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Coronary artery disease (CAD) is a prevalent disease with high morbidity and mortality rates. Invasive 
coronary angiography is the reference standard for diagnosing CAD but is costly and associated with 
risks. Noninvasive imaging like cardiac magnetic resonance (CMR) facilitates CAD assessment and can 
serve as a gatekeeper to downstream invasive testing. Machine learning methods are increasingly 
applied for automated interpretation of imaging and other clinical results for medical diagnosis. In 
this study, we proposed a novel CAD detection method based on CMR images by utilizing the feature 
extraction ability of deep neural networks and combining the features with the aid of a random 
forest for the very first time. It is necessary to convert image data to numeric features so that they 
can be used in the nodes of the decision trees. To this end, the predictions of multiple stand-alone 
convolutional neural networks (CNNs) were considered as input features for the decision trees. The 
capability of CNNs in representing image data renders our method a generic classification approach 
applicable to any image dataset. We named our method RF-CNN-F, which stands for Random Forest 
with CNN Features. We conducted experiments on a large CMR dataset that we have collected and 
made publicly accessible. Our method achieved excellent accuracy (99.18%) using Adam optimizer 
compared to a stand-alone CNN trained using fivefold cross validation (93.92%) tested on the same 
dataset.
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Coronary artery disease (CAD) is a prevalent condition that affects a growing number of people worldwide. In 
the United States, about 18.2 million Americans ≤ 20 years of age have coronary heart disease. One American 
will suffer a heart attack every 40 s, and more than 350,000 will die from coronary heart disease every year1. 
Early diagnosis of CAD facilities intensification of guideline-directed medical therapy and, if indicated, coronary 
intervention, to avert major adverse cardiac events and improve clinical outcomes.

Clinicians cannot rely on patient’s symptoms alone to diagnose CAD as they are neither sensitive nor specific. 
Heart imaging can help the physicians to detect CAD earlier and treat patients more effectively. The reference 
standard for diagnosis of CAD is invasive coronary angiography. CAD is diagnosed with more than 50% ste-
nosis of the left main, left anterior descending, circumflex or right coronary artery. However, invasive coronary 
angiography is expensive and carries potential risks. Cardiac imaging is cheaper, safer, and can help physicians 
confidently diagnose CAD noninvasively. Thereby imaging alone can serve as a gatekeeper to downstream 
invasive coronary angiography and definitive revascularization therapy. Stress electrocardiography, echocardi-
ography, nuclear myocardial perfusion scans, and coronary computed tomographic angiography (CCTA) are the 
mainstays of noninvasive imaging tests for CAD. However, CCTA suffers from more than 30% false positive rate2. 
To reduce the number of misdiagnosed cases, HeartFlow Inc. developed a noninvasive image and physics-based 
technology to reduce the number of unnecessary invasive coronary angiography. However, the HeartFlow Inc. 
approach needs a few days for analysis, and it still has more than 20% error.

Not being limited by acoustic window access (as in echocardiography) or ionizing radiation concerns (as in 
nuclear imaging and CCTA), cardiac magnetic resonance (CMR) has emerged as a viable alternative for noninva-
sive assessment of CAD3. It provides precise measurements of heart chamber structure and function, myocardial 
perfusion and infarct extent, as well as parametric quantitation of myocardial tissue characteristics. These read-
outs facilitate comprehensive CAD diagnosis, disease surveillance, and monitoring of therapeutic response4,5.

