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Abstract: Australia is a regular recipient of devastating bushfires that severely impacts its economy,
landscape, forests, and wild animals. These bushfires must be managed to save a fortune, wildlife,
and vegetation and reduce fatalities and harmful environmental impacts. The current study proposes
a holistic model that uses a mixed-method approach of Geographical Information System (GIS),
remote sensing, and Unmanned Aerial Vehicles (UAV)-based bushfire assessment and mitigation.
The fire products of Visible Infrared Imager Radiometer Suite (VIIRS) and Moderate-resolution
Imaging Spectroradiometer (MODIS) are used for monitoring the burnt areas within the Victorian
Region due to the 2020 bushfires. The results show that the aggregate of 1500 m produces the best
output for estimating the burnt areas. The identified hotspots are in the eastern belt of the state
that progressed north towards New South Wales. The R2 values between 0.91–0.99 indicate the
fitness of methods used in the current study. A healthy z-value index between 0.03 to 2.9 shows
the statistical significance of the hotspots. Additional analysis of the 2019–20 Victorian bushfires
shows a widespread radius of the fires associated with the climate change and Indian Ocean Dipole
(IOD) phenomenon. The UAV paths are optimized using five algorithms: greedy, intra route, inter
route, tabu, and particle swarm optimization (PSO), where PSO search surpassed all the tested
methods in terms of faster run time and lesser costs to manage the bushfires disasters. The average
improvement demonstrated by the PSO algorithm over the greedy method is approximately 2%
and 1.2% as compared with the intra route. Further, the cost reduction is 1.5% compared with the
inter-route scheme and 1.2% compared with the intra route algorithm. The local disaster management
authorities can instantly adopt the proposed system to assess the bushfires disasters and instigate an
immediate response plan.

Keywords: bushfires; disaster management; unmanned aerial vehicles (UAVs); geographical infor-
mation system (GIS); remote sensing; Victoria Australia

1. Introduction and Background

Bushfires are unplanned fire events or disasters that occur in forests, heavy vegetated,
and wildland regions. These have been a constant disturbance source for about 400 million
years in various parts of the world. Bushfires are a frequent, recurrent, and devastating en-
vironmental hazard that can result in adverse environmental, social, and economic impacts,
affecting all sustainability pillars [1–3]. In the era of increased demand for sustainability,
savings of natural resources, and increased reliance on digital technologies for disaster
management, it is imperative to develop technology-based solutions for handling bush-
fires [4–6]. Bushfires are attributed to several factors ranging from climatological causes to
anthropogenic causes. Bushfires are not entirely undesired; sometimes, they are needed
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and planned events and play an important role in a region’s ecological landscaping. How-
ever, unplanned and uncontrolled bushfires cause devastation, wiping out forests, wild
animals and impacting agricultural land. Thus, it is a matter of controlled vs uncontrolled
bushfires that shape their outlook. Raucous fire events have adverse and severe impacts
on the environment, economy, and society. Whether controlled or uncontrolled, bushfires
significantly affect the physical environment, such as land use, land cover, biodiversity,
forest ecosystem, and global warming. Therefore, monitoring the bushfires is essential
to understand the impact of these events in line with the goals of smart and sustainable
societies and countries.

Contrary to other natural hazards like earthquakes and volcanic eruptions, the bushfire
phenomenon is considered an avoidable risk [7–10]. Accordingly, significant resources
are expended on bushfire suppression activities in developed countries such as Australia.
However, fire suppression strategies may increase the risk of more extreme and extensive
fire incidents within the fire-susceptible regions [11]. Table 1 provides a list of global
bushfire events since 2000. The data is compiled by the authors of the current study from
the EMDAT 2019 report [12]. Since 2000, the average number of deaths due to reported
bushfire events is around 138 per fire. Further, the affectees and total damages average out
$77,242 and $3,710,000, respectively.

Table 1. Global wildfire events and their impact (from 2000–2020).

Sr. # Year Continent No. Deaths Total Affected Total Damages (USD)

1. 2019 Oceania 32 8883 2,000,000
2. 2018 Americas 88 250,000 16,500,000
3. 2017 Americas 30 9185 13,000,000
4. 2017 Europe 64 704 232,000
5. 2017 Africa 9 5500 420,000
5. 2016 Americas 191 6574 1,200,000
6. 2015 Asia 19 409,664 1,000,000
7. 2013 Oceania 990 2759 268,000
8. 2007 Europe 65 5392 1,750,000
9. 2003 Europe 14 150,000 1,730,000

10. 2000 Americas 14 1000 1,000,000
Average 138 77,242 3,710,000

Australia is a developed country and enriched with biodiversity and natural ecosys-
tems. However, it is also prone to various environmental hazards such as bushfires
due to the diverse landscape. It is considered the fourth most devastating natural haz-
ard [13]. Bushfires are of critical concern in Australia since its southern coastal region has
a Mediterranean-type climate characterized by hot, dry summers and cold, wet winters,
increasing the chances for bushfire events. These bushfires threaten human life and result
in significant economic loss, thus impacting Australia’s sustainable development dreams.
It has been reported that bushfires are responsible for 20% of property losses, killing
1.25 billion animals and burning over a billion trees in Australia [14,15]. The fires have
damaged 10 million hectares of land, equivalent to 21 million acres across the six Australian
states [16]. It has been predicted that future bushfires may become fatal and severe in
Australia. Of the concerned areas, the southeastern parts of the continent are at greater risk.
These are forecasted to be at “very high” and “extreme” dangers of bushfires [17]. A large
area of significant positive pattern for bushfires includes southeastern South Australia (SA),
western New South Wales (NSW), Victoria (VIC), and northern Tasmania (TAS). The forest
fire danger index (FFDI) trend is significantly increased along the mainland’s southern
regions, specifically in VIC, NSW, and SA in 2020. The area is densely populated with
reserved areas of national parks, making it a good target for bushfires.
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1.1. Victorian Bushfires

The state of VIC is susceptible to bushfire hazards traditionally. VIC is particularly
prone to drought conditions that aggravate the issue of bushfires in this state. For instance,
the Black Saturday fires of 2009 started due to extreme drought conditions in the earlier
months [18]. The most recent and by far the deadliest fire events recorded in VIC are the
Black Summer Fires of 2019–2020. These bushfires have resulted in 34 fatalities, affected
over 1.5 million hectares of Australian land, killed millions of wild animals, and destroyed
9352 buildings, including 2800 homes. VIC is of critical importance in terms of environ-
mental deterioration due to recurrent bushfires in southeastern Australia. The region has
experienced some of the most severe and catastrophic bushfire events in Australian history,
such as Black Summer, Red Hill, Black Saturday, and others. Table 2 illustrates some of
the most extensive and devastating bushfires in this region in the last century. The recent
fire seasons are alarming as each latest fire season is becoming progressively dangerous
with more ecological and economic disturbance. The Black Saturday fire season of 2009
affected Kinglake-Marysville, Beechworth, Bendigo, Redesdale, and Gippsland. It was
one of Australia’s all-time deadliest bushfire disasters. The fires started during the severe
bushfire weather conditions and resulted in the country’s highest-ever human life losses
due to fires, with 173 deaths. About 400 individual fire incidents were reported on Saturday,
7 February 2009, referred to as Black Saturday. Afterward, the Australian bushfire season of
2010–11 was observed along eastern Australia, attributed to a strong climatic phenomenon
of the La Nina effect. It resulted in severe floods, particularly in Queensland and VIC.
Because of these drastic weather conditions, most of the fire events occurred in Western and
South Australia, where fire incidents occurred in Gippsland and eastern VIC. Thirty-four
lives were lost to these fire events, and more than 90 buildings were damaged.

Table 2. Some of the devastating fire events of Victorian history (Source: Victoria government website).

Year Bushfire Events Regions Affected Damaged Area
(Million ha) Fatalities Buildings

Destroyed

2020 Black Summer Victoria/NSW
Mega Blaze

Eastern Victoria and NSW
border regions 1.5+ 34 9352+

2011 Red Hill Gippsland/ Eastern Victoria 1.5+ 34 90+

2009 Black Saturday Kinglake-Marysville, Beechworth,
Bendigo, Redesdale, Gippsland 0.45 173 2029

2006–2007 The Great Divide Fires Grampians National Park 1.2–1.3 <25 <1000
2003 Bushfire Season 2002–03 Northeastern Victoria 1.2 <25 <1000
1983 Ash Wednesday Southeastern Victoria 0.21 47 2000
1969 Australian Bushfire Season Northeastern Victoria 1.0 23 3
1967 Black Tuesday Tasmania 0.26 71 1293
1965 Australian Bushfire Season Gippsland 0.3 <25 <1000
1942 Australian Bushfire Season Western Victoria 1.0 20 650
1939 Black Friday Victoria 2.0 71 1300
1926 Black Sunday South East Victoria 0.2 60 1000

VIC is selected as the case study due to its frequently occurring bushfire events. It
has a land cover of 237,659 km2 and is the second most densely populated Australian
state with an average population of 26.56 per km2. Of the total land cover, the land
encompasses 227,436 km2, whereas about 10,213 km2 is covered by water. VIC comprises
diverse geographical features and climates ranging from temperate coastal and central
regions to the northeastern VIC Alps and semi-arid northwestern region. The upper
Wimmera and Mallee are the warmest regions with hot winds originating from adjacent
semi-deserts. The average temperature often exceeds 32 ◦C in the summer and 15 ◦C
in winter. The northeastern VIC Alps are the coldest VIC region, where the average
temperatures are below 9 ◦C during winter and below 0 ◦C in the mountaineous ranges [19].
The majority of VIC population is in the central south, surrounded by Port Phillip Bay and
the metropolitan region of Greater Melbourne. As per the VIC Department of Sustainability
and Environment (DSE), in the past 20 years, most Australian fires are majorly attributed
to lightning or deliberately caused by humans. Figure 1 reports that about 24% of the fires
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are caused by lightning, followed by anthropogenic causes, including deliberate (23%)
and campfires (17%), respectively. In terms of the burnt areas, lightning-based fires have a
45% contribution, followed by misuse of public utilities (14%), deliberate fires (13%), and
agricultural (7%) reasons.
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Figure 1. Bushfires in the past two decades (a) Casuse frequency of bushfire events and (b) Contribution of sources of
bushfires to the burnt areas.

The 2019–2020 Victorian Bushfires Impacts

The initial causes of the 2020 VIC bushfires are reported to be lightning strikes, ac-
cidents, and alleged arson [20–22]. However, the propagation of the 2020 bushfire is
more intense and deep-rooted. It includes global warming, record-breaking tempera-
tures, drought conditions, and an Indian Ocean Dipole (IOD) [23,24]. Of the total national
death toll of 34, five were from the VIC bushfire. Regarding the property damage, almost
300 houses were damaged [25]. In terms of the diversity loss, it has been reported that
170 species are impacted: comprising 19 mammalian species, 13 amphibian species, ten
reptilian species, nine bird species, 29 aquatic species, and 38 plant species [26].

VIC has been known as one of the most bushfire-prone areas in the world, particularly
in Australia. The reasons for this are attributed to a relatively simple landscape climate
and vegetation, settlement, weather, and population. VIC has the undesirable record of
being the deadliest bushfire-affected state in Australia. As a result, more people have died
in VIC bushfires than in any other state or territory in Australia. VIC has recorded more
fatalities than any jurisdiction from 1900 till 2008. These were nearly three times more than
NSW, the next highest. Since then, VIC has sustained a further 183 bushfire deaths adding
more toll to the state’s burden. These include 173 deaths in 2009 and nine between 2010
and 2020, bringing 479 deaths or 61 percent of the national fatality toll since 1900.

According to the United States Environmental Protection Agency’s National Ambient
Air Quality Standard, the worst air pollution was recorded on 13 and 14 January 2020 in
VIC. The air quality scores for these days have been 212 and 255, respectively, representing
‘very unhealthy’ on the scale of air quality index (AQI) [27]. Although the bushfire’s cost
estimates are not confirmed yet by the VIC and federal governments, climate criminologist
Paul Read and economist Richard Dennis regarded it to be Australia’s costliest natural
disaster to date. The Black Summer Fires are alarming due to their direct impacts; however,
the indirect effects also contributed to many problems, such as the too high temperatures
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putting human and wild lives at risk. The associated fire and smoke created severe lo-
cal weather and posed dangers to life, raising concerns for the residents and emergency
response authorities [23]. Once the event starts, all adjacent areas are at risk of experi-
encing its aftermath. One thousand three hundred five patients presented to emergency
departments with asthma due to the 2020 VIC bushfires [28].

Owing to these damages and the ever-hovering danger of another bushfire in the
VIC region, a bushfire mitigation strategy or instant emergency response mechanism
must be devised to assess and manage these fires. Various tools such as GIS and remote
sensing are proposed to assess bushfire’s impacts and associated disaster management
response [29,30]. Notably, in the post-disaster period, the disaster relief agencies’ focus is
on locating and reaching the stranded people to rescue them [4,31,32]. However, in many
cases, the number of sites to be visited for this purpose is very high. Due to limited time
in emergency responses and limited resources, it is practically impossible to reach all the
sites in an affected region immediately. Such a situation can lead to an additional number
of fatalities if a well-defined mechanism is not followed. The expenses related to vehicles
and transportation to the disastrous locations make up a considerable part of a disaster
relief organization’s overall expenditures. A significant portion of these expenses consists
of costs of services like locating, transporting the affectees and managing the fires. The
limited vehicles, human resources, instant emergency response, and other limiting factors
intensify the bushfire’s damages. Costs reduction for emergency responses, determining a
proper route for vehicles, and locating the target sites are the key decisions for instigating
an adequate emergency response plan [30,32,33]. Accordingly, these factors should be
considered while planning an appropriate plan of response.

Further, many roads, bridges, and paths for vehicles are damaged, blocked, or de-
stroyed due to bushfires or other associated emergencies that make road-based response
planning very difficult in the post-disaster scenario. Also, the bushfires damages may
destroy the telecommunication system resulting in loss of internet services, leading to the
unavailability of technologies like GPS and GIS. This calls for a need to devise a system
that would automatically find the shortest possible route to the affected area to address
each bushfire site. A key advantage of this system is its non-dependency on the telecom-
munication infrastructure, where the swarm can create their own communication network
and share real-time information to the communication vans or stations situated at a safe
distance to instigate proper and immediate response plans. Accordingly, a UAV-based
bushfire assessment and mitigation system are devised in the VIC region in the current
study. Therefore, this study proposes a UAV-based bush fire assessment and mitigation
system using GIS-based tools and remote sensing. Initially, the mapping of the bushfire
areas and hotspot detection is carried out using the GIS and remote sensing. After gather-
ing the preliminary data, the UAV swarm is assigned to the affected area to expedite the
disaster response plan through damage assessment, locating the best optimized routes to
and from the depot, and generating a map of the region. The study also aims to optimize
UAV allocation by reducing the distance between the source and target area, thus reducing
travel time.

Overall, data is collected for mapping, scanning, and hotspot detection using Getis-Ord
General G Analysis for the VIC region in the current study. Based on this analysis, the
extent and impact of the bushfire are evaluated. A mathematical model is developed using
particle swarm optimization (PSO) for the UAV maximum area coverage, the shortest path
to the disaster location, and minimize the time to perform the assigned task. Different
algorithms such as tabu, greedy, intra-route, and inter-route are evaluated to find the
shortest route to the disaster location. The performance of these algorithms is compared to
the PSO, and the best solution is used for UAV path planning.
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1.2. Causes of Bushfires

A combination of edaphic, human, and climatic factors contributes to the bushfires.
High terrain steepness coupled with elevated summer temperature, increased wind velocity,
and fuel availability on the forest floors or bushlands usually result in significant damage
and widespread fires. It has been reported that anthropogenic causes greatly enhance the
fire intensity, contributing almost 75% to the propagation of the bushfire [34]. However,
the natural causes of bushfires are higher than human-initiated fires. Many wildfires are
intentionally lit for land conversion, harvesting, slash and burn agriculture, social and
economic conflicts, land use, and property rights. These include anthropogenic activities,
climate change, landscape, and combustible fuel. The bushfires are mostly a direct or
indirect consequence of anthropogenic activities [35]. The urban settlements or agricultural
production sites are usually adjacent to the forests. The cultivation burning creates a
budding site for the onset of bushfires, as the burning is not regulated periodically. The
common anthropogenic causes of bushfires include burning agricultural lands, hunting
wildlife, or harvesting honey through smoke [36]. Climate changes are also linked to
bushfire events. The fire events are closely linked with the weather conditions, both
prevalent and antecedent. The fire risk index (FRI) is strongly influenced by air temperature,
wind speed, and relative humidity [37,38]. The next cause of bushfires is the landscape,
including the slope, aspect, elevation, and curvature. This complexity of terrain mainly
impacts the changes in fuel and atmospheric circumstances. Slope angles of 15–20 ◦C
are favorable conditions for propagating fire hazards. The surface elevation influences
fire response and behavior [39]. The other reported cause of bushfires is the presence
of combustible fuel. It is an essential component of the fire triangle. This factor affects
the flammability, size, and intensity of the fire. Fuel refers both to the fuel state and fuel
type. The fuel state describes the fuel’s moisture content or the plant’s status: decayed or
alive. The fuel type comprises the physical features of the fuel and its composition. The
fuel’s physical component influences fuel burns, including frequency, size, alignment, and
material arrangement [40]. The most critical impact of moisture on fire is the influence
of steam from burning fuel, which minimizes the amount of available oxygen and its
combustion.

1.3. Bushfire Management with Advanced Tools

Effective bushfire risk management and minimizing its damage are essential for
long-term bushfire management planning and strategy development to achieve a smart
and sustainable planet and societies [41]. Various technologies have been used and their
applications investigated in such endeavors [42–45]. Subsequently, identifying bushfire
areas in the region is the foremost priority for environmental protection agencies. Once the
areas prone to bushfires are identified, a detailed analysis of potential hazards is prepared
using appropriate tools, knowledge, and planning. Remote sensing and GIS emerge as
two key candidates for such management [36,41]. Accordingly, bushfire hazard models
for respective regions considering the topography or environmental factors influencing
the fires have been prepared. The spread of fires is broadly attributed to fuel moisture,
fuel type, weather conditions, and topography. Accordingly, all the bushfire risk zones
are identified. These bushfire risk zones are the areas where a fire is expected to occur
and from where it can easily spread to other regions. An accurate evaluation of forest fire
issues and pertinent decision systems are only reliable when the fire risk zone maps are
available. Thus, integrated dynamic mathematical models coupled with remote sensing
and geographical information system techniques are introduced to delineate the risk zones
based on the fire risk mappings [36].
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Satellite data is a widely used primary source of information for mapping active fire
areas at regional to global scales [46,47]. The Moderate-resolution Imaging Spectroradiome-
ter (MODIS) from NASA Terra and Aqua satellites is the first-satellite borne sensor with the
ability to monitor fire radiative energy (FRE) release rate, or power (FRP), quantitatively
on a worldwide scale [47]. Planned satellite systems like polar-orbiting Visible Infrared
Imager Radiometer Suite (VIIRS) and the geostationary GOES-R Advanced Baseline Im-
ager (ABI) provide fine spatial and temporal resolution of fire incidents. Their monitoring
effectiveness is ensured through airborne sensors like the calibrated Autonomous Modular
Sensor (AMS) [48]. Two types of satellite data are used to detect and analyze fire events:
active fire and burnt area products [49]. Burnt area products are based on the variations
in the reflectance, or a combination of reflectance and active fires [50]. At the same time,
active fire products are dependent on the detection of thermal anomalies. The global burnt
area products are used to input the Global Fire Emissions Database (GFED), with the
integration of empirical relationships to determine the role of small fires. Such fires are
not monitored through course-resolution burned area products from MODIS active fires
data [51]. A key concern for the functional products of global burnt areas is that the results
are available within a month of the fire event instead of immediate availability [50]. This
delay in the results challenges its applicability for near-real-time fire perimeter monitoring
that is required for instant fire management and early evaluations regarding the location
and extent of the fires. To address this issue, space-borne sensors are used for active fire
monitoring. Contrary to the conventional products of burnt area data, monitoring of active
fires through space-borne sensors ensures that data is instantly available, with a regular
latency. Accordingly, modern fire management authorities use near-real-time active fires to
estimate the burnt area [46].

Randerson et al. [51] and Van Hoang et al. [36] have correlated the frequency of the
active fire detections with the monthly observed burnt area from medium-coarse resolution
sensors on the global to local scales. The local scale monitoring is typically validated
through satellite burnt area imagery of the field measured samples. However, the cloud
variability, topography, fuel, weather, and fire behavior, coupled with miscellaneous spatial
and temporal resolution issues of the imagery used for calibration, can present challenges to
this method [49]. Oliva and Schroeder [52] and Vadrevu et al. [53] suggested that instead of
incorporating the pixels of active fires, aggregation of the active fire could yield appropriate
fire perimeter delineation at regional levels. Other studies have tested the interpolations of
active fire clusters and successfully visualized these large fire perimeters, and calibrated
the fire propagation models [52,54]. Various techniques have been used for the aggregation
method, ranging from buffering of fire zones [52], Kriging analysis [55], weighted mean
and distance methods, or the Inverse Distance Weighted (IDW) method [56], to convex hull
algorithms applied to the assessing the active fire clusters [57]. Previous studies regarding
active fire monitoring are carried out using coarse-resolution sensors, usually of 1 km
resolution like MODIS or Advanced Very-High-Resolution Radiometer (AVHRR) [55].
While for the first order burnt areas, the probability is achievable through these sensors,
it is highly recommended to examine the possibility of fire perimeter mapping using
high spatial and temporal resolutions [52]. However, monitoring using satellite data is a
trade-off between spatial and temporal resolutions. Thus, high temporal resolution data is
preferred when assessing a large region. Some of the more recent available sensors like
VIIRS on the Suomi National Polar-Orbiting Partnership (S-NPP) satellite provide great
potential for detecting small fires that may have broader impacts. This sensor has a high
spatial and temporal resolution of 375 m. These improved features of the VIIRS active fire
products have reopened the possibility of directly mapping burnt areas using the active
fire products [52,57]. Despite the great applicability of VIIRS active fire products, there is
still a lack of studies to test bushfire monitoring. Further, an innovation in the estimation of
forest fires perimeters is the introduction of the aggregated distance of MODIS and VIIRS
active fires to assess the impact on the burnt area’s estimation. These have been utilized in
the current study for VIC bushfire mapping and monitoring.



Fire 2021, 4, 40 8 of 34

Coordination and communication are vital for any disaster response plan to execute
all disaster management phases, i.e., preparedness, response, recovery, and reconstruction.
Monitoring the impacts of the natural disaster are performed by space and airborne sensors
equipped with optical instruments. UAVs have gained popularity for possible usage in
disaster relief operations recently [58]. It provides opportunities for disaster monitoring
and mitigation. However, several challenges limit the application of UAVs, such as extreme
weather events and objects that hinder its path and hidden routes due to smokes and
lower visibility due to bushfires. Therefore, the UAV network must be enhanced, and
path planning carried out to ensure that the UAVs can locate the disaster locations and
carry out the assigned mission in the least amount of time. UAVs can bring substantial
advances in disaster management [59]. For example, UAVs can be equipped with various
types of sensors for monitoring various aspects of the affected area. UAVs can fly under
the clouds based on their lower altitude, which usually hinders satellite-based images;
thus, UAVs obtain a higher quality of images [60]. They can be easily deployed on various
sites and locations where human access is limited, restricted, or dangerous. UAVs assist
exploration teams in finding paths to reach the stranded people or victims and finding
their way back to a secure place in case of bushfires. UAVs help generate instant maps
of the areas, as existing maps may not be useful due to changes in the regions’ landscape
because of bushfires. These maps are very useful in speeding up the relief effort. UAVs
with 3D cameras can fly over the area to capture high-resolution images and autonomously
generate high-resolution maps.

The post-disaster response, relief, and recovery processes have been investigated in
recent research studies related to operations research and disaster management [61–64].
The associated problems involve distributing aid among the affected people, resource
allocations, and the UAVs routing to instigate a swift disaster response. Resource allocation
and vehicle routing have been of significant interest to researchers when dealing with
such a problem. Rodriguez-Oreggia et al. [64] presented a model based on transporting
various relief goods to disaster victims. The properties of various routing problems for
humanitarian relief and rehabilitation have also been reviewed [62]. Similarly, the logistic
methods to plan the relief of the people affected by a disaster have also been examined by
Özdamar and Ertem [63]. Anaya-Arenas et al. [61] suggested providing an appropriate
response to a disaster by meeting the victims’ needs through proper need assessment.
The methods to be followed to evaluate the needs depend on the nature and severity of a
disaster and how this event evolves with time [64]. The needs assessment process begins
rapidly as soon as a disaster occurs and is finished within a few days. This need assessment
is not carried out to do a comprehensive survey about the requirements of victims. Instead,
it is done to understand how a disaster impacts society, determine what difference has
been made to the people’s living conditions, and identify the scope and magnitude of the
response [63]. The assessment teams authorized with the need assessment task are assigned
sub-areas in a site affected by a disaster to conduct a rapid assessment of relief needs in
the area. These teams visit all the specified locations periodically to assess the needs
during the disaster relief phase. This detailed analysis is conducted to learn about people’s
conditions and know whether adequate aid has reached the victims [64]. A successful
disaster response strategy is composed of both rapid and detailed needs assessment and
response planning. Accordingly, advanced tools such as UAVs can be used for addressing
these issues swiftly.

There is a lack of investigation related to the applications of the techniques mentioned
above and tools at global and regional scales. Accordingly, this study is an original and
novel effort at mapping the VIC bushfire hotspots. It emphasizes the identification of bush
fire hotspots through GIS and remote sensing. It suggests mitigation measures to limit
the hazards and adverse consequences of the fires using a UAV swarm. The purpose of
this study is to provide an early fire warning system to the local communities and the
relevant authorities, informing them of the approaching risk of bushfires and a mitigation
mechanism based on UAV swarm to address bushfires disasters as soon as they arise. Prior
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information and early warning system are proposed to take necessary measures before the
hazard occurs. By incorporating the potential hazard response measures, the early warning
system could be highly beneficial in the decision-making during the post-bushfires disaster
management phase. It will reduce the potentially devastating impacts on the economy,
environment, and other pillars of sustainability. Similarly, the UAV swarms can assist with
rapid response to bushfire disasters. A case study of the VIC region in Australia is used to
visualize the proposed UAV swarm model.

The rest of the paper is organized as follows. Section 2 discusses the method adopted in
this study, explains the study’s flow, tools, and algorithms used with pertinent assumptions,
and presents UAV swarms concepts. Section 3 offers and discusses the results of the study.
Finally, Section 4 concludes the study where the study’s key takeaways are given, its
limitation stated, and future directions discussed.

2. Materials and Methods

Figure 2 presents the methodology adopted in the current study. It shows the work-
flow, comprising mapping the burned area using the satellite active fire products, monitor-
ing the bushfire hotspots, and the spatial correlation of these fire sites. The bushfire data
collection is carried out by mapping, clustering, and hotspot detection using the ArcGIS
tool. The area is mapped based on the spatial point at varying distances to access the dam-
age caused. The clustering and hotspot detection is conducted using Getis-Ord General G
analysis to estimate the clustering pattern and bushfire impact on the affected region. The
effect on the community, infrastructure, and surrounding environment is also taken into
consideration. After gathering the preliminary information, the UAVs are assigned to the
disaster location. For this purpose, PSO is used to maximize the area coverage, minimize
the distance to the target, and reduce the number of UAVs allocated to enhance disaster
response plans. Establishing a UAV path planning method is essential for finding an opti-
mal path between source and target to reduce the time, which is crucial when dealing with
emergencies. In this study, five different algorithms, i.e., greedy, inter-route, intra-route,
tabu, and PSO, are used to find the optimal route. Obtained results are compared with PSO
to finalize the shortest and safest route to the location.
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2.1. Data Collection and Sources

The administrative boundary for the State of VIC is acquired from the Diva-GIS
website. The study period is from 1 December 2019 to 31 January 2020. These months
are selected to capture the impacts of the devastating fires experienced by the case study
area at this time. The study utilizes a collection of six MODIS active fire (MOD14A2),
VIIRS, and six fire products from the Fire Information for Resources Management System
(FIRMS). Burnt area product (MCD64A1) is used as a mask to map the case study bushfires.
The details of the datasets are summarized in Table 3. A total of 122,658 fire events have
been identified and used in the current study for mapping the fire zones. This consists of
17,179 fire events identified with the MODIS fire product and 105,479 events identified
through the VIIRS sensor over the 2019–2020 fire season.

Table 3. Active fire dataset, its characteristics, and date and source of acquisition.

S# Active Fire
Data

Resolution
(m) Sensor Date

Acquired Source

1 MODIS C6 500 Combined
(Terra/Aqua)

26 September
2020

FIRMs website
https://firms.

modaps.eosdis.nasa.
gov/download/

create.php (accessed
on 3 Januray 2021)

2 VIIRS-NPP 370 VIIRS 26 September
2020

3 VIRRS
NOAA-20 370 VIIRS 26 September

2020

2.1.1. Burnt Area Mapping

The interpolated perimeters from the monthly accumulated fire points are generated
using a convex hull aggregation with the ‘aggregate points’ tool in ArcGIS. The convex
hull algorithm assigns an area including the clusters of points (minimum 3) at user-defined
aggregation distance. Four aggregation distances, 750, 1000, 1125, and 1500 m, are tested
for the current study’s fire delineation. These distances are chosen depending on the
active fire spatial resolution from VIIRS and MODIS, i.e., 375 m and 1000 m, respectively.
The minimum aggregation distance is two VIIRS pixels that are responsible for possible
geolocation. The validation of the fire samples is performed using visual interpretation
from Google Earth imagery.

2.1.2. Spatial Autocorrelation

Spatial autocorrