of experimental results is provided in Chapter 6. The chapter 

describes and gives a thorough review on the potential applications of metal screens 

as fire barriers. The discussion describes the advantages of metal screens as fire 

barriers from different perspectives. 

Chapter 7 summarises the dissertation and lists the main conclusions of this research 

study. At the end of the chapter, recommendations for the future work are provided.  

1.10. Summary  

The significant previous financial and human losses due to wildfires were explained 

at the beginning of this chapter. It was stated that the difficulties associated with the 
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wildfires are the severity and rapid propagation of fires owing to firebrand spotting 

and radiant heat flux. The inefficiency of present suppression techniques to control 

wildfires and current wildfire management practices were discussed. It was stated 

that an effective containment technique is needed and use of metal screen was 

proposed as a potential solution. The advantages and benefits of using metal screens 

were presented and a review of metal screen application mandated by current codes 

and standards in wildfire-prone areas were explained. Moreover, the results of 

previous investigations on the performance of screens against firebrand attacks and 

fire radiant heat flux were summarised. It was found that previous investigations are 

unable to confirm the potential of commercial screens as fire barriers, and further 

study to assess their potential against both propagation mechanisms is required. The 

aim of this study was explained and a list of objectives was presented. At the end, an 

overview of the thesis was provided. 
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Chapter 2  

Literature review 

2.1. Introduction 

In this chapter, a review of previous studies is presented in two separate sections. In 

section 2.2, previous studies on fire radiant heat flux passing through the screens are 

explained. It begins with describing the characteristics of fire radiant heat flux and 

continues with explaining screen potentials in containing fire RHF. A summary of 

the section is provided at the end. 

In section 2.3, previous studies on the firebrand attacks are considered. It presents the 

firebrand attack phenomena by explaining the firebrand characteristics at different 

stages of spotting process. Following that, studies on the capabilities of screens to 

stop firebrand attacks are provided and finally highlights of the section are presented. 

The last part of the chapter identifies the research gaps. 
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2.2. Metal screens and Fire RHF 

2.2.1. Fire RHF characteristics 

A vegetation fire transfers heat via the three mechanisms of conduction, convection 

and radiation. However, the radiative heat transfer is known as the main mode of 

heat transfer in vegetation fire propagation and was even cited as the sole mechanism 

of heat transfer in an no-wind condition in one study (Weber 1989). The radiation of 

a blackbody can be calculated based on the Stefan-Boltzmann equation as follows 

(Lienhard 2011),  

                                     𝑞 = 𝜎𝑇4                                (2.1) 

where 𝜎 is the Stefan-Boltzmann constant (5.67 × 10−8 Wm−2K−4) , 𝑇 represents 

the absolute temperature of the radiant surface (K) and q is the emissive power per 

unit area (W m-2). The blackbody surfaces absorb and emit radiation at all 

wavelengths and directions, and the radiation intensity varies as direction changes 

with the cosine of angle from the normal to the blackbody surface (Lambertian 

surfaces). However, blackbody surfaces do not represent the real surfaces. The 

emissive power of real surfaces is always less than the emissive power of a black 

body. The emissivity of a real surface is the proportion of radiation emitted by the 

surface to the radiation emitted by a blackbody at the same temperature. Also, the 

radiation emitted from a surface to a receiving surface is related to a geometrical 

parameter named view or configuration factor. The factor is the proportion of the 

hemispherical field of view of a radiating body that is occupied by elements of a 

receiving surface. If the elements fill all the hemispherical field, then the factor is 

equal to unity. Including these terms in equation (2.1), the Stefan-Boltzmann 

equation for the real surfaces (Drysdale 1999) becomes as follows,  

                                                𝐸 = 𝜑𝜀𝜎𝑇4                          (2.2) 

where 𝜑 is the view factor and 𝜀 stands for the emissivity of the radiating surface. 

This formula is used by many models to estimate the radiation power of fire fronts. 

Sullivan et al. (2003) stated that it is hard to assign an emissivity to fires due to their 

transient behaviour. The view factors of fires are also difficult to calculate due to 

varying height, angle and shape. Butler and Cohen (1998) calculated a safe distance 
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for firefighters as a function of the flame height and distance from the flame. A flame 

and a firefighter were modelled as flat sheets with given heights and widths. The 

temperature and emissivity of the flame were assumed to be 900°C and one 

(blackbody) respectively while the emissivity of 0.8 and temperature of 45°C were 

assumed for the surface representing the firefighter. The exchanged radiant heat flux 

of the flame increases proportionally with the increase of the flame height and the 

decrease of the distance of the two surfaces due to change in the view factor between 

two surfaces. However, Knight and Sullivan (2004) showed that the assumption of 

setting the emissivity based on opaque box models leads to an overestimation of 

RHF, by comparing the results of the opaque model to those obtained from 

experiments with an array of propane burner jets. The opaque box is terminology for 

rectangular boxes of different sizes with constant temperature and emissivity used to 

represent a fire in computational studies. They argued that the major errors in the 

models are pre-set assumptions of emissivity. They presented a semi-transparent 

flame model assuming different emissivity for random size soot particles. The model 

provided a better approximation of real flame in comparison with solid models. Both 

computational and experimental work showed that the flame angle with respect to an 

object, flame depth and flame height affect the RHF received by the object. 

However, the received RHF reduces with an increase of the distance between the 

object and the fire. Zárate et al. (2008) modelled the radiant heat flux of a wildfire 

flame as a rectangular opaque box with various heights and at different distances 

between an object and the flame. They found the same results as (Butler and Cohen 

1998). 

Many researchers investigated the wildfire flame’s radiation properties in full- and 

laboratory-scale experiments using spectroscopy techniques. Àgueda et al. (2010) 

studied the emissivity of branches and leaves of typical Mediterranean forest fuels. It 

was discovered that the emissivity of a forest fuel flame is reliant on the thickness of 

the flame and the flame exhibits an emissivity near a blackbody (0.9) when its 

thickness is greater than 3.2 m. The infrared radiation emitted by burning vine 

branches and excelsior was considered by Parent et al. (2010). The burning flame 

was monitored by a combined infrared camera and Fourier-transformed data from an 

infrared spectrometer. The authors stated that the emissivity of burning vegetation 

varied with the height and was much less than that of a blackbody. The investigation 
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estimated an emissivity below 0.3 and a temperature of 1000 K for the flame. For the 

burning litter, a higher emissivity of 0.8 at the same temperature was obtained. An 

experimental study by Boulet et al. (2011) reported that the peak intensity occurs at a 

wavelength of approximately 4.3 µm for a flame of burning wood shavings and 

kermes oak shrubs (Boulet et al. 2011). The authors used the same instrumentation 

applied in Parent et al. (2010) to monitor flames of the burning vegetation in a fire 

tunnel. The vegetation fuels were arranged in various lengths to obtain flames with 

various thicknesses. Boulet et al (2011) indicated the large effect of optical thickness 

of flame on its emissivity. In a thin flame, there is a dominant contribution of CO2 

and burning gases around a wavelength of 4.3 µm. However, the growth of flame 

thickness increases the contribution of glowing soot which enhances the emission 

intensity and consequently the overall emission of the fire. 

Some research studies focused on measuring the radiant heat flux of full-scale fires 

using heat flux sensors. Silvani and Morandini (2009) measured the radiant heat flux 

and temperature of four vegetation fires using an arrangement of two heat flux 

sensors and a thermocouple. The vegetation site included pine needles, oak branches, 

a combination of oak and arbutus branches and broom in various terrain slopes. The 

measured average flame temperatures were in the range of 700–900˚C in the vicinity 

of the thermocouple. The peak heat flux was between 40 kW/m2 for pine needles to 

more than 100 kW/m2 which occurred for broom. The results indicated that the 

temperature and heat flux gradually increase as the fire front approaches. A report 

addressed the variation of RHF along the height of a flame (Cruz et al. 2011). The 

full scale experiments were performed in shrubland in Portugal using several K-type 

thermocouples and three Narrow Angle Radiometers (NAR) which were mounted at 

three different heights on a 1.7 m tower of thick ceramic blanket and aluminium foil. 

The ignition of shrubland started 25 metres from the tower and the fire moved 

towards the tower by means of local wind. The peak RHF was recorded at the 

vicinity of tower and ranged between 150 kW/m2 and 175 kW/m2 and the 

temperature of the flame was measured between 1200 K and 1330 K. It was reported 

that the emission of RHF varies along the height of the flame. Frankman et al. (2013) 

measured the convective and radiative heat flux from full-scale burning of various 

vegetation in different terrain slopes. They embedded two heat-flux micro-sensors 

consisting of a differential thermopile heat flux gauge and a platinum resistance 
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temperature sensor in the vegetation where the fire took place. The authors 

investigated three types of fires including crown fire, brush fire and surface fire at 

various terrain slopes. Peak RHFs varied between 20 kW/m2 and 300 kW/m2; the 

highest and lowest peaks were recorded for crown fire and surface fire, respectively. 

The authors stated the great role of terrain slope on influencing RHF. 

2.2.2. Potentials of metal screens versus fire 

RHF 

There are a limited number of studies that investigated fire RHF when a commercial 

screen is placed between a fire and an object. As discussed before in chapter one, an 

object behind a screen receives a portion of RHF directly through the screen aperture 

which named as direct radiant heat flux (DRHF). However, other portion is blocked 

by the solid area of the screen and increases the screen temperature. The hot screen 

emits heat named as indirect radiant heat flux (IRHF) to the object. Therefore, the 

total amount of transmitted RHF through the screen to the object is the sum of DRHF 

and IRHF. DRHF depends on the view factor of the object to the fire through the 

screen and emissivity as well as temperature of the approaching fire, while IRHF 

relies on the screen emissivity, screen temperature and the view factor of the object 

to the screen.  

For the first time, Sharifian and Buttsworth (2008) investigated fire DRHF 

transmission through screens to an object and presented a model to estimate the view 

factor of the object to an infinite fire while an infinite square woven wire screen was 

between the object and fire. It was revealed the view factor increases with the rise of 

porosity, but always remains less than the porosity value. They presented the 

correlation for view factor of an object to the fire (𝑉𝐹𝑜𝑏𝑗→𝑓𝑖𝑟𝑒) through single square 

woven wire screens in which screen porosity (p) ranged between 25% and 90% as 

follows (Sharifian and Buttsworth 2008), 

  

𝑉𝐹𝑜𝑏𝑗→𝑓𝑖𝑟𝑒 = 0.25𝑝2 + 0.9𝑝 − 0.132                           (2.3) 

As the emissivity and temperature of fire are known, the DRHF varies only with the 

view factor. It should be noted that the above correlation is valid under certain 



18 
 

conditions. The screen should be large enough that the fire does not come into direct 

view of the object at the edges of the screen, and the fire should be large enough that 

nothing other than the fire can be seen through the screen. 

The authors also addressed the effect of screen tunnel vision on the view factor and 

DRHF passing through the screen. The tunnel vision limits the passage of light at a 

certain angle through the screen which is related to the screen wire diameter and cell 

size. Beyond this angle the wires seem to overlap as seen by the object, and nothing 

from the other side of the screen is visible. Möller et al. (2010) explains the tunnel 

vision effect of woven wire screens as the cut-off angle at which the incident light 

cannot directly pass through the screen cells. The cut-off angle (𝛽𝑐) was presented as 

a function of wire diameter (d) and cell size (L) as follows 

                                                 𝛽𝑐 = 90 − arcsin (
𝑑

𝐿
)                                 (2.4)                       

The ratio of (
𝑑

𝐿
) and porosity are related (Böttcher and Wedemeyer 2006) as follows 

                                  𝑃 =
(𝐿 − 𝑑)2

𝐿2
= (1 −

𝑑

𝐿
)2                                  (2.5) 

Figure 2.1 Geometry for deriving analytical solution of cut-off angle adopted from 
(Möller et al. 2010) 
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Therefore, the formula (2.4) can be re-written as a function of screen porosity as 

follows 

                                    𝛽𝑐 = 90 − arcsin(1 − √𝑃)                                (2.6) 

2.2.3. Summary  

Previous investigations addressed the complexity of the estimation of the wildfire 

RHF. Based on the Stefan–Boltzmann heat-transfer law, the amount of transmitted 

RHF of a fire to a receiver depends on the view factor of the receiver to the fire, 

temperature and emissivity of the fire. The previous research indicated that it is hard 

to determine the view factor of an actual fire’s flame since the flame shape and 

dimensions are transient. The temperature and emissivity of fires show great variance 

along the height of the flame and for different types of vegetation. The experimental 

studies addressed the flame temperature, flame thickness and type of vegetation as 

the effective parameters in determining the emissivity. The measured peak intensity 

of vegetation fires was in the range of 20 kW/m2 to 300 kW/m2. 

Available investigations on shielding an object by single square woven wire screens 

against a fire indicated that the view factor decreases with the reduction of screen 

porosity. The investigations addressed the relation of the view factor and tunnel 

vision angle of screens. The tunnel vision was explained and an analytical formula to 

find the angle was presented. 

Figure 2.2 The scheme of screen cell size and the geometrical variables. 
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2.3. Metal screens and firebrand attacks 

2.3.1. Firebrands Classification 

Firebrands are the airborne particles that detach from different parts of burning 

vegetation and are lofted by means of the fire plume buoyancy force into the air 

stream. The sources of firebrands are varied. Leaves, barks, twigs and branches of a 

tree or grasses and shrubs are well known sources of firebrands (Bradstock et al. 

2012). However, all firebrands are not equally dangerous in terms of their heat 

capacity and maximum spotting distance. Davis and Byram (1959) classified barks, 

charcoal, dry moss and duff as the most hazardous firebrands for long-distance 

spotting (Davis and Byram 1959). Also, they found the low risks associated with leaf 

embers at long-distance spotting. A firebrand can burn in flaming or glowing states 

(Babrauskas 2003). The flaming combustion is the exothermic combustion of 

distilled gases obtained from pyrolysis of firebrands which requires sufficient gas 

concentration and airflow as well as adequate heat to ignite the gas mixture. The 

glowing combustion of firebrands is the rapid oxidation of the surface of solid-phase 

char material (Babrauskas 2003). However, flaming firebrands are scarce in spotting 

process unless for short distances and glowing firebrands are more common (Davis 

and Byram 1959). Ganteaume et al. (2011) examined the combustion characteristics 

of various firebrands involved in a spot fire. Pine cones, leaves and barks as well as 

Eucalyptus leaves and barks were placed on a 500 W disk-shape radiator. The 

flammability properties such as time to ignition, flaming duration and weight loss as 

well as gross heat of combustion of these samples were measured. It was discovered 

that heavy firebrands such as pine cone firebrands sustain flames for longer periods 

and are risky for longer spotting distances. Also, light firebrands with a high surface-

to-volume ratio such as eucalyptus leaf and thin barks are risky only for short 

spotting distances whereas their flaming duration are too short. Ganteaume et al 

(2011) addressed a group of light firebrands with low surface-to-volume ratio that is 

in between these two groups. They are risky for short spotting distances and 

occasionally long spotting distances. 



21 
 

2.3.2. Theories of firebrand transport 

Aerodynamic and combustion properties of fire embers are essential in determining 

their flying distance. The trajectory of fire embers is mainly affected by the drag and 

lift forces that are exerted by air flow and gravitational force. The motion of fire 

embers has been modelled based on classic Newtonian physics (Tarifa et al. 1967; 

Tse and Fernandez-Pello 1998; Woycheese and P. J. Pagni. 1999; Anthenien et al. 

2006; Kortas et al. 2009). The equation of motion is defined as follows (Anthenien et 

al. 2006),  

                                                      𝑚𝑝

𝑑𝑉𝑝⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
= 𝐹𝐷

⃗⃗ ⃗⃗ + 𝐹𝑔⃗⃗  ⃗                                    (2.7) 

where 𝐹𝐷
⃗⃗ ⃗⃗  denotes the drag force exerted on firebrands and 𝐹𝑔⃗⃗  ⃗ represents gravitational 

force. By inserting the formulas for each term, equation (2.7) becomes 

                                                           𝐹𝑔⃗⃗  ⃗  = 𝑚𝑝𝑔                                                (2.8) 

                                                       𝐹𝐷
⃗⃗ ⃗⃗ =

1

2
𝜌𝑎𝑖𝑟𝐶𝑑𝐴|𝑉𝑅

⃗⃗⃗⃗ |
2 𝑉𝑅⃗⃗ ⃗⃗  ⃗

|𝑉𝑅|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
                            (2.9) 

where 𝜌𝑎𝑖𝑟 is the air density, 𝐶𝑑 represents the drag coefficient of a fire ember, 𝐴 is 

the maximum projected area of the ember, VR stands for the relative velocity of the 

firebrand to the wind speed (𝑉𝑅 = 𝑉𝑊𝐼𝑁𝐷 − 𝑉𝐹𝐼𝑅𝐸𝐵𝑅𝐴𝑁𝐷) and 𝑚𝑝 is the mass of the 

firebrand. By substituting equations (2.8) and (2.9) into equation (2.7) the vertical (x-

axis, parallel to the wind direction) and horizontal (z-axis) components of equation 

(2.7) become  

                                   
𝑑𝑣𝑝,𝑥

𝑑𝑡
=

1

2𝑚𝑝
𝜌𝑎𝑖𝑟𝐶𝑑𝐴|𝑉𝑅

⃗⃗⃗⃗ | (𝑉𝑤,𝑥 − 𝑉𝑝,𝑥)                      (2.10) 

and 

                                   
𝑑𝑣𝑝,𝑧

𝑑𝑡
= −

1

2𝑚𝑝
𝜌𝑎𝑖𝑟𝐶𝑑𝐴|𝑉𝑅

⃗⃗⃗⃗ |𝑉𝑝,𝑧 − 𝑔                           (2.11) 

where,  

                                                         𝑉𝑝,𝑥 =
𝑑𝑥𝑝

𝑑𝑡
                                                      (2.12) 



22 
 

                                                              𝑉𝑝,𝑧 =
𝑑𝑧𝑝

𝑑𝑡
                                                  (2.13) 

Several models were presented for estimation of firebrands’ spotting distance. Albini 

(1979) and Albini (1981) developed several predictive models for spotting distance 

from torching and crown fires derived from the firebrands motion model. Tse and 

Fernandez-Pello (1998) presented a predictive numerical model for calculating the 

trajectory and temperature variation of melting spherical copper particles, aluminium 

particles and burning firebrands with various sizes and wind conditions. They found 

that the embers with lower density and larger diameter have the potential to fly 

longer distances because of greater drag force. Woycheese et al. (1999) introduced 

the wooden spherical firebrand lofting and propagation model using the Baum and 

McCaffrey plume model (Baum and McCaffrey 1989) and modelled the equations of 

motion. They also calculated variations of wind speed with height. They stated that 

firebrands released at a higher height of the fire plume into the air stream burn with 

lower spotting risks. The initial diameter and the burning rate of firebrands were 

found to be important parameters in firebrand propagation distance. Anthenien et al. 

(2006) investigated the trajectory of spherical, cylindrical and disk fire embers lofted 

from a bent-over fire plume in a cross-wind. The trajectory model included the 

motion of fire embers, their combustion and convective-radiative heat transfer during 

their flight time. In the study, the disk-shaped wooden fire embers could travel 

further distances in comparison with spherical and cylindrical fire embers, and land 

on the ground while they were still alight. Also, it was shown that the burning 

embers’ propagation distance has an approximately linear relation with wind speed.  

2.3.3. Firebrand transports (Experimental 

results)  

2.3.3.1. Existing apparatuses 

Wind tunnels have been an effective experimental apparatus for many years and have 

been used by many researchers to study aerodynamic and combustion properties of 

various firebrands. Tarifa et al. (1967) designed a horizontal and two vertical wind 

tunnels to measure aerodynamic drag and terminal velocity of tethered and 

untethered firebrand samples. The aerodynamic drag of tethered firebrands were 
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measured with a two-component ring-type strain gauge balance in a suction 

horizontal wind tunnel of 5800 mm length where the wind speed could continuously 

vary. They also used a vertical wind tunnel to measure the terminal velocities of 

samples by holding firebrand samples with a thin steel wire provided with a counter-

balance in the intake of the tunnel. Tarifa et al. (1967) used another suction vertical 

wind tunnel with 3000 mm height and tapered work section to measure the falling 

terminal velocity of untethered burning embers. 

The application of wind tunnels has been continued in the current century to study 

the combustion and aerodynamic properties of various firebrands. Similar to the 

work of Tarifa et al. (1967), Knight (2001) designed a vertical wind tunnel with a 

tapered work section of 4250 mm height to study untethered samples of burning 

barks (see figure 2.3). The author improved the non-uniformity of flow induced by 

an air blower. He removed the tumbling motion of samples inside the work section 

Figure 2.3 Scheme of wind tunnel with tapered work section designed by Knight 
(Knight 2001). 
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using a 4800 mm horizontal intake which was formed as a diffuser and was filled 

with two screens. The intake section was connected to the vertical tapered work 

section through a 90° turning section filled with vanes. Air flow passing through the 

vanes flows through a honeycomb to avoid large eddies and then is directed to the 

working section through a contractor. The author could decrease the flow non-

uniformity to less than 0.5%. The same vertical tunnel was also used by Ellis (2013) 

to study the aerodynamic characteristics of untethered stringy bark of Eucalyptus 

obliqua. He found that the untethered samples of stringy bark collided with the walls 

and resulted in the fragmentation or adherence of samples to the wall that affected 

their combustion. The author carried out modifications to minimise the problem by 

using multiple layers of screens at the bottom of the work section. Following this  

Figure 2.4 Vertical wind tunnel used by Almeida et al. for experiments on 
firebrands (Almeida et al. 2009). 
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modification, Ellis (2013) presented several experimental formulas to estimate 

stringy bark firebrands’ flameout time, burn out time and ignition duration. Almeida 

et al. (2009) investigated the effect of wind flow direction on firebrand orientation 

using a 6.5 m vertical wind tunnel. The samples of Pinus Pinaster cones and 

eucalyptus globules bark were inserted in the tapered-shape work section of the 

tunnel (see figure 2.4). The suction blower on the top of the tunnel was capable of 

providing wind speeds up to 30 m/s. The authors found that the burn-out time of the 

samples is reliant on their combustion mode (flaming or smouldering) and the 

orientation of the samples. An empirical model was presented to predict the mass 

loss of the eucalyptus bark and pine cones embers.  

 The introduction of the NIST firebrand generator by Manzello et al (S. L. Manzello 

et al. 2008) was a breakthrough in firebrand studies as it made the simulation of 

actual firebrand attacks possible. The device generates ongoing fire embers with 

various sizes that are comparable with the sizes of real wildfire firebrands (see figure 

2.5). The device consists of two stacked pipes. The upper pipe is removable for 

placing vegetation on a fine wire mesh mounted at the top side of the lower pipe.  

Underneath the fine wire mesh, two gas torch burners are inserted from the sides into 

Figure 2.5 full scale NIST firebrand generator (NIST dragon) a) picture of firebrand 
generator, b) side view scheme, c) cross section scheme (Manzello et al. 2010; 
Manzello et al. 2011). 
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the pipe. An air blower is connected to the pipe through a flexible hose pipe flowing 

air into the generator which helps lofting of firebrands outward. The so-called NIST 

dragon was also reproduced in a reduced scale to be utilised in laboratory-scale 

experiments (see figure 2.6). The reduced scale NIST dragon (baby dragon) was 

mounted underneath a horizontal wind tunnel with 50 cm50 cm square test section 

(Manzello et al. 2011; Manzello et al. 2012). Manzello and Suzuki (2012) also 

introduced an upgraded version called the NIST continuous feed baby dragon with 

the capability of generating a constant firebrand shower. The working procedure of 

the upgraded device is the same as the NIST baby dragon. The upgraded device is 

fed with a conveyer that delivers the wood cribs in a pre-set time interval to the gates 

which are connected to the lower pipe of the device. The gates are opened one by one 

and the wood cribs are poured on the fine mesh in the lower pipe. In this case, the 

firebrand generator can work for an unlimited period as long as the wood cribs are 

being supplied by the conveyer. The continuous feed is also assembled on the full-

scale NIST firebrand generator (see figure 2.7) to provide extended firebrand attacks 

(Manzello and  Suzuki 2013). 

The NIST Firebrand generator was also reproduced by the Institute for Business and 

Home Safety (IBHS) research centre to investigate the vulnerabilities of house 

components under firebrand showers (Stephen L. Quarles 2012). The generator was 

installed as five sets where each set has three stacks extended at three different 

heights of 1.82 m, 3.35 m and 6.4 m in the research centre wind tunnel. The wind 

Figure 2.6 picture of reduced scale experiments on mesh screen against 
firebrand attack in a bench top wind tunnel coupled to Baby dragon 
(Manzello et al. 2010). 
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tunnel has a floor area of 1950.96 m2 which is facilitated with 105 fans of 1.67 m 

diameter and provides wind speed up to 59 m/s (category 3 hurricane wind speed) 

(Harris 2011). 

 

2.3.3.2. Experimental studies on firebrand trajectories 

The early researchers used sample firebrands with an arbitrary wooden machined 

shape to study aerodynamic and combustion properties of firebrands. Tarifa et al 

(1967) measured the drag changes of firebrand samples while they were burning in 

the wind tunnel. The authors used cylindrical and spherical firebrands of five kinds 

of wood with different sizes and moisture contents. The weight and aerodynamic of 

fire embers were recorded as a function of time. They showed that the shapes of fire 

embers have a great effect on their horizontal flying distance. The study discovered 

that cylindrical fire embers have greater potential to fly more distance in comparison 

with spherical ones. Also, the type of firebrands has a considerable effect on the 

flying distance of fire embers. Despite the difficulties in measuring the terminal 

velocity of untethered firebrands due to the tumbling motion of firebrands, a good 

agreement was found between untethered and tethered firebrands for aerodynamic 

drag. It should be noted that tethered firebrands refers to firebrands that are hanged 

Figure 2.7 Picture of NIST continuous feed firebrand generator for full scale 
experiments (Manzello & Suzuki 2013). 



28 
 

by a wire in the wind tunnel, while untethered firebrands freely move in the wind 

tunnel. 

Some researchers measured the aerodynamic and combustion properties of a single 

firebrand using vegetation samples with real shapes. Almeida et al. (2009) studied 

pine cones and curled Eucalyptus bark firebrands in a vertical wind tunnel which was 

described in the previous section. The tethered firebrands were exposed to no wind 

and windy conditions (wind/no wind) at different orientations. The authors found 

that the combustion duration decreases with the increase of wind speed and is 

influenced by the orientation. The pine cone firebrands showed a higher combustion 

duration in comparison with the Eucalyptus bark firebrands. In another study, the 

authors performed experiments on the effect of firebrand orientation at varying wind 

speeds  for hollow cylindrical Eucalyptus globulus bark (Almeida et al. 2013). They 

found that apart from wind speed and firebrand orientation, the sign and magnitude 

of variation of the parameters affect their combustion duration. Ellis (2013) 

investigated the ignition time, flameout time and burnout times of stringy bark 

samples with various sizes. He also recorded the remaining mass of firebrands after 

burn-out time. The author presented several formulas for estimating the combustion 

of stringy bark firebrands and found a spotting distance of 800 m to 1480 m is the 

most probable case for this type of firebrand.  

In recent years, the development of firebrand generators provided an opportunity to 

study the flying distance of firebrands in a simulated firebrand shower. The NIST 

dragon was placed in the Fire Research Wind Tunnel Facility (FRWTF) of the 

Building Research Institute of Japan. It has a test section of 13.5 metres height, 5 

metres width and 15 metres length (Manzello et al. 2008b). The authors used 

cylindrical and disk wood pieces with different sizes machined from Ponderosa Pine 

dowels and fed them into the NIST firebrand generator. One hundred and fifty-seven 

water filled pans (49.5 cm  29.5 cm) were used to collect the firebrands 

downstream of the firebrand generator. The mass and surface area of the firebrands 

were measured after being dried in an oven. Also, the lofting distance of firebrands at 

no wind and wind speeds of 3 m/s, 6 m/s and 9 m/s were measured. They found a 

significant effect of wind speed and firebrand sizes on the trajectory distance of 

firebrands. The flying distance of both cylindrical and disk shape firebrands 

increased with the increase of wind speed. Harris (2011) used the IBHS facility to 
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validate a model based on Monte Carlo simulations for flying distance of firebrands. 

In that work, various sizes of wooden dowels as well as a mix of wood chip and pine 

barks were fed into the generator to simulate firebrand showers. The firebrands were 

collected downstream of the generator using 18 water-filled pans at a tunnel wind 

speed of 8.94 m/s. His study confirmed the important effect of the wind speed on 

firebrand flying distance. Recently, the NIST firebrand generator was loaded with 

Poplar wood cubes with a mass of 1.44 g and projected area of 12.7 mm2, and the 

firebrands flying distance in no wind and wind conditions were measured (Zhou et 

al. 2014). Based on their results, the increase of wind speed increases the flying 

distance and has an effect on their mass and projection area distribution. Also, the 

shape and density of the loaded wood pieces were important parameters on the mass 

distribution of firebrands.   

2.3.4. Size and mass characteristics of real 

firebrands 

The size of firebrands affect the flying distance of firebrands as discussed previously. 

In this section, the results of research on measuring the size of real wildfire brands 

are presented. Firebrands generated from Douglas-fir trees were investigated by 

Manzello et al (S. L. Manzello et al. 2007). Several Douglas-fir trees with heights of 

2.6 and 5.2 metres with a moisture content varying from 10% to 50% were burnt in 

laboratory conditions. Firebrands were collected using many water-filled aluminium 

pans surrounding the burning trees. A number of Douglas-fir trees could not produce 

any firebrands when the moisture content of the trees were above 30%. Also, 83% of 

the collected firebrands had a mass of less than 0.3 g. For the trees with the same 

moisture content, the mass distributions of the firebrands were similar except higher 

trees produced heavier firebrands. Manzello et al. (2008) investigated the size of 

firebrands generated by the NIST dragon firebrand generator. In their work, Pine 

dowels were cut in different sizes of cylindrical and disk shapes and were loaded in 

the generator. Firebrands were collected using arrays of water-filled pans and then 

were dried in an oven. All collected firebrands had masses less than 0.2 g and surface 

areas of less than 1000 mm2. Manzello et al. (2009) measured the size of firebrands 

generated by burning Korean pine. A 4-metre high Korean pine was burnt in the 

laboratory, and the firebrands were collected with the same method used in the 
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Douglas-fir trees experiments (Manzello et al. 2007). Similar to the Douglas-fir trees, 

the collected firebrands had cylindrical shapes and a large percentage had a mass of 

less than 0.3 g. The Korean pine could not generate firebrands unless the trees’ 

moisture content was less than 35%. However, Korean pine produced more 

firebrands compared to Douglas-fir trees and the difference was identified to be the 

dynamic burning process of the two species.  

In Wildland-Urban Interface (WUI) fires, the burning buildings can also be a source 

of firebrand generation. Hence, some research studies considered the firebrand 

generation regime of burning structures. Suzuki et al. (2012) collected and measured 

firebrands generated from a burning house in California. The firebrands were 

collected by a series of water pans at distances of 4 and 18 metres from the house. 

The collected firebrands were dried in an oven and then the mass and projected areas 

of the firebrands were measured. They found that 85% of the firebrands collected at 

18 metres and 68% of firebrands collected at 4 metres away from the house had a 

mass of less than 0.1 g. In terms of firebrands’ projected areas, 95% and 96% of the 

collected firebrands at 18 metres and 4 metres away from the house were less than 10 

cm2, respectively. Firebrand generation from wall and re-entrant corner assemblies 

were investigated in full scale laboratory tests (Suzuki et al. 2013). The studies were 

carried out in the Fire Wind Tunnel Facility at the Building Research Institute of 

Japan that is capable of producing a wind speed up to 10 m/s. The assemblies were 

burned by a T-shaped burner and the fan started operating on the assemblies 

immediately after observing the flaming combustion. The results indicated that most 

collected firebrands in all experiments had a mass less than 1 g and a projected area 

of less than 1 cm2. Suzuki et al. (2014) recently studied the firebrand generation from 

a burning structure in laboratory conditions. The structure consisted of wooden studs 

and exterior walls as well as a roof that all were made of Oriented Strand Board 

(OSB). A flashover inside the structure was created using a remote-controlled 

electric match to ignite a sofa inside the structure at a fixed wind speed of 6 m/s. In 

this case, more than 90% of the collected firebrands had a mass of less than 1 g and 

56% were less than 0.1 g. In terms of firebrands’ projected areas, more than 90% of 

firebrands were less than 10 cm2.  

There are several works on measuring the size of firebrands in a real wildfire. Foote 

and Manzello used a trampoline sheet of 3.7 metre diameter that was mounted 0.9 
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metres off the ground during the Angora fire in 2007 (Foote, Liu, and Manzello 

2011; Manzello and Foote 2012). The hole areas on the trampolines were measured 

by means of image processing. They also investigated the burn patterns of firebrands 

on partly-affected buildings (not destroyed). More than 85% of the holes were less 

than 50 mm2 in size. Moreover, inspection of burn patterns on the buildings indicated 

that the majority of the scorch areas were less than 40 mm2 with a maximum size of 

202 mm2. Similarly, Rissel and Ridenour (2013) applied trampoline sheets on site 

during the Bastrop Complex fire, Texas. Seven trampolines with a diameter of 3.8 

metres were mounted horizontally 0.9 metres from the ground. After the incident, the 

trampolines were collected and the sizes of the holes were measured using image 

processing. The authors reported that more than 90% of holes were less than 50 mm2 

area with a maximum size of 175.80 mm2. The sizes of firebrands were measured in 

a prescribed fire in Pineland National Reserve in southern New Jersey (USA) (El 

Houssami et al. 2015). Twenty water-filled aluminium pans were placed on fire-

resistant gypsum boards on the ground in three sites to collect firebrands. Wire nets 

were placed inside the pans to easily extract the firebrands from the water. Then the 

collected firebrands were dried in an oven and any mass of firebrands less than 5 mg 

was not counted in the measurement. It was found that 70% to 89% of firebrands 

were from the bark slices and the rest originated from branches. Most of firebrands 

had a mass between 10 mg and 20 mg. However, a few firebrands were found with 

masses that exceeded 100 mg. Also, about 80% of firebrands had cross-sectional 

areas less than 20 mm2.  

2.3.5. Effect of firebrands on fuel beds 

Firebrands start spot fires when they fall on fuel beds. In this case, the heat 

transferred by the burning firebrands to the fuel bed increases the temperature of the 

fuel bed to reach the ignition point. Many previous research studies identified and 

addressed the parameters that are effective in the ignition of fuel beds. Manzello and 

his colleagues investigated the effect of firebrand size on the ignition of shredded 

paper, pine needles and cedar crevices (Manzello et al. 2006). In their work, the fuel 

bed’s moisture content was varied from 0% to 11%. Glowing and flaming firebrands 

were sourced from machined Ponderosa pine in a disc shape with two diameters (25 

mm and 50 mm), and were deposited on different fuel beds at wind speeds of 0.5 m/s 
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and 1 m/s. The authors reported that the single glowing firebrands were only able to 

ignite dry shredded paper. Also, they carried out experiments with four glowing 

firebrands and found that if they had a 50 mm diameter, they could ignite pine 

needles under 1 m/s wind speed. On the contrary, the single flaming firebrands 

started fire in all the cases except cedar crevices, however, the cedar crevices ignited 

in the experiments with three flaming firebrands. The flaming firebrands showed a 

great potential in inducing ignition on the fuel beds in comparison with glowing 

firebrands. The authors concluded that the size, number flux and wind speeds are the 

important parameters in the possibility of fuel bed ignitions. In another study, (S. 

Manzello et al. (2008) used cylindrical Ponderosa pine firebrands for the ignition of 

shredded paper, pine needles and hardwood mulch with moisture content varying 

from 0% to 11%. The sample firebrands were in two sizes: 5 mm diameter and 

length of 51 mm; and 10 mm diameter and length of 76 mm. All single-flaming 

cylindrical firebrands caused ignition in all the cases of the fuel beds except for 

hardwood mulch with 11% moisture content. By comparing the results of the two 

studies on the two shapes of glowing firebrands, Manzello et al. (2008) stated that 

the glowing surface area of firebrands and their number are the important parameters 

to determine whether ignition of fuel beds occurs. 

Ganteaume et al. (2009) assessed the flammability of different fuel beds and 

capability of various flaming and glowing firebrands to ignite them. It was reported 

that the fuel beds’ flammability is related to the type of fuel beds, their moisture 

content and bulk density. In the case of firebrands, type of firebrands and air flow 

were found as the effective parameters in their capability to ignite the fuels. The 

authors reported a higher fuel bed ignition probability with the flaming firebrands, 

while the glowing firebrands were able to ignite fuel beds only with larger mass and 

in the presence of air flow over the fuels. They stated that the ignition probability of 

a fuel bed by glowing firebrands was highly related to the mass of the firebrands and 

the air flow on the fuel bed which supplied oxygen for the firebrand combustion. In 

contrast, the main factor in the ignition probability of a fuel bed by a flaming 

firebrand is the radiative and convective heat transfer which depend on the flame 

shape rather than particle mass. Ganteaume et al. (2009) found that increasing the 

airflow up to 4.5 m/s over a fuel bed decreases its time to ignition by deposition of 

glowing firebrands, and increases the probability of fuel bed ignition. However, the 
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effect of wind speed higher than 4.5 m/s on the ignition of fuel beds by glowing 

firebrands was not reported. The effect of glowing firebrands on the ignition of OSB 

(oriented strand board) and plywood crevices at different angles (60°, 90° and 135°) 

were studied since both materials are common materials for roofing assemblies 

(Manzello et al. 2009). They used machined Ponderosa pine in cylindrical shapes 

with 10 mm diameter and length of 76 mm as firebrands. The cylindrical glowing 

firebrands were deposited on fuels under two wind speeds of 1.3 m/s and 2.4 m/s. 

The authors observed ignition of the fuel beds only at the wind speed of 2.4 m/s. It 

was found that there was a 98°C difference in the maximum surface temperature of 

glowing firebrand between the two cases of wind speed. They explained that the heat 

flux between the glowing firebrand and fuel bed is more at higher wind speed (2.4 

m/s) as a result of the higher surface temperature of glowing firebrands. It was also 

stated that the increasing number of glowing firebrand deposition increases the 

probability of fuel bed ignition due to increasing the heat flux from firebrands to fuel 

beds.  

Ellis (2011) investigated the effect of fuel bed moisture content and their ignitability 

by samples of stringybark firebrands (with 15 mm width, 50 mm length and 5 mm 

thickness). The author used pine needle fuel beds with moisture content ranging 

between 2% and 8%. The fuel beds were tested at no wind and wind conditions (1 

m/s) provided by a domestic blower during the experiments. In all the experiments, 

the flaming firebrands induced flaming ignition on the fuel beds. In the no wind 

condition and glowing firebrands, there was no observation of flaming ignition of 

fuel beds. However, for the windy condition, the mass of glowing firebrands and the 

fuel bed moisture content were found to be significant parameters for a successful 

fuel bed flaming ignition. The effect of moisture content of fuel beds on their time to 

ignition by firebrands deposition was also measured by Yin et al. (2012), who used 

cubes of fire wood (20 mm × 20 mm × 10 mm) with moisture content of 12% to 

generate glowing firebrands. For the fuel beds, pine needles with moisture content of 

24.9–65% at a wind speed of 3 m/s were applied. It was reported that the time to 

ignition of fuel upon the impact of glowing firebrand was affected by their moisture 

content. As the moisture content rises, the time to ignition of fuel beds increases. 

The ignition possibility of shredded hardwood mulch with various moisture content 

under wind driven firebrand bombardment was investigated using the continuous 
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NIST firebrand generator (see section 2.3.2.1) (Suzuki et al. 2014). The fuel beds 

were placed in a re-entrant corner assembly and was exposed to firebrand showers at 

two different wind speeds of 6 m/s and 8 m/s. Increasing the number flux of 

firebrands caused firebrand accumulation on the fuel bed and could even ignite 

mulch with a moisture content of 74%. In addition to the number flux of glowing 

firebrands, the authors addressed the great effect of wind speed and firebrand surface 

contact area as two other important parameters in the ignition probability of mulch 

beds. Ellis (2015) measured the ignition probability of dry eucalypt forest litters 

based on the impact of flaming and glowing firebrands. The flaming firebrands were 

produced by cutting a bamboo stick to samples 50 mm long. By contrast, the glowing 

firebrands were created as samples 50 mm long and 15 mm wide with thicknesses 

ranging between 1.3 and 2 mm that originated from shed flakes of Eucalyptus 

globulus trees. All firebrand samples were oven dried and had moisture content 

ranging between 3–5%. The firebrands were deposited on fuel beds at their terminal 

velocity using a wind tunnel with a vertical truncated conical test section. It was 

reported that the fuel bed moisture content had a significant effect on the fuel bed 

ignition by flaming firebrands since the reduction in the moisture content increased 

the probability of ignition. Also, increasing the wind speed up to 2 m/s increased the 

fuel bed’s ignition probability. However, a further increase of wind speed to more 

Figure 2.8 picture of full scale experiments on vents mesh screen against firebrand 
showers using full scale NIST firebrand generator (Manzello et al. 2011). 
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than 2 m/s had an adverse effect as it increased the rate of heat loss. In the case of 

glowing firebrands, the authors stated the possible effect of turbulence in addition to 

the effect of wind speed. 

2.3.6. Metal screens versus firebrand attacks 

A pioneering work by Manzello and his colleagues following the development of the 

NIST firebrand generator broke the silence about the blocking mechanism of screens 

against firebrands for the first time (Manzello et al. 2007). The authors fed 2.1 kg 

Korean pine mulch in the NIST firebrand generator to produce fire ember showers. 

Three different screens with opening sizes of 6 mm, 3 mm, and 1.5 mm were 

mounted on a gable vent of a cubic calcium silicate structure which was erected in 

the test section at a distance of 7.5 metres from the firebrand generator. The test 

section has a height of 13.8 metres and a width of 5.0 metres and is located in the 

Fire Research Wind Tunnel Facility (FRWTF) of the Building Research Institute in 

Japan. Two pans filled with shredded paper were placed behind the screen in the 

structure and the wind speed in the tunnel was set at 9 m/s. It was reported that 

firebrands do not quench at the presence of screens and burn until they can pass 

through their openings. The passed firebrands could ignite the shredded paper in all 

the cases. 

Four years later, Manzello and his colleagues carried out the same investigation in 

both laboratory and full scale experiments (Manzello et al. 2011). In full scale 

experiments, where the layout was the same as their previous investigation 

(Manzello et al. 2007), different wire screens, with the cell size varying between 1.04 

mm and 5.72 mm, were mounted on a vent with an area of 1600 cm2. In that work, 

the firebrand generator was loaded with 2.1 kg of Norway spruce mulch and the wind 

speed was set at 7 m/s. In addition to the shredded paper, cotton and cervices of 

Oriented Strand Board (OSB) and wood were placed behind the mesh in the 

structure. Also, in one round of experiments, shredded paper was loaded on the 

crevice and the behaviour of this fuel bed arrangement behind the mesh was also 

observed. As per the previous investigation, the study discovered that the firebrands 

are able to penetrate wire meshes and ignite the materials behind the mesh. The wire 

mesh could not quench the firebrands and firebrands burned until they could fit the 

opening size and pass through the mesh. The authors calculated the penetration ratio 
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of the firebrands for each screen. The penetration ratio (PR) is defined based on the 

number of firebrands leaving the mesh (𝐹𝐵𝑙) to the number of firebrands 

approaching the mesh (𝐹𝐵𝑎) in a time interval (∆𝑡) and is expressed as;  

𝑃𝑅 =
∑ 𝐹𝐵𝑙

∆𝑡
𝑡=0

∑ 𝐹𝐵𝑎
∆𝑡
𝑡=0

× 100                                        (2.14)  

Manzello and his colleagues also measured the retention time of firebrands on the 

mesh. The retention time is defined as the time interval that an approaching firebrand 

can burn and fit the mesh opening size. Unsurprisingly, it was found that the 

penetration ratio rises when the opening size increases, while the retention time of 

firebrands increases when the opening size reduces. The authors also carried out 

similar experiments in a laboratory-scale wind tunnel (Manzello et al. 2011). They 

fitted the small-scale NIST dragon (baby dragon, as discussed in section 2.3.2.1) in a 

benchtop wind tunnel and set the wind speed to be the same as the full-scale 

experiments. The mesh area, sizes and fuel beds were the same as full-scale 

experiments. In order to trap firebrands leaving the mesh and direct them onto the 

fuel bed, a very fine mesh was inclined behind the first mesh. There was similarity 

between the full scale and laboratory scale results. Cotton ignited in both full- and 

laboratory-scale experiments. The crevice was ignited in all cases for all mesh sizes 

above 1.04 mm. Similarly, the shredded paper ignited in all the experiments except 

for the minimum mesh size of 1.04 mm. In this case, the ignition was observed for 

one test in the full-scale experiment out of three attempts; however, no ignition was 

recorded for the shredded paper in the laboratory tests.  

Moreover, firebrand intrusion into the metal mesh screens mounted on eave vents 

was investigated in the IBHS wind tunnel facility (see section 2.3.2.1) (Quarles 

2012). Five sets of firebrand generators were simultaneously loaded with a mix of 

bark mulch and wood dowels, and the tunnel wind speed was set in the range of 4.5 

to 6.7 m/s. The metal screen that covered eave vents of the test building had an 

opening size just less than 6 mm. Similar to previous investigations, it was found that 

the screen could not eliminate the firebrand penetration; however, the reduction in 

the number and size of firebrands was evident when the mesh size reduced.  
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2.3.7. Summary 

The literature review indicated that firebrands can be sourced from any burning 

vegetation. However, it was indicated that not all firebrands are dangerous since only 

the firebrands with the ability to burn and fly for a sufficiently-long time present a 

significant risk. The firebrands can be in a glowing or flaming state of combustion 

during their impact. The latter is very scarce except in short distance spotting. The 

review of modelling studies on firebrand spotting mechanisms showed the effect of 

three forces on the transport of firebrands. Drag, lift and gravity were the forces that 

determine the ability of firebrands to fly. In addition to the above forces which are 

dependent on the dimension and mass of firebrands, the combustion rate of 

firebrands is another important factor for firebrand transportability. The dimensions 

and mass of firebrands continuously change as they burn. Therefore, the burning rate 

of firebrands governs the size of firebrands at any stage of their flight path and their 

burning duration. 

The above parameters were subject to many studies to define the characteristics of 

real wildfire firebrands. The common approach in the experimental studies was the 

application of a wind tunnel. The firebrands were ignited outside the tunnel and 

inserted into the wind tunnel to measure the burning rate and also the aerodynamic 

characteristics of firebrands. The efforts to simulate firebrand attacks led to the 

introduction of the NIST firebrand generators. The details of firebrand generators, 

introduced by Manzello and his colleagues, were explained. The NIST firebrand 

generator is capable of simulating firebrand attacks with firebrand sizes comparable 

to those in real wildfires. The NIST firebrand generator was also reproduced by the 

IBHS research centre, with details presented in this chapter.  

The experiments on measuring the size of firebrands from burning vegetation, 

structures or during actual wildfires showed that a great portion of firebrands 

generated in wildfire incidents have a mass less than 0.2 g and projected area less 

than 500 mm2. However, the huge differences in the size of firebrands from various 

sources were observed.  

There are many effective parameters to determine firebrand-induced ignition on fuel 

beds. The moisture content and type of fuel beds were the effective parameters in the 
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ignition of fuel beds. It was revealed that flaming firebrands have a greater potential 

to ignite various fuel beds than glowing firebrands. In the case of glowing firebrands, 

mass, surface area and number of firebrands as well as the wind speed on the fuel 

bed were the governing parameters for the probability of fuel bed ignition.  

Available studies on the performance of wire meshes during a simulated firebrand 

attack showed the inability of wire mesh to quench firebrands. Firebrands burn until 

they can fit the opening size, and ignited different fuel beds. The penetration ratio 

and retention time for the firebrands were explained. The penetration ratio increases 

with increasing opening size, while the retention time decreases with the increase of 

opening size.  

2.4. Research gaps 

The computational study on the view factor of an object in respect to a fire through 

metal screens indicates the effect of decreasing a screen’s porosity on the reduction 

of the view factor. The computational study assumed a uniform cell size which is 

nearly impossible in practice. Even with perfect weaving of wires, still gaps and 

misalignment can be formed at a later time. As the view factor is highly dependent 

on the geometry of the screens, the possible deficiencies might change the true view 

factor. The limitations of previous studies underline the necessities of an 

experimental study to obtain a more realistic result. 

The experiments with the NIST firebrand generator were a great breakthrough on 

identifying the mechanism of firebrands passing through the screens. However, there 

are still many uncertainties that need to be addressed by further experiments. The 

previous investigations were carried out for building vents’ mesh screens and were 

limited to certain mesh sizes and layouts to avoid blocking effective ventilation. 

However, such limitation is not the case for standalone screen barriers. Based on the 

literature review in this section, the following research gaps on the passage of 

firebrands through screens have been identified: 

 Improving the experimental setup: The NIST baby dragon is a viable 

design to study screen performance against firebrand attacks for laboratory-

scale experiments. However, there is no evidence that the design is capable 

of working at wind speeds higher than 10 m/s, especially for screens with 
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low porosity. Therefore, further improvement is required to facilitate the 

experiments at higher wind speeds, which is necessary in this work. A 

thorough study on improving the current firebrand generator will be 

conducted to meet objective 2 (see section 1.8, page 10).  

 Effect of vegetation types other than wooden mulch: The available studies 

are unable to explain whether the same mechanism of passage of firebrands 

can be expected for different types rather than mulch and wood pieces. In 

practice, a firebrand shower contains a combination of firebrands sourced 

from various types of vegetation. Based on the literature review, two types of 

vegetation have been selected to generate firebrands. Eucalyptus leaf has 

been selected as a source to examine firebrands that are risky for short 

distance spotting. Leaf firebrands seem to be the hardest firebrands for 

screens to contain due to their weak structure and intense fragmentation. 

Therefore, the leaf firebrands have been used in the first series of 

experiments to represent the worst case scenario to measure the effect of 

geometries on screen performance against firebrands (without a buffer zone) 

(section 5.2). The motivation for using hardwood mulch for the second series 

of experiments is its use in previous studies on metal screens. Mulch 

firebrands burn longer, have a higher heat release rate and are risky for long 

distance spotting (as compared to leaf firebrands). Hence, they provide the 

worst case scenario with respect to embers flying a longer distance across 

buffer zones and greater likelihood of ignition of fuel beds. This made 

hardwood mulch the preferred firebrand source for the buffer zone 

experiments (section 5.3). 

 Effect of high wind speed: The literature did not address the firebrand 

behaviour hitting the screen at wind speeds higher than 9 m/s. As this review 

explained, the wind speed has a great role on firebrand transport, burning 

rate and even their potential to ignite materials. Also, as discussed in chapter 

one, most fierce wildfires occur at wind speeds much higher than 9 m/s and 

therefore it is critical to understand the mechanism of firebrands’ passage in 

that range of wind speeds. The application of a metal mesh as a barrier 

requires studies of their performance under much higher wind speeds, which 

was not important in the study of their application for covering house 
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openings where the wind speed is much lower. Objective 2 in this study 

focuses on improving the current design of the firebrand generator to 

facilitate experiments with high wind speeds. Therefore, this study is able to 

perform experiments with wind speeds greater than previous studies. 

 Effect of screen geometries: The available literature does not provide 

information about the performance of screens against firebrand attacks with 

other possible configurations or geometries. The standalone screens can be 

designed in various layouts and geometries without the limitations that apply 

for mesh screens used in building ventilation. These geometries and 

configurations include screens with different opening shapes, manufacturing 

type, screen orientations and multi-layer arrangements. The above 

parameters are addressed in this study through completion of objectives 3-7 

(see section 1.8, page 10). 

 Effect of buffer zone: The previous investigations did not address the effect 

of the buffer zone between screen and protected object. It is understandable 

that the investigation focused on building vent screens and the buffer zone 

was not applicable. As described in this chapter, firebrands have a limited 

burning time and flying capability. Therefore, it is anticipated that a 

reduction in the number and capability of firebrands to induce ignition will 

occur by applying a buffer zone between the object and screen. Objective 8 

of this study considers the effect of the buffer zone between the screen and 

the object on the performance of screens against firebrand attacks (see 

section 1.8, page 10). 
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Chapter 3  

Direct Radiant Heat Flux 
(DRHF) through single square 
woven wire screen 

3.1. Overview 

One of the objectives of this research study is to find an experimental relation 

between direct radiant heat flux passing through a woven wire screen and porosity. 

In the previous chapter, the necessity of further experimental work to validate 

available computational formulas was explained. The results are presented and 

discussed in two major sections. In section 3.2, the selection of methodology and 

design of experimental setup are explained. In section 3.3, the experimental results 

are presented in four subsections. In subsection 3.3.1, the effect of tunnel vision is 

investigated by determining its angle for several screens. The passing ratios of light 

through four applied screens are measured and presented in subsection 3.3.2. In 

section 3.3.3, the passing ratios are discussed for the sources that are larger than the 

tunnel vision area, and in section 3.3.4 the experimental passing ratios are compared 

with the results of the computational equation (Eq.2.3). Finally a formula to estimate 

IRHF is presented in section 3.3.5. Section 3.4 provides a summary of the chapter.  
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3.2. Methodology and Experimental setup 

3.2.1. Methodology 

The wire screens, when exposed to a fire, emit heat due to increased temperature. 

Therefore, the effect of IRHF produced by hot screens interferes with measurements, 

and rendering them inaccurate. The alternative approach is to use a light source 

instead of a heat source. However, based on the Huygens–Fresnel principle, the 

interference of waves occurs if the waves encounter an obstacle or a slit which is of 

similar size or smaller with respect to the wavelengths (Tsokos 2010; Serway and 

Jewett 2010). 

It is known that the visible spectrum is between 400 nm and 700 nm (Serway and 

Jewett 2010), while the wavelength of the infrared  ranges between 700 nm to 1 mm 

(Serway and Jewett 2010). Previous studies show that the effective blackbody 

bushfire temperature is between 1007 K and 1327 K (Sullivan et al. 2003). Planck’s 

law for spectral radiance measured per unit wavelength (λ) is defined as follows, 

                                                              𝐵𝜆 =
2ℎ𝑐2

𝜆2

1

𝑒
ℎ𝑐
𝜆𝜅𝑇 − 1

                                      (3.1)  

where  is the wavelength, h represents Planck’s constant, k stands for Boltzmann’s 

constant, T represents absolute temperature (K), and c denotes the speed of light. 

Using Planck’s law, the peak wavelength of a bushfire is approximately between 

2183 nm (at 1327 K) and 2877 nm (at 1007 K). The intensity for wavelengths greater 

than 25 µm is less than one percent of that of the peak wavelength. Considering that 

the minimum opening size of the screens used in this work is nearly 40 times this 

value (0.987 mm, see section 3.2.2.1), no significant interference or diffraction 

pattern is expected to occur. This can be shown considering the minimum opening 

size (a) of the screens (0.987 mm) used in the experiments and the peak wavelength 

of the wildfire, approximately 3 µm. For this case, the diffraction angle using the 

Huygens principle (Serway and Jewett 2010) from the following formula gives an 

angle of 0.17° 

                                                            𝑆𝑖𝑛 𝜃 =
𝜆

𝑎
 .                                            (3.2) 

This is insignificant with respect to the expected tunnel vision angles for this case 

(68.9°) using the analytical Eq. (2.6) (see section 2.2.2). It should be noted that a 



43 
 

blackbody is a diffuse emitter and light can propagate in all directions and illuminate 

an object from different angles. Therefore, the projected size of screen cells may fall 

in a range comparable to the infrared wavelength for the light coming from an 

oblique angle. In this case, the results obtained in the visible wavelength range may 

not be applicable for the infrared wavelengths. This possible effect requires 

investigation in this study. 

First the transmittance of light through the screens is determined and then is linked to 

the view factor. Previous computational work shows that the view factor only 

depends on the porosity (see section 2.2.2, page 17, lines 22-23). The light passing 

ratio (PR) is defined as follows,  

                                  𝑃𝑅(%) =
𝐼𝑠𝑐𝑟𝑒𝑒𝑛−𝐼𝑑𝑎𝑟𝑘

𝐼𝑛𝑜−𝑠𝑐𝑟𝑒𝑒𝑛−𝐼𝑑𝑎𝑟𝑘
× 100                                               (3.3)  

where 𝐼𝑠𝑐𝑟𝑒𝑒𝑛 represents the detected light intensity by the spectrometer in the 

presence of a screen, 𝐼𝑛𝑜−𝑠𝑐𝑟𝑒𝑒𝑛 stands for the measured intensity in the absence of 

the screen, and 𝐼𝑑𝑎𝑟𝑘 is the captured intensity in the absence of the light source and 

screen. Based on the above discussion, an experimental setup with a light source was 

designed and all mechanical components were manufactured in-house. The side and 

cross section view of the experimental setup is shown in figure 3.1. 

3.2.2. Experimental setup 

The experimental setup consisted of a fluorescent light, a fixed frame for holding the 

screens, a metal board and a Visible-UV spectrometer with an adjustable stand (see 

Figure 3.1 the scheme of DRHF experiment setups, a) side view, b) cross section view. 
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figures 3.1 and 3.2). All components were fixed on a rectangular metal board. The 

board was a heavy steel board (thickness = 28 mm) with screw holes at an interval of 

25 mm in both horizontal directions in order to enable coarse adjustments of the 

distance between the components.  

The light source and screen were set in parallel to each other and the optical sensor 

was mounted on the right hand side of the screen in figure (3.1a) perpendicular to the 

surface of both light source and screen (see figure 3.2). In the following sections, the 

details of experiment components and their layouts are presented. 

3.2.2.1. Light source 

The available commercial light sources in the market are dominated by technologies 

including incandescent lighting, Light Emitting Diodes (LED) and fluorescent 

lighting. Incandescent light sources such as bulbs and halogen lamps generate a 

considerable amount of heat due to the glowing filament in the lamps and these emit 

both infrared and visible waves. In contrast, LED and fluorescent lamps mostly emit 

light within the UV-visible spectrum range and both have a higher luminosity 

efficiency. The advantage of fluorescent light over LED is the reflective coating 

inside the tube reflecting the infrared spectrum back to the tube and makes infrared 

emissions by fluorescent lamps nearly zero (Ganslandt and Hofmann 1992). Besides 

this, LED lamps are concentrated and effective for point illumination while 

fluorescent lamps have diffusive light radiation in all directions (Ganslandt and 

Hofmann 1992). Fires are diffuse emitters (Hurley et al. 2016) and it seems 

fluorescent lamps are an appropriate choice from among the available lamps to 

represent diffuse emitters. 

A square flat ceiling fluorescent light source (Auriga, Eglo) with a size of 310 mm 

was selected to be used in this work. The fluorescent light source included a square 

Figure 3.2 a) picture of experiment setup without screen, b) picture of experiment 
setup with screen, c) picture of L-shaped steel brace. 
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steel frame (see figure 3.2a) and a circular fluorescent tube covered by a square semi-

transparent glass deflector to improve the uniformity of the emitted light. The light 

source was secured to the metal board by an L-shaped steel brace (See figure 3.2c). 

3.2.2.2. Screens  

Four commercial square woven wire screens were applied in these experiments. The 

details of the woven wire screen geometrical properties are listed in Table 3.1. All 

screens were blackened to eliminate or reduce possible contribution of indirect 

radiation (reflection and scattering) (see figure 3.3). The screens were placed in front 

of the light source and held by a 32 cm x 32 cm metal frame (see figure 3.2b). The 

screens were fixed between the frame and a square bracket was tightened with bolts. 

At the base of the frame, two steel legs were welded to the frame. The legs were 

fixed to the required position on the metal board using screws. 

Table 3-1 details of square woven wire screens applied in DRHF measurement 
experiment. 

No  Cell size (mm) Wire diameter (mm) Porosity  
1 1.53 0.54 41% 

2 4.3 1.15 54% 

3 6.25 1.5 58% 

4 8.4 1.56 66% 

 

3.2.2.3. Ultraviolet- Visible (UV) Spectrometer  

A UV spectrometer (USB 4000, Ocean Optics) consisting of a fibre-optic sensor and 

a detector was used. Figure 3.4 provides the layout of the USB 4000 spectrometer 

light detection procedure. The fibre-optic sensor is connected to the detector via an 

SMA 905 connector (No. 1 in figure 3.4). The light is transmitted to the detector past 

Figure 3.3 Applied square woven wire screen with porosity of a) 54%, and b) 66%. 
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a dark piece of material which contains a rectangular aperture (slit) (No.2 in figure 

3.4). The slit regulates the amount of light entering the detector and controls the 

resolution. Then it passes through to the filter (No. 3 in figure 3.4), which restricts 

the light to certain wavelength regions. The light is directed to the collimating mirror 

(No. 4 in figure 3.4) and then reflects to the grating groove (No. 5 in figure 3.4) 

where the light is diffracted into several beams. Then the light is reflected to the 

focusing mirror (No. 6 in figure 3.4), where the first-order spectrum is propagated 

towards the L4 detector (No. 7 in figure 3.4).The visible detector (No. 8 in figure 

Figure 3.5 Setup of USB 4000 spectrometer applied in this study a) layout of optical 
sensor on metal plate, and b) picture of ocean optics USB 4000 spectrometer 

Figure 3.4 The scheme of USB 4000 (ocean optic) light detection procedure 
(Ocean Optics 2008). 
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3.4) collects the light, recording it as pixels and then converts it to digital responses. 

The Variable Longpass Order-sorting Filters (OFLV) (No. 9 in figure 3.4) block the 

second- and third-order lights (unwanted portions of the light spectrums) and the 

UV4 Detector (No. 10 in figure 3.4) is an optional feature that increases the 

performance of the spectrometer for wavelengths less than 340 nm. At the final 

stage, the digital information is transmitted to the software application via a USB 

port. 

Table 3-2 details of spectrometer specifications applied in DRHF measurement 
experiment. 

 The fibre-optic sensor was placed in front of the light source where a screen was 

placed in between the light and sensor (see figure 3.1a). Table 3.2 lists the 

specification of the applied spectrometer. The optical sensor was laid on a metal 

plate using two u-brackets (see figure 3.5a) and the metal plate was fixed to the base 

board using four metal legs adjustable in the vertical direction. The metal plate 

included two threaded bars that provide fine adjustments of the fibre optic sensor in 

both horizontal directions, whereas the metallic legs gave the opportunity of fine 

adjustment of the sensor in the vertical direction. Consequently, the position of the 

Specifications Details 
CCD detector Toshiba TCD 1304AP (3648-element linear silicon 

CCD array  

Detector range 200-1100 nm 

Signal-to-noise ratio 300:1 (at full signal)  

Dark noise 50 RMS counts 

Integration time 3.8 milliseconds to 10 seconds  

Figure 3.6 Experiment layout for detecting tunnel vision angle. 
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fibre-optic sensor can be adjusted in all directions with an accuracy of 100 microns. 

The sensor was co  nnected via the USB 4000 spectrometer (see figure 3.5b) to a 

laptop computer running the commercial Spectra Suite software which enables users 

to monitor the spectrum and to analyse an individual wavelength. 

3.2.2.4. View factor and tunnel vision angle 

To observe the tunnel vision area and measure the angle, four screens with different 

porosities were placed between a bulb lamp, and a semi-transparent sheet of acrylic 

which was in contact with the screens. Figure 3.6 displays the experimental layout 

for the tunnel vision detection. The bulb lamp was covered with paper, and a hole 

with a diameter of 3.9 mm was cut in the middle of the cover. The diameter of the 

hole was the same size as the diameter of the optical sensor of the spectrometer used 

in this work. The lamp was fixed on the stand, and a camera was placed on the back 

side of the acrylic sheet to capture the images of tunnel vision effect. The lamp was 

moved to find the best distance for the clearest image. Finally, the diameter of the 

Figure 3.7 captured tunnel vision area for square woven wire screens with porosity 
of a) 41%, b) 54%, c) 58%, and b) 66%. 
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illuminated area on the sheet, and distances among the lamp, screen and acrylic sheet 

were recorded. 

3.3. Results and discussion 

3.3.1. Tunnel vision effects of screens  

3.3.1.1. Tunnel vision detection 

The tunnel vision effect of the screens is evident in the photographs shown in figure 

3.7. The photo shows that the centre of the image is bright, but as the distance from 

the centre of the image increases, the illumination decreases. At the edge of the 

visible part of the image, the diameter of the wires appears to be greater than their 

actual size. Due to the growing apparent size of the diameters on the sheet, they 

overlap, and as a result, the dark shadow section appears. The diameter of the bright 

and nearly circular section depends on the screen porosity and the distances between 

the sheet, screen, and light source. 

Table 3 3 The details of measured view factors for applied woven wire screens. 

 

3.3.1.2. Tunnel vision angle measurements 

Table 3.3 lists the measured radius and angle of tunnel vision for the applied wire 

screens. The tunnel vision angle is calculated in degrees based on the measured 

values. The measured angle has a maximum theoretical uncertainty of 3.3% based on 

2 mm uncertainty in the distance measurement, maximum of 5 degree misalignment 

between the light source and screens and uncertainty of 1 mm in measurement of the 

radius of the visible circle. 

The results show that the angle of tunnel vision increases as the porosity increases. 

This was expected based on analytical solution (sees section 2.2.2) and the 

Porosity (%) 41 54 58 66 
Distance of light to acrylic sheet 
(mm) 

49 55 52 41 

Radius of tunnel vision (mm) 85 157.5 157.5 157.5 

Angle of tunnel vision (degree) 60.04 70.75 71.72 75.4 

View factor (𝑽𝑭) 0.7505 0.8913 0.9017 0.9422 
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experimental results can be expressed by an exponent formula which brings ease to 

the calculation of tunnel vision angle of plain woven screens with square shape cells 

in the range of porosities of 41%-66% as follows, 

                          𝛼𝑇𝑈 = 13𝑝0.418             41 %≤ p ≤66%,    λ/L<<1               (3.4) 

Where p represents the porosity, 𝛼𝑇𝑈 stands for tunnel vision angle in degree, L 

stands for screen cell size, and λ represents the light wavelength. Figure 3.8 shows 

the experimental results and those obtained from the proposed formula (3.4). The 

maximum difference between the above formula and experimental results are 2.6% 

at 54% porosity. Taking into account the uncertainty of the experiment, the 

maximum error of the formula is 6.2%, using the square root of the mean square 

error. 

3.3.2. Light passing ratio of screens for a 

light source with size corresponding to 

tunnel vision area 

It was found that the light behind a screen cannot be seen at angles greater than a 

certain value. The light passing ratio of screens is expected to change with the size of 

the light source. When the light source and screen sizes are greater than the tunnel 

Figure 3.8 the change of experimental tunnel vision angle and estimation by equation 
(3.4) 
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vision area (Lv), the intensity of the light reaching the object in the presence of the 

screen remains unchanged by a further increase of the size of the light source. In 

contrast, in the absence of the screen, the overall light reaching the object increases 

as the size of the light source increases. Considering formula (3.3), this leads to a 

smaller passing ratio. Therefore, it is necessary to specify the size of the screen and 

light source before investigating the passing ratio. 

3.3.2.1. Light passing ratio acquisition  

Figure 3.9 shows the spectrum of the light source detected by the spectrometer used 

in this study. The figure indicates seven peaks in the wavelength range of 200 nm to 

800 nm, where most of the peaks have intensity of near or less than 5000 counts. The 

measurement of uncertainty associated with those peaks reaches beyond 10%, 

considering that noise intensity ranged between 400-600 counts. Therefore, the two 

peaks with the maximum intensities were selected in this study in order to increase 

the signal-to-noise ratio and to minimise error. The selected wavelengths were 

545.51 nm (peak A) and 611.01 nm (peak B). The woven wire screens were 

positioned between the light source and the sensor of the spectrometer. The fibre-

optic sensor of the spectrometer was placed at the distance measured between the 

small light source and screen in section 3.3.1.2. After measuring the intensity at the 

two wavelengths (Iscreen), the screen was replaced with a black paper having a circular 

Figure 3.9 the light intensity distribution with and without 66% screen porosity. 
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hole of the same size of the tunnel vision area. After positioning the black paper, the 

new measured intensities were recorded as Ino-screen. In addition, the intensity captured 

by the sensor in the dark room (Idark) was measured. It should be noted that the 

reflection and emission from the screen can contribute to the measured intensity. The 

screen was exposed to the light for about 1 hour to reach its steady temperature in 

order to remove those contributions. The measured intensity after turning off the 

light source was registered as the dark intensity. The contribution of reflection of 

blackened screens was tested separately and was found to be negligible. The light 

passing ratios at the two peaks were calculated using equation (3.3). The final 

passing ratios are the average of the passing ratios obtained at the two peaks. The 

results are presented in table 3.4. The detailed results for the screen with the porosity 

of 66% are shown in figure 3.9.  

3.3.2.2. Experiment uncertainties 

The sources of uncertainty in the experiment are spectrometer noise at the highest 

intensity (4.4%); spectrometer noise in the dark room (1.6%); maximum of 5 degree 

misalignment for the screen, light source and sensor (1.7%); intensity drift during 

experiment (0.08%); maximum of 1 mm error in distance measurement (1.7%); error 

in measurement of the porosity (1.3%); and non-uniformity of light intensity within 

the visible area (5.2% ,12.6% across the whole light source). This leads to an 

uncertainty of 7.5% in measurement of light intensity in the presence of the screen, 

and an uncertainty of 7.4% in the absence of the screen, which gives an overall 

uncertainty of 10.5% for the passing ratio. 

Table 3-3 the measured peak wavelengths and averaged passing ratios versus 
porosities. 

Porosity 
(%) 

Passing Ratio at Peak 
A 

Passing ratio  at Peak 
B 

Passing 
ratio  

41 27.8% 27.7% 26.7 % 

54 42.1% 41.9% 42% 

58 49.6% 49% 49.6% 

66 63.2% 59.6% 61.3% 
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3.3.2.3. Light passing ratio versus screens porosity 

Based on the results listed in table 3.4, it can be deduced that the passing ratio of 

light through a screen is independent of the light wavelength or has a very limited 

impact. The passing ratio of the 41% porosity screen is 27.8% at peak A, but it drops 

to 27.7% at peak B. A similar trend also was observed for the screen with porosities 

of 54% and 58% in which the passing ratio varied from 42.1% to 41.9% and 49.6% 

to 49%, respectively. The maximum difference in passing ratios of peaks A and B is 

for the screen with 66% porosity. In this case, the passing ratio decreases from 63.2% 

at peak A to 59.6% at peak B which represents a 3.6% difference. The results show a 

decreasing trend as the wavelength increases. The result is not conclusive since the 

changes are less than the uncertainty associated with these measurements. However, 

these results suggest that change in the wavelength range of 545.51-611.01 nm is 

ineffective or insignificant on the passing ratio.  