The manual interpretation of diagnostic imaging tests requires time and expertise. Moreover, data-mining and 
machine learning methods are exploited to automate medical diagnoses to reduce analysis time and potentially 
improve accuracy. CMR images may be 2D or 3D. The sensitivity and specificity of 3D CMR of the coronary arter-
ies is inadequate due to excessive artefacts. This explains why 3D CMR coronary angiography for CAD diagnosis 
has not become a clinical routine. On the contrary, CMR 2D cine images are commonly used to diagnose CAD 
based on indirect evidence of myocardial ischemia or infarct, such as segmental regional wall motion abnormali-
ties and myocardial thinning in typical coronary arterial territories. Regarding artificial intelligence-enabled 
diagnosis, deep models can conglomerate pixel-level features in an image to a degree that is not possible with 
the human eye. The excellent results of our model for detection of CAD attests to this postulation. Based on the 
description above, in this paper, we proposed the use of deep learning combined with a random forest classifier 
to analyse CMR 2D images for CAD diagnosis. The main contributions of this paper are as follows:

•	 We have collected and made publicly available a dataset comprising multiparametric CMR images that can 
be used to train, test, and validate automated CAD detection methods.

•	 We have developed a novel ensemble approach for diagnosing CAD on CMR images. The method deployed 
convolutional neural networks (CNNs) to convert high-dimension CMR images to low-dimension numeric 
features, which were then used to build the nodes of random forest decision trees. Without CNNs, each pixel 
of the CMR image would have been considered one feature, which would render the random forest intractable 
due to an inordinately high number of features.

•	 CNNs are designed to extract the essential features of any image dataset automatically. Therefore, using CNNs 
predictions as features enhances the generalizability of the proposed method.

•	 By using an ensemble of decision trees, our method was able to achieve high classification accuracy.

In the remainder of this paper, related works are reviewed (“Related work” Section), background is discussed 
(“Background ” Section), the dataset is introduced (“Dataset description” Section), the proposed method is 
described (“Proposed method” Section), and experimental results are presented (“Experimental results” Section). 
Additionally, discussion and conclusion are presented in “Discussion and Conclusion” Sections, respectively.

Related work
To the best of our knowledge, our work is the first that uses CMR data as input to ensemble of deep neural 
networks in order to diagnose CAD. Therefore, in this section, existing CAD diagnosis methods that use other 
input data such as electrocardiography (ECG), phonocardiography (PCG), etc. are reviewed. This way we can 
compare our method based on CMR with existing ones based on other data types. We also review some of the 
ensemble-based methods since our method uses an ensemble of decision trees for CAD diagnosis.

ECG.  Butun et al.6 reported a technique for automated diagnosis of CAD from ECG signals based on capsule 
networks (CapsNet). They applied the 1D version of CapsNet for automated detection of CAD ("1D-CADCap-
sNet" model) on two- and five-second ECG segments, and attained optimal diagnostic accuracy of 98.62% for 
five-second ECG signals. Acharya et al.7 proposed a CNN comprising four convolutional, three fully-connected, 
and four max-pooling layers that achieved 94.95% and 95.11% accuracy rates for discriminating between abnor-
mal (from patients with CAD and myocardial infarct) and normal ECGs on two- and five-second ECG seg-
ments, respectively. Khan et al.8 presented a signal processing framework to diagnose CAD on raw ECG signals 
of 9–12 min durations. The ECG signals were pre-processed and segmented using empirical mode decompo-
sition by selecting intrinsic mode function 2–5. The features for optimal classification of data included mar-
ginal factor, impulse factor, shape-factor, kurtosis, etc. The pre-processed signals were fed to the support vector 
machine classifier, and achieved an accuracy of 95.5%.
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PCG.  The PCG records heart sounds and murmurs that may become altered in CAD, but these changes can 
be subtle and imperceptible to the human ear. To overcome the low signal-to-noise ratio of PCG signals due to 
environmental noise, Pathak et al.9 developed a PCG-based CAD detection method. They recorded PCG signals 
from four auscultation sites on the left anterior chest using a multichannel data acquisition system. Evaluated 
in the presence of white noise, vehicle and babble, the system was effective in collecting essential information 
from both diastolic and systolic phases of the cardiac cycle. Li et al.10 introduced a new feature fusion approach 
that fed Mel-frequency cepstral coefficients to a CNN to output valuable features that were in turn fused and 
provided to a multilayer perceptron for classification. In subsequent work, Li et al.11 demonstrated the efficacy of 
a new dual-input neural network that analyzed simultaneously assembled PCG and ECG signals using combined 
deep learning and feature extraction to extract useful underlying information in the signals.

