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Abstract

Soil anchors are commonly used as foundation systems for structures requiring uplift resistance such as
transmission towers, or for structures requiring lateral resistance, such as sheet pile walls. To date the
design of these anchors has been largely based on empiricism. This paper applies numerical limit analysis
and displacement finite element analysis to evaluate the stability of inclined strip anchors in undrained
clay. Results are presented in the familiar form of break-out factors based on various anchor geometries.
By obtaining both upper and lower bound limit analysis estimates of the pullout capacity, the true pullout
resistance can be bracketed from above and below. In addition, the displacement finite element solutions
provide an opportunity to validate these findings thus providing a rigorous evaluation of anchor capacity.
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anchor area

anchor width

anchor diameter

Undrained Young’s Modulus

anchor length

anchor embedment depth

depth to top and middle of anchor

anchor inclination factor

anchor inclination angle

the soil unit weight

the soil cohesion

soil friction angle

the anchor break-out factor

anchor break-out factor for weightless soil
break-out factor for inclined anchor in weightless soil
anchor break-out factor for a vertical anchor
anchor embedment ratio

anchor embedment ratio

anchor aspect ratio

the ultimate anchor pullout capacity

the dimensionless anchor shape factor
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1. Introduction and Background

During the last thirty years various researchers have proposed approximate techniques to estimate the
uplift capacity of soil anchors. The majority of past research has been experimentally based and, as a re-
sult, current design practices are largely based on empiricism. In contrast, very few rigorous numerical
analyses have been performed to determine the ultimate pull-out load of anchors.

Most of the results from studies of anchors in purely cohesive soil either consist of simple approximate
solutions or are derived empirically from laboratory model tests. These results can be found in the works
of Adams and Hayes (1967), Meyerhof and Adams (1968), Kupferman (1971), Vesic (1971, 1972),
Meyerhof (1973), Das (1978,1980), Ranjan and Arora (1980), and Das et al. (19852a,1985b,1989). The
uplift capacity of anchors is typically expressed in terms of a break-out factor, which is a function of the
anchor shape, embedment depth, overburden pressure and soil properties.

In contrast to the variety of experimental results mentioned above, very few numerical analyses have been
performed to determine the pullout capacity of anchors in clay, with the most rigorous studies being by
Rowe and Davis (1982) and more recently Merifield et al (2001). In these papers, results were presented
for both horizontal and vertical strip anchors embedded in homogeneous saturated clay. The results of
Rowe and Davis were obtained using an elasto-plastic finite element analysis whereas the results of Meri-
field et al were obtained using the same numerical limit analysis used herein. Other displacement finite
element studies on the behaviour of anchors in clay have been made by Ashbee (1969),Davie and
Sutherland (1977), and Dewaikar (1988), although very limited results were reported.

To date, most anchor studies have been concerned with either the vertical or horizontal uplift problem. In
many instances, anchors are placed at inclined orientations depending on the type of application and load
orientation (e.g. transmission tower foundations). However, the important effect of anchor inclination has
received very little attention by researchers. A limited number of results for the capacity of inclined square
and strip anchors can be found in the works of Meyerhof (1973). The study of Das and Puri (1989) appears
to be the most significant attempt to quantify the capacity of inclined anchors. In their tests, the capacity of
shallow square anchors embedded in compacted clay with an average undrained shear strength of 42.1kPa
was investigated. Pullout tests were conducted on anchors at inclinations ranging between 0°(horizontal)
and 90°(vertical) for embedment ratios (H/B) of up to four. A simple empirical relationship was sug-
gested for predicting the capacity of square anchors at any orientation which compared reasonably well
with the laboratory observations. Das and Puri (1989) also concluded that anchors with aspect ratios (L/B)
of 5 or greater would, for all practical purposes, behave as a strip anchor.

The purpose of this paper is to take full advantage of the ability of recent numerical formulations of the
limit theorems to bracket the actual collapse load of inclined anchors accurately from above and below.
The lower and upper bounds are computed, respectively, using the numerical techniques developed by
Lyamin and Sloan (2002) and Sloan and Kleeman (1995). In addition, the finite element formulation pres-
ented by Abbo (1997) and Abbo and Sloan (2000) has also been used for comparison purposes. This re-
search software, named SNAC (Solid Non-linear Analysis Code), was developed with the aim of reduc-
ing the complexity of elasto-plastic analysis by using advanced solution algorithms with automatic error
control. The resulting formulation greatly enhances the ability of the finite element technique to predict
collapse loads accurately, and avoids many of the locking problems discussed by Toh and Sloan (1980)
and Sloan and Randolph (1982).

2. Problem of Inclined Anchor Capacity

2.1. Problem Definition

The problem geometry to be considered is shown in Figure 1. An inclined anchor will be defined as an
anchor placed at an angle f to the vertical (Figure 1(b)). A horizontal anchor is one where g = 0°
(Figure 1(a)) while a vertical anchor is one where f = 90°(Figure 1(c)). The direction of pullout is per-
pendicular to the anchor face and the depths H', H, and H are, respectively, the depths to the top, middle
and bottom of the anchor from the soil surface. The capacity of anchors inclined at § = 22.5°, 45°, and
67.5° will be investigated.

After Rowe et al. (1982), the analysis of anchor behaviour can be divided into two distinct categories,
namely those of “immediate breakaway” and “no breakaway”. In the immediate breakaway case it is as-
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sumed that the soil/anchor interface cannot sustain tension so that, upon loading, the vertical stress im-
mediately below the anchor reduces to zero and the anchor is no longer in contact with the underlying soil.
This represents the case where there is no adhesion or suction between the soil and anchor. In the no break-
away case the opposite is assumed, with the soil/anchor interface sustaining adequate tension to ensure the
anchor remains in contact with the soil at all times. This models the case where an adhesion or suction
exists between the anchor and the soil. In reality it is likely that the true breakaway state will fall some-
where between the extremities of the “immediate breakaway” and “no breakaway” cases.

The suction force developed between the anchor and soil is likely to be a function of several variables
including the embedment depth, soil permeability, undrained shear strength and loading rate. As such, the
actual magnitude of any adhesion or suction force is highly uncertain and therefore should not be relied
upon in the routine design of anchors. For this reason, the anchor analyses presented in this paper are
performed for the immediate breakaway case only. This will result in conservative estimates of the actual
pullout resistance.

2.2. Anchors in purely cohesive soil

The ultimate anchor pull-out capacity of horizontal and vertical anchors in purely cohesive soil is usually
expressed as a function of the undrained shear strength in the following form (Merifield et al (2001))

qu = % = culN¢ (1)
where for a homogeneous soil profile
_ (4u _ vH,
Nc - (C_u)y¢0 - Nco + Cu (2)
and the term N, is defined as
_ (4u
Nco - (C_“)y=0 (3)

where, ¢, is the undrained soil strength and N, is known as the anchor break-out factor. H, = H for
horizontal anchors (Figure 1(a)) and H, = H — B/2 for vertical anchors (Figure 1(c)).

Implicit in (1) is the assumption that the effects of soil unit weight and cohesion are independent of each
other and may be superimposed. It was shown by Merifield et al (2001) that this assumption generally
provides a good approximation to the behaviour of anchors in purely cohesive undrained clay.

For an inclined anchor in purely cohesive soil the ultimate capacity will be given by (1) where

- YHa
Ne= N5+ % 4)
A new break-out factor N_ 4 is introduced which will have a value somewhere between the break-out fac-
tors N, given in (3) for vertical and horizontal anchors. Only the homogeneous case is considered and
immediate breakaway is assumed.

It should be noted that the break-out factor N, given in (4) does not continue to increase indefinitely, but
reaches a limiting value which marks the transition between shallow and deep anchor behaviour. This
process is explained in greater depth by Merifield ez a/ (2001) and Rowe (1978). The limiting value of the
break-out factor is defined as N .. for a homogeneous soil profile (Merifield ez al (2001)).

3. Results and Discussion

The computed upper and lower bound estimates of the anchor break-out factor N,z (equation (4)) for
homogeneous soils with no soil weight are shown graphically in Figure 2 and Figure 3. The results are for
the case where no suction forces exist between the anchor and soil, which constitutes what is known as the
“immediate breakaway” condition (Rowe 1978). Sufficiently small error bounds were achieved with the
true value of the anchor break-out factor typically being bracketed to within +7%. The greatest variation
between the bounds solutions occurs at small embedment ratios (H,/B < 2) where the error bounds
grow to a maximum of +10%.
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Also shown in Figure 2 and Figure 3 are the SNAC results. These results plot close to the upper bound
solution and are typically within +5%.

The variation of break-out factor with angle of inclination is clearly presented in Figure 4. In this Figure,
the break-out factor is presented as a ratio of the break-out factor for an inclined anchor to that of a vertical
anchor. This ratio is defined as the inclination factor i according to

N, cof

i =— 5)
N, c090
where i is the inclination factor, N, B is the break-out factor for an inclined anchor at an embedment ratio
of H,/B (Figure 2 or Figure 3), and N ¢, is the break-out factor for a vertical anchor at the same embed-
ment ratio H,/B given by

Negoo = Nco(ﬂ=90, H/B=H,/B+0.5)

The value of the break-out factor N o, can, with sufficient accuracy, be approximated by the following
expression (Merifield ef al. (2001))

Nooo = Neo = 2.46 1n(2%) +0.89 Lower Bound 6)

C

The inclination factor can be seen to increase in a non-linear manner with increasing inclination from
B = 0°to B = 90°. This observation is consistent with the laboratory study of Das and Puri (1989).
Figure 4 also suggests that there is very little difference between the capacity of a horizontal anchor
(B = 0°) and anchors inclined at B < 22.5°. The greatest rate of increase in anchor capacity appears to
occur once § = 30°.

The failure mechanisms observed for inclined anchors are illustrated by the upper bound velocity dia-
grams and SNAC displacement plots in Figure 5 to Figure 7. As expected, the vector and displacement
fields obtained from both types of analyses are very similar. A direct comparison is shown for anchors at
H'/B = 1in Figure 5.

The lateral extent of surface deformation increases with increasing embedment depth and inclination
angle. This is consistent with the findings for both the horizontal and vertical anchor cases. As expected,
the actual magnitude of the surface deformations decreases with the embedment ratio and, at H'/B = 10,
these are predicted to be negligible (see the results for H'/B = 6 in Figure 7).

Localised elastic zones were observed near the soil surface at most embedment ratios and inclination
angles. Several of these zones are shown in Figure 8 for anchors at H'/B = 4. In addition, very little
plastic shearing was observed below the bottom edge of anchors inclined at f < 45°. This is highlighted
in Figure 7.

The only laboratory investigation to determine the effect of anchor inclination was by Das and Puri (1989).
Unfortunately, these tests were limited to square anchors and their results cannot be compared directly to
those presented here. Das and Puri (1989) proposed a simple empirical relationship, based on their labora-
tory findings, for estimating the capacity of inclined anchors. This relationship is of the form

_ B’
Neop = Negp=o) + [Nco(ﬂ=90°) - Nco(ﬂ=0°)](%) ()

where N, is obtained at the same value of H, for each inclination angle . The value of N co(B=0) 18 the
break-out factor for a horizontal anchor and can, with sufficient accuracy, be approximated by the follow-
ing expression (Merifield ez al. (2001))

H
Nop=0) = Neo = 2.56 ln<2 E) Lower Bound (8)
Out of curiosity, equation (7) has been used to estimate the break-out factors for strip anchors and a compa-
rison between these estimates and the results from the current study are shown in Figure 9. The limit ana-
lysis and SNAC results (90 points) for inclination angles of 22.5°, 45°, 67.5° and embedment depths of
H,/B of 1 to 10 are shown.
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Figure 9 indicates that although the empirical equation of Das and Puri (1989) was specifically proposed
for inclined square anchors, it also provides a reasonable estimate for the capacity of inclined strip an-
chors. Equation (7) plots almost central to the data and, on average, the estimated values are within + 5%
of the actual values. This is considered an adequate level of accuracy for design purposes. The discre-
pancy between the predicted and actual break-out factors tends to be marginally larger for smaller embed-
ment ratios (H/B < 2) where the predicted value is expected to be slightly conservative. It is therefore
concluded that the empirical relation given by equation (7) may be used to estimate the capacity inclined
strip anchors.

3.1. Effect of overburden pressure

The numerical results discussed above are limited to soil with no unit weight, and therefore the effect of
soil weight (overburden) needs to be investigated. If our assumption of superposition is valid then it
would be expected that the ultimate anchor capacity, as given by equations (1) and (2), would increase
linearly with the dimensionless overburden pressure yH,/c,. The results from further lower bound ana-
lyses that include cohesion and soil weight, shown in Figure 10(a), confirm that this is indeed the case.
This conclusion is in agreement with the observations of Merifield et al (2001) and Rowe (1978).

The error due to superposition can be expressed in the following form

actual
Fy = rocnal 9
s qpredicled ( )

and is shown in Figure 10(b). This figure indicates superposition error are likely to be insignificant.

Figure 10(a) indicates that the ultimate anchor capacity increases linearly with overburden pressure up to a
limiting value. This limiting value reflects the transition of the failure mode from being a non-local one to
a local one. An example of a deep anchor failure is shown by the velocity diagram in Figure 11 for an
anchor where § = 45°. At a given embedment depth the anchor failure mode may be non-localised or
localised, depending on the dimensionless overburden ratio yH,/c,. For shallow anchors exhibiting non-
localised failure, the mode of failure is independent of the overburden pressure.

For deep anchors, the limiting values of the break-out factor N .. were found to be 10.8(lower bound) and
11.96 (upper bound). These values compare well with the analytical solutions of Rowe, who found lower
and upper bounds of 10.28 and 11.42 for the horizontal anchor case. For deep anchors, the form of the
velocity field at collapse is essentially independent of the overburden pressure.

3.2. SUGGESTED PROCEDURE FOR ESTIMATION OF UPLIFT CAPACITY

1. Determine representative values of the material parameters ¢, and y.

2. Knowing the anchor size B and embedment depth H,, calculate the embedment ratio H,/B and over-
burden ratio yH,/c,,.

3. Calculate N g, using equation (6) with H/B = H,/B + 0.5.

4. (i) For an anchor at f = 22.5°, 45° or 67.5°, estimate the the break-out factor N, using Figure 2 or
Figure 3 depending on the anchor orientation.

(ii) For anchors at other orientations, estimate the the anchor inclination factor 7 using Figure 4(a) and the
value of H,/B obtained in (3). Then calculate N, as per equation (5). A value of N, could also be esti-
mated from equation (7) using equations (6) and (8).

5. Adopt N.. = 10.9.

6. (i) Calculate the break-out factor N, using equation (2).

(ii) If N. = N . then the anchor is a deep anchor. The ultimate pull-out capacity is given by equation (1)
where N = N . = 10.9.

(iii) If N < N_. then the anchor is a shallow anchor. The ultimate pull-out capacity is given

by equation (1) where N, is the value obtained in 6(i).

Example of Application

We now illustrate how to use the results presented to determine the ultimate pullout capacity of an inclined
anchor in clay.

Problem: A plate anchor of width 0.2 m is to be embedded at H, = 1.5m at an orientation of 45°. Deter-
mine the ultimate pullout capacity given the clay has a shear strength ¢, = 50 kPa and unit weight
y = 15kN/m?,



The systematic procedures given above will now be used to determine the ultimate anchor capacity.

1. Given ¢, = 50kPa and y = 15 kN/m>.
2. The embedment ratio can be calculated as H,/B = 1.5/0.2 = 7.5
The dimensionless parameter yH,/c, = (15 x 1.5)/50 = 0.45
N0 = 2.46In(2H/B) + 0.89 = 2.461n(2(7.5 + 0.5)) + 0.89 = 7.71
(i) From Figure 2, N, = 7 (lower bound)
. Adopt N_.. = 10.9.
6.(i) From equation (2), N, = 7 + 0.45 = 7.45
(ii) N¢ < N_« and therefore the anchor is “shallow” and using equation (1)
qu = cuN. = 50 x 7.45 = 372.5kPa

oA W

4. Conclusions

A rigorous numerical study into the ultimate capacity of inclined strip anchors has been presented. Con-
sideration has been given to the effect of embedment depth and anchor inclination. The results have been
presented as break-out factors in chart form to facilitate their use in solving practical design problems.

The following conclusions can be drawn from the results presented in this paper:

(1) Using the lower and upper bound limit theorems, small error bounds of less than + 7% were achieved
on the true value of the break-out factor for anchors inclined at 22.5°, 45°, and 67.5° to the vertical
in a weightless soil.

(2) The displacement finite element (SNAC) results compare favourably with the numerical bounds
solutions, and plot close to the upper bound solution and are typically within +5%.

(3) The effect of anchor inclination on the pullout capacity of anchors has been investigated. A simple
empirical equation has been proposed which, on average, provides collapse load estimates within
+ 5% of the actual values.

(4) The ultimate anchor capacity increases linearly with overburden pressure up to a limiting value that
reflects the transition from a non-localised to localised (or “deep”) failure mechanism.
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Figure 11  Upper Bound failure mechanism for a deep inclined anchor, § = 45



