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a b s t r a c t 

Background and objective: Celiac Disease (CD) is characterized by gluten intolerance in genetically predis- 

posed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease 

a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal 

alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lympho- 

cytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis 

(NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist 

in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small 

intestinal lamina propria (LP). 

Methods: Our method was developed using a dataset comprising high magnification biopsy images of 

the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and 

individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to stan- 

dardize and enhance the acquired images. 

Results: For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accu- 

racy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to 

differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel 

outperformed all the tested classifiers by achieving 98.55% ACC. 

Conclusions: To the best of our knowledge, this is the first study that documents automated differentia- 

tion between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated 

biopsy image analysis that can significantly benefit patients and healthcare providers. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Celiac Disease (CD) is an immune-mediated enteropathy caused 

y a maladaptive intestinal immune response toward gluten 

olecules in susceptible individuals [1] . The estimated prevalence 
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f CD is 1.4% based on serologic tests and 0.7% based on biopsy test 

esults [2] . In high-risk populations, the prevalence rate increases 

o 4.7% [3] , and areas of high prevalence are sometimes located 

n developing countries [ 4 , 5 ]. Meta analysis on published studies 

hows that there was an annual increase in CD prevalence of 7.5% 

6] . CD can also cause extra-intestinal disorders, e.g., osteoporosis 

7] , and mineral and vitamin deficiencies [8] . The symptoms and 

econdary effects have a detrimental impact on the quality of life 

f patients and result in high healthcare costs [9] . This negative 
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Acronyms 

ACC accuracy 

ADASYN adaptive synthetic sampling 

AHE adaptive histogram equalization 

AI artificial intelligence 

CD Celiac Disease 

CLAHE contrast limited adaptive histogram equalization 

DT decision tree 

ECG electrocardiogram 

FN false negative 

FP false positive 

HOG histogram of gradient 

HP Helicobacter Pylori 

IBD inflammatory bowel disease 

KNN K-nearest neighbor 

LP lamina propria 

ML machine learning 

NCD Non-Celiac Duodenitis 

PHOG Pyramid Histogram of Gradient 

PPV Positive Predictive Value 

RBF Radial Basis Function 

SD Standard Deviation 

SEN sensitivity 

SHAP SHapley Additive exPlanations 

SPE specificity 

SVM Support Vector Machine 

TN true negative 

TP true positive 

mpact, coupled with the high prevalence of this disease, results in 

 significant public health problem. The prerequisite for addressing 

his problem is to develop diagnosis support methods that can es- 

ablish and track CD cases in a cost-effective manner. These meth- 

ds must be safe, reliable, and functional [10] . Having such meth- 

ds will enable the detection of more CD cases with the same re- 

ources and facilitate earlier treatment. Hence, it is essential to cre- 

te innovative CD detection methods which are cost-effective and 

eadily integrate with standard diagnostic pathways. 

CD can cause extra-intestinal disorders, e.g., osteoporosis [7] , 

nd mineral and vitamin deficiencies [8] . The symptoms and sec- 

ndary effects have a detrimental impact on the quality of life of 

atients and result in high healthcare costs [9] . This negative im- 

act, coupled with the high prevalence of this disease, results in a 

ignificant public health problem. The prerequisite for addressing 

his problem is to develop diagnosis support methods that can es- 

ablish and track CD cases in a cost-effective manner. These meth- 

ds must be safe, reliable, and functional [10] . Having such meth- 

ds will enable the detection of more CD cases with the same re- 

ources and facilitate earlier treatment. Hence, it is essential to cre- 

te innovative CD detection methods which are cost-effective and 

eadily integrate with standard diagnostic pathways. 

Current diagnostic paradigms incorporate objective methods for 

etecting CD [11] . These methods often rely on manual or semi- 

utomated optical or histological image analysis. Manual analysis 

s time-consuming because a diagnosis can only be established 

y analyzing all the available evidence. In this case, the evidence 

ust be discovered by scanning images of the small intestine, 

he longest organ of the human digestive system [12–14] . Opti- 

al images are acquired via traditional or video capsule endoscopy, 

hich are analyzed by gastroenterologists to detect and grade 

D-associated mucosal changes [15] . Analysis of duodenal biopsy 

pecimens is currently the internationally accepted gold standard 

or CD diagnosis in adults [ 13 , 16 ]. In this procedure, biopsy sam-
2 
les, obtained via an endoscope, are microscopically examined by 

athologists to determine the presence of increased intraepithe- 

ial lymphocytes, crypt hyperplasia, and villous atrophy, and the 

hanges are semiquantitatively graded, often using the Marsh scor- 

ng system or a modified scheme introduced by Oberhuber et al. 

 17 , 18 ]. Experimental studies show that Machine Learning (ML) 

ethods, which are cost effective, can be used for histopathologic 

eature analysis in a variety of tissues for diagnostic and prognostic 

urposes [19] . However, only a few studies have applied such com- 

utational approaches to CD detection [20–25] . These approaches 

ocused on discerning normal from CD biopsy images or differen- 

iating clinical CD stages based on differences in mucosal architec- 

ure. Non-Celiac Duodenitis (NCD) does not feature as a distinct 

ata class; currently, this failure mandates the need for an expert 

o manually rule out non-celiac-related inflammation prior to any 

omputer-aided diagnostic support procedure. The additional hu- 

an analysis step can increase the subjectivity of the diagnosis. 

The histologic changes of CD, including alterations in the ep- 

thelial and Lamina Propria (LP) compartments, result from dereg- 

lated innate and adaptive immune responses induced by gluten. 

ikewise, immune and inflammatory mechanisms also underlie the 

ucosal abnormalities in NCD, which differ depending on the eti- 

logy. Changes in LP constituents, including inflammatory cells, are 

ecognized in CD and NCD, with some differences having been re- 

orted between CD and certain NCD entities [26–30] . However, to 

ate, computational, image-based analysis of the small intestinal 

P in CD and NCD (and comparison with non-inflamed LP) has not 

een performed to determine if this approach has any diagnostic 

tility. 