The average experimental passing ratios are listed in the last column of table 3.4 

According to the table, the passing ratio increases as the porosity increases, but it is 

always less than the porosity. The difference between the two values decreases as the 

porosity increases. The difference is 13.2% at the porosity of 41%, 12% at the 

porosity of 54%, 8.7% at the porosity of 58%, and 4.6% at the porosity of 66%. This 

indicates that the effectiveness of screens in blocking light due to tunnel vision is 

particularly important at lower porosities. For similar reasons as equation (3.4) (see 

Figure 3.10 the change of experimental passing ratio and estimation by equation (3.5) 
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section 3.3.1.2), a formula for determining the light passing ratio has been proposed 

as follows, 

PRTU = 0.05676p1.662                41%≤ p≤ 66%,         λ/L<<1          (3.5) 

The maximum relative error of the equation (3.5) with respect to the experimental 

results is 2.3%. Therefore, the maximum relative error of formula (3.5) is expected to 

be 10.7%. Figure 3.10 sh ows the experimental results and the fitting curve (equation 

3.5). The condition λ/L<<1 implies that formula (3.5) is only valid if the cell size is 

not comparable to the wavelength as discussed in section 3.2.1. 

 

3.3.3. Light passing ratio of screens for a 

light source greater than tunnel vision area 

size   

The previous section provides an efficient means to calculate the light passing ratio 

through screens when the light source is exactly the size of the tunnel vision area. 

However, in practice such a condition is extremely unlikely. To calculate the passing 

ratio of screens for a light source greater than the tunnel vision area size, first the 

view factor of tunnel vision area (VFTU) needs to be calculated. In the case of a 

circular object, the view factor can be calculated as (Lienhard 2011), 

𝑉𝐹𝑇𝑈 =
1

2
[𝑋 − √𝑋2 − 4 (

𝑅2

𝑅1
)
2

]    (3.6a) 

where, 

         𝑋 = 1 + (1 + 𝑅2
2)/𝑅1

2                   (3.6b) 

and, 

              𝑅1 =
𝑟1

ℎ
 ;  𝑅2 =

𝑟2

ℎ
.                               (3.6c) 

Here h represents the distance between two parallel circles, r1 the radius of the 

object, and r2  the radius of the tunnel vision area. The view factor of a light source 
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with respect to a sensor (VFs) depends on their shapes and distances and can be 

calculated using conventional formulae in heat transfer.  

The view factor of the light source with respect to the sensor (VFs) also should be 

calculated. Assuming a uniform intensity light source and Lambertian distribution 

and in the absence of the screen, the light intensity striking the sensor increases as, 

𝐼𝐴>𝐿𝑣−𝑛𝑜 𝑠𝑐𝑟𝑒𝑒𝑛
= 𝐼𝐿𝑉

𝑉𝐹𝑠

𝑉𝐹𝑇𝑈
                   (3.7) 

Here, IA>Lv-no screen stands for the light intensity of the source greater than the size of 

tunnel vision area. Therefore, in this case, the light passing ratio of the screen 

(PRS>Lv) can be calculated as, 

𝑃𝑅𝑆>𝐿𝑣
= 𝑃𝑅𝑇𝑈

𝑉𝐹𝑇𝑈

𝑉𝐹𝑆
  41%≤ p≤ 66%    (3.8) 

Substituting the value of PRTU from equation (3.5), we obtain the formula for the 

light passing ratio as follows, 

𝑃𝑅𝑆>𝐿𝑣
= 0.05676𝑝1.662   

𝑉𝐹𝑇𝑈

𝑉𝐹𝑆
      41%≤ p≤ 66%,   λ/L<<1  (3.9) 

One interesting point of equation (3.9) is that by increasing VFS, the passing ratio 

decreases. This indicates that screens are more effective for a larger light source. 

This is particularly interesting in the context of blocking the radiant heat flux of large 

bushfires. 

Table 3-4 extended passing ratios of infinite source size versus view factor correlation 
(equation (2.3)). 

 

Porosity (%) 41 54 58 66 

𝐏𝐚𝐬𝐬𝐢𝐧𝐠 𝐫𝐚𝐭𝐢𝐨𝐬𝐄𝐱𝐭𝐞𝐧𝐝𝐞𝐝 𝐭𝐨 𝐢𝐧𝐟𝐢𝐧𝐢𝐭𝐞 𝐬𝐨𝐮𝐫𝐜𝐞(%) 20.03 37.4 44.7 57.7 

𝐏𝐚𝐬𝐬𝐢𝐧𝐠 𝐫𝐚𝐭𝐢𝐨𝐬𝐕𝐢𝐞𝐰𝐟𝐚𝐜𝐭𝐨𝐫 𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧(%) 27.9 42.7 47.4 57.1 
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3.3.4. Light passing ratio of screens for an 

infinite light source 

As discussed in section 2.2.2, equation (2.3) is a correlation between the view factor 

of an object to an infinite fire through an infinite screens with screen porosity 

ranging 25–90%. To verify the correlation with light passing ratio, the results of the 

experimental work must be extended for an infinite light source. When the light 

source and screen are so large or the object is so close to the screen that the screen 

and source can be regarded as infinite, the view factor of the light source can be 

assumed to be one (VFS=1). In that case, the light passing ratio of the screen can be 

calculated through equation (3.9) as, 

𝑃𝑅𝑖𝑛𝑓. = 𝑃𝑅𝑇𝑈 × 𝑉𝐹𝑇𝑈  41%≤ p≤ 66%      (3.10) 

By substituting the value of PRTU from equation (3.5), the above formula can be 

rewritten as follows, 

𝑃𝑅𝑖𝑛𝑓. = 0.05676𝑝1.662   × 𝑉𝐹𝑇𝑈 41%≤ p≤ 66%,   λ/L<<1 (3.11) 

The view factors of tunnel vision area were calculated based on equation (3.6), and 

are listed in the last row of Table 3.3. The light passing ratios versus porosity for an 

Figure 3.11 the change of passing ratio extended for infinite light source and 
computational equation (2.3) 
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infinite light source were calculated based on equations (3.11) and (2.3) and are 

listed in table 3.5. Figure 3.11 provides the opportunity for comparing the results. 

The results show that equation (2.3) overestimates the light passing ratio of an 

infinite screen in front of an infinite light source with one exception at the porosity of 

66%. The difference between the predictions of equation (2.3) (view factor 

correlation) and equation (3.11) (empirical equation) decreases as porosity increases. 

The experimental light passing ratio at the porosity of 41% is 20.9% whereas the 

computational formula (equation 2.3) gives a ratio of 27.9%, showing a difference of 

7%. The difference decreases to 5.3% and 3% at the porosities of 54% and 58%, 

respectively. The minimum difference is 0.7% at the highest porosity of 66%. 

3.3.5. Indirect radiant heat flux 

Justification for extending the result obtained with light to fire RHF was provided in 

section 3.2.1. The emission from a screen to an object can be calculated using 

conventional formulae once the screen temperature and the view factor of the screen 

with respect to the object are known. The screen temperature is affected by many 

factors such as wind speed, conductivity of the screen, the relative size of the screen 

and the fire behind the screen. The view factor of the screen (VFscreen) with respect 

to the object is the difference between the fire view factor with respect to the object 

without and with a screen 

                                     𝑉𝐹𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑉𝐹𝑆 − 𝑉𝐹𝑇𝑈                                        (3.12)            

Having the view factor of a screen with respect to an object, screen temperature (T) 

and emissivity (), the indirect radiant heat flux emitted towards the object can be 

calculated as follows,  

                                             𝑞𝐼𝑅𝐻𝐹 = 𝑉𝐹𝑠𝑐𝑟𝑒𝑒𝑛𝜀𝜎𝑇4                                           (3.13)            

3.4. Summary  

This chapter reported the experimental investigation on the direct radiant heat flux 

through four square woven wire screens with porosities ranging 41–66%. The 

methodology and rationale of its selection were discussed at the beginning of this 

chapter. A light source was chosen instead of a heat source since it eliminates the 

effect of indirect radiant heat flux emitted from a hot screen. In this case, the 
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effectiveness of the screen was defined based on the ratio of the light intensity with a 

screen to the light intensity detected in the absence of a screen. An experimental 

setup was designed and manufactured which included four square woven wire 

screens, a light source and a UV-Visible spectrometer that were mounted on a heavy 

metal board. The mechanical components were designed in order to provide any 

coarse adjustment. The initial analysis of light spectra was carried out using the 

Spectra Suite software. Also, an experimental layout was developed to determine the 

tunnel vision angle. 

The tunnel vision effects of woven wire screen were documented. The angle of 

tunnel vision with respect with screen porosity was measured and a correlation 

between the angle and screen porosity in the range of 41–66% was presented in this 

chapter. The angle of tunnel vision increased with the growth of screen porosity. 

Then, the light passing ratios of four square woven wire screens were measured for 

the light with the same size of tunnel vision area. The passing ratio decreased with 

the decline in porosity. The result revealed that the light wavelength ranging from 

545.51 nm to 611.01 nm does not have a significant effect on the light passing ratio 

of screens with openings greater than 0.987 mm. It suggests that the results can be 

generalised to a broader range of wavelengths, such as the wildfires’ wavelengths.  

Furthermore in this chapter, the light passing ratios were extended for the source 

with size greater than the screen tunnel vision area. It was found that the screens are 

more effective when the source increases, such as wildfires, owing to tunnel vision 

effect. The results were extended for an infinite light source and compared with the 

available computational formula. It showed a good agreement particularly at high 

screen porosities. Finally, the effect of IRHF was discussed and a solution to estimate 

IRHF was presented. 
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Chapter 4  

Development and 
characterization of Ember 

Shower Simulator (ESS) 

4.1. Overview 

In chapter two, the NIST Baby Dragon firebrand generators was presented as an 

effective method to carry out laboratory scale experiments for the evaluation of 

screen performance against firebrand attacks. However, as it was mentioned, there 

was no indication that the design can be employed for the experiments with low 

porosity screens at the high wind speed desired in this work. At the beginning of this 

chapter, the reasons for the development of a new ember shower simulator is 

explained and followed by the details of the new design (section 4.2.1). Section 4.2.2 

illustrates features of the manufactured device which was called the “Ember Shower 

Simulator” (ESS). Following that, the instrumentation installed in the ESS is detailed 

in section 4.2.3 and a method to visualise and count the firebrands is presented in 

section 4.2.4. The details of the fabricated L-shaped stand to capture firebrands 

outside the ESS and the feeds applied in the simulator are given in sections 4.2.5 and 

4.2.6, respectively.  
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The second part of the chapter presents the characteristics of the ESS. Section 4.3 

contains the performance of the ESS which is identified through several experiments. 

It includes the details of velocity and temperature distribution within the ESS, 

firebrand flow characteristics, and generated firebrands’ mass and projected area and 

finally the firebrands’ number flux. At the end of the chapter, a summary underlines 

the significant features of the ESS and its performance.  

4.2. Development of Ember Shower 

Simulator  

The application of wind tunnels was a popular experimental approach in 

firebrand related studies. As discussed in chapter two (literature review), the 

wind tunnel approach to study the firebrand transport has been used by many 

researchers since the early sixties. In many of those studies, the firebrands when 

inserted were tethered or sometimes untethered in the wind tunnel and the 

combustion and aerodynamic properties of the fire embers were monitored. It is 

evident that the use of wind tunnels is a valuable approach to study the 

characteristics of a single firebrand. However, this approach does not replicate 

actual firebrand attacks in terms of intensity. 

The great evolution in the existing experimental approach to firebrand-related 

studies was carried out by Manzello et al. (2008) and their presentation of the 

NIST dragon, the details of which were provided in the literature review (section 

2.3.4). The NIST dragon firebrand generator is able to generate an ongoing 

firebrands’ shower that has been applied in full and laboratory scale 

experiments. However, as mentioned in section 2.4, the wind speed applied in 

both scales’ experiments was less than 10 m/s. It was discussed that the only 

facility capable of simulating a firebrand attack at full scale and with wind speed 

greater than 10 m/s is the IBHS wind tunnel with the cloned NIST firebrand 

generator (see section 2.3.2). The size of the wind tunnel appears to have a 

smaller impact on results as discussed in chapter 2 since similar results in the 

laboratory and full-scale experiments were reported for NIST dragon. This 

provides an opportunity to downsize the wind tunnel and to reduce the 

experimental costs in obtaining the initial results. However, as a final step, the 

initial results should be verified by full-scale experiments. As will be discussed 
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in section 4.2.1, the NIST baby dragon cannot be coupled to a wind tunnel 

operating at a high wind speed and/or used for testing a low-porosity screen due 

to the possibility of reversed flow at the inlet and the subsequent safety hazard.  

This requires a new design of the laboratory-scale fire embers shower simulator, 

which is able to work in a wider range of wind speeds and to test low-porosity 

screens.  

4.2.1. Design of Ember Shower Simulator 

(ESS) 

4.2.1.1. Limits of current design (NIST baby dragon) 

The existing firebrand shower simulator for use at a laboratory scale is the NIST 

Baby Dragon or other simulators of similar design. The design consists of a wind 

tunnel and a firebrand shower generator. The generator includes a separate blower 

which provides an easy way to regulate the wind speed over the feeds. The blower is 

the Achilles’s heel of the design when it is coupled to a wind tunnel operating at a 

relatively-high wind speed. A firebrand simulator similar to the Baby Dragon was 

manufactured. A strong reverse flow was observed that scattered firebrands in the 

laboratory when a low porosity screen (41%) at a wind speed of 12 m/s was tested. A 

preliminary computational model of the Baby Dragon showed that this reverse flow 

is due to the increase of the back pressure before the screen and the problem cannot 

be avoided just by changing the area ratio of the contractor. The reversed flow is the 

consequence of the pressure build-up at the test section under the above-described 

conditions. The built-up pressure may exceed the maximum pressure supplied by the 

blower, which in turn reverses the flow in the generator.  

The limit can be explained by imagining a non-porous sheet with an area equal to 

that of the test section (a complete blockage). The blockage causes the flow to be 

diverted from the wind tunnel to the firebrand generator and then to the outside air 

(see figure 4.1). The reversed flow carries the generated firebrands in the generator to 

the outside and thus is a fire hazard in non-fire proof laboratories. The combination 

of extended Bernoulli’s, the Darcy Weisbach and the major and minor loss equations 

all losses equations gives the pressure difference between a point before the screen 

and a point at the exit of the wind tunnel as K.V2 where V is the velocity and K is a 
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coefficient depending on many factors such as the porosity of the screen between the 

two points. Previous studies have shown that the pressure loss between the two sides 

of a screen increases (or K increases) as the porosity decreases such as the porosity 

of the screen between the two points. Previous studies have shown that the pressure 

loss between the two sides of a screen increases (or K increases) as the porosity 

decreases(Sharifian and Buttsworth 2007). As the pressure at the exit of the wind 

tunnel is constant (Patm), the built up pressure behind the screen is the P between 

these points.  The reversed flow slightly lessens if a tiny hole is punched in the sheet 

(decrease of K). At this point there are four ways to eliminate the reversed flow. The 

first is to increase the number of the holes (decrease of K), which indicates that the 

design can only operate at porosities higher than a specific value corresponding to 

the wind speed in the wind tunnel. The second way is to reduce the flowrate in the 

tunnel to a value equal to or less than the value that can pass through the hole 

(decrease of V). This demonstrates that the wind speed cannot exceed a certain limit 

value which depends on the porosity. The third solution is to adjust the blower flow 

in a way that only stops the reverse flow. This third solution is obviously impractical 

as it does not provide firebrands in the test section and requires individual adjustment 

for each experiment. The fourth way is to select a blower that can supply a pressure 

higher than the built-up pressure. This delicate job is also a safety hazard as the flow 

containing glowing firebrands may reverse back from the inlet of the wind tunnel.  

Figure 4.1 the scheme of reverse flow in NIST baby dragon due to test section 

blockage 
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The NIST design can be perfectly used in full-scale wind tunnels at any wind speed 

and for all screens regardless of their porosities. The reason is that the firebrand 

generator is placed inside the full-size wind tunnels and therefore its inlet pressure is 

equal to the built-up pressure. As the outlet pressure of the blower is always higher 

than the inlet pressure, no reversed flow is expected. This is a key element in the 

design of an ember generator coupled to a benchtop wind tunnel designed to work at 

high wind speeds and/or with low porosity screens. If the design uses the flow behind 

the test section as the inlet to the ember generator, it will be a self-adjusting system. 

4.2.1.2. New design 

Figure 4.2 shows the side and cross-sectional views of the design which was named 

the “Ember Shower Simulator” (ESS). The design consists of a wind tunnel 

including an inlet duct, a contractor and a test section as well as a fire ember 

generator mounted underneath the tunnel. The fan blows air into the wind tunnel and 

the air passes through the contractor prior to entering the test section (see Figure 

4.2a). In the middle of the contractor, a vertical pipe connects the firebrand generator 

to the underneath of the tunnel. The vertical pipe is divided into two sections 

lengthwise by a partition called a “splitter” to direct a portion of the airflow in the 

wind tunnel to the ember generator through one half and driving the burning 

firebrands to the test section in its other half. The splitter also forms a suction region 

Figure 4.2 the scheme of the Ember Shower Simulator (ESS), a) Side view, b) Cross 

section view 
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above the exit part of the vertical pipe which helps to lift the firebrands up from the 

generator to the tunnel. 

The design does not include a blower to adjust the air speed in the ember generator. 

However, the ability to control wind speed in the ember generator for both designs is 

essential because, as a previous study concluded, the firebrands produced would be 

forced out of the generator earlier than planned, resulting in flaming firebrands when 

the wind speed exceeds a certain value. Therefore the ability to adjust the wind speed 

in the generator is essential to provide control over the state of combustion. 

Therefore, the tip of the splitter located in the wind tunnel was designed to be short, 

but it can be bolted to flaps with different heights to regulate the amount of air being 

diverted down and thereby can control the wind speed inside the generator. The 

lofted firebrands mix with the airflow in the wind tunnel which was not diverted 

down into the ember generator, and then enter the test section prior to exiting the 

wind tunnel. 

The design can still cause reversed flow when a non-porous sheet is placed in the test 

section, but it is not a safety concern. In this case, the inlet air of the tunnel circulates 

Figure 4.3 Picture of fabricated Ember Shower Simulator (ESS). 
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in the inlet section and does not reach the ember generator section; therefore the 

reversed flow does not contain glowing firebrands. 

4.2.2. Manufacturing the ESS  

Figure 4.3 is the picture of manufactured Ember Shower Simulator by the 

workshop at University of Southern Queensland. The apparatus consists of a fire 

ember generator and a wind tunnel. The wind tunnel includes a fan, an inlet duct, 

a contractor and a test section. 

4.2.2.1. Fan and Inlet duct 

An axial fan (FANMASTER, Australia) was mounted at the inlet of the wind 

tunnel duct. The fan is capable of blowing air at the wind speed of 5.25 m/s (0.84 

m3/s) at the wind tunnel inlet with a cross-sectional area of 1600 cm2 made of 

zinc-coated steel sheeting. The dimensional details of the inlet duct are indicated 

in figure 4.2a. The wind speed inside the wind tunnel can be adjusted by pulling 

the fan away from or towards the wind tunnel inlet.  

4.2.2.2. Contractor 

The air blown into the inlet duct passes a contractor before the test section. The 

contractor is made of zinc-coated steel sheeting with a cross section of 1600 cm2 at 

the inlet duct side and 400 cm2 at the test section side. At the bottom of the 

contractor, a pipe with a 150 mm diameter that connects the fire ember generator to 

the wind tunnel is mounted. The pipe is divided into two section by a thin metal 

sheet (splitter) welded axially inside the pipe to direct a portion of air into the 

fire ember generator from one side and loft burning embers into the tunnel from 

the other side (see figure 4.2a). It is possible to change the wind speed inside the 

generator by mounting a flap with different heights in the contractor that changes 

the portion of air flowing down to the generator. Three flaps with heights of 50 

mm, 100 mm and 150 mm were built using the same material as the splitter. The 

flaps can be bolted to the tip of the splitter and cover the entire width of the 

contractor at that point (see figure 4.3). 

4.2.2.3. Ember generator  
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The firebrand generator box is made of steel sheets with a thickness of 3 mm and its 

square-shaped cross-section is 340 mm long. An access door made of steel was 

mounted on the front side of the ember generator to place the feeds inside the 

generator. The feeds to the ember generator can be any type of vegetation. They are 

ignited by an external ignition source (torch ignitor). After observing a stable flame 

core, the access door is closed and the fan starts operating. The air diverted into the 

ember generator not only lofts the generated firebrands into the wind tunnel, but also 

supplies the required oxygen for combustion. The top of the generator is conical in 

shape to facilitate the firebrands’ passage into the vertical pipe.  

4.2.2.4. Test section  

The test section is a square duct with a cross-sectional area of 400 cm2 and a length 

of 2000 mm. The top and one side of the test section were made using transparent 

acrylic sheets for monitoring purposes. In addition, one metre of the top surface of 

the test section is detachable for mounting screens and cleaning ashes. The screens 

are slightly stretched and secured by a fixed frame called the screen holder (see 

figure 4.3) at a distance of 800 mm away from the inlet of the test section. The 

maximum wind speed in the unfilled test section is approximately 21 m/s (0.84 m3/s). 

The airflow and firebrands exit the test section at a distance of 1200 mm from the 

screen.  

4.2.2.5. Emergency water spray 

In the case of an emergency which requires an immediate response, municipal water 

can be sprayed on the fire in the combustion chamber through a hole in the top of the 

discharge side of the vertical pipe (see figure 4.3). A one-inch copper pipe, which is 

welded to the hole, delivers the municipal water to the hole (see figure 4.3). 

4.2.3. Instrumentation 

4.2.3.1. Video camera 

In order to measure the penetration ratio for each experiments, a high speed video 

camera (CASIO EXILIM EX-FH20) capable of capturing frames with a maximum 

speed of 1000 frames per second (fps) is used to monitor the glowing firebrands at 

both sides of the screens. Figure 4.4 shows a picture of the camera and table 4.1 lists 

its specifications. The video camera was placed outside the tunnel next to the screen 
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in the test section. The camera was mounted on a tripod and a thick sheet covers its 

surroundings to reduce the light noise during the experiment. 

In some experiments, an additional camera was necessary to monitor the experiment. 

The camera (CANON Power Shot SX40 HS) takes photos and records videos on a 

standard frame rate of 30 fps. In both cases, the data was recorded on Secure Digital 

(SD) memory cards and then the captured videos were exported to the computer for 

further analysis. 

Table 4-1 Details of high speed camera specifications applied in fire ember studies 

experiment. 

 

Specification  Details 

Brand CASIO 

Model EXILIM EX-FH20 

Recorded image  Resolution Recording speed 

1280720 HD 30 fps 

480360 210 fps 

224168 420 fps 

22456 1000 fps 

480360 30-210 fps (Switchable) 

640480 30 fps 

Effective Pixels  9.10 Megapixels 

Imaging element Size: ½.3-inch square pixel high speed CMOS ,total 

pixels 10.29 Megapixels 

Figure 4.4 high speed camera (CASIO, EXILIM EX-
FH20). 
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4.2.3.2. Hot-wire anemometer 

A hot-wire anemometer is a sensor that measures the fluid velocity based on heat 

convection. Figure 4.5a shows the scheme of hot wire anemometer circuits. The 

resistance wire, R(T), at the head of the sensor is heated above ambient temperature. 

The resistance of the wire is kept constant using an amplifier. The flow passing over 

the wire cools the wire and changes its resistance temperature. To keep the resistance 

constant, the current is fed into the sensor by an amplifier. The input current 

determines the velocity.  

In this study, a hot-wire anemometer, KM 4007 manufactured by Comark Ltd (UK), 

is utilised to measure the wind velocity. In order to measure the wind speed at the 

test section of the wind tunnel, the transverse area of the test section was divided into 

nine zones and the wind speed at the centre of each zone was measured using the 

hot-wire anemometer. The uncertainty related to the hot anemometer is 2.7% for the 

lowest wind speed and it is 1.3% related to the manual mounting of the probe based 

on 10 mm deviation from the point of measurement.        