Blood assays.  Dyslipidemia is a pathogenetic factor that contributes to the development of CAD. Guo 
et al.12 investigated whether the atherogenic index of plasma (AIP) is an independent predictor of CAD risk 
in postmenopausal women. Compared with controls, triglyceride (TG) was higher, high-density lipoprotein 
cholesterol (HDL-C) levels lower, and non-traditional lipid profile values (AIP, total cholesterol/ HDL-C ratio) 
more elevated in CAD subjects. Circular RNAs (circRNAs) have emerged as a potential biomarker for CAD. 
Liang et al.13 elucidated the role of circZNF609 in atherosclerosis. They demonstrated on logistic regression an 
independent inverse relationship between circZNF609 expression (quantitated in peripheral blood leukocytes 
using real-time polymerase chain reaction) and CAD risk among 209 controls and 330 CAD patients.

Clinical features and CCTA​.  Al’Aref et al.14 used a machine learning method to predict obstructive CCTA 
using clinical factors and the coronary artery calcium score. They employed the boosted ensemble algorithm 
XGBoost with tenfold cross-validation. Age, gender, and coronary artery calcium score were found to be the 
most prominent features. Baskaran et al.15 validated a machine learning model to predict obstructive CAD and 
revascularization on the Coronary Computed Tomographic Angiography for Selective Cardiac Catheterization 
(CONSERVE) study dataset16, which outperformed the CAD consortium clinical score. Imaging variables were 
most correlated with revascularization, and the performance did not differ whether the imaging parameters used 
were derived from invasive coronary angiography or CCTA.

Ensemble methods.  Since our method is based on ensemble of decision trees, we review some of the 
existing literature on CAD diagnosis which use ensemble of classifiers. In17_bookmark44, three base classifiers 
namely K-Nearest-Neighbor, random forest and SVM are combined to form an ensemble method for CAD 
diagnosis. The final decision is made based on ensemble voting techniques. The experiments were carried out 
on Z-Alizadeh Sani dataset18. Another method based on rotation forest algorithm has used neural networks as 
the base classifiers19_bookmark46. The method has been evaluated on Cleveland dataset. Kausar et al.20 com-
bined the advantages of supervised and unsupervised methods by utilizing K-means and SVM. They performed 
dimensionality reduction via principle component analysis and tested their method on Cleveland dataset.

Abdar et al.21 used nu-SVC as the base algorithm to present NE-nu-SVC method for CAD diagnosis. To 
gain better results, the authors balanced the studied datasets (Cleveland and Z-Alizadeh Sani) and performed 
feature selection. Finally, Hedeshi et al.22 took a PSO-based approach to extract set of rules for CAD diagnosis. 
The extracted rules were reported to have good Interpretability.

Background
Considering that the proposed method is based on random forest and decision tree, these methods are briefly 
reviewed in this section.

Decision tree.  A decision tree can be considered a series of Yes/No questions asked to make predictions 
about data. Decision trees are interpretable models since they carry out classification much as humans do. A 
series of questions are answered to arrive at a conclusion. The decision tree nodes are created that minimizes 
Gini impurity measures. For each node, the Gini impurity measure is the probability that a randomly drawn 
sample from the node is misclassified. As nodes of the tree are created, Gini impurity is reduced. Any node with 
zero Gini impurity is considered a leaf node and is not expanded anymore. For a classification problem with C 
classes, the Gini impurity of a node n is computed as.

where p(i) is the probability of picking a sample with class i in node n.
A typical decision tree is presented in Fig. 1. At each node, a specific condition is checked with the input 

sample. Depending on the situation being True or False, one of the two offsprings of the node is chosen. The 
routine continues until a leaf node is reached or some termination condition is met18.