This paper, proposes a novel ML algorithm for the automated 

nalysis of small intestinal biopsy imagery, focusing on LP inflam- 

atory cells in normal duodenum, CD, and NCD. The ability of 

rtificial Intelligence (AI) models to distinguish CD from normal 

ontrols and NCD based on the LP cellular composition appears 

romising and might suggest differences in the types, density, and 

istribution of inflammatory or stromal cells in different small in- 

estinal inflammatory diseases. The ability to discern between nor- 

al, NCD, and CD by analyzing the LP changes will be a significant 

tep towards creating a fully automated small intestinal biopsy 

nalysis system that can assist pathologists whenever the villous 

rchitecture cannot be reliably assessed. Additionally, interpreta- 

ion of the best classifier performance can be done by determining 

he best feature(s) that can influence the classifier to yield high- 

st classification results via AI methods. Also, using morphometric 

nalysis of small intestinal mucosa, prior studies highlighted dif- 

erences in the LP volume and cell type of untreated celiac mucosa 

ompared to normal controls. However, automated, computational 

nalysis of differences in the LP cellular contexture of CD and NCD 

r normal biopsies has not been performed. In the current study, 

e extend our work by assessing the NCD class of biopsy images 

nd determining whether the LP cellular/inflammatory milieu can 

elp discern different etiologies of intestinal inflammatory disor- 

ers and discriminate between inflamed and uninflamed mucosa. 

ncorporating the NCD class in an automated detection system for 

D is important to ensure an accurate diagnosis of CD, as some 

f the histopathologic features of CD and NCD may overlap. Our 

urrent methodology can differentiate normal versus CD and NCD 

iopsy images. Hence. the main goal of this study is to investi- 

ate seven use cases of different combinations (varying LP cellular 

ompositions based on differences in the types, density, and dis- 

ribution of inflammatory or stromal cells) of binary classification 

chemes to determine the classification which obtains the highest 

ccuracy with our proposed classifiers. 

The next section provides background on the Marsh scoring 

ystem used to classify the biopsy images. Section 3 describes the 

ndividual methods used during the study design. Section 4 doc- 



O. Faust, S. De Michele, J.E. Koh et al. Computer Methods and Programs in Biomedicine 230 (2023) 107320 

Fig. 1. Small intestine showing normal villi and crypts (left) and celiac-disease-associated villous atrophy and crypt hyperplasia (right). 

Fig. 2. Flowchart documenting the sequence of algorithms used to process and analyze the image data. 
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ments the classification performance of the ML model for each 

f the binary classification problems. The results of our efforts are 

ocumented as system performance measures in Section 5 . We dis- 

uss our work in relation to previous studies in Section 6 . This sec-

ion also contains limitations and future work. The final section of 

he paper provides conclusions of our work. 

. Background 

The mucosal architecture of the small intestine differs in nor- 

al versus pathologic conditions. Fig. 1 shows normal small in- 

estinal villi versus those from an untreated CD patient with villous 

trophy. In CD, the villi tend to be shortened and blunted com- 

ared to healthy villi, and the crypts are hyperplastic. 

The classic histopathologic changes of CD in the small bowel 

re categorized by the ”Marsh classification” [31] , which was in- 

roduced in 1992, and subsequently modified by Oberhuber et al. 

n 1999 into six stages, the previous stage 3 being split into three 

ubstages [ 18 , 32 ]. 

• Marsh 0: normal mucosa 
• Marsh I: increased number of intraepithelial lymphocytes, usu- 

ally exceeding 20 per 100 enterocytes 
• Marsh II: hyperplasia of the crypts of Lieberkuhn with preser- 

vation of villous architecture. 
• Marsh III: villous atrophy accompanied by crypt hyperplasia. 

– IIIa: partial villous atrophy, 

– IIIb: subtotal villous atrophy, 

– IIIc: total villous atrophy. 

. Methods 

This section outlines the methods used to design a ML model 

hat can discriminate biopsy images of the LP compartment from 

ontrols, NCD patients, and CD patients across the Marsh spec- 

rum I, II, IIIa, IIIb, and IIIc. During the design, we adopted a tra- 

itional feature engineering approach. The design was structured 

nto pre-processing, feature extraction, and classification. The flow 

hart in Fig. 2 , documents the data processing steps, which estab- 
3 
ish the system’s functionality. The following sections describe the 

lgorithms involved in these processing steps. 

.1. Data acquisition 

The images utilized in this study were acquired from duodenal 

iopsies of 31 controls without any small intestinal disorder, 45 

eliac patients, and 20 with NCD, including non-specific duodenitis, 

nflammatory Bowel Disease (IBD), Helicobacter Pylori (HP) infec- 

ion and autoimmune enteropathy, diagnosed at Columbia Univer- 

ity Irving Medical Center in New York. From these 96 cases, a total 

f 284 digital images of biopsies were acquired with a slide scan- 

er (Leica Aperio AT2, Buffalo Grove, IL). Our goal was to include as 

any images of the lamina propria with diverse inflammatory and 

on-inflammatory cells as possible, selected randomly, while min- 

mizing the presence of epithelium in the same image. Represen- 

ative photomicrographs of the LP compartments were obtained at 

0 × magnification with the Aperio Image scope v12.4.0.7018. The 

iopsies, from which the photomicrographs were obtained, were 

lassified by two pathologists as: normal, NCD, Marsh I, Marsh II, 

arsh IIIa, Marsh IIIb, or Marsh IIIc. Table 1 details information 

oncerning the acquired data. Fig. 3 a depicts a representative ex- 

mple of a biopsy image taken from the normal or control set. 

ig. 3 b depicts an example of an image from the NCD set. Fig. 3 c–

 g show examples for Marsh I, Marsh II, Marsh IIIa, Marsh IIIb, 

nd Marsh IIIc, respectively. Once the images were obtained and 

abeled, they were individually pre-processed to enhance and stan- 

ardize image quality. 

.2. Pre-processing 

The Matlab software was used for the machine learning tech- 

ique employed in this study. The acquired biopsy digital pho- 

omicrographs were stored as grayscale images and as three addi- 

ional color images from the red, blue, and green channels. The im- 

ges were pre-processed using the Contrast Limited Adaptive His- 

ogram Equalization (CLAHE) method [33] . CLAHE is an adaptable 

ontrast improvement technique based upon Adaptive Histogram 

qualization (AHE) [34] , wherein a histogram is computed for the 
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Table 1 

Number of subjects and number of images per type. 

Control NCD Marsh I Marsh II Marsh IIIa Marsh IIIb Marsh IIIc 

Subjects 31 20 7 6 10 10 12 

Images 91 58 21 18 30 30 36 

Fig. 3. Example figures for the seven image classes. The Marsh scoring for each histologic slide is labeled. 