4.2.4. Data Acquisition  

The initial visual investigation was carried out using Adobe Premier Pro, and then 

the counting process of glowing embers took place in MATLAB. The initial 

observations indicated that the high turbulence near the screen complicates the 

counting process. Therefore, the counting process took place a short distance away 

Figure 4.5 Hot-wire anemometer a) the scheme of the anemometer circuit (Lomas 
2011), b) a photograph of the anemometer. 
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from the screens. The firebrands are counted within a virtual strip. The width of the 

strip has a major impact on the accuracy of the counting. If the virtual strip is too 

narrow or too wide, the outcome could be no-counting or double-counting, 

respectively. The width of the strip is initially estimated based on the frame rate of 

the camera and assuming an identical speed for firebrands and wind speed. For 

instance, for a wind speed of 14.5 m/s and a frame rate of 420 fps, the maximum 

width of a strip to avoid double counting should be 35 mm (14500/420). However, 

firebrand lengths differ and their speeds are not equal and not necessarily the same as 

the wind speed. After comparing the results of manual and automated counting 

processes, the best width was found to be 2 mm, which showed a maximum of 5% 

difference between the two counting methods.  

 

Figure 4.6 The algorithm of MATLAB script for fire ember counting. 
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The captured videos were imported into MATLAB for firebrand counting purposes. The 

counting of glowing firebrands in MATLAB was carried out using the image processing 

toolbox. A MATLAB script was developed using the morphology toolbox to count the 

firebrands in each frame. Figure 4.6 shows the algorithm of the script for counting the 

firebrands. A loop repeats the reading step for each frame. During the reading process, the 

frame is converted to a binary image and the strip is cropped from the image. Morphology 

operators improve the counting process of the strips. First, the morphology code ‘hbreak’ is 

used to separate fire embers in the strips if they are too close to each other. Then, the 

morphology code ‘thin’ is applied to narrow the fire embers pixel region in order to improve 

the separation. Finally, the scattered pixel points are cleaned in the strips using the 

morphology code ‘clean’. The number of fire embers is detected and is added to the previous 

total number of the detected embers for each strip. The loop repeats for subsequent frames 

and finally the penetration ratio is determined based on the total number of fire embers in 

both the inlet and outlet strips.  

4.2.5. L-shaped stand 

A special stand was fabricated to capture firebrands at the outlet of the ESS. The design helps 

to investigate the characteristics of firebrands generated by the ESS and also assesses the 

capabilities of the firebrands that pass the screen and ignite various fuel beds. Figure 4.7 

shows the layout of the L-shaped stand and the ESS. The stand is fabricated of plywood 

sheets were that joined in an L-shaped layout. The height of the stand was the same as the 

height of the ESS outlet. The layout directs the firebrands downwards onto a sheet made of 

Figure 4.7 Layout of L-shaped stand and Ember Shower Simulator (ESS). 
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Oriented Strand Board (OSB) which is located at the base of the L-shaped stand. The high 

speed camera (CASIO) monitors the firebrands inside the tunnel, while the second camera 

(CANON) monitors the firebrands falling on the OSB base at a standard frame rate of 30 fps. 

4.2.6. ESS feeds 

Two different types of vegetation were used to generate embers: Eucalyptus Leaf and 

Hardwood Mulch. Dead leaves were collected from beneath Eucalyptus Populnea trees 

(Myrtle species) located at the University of Southern Queensland (see figure 4.8a). The 

moisture content and size of leaves were measured for twenty randomly-selected leaves. The 

average weight of a single Eucalyptus leaf was recorded as 0.255 g and the moisture content 

was 27% based on an oven-drying technique. The oven-dry method calculates the moisture 

content based on the dry mass of the object in the oven to the initial mass of the object. Also, 

the average length and width of the leaves were measured as 71.9 mm and 59.1 mm, 

respectively. Moreover, hardwood mulch is provided pro bono by Toowoomba city council 

and is a mix of local recycled trees. Figure 4.8b shows the hardwood mulch used in these 

experiments. The mass and projected (cross-sectional) area of the hardwood mulch varied in 

the range of 0.04 grams to 5 grams and 600 mm2 to 20,000 mm2. Likewise NIST firebrand 

generator, ESS is a wind-driven firebrand generator that wind speed over feed plays crucial 

role in determining the size and number of generated firebrands. It should be noted that the size 

of the feed does not determine the size distribution of generated firebrands. The size distribution of 

firebrands before and after the screen is an important parameter to assess the performance of the 

screen. Therefore, the size distribution of generated firebrands should be measured and compared with 

the size of real firebrands as is presented in section 4.3.  

Figure 4.8 Vegetation used in the ESS. a) Dead leaves of Eucalyptus trees and, b) mix 
of hardwood mulch. 
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4.3. Performance of Ember Shower Simulator 

Several experiments were carried out to assess the performance of the manufactured ESS. 

The experiments aimed to identify the velocity and temperature characteristics in the test 

section, mass, projected area and mass flux of the generated glowing firebrands as well as the 

glowing firebrand flux. Three sets of experiments were performed using the flaps of different 

heights; the flap details were given in section 4.2.2.2. Each set of experiments was carried out 

under three wind speeds – low, medium and high – which brought the total number of 

experiments to nine. 

An 800 gram load of hardwood mulch was fed into the ember generator in the experiments. 

In order to collect firebrands, the L-shaped stand was placed outside the tunnel. The 

firebrands were captured using five water-filled aluminium pans on the OSB base (see figure 

4.9). The water-filled pan technique is the most common technique used in many previous 

research studies discussed in section 2.3.3. In this section, only the high speed camera 

(CASIO) was used to count the firebrands in the tunnel and most of the recordings lasted 491 

seconds due to the memory limitations of the camera at a frame speed of 420 fps with image 

resolution of 168 x 224 pixels. In a few experiments, the whole process was recorded using a 

lower image resolution. The combustion of the feed lasted for 10 to 15 minutes depending on 

the wind speed in the firebrand generator.   

4.3.1. Velocity characteristics 

An important parameter of the ESS is the air velocity characteristics inside the test section. 

The validity of the results produced by the ESS depends on the reliability of reported wind 

speeds. Therefore, velocity characteristics, such as wind speed uniformity and turbulence 

Figure 4.9 Top view of layout of water filled pans, L-shaped stand and the ESS 
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intensity inside the test section, require investigation. For this, a hot-wire anemometer probe 

was inserted into the test section at a distance of 150 mm before the screen holder (650 mm 

after the inlet of the test section). The velocity was recorded at three different heights of 50 

mm, 100 mm and 150 mm from the test section floor. The velocity measurements were also 

performed at the outlet of the test section. The measurements at the outlet were carried out 

with a 3×3 grid of locations across the sections that were equally spaced vertically and 

horizontally from each other and from the walls. The measurement was repeated several 

times with and without screens. It was found that the velocity non-uniformity slightly 

decreases when a screen is used. Therefore, the results presented here are in the absence of a 

screen which represents the worst case scenario. The measurements were recorded for 420 

seconds at a frequency of 1 Hz. The streamwise turbulence intensity was calculated as the 

root mean square of turbulent velocity fluctuations in the streamwise direction (urms) to the 

average velocity (uave) (Cebeci 1974): 

                                              𝑇(%) =
𝑢𝑟𝑚𝑠

𝑢𝑎𝑣𝑒
× 100                                                      (4.1) 

The root mean square of the fluctuations  (𝑢𝑟𝑚𝑠) is calculated as follows,  

                      𝑢𝑟𝑚𝑠 = √∑
(𝑢𝑖 − 𝑢𝑎𝑣𝑒)2

(𝑛 − 1)
                                           (4.2) 

Figure 4.10 The temporal velocity behaviour for the applied flaps measured a) at 150 
mm height from the tunnel floor b) at 50 mm height from the tunnel floor. 
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where 𝑢𝑖 stands for the instantaneous velocity sample and n is the number of samples.  

Figure 4.10 shows the instantaneous velocity for the three flaps of 50 mm, 100 mm and 150 

mm at two heights of 50 mm and 150 mm. According to figure 4.10a, the velocity at the 

height of 150 mm decreased as a higher flap is used. At the height of 50 mm (Figure 4.10b), 

the velocity in the case of flap 150 mm was the lowest. However, at this height, the velocity 

in the case of flap 100 mm was slightly higher than that of flap 50 mm. This could be 

explained considering that a higher fraction of the flow in this case was directed to the ember 

generator compared to flap 50 mm. Therefore, for flap of 100 mm and at the height of 50 

mm, the effect of the flow from the ember generator was still present even though the average 

velocity was less than that of flap 50 mm.  

The turbulence intensity at the distance of 150 mm before the screen holder and at the three 

heights of 50 mm, 100 mm, and 150 mm was calculated based on the measured instantaneous 

velocities in absence of a screen. The turbulence intensity increases as the height of the flap 

increases. The maximum turbulence intensity for flap of 50 mm was measured as 2.4% and 

increased to 3.7% for flap of 150 mm.  

The non-uniformity of wind velocity field at the three heights was also quantified at the inlet 

and outlet of the test section. The results show that the non-uniformity both at the inlet and 

outlet increases as the flap height increases. At the inlet of the test section, the overall 

variation of the velocity as the root-mean-square (RMS) percentage of the mean velocity was 

±2.5% for the flap of 50 mm and ±9.5% for the flap of 150 mm. It should be noted that the 

maximum non-uniformity was 3.5% for flap 50 mm and 14.2% for flap 150 mm. Based on 

the results at the three heights (and for each height three points) at the outlet of the test 

section, the overall variation of the velocity as the root-mean-square percentage of the mean 

velocity was ±6.3% for flap of 150 mm. In this location, the maximum non-uniformity was 

±10.3%, which shows that the negative impact of flaps on the air flow decreases as the 

distance between the flap and the location increases. 

In the absence of information on flow characteristics of NIST wind tunnels, only a 

comparison can be made between the ESS and common wind tunnels used in fire research. 

Ellis (2000) addressed a ±4% variation of wind speed in the work section of a vertical wind 

tunnel designed by Knight at a wind speed of 5 m/s. Weise (1994) designed and constructed a 

wind tunnel to study fire behaviour at various slopes. The author noted a 15% non-uniformity 
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of the flow in their experiments. They suggested an acceptable level of non-uniformity of less 

than 5% in fire behaviour research (Weise 1994; Weise and Biging 1996). Sullivan et al. 

(2013) designed and constructed a wind tunnel called “CSIRO Pyrotron” to study the 

behaviour of free-burning fires. The authors reported a maximum non-uniformity of less than 

5% at their lowest speed in the tunnel’s work section. Taking into account the non-uniformity 

suggested in previous work, the mean non-uniformity of 2.5% measured for the flap of 50 

mm is acceptable. The level of mean non-uniformity for the flap of 150 mm exceeds the 

recommended value but still is less than the reported values in some previous work.  

4.3.2. Temperature characteristics 

The temperature inside the test section has an effect on the velocity measurements, and the 

burning and motion of firebrands. It is expected that the temperature inside the test section 

will be affected by the mix of hot air coming from the ember generator with cold air coming 

from the inlet of the wind tunnel. The mixing ratio varies for different flap heights and wind 

speed settings. Therefore, the temperature characteristics should be identified for the various 

flap and wind speed settings. 

The temperature of the wind flow at the distance of 150 mm before the screen holder and at 

the three heights was measured. T-type thermocouples were placed at the three heights, and 

Figure 4.11 Temperatures profile inside the test section at a room temperature of 
19°C for the three flaps of 50 mm, 100 mm, and 150 mm. 
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data collection was performed at a sampling frequency of 1 Hz. Figure 4.11 shows the  

highest measured temperature non-uniformity which occurred at the lowest velocity setting 

(corresponding to Figure 4.10). As with the previous section, only the maximum temperature 

non-uniformities are presented which were obtained when no screen was used. According to 

figure 4.11, the temperature at all heights increases as flap height increases. This trend was 

expected as a higher portion of flow is directed to the ember generator when a higher flap is 

used. The interesting point when considering a single flap is that the highest and lowest 

temperatures occur at the centre and the lowest measured height (height of 50 mm) of the test 

section, respectively. The higher temperature at the height of 150 mm compared to that of 

flap 50 mm can be speculated upon by the lower density of warm air and the lower 

conductivity of acrylic sheets used as the top surface with respect to zinc alloy steel used for 

the bottom surface of the test section. The maximum temperature non-uniformity of 4.3°C 

was recorded for the flap of 150 mm. The maximum temperature non-uniformity decreases to 

2.6˚C for the flap of 100 mm and to 1.7°C for the flap of 50 mm. 

4.3.3. Firebrand size measurement 

Once the collected wet firebrands were filtered and dried, they were weighed using a scale 

precise to 0.0001 grams. A script was developed in MATLAB to determine the projected area 

of the firebrands. Photos of the collected firebrands were taken (see figure 4.12a) and were 

then processed using the script (see figure 4.12b). The script calculates the pixel area of 

firebrands and then the areas are converted to mm2 using a scale factor on the photos. The 

script is able to determine the projected area of the firebrands with a high degree of accuracy, 

Figure 4.12 Image of collected firebrands in experiments with flap of 100 mm and wind 
speed of 10.7 m/s: a) actual photo; b) binary image. 
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depending on the resolution of the photos. 

4.3.4. Firebrand flow characteristics 

The experimental work shows that the firebrand shower simulator can work with a wide 

range of porosities and wind speeds without any reverse flow jeopardising safety. The lowest 

porosity tested was double-layer identical screens with a porosity of 43% (0.987 mm 

aperture, wire diameter 0.54 mm). The maximum wind speed associated with the different 

flaps varied (see table 4.2). The velocities are the average of nine measurement points at the 

outlet of the test section (as described in section 4.3.1).The decrease of velocity with the 

height of the flap shows it has a substantial contribution to the total head loss in the device. 

Table 4.2 also shows the range of wind speeds observed for each flap by sliding the fan 

backward or forward. Lower wind speeds than those presented in table 4.2 are obtainable by 

partially blocking the gap between the inlet of the wind tunnel and the fan. Higher wind 

speeds cannot be generated without utilising a larger or a higher speed fan. The wind speeds 

were categorised as low, medium and high for each flap in the absence of any screen in the 

test section, as listed in table 4.2. 

Table 4-2 Range of wind speeds tested in the ESS for different flaps. 

Flap Height 
(mm) 

Wind Speeds (m/s) 
Low Medium High 

50 13.4 16.0 18.0 

100 10.7 12.7 14.6 

150 7.3 9.2 10.9 

The flow of firebrands generated by the ESS is not steady, showing random fluctuations on a 

time scale of several seconds. Therefore, the total numbers of the firebrands at time intervals 

of one minute were calculated and are presented in figure 4.13. The total number of glowing 

firebrands observed at the test section changed for different amounts of feed placed in the 

generator but, in all cases, the pattern shown in Figure 4.13 remained the same. The firebrand 

flux started from zero, increased to a maximum and eventually fell off back to zero at the end 

of the experiment. A steadier flow of the firebrands is expected if a continuous feeding 

system similar to the study of (Suzuki and Manzello 2011) is integrated with the design. 

4.3.5. Mass and projected area of firebrands 
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Table 4.3 lists the average and maximum mass and projected area of the collected firebrands 

during the nine experiments. For a specific flap, increasing the wind speed at the test section 

increases the size and mass of the generated firebrands. Another way to increase the mean 

mass and mean projected area of the firebrands is to increase the height of the flap. The only 

direct comparison available in Table 4.3 is for the 100mm-flap at a wind speed of 10.7 m/s, 

where the mean mass and mean projected area increased from 0.79 milligrams and 4.81 mm2 

to 3 milligrams and 16.11 mm2 for the 150mm-flap at a wind speed of 10.9 m/s. The reason 

for the different average size and mass of the firebrands is believed to be the speed of the 

wind in the ember generator. A higher wind speed in the wind tunnel or a higher flap causes a 

higher wind speed in the ember generator which in turn carries larger and heavier firebrands 

into the test section. 

Table 4-3 Mean and maximum of mass and projected area of collected firebrands in the 

different experiments 

Flap Height 
(mm) 

Wind 
speed(m/s) 

Mass (milligram) Projected area (mm2) 

average maximum average maximum 
50 13.4 0.27 6.7 2.60 36.6 

16.0 0.69 15.6 4.90 82.8 

18.0 1.90 44.4 9.50 161.2 

100 10.7 0.79 17.0 4.80 70.3 

12.7 2.60 57.2 12.70 240.3 

14.6 3.00 118.0 13.70 197.7 

150 7.3 0.40 13.0 2.60 105.5 

9.2 1.30 23.4 7.20 137.6 

10.9 3.00 62.1 16.10 259.0 

Figure 4.13 Number flux of firebrands generated by the ESS with wind speed of 16 
m/s at the test section and flap height of 50 mm. 
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Table 4.4 shows the projected area distribution of the produced firebrands collected from the 

flow exiting the wind tunnel. The measurements showed that all generated firebrands for the 

50 mm flap at the low wind speed (13.4 m/s) had a size less than 50 mm2. The size of the 

firebrands increased as the wind speed increased for all the flaps utilised in this study. 

Another way to increase the projected area of the firebrands was to use taller flaps. For 

instance in the case of the 100mm-flap at a wind speed of 10.7 m/s, 99.5% of the firebrands 

had a size less than 50 mm2, but this ratio decreased to 93.0% for the 150mm-flap at a wind 

Figure 4.14 a) Number flux of collected firebrands at different flaps versus wind 
speeds; b) Mass flux of collected firebrands at different flaps versus wind 
speeds 
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speed of 10.9 m/s.  

Table  4-4 Firebrand size distribution collected at the exit of the wind tunnel. 

 

4.3.6. Firebrand number and mass flux  

The glowing firebrand number flux (or simply “firebrand flux”) is defined as the number of 

firebrands passing through the unit area per unit of time. The flux is related to the amount of 

feed placed in the generator and the wind speed in the firebrand generator, and was not 

constant throughout any one experiment. However, an average value for each experiment was 

calculated based on the total number of generated glowing firebrands in the experiment and 

the overall duration of the experiment (492s). The average glowing firebrand flux for each 

experiment is displayed in figure 4.14a and table 4.5.  

Table 4-5 Number and mass fluxes of firebrands in different experiments 

Glowing 
firebrands 

Flap 50 mm Flap 100 mm Flap 150 mm 

13.4 

(m/s) 

16.0 

(m/s) 

18.0 

(m/s) 

10.7 

(m/s) 

12.7 

(m/s) 

14.6(

m/s) 

7.3  

(m/s) 

9.2  

(m/s) 

10.9  

(m/s) 

Number flux 
(Number 
.m-2.s-1) 

378 804 1220 540 681 1374 288 4415 2043 

mass flux 
(g.m-2.s-1) 

0.10 0.55 2.31 0.42 1.77 4.12 0.12 5.35 6.13 

The results show that for the two flaps with the height of 50 mm and 100 mm, the number of 

produced firebrands increased with the increase in wind speed. A similar trend can be 

observed for the 100mm-flap. However, in the case of the 150 mm flap, the number flux 

initially increases to a peak and then decreases. This particular case is discussed later (see 

section 4.3.5). A photo of the firebrands in this case is presented in figure 4.15. The results 

also showed that the ESS can produce a wide range of firebrand number fluxes with a 

maximum of 4415 firebrands.m-2.s-1 for an 800 gram load of hardwood mulch. 

Projected 
area, Ap 
(mm2) 

Firebrand size distribution (%) 
Flap 50mm Flap 100mm Flap 150mm 

13.4 

(m/s) 

16.0 

(m/s) 

18.0 

(m/s) 

10.7 

(m/s) 

12.7 

(m/s) 

14.6 

(m/s) 

7.3 

(m/s) 

9.2 

(m/s) 

10.9 

(m/s) 
Ap<50 100.0 99.9 96.7 99.5 96.1 93.9 99.9 98.2 93.0 
50 <Ap< 100 0.0 0.1 2.6 0.5 3.2 4.9 0.0 1.5 5.5 
Ap >100 0.0 0.0 0.7 0.0 0.7 1.2 0.1 0.3 1.5 
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An approximate way to calculate the glowing firebrand mass flux is to multiply the firebrand 

number flux by the average mass of firebrands for each experiment. The results obtained 

using this technique should be considered as indicative because the average mass of glowing 

firebrands is taken to be equal to the average mass of glowing firebrands that fell into the 

collecting pans. This was not the case because our observations showed that the percentage of 

tiny firebrands that fell into the collecting pans was smaller than large firebrands. 

Consequently, the calculated value tends to be larger than the actual value, particularly for 

experiments in which large firebrands are produced. 

The glowing firebrand mass fluxes were calculated based on the above-mentioned technique 

and the outcomes are presented in table 4.5 and figure 4.14b. The results show that the ember 

generator produces the firebrand mass flux in a wide range from 0.10 g.m-2.s-1 to 6.13 g.m-2.s-

1. According to the results, the mass flux increases by either increasing the wind speed or the 

height of the flaps. 

An important characteristic of the ember generator is the mass ratio of generated glowing 

firebrands to initial mulch. The total mass of glowing firebrands can be calculated by 

multiplying the mass flux, the duration of the experiment and the area of the test section. The 

results are presented in table 4.6. According to the results, the total mass of the generated 

firebrands changed from a minimum of 1.964 grams to a maximum of 120.393 grams, 

corresponding to mass ratios of 0.2% and 15.0%, respectively. A further experiment is 

Figure 4.15 Collected firebrands in experiments with flap of 
150 mm and high wind speed. 
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required for a better understanding of the large difference between the minimum and 

maximum ratios. In a supplementary experiment, a 65.27 gram load of the same hardwood 

mulch used in the previous experiments was completely burned to ashes without allowing the 

ashes to escape from the container. The final mass decreased to about 2.60 grams, 

representing a decrease of 96%. The results of this experiment are used to illustrate the main 

results in section 4.3.7. 

Table 4-6 Total estimated mass of generated firebrands in experiments 

Flap height 
(mm) 

Wind speed 
(m/s) 

Mass of generated glowing firebrands 
(grams) 

50 

13.4 1.964 

16.0 10.802 

18.0 45.369 

100 

10.7 8.249 

12.7 34.763 

14.6 80.917 

150 

7.3 2.357 

9.2 105.074 

10.9 120.393 

4.3.7. Discussion  

The initial tests of the ESS demonstrate the capability of the design to work under various 

wind speeds and screen porosities. The reverse firebrand flow was not observed, in spite of 

using double layer low porosity screens that covered the entire test section. The maximum 

wind speed in the test section was 21 m/s in the absence of any screen in the test section. The 

flap causes some turbulence and non-uniformity both on temperature and velocity of air flow 

in the test section. The maximum spatial velocity non uniformity was measured to be 9.54% 

at the inlet of the test section and 6.34% at the outlet of the test section for the 150 mm flap. 

The temperature inside the test section reached a steady value after about 2 minutes of the fan 

running. The maximum temperature non uniformity of 4.7˚C was determined at the inlet of 

the test section for the 150 mm flap. These results call for awareness in the selection of the 

flap. A high flap produces a higher wind speed in the ember generator as well as higher non 

uniformities at the test section, which may not be compatible with the requirements of some 

applications. Generally speaking, non-uniformity greater than 10% is not acceptable, but it 

reduces to 5% for some applications. In the absence of any information on non-uniformity of 

the Baby Dragon, the 2.5% non-uniformity caused by the 50 mm flap appears to be 

acceptable. A comparison between non uniformities at the inlet and at the outlet of the test 
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section shows that by increasing the distance between the flap and the test section, a better 

uniformity is achievable. However, this increase may have a negative impact on firebrand 

flow due to their possible quenching over a longer distance. 

The results demonstrated that in the case of the 150 mm flap, contrary to the other cases, the 

flux of the glowing firebrand at the highest wind speed (10.9 m/s) decreased compared to the 

flux at the medium wind speed (9.2 m/s). This can be explained in two ways. First, from table 

4.3, it can be seen that the mean mass (3.0 milligrams) and projected area (16.10 mm2) at the 

highest wind speed are higher than those (1.3 milligrams, 7.20 mm2) at the medium wind 

speed. This led to the increase in the mass flux, despite the lower number flux (see figure 

4.14). An alternative way to explain the decrease of firebrand flux at the highest wind speed 

is to examine the difference between the estimated total mass of the firebrands in the two 

cases (Table 4.6). According to the table, the total mass of the generated firebrands was 

120.393 grams at the corresponding maximum wind speed and 105.074 grams at the medium 

wind speed. As only negligible amounts of mulch remained in the generator at the end of the 

experiments, it can be concluded that a higher percentage of firebrands were not properly 

burned or not burned at all in the case of the maximum wind speed at the 150 mm flap. 