Random forest.  Random forest is a model that contains multiple decision trees. To build each of the trees, 
a random subset of the training data is used. The samples that form the subset are drawn with replacement from 
the training data. Therefore, some samples may be used multiple times in a single tree. Moreover, to split tree 
nodes, a random subset of features is considered. During the testing phase, each decision tree of the forest makes 
a prediction about the given test sample. The final prediction result is then decided by majority voting (Fig. 2)23. 

IG(n) = 1−

c
∑

i=1

p(i)2,
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Using multiple trees, the random forest achieves good prediction accuracy by avoiding the overfitting that a sin-
gle decision tree may be prone to. Each of the decision trees is built using a random subset of data features. For 
classification problems, the subset cardinality is usually set as 

√

#features . Assuming the dataset has 36 features, 
six features will typically be considered to split each tree node. This is by no means immutable. For instance, it is 
common to deploy all features for node splitting in regression problems.

Dataset description
The dataset contains 63,648 multiparametric CMR images. The number of images with CAD disease is 26,104 
and the number of images representing healthy patients is 37,544 (see examples of both in Fig. 3). The dataset is 
publicly accessible24. In the patient group, CAD was confirmed on invasive coronary angiography, the diagnostic 
gold standard. To collect the CMR images, four types of sequences namely LGE, Perfusion, T2 weighted, and 
SSFP have been used. In each of these sequences, long and short axes planes of the heart have been considered 
(Fig. 4). Long axis consists of two, three, and four chamber views. For each of these views, one slice from 2 differ-
ent angles has been captured. Short axis consists of 10 slices from base to apex of the heart. Again, each of the 10 
slices has been captured from 2 different angles. Based on the description above, for each patient 13 slices have 
been collected in four different sequence types. Therefore, 13 × 4 CMR images have been collected per patient. 
Dividing the total number of CMR images (63,648) in the dataset by 13 × 4 reveals that 1224 patients (722 healthy 
and 502 CAD) have participated in the collection of this dataset.

To be able to use the collected dataset in research studies regarding diagnostic and therapeutic purposes, 
institutional approval was granted. Approval was granted on the grounds of existing datasets. Before collecting 
data, patients were informed about the data collection process and their consent were obtained. Execution of 
all methods was compliant with relevant guidelines and regulations. To use data, ethical approval was obtained 
from Tehran Omid hospital.

Figure 1.   Demonstration of a typical decision trees.

Figure 2.   Schematic of a random forest with M number of decision trees. The final classification is determined 
by majority voting of the classification results of individual decision trees.
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CMR imaging protocols.  From September 2018 to September 2019, the study prospectively recruited sub-
jects who attended the CMR department of Omid Hospital, Tehran, Iran. The institutional ethics committee of 
Tehran Omid hospital had approved the study. All participants gave written informed consent. CMR examina-
tion was performed on a 1.5-T system (Magnetom Aera Siemens, Erlangen, Germany) using dedicated body 
coils. In each subject, segmented true fast imaging with steady-state precession (TrueFISP) cine images as well 
as high-resolution phase-sensitive inversion-recovery (PSIR) early (EGE, immediately after bolus infusion of 
gadoterate meglumine contrast at 0.1 mmol/kg body weight) and late gadolinium enhancement (LGE, 15 min 
after contrast administration) images were acquired in the standard long- (LAX) and short-axis (SAX) views. 
Parametric maps of left ventricular myocardial T2, native T1, and post-contrast T1 (10–30 min after contrast 
administration) were acquired in the basal, mid and apical SAX views. Table 1 summarizes the details of CMR 
sequences and typical parameters.

Proposed method
The motivation behind the proposed method and its detailed description are explained in this section.

Figure 3.   Example cardiac magnetic resonance images from coronary artery disease patients (a–c) and healthy 
subjects (d–f). c is a black-blood spinecho image; the rest are single-phase images of steady-state free precession 
CINE images. The lesions indicating CAD have been marked with yellow color in parts (a–c).