4



O. Faust, S. De Michele, J.E. Koh et al. Computer Methods and Programs in Biomedicine 230 (2023) 107320 

Fig. 4. Original (4a) and CLAHE processed (4b) images from the normal control class (normals). CLAHE implements histogram equalization for enhancing the local contrast 

of an image. 
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Table 2 

Performed binary classification schemes. 

Number Combination 

1 Normal versus CD with Marsh I + II 

2 Normal versus CD without Marsh I + II 

3 Normal versus NCD 

4 Normal versus NCD + CD with Marsh I + II 

5 Normal versus NCD + CD without Marsh I + II 

6 NCD versus CD with Marsh I + II 

7 NCD versus CD without Marsh I + II 
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ssociated region of a pixel [33] . This contrast boosting technique 

nhances the difference between intensities of pixels that are lo- 

ated in close proximity [35] . In addition, CLAHE is an enhance- 

ent of the AHE, wherein the enhancement computation is al- 

ered by adding a user-specified maximum to the height of the 

ocal histogram and to the maximum contrast enhancement factor 

33] . The CLAHE parameters used are described as follows; con- 

rast enhancement limit: 0.01, number of histogram bins used to 

uild contrast enhancing transformation: 256, desired histogram 

hape: uniform, distribution shape: uniform, distribution param- 

ter: 0.4. Fig. 4 depicts the original and CLAHE processed images 

f the normal class. Subsequently, the images were re-scaled to a 

tandard size of 878 × 1252. The pre-processing method used in 

his study is specific to the image data used in this study. 

.3. Feature extraction from pre-processed images 

The Histogram of Gradient (HOG) technique works by count- 

ng the occurrence of gradient orientation in an image [36] . Thus, 

he local appearance of objects is described using the distribution 

f edge directions determined by gradient assessment. In Pyramid 

istogram of Gradient (PHOG), the spatial layout of the image is 

reserved by dividing the image into sub-regions at multiple res- 

lutions and applying the HOG descriptor to each sub-region [36] . 

he number of sub-regions depends on the image size and reso- 

ution. The Canny edge detector is applied, and the histogram of 

rientation gradients is then calculated for all bins in each level. 

he histograms are then combined to form the PHOG representa- 

ion of the input image. 

The distance in a coordinate system between two different im- 

ges is known as the PHOG distance [37] . This distance is com- 

uted by partitioning the original image into four equal-sized re- 

ions and then estimating the HOG feature for each region. The 

ext step is to obtain the HOG region to be calculated. The previ- 

us four regions are further reduced to four additional sub-regions 

o calculate the same. l is the level at which the division and calcu- 

ation steps are done. The pyramid sub-regions consist of 4 l units 

hile maintaining the global image at a value of l = 0. Therefore, 

he total HOG is equal to the summation of the 4 l sub-regions, con- 

idering all previous regions [37] . k represents the equidistant in- 

ervals, which signifies the binned orientation that has been nor- 

alized, and represents the corresponding HOG. Hence, in this 

tudy, k = 16 bins, an angle of 360 ◦, and 3 levels of the pyramid

ere used to compute PHOG. 
5 
.4. Feature selection and classification 

The first feature selection step was to concatenate all the PHOG 

eatures extracted from the same image to form a feature list. Next, 

e grouped the feature lists according to the label of the image 

rom which the feature list entries were extracted. For example, 

1 feature lists were grouped to form the normal (control) set. As 

 result, we established seven sets of feature lists: Control, NCD, 

arsh I, Marsh II, Marsh IIIa, Marsh IIIb, and Marsh IIIc. After that, 

e were able to establish binary classification problems that re- 

ect the use case scenarios. Binary classification refers to the fact 

hat a classification algorithm is tasked with deciding which one of 

wo possible groups a particular feature vector belongs to. Table 2 

escribes the data arrangements for the binary classification prob- 

ems, which reflect the seven use case scenarios. For example, in 

he third classification problem, we ask the classification algorithm 

o differentiate between control and NCD. That reflects the use case 

cenario of deciding whether a biopsy image is normal or shows 

CD symptoms. Student’s t-test [38] was used to guide the feature 

election process. To be specific, each binary classification problem 

nvolves two sets of feature lists, and Student’s t-test was used to 

alculate p- and t-values from all the listed features. As such, both 

- and t-value measure the ability of a feature to discriminate be- 

ween the classes. 

Higher t-values indicate better performance. Therefore, feature 

anking was accomplished by arranging the feature sets in de- 

cending order with respect to the t-value measure. Table A.12 in 

he Appendix reports the mean and Standard Deviation (SD) as 

ell as p- and t-values of extracted features for the normal (con- 

rol) and NCD classes. The table entries were also arranged in de- 

cending order based on the t-value measure. To limit the space 

equirement for that table, we display only features with a t-value 

hat is greater than 6. Similar tables were created for all the seven 
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Table 3 

Performance results of the best classification algorithm for the individual binary 

classification problems. 

Number Classifier ACC (%) SEN (%) SPE (%) 

1 Subspace 74.4 75.4 73.0 

2 Subspace 76.1 82.0 70.2 

3 SVM (1 st order polynomial kernel) 98.5 97.7 99.0 

4 Bagging 75.9 79.8 67.5 

5 Bagging 76.4 80.1 70.2 

6 Subspace 98.2 99.5 95.3 

7 Subspace 97.1 99.0 93.6 

+ CD without Marsh I + II). For this problem, the Bagging classifier obtained 76.4% 

ACC, which was the highest performance. 
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1

inary classification problems. That allowed us to establish which 

eatures work best for a particular classification problem. The best 

eatures were combined to form feature vectors which can be used 

o train and test nine classification algorithms, such as the Decision 

ree (DT) [39] , K-Nearest Neighbor (KNN) [40] , Support Vector Ma- 

hine (SVM) [41] (with Radial Basis Function (RBF) and 1 st , 2 nd , as

ell as 3 rd polynomial kernels), and ensemble classifiers [42] (Ad- 

Boost, bagged tree, and subspace). Each result was established ac- 

ording to the rules of k -fold cross-validation [43] ( k = 3), repeated

en times to obtain the most accurate results. 