Figure 4.15 appears to further support the argument. Therefore, it is reasonable to conclude 

that for the 150mm flap, increasing the wind speed from medium to high leads to producing a 

comparatively lower number but larger-sized firebrands in the earlier stages of combustion. 

Therefore, the wind speed in the generator must be limited with short flaps if only the 

glowing firebrands are required. 

The supplementary experiment showed that the mulch lost 96% of the initial mass when it 

was completely burnt. Thus, it was expected that the final mass of the 800 gram mulch would 

become at least 32 grams. Table 4.6 shows that in five cases out of the nine, the final mass 

was greater than 32 grams. This demonstrates that the firebrands were not completely burned. 

However, in four cases, the final mass of the glowing firebrands were less than 32 grams, 

which shows that a percentage of the firebrands were completely burned before approaching 

the test section. It should be noted that observation in these cases ruled out the alternative 

possibility of unburned firebrands passing through the test section. Three of the cases were at 

the low wind speed for the three flaps and the fourth case was for the 50 mm flap at the 

medium wind speed. These results lead to the conclusion that the wind speed in the generator 

in these cases was not sufficient to lift heavy firebrands, only the small size or fully-burned 
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firebrands and ashes. This demonstrates that the ESS is able to produce a variety of different 

sizes and masses of firebrands in different stages of combustion.  

The results show that the size of the firebrands is slightly smaller than firebrands in actual 

wildfire events. It should be noted that the projected area in this work and the surface area 

reported in the literature review from laboratory studies (section 2.3.3) are not quite the same 

but the difference is not significant for the firebrands produced in this work (see figure 

4.12a). Previous studies revealed that about 85% to 90% of the firebrands produced in actual 

wildfire events have a size less than 50 mm2, which is less than the minimum ratio of 93% 

measured in this work. This shows that the firebrands produced by the ESS nearly simulate 

an actual or a slightly worst-case scenario in terms of firebrand penetration through screens. 

4.4. Summary  

An experimental apparatus was designed and manufactured at the USQ workshop in order to 

simulate a firebrand shower. The design of the Ember Shower Simulator was inspired by the 

NIST laboratory scale firebrand generator (NIST baby dragon) and adapted with particular 

improvements that enable experiments with low-porosity screens at high wind speed up to 21 

m/s. The simulator consists of a wind tunnel and an ember generator that was mounted 

underneath the wind tunnel. An L-shaped stand was fabricated to direct and collect firebrands 

outside the tunnel. The quantity of fire embers at two sides of the wire screen was recorded 

with a high-speed camera. The initial visual investigation of recorded videos was carried out 

in Adobe Premier Pro and the number of fire embers was counted in MATLAB using the 

image processing toolbox. 

The performance of the ESS was assessed through several experiments. The flaps on the 

splitters were major source of flow non-uniformity inside the test section. The turbulence 

intensity had a maximum of 3.7% in the test section. A comparison between the non-

uniformity of ESS and common wind tunnels used in previous fire research showed that the 

mean non-uniformity measured for ESS is within the acceptable range reported in previous 

works. The temperature inside the test section had a maximum variance of 4.2°C when the 

highest flap (150 mm) was mounted on the splitter. The mass, projected area and mass flux as 

well as firebrand flux were presented. It was found that the simulator is capable of working 

with various wind speeds and producing different sizes of firebrands. The size distribution of 

the generated firebrands was biased towards producing smaller sizes than addressed by 
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literature. It showed the ability of the ESS to simulate the worst-case scenarios in terms of 

performance of the screen in containing firebrand showers. 
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Chapter 5  

Performance of screens to contain 
firebrands  

5.1. Introduction  

In the previous chapter, the design and development of ember shower simulator was 

explained and the performance of ESS was assessed by several preliminary experiments. This 

chapter aims to report the results of experimental works carried out to fulfill the objectives set 

in section 1.8 in relation to screen performance against firebrand attacks. Objectives 3 to 7 

assess the effect of screen geometries on the performance of screens against firebrands and 

objective 8 looks at the combined effect of buffer zones and metal screens on screen 

performance. This chapter presents the results of this experimental work in two parts. Section 

5.2 explains the experimental results for the effect of screen geometries on screen 

performance to contain leaf firebrands. It begins with the assessment of uncertainty in the 

experimental outcomes from Eucalyptus leaf firebrands prior to assessing the impact of 

screen geometry: opening size, wire diameter, screen manufacturing type and opening shape 

as well as firebrand flow orientation. Then, in section 5.3, the experimental work to evalute 

the combined effect of a buffer zone and screens with different opening size on protecting an 

object against firebrand attacks is presented. Sections 5.4 and 5.5 provide a summary of 

notable results and a list of conclusions, respectively. 
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5.2. Effect of screen geometry on screen 

performance to contain firebrands 

5.2.1. Preliminary Experiments 

Several preliminary experiments were performed to determine the minimum number of leaf 

embers required for repeatable results and to assess the possible effects of the intensity of the 

ember shower and ambient conditions on the results. The reasons for selecting Eucalyptus 

leaves as a source for firebrands for this experiment is provided in section 2.4, page 39. 

Initial experiments showed that good repeatability could not be achieved only by increasing 

the time of the experiment or the number of embers without adopting a special procedure. In 

an experiment in which approximately 20,000 embers were recorded, the penetration ratios 

(see section 2.3.6) for twenty clusters of 1000 embers were measured and the results 

demonstrated a variance of ±38.4%. The change of average size of approaching embers 

during the experiment was identified as the main reason for the high variance. It was found 

that a smaller variance could be achieved if the results for the entire embers produced in an 

experiment were compared with those of the next experiment. The results of three 

consecutive experiments in which approximately 20,000 embers were produced showed a 

variance of ±3.0%. Taking into account the uncertainty of 5.0% in the counting process, the 

procedure was accepted and utilised for the remaining work. 

Table 5-1 the penetration ratio (Eucalyptus leaf fragmentation ratio) for different ember shower 
intensities using a square woven wire screen with porosity of 54% and opening size of 3.15 
mm at the wind speed of 14.5 m/s. 

Exp .No  Intensity (
𝒇𝒊𝒓𝒆𝒃𝒓𝒂𝒏𝒅𝒔

𝒔.𝒎𝟐
) Penetration ratio  

1 2380 2.62 

2 6716 2.80 

The effect of the intensity of the ember shower on the measured penetration ratio was 

assessed at two intensities of 2380 (
𝑓𝑖𝑟𝑒𝑏𝑟𝑎𝑛𝑑𝑠

𝑚2.𝑠
) and 6716 (

𝑓𝑖𝑟𝑒𝑏𝑟𝑎𝑛𝑑𝑠

𝑚2.𝑠
) (see table 5.1). The 

intensity was increased by mounting a higher flap while the wind speed (14.5 m/s) at the test 

section and the amount of leaves (producing around 20,000 embers) at the generation section 

were kept unchanged. The comparison between the results of the two successive experiments 

shows a variance of ±3.3%. Taking into account the uncertainty of the counting and the 

results of two consecutive experiments with approximately 20,000 embers at an identical 
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intensity having a variance of ±3.0%, the effect of the intensity of the ember shower was 

marked as minor. 

Four preliminary experiments on different days were performed to estimate the possible 

effects of ambient conditions on the results (see table 5.2). The penetration ratio showed a 

variance of ±6.8%. The main experiments were performed on different days and ambient 

conditions could not be controlled. The maximum overall uncertainty of the results was 

calculated using the root mean square values. The maximum overall uncertainty was 8.9% 

based on 5.0% uncertainty of counting, 6.8% uncertainty of ambient conditions, 2.1% 

uncertainty of measuring mesh size and porosity, and 2.1% uncertainty related to wind speed 

measurements. 

Table 5-2 The effect of ambient conditions on penetration ratio (Eucalyptus leaf fragmentation 
ratio) of a square woven wire screen with porosity of 66%, opening size of 6.85 mm, and wire 
diameter of 1.54 

5.2.2. Effect of opening size 

The uncertainties of experiments provided in section 5.2.1.The impact of screen opening 

sizes and porosities on the penetration ratio was investigated, and the results are listed in table 

5.3. The wind speed was set as 14.5 m/s inside the test section, while no flap was mounted on 

the splitter. The load of Eucalyptus leaves placed in the ember generator of ESS was 160 g 

for all experiments, then ignited with an external source. This experiment condition was the 

same for all experiments with Eucalyptus leaf firebrands. 

Table 5-3 The Eucalyptus leaf fragmentation ratio of four square woven wire screens with 
different porosities, opening sizes and wire diameters at the wind speed of 14.5 m/s 

Exp. 
No  

Opening size 
(mm) 

Wire diameter 
(mm) 

Fragmentation ratio 

1 0.99 0.54 1.29 

2 1.61 0.57 3.07 

3 6.85 1.56 2.96 

4 11.15 1.51 2.29 

Date 16 
April 

10 June 11 
June 

23 
June 

Temperature( C ) 24 18 17 19 

Relative Humidity (%)  62 73.5 70.5 47 

Penetration ratio 2.98 2.6 2.95 2.92 
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The experiments show that no firebrands remain on the arrival side of the screen after 

terminating the experiment regardless of the opening size, but the number of embers on the 

downstream side and retention time change. This observation shows that the approaching 

firebrands shatter into pieces and produce secondary firebrands, and the secondary firebrands, 

being smaller than the opening size, pass through the screen. Therefore, the penetration ratio 

exceeds one. The results show that it is more relevant to call the ratio defined in section 2.3.6 

a fragmentation ratio instead of a penetration ratio for leaf embers. 

According to figure 5.1, the fragmentation ratio of burning embers sharply increased from 

1.29 at the minimum opening size of 0.99 mm to a maximum measured value of 3.07 at the 

opening size of 1.61 mm, and then moderately decreased to 2.29 at the maximum opening 

size of 11.15 mm. Figure 5.2 contains four snapshots from the videos showing the behaviour 

of embers in the test section for four screens with different opening sizes. The retention time 

and the number of secondary embers for the minimum opening size screen of 0.99 mm 

(figure 5.2a) is the highest. Due to the high retention time which gives sufficient time for a 

high percentage of embers to burn out and quench, many embers passing through that screen 

are not glowing/flaming, thus the fragmentation ratio of the burning embers is a minimum. 

As the opening size increases, the retention time sharply decreases (see figure 5.2b) and a 

higher percentage of secondary embers are still burning, consequently the fragmentation ratio 

of the burning embers increases. By further increasing the opening size (see figure 5.2c), the 

Figure 5.1 Eucalyptus leaf fragmentation ratio versus opening size of square woven wire 
screens at the wind speed of 14.5 m/s. 
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effect of the number of passing embers becomes dominant and the fragmentation ratio 

decreases. It should be noted that the size of embers passing through the screens always 

increases as the opening size increases. The retention time becomes negligible for openings 

greater than 1.61 mm.  

Based on the experimental results, the correlation of opening size (a) and fragmentation ratio 

(FR) was developed as,  

                                    𝐹𝑅 = 4.455 e−0.05969𝑎 −16.4𝑒−1.752𝑎                   (5.1)  

 

Equation 5.1 has a maximum 1.15% error with respect to experimental results at an opening 

size of 0.99 mm. Figure 5.1 indicates the experimental results and the estimation of formula 

Figure 5.2 Four selected frames of the captured video showing approaching and 
leaving Eucalyptus leaf embers during the experiments with square woven wire 
screens at the wind speed of 14.5 m/s. The dashed white line is screen; the flow 
direction is screen. a) Screen with an opening size of 0.99 mm, wire diameter of 
0.54 and porosity of 41%; b) screen with an opening size of 1.61 mm, wire 
diameter of 0.57 mm and porosity of 54%; c) screen with an opening size of 6.85 
mm, wire diameter of 1.56 mm and porosity of 66%; and d) screen with an opening 
size of 11.15 mm, wire diameter of 1.51 mm and porosity of 78%. 



91 
 

5.1. 

Leaf embers showed fragmentation ratios of greater than one due to the production of 

secondary fire embers. Secondary fire embers are produced because of the weak structural 

strength of burning leaves that lead them to shatter into small pieces on their arrival at 

screens. The fragmentation ratio experienced a sharp increase from the minimum opening 

size (0.99 mm) up to opening size of 1.61 mm and then gradually decreases for opening sizes 

greater than 6 mm. The main cause of experiencing this steep increase in fragmentation ratio 

was the effect of retention time that was tremendous for the opening size of less than 1.61 

mm for leaf embers. The retention time increased with the reduction of opening size and 

therefore many of the embers quenched before passing the screen. This is in agreement with 

the previous work by Manzello et al. (2011), who showed that the retention time of firebrands 

(wood mulches derived from Norway Spruce trees) behind screen increases with the decrease 

of the mesh size (see section 2.3.6). By decreasing the mesh size, firebrands stay behind the 

screen until their size fits the mesh size and some reach their burnout time and then quench 

before passing the screen. 

5.2.3. Effect of wire diameter and porosity 

The opening size and porosity of common commercial screens increase simultaneously. In 

the previous section, the effects of the opening size have been investigated but it should be 

noted that the porosity also increased. Therefore, it is not entirely clear that the obtained 

results are indeed due to opening size. The porosity has been reported as the key factor 

determining the drag force on the screen (Sharifian 2010) and the capability of screen in 

limiting the radiant heat flux of wildfires (Sharifian and Buttsworth 2008, Sharifian and 

Buttsworth 2010). To break the trend between the increase of opening size and porosity, two 

screens with approximately the same porosity but different opening sizes were tested. The 

first screen has an opening size of 1.61 mm and porosity of 54.5% and the second screen has 

an opening size of 3.15 mm and porosity of 53.7% (see table 5.4). 
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Table 5-4 The leaf fragmentation ratio of two square woven wire screens with porosity of 54% 
and different opening sizes and wire diameters at the wind speed of 14.5 m/s. 

Screen Opening size 
(mm) 

Wire 
diameter 

Porosity Fragmentation 
ratio 

1 1.61 0.57 54.5% 3.07 

2 3.15 1.15 53.7% 2.76 

This result can be explained by considering the wire diameters of screens, which are related 

to porosity and cell size (see section 2.2.2, Eq. 2.5). The first and second screens have wire 

diameters of 0.57 mm and 1.15 mm, respectively. From figure 5.1, a fragmentation ratio of 

3.62 for the second screen could be reasonably expected if its wire diameter was equated with 

the first screen and consequently the porosity was increased to 71.7%. The difference 

between the experimental result (2.76) and the expected result (3.62) is 31.1% which is far 

greater than the estimated experimental uncertainty of 8.9%. 

The observation showed that there are two reasons for the decline of the fragmentation ratio 

from the expected value. A larger diameter wire blocks a higher percentage of the firebrands 

and considerably increases the retention time. In addition, as their contact surface area with 

the firebrands is greater, they do not cause breakage of firebrands as much as thinner wires 

do. Therefore, the wire diameter (or porosity) is one of the key factors influencing the 

fragmentation ratio. 

5.2.4. Effect of screen type  

The screens are categorised based on the way they have been woven or manufactured. The 

possible effect of screen types on the fragmentation ratio was investigated by the use of two 

different types of screens. The first type was the woven wire screen with an opening size of 

6.85 mm and porosity of 66%. The second screen was a flat screen with 6.82 mm opening 

size and nearly the same porosity of the woven wire screen. The two screens were tested with 

conditions as explained in section 5.2.2 and their fragmentation ratios were measured.  

Table 5-5 The Eucalyptus leaf fragmentation ratio of two different types of screens with 
identical porosity at the wind speed of 14.5 m/s 

Screen type Opening 
size(mm) 

Wire 
diameter(mm) 

Fragmentation 
ratio 

Woven 8.41 1.56 2.96 

Flat 8.34 1.52 2.38 
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Table 5.5 lists the details of experiments and results, and figure 5.3 shows snapshots of the 

firebrands’ behaviour during the observation. The results show that the fragmentation ratio of 

the flat screen is lower than that of the woven wire screen. The fragmentation ratio of the 

woven wire screen is 2.96, while this ratio declined to 2.38 (19.6% decrease) for the flat 

screen. The reason is similar to what was explained for the impact of the wire diameter. The 

distances between openings of a flat screen are flat and have a larger contact area with 

embers than those of the woven wire screen, thus the embers split into fewer pieces which 

reduces the fragmentation ratio. 

 

Figure 5.3 The photos of Eucalyptus leaf embers before and after passing through 
two types of screens with porosity of 66% at the wind speed of 14.5 m/s; a) 
Approaching embers to a square flat screen with an opening size of 6.82 mm and 
gap size of 1.52 mm; b) Leaving secondary embers from the screen described in (a); 
c) Approaching embers to a square woven wire screen with an opening size of 6.85 
mm and wire diameter of 1.56 mm; and d) Leaving secondary embers from the 
screen described in (c). 
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5.2.5. Effect of Opening shape  

The possible effect of opening shape on the fragmentation ratio was investigated using three 

flat screens with approximately the same porosity and opening shapes of square, circular and 

rectangular. The experimental conditions were the same as explained in section 5.2.2. The 

square cell shaped screen had a mesh size of 8.34 mm and an opening size of 6.82 mm, while 

the rectangular cell shaped screen had a mesh size of 10.5 mm×5.35 mm with an opening size 

of 8.65 mm×4.52 mm. The circular cell shape screen had a cell diameter of 9 mm and an 

opening diameter of 8.3 mm. The porosity of the square, rectangular and circular shape 

screens were 66.9%, 69.5% and 66.8%, respectively. 

Table 5-6 The Eucalyptus leaf fragmentation ratio of three flat screens with different opening 

shapes and sizes at the wind speed of 14.5 m/s. 

Table 5-7 The Eucalyptus leaf fragmentation ratio of a square wire woven screen with a 
porosity of 54%, opening size of 3.15 mm, and wire diameter of 1.15 mm in three different 
orientation at the wind speed of 14.5 m/s 

 

Table 5.6 lists the details of the screens’ dimensions and measured fragmentation ratios. The 

measured fragmentation ratios show negligible changes in all three experiments. While the 

fragmentation ratio of the square mesh shape is 2.38, it is 2.43 for the circular screen (+2.1%) 

and 2.57 for rectangular screen (+7.9%).  The change of the ratio is less than the uncertainty 

of the experiment (8.9%), therefore the results are not conclusively different. 

5.2.6. Effect of screen orientation  

Mesh shape  Opening size 
(mm) 

Pitch Length 
(mm) 

Fragmentation 
ratio  

Square 6.82 8.34 2.38 

Rectangular Warp 8.65 10.5 2.57 

Weft 4.52 5.35 

Circular 8.3 9 2.42 

Opening size Wire diameter Orientation (°) Fragmentation ratio 
3.15 mm 1.15 mm 45 1.63 

3.15 mm 1.15 mm 90 2.76 

3.15 mm 1.15 mm 135 2.04 
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All applied screens in previous experiments were normal to (90°) the firebrand flow 

direction. This investigation was carried out by applying two different orientations in addition 

to the vertical position used previously. The wire screens were positioned at a 45° angle with 

respect to the firebrand flow and then laid back with a 135° angle. The selected woven wire 

screen had a cell size of 4.3 mm and porosity of 54%. 

The experimental results are detailed in table 5.7. The results show that tilting the screen has 

a significant impact on the fragmentation ratio. For the wire screen with the 45° orientation 

(tilted forward), the fragmentation ratio decreased remarkably from 2.76 for the vertical 

screen to 1.63 (41% decrease). For the wire screen with the 135° orientation (45° tilted 

backward), the fragmentation ratio is 2.04, which shows a 25% increase with respect to the 

45° degree screen and 26.1% decrease with respect to the vertical screen. Figure 5.4 indicates 

the experimental results and estimation of fragmentation ratios by the best fitted curve. 

The reduction of the fragmentation ratio for tilted screens was further investigated by 

reviewing the captured videos. The observation for the 45° orientation shows that the number 

of trapped embers behind the screen increases in comparison with that of the vertical screen. 

The possible reasons are the decrease of the projected area of screen openings and reduction 

of the perpendicular wind force against the screen to push the embers through the screen. In 

Figure 5.4 Eucalyptus leaf fragmentation ratio versus orientation angle for a square 
woven wire screen with opening size of 3.15 mm, wire diameter of 1.15 mm and 
porosity of 54% in wind speed of 14.5 m/s. 
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addition, the observation shows that in the case of the 45° screen, some embers move 

downward and accumulate at the bottom of the screen on the upstream side (see figure 5.5a). 

These embers spend some time behind the screen before passing through the screen. Due to 

the delay, the retention time increases which gives sufficient time for some embers to quench. 

For the case of the 135° screen, the number of trapped embers behind the screen is similar to 

the 45° screen, but embers are inclined to slip upward on the screen (see figure 5.5b). The 

slippage on the screen causes some embers to shatter and find an opportunity to pass through 

the screen 

. 

5.3. Combined effect of buffer zone and woven 

wire screens on mitigating associated risk 

of firebrand attacks 
Three experiments including one in the absence of a screen and two others using screens with 

aperture sizes of 1.61 mm and 1 mm were performed. All experiments were conducted 

several times to check the repeatability of the experiments. The experimental equipment 

consisted of the ESS and L-shaped stand (see section 4.2.5). The fuel beds consisted of oven-

dried cotton cloths that were cut and placed in two aluminium pans. The pans were positioned 

on the L-shaped stand outside the ESS. Also, a water-filled aluminium pan was placed near 

the fuel bed to capture the firebrands for further analysis. A buffer zone with an arbitrary size 

of 4.48 m between the screen fuel beds was applied. It is the average distance on streamlines 

and the maximum distance that a representative glowing firebrand could still reach the fuel 

Figure 5.5 Two captured frames during experiment on a square woven wire screen with 
opening size of 3.15 mm, wire diameter of 1.15 mm and porosity of 54% for two 
different orientation angles; a) 45° degree orientation; and b) 135° degree orientation. 
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bed with current setup. Figure 5.6 shows the experimental layout including aluminium pans 

on the L-shaped stand and ESS. In all the experiments, the average wind speed in the wind 

tunnel was set at 10 m/s, and an identical load (0.5 kg) of oven-dried hardwood mulch out of 

a fully mixed pile was deposited into the fire ember generator. Hardwood mulch was used 

because preliminary experiments showed that a lower percentage of smouldering hardwood 

mulch (in comparison to leaf firebrands) extinguishes during passage through the buffer zone. 

(see section 2.4, page 39). Three cameras were applied in these experiments. Camera 1 

(CASIO, see section 4.2.3.1) was used to monitor the firebrands before and after the screen at 

the frame rate of 420 fps, similar to the previous application in section 5.2. Also, camera 2 

(Canon, see section 4.2.3.1) was placed near the L-shaped stand in order to monitor the fuel 

beds and Camera 3 was mounted behind the L-shaped stand towards the exit of the ESS. 

Cameras 2 and 3 had the same brand and model and recorded the videos at a standard frame 

rate of 30 fps. 

  

Figure 5.6 Top view of the experimental layout showing ESS and fuel bed positions.  
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5.3.1. Fuel bed ignition 

The results showed that, in all the three cases, the fuel beds can be ignited. The word ignition 

refers to smouldering combustion throughout this study as in no case was a stable flaming 

combustion observed. Figure 5.7 shows the ignited points for the cotton cloth fuel bed in pans 

1 & 2 in the absence of a screen and in the case of using the screens with the opening sizes of 

1.61 mm and 1 mm in the first round of the experiments. All experiments were repeated at 

least three times and yielded similar results. The detailed results of the first round of the 

experiments performed with cotton cloth and the overall results of all experiments are listed 

in table 5.8.  

Figure 5.7 Pictures of cotton fuel beds captured after the first round of the 
experiments: a) Pan1 after no-screen experiment, b) Pan 2 after no-screen 
experiment, c) Pan1 after 1.61 mm-screen experiment, d) Pan2 after 1.61 
mm-screen experiment, e) Pan1 after 1 mm-screen experiment, and f) Pan 2 
after 1 mm-screen experiment. 
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Table 5-8 Number of ignited points detected on the fuel beds at wind speed of 10 m/s. 

According to the data in table 5.8, the number of ignited points decreased for the screen with 

smaller openings. In the absence of a screen, the number of the ignited points was 304 for the 

cotton cloth fuel beds. When the screen with the opening size of 1.61 mm was used, the 

number significantly reduced to 47. The screen with the openings of 1 mm had the best 

performance. In that case, the number of ignited points dropped to zero in the first round of 

the experiments. However, in some later rounds, the fuel beds were ignited. The full range of 

the ignited points observed in the repeated experiments are presented in table 5.8. 

Table 5-9 Fragmentation ratios and numbers of firebrands at two sides of the screen holder at 
wind speed of 10 m/s. 

The results presented in table 5.8 are the most the most interesting from a practical point of 

view from among all the results presented in this work. They show the number of ignited 

points of the fuel beds for the same amount of burning feeds. However, they do not provide 

much insight into the above experiments. Therefore, for a better understanding, the whole 

process was broken down into four steps. The first step is the path between the ember 

generator and the first virtual counting strip located 90 mm before the screen holder; the 

second step is the path between the first counting strip and the second virtual counting strip 

located 110 mm after the screen holder. The next step is the path between the second 

counting strip and the fuel beds, while the final step is the state of the fuel bed before and 

after the exposure to the firebrand shower. 

Case Number of ignited points 
on fuel beds (first round) 

Range of ignited points on fuel 
beds in all the experiments 

No screen 304 90-304 

Screen: 1.6 mm openings 47 17-47 

Screen: 1.0 mm openings 0 0-7 

Case Number of fragmentation 
ratio 

overall range of 
fragmentation 
ratio 

approaching 
firebrands 

leaving 
firebrands 

No screen 8266 8455 1.02 1.02-1.03 

Screen: 1.6 
mm openings 

5131 6560 1.28 1.23-1.28 

Screen: 1.0 
mm openings 

7746 7456 0.96 0.85-0.96 
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5.3.2. Firebrands from ember generator to the 

screen holder 

The number of generated firebrands was expected to be similar in all experiments as the mass 

of hardwood mulch (0.5 kg) and the wind speed in the test section were identical. However, 

the recorded numbers of firebrands showed a level of discrepancy greater than the uncertainty 

of the counting process (5%). For example, in the first round of the experiments (table 5.9), 

the number of the firebrands approaching the test section were 8266, 5131, and 7746, 

showing an uncertainty of 24% around the mean value (6699 ± 1568). In addition, the flow of 

the generated firebrands was not steady and uniform. Figure 5.8 shows the number of 

firebrands at both sides of the screen with opening size of 1 mm versus time. The figure 

shows that the number of the firebrands observed in the test section started from a low value, 

and progressively increased to reach a maximum before decreasing toward zero at the end of 

the experiment. This typical performance of the ESS was observed in all the experiments. In 

addition, the size of the firebrands at the test section were not uniform, and the measured 

projected area varied from a minimum of 2 mm2 to a maximum of 40 mm2. Figure 5.9 shows 

a typical collection of the firebrands at the test section before the screen holder. 

Figure 5.8 Typical number of firebrands at both sides of the screen with opening size of 
1 mm. 
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Several factors can be the cause of variance in the number of generated firebrands in the 

experiments. The ESS does not provide any control on wind speed inside the generator, while 

the wind speed in the test section can be controlled. The pressure drop inside the filled test 

section is compensated for by moving the fan toward the duct inlet, which increases the speed 

inside the generator. Therefore, the variation of wind speed inside the generator can be the 

main cause of discrepancies. The hardwood mulch is mixed as homogenous batches, however 

some inaccuracies during the mixing process are expected. Other factors such as a variance in 

the flaming period of feeds before operating the fan or possible inaccuracy of placing the 

feeds at the same spot inside the generator for consecutive experiments can be taken into 

account as possible reasons. In addition, the moisture content of oven-dried batches possibly 

varied at the time of transferring feeds from the oven to the experiment site. 

5.3.3. Firebrand movement between the two sides 

of the screen holder 

The present results show that the approaching firebrand flux does not appear to affect the 

fragmentation ratio. Figure 5.8 shows that at the fourth timeslot (180–240 s), in which the 

number of approaching firebrands was 466 (flux of 194 firebrands/m2.s), the fragmentation 

ratio was 1.16. At the highest intensity, which occurred in the sixth timeslot (300–360 s), the 

number of approaching firebrands was 1125 (flux of 469 firebrands/m2.s) and the 

fragmentation ratio was 1.33. During the seventh time slot in which the number of 

approaching firebrands was 827 (345 firebrands/m2.s), the fragmentation ratio was 1.37. 

Figure 5.9 Firebrands collected inside the test section of the wind tunnel before 
screen holder. 
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Therefore, the fragmentation ratios of mulch firebrands are independent of their intensities at 

least when the flux is less than 469 mulch firebrands/m2.s and for the conditions of these 

experiments. Similarly, it was shown (see section 5.2.1) that the fragmentation ratio does not 

appear to be related to the leaf firebrand flux.  

Table 5.9 lists the fragmentation ratio measured in the first round and the overall range of the 

ratio measured in all the experiments, where in the absence of a screen, the ratio varied from 

1.02 to 1.03. A ratio greater than one was not initially expected. In practice, it was observed 

that some firebrands hit the sides of the tunnel and shattered into smaller pieces, something 

that is not expected to occur in wildland fires. However, due to the 5% uncertainty of the 

counting process, the result is not conclusive. The application of the screen with openings of 

1.61 mm increased the ratio to between 1.23 and 1.28. In this case, it was observed that a fair 

percentage of approaching firebrands shattered into smaller pieces after hitting the screen (see 

figure 5.10), similar to what was reported for leaf firebrands (see section 5.2.2).  

Figure 5.10 Shattering mechanism of a firebrand passing through the screen with 
opening size of 1.61 mm a) before the impact, and b) after the impact. 
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The secondary firebrands were smaller in comparison with those in the case of no screen, but 

still maintained their illumination. The shattering process was not reported in other studies 

(Manzello et al. 2010, Manzello et al. 2011), perhaps due to a lower wind speed (7 m/s) or a 

different type of mulch (Norway spruce). Instead, the firebrands paused before the screens, 

which was also observed in this work for the 1.61 mm screen. Figures 5.11a, 5.11b, and 5.11c 

show the pausing mechanism of firebrands taken by camera 3. Figure 5.11a shows the size of 

a firebrand when hitting the 1.61 mm screen. Figure 5.11b shows that the firebrand became 

smaller in size but still burning after 5 seconds. Figure 5.11c shows that it completely burnt to 

ash six seconds after the impact.  

The fragmentation ratio decreased to values in the range of 0.85 to 0.96 when the screen with 

the openings of 1 mm was utilized (Table 5.9). Based on the observation, a sizeable 

Figure 5.11 Front view of pausing mechanism of firebrands behind screens. a) A 
firebrand at the time of impact with the 1.61 mm screen, b) the firebrand of (a) after 
five seconds, c) the firebrand of (a) after six seconds. d) A firebrand at the time of 
impact with the 1.00 mm screen, e) the firebrand of (d) after six seconds, f) the 
firebrand of (d) after nine seconds. 
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percentage of approaching firebrands paused behind the screen until they completely burnt 

and fitted the screen openings (see figures 5.11d, 5.11e, and 5.11f). The figures show the size 

of a firebrand at the time of the impact, and six seconds and nine seconds afterwards. The 

shattering mechanism was still observed but to a lower extent, and the loss of illumination 

was evident. 

The pausing mechanism was observed by Manzello et al. (2011), and the retention time of the 

firebrands behind the screen was reported. The delayed mechanism might be explained 

through the fact that a smaller opening provides a better support for susceptible firebrands. 

5.3.4. Firebrands after the screen holder to the 

fuel bed 

Table 5.10 presents the number of glowing firebrands after the screen and the number of 

firebrands that approached and made contact with the fuel beds. In the absence of a screen, 

the number of glowing firebrands which made contact with the fuel beds was the highest, and 

subsequently decreased as the aperture size decreased. The firebrand survival ratio is defined 

as the number of the glowing firebrands making contact with the fuel beds divided by the 

number of the glowing firebrands leaving the screen holder (counted in the second virtual 

strip, section 4.2.4).  

Table 5-10 Number of firebrands detected after screens and on fuel beds, and firebrand 
survival ratio at wind speed of 10 m/s 

Case Number of 
firebrands 
after the 
screen (first 
round) 

Number of 
firebrands on 
the fuel beds 
(first round) 

Survival ratio 
(first round)  

Overall 
survival 
ratio  

No screen 8455 407 4.8% 4.5%-4.8% 

Screen: 1.6 mm 
openings 

6560 98 1.5% 1.1%-1.5% 

Screen: 1.0 mm 
openings 

7456 3 0.0% 0.0%-0.4% 



105 
 

However, it should be noted that some firebrands were not caught by the L-shape stand 

(around 40%), many quenched in their path to the fuel beds, or some flew over the fuel beds 

without making any contact. Therefore, the survival ratio defined here is a comparative ratio 

and is only valid under the conditions of this study. Figure 5.12 shows the size of firebrands 

reaching the fuel beds during the first round of experiments. As expected, the size decreased 

as the opening size of the screen decreased. It can therefore be concluded that the survival 

ratio decreases as the opening size decreases. 

Figure 5.12 Firebrands collected near fuel beds during the first round of the 
experiments; a) without screen, b) screen with 1.61 mm opening size, and c) screen 
with opening size of 1 mm 

 

Figure 5.13 Captured pictures of firebrand traces in the test section of the 

wind tunnel at wind speed of 10 m/s under the experimental conditions of; a) 

no-screen, b) screen with the opening size of 1.6 mm, and c) screen with the 

opening size of 1 mm. 
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The above discussion suggests that the chance of firebrands becoming quenched along the 

buffer zone of 4.48 m significantly increases as the size of the screens’ openings decreases.  

For further exploration, in separate runs after the main experiments, the movement of the 

firebrands in the test section was recorded with a long exposure time of 250 ms for the first 

camera. The resulting images are displayed in figure 5.13.  

Figure 5.13a shows that most firebrands maintain their illumination along the wind tunnel in 

the absence of a screen. Figure 5.13b shows that in the case of 1.61 mm-screen, a lower 

percentage of the firebrands remain alight at the end of the tunnel compared to the previous 

case. Figure 5.13c shows that for the case of 1 mm screen, the tunnel is conspicuously darker 

than the two previous cases. Therefore, firebrands passing through the screen with the 

opening size of 1 mm have the highest likelihood of being quenched by the screen and also in 

their path to the fuel bed.  

5.3.5. State of the fuel bed before and after the 

exposure 

The firebrand hazard ratio was defined, which is the number of burnt marks on the fuel beds 

to the number of the firebrands making physical contact with it. Table 5.11 presents the 

firebrand hazard ratio measured in the first round of the experiments, as well as the range of 

the ratio measured during all the experiments. 

Table 5-11 The number of firebrands that made contact with the fuel beds, the number of 
ignited points on fuel beds, and the hazard ratio of firebrands at wind speeds in the range of 
0.5 m/s to 1.1 m/s. 

The results show that as the size of screen aperture decreases, the ignition capability of the 

passing firebrands diminishes. It should be noted that the ratio of zero was found only three 

Case Number of Firebrand 
hazard ratio 
(first 
round)  

Overall 
firebrand 
hazard ratio  

firebrands 
on fuel beds 

ignited 
points on 
fuel beds 

No screen 407 304 74.7% 32.5%-74.7% 

Screen: 1.6 mm 
openings 

98 47 48.0% 9.1%-48.0% 

Screen: 1.0 mm 
openings 

3 0 0.0% 0.0%-23.1% 
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times among seven experiments performed on the 1 mm screen. The overall results show that 

the firebrands were still capable of igniting the fuel beds. 

5.3.6. Further discussion  

The results show that the ESS did not generate a steady firebrand shower. However, by 

comparing the results at different stages of the experiments, it was shown that the intensity of 

the flux of firebrands does not appear to have a major impact on the fragmentation ratio. It 

should be recognized that these results are only valid for the range of the flux used during the 

experiments (less than 466 firebrands.m-2.s-1). A lower fragmentation ratio at higher firebrand 

fluxes, particularly for screens with smaller apertures, is not unexpected due to possible 

blockage of the openings by firebrands during the retention time. 

The results show that two mechanisms of pausing and shattering cooperated during the 

passage of firebrands through the screens. The percentage of firebrands pausing behind the 

screen decreases as the opening size increased. It was also observed that a higher percentage 

of firebrands shattered into smaller pieces when the screen with larger openings was used for 

the opening size of range 1 –9.64 mm. These two mechanisms are expected to operate in 

parallel for other screens, at different wind speeds, and other types of feeds but in different 

proportions, thus resulting in different fragmentation ratios. According to the results 

presented in section 5.2.2, the passage of leaf firebrands through a screen with an opening 

size of 1 mm at wind speed of 14.5 m/s reported a fragmentation ratio of 1.29, which is 

considerably different from the results of this study. This indicates that, for a particular 

screen, a higher fraction of shattering mechanism occurs at higher wind speeds and/or for 

more susceptible firebrands. Therefore, the fragmentation ratios found in section 5.3.1 are 

only accurate under the specific conditions for which the testings were performed, but they 

can still be taken as indicative under different conditions. 

Based on the current study, no conclusions, positive or negative, can be drawn for the cases 

without a buffer zone. The results show that a screen is significantly effective in reducing 

(but not eliminating) the intensity of firebrand showers at a distance of 4.48 m, but the 

intensity of secondary firebrands may increase without including a buffer zone. For instance, 

the fragmentation ratio and the size of the secondary firebrands reduced for a 1 mm screen 

opening size compared with those of 1.61 mm screen. However, during a wildland fire event, 

several types of firebrands simultaneously exist under varying wind speed conditions. Taking 
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into account that the fragmentation ratio is greater than one for a high wind speed and/or a 

vulnerable firebrand, the actual combined fragmentation ratio may exceed one. A 

fragmentation ratio greater than one indicates a higher firebrand shower intensity. However, 

the higher intensity does not necessarily lead to a worse condition, because the sizes of the 

secondary firebrands are smaller than those of the approaching ones. 

The results appear to show that screens with smaller openings are more effective in lowering 

the intensity of firebrand showers than those with larger openings. However, care should be 

taken to extend these results to the real world. In the wind tunnel condition, all approaching 

firebrands are enforced to pass through the screen. In the real world due to build-up of a 

stronger stagnation pressure behind the screen with smaller openings, a higher percentage of 

firebrands may pass around or over the screen. Therefore, the use of screens with smaller 

openings may not be the best option. 

5.4. Summary 

The performance of screens in containing firebrands was evaluated, and the results were 

presented in this chapter. The preliminary experiments with firebrands sourced from 

Eucalyptus trees leaf indicated an 8.9% uncertainty for experiments. The effect of screen 

geometry on their performance to contain leaf firebrands were investigated. The results 

revealed two important mechanisms of firebrands: retention time; and shattering of 

firebrands. The impact creates smaller firebrands called secondary firebrands. The number of 

secondary embers was a function of screen opening size and its wire diameter. Due to the 

shattering mechanism and larger number of firebrands on the downstream side of screens, 

fragmentation ratios were greater than one in all cases. The number of glowing secondary 

firebrands for screens with opening size greater than 1.61 mm decreased as the opening size 

increased, and consequently the fragmentation ratio decreased. For screens with an opening 

size less than 1.61 mm, the retention time had a major impact on the fragmentation ratio. As 

the retention decreases, fewer embers completely burn out before fitting the size of opening, 

and therefore, the fragmentation ratio increases. The retention time for leaf firebrands became 

approximately zero when the opening size exceeded 1.61 mm, and thus only the number of 

secondary firebrands influenced the fragmentation ratio. 

The diameter of the screen wires (or porosity) and the type of screen had impacts on the 

fragmentation ratio. For two screens with nearly the same porosity and varied opening size, a 

thinner wire that had a smaller contact area was able to produce more secondary firebrands; 
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thus, the fragmentation ratio increased. The application of flat screens showed a reduction in 

the fragmentation ratio since they provide more contact area with firebrands and therefore 

produce a lower number of secondary firebrands. It was also found that the opening shape did 

not have a major impact on the fragmentation ratio. 

The orientation of the screen with respect to wind direction had a considerable impact on the 

fragmentation ratio. A tilted screen had a smaller fragmentation ratio as both the projected 

area and perpendicular wind force that pushed the leaf embers through the screen decreased. 

A screen leaning forward had a better performance in terms of fragmentation ratio than a 

leaning back screen as it pushed the embers downward and increased the retention time. 

The performance of two screens with openings of 1.61 mm and 1 mm and a buffer zone of 

4.48 m in order to protect fuel beds were investigated and compared with those in the absence 

of a screen. Similar to leaf firebrands, hardwood mulch firebrands passed the screen via the 

mechanisms of shattering and retention behind the screens. In comparison with leaf 

firebrands, mulch firebrands shattered with less severity, and, therefore, the fragmentation 

ratios were much lower than those of leaf firebrands. The screens with the opening size of 

1.61 mm and 1 mm were effective in reducing the number of ignition points on fuel beds. 

The effect of the buffer zone was significant since many of firebrands quenched along the 

buffer zone. The number of extinct firebrands along the buffer zone increased as the opening 

size reduced to 1 mm. It was found that larger firebrands had a greater tendency to ignite the 

fuel beds. 

5.5. Conclusions  

Based on the results presented in this chapter, a list of conclusions can be made as follows: 

 Hardwood mulch and Eucalyptus leaf Firebrands pass through screens via two 

mechanisms: shattering (firebrands shatter into small pieces and then pass the screen) 

and retention of firebrands (firebrands keep burning or quench behind the screen to fit 

the size of the screen opening). 

 Shattering of firebrands is related to the screen opening size and wire diameter. 

 The retention time of firebrands behind the screen increases with the decrease of 

opening size. 

 Flat screens reduce the shattering of firebrands and consequently the fragmentation 

ratios of leaf firebrands in comparison with woven wire screens. 
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 The opening shape has a negligible effect on the number of secondary leaf firebrands 

and consequently the fragmentation ratio. 

 The orientation of screens with respect to the firebrand flow direction significantly 

reduces the fragmentation ratio of leaf firebrands. 

 The effect of a buffer zone between screen and object is significant in reducing the 

number of firebrands that could reach the object. Many firebrands quench within the 

buffer zone after leaving the screen. 

 Screens with a smaller opening size remarkably reduce the number of glowing 

firebrands that reach the object. 

 Screens with a smaller opening size considerably reduce the number of ignited points 

on the fuel bed with a buffer zone of 4.48 m. 

 A buffer zone and screen are highly effective in protecting an object against firebrand 

attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

 

 

 

 

 

 

 

 

Chapter 6  

Discussion 

6.1. Introduction 

In the last three chapters, the experimental results on the performance of screens against 

firebrand attacks and fire radiant heat flux were presented. This chapter aims to discuss the 

significance of the findings in terms of the effectiveness of screens in protecting from 

wildfire. In section 6.2, criteria for the effectiveness of screens in containing firebrand attacks 

and fire RHF are addressed. Following that, discussions on their effectiveness are presented 

in sections 6.3 and 6.4. Section 6.5 discusses the benefits to the wildfire protection 

communities and different stakeholders who are directly or indirectly engaged in activities 

against wildfires of using screens as fire barriers. A summary of the chapter is provided in 

section 6.6. 

6.2. Effectiveness Criteria 

Containment in current fire glossaries implies the condition that fire propagation is controlled 

and the fire is suppressible within a boundary by firefighting (National Wildfire Coordinating 
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Group 2006; National Fire Protection Association (NFPA) 2012). Based on this definition, 

the containment of firebrands and radiant heat flux can be expressed as a condition in which 

the levels of firebrand attack and fire radiation decrease to suppressible levels. It can be 

helpful to identify the suppressing threshold levels. 

In the case of firebrand attacks, the information provided on the performance of screens is not 

sufficient to assess their potential and further studies are still required. This work only 

provided the ratio of intensity of firebrands across two sides of screens without defining the 

acceptable level of firebrand intensity on fuel beds. To define the acceptable ratio, both the 

intensity of approaching firebrand showers and the acceptable level of firebrand intensity on 

the fuel bed should first be identified. As previously stated in the literature review (section 

2.3), the intensity of a firebrand attack is dependent on many parametres such as the local 

wind as well as density and type of vegetation. On the other hand, the possibility of firebrand-

induced ignition is related to the type of fuel beds and their moisture content at the time of 

attack. The above parametres should be added to the effect of land slope and topography 

where firebrand attacks occur, showing that the containable condition can be unique for each 

wildfire incident. Therefore, providing an exact threshold at this stage is not feasible and 

further study is required.  

In contrast with firebrand attacks, it is possible to set criteria for the performance of screens 

against RHF. The threshold level of radiant heat flux received by surrounding objects can be 

set to a harmless level. The harmless level is related to the value of RHF, distances between 

object and fire as well as the type of object. Objects are different in terms of resistance 

against fire radiant heat flux. The literature declares humans, houses and natural resources 

such as forests and bushes as the greatest losses in wildfire incidents. A threat to humans by 

fire radiation is severe skin burn which may lead to death when it exceeds a certain level. 

House components, such as metals, deform or lose integrity when they are under an extreme 

radiation condition. Some components such as wooden logs dehumidify under severe 

radiation exposure and ignite quickly either by long radiation exposure or by landed 

firebrands. The ignitability of vegetation is critical in fire spread. The fire radiation causes 

evaporation of vegetation moisture and their auto-ignition or ignition by embers or flames. 

Many studies provided the effect of different levels of radiant heat flux on humans, materials 

and vegetation. Therefore, the effectiveness of screens to contain fire radiant heat flux can be 

assessed for different types of objects as follows: 
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 Human: No first-degree skin burn 

 Houses: No house ignition by 10 minutes of exposure 

 Vegetation: No auto-ignition of forest litter 

6.3. Metal screens versus Radiant Heat Flux 

(RHF) 

This study identified that square woven wire screens are capable of reducing the direct light 

intensity by more than is suggested by screen solid area. The tunnel vision effect of screens 

limits the light intensity regardless of the size of the light source. It was concluded that 

screens are effective in blocking fire RHF and can perform better for larger fires such as 

wildfire fronts. 

Table 6-1 Thermal radiation threshold for different objects. 

Effect Thermal radiation (kW/m2) Reference 

Maximum tolerable value for 

firefighters completely covered 

and  protected by special 

Nomex protective clothes 

7.0 (Butler and Cohen 1998) 

(Zárate et al. 2008) 

Minimum level required to 

cause pain after 60 seconds 

2.1 (Zárate et al. 2008) 

House ignition after 10 minutes 

exposure 

20 (Cohen 1999) 

Damage to process equipment 

and collapse of mechanical 

structures 

37.5 (Zárate et al. 2008) 

Spontaneous ignition of wood  40 (Boonmee and Quintiere 2002) 

Spontaneous ignition of 

various types of forest litter for 

1 min exposures 

15 (Durda and Kring 2004) 
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In section 6.2, the criteria for screens to contain fire radiant heat flux was set based on the 

vulnerability of humans, houses and vegetation. Table 6.1 lists the thermal radiation 

thresholds for different objects. The formulas presented in chapter 3 provide an opportunity 

to compare the radiation received by the objects listed in table 6.1 in the absence and 

presence of a screen.  

Figure 6.1 displays the radiant heat flux emitted by a fire with 20 metre width and height and 

its variation with respect to distance from the fire. The figure also presents the estimation of 

fire radiant heat flux through a woven wire screen with 41% porosity versus distance. For the 

fire, an emissivity of 1 and temperature of 1200 K were assumed based on the previous 

radiation models in the literature (see section 2.2.1). This includes the sum of estimated direct 

and indirect radiant heat flux. For the stainless steel screen at 1 metre distance from the fire, 

the temperature was assumed to be 750C (1023 K). The emissivity of the screen was 

assumed to be 0.6 based on an average of presented emissivities for stainless steel in 

Lienhard (2011). The view factor of an object to the fire without a screen was estimated 

assuming the fire and object are square planes through the following formula (Lienhard 2011) 

Figure 6.1 Numerical results for change of radiant heat flux received by an object at different 
distances from a fire with a height of 20 m, width of 20 m in the presence and absence of a 
screen with porosity of 41%. 
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where w1 and w2  represent the width of object and fire respectively and d denotes the distance 

between object and fire. It should be noted that the empirical formulas presented in chapter 

three are only valid under certain conditions. The distance between object and screen should 

not lead to a tunnel-vision area greater than the size of the screen. Therefore, there is a limit 

for the distance of the object and the screen and the results are only valid for a short distance 

of 6 metres in the example. It is expected that RHF reduces by further increasing the distance 

between the object and the screen due to the reduction in view factor. For further distances, 

the formula overestimates the RHF as it assumes the size of the fire grows simultaneously 

with the size of the tunnel-vision area. In this case, the overestimated values are presented in 

Figure 6.1 only for comparison purpose. 

 

Table 6.1 presents thermal radiation thresholds set in the previous section for humans, houses 

and vegetation. The thresholds are indicated as horizontal lines in figure 6.1. Based on the 

figure, a minimum safety distance of 225 metres should be maintained between people and 

the fire in the absence of a screen to avoid skin pain. The distance tremendously decreases to 

51 metres as a screen with porosity of 41% is applied, which yields a 77.3% reduction in 

safety distance. Figure 6.1 indicates that the safety distance for firefighters covered by 

Nomex protective clothes is 67 metres in the absence of the screen, while it decreases to 20 

metres by mounting the screen in front of the fire. Furthermore, the level of fire radiation can 

lead to auto-ignition of forest litters up to a distance of 30 metres in the case of without a 

screen; however, the screen can prevent their ignition at any distance. For houses, the level of 

radiant heat flux is sufficient to ignite houses up to 22 metres distance from the fire. 

Application of a screen considerably reduces the level of radiant heat flux and prevents any 

house ignition. As indicated in figure 6.1, in the absence of the screen, the fire can cause 

mechanical failures of the structure and auto-ignition of wood at 9 metres and 7 metres from 

the fire, respectively. The risk can be completely avoided by shielding them against the fire 

with the screen.  

The above example indicates the great effectiveness of the screen to reduce required safety 

distances. For a house and the described fire, a safety distance is not required in the presence 
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of the screen as the level of radiation is less than the house ignition threshold even at zero 

distance. Firefighters and people are still required to maintain a distance to ensure their 

safety. However, it should be noted that the required safety distance is a function of the size 

of the fire as well as the type of the object. Therefore, the above discussion is only valid for a 

fire with size of 2020 metres. 

6.4. Metal screens effectiveness against 

firebrands 

In this study, two mechanisms of firebrand passage through the screens were identified. 

Firebrands may shatter into small pieces or burn behind the screen to fit the screen opening 

size. Metal screens do not quench the firebrands. The experimental results showed that the 

mechanism of the passage depends on screen geometries. More importantly, it was found that 

a combination of buffer zone and screen significantly reduces the number of firebrands 

reaching the fuel bed, and as a result reduces the number of burning points on the fuel bed.  

In a wildfire event, metal screens can reduce the potential of firebrands to initiate new spot 

fires. The firebrands hit the metal screen and shatter into smaller pieces or lose their size by 

continuing to burn behind the screen. The reduction in the size of firebrands greatly reduces 

their residence time and diminishes their capability to transfer heat to an object upon landing. 

However, the increase in the number of firebrands (fragmentation ratio of greater than one) 

causes their accumulation on the objects behind the screen, which may increase the heat 

transfer on the object and lead to ignition. This study found that a buffer zone can 

significantly prevent such accumulation. A large fraction of smaller secondary firebrands 

reach their burnout time for a larger buffer zone. Therefore, the possibility of firebrand-

induced ignition considerably decreases. 

The above discussion can be supported by an example. Assuming a house with a 20 m2 front 

area is under a firebrand attack with an intensity of approximately 550 000 firebrands per 

minute. This intensity corresponds with the maximum intensity applied in this study (469 

firebrands/m2.s). In this case, two million and two hundred thousand firebrands reach the 

house within four minutes. Such massive numbers of firebrands can cause accumulation of 

burning firebrands and hence simultaneous fires at various parts of the house which can burn 

it down. If a screen with a 1 mm opening size is mounted 4.5 metres away from the house, as 

the results in chapter 5 suggest, only 22 000 smaller burning firebrands (equivalent of 1%) 
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reach the house in the same period. As the literature stated, the reduction in the size and 

number of firebrands greatly decreases the probability of ignition of the object. The example 

indicates that the combination of screen and buffer zone is effective in reducing the 

probability of house burning and making the firebrand attack fightable. It is expected that 

with the increase in length of the buffer zone, further decrease of the burning firebrands 

becomes achievable.  

A combination of buffer zone and screen can reduce the length of the buffer zone 

recommended by current wildfire management guidelines. As stated in chapter 1, the 

prescribed buffer zone is currently being practised under various names such as “home 

ignition zone” or “asset protection zone”. The lengths of these zones are varied and depend 

on a thorough risk assessment of the structure and surrounding landscape. For example, in the 

United States, the National Fire Protection Association recommends a buffer zone between 

30 and 60 metres from forests for any structure in wildfire-prone areas. As a combination of 

screen and buffer zone is able to reduce the size and number of firebrands, this can greatly 

help to shrink the buffer zone without diminishing the performance of buffer zones. A 

positive impact of the shrinking is a reduction in the costs associated with fuel treatment 

within the zone. 

The results presented in this work are indicative and the actual results may vary under real 

wildfire conditions. This might be due to differences in initial temperature of objects (fuel 

beds in this case) during the experiment in laboratory and real wildfires, wind speed, shape 

and type of vegetation (e.g. cones and twigs, instead of mulch and leaf). 

The above discussion addressed the benefits of using screens in real wildfires and highlighted 

the limits of this study. However, despite the limitations, the overall results are not expected 

to change due to the enormous changes between the results of the two cases with and without 

screens. 

6.5. Challenges of design and implementation  

The current study is limited in its ability to assess the viability of employing metal screens as 

fire barriers and therefore no recommendation on using metal screens as fire barriers can be 

made as an outcome. The applications for screens still require further extensive studies on 

various parameters that have not been addressed in this thesis and on the comprehensive 

design of metal screens as fire barriers for different wildfire conditions.  
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This study implies a link between the opening size of screens and the required width of the 

corresponding buffer zone to effectively mitigate firebrand attacks. Defining the relationship 

between screen opening size and the width of the buffer zone is necessary for the future 

design and application of screens. In addition, other parameters such as variations in wind 

speed and direction, exposure time, type of vegetation and size of screens may have 

considerable impacts on the results and these will require further investigation.  

The results presented are under wind tunnel conditions for screens and firebrands where all 

firebrands are forced to pass through the screen. In the real world, some firebrands may pass 

over the screen or accumulate underneath the screen due to built-up of stagnation pressure 

behind the screens. In wind tunnel conditions, the wall of the wind tunnel may also have a 

considerable impact on the results which is not the case in a real wildfire. Also, in a real 

wildfire the distance between fire and screen continuously decreases but of course it was 

constant in this study. This leads to a wider range of firebrand statuses in terms of burning 

conditions under real world conditions. A full scale experiment is essential to address the 

above issues in the future.  

Fire barriers require efficient and well-adapted transport and installation methods. The 

transporting of metal screens is a function of their weight and different approaches should be 

examined to find an appropriate technique for easy delivery and accessibility of screens under 

various wildfire conditions and topographies. The installation of screen barriers can also be 

affected by the weight of the screens and the drag force imposed by the wind on screens. 

Resistance wires or special poles can be used to fix screens in some topographies. In addition, 

the effect of thermal stress on metal screens and their resilience under real fire conditions is 

another important factor in the use of metal screens.  

The above issues are critical factors for the application of screens as fire barriers. Any 

recommendation on fire barrier practices will be possible only when the above issues have 

been examined and/or resolved.   

6.6. Impacts to wildfire protection communities 

The potential of metal screens could deliver great benefits to the protection against wildfires 

and cause positive impacts on communities that are directly or indirectly engaged with the 

problem. However, the stakeholders in wildfire protection have different views on the 

wildfire issues, which may shape their perceptions of the advantages of using metal screens. 
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The following sections address the potential benefits for four major stakeholders: local 

residents of wildfire prone areas, fire fighters, insurance companies and government agencies. 

6.6.1. Local residents 

The most significant effect of wildfires is to the local communities who lose their houses or 

lives. For their safety, the wildfire related policies in some countries such as in the United 

States order for a mass evacuation or like in Australia offer people to stay and defend if they 

are prepared or evacuate early before fire arrival. However, the evacuation approach has been 

criticised since it is not always helpful and may cause risks such as entrapment by rapid 

moving fires (Krusel and Petris 1983; Handmer and Tibbits 2005; McCaffrey et al. 2015). In 

Australia, the stay or go policy is being practiced based on evidence that the chance of house 

survival increases if occupants stay and extinguish spot fires on or around the house during 

the passage of the fire front (Handmer and Tibbits 2005). The stay and defend policy is not 

always free of risk, especially for fierce fires such as those that occurred in Victoria, 

Australia in 2009. After that event, the viability of the stay and defend policy was under 

scrutiny (Whittaker et al. 2013) since 113 deaths out of the 173 toll were found in or around 

their houses (Whittaker et al 2013). Also, a review of fatalities in the period 1955–2008 in 

Australia shows that 38.4% of deaths were people who stayed to defend their houses (Haynes 

et al. 2010). 

The difficulties of these fires for the people who stay and defend their houses are associated 

with severe attacks of firebrands and the excessive radiant heat flux of the approaching fire. 

The massive heat radiation restrains residents to actively protect their properties since they 

should shelter in a safe place until the fire front passes the area. Use of metal screens as 

barrier with an appropriate buffer zone can contain fire radiant heat flux within metres of the 

house and provide a risk-free zone for the residents. The reduced number of spot fires gives 

them sufficient time to quench the spot fires one-by-one before they can develop into fully-

sustained fires. The residents’ preparation is limited to mist systems that keep the surfaces of 

houses and surroundings wet. As radiant heat flux is reduced by screen barriers, constant 

wetting of house surfaces and surroundings with water hoses or sprinklers becomes more 

practical since the wetness stays longer on the surfaces and makes them more resilient against 

any possible ignitions. Also, exposure to excessive heat impairs the residents’ mental and 

physical abilities and causes trauma (McLennan et al. 2014). The condition will be improved 

using screen barriers and enables residents physically and mentally to fight fires. 
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6.6.2. Firefighters  

Fire crews and volunteers are the vital elements of the suppression activities against 

devastating wildfires. As stated in chapter 1, in ferocious wildfires, the suppression activities 

by firefighters may become overwhelming due to the rapid propagation of fires in bushlands. 

The efficiency of firefighting reduces since the wildland fire fighters should put their efforts 

into saving houses rather than attacking the fires (Bailey 2007). The firefighting operations 

may take weeks, which makes firefighters susceptible to various health problems (Guidotti 

and Clough 1992; Shusterman et al. 1993) and sometimes lead to their deaths. 

The benefits of containing firebrands and radiant heat flux by metal screens boost the 

effectiveness of firefighting operations and enhance the safety of firefighters, particularly for 

fires with a high spread rate and intensity. The firefighters can erect the screens as barriers 

along their fire line well before the fire front arrival. As the radiant heat flux is reduced by 

screens, the firefighters’ safety distance considerably reduces and enables them to operate in 

the vicinity of the fire’s edge. Also, firefighters can use back-burning technique on the fire 

side of the screen before the fire front arrival. However, the back-burning may naturally take 

place by accumulation of firebrands on the fire side of the screen and may impair the advance 

of an approaching fire. A screen reduces the number of spot fires in and beyond the buffer 

zone, which makes it easier for firefighters to contain those occasional spot fires. Screen 

barriers can help to reduce the workload of firefighters by enabling residents to defend their 

houses. As the rate of fire spread reduces, the risk of firefighters’ entrapment becomes low, 

since it provides sufficient time for firefighter assessment. Moreover, firefighters can erect 

screen barriers with an appropriate buffer zone from the evacuation roads to provide safe 

evacuation routes for people. The safety of roads also supports a better mobilisation of 

firefighters and their equipment across the affected areas. 

6.6.3. Insurance companies 

Wildfires incur losses of billions of dollars to the insurance companies. The losses are paid in 

the form of compensation to the people due to damage to insured properties, injury and death. 

A report shows that the economic losses derived from wildfire incidents across the world was 

around $US52 billion for the period 1984–2013 (Doerr and Santin 2013). The cost in the two 

continents of Oceania and America was nearly $US2 billion and $US25 billion in this period, 

respectively. As the statistics suggest, the rising cost of damages is expected to continue to 
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soar in the future (Doerr and Santin 2013). It is not surprising to find that insurance 

companies implement harsher measures such as refusing to issue new policies or putting caps 

on their payouts (Mcqueen 2008). 

Undoubtedly, the insurance companies would have a great financial stake in the proposed 

technique as it effectively contains the conflagration and is able to minimise losses to a 

certain extent. With a successful implementation of the technique, fewer houses would be 

affected by wildfires and more lives would be saved. In this condition, the insurance 

companies can make more profit from the collected premiums. Since the risk of wildfires will 

be downgraded, the premium also can be reduced, which may increase the number of 

customers. Further discussions on the cost benefits of using screens require a comprehensive 

financial analysis, which was not within the scope of this study. 

6.6.4. Local and national governments 

The state and national governments present initiatives to mandate specific measures that 

address the safety of the people who live in wildfire prone areas. Some examples are the 

National Fire Plan (NFP) in the United States or the Bushfire Management and National 

Environment law in Australia (Australian Goverment 2010). The plans include assistance to 

local communities with programmes to implement risk assessments and planning, activities to 

reduce the amounts of hazardous fuel, thereby decreasing the risk of catastrophic wildfires, 

and pre-fire risk mitigation strategies (Bihari and Ryan 2012; Schoennagel et al. 2009). 

Besides the government laws, standards bodies such as (Standards Australia 2009) or the 

(National Fire Protection Association 2008) in the United States provide certain codes for 

construction in wildfire prone areas to make structures resistant against wildfires. The 

governments not only fund the wildfire aftermath losses, but also pay the wildland 

firefighting operations during wildfires as well as pre-fire prevention projects. 

The proposed technique would greatly assist governments to reduce their expenses. The 

metal screen barriers improve firefighting, protection of residents and their assets as well as 

reducing the devastating scale of natural resources and ecosystems. The proposed firefighting 

plan is capable of reducing the excessive power of fires and therefore may decrease required 

manpower. By containing the wildfire using the barriers at the early stages of fires, more 

natural resource such as bushlands, forest, grasslands etc. can be saved and thus reduce the 

cost of recovery projects. In addition, the cost of social services provided by the governments 
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such as consultancies to the affected people would also be expected to reduce as barriers 

safeguard people against the wildfires’ impacts. 

6.7. Summary 

A discussion on the effectiveness of metal screens to contain fire RHF and firebrand attacks 

was presented in this chapter. The effectiveness criteria of screens based on their performance 

against both fire RHF and firebrand attacks were discussed. In the case of RHF, a typical 

calculation for the performance of a screen with porosity of 41% against RHF was presented. 

By comparing the RHF received to an object in the presence and absence of the screen, it was 

found that metal screens can effectively reduce the level of fire RHF and the safety distance 

between an object and a fire. Following that, the effectiveness of screens to contain firebrand 

attacks was discussed. The discussion indicated that screens are effective in containing 

firebrands in the presence of a buffer zone between the screens and object. Also in this 

chapter, some notable benefits of using screen barriers in wildfire protection for local 

residents of wildfire prone areas, fire fighters, insurance companies and governments were 

outlined.  
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Chapter 7  

 

Conclusions and further work 

7.1. Summary and Conclusions 

Current protection techniques are insufficient to save people and assets in wildfire incidents. 

Wildfires are known by their severe radiant heat flux and firebrand attacks that cause their 

rapid propagation. The success of the protection techniques relies on their performance 

against the two propagation mechanisms. Previous reports underlined the possible 

effectiveness of metal screens in containing firebrands and the fire radiant heat flux. 

However, further progress on using metal screens highly depends on their potential to contain 

these mechanisms, which had not been addressed properly. The aim of this research was to 

explore the potential of screens and attempt to answer an important question: 

 Do metal screens have the potential to contain fire radiant heat flux and firebrand 

attacks? 

Available screens on the market suggest the possibility of various arrangements and layouts 

of screens. The screens with various geometries and configurations can be erected with 

different buffer zones with respect to an object intended for protection. This study fulfilled its 

objectives in two separate parts. The effects of geometry variables including screen opening 
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size and wire diameter, screen manufacturing type, screen opening shape and screen 

orientation with respect to firebrand flow on the performance of the screen against leaf 

firebrands were examined. Also, for mulch firebrands, the performance of a combination of 

buffer zone and screens with various opening sizes against firebrand attacks was investigated. 

A methodology with a light source was developed to investigate the effect of a square woven 

wire screen to contain direct light intensity. Four woven wire screens with porosities in the 

range 41–66% were applied in this study. The tunnel vision effect of the screen was observed 

and measured. For all the cases, the level of passing light intensity was less than the one that 

screen porosity suggests. The direct radiant heat flux decreased as the porosity reduced and 

empirical formulas were presented to estimate RHF for various sizes of fires. Further 

discussion was provided to link the experimental results to the possible practical 

implementation of metal screens. For this, the radiant heat flux for an assumed fire was 

calculated in the cases without and with a screen using the presented empirical formulas. A 

comparison between the radiation received by humans, houses and vegetation and their 

radiation thresholds in the cases with and without was provided. The conclusion for this part 

of the study is that: 

“Woven wire screens are effective in significantly reducing the level of RHF and 

consequently safety distances between objects and fire.” 

In the second part of this study, an Ember Shower Simulator (ESS) was designed and 

fabricated which enabled experiments to be carried out, applying low-porosity screens at 

relatively-high wind speeds. The characteristics of the ESS were investigated through several 

preliminary experiments. The simulator’s flow uniformity in the test section was affected 

mostly due to mounting the flap at the vicinity of the test section entrance. The ESS had 

acceptable non-uniformity in comparison with other available wind tunnels used in fire 

research. The wind speed could be set to up to 21 m/s when there was no screen mounted in 

the system. The mass and projected areas of firebrands generated by the ESS had similarities 

with those measured for real wildfires. 

The effect of geometry on the performance of screens was examined using ESS based on the 

fragmentation ratio, which was defined as the number of leaving glowing firebrands divided 

by the number of arriving glowing firebrands. The geometric parameters – such as screen 

opening size and wire diameters, screen manufacturing type and firebrand flow orientation 

with respect to screen – were the effective parameters in changing the fragmentation ratios. 
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Further in this study, the effects of the combination of buffer zone and woven wire screens 

with different opening sizes on their potential to contain firebrands were investigated. The 

experiments were performed using the ESS and an L-shaped stand at the exit of the ESS to 

capture the mulch firebrands and direct them to the fuel beds. The firebrands were monitored 

as they arrived on the screen, during their passage through the buffer zone and at their falling 

on the fuel beds. The number of firebrands on the fuel bed remarkably reduced with the 

decrease of opening size since the observations revealed that many firebrands quench in the 

buffer zone. As a consequence, the number of burning points on the fuel bed was reduced 

when the screen with a smaller opening size was applied. 

A discussion on extending the results for real wildfire incidents was provided. It was 

discussed that the metal screen may cause the increase of firebrands at the leaving side of the 

screen due to the shattering mechanism and therefore may lead to firebrand accumulation on 

objects behind the screen. However, this study found that the shattered or reduced size 

firebrands quench within a buffer zone between screens and objects. Since firebrands fly 

further in the buffer zone, the smaller, alight firebrands that reach the object are less able to 

induce ignition. It was concluded that the metal screens can effectively mitigate the risk of 

firebrands with a short buffer zone (4.48 m). It appears that metal screens may eliminate the 

risk of firebrands if a longer buffer zone is applied. The main conclusion for this part of study 

can be expressed as: 

“The metal screens have the potential to effectively mitigate the risk of firebrand attacks with 

a buffer zone of approximately 4.5 m and might be able to eliminate the risk if a longer buffer 

zone between screen and the protected object is provided.” 

This study confirmed that the metal screens perform well in mitigating the effect of both 

propagation mechanisms. The screen can eliminate the risk of fire RHF but may need an 

appropriate buffer zone (safety distance) for the objects with lower radiation thresholds. 

There is a possibility for the risk of firebrands to be eliminated by a screen if a screen is 

erected with a longer buffer zone (longer than applied in this study) separating the protected 

object. In both cases, buffer zones have a noticeable role to help the screen in eliminating the 

effects of the propagation mechanisms. 

7.2. Main achievements  

The main achievements of this study can be listed as: 
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 Design and manufacture an Ember Shower Simulator with the capability to work 

with a high wind speed and low porosity screens. The introduction of machine 

will provide great opportunity in the future to investigate the application of screen 

in wildfire and assist people who work on wildfire standard for testing new 

approaches or product for better implication of screen to protect properties.  

 Presentation of an experimental correlation for screen porosity and DRHF. The 

formulas are its first kind to facilitate the estimation of radiation through screen. 

The implication of formula is not only for wildfire and can be used for other 

application such as designing shading screens for houses or textile industry.   

 Discovery of the shattering mechanism of firebrands. The mechanism is 

documented in this work for the first time and showed great effect of shattering on 

increasing intensity of firebrands behind the screen. This will greatly impact the 

standard revision in respect with screen for house openings in the future and 

protective methods using screens. It also might improve current methodologies in 

firebrand studies to understand the phenomena. 

 Identification of the impact of a combination of buffer zone and screen. This work 

for the first time confirmed the effectiveness of screen and buffer zone that would 

be really supportive for better application of current ignition zones around the 

properties and make them more effective especially in terms of firebrand attack. 

7.3. Further work 

The current research study assessed the potential of metal screens against firebrand attacks 

and fire radiant heat flux and unveiled the performance of metal screens to contain the 

propagation mechanisms. In chapter 6, the limited scope of the study was discussed. Further 

studies are required to address those limitation and other necessary aspects in employing 

screens at real wildfire conditions. The following lists some further work that is required: 

 Further study can consider the improvement of ESS in terms of controlling device that 

provides experiment easier working condition with the apparatus. This features can be 

such as fan controllers, controlling device for flap height changes etc. 

 The great effect of the buffer zone on the performance of screens and its relation with 

screen opening size was shown. It is possible a minimum buffer zone for each screen exists 
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to eliminate the risk associated with firebrand attacks. A thorough study to determine the 

minimum buffer zone is required. 

 Prior to this study, most research was conducted at wind speeds less than 10 m/s. In this 

study, a new mechanism for firebrand passage has been identified. However, the maximum 

wind speed of 14.5 m/s in this study still does not represent the worst-case scenario. 

Further study is required to address the effect of high wind speed. 

 This study only assessed the potential of screens in containing firebrand attacks and fire 

radiant heat flux. However, a precise design in the application of screens is required. The 

design should address issues such as the resistance of the structure to wind force, mounting 

and dismounting methods and the required weight of the screen for different applications. 

 A thorough cost analysis of using metal screen barriers in comparison with the current 

costs of wildfire protection can be the subject of a future investigation. 
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