Figure 4.   Illustration of long and short axes planes used during collecting CMR images of our dataset.
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Motivation. 

•	 Each pixel of an image forms a meaningful pattern connecting neighbouring pixels. The conversion of pixels 
to feature vectors would delink all interpixel relationships leading to violation of pixel locality and severe 
degradation of classification performance.

•	 To feed image data to a decision tree, we would be forced to treat each pixel as one feature. This would increase 
the number of features inordinately, thereby incurring the curse of dimensionality.

As such, it became apparent that we had to use a different approach than the pixel-based method to convert 
the whole image into numeric features that can be fed efficiently to the decision trees. To this end, we trained 
CNNs on image data and used the CNN outputs as input features for the decision trees of the random forest. 
CNNs can extract essential features from whole input images26 for accurate prediction, thereby avoiding the 
curse of dimensionality. Moreover, with CNNs, the locality of the pixels is preserved27.

It is known that training the same CNN multiple times will lead to a different parameter set. The reason is 
two-fold. First, each run uses a different random seed leading to different initialization of CNN parameters. 
Second, CNNs are trained on mini-batch of samples drawn randomly from the training set. The stochastic 
nature of mini-batch sampling affects the overall training process. Therefore, one training run might result in 
a better parameter set than the other. To reduce the unwanted effects of stochastic training, we train multiple 
CNNs employing K-fold cross validation and use their prediction during random forest creation leading to 
better overall performance. Given that we used stratified K-fold cross validation, the percentage of healthy and 
CAD samples within each fold was preserved. Recall that in our dataset, the total numbers of healthy and CAD 
patients were 722 and 502, respectively. Therefore, in each fold, the numbers of healthy and CAD patients were 
approximately 144 and 100, respectively.

Proposed method description.  The proposed method used a combination of random forest and CNNs. 
Using CNNs, 2D CMR images were converted into vectors of real values automatically. These vectors were fed 
to the random forest of decision trees instead of direct pixel-by-pixel feeding of CMR images as the latter would 
otherwise have led to violation of pixel locality (i.e., loss of inter-pixel spatial relationships) and incurred the 
curse of dimensionality. The CNNs could be thought of as the “feature generation” step that preceded the “clas-
sification” step comprising the random forest of decision trees. The structure of each of the CNNs is depicted 
in Fig. 5. At the pre-processing phase, input data were resized to 100× 100 and normalized between 0 and 1. 
Next, the dataset D was divided into five parts for fivefold cross validation. The training was repeated five times 
for k = 1,…, 5. In each iteration k, the training set fk ⊂ D consisted of data from four out of the five folds. The 
remaining fold was used for testing. To train the CNNs {Ci , i = 1, . . . ,N} , each training set fk was divided to n 
subsets {fk1, . . . , fkn|fkl ∩ fkm = ∅, l,m ∈ {1, . . . , n} ∧ l �= m} . The number of CNNs (n) is the hyperparameter 
of the proposed method which was set to 10 in our experiments.

To ensure that the CNNs would have different sets of parameters, each CNN Ci , i = 1, . . . , n was trained on 
subset fk − fki and validated on subset fki . The trained CNNs were used to create the random forest decision 
trees. Each node of a decision tree represented one randomly selected CNN-generated numerical feature of a 
randomly selected CMR image sample of the training set. Computationally, one of |fk|  rows and one of n columns 
were randomly selected from the [|fk| × n] matrix of outputs obtained by feeding 

∣

∣fk
∣

∣ CMR images to n CNNs 
for each fold k of K-fold cross validation.

Table 1.   Details of CMR sequences and typical parameters. NEX Number of excitations, TE Echo time, TR 
Repetition time.