Before we could start to train and test the classification algo- 

ithms, we had to address the problem of imbalanced data. Data 

mbalance refers to one class-specific feature set having signifi- 

antly more entries. For example, we have created a binary clas- 

ification problem for the third use case scenario to differentiate 

etween normal and NCD cases. The normal feature data was ex- 

racted from 91 images, whereas the NCD data came from only 58 

mages. Hence, the data was biased towards normal. To illustrate 

hat bias, suppose a dumb classifier that labels every feature as 

ormal. Such an impractical setup would be correct 91 / (91 + 58) 

100 = 61% of the time. In a practical setting, the classifica- 

ion model would over-report normal cases. This over-reporting 

f the class with more training data also exists for models that 

ere established through training and testing regimes like 3-fold 

ross-validation. Therefore, it is vital to reduce the training bias 

y balancing the data. For this study, we have used the Adap- 

ive Synthetic Sampling (ADASYN) [44] approach, which uses a 

eighted distribution for the minority classes to balance data. 

DASYN works by generating more synthetic data for the minor- 

ty class data that are more challenging to learn by the model as 

ompared to those that are easier to learn. Hence, learning is en- 

anced wherein the biased brought about by the imbalance is re- 

uced and the classification decision boundary is altered by shift- 

ng toward the more challenging data [44] . ADASYN was employed 

er fold during the 3-fold validation of models. During testing, we 

stablished the performance measures of Accuracy (ACC), Positive 

redictive Value (PPV), Sensitivity (SEN), and Specificity (SPE). 

. Results 

The classification algorithms achieved performance results for 

he seven use cases. The use cases are best described by the data 

rrangement shown in Table 2 . The nine classification algorithms 

roduced (predicted) labels for all the feature vectors in the test 

old. These labels were compared with the ground truth by estab- 

ishing: 

• True Positive (TP): The number of correctly identified positive 

cases (ground truth = predicted label = positive). 
• True Negative (TN): The number of correctly identified negative 

cases (ground truth = predicted label = negative). 
• False Positive (FP): The number of incorrectly identified positive 

cases (ground truth ̸ = predicted label = positive). 
• False Negative (FN): The number of incorrectly identified nega- 

tive cases (ground truth ̸ = predicted label = negative). 

For use cases 1–5, the normal set was used as negative ground 

ruth. For use cases 6 and 7 the NCD set was used as negative

round truth. All sets that were not negative were treated as pos- 

tive ground truth. Based on these fundamental measures, we uti- 

ized the following three performance measures: 

CC = 

TP + TN 

TP + TN + FP + FN 

× 100 , SEN = 

TP 

TP + FN 

× 100 , 

SPE = 

TN 

TN + FP 

× 100 (1) 
o

6 
Table 3 lists the classifier that achieved the highest ACC for a 

iven binary classification problem. The table shows that the SVM 

1st order polynomial kernel) yielded the highest ACC of 98.5%, for 

he third binary classification problem (Number 3), which reflects 

he use case of differentiating normal biopsy images from those 

howing NCD. We reason that the polynomial kernel enables the 

onversion of the original data space into a new one with a higher 

imension, resulting in enhanced separability [45] , thus yielding 

atisfactory classification results. On the other hand, the classifiers 

chieved the least performance for the binary classification prob- 

em (Number) 4 (Normal versus NCD 

Tables 4–10 provide the detailed performance results from each 

f the nine classification algorithms for all the seven binary clas- 

ification problems. To be specific, Table 4 details the performance 

esults for the binary classification problem reflecting the use case 

f differentiating normal biopsy images from those showing CD 

ith Marsh I + II, etc. In each of these seven tables, we have high-

ighted the classification algorithm which achieved the highest ac- 

uracy (row with gray background in each table). 

. Explainable AI using Shapley analysis 

The success of a particular classification system depends upon 

rust. A breach of trust will erode confidence in a particular sys- 

em [46] . This is particularly relevant to medical decision support 

ystems [47] because such systems require human experts to rely 

n machine learning. 

Hence, despite the good classification results achieved by AI 

odels, they remain underused as physicians are not able to com- 

rehend the basis on which these models make predictions re- 

arding patients’ health. To counter this, explainable artificial in- 

elligence techniques are being explored fervently and are hence 

manating in the healthcare domain presently [ 4 8 , 4 9 ]. Jahmunah

t al. [48] used the gradient-weighted class activation mapping vi- 

ualization technique to show the different locations on the Elec- 

rocardiogram (ECG) signals that were influential in the predic- 

ion of myocardial infarction. Loh et al. [49] conducted a system- 

tic review and discussed various explainable AI techniques used 

n healthcare. SHapley Additive exPlanations (SHAP) methods have 

ecently been presented in some studies to aid in interpreting ML 

odels, irrespective of their complexity level. The SHAP method is 

fficacious in allowing the detection and ordering of features that 

etermine compound classification and activity forecasting in any 

L model [50] . In a recent study, Ibrahim et al. [51] performed 

hapley analysis on a decision tree-based ML model to gain in- 

ights into the model’s prediction capabilities and to pinpoint fea- 

ures that influenced the model most in decision-making for the 

etection of acute myocardial infarction. Shapley values are help- 

ul in exposing the contribution of each feature to each prediction 

51] . In our study, we applied the Shapley model to the output (top 

0 discriminatory PHOG features) of the best performing SVM (1 st 

rder polynomial kernel) classifier using the Python program. 
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Table 4 

Performance results of various classifiers for the binary classification scheme Number 7 (NCD vs. CD - 

Marsh I + II). 

Classifier TP TN FP FN ACC (%) PPV (%) SEN (%) SPE (%) F1-score 

DT 929 542 38 31 95.52 96.24 96.77 93.38 0.96 

KNN 5 943 552 28 17 97.07 97.19 98.21 95.10 0.98 

SVM RBF 937 552 28 23 96.69 97.23 97.58 95.08 0.97 

SVM Poly1 940 553 27 20 96.93 97.32 97.91 95.24 0.98 

SVM Poly2 935 549 31 25 96.36 96.91 97.35 94.61 0.97 

SVM Poly3 933 554 26 27 96.56 97.40 97.17 95.47 0.97 

AdaBoost M1 902 539 41 58 93.56 96.27 94.05 92.38 0.97 

Bagging 932 546 34 28 95.98 96.65 97.07 94.05 0.97 

Subspace 951 544 36 9 97.06 96.49 99.04 93.60 0.98 

Table 5 

Performance results of various classifiers for the binary classification scheme Number 6 (NCD vs. 

CD + Marsh I + II). 

Classifier TP TN FP FN ACC (%) PPV (%) SEN (%) SPE (%) F1-score 

DT 1327 547 33 23 97.10 97.65 98.30 94.35 0.98 

KNN 5 1334 554 26 16 97.82 98.13 98.81 95.43 0.98 

SVM RBF 1328 549 31 22 97.25 97.76 98.37 94.59 0.98 

SVM Poly1 1333 558 22 17 97.98 98.41 98.74 96.17 0.99 

SVM Poly2 1326 553 27 24 97.35 98.04 98.22 95.24 0.98 

SVM Poly3 1328 556 24 22 97.61 98.27 98.37 95.81 0.98 

AdaBoost M1 1196 552 28 154 90.54 97.79 88.59 95.20 0.98 

Bagging 1324 552 28 26 97.20 98.00 98.07 95.17 0.98 

Subspace 1343 553 27 7 98.23 98.07 99.48 95.29 0.99 

Table 6 

Performance results of various classifiers for the binary classification scheme Number 5 (Control vs. 

NCD + CD wo. Marsh I + II). 

Classifier TP TN FP FN ACC (%) PPV (%) SEN (%) SPE (%) F1-score 

DT 1144 607 303 396 71.46 79.57 74.24 66.88 0.77 

KNN 5 1068 673 237 472 71.04 82.13 69.32 74.00 0.75 

SVM RBF 1197 588 322 343 72.85 79.21 77.71 64.76 0.78 

SVM Poly1 1134 699 211 406 74.79 84.57 73.61 76.89 0.78 

SVM Poly2 1150 621 289 390 72.27 80.34 74.64 68.42 0.77 

SVM Poly3 1145 592 318 395 70.87 78.60 74.30 65.17 0.76 

AdaBoost M1 1174 655 255 366 74.66 82.80 76.19 72.16 0.79 

Bagging 1234 637 273 306 76.38 82.15 80.10 70.21 0.81 

Subspace 1053 726 184 487 72.62 85.81 68.36 79.93 0.76 

Table 7 

Performance results of various classifiers for the binary classification scheme Number 4 (Control vs. 

(NCD + CD + Marsh I + II)). 

Classifier TP TN FP FN ACC (%) PPV (%) SEN (%) SPE (%) F1-score 

DT 1456 558 352 474 70.90 80.60 75.43 61.29 0.78 

KNN 5 1292 657 253 638 68.63 83.80 66.94 72.25 0.74 

SVM RBF 1489 546 364 441 71.67 80.48 77.14 60.10 0.79 

SVM Poly1 1367 684 226 563 72.21 85.99 70.81 75.15 0.77 

SVM Poly2 1405 625 285 525 71.47 83.31 72.76 68.65 0.77 

SVM Poly3 1408 587 323 522 70.26 81.58 72.94 64.68 0.77 

AdaBoost M1 1454 637 273 476 73.62 84.40 75.33 70.00 0.79 

Bagging 1541 614 296 389 75.88 84.04 79.83 67.53 0.82 

Subspace 1317 714 196 613 71.50 87.46 68.22 78.58 0.76 

Table 8 

Performance results of various classifiers for the binary classification scheme Number 3 (Control vs. NCD). 

Classifier TP TN FP FN ACC (%) PPV (%) SEN (%) SPE (%) F1-score 

DT 569 893 17 11 98.13 97.18 98.07 98.16 0.98 

KNN 5 561 894 16 19 97.66 97.38 96.75 98.25 0.97 

SVM RBF 562 898 12 18 98.00 98.08 96.92 98.68 0.97 

SVM Poly1 567 901 9 13 98.53 98.55 97.73 99.01 0.98 

SVM Poly2 564 896 14 16 98.00 97.78 97.21 98.46 0.97 

SVM Poly3 565 892 18 15 97.79 97.14 97.40 98.02 0.97 

AdaBoost M1 418 374 536 162 53.24 48.21 69.14 39.55 0.63 

Bagging 568 893 17 12 98.06 97.18 97.89 98.16 0.97 

Subspace 561 902 8 19 98.20 98.64 96.71 99.12 0.98 

7
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Table 9 

Performance results of various classifiers for the binary classification scheme Number 2 (Control vs. CD 

wo. Marsh I + II). 

Classifier TP TN FP FN ACC (%) PPV (%) SEN (%) SPE (%) F1-score 

DT 714 631 279 246 71.92 72.42 74.47 69.43 0.73 

KNN 5 769 606 304 191 73.54 72.08 80.17 66.64 0.76 

SVM RBF 733 612 298 227 71.93 71.61 76.46 67.41 0.74 

SVM Poly1 790 627 283 170 75.77 74.18 82.38 68.96 0.78 

SVM Poly2 765 604 306 195 73.23 71.71 79.87 66.37 0.75 

SVM Poly3 713 598 312 247 70.10 70.16 74.44 65.75 0.71 

AdaBoost M1 752 622 288 208 73.48 72.73 78.37 68.42 0.75 

Bagging 745 641 269 215 74.11 73.89 77.67 70.50 0.75 

Subspace 785 637 273 175 76.05 74.86 81.95 70.15 0.78 

Table 10 

Performance results of various classifiers for the binary classification scheme Number 1 (Control vs. CD w. 

Marsh I + II). 

Classifier TP TN FP FN ACC (%) PPV (%) SEN (%) SPE (%) F1-score 

DT 947 594 316 403 68.17 75.30 70.15 65.39 0.72 

KNN 5 924 634 276 426 68.92 77.41 68.44 69.62 0.72 

SVM RBF 1009 596 314 341 71.00 76.46 74.74 65.55 0.75 

SVM Poly1 1011 652 258 339 73.55 79.95 74.89 71.69 0.77 

SVM Poly2 979 611 299 371 70.34 76.91 72.52 67.13 0.74 

SVM Poly3 978 586 324 372 69.21 75.33 72.44 64.46 0.74 

AdaBoost M1 1004 619 291 346 71.82 77.76 74.37 68.13 0.76 

Bagging 1037 620 290 313 73.30 78.49 76.81 68.25 0.77 

Subspace 1018 664 246 332 74.41 80.88 75.41 72.97 0.77 

Fig. 5. Results of Shapley analysis performed on SVM (1 st order polynomial kernel) classifier. 
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Fig. 5 shows the results of the Shapely analysis performed on 

he classifier. The analysis shows how the ‘SHAP’ values influ- 

nce the feature values (high or low values). From the figure., it 

an be concluded that the features at the top signify high fea- 

ure importance, as these contribute more to the model’s predic- 

ion than those at the bottom. The color representation can deter- 

ine the value of each feature. For example, features ‘rdPHOG588’ 

o ‘gyPHOG460’ comprise more red dots as compared to the blue 

r purple dots, while the rest of the features from ‘bePHOG461’ 

o ‘gyPHOG140’ contain fewer red dots. This observation attests 
8 
hat features ‘rdPHOG588’ to ‘gyPHOG460’ have greater relevance 

n impacting the model’s output than features ‘rdPHOG588’ till 

gyPHOG460’. This could possibly be due to the extraction of fea- 

ures ‘rdPHOG588’ till ‘gyPHOG460’ from highly discriminatory 

eliac images for the different channels. 

. Discussion 

The satisfactory ability of our AI model to distinguish CD from 

ormal controls and NCD based on the LP compartment, shown in 



O. Faust, S. De Michele, J.E. Koh et al. Computer Methods and Programs in Biomedicine 230 (2023) 107320 

t

e

a

i

t

d

i

m

a

L

f

a

l

i

i

A

t

b

b

6

e

5

v

t

P

b

i

t

s

I  

W

s

s

A

i

n

i

i

t

a

c

f

t

c

o

fl

a

c

C

d

s

v

c

m

l

c

t

m

f

t

f

o

fl

a

c

C

f

t

c

c

o

t

a

i

w

6

i

i

g

f

s

b

T

d

s

b

u

a

l

r

t

o

s

w

a

b

s

m

s

m

o

D

he Results section tables, appears promising. Its ability to differ- 

ntiate classes suggests, in part, differences in the types, density, 

nd distribution of inflammatory or stromal cells in different small 

ntestinal inflammatory diseases. This assumption is supported by 

ranscriptional analyses of small intestinal mucosa in CD and allied 

iseases, which have revealed changes in LP innate and adaptive 

mmune cells and stromal cells, as well as extracellular matrix re- 

odeling enzymes, in comparison to normal mucosa [52–56] . The 

bility to discern between normal, CD, and NCD by analyzing the 

P changes can therefore be a significant step towards creating a 

ully automated small intestinal biopsy analysis system that will 

ssist pathologists whenever the villous architecture cannot be re- 

iably assessed. Additionally, the best classifier performance can be 

nterpreted by determining the most important feature(s) that can 

nfluence the classifier to yield the highest classification results via 

I methodology. 

In summary, several stages of analysis were implemented for 

he completion of our study. The following list details the contri- 

ution of our work to the knowledge of automated CD detection 

y analyzing small intestinal biopsy images: 

• We have analyzed various disease combinations, as expressed 

by seven biopsy image classes using high-magnification digital 

images (40 ×). 
• To the best of our knowledge, this is the first work that discerns 

normal from inflamed duodenal biopsies based on AI analysis of 

the LP compartment. 
• This is one of the earliest studies to establish features that best 

influence the top-performing classifier to yield the highest clas- 

sification ACC. 
• We ran a separate analysis with and without CD images classi- 

fied as Marsh I + II. 
• We developed an accurate ML model using a new method with 

PHOG features. 
• We generated an accurate and robust high-performance model. 
• Three-fold cross-validation was repeated ten times to obtain 

the results. 
• We have used ADASYN to extend and balance the data for each 

fold. This makes the approach even more robust. 

.1. Current quandaries in Celiac Disease diagnosis 

CD diagnosis continues to be a public health issue, and the dis- 

ase remains undiagnosed in the majority of affected persons [57–

9] . Our previous study and others have demonstrated a marked 

ariability in intestinal biopsy interpretation in the diagnosis of CD 

hat results in both the under- and over-diagnosis of CD [60–62] . 

rior studies have established that computational methods could 

e useful for automation. Hence, more accurate CD detection us- 

ng the available resources is vital to improving public health. Sta- 

istical assessment of extracted features has shown that it is pos- 

ible to automate the classification of CD related biopsy images. 

nnovations introduced by Sali et al. [21] , Syed et al. [22] , and

ei et al. [23] suggest that AI algorithms can be useful for deci- 

ion support in CD diagnosis. This has led to quantifying decision 

upport quality through objective measures, such as classification 

CC. Providing medical decision support through automated biopsy 

mage analysis, as developed in our current study, is therefore a 

ew and possibly important avenue to address the problem. Us- 

ng morphometric analysis of small intestinal mucosa, prior stud- 

es highlighted differences in the LP volume and cell type of un- 

reated celiac mucosa compared to normal controls [27] . However, 

utomated, computational analysis of differences in the LP cellular 

ontexture of CD and NCD or normal biopsies has not been per- 

ormed. In the current study, we extend our work by assessing 

he NCD class of biopsy images and determining whether the LP 
9 
ellular/inflammatory milieu can help discern different etiologies 

f intestinal inflammatory disorders and discriminate between in- 

amed and uninflamed mucosa. Incorporating the NCD class in an 

utomated detection system for CD is important to ensure an ac- 

urate diagnosis of CD, as some of the histopathologic features of 

D and NCD may overlap. Our current methodology is capable of 

ifferentiating normal versus CD and NCD biopsy images. 

Future advances in automated detection and classification 

hould carefully consider the findings of prior studies. Future ad- 

ances in automated detection and classification should carefully 

onsider the findings of prior studies. For example, using morpho- 

etric analysis of small intestinal mucosa, prior studies have high- 

ighted differences in the LP volume and cell type of untreated 

eliac mucosa as compared to normal controls [27] . However, au- 

omated, computational analysis of differences in the LP compart- 

ents of CD and NCD or normal biopsies have not yet been per- 

ormed. In the current study, we extended our work by assessing 

he NCD class of biopsy images and determining whether the dif- 

erences in the LP constituents can help discern different etiologies 

f intestinal inflammatory disorders and discriminate between in- 

amed and uninflamed mucosa. Incorporating the NCD class in an 

utomated detection system for CD is important to ensure an ac- 

urate diagnosis of CD, as some of the histopathologic features of 

D and NCD overlap. In addition, our current methodology can dif- 

erentiate normal versus CD and NCD biopsy images. We achieved 

his functionality by extracting novel PHOG features from the LP 

ompartment of the biopsy images. Hence, evaluation of the LP 

ompartment is valuable for further design and implementation 

f a fully automated CD and NCD detection system. Such a sys- 

em could have great potential to accelerate the diagnostic process 

nd improve patient outcomes. Table 11 summarizes selected stud- 

es on the automated detection of CD based on biopsy images, on 

hich our current study builds. 

.2. Limitations and strength of the study 

This study has some limitations. Obtaining biopsy samples is an 

nvasive [63] and resource intensive procedure. It requires special- 

zed medical facilities equipped with endoscopic instrumentation 

uided by human experts. Both human expertise and specialized 

acilities are limited resources where demand outstrips supply, re- 

ulting in elevated cost. We accepted these limiting factors since 

iopsy images are considered the gold standard for CD diagnostics. 

hey contain salient information that is unique as compared with 

ata acquired via other modalities such as endoscopy or video cap- 

ule endoscopy. 

The biopsy images used for our study were selected manually 

ased on the decision of two pathologists. Although the images 

sed for analysis attempted to capture only the LP inflammatory 

nd stromal cells, the inclusion of crypt, and in some cases vil- 

ous epithelium was unavoidable. Hence, the possibility of incorpo- 

ating certain architectural features or epithelial abnormalities by 

he classifier algorithms cannot be entirely excluded. Furthermore, 

nly a limited number of cases from a few NCD entities were as- 

essed in the current study. Therefore, to improve the performance, 

e will require more data from a wider range of patients/diseases 

nd more pathologists to classify and select the images and reduce 

ias. 

As part of the pre-processing step, the biopsy images were re- 

ized for standardization. This may possibly lead to loss of infor- 

ation and bias during feature extraction, hence affecting the clas- 

ification accuracy. Thus, this poses another limitation to our study 

ethod. 

Another data-related limitation comes from the small number 

f biopsy images that were used to train and test the ML model. 

ue to the small data pool, we could not test our model using 



O. Faust, S. De Michele, J.E. Koh et al. Computer Methods and Programs in Biomedicine 230 (2023) 107320 

Table 11 

Summary of selected research work on automated CD detection, based on biopsy image analysis. 

Author, Year No images Method Classes Results 

Ciaccio et al., 2008 [20] 31 Edge detection & linear 

relationships 

Marsh IIIa, IIIb, IIIc Statistical Assessment 

Sali et al., 2019 [21] 162 biopsyimages from 

34 patients 

Stain normalization & 

Deep learning 

Marsh I, IIIa, IIIb, and IIIc ACC between 89.54% and 

90.61% 

Syed et al., 2019 [22] 102 Deep learning ACC of 93.4% 

Wei et al., 2019 [23] 1230 slides from 1048 

patients 

Deep learning Binary ACC between 83.30% and 

92.2% 

Kowsari et al., 2020 [24] 461 from 150 patients Deep learning normal, CD, Enteropathy F1-score = 89.66% 

Koh et al.,2021 [25] 91 biopsy images 77 

CD and 14 normal 

Feature engineering and 

ML 

Binary ACC between 82.92% and 

88.89% 

This work 91 biopsy images from 31 

subjects 

PHOG features SVM DT 

KNN AdaBoost Bagging 

Subspace 

Seven binary problems 

based on seven image sets 

Set 1: 74.41% ACC Set 2: 

76.05% ACC Set 3: 98.53% ACC 

Set 4: 75.88% ACC Set 5: 

76.38% ACC Set 6: 98.23% ACC 

Set 7: 97.06% ACC 
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n independent dataset. Having only 284 images was the reason 

or choosing a feature-based CD detection method. Specifically, in- 

orporating PHOG based feature extraction enabled us to exer- 

ise tight control of the design process. We used feature ranking 

nd classification-based feature selection during the design phase. 

owever, the design process required some subjective decision- 

aking, such as determining which features to extract and what 

L classifier to use. Furthermore, the feature ranking was based 

n a linear methodology that explored the statistical but not the 

ecision support relevance of the extracted features. In general, 

eature engineering is an exercise in data reduction that leads to 

nformation reduction as well. Unfortunately, that information ex- 

raction results from subjective design decisions that can limit the 

seful information content extracted from the available data [64] . 

urthermore, the information contained in the 284 images ana- 

yzed might be insufficient to extract adequate knowledge on how 

o construct a generalized CD detection system. 

Despite these limitations, the study has also novelties and 

trengths. The approach used in our study is beneficial as we 

chieved the highest classification accuracy of 98.5% with the SVM 

1 st order polynomial kernel) for the classification of normal versus 

CD classes. This attests that our proposed technique is exemplary 

n discerning normal from NCD classes. Furthermore, this study is 

ovel as it is the earliest to have discerned between normal, NCD, 

nd CD classes by investigating the lamina propria composition. 

.3. Future work direction 

We plan to improve data quality by sourcing additional biopsy 

mages representing diverse small intestinal inflammatory diseases 

rom other gastroenterology centers and include additional pathol- 

gists to review them. Moreover, the increased data will enable us 

o address subjectivity issues inherent in feature-based AI model- 

ng by using a deep learning approach. A larger data pool would 

lso enable us to further test our model with an independent im- 

ge set, as part of our future work. Additionally, since a deep learn- 

ng algorithm extracts knowledge directly from labeled data with- 

ut the drawback imposed by additional feature engineering, we 

xpect that with more image data, deep learning results will be 

ore transferable as compared to traditional feature engineering 

esults. 
10 
Once standardized, our proposed methodology may be useful 

o assist in reducing inter- and intra-observer interpretations of 

iopsy images. In addition, there are several application scenarios 

or automated detection of CD for which our work can act as a 

pringboard. For example, when expertise is in short supply, such 

 technique can assist in selecting patients for screening. 

. Conclusion 

From a public health perspective, automated CD detection via 

mage analysis technology and AI can enable testing more patients 

ith the same resources. This can lead to a more rapid and early- 

tage CD detection capability. In addition, detecting subtle changes 

n the density and distribution of particular types of inflammatory 

ells in the LP in CD biopsies may improve the detection of CD and 

ssist pathologists in the diagnosis whenever the biopsy orienta- 

ion does not allow reliable assessment of the villous architecture. 

urthermore, through this study, clinicians can gain knowledge on 

he right type of PHOG featuring to be extracted from normal ver- 

us celiac imagery for improved classification accuracy. Finally, the 

esults we obtained in the classification of images of the LP in CD 

s. NCD suggest differences in the types and distribution of inflam- 

atory (or stromal) cells in different small intestinal inflammatory 

iseases, which can be explored by novel spatial transcriptomic 

nd single-cell analytic technologies to identify diagnostic and dis- 

ase severity-related biomarkers. 
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Table A.12 

Range (Mean ± SD) of some clinical PHOG features (p-value < 0.05 and f-value > 6) for 

normal and NCD classes. 

Control NCD 

Feature Mean SD Mean SD p-value t-value 

rdPHOG460 1.42E-04 8.28E-05 5.86E-04 1.47E-04 0 20.9596 

bePHOG460 1.57E-04 9.14E-05 7.28E-04 2.08E-04 0 19.7576 

gyPHOG460 1.48E-04 8.89E-05 5.17E-04 1.50E-04 0 16.9364 

rdPHOG140 6.20E-04 2.46E-04 1.59E-03 3.93E-04 0 16.7133 

bePHOG140 6.80E-04 2.90E-04 1.94E-03 5.99E-04 0 14.9583 

gnPHOG460 1.53E-04 9.31E-05 4.52E-04 1.42E-04 0 14.2104 

gyPHOG140 6.34E-04 2.59E-04 1.47E-03 4.27E-04 0 13.4525 

rdPHOG588 1.61E-04 7.04E-05 6.05E-04 2.50E-04 0 13.1887 

bePHOG461 1.57E-04 9.55E-05 4.08E-04 1.37E-04 0 12.1936 

gnPHOG140 6.40E-04 2.65E-04 1.33E-03 3.87E-04 0 11.9549 

bePHOG588 1.77E-04 8.29E-05 7.93E-04 3.90E-04 0 11.8805 

bePHOG44 2.95E-03 7.86E-04 4.76E-03 9.92E-04 0 11.7403 

gyPHOG588 1.64E-04 7.57E-05 5.67E-04 2.64E-04 0 11.3191 

rdPHOG44 2.68E-03 6.54E-04 4.09E-03 8.10E-04 0 11.1228 

gnPHOG588 1.66E-04 7.80E-05 4.98E-04 2.32E-04 0 10.5158 

rdPHOG453 1.73E-04 9.98E-05 3.48E-04 9.85E-05 0 10.4927 

bePHOG589 1.75E-04 8.40E-05 4.43E-04 1.94E-04 0 9.9399 

bePHOG453 1.72E-04 1.03E-04 3.82E-04 1.38E-04 0 9.9392 

bePHOG141 6.67E-04 2.83E-04 1.24E-03 3.84E-04 0 9.7823 

gyPHOG461 1.63E-04 1.06E-04 3.47E-04 1.18E-04 0 9.6677 

gyPHOG44 2.71E-03 6.94E-04 4.03E-03 8.79E-04 0 9.6302 

rdPHOG461 1.55E-04 9.25E-05 3.19E-04 1.07E-04 0 9.536 

gyPHOG589 1.80E-04 8.50E-05 3.83E-04 1.49E-04 0 9.4625 

rdPHOG589 1.73E-04 7.28E-05 3.59E-04 1.41E-04 0 9.2958 

bePHOG12 1.17E-02 2.59E-03 1.53E-02 2.16E-03 0 9.2431 

gnPHOG461 1.67E-04 1.06E-04 3.28E-04 1.06E-04 0 9.0512 

rdPHOG581 1.99E-04 7.95E-05 4.16E-04 1.74E-04 0 8.9301 

gnPHOG589 1.81E-04 8.77E-05 3.58E-04 1.39E-04 0 8.681 

gnPHOG44 2.71E-03 7.02E-04 3.85E-03 8.33E-04 0 8.6247 

bePHOG581 1.98E-04 9.32E-05 4.80E-04 2.42E-04 0 8.5018 

rdPHOG133 7.68E-04 2.81E-04 1.21E-03 3.33E-04 0 8.3989 

gyPHOG141 6.83E-04 2.83E-04 1.12E-03 3.37E-04 0 8.2884 

rdPHOG141 6.63E-04 2.54E-04 1.08E-03 3.20E-04 0 8.2809 

bePHOG133 7.67E-04 3.10E-04 1.30E-03 4.51E-04 0 7.958 

gyPHOG453 1.70E-04 1.05E-04 2.96E-04 8.69E-05 0 7.9312 

bePHOG45 2.94E-03 7.49E-04 3.91E-03 7.19E-04 0 7.9171 

rdPHOG12 1.08E-02 2.21E-03 1.35E-02 1.92E-03 0 7.8099 

gyPHOG12 1.09E-02 2.33E-03 1.37E-02 2.01E-03 0 7.783 

bePHOG15 2.11E-02 2.90E-03 1.79E-02 2.15E-03 0 7.6825 

bePHOG452 1.40E-04 8.48E-05 2.70E-04 1.10E-04 0 7.6475 

gnPHOG141 6.89E-04 2.88E-04 1.08E-03 3.18E-04 0 7.5892 

bePHOG580 1.59E-04 7.53E-05 3.27E-04 1.58E-04 0 7.5784 

gnPHOG12 1.08E-02 2.27E-03 1.34E-02 1.91E-03 0 7.5211 

gyPHOG581 1.94E-04 8.97E-05 3.59E-04 1.54E-04 0 7.3859 

gnPHOG453 1.75E-04 1.11E-04 2.81E-04 7.51E-05 0 6.9925 

gnPHOG581 1.94E-04 9.30E-05 3.38E-04 1.39E-04 0 6.9453 

gyPHOG45 2.93E-03 7.23E-04 3.77E-03 7.60E-04 0 6.762 

bePHOG13 1.16E-02 2.59E-03 1.40E-02 1.86E-03 0 6.7303 

bePHOG132 6.15E-04 2.45E-04 9.56E-04 3.34E-04 0 6.7099 

bePHOG37 3.39E-03 7.65E-04 4.30E-03 8.55E-04 0 6.6271 

rdPHOG45 2.91E-03 6.54E-04 3.69E-03 7.27E-04 0 6.6124 

gnPHOG45 2.91E-03 7.29E-04 3.70E-03 7.38E-04 0 6.3843 

bePHOG36 2.73E-03 5.60E-04 3.39E-03 6.66E-04 0 6.2586 

gyPHOG133 7.46E-04 2.95E-04 1.07E-03 3.23E-04 0 6.2473 

gyPHOG580 1.66E-04 7.91E-05 2.65E-04 1.05E-04 0 6.1913 

bePHOG336 1.01E-03 3.80E-04 1.40E-03 3.66E-04 0 6.171 

gnPHOG580 1.66E-04 8.24E-05 2.60E-04 9.92E-05 0 6.0232 

gnPHOG13 1.16E-02 2.52E-03 1.38E-02 1.96E-03 0 6.0082 
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