Parameters

Sequence TE (ms) TR (ms) Segment length
Slice thickness 
(mm)

Concentration/
number of slices NEX Breath hold time (s)

Cine, segmented
TrueFISP; LAX/ 1.15 33.60 15 7 3 1 8

Cine, segmented
TrueFISP; SAX 1.11 31.92 15 7 15 1 8

Dynamic TrueFISP
(during contrast
infusion); 3 SAX

2.48 412.78 74 8 Slice No: 3 1 Free breathing

EGE, high-reso-
lution
PSIR; LAX and SAX

3.16 666 Non-cine 8 1 1 7

LGE, high-reso-
lution
PSIR; SAX and LAX

3.16 666 Non-cine 8 1 1 7

Myocardial T2; SAX 1.06 193.27 56 8 3 1 9

Native myocardial
T1; SAX 1.12 280.56 72 8 3 1 9–10

Post-contrast
myocardial T1; SAX 1.12 360.56 72 8 3 1 9–10
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Finally, the test set D − fk was used to evaluate the trained model and the final results were presented. To this 
end, each test sample was fed to the CNNs and their outputs were used as input to the random forest. Based on 
the CNNs outputs, the decision trees of the random forest determined whether the test sample had CAD disease 
or not. The final prediction was presented using majority voting between the decision trees predictions. High-
level steps of the proposed method are presented in Fig. 6. In contrast to conventional studies where validation 
is only performed after obtaining the final output of the classifier, training and validation were conducted for 
each CNN during the “feature generation step” as well as for the random forest of decision trees based on the 
aggregated results of the former during the “classification” stage (see Fig. 6).

The pseudo-code of the proposed method is presented in Algorithm 1. In lines 1–2, the training data are 
pre-processed. Next, the K-fold cross validation loop is begun. Training data for k-th iteration ( fk ) is divided 
to n subsets. The subsets are used for training of n CNNs in lines 6–7. The trained CNNs are used to compute 
matrix P in lines (8–11). Based on matrix P, decision trees of RF are built one by one in lines (13–19). For better 
clarification, the operations performed in lines (8–19) of Algorithm 1 are depicted in Fig. 7.

Figure 5.   The architecture of convolutional neural networks used in the proposed method. CAD, coronary 
artery disease; CMR, magnetic resonance imaging.

Figure 6.   Steps in the proposed method.
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Experimental results
All the experiments were implemented in Python using the Keras library. The models were trained using GeForce 
GTX 950 GPU and 16 GB of RAM. Further, we compared our method with a CNN (as a single classifier) to 
investigate the effect of using an ensemble of classifiers versus just one. As mentioned in “Random forest” Sec-
tion, n = 10 CNNs were used to convert the image dataset into n numeric features that were required to build the 
random forest decision trees nodes. The hyperparameters of the CNNs are summarized in Table 2. We used 15 

Figure 7.   The graphical representation of operations in lines 8–19 of Algorithm 1.
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decision trees in the random forest. The experiments were conducted in two phases. First, CNNs were trained 
for 10 epochs following the procedures explained in “Random forest” Section _bookmark9 and Fig. 6. Next, 
the trained CNNs were used to generate the numeric features that were required for the creation of the decision 
trees. We compared our method with a single CNN that was trained using fivefold cross validation. To make the 
comparison fair, the training time assigned to the single CNN was equal to the total training time of our approach. 
In other words, the CNNs used in our approach were trained only for 10 epochs but the comparator single CNN 
model was trained for as many epochs as possible until reaching the total training time of our method (464.75 s). 
The effect of using different optimizers has also been inspected. To this end, the experiments have been performed 
for three optimizers namely Adagrad28, RMSProp29, and Adam30. The performance of our method and the stand-
alone CNN are compared in Table 3, which shows the superiority of our method. As can be seen, regardless of 
the optimizer type, our method has outperformed the stand-alone CNN which shows that our method is not 
sensitive to the choice of the optimizer. Moreover, among the evaluated optimizers, Adam has yielded the best 
performance. In Table 3, we did not include loss function for our method since it is a hybrid approach.

We have compared the performance of our method using CMR data with existing ones using other data 
types in Table 4. To ease the comparison between our method and existing ones, the last row of Table 3 has been 
repeated as the last row of Table 4. Clearly, our method has outperformed the rival ones in Table 4 which suggests 
that CMR can be used as a reliable data source for CAD diagnosis.

Discussion
Random forests have proved to be robust and accurate in challenging classification problems. As they are 
designed to work with numeric features, feeding image data pixel by pixel directly to random forests causes 
them to incur the curse of dimensionality. Even for a small image 28 × 28, the random forest will have to deal 
with 282=784 features, which renders the learning process prohibitively demanding. To this end, we relied on 
the automatic feature extraction property of CNNs to convert images to useful numeric values. However, as 
CNNs get more complex, the training time increases. As the random forest comprises an ensemble of decision 
trees, we can train multiple lightweight CNNs (with moderate accuracy) in a shorter time and still achieve good 
performance by harnessing an ensemble of decision trees that use CNNs predictions as input features. Despite 
being slow to train, the CNNs could perform quite fast during the testing phase. Once trained, the model can 
deliver real-time performance.

The advantages of the proposed method are as follows:

Table 2.   Hyperparameters used to train the CNNs used in our experiments.

Hyperparameter Value

Input dimension 100 × 100

Number of convolution layers 2

Number of fully connected layers 1

Number of filters for each convolution layer 32, 64

Size of convolutional kernels 3 × 3

Strides size 2

Activation function for hidden layers ReLU

Loss function Hinge

L2 regularization coefficient 0.001

Number of neurons of fully connected layers 128

Batch size 256

Table 3.   Performance comparison between a stand-alone classifier (CNN) and the proposed method.

Optimizer Methods Accuracy (%) PPV (%) Recall (%) Specificity (%) F1-score (%) AUC​ Loss
Total training 
time (s)

Adagrad
CNN 92.45 93.91 87.02 94.91 90.89 0.91 0.52 464.75

Proposed
method 98.78 100 98.16 99.42 99.00 0.99 – 464.75

RMSProp
CNN 93.48 94.56 89.99 95.13 91.03 0.93 0.48 471.22

Proposed
method 98.99 100 98.65 99.49 99.50 0.99 – 471.22

Adam
CNN 93.92 95.01 90.09 95.89 92.22 0.95 0.41 476.85

Proposed
method 99.18 100 98.88 99.66 99.70 0.99 – 476.85
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•	 Using random forest for image data classification reinforces the reliability of the prediction since an ensemble 
of decision trees is used.

•	 Since CNNs perform automatic feature extraction, we do not need to design hand-crafted features. This 
enhances the generalizability of our method.

•	 The proposed method is applicable to any image-based classification problem as CNNs can learn any image 
dataset. Therefore, we can train a reasonable number of CNNs on the dataset and use their predictions as 
features in random forest decision trees.

The disadvantages of our method are discussed below:

•	 Complex problems may demand more features to achieve acceptable accuracy. Considering that we rely on 
CNNs to map images to useful numeric features, the training time of our method will increase commensu-
rately with the increased number of features.

Table 4.   Overview of related works based on various input types. ECG Electrocardiograph, Echo 
Echocardiography, PCG Phonocardiograph, PPG Photoplethysmography, SVM Support vector machine.

Refs. Method
Input data
type Detection task Performance %

31 Time–frequency analysis of PCG signal
using chirplet transform PCG Valve disease diagnosis Accuracy 98.33

32 Recurrent neural network with long short-term memory CCTA​ Calcified plaque detection
Accuracy 90.3
Sensitivity 92.1
Specificity 88.9

33 CNN ECG Diagnosis of different cardiovascular diseases Accuracy 95

34 Optimal time–frequency concentrated biorthogonal wavelet-
based features ECG CAD diagnosis Accuracy 98.53

35 Binomial rendition of the bivariate mixed-effects regression 
model

CCTA,
ECG CAD diagnosis Sensitivity 99

Specificity 88
36 Discrete wavelet transform, multivariate multi-scale entropy, ECG CAD diagnosis Accuracy 98.67

37 Sequential minimal optimization, Naive Bayes, and ensemble 
algorithm ECG CAD diagnosis Accuracy 88.5

38 Computing complex ventricular excitation index Magneto-cardiography CAD diagnosis Sensitivity 91
Specificity 84

39 Extracted time- and frequency-domain features from PCG 
signal as inputs to neural network classifier PCG CAD diagnosis

Accuracy 82.57
Sensitivity 85.61
Specificity 79.55

40 Multimodal feature fusion and hybrid feature selection, SVM 
classifier

ECG,
PCG CAD diagnosis

Accuracy 96.67
Sensitivity 96.67
Specificity 96.67
F1-measure 96.64

41 Multimodal feature fusion, SVM classifier PCG,
PPG CAD diagnosis Sensitivity 80

Specificity 93

42
Combined feature set related to heart rate variability and shape 
of PPG waveform, SVM classifier
Two sets of features extracted from

PPG CAD diagnosis Sensitivity 73
Specificity 87

43 Two sets of features extracted from PPG and PCG, SVM clas-
sifier

PCG,
PPG CAD diagnosis Sensitivity 92

Specificity 90

44 Novel feature representation using synchrosqueezing trans-
form, CAD diagnosis based on entropy of PCG, SVM classifier PCG CAD diagnosis Accuracy 83.48

45 Hybrid neural network-genetic algorithm Echo CAD diagnosis
Accuracy 93.85
Sensitivity 97
Specificity 92

46 Sequential minimal optimization
Naive Bayes, C4.5 and AdaBoost

Laboratory data,
echo CAD diagnosis Accuracy 82%

19 Rotation forest with neural networks as base classifiers Cleveland CAD diagnosis
Accuracy 91.20
AUC 91.50
Sensitivity 95.60
Specificity 86.70

21 Nested ensemble nu-Support Vector Classification Z-Alizadeh Sani CAD diagnosis
Accuracy 94.66
Precision 94.70
Sensitivity 94.70

22 Ensemble PSO-based fuzzy rule extraction Cleveland CAD diagnosis
Accuracy 92.59
Specificity 94.37
Sensitivity 90.51

Proposed method Random forest, CNNs as feature extractors, Adam optimizer CMR CAD diagnosis
Accuracy 99.18
Sensitivity 98.88
Specificity 99.66
AUC 99
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•	 The performance of the random forest is affected by the number of features used in the decision trees. In our 
method, each feature corresponds to the prediction of a trained CNN. Currently, the number of CNNs (fea-
tures) is treated as a hyperparameter that is set by trial and error. This introduces a degree of arbitrariness to 
our method. However, it is possible to use random forests to choose features that play more significant roles 
in classification performance. Conceivably, we can start by training several CNNs and then use the random 
forest to screen for the CNNs in which the predictions are more critical in classification performance. The 
CNNs that are less important can then be discarded. Such an approach constitutes an interesting direction 
for future work.

•	 The dataset samples used in the experiments have been obtained in a single institution. It is desirable to 
validate the model on other datasets.

Conclusion
In this paper, a novel classification method was presented for diagnosing CAD patients based on ensemble of 
CNNs and random forest. The method harnesses the classification power of multiple decision trees of the random 
forest. We trained multiple CNNs on the image dataset, and the trained CNNs predictions were used as features 
during the decision tree building process. Our method was able to achieve high accuracy using lightweight 
CNNs to derive features. We reported the classification results on our CMR image dataset, which has also been 
released for public use. By exploiting the representation capability of CNNs, the proposed method has enabled 
the use of random forest for the classification of any image-based dataset.

Data availability
The datasets analysed during the current study are available in the CAD Cardiac MRI Dataset repository, https://​
www.​kaggle.​com/​dania​lshar​ifrazi/​cad-​cardi​ac-​mri-​datas​et.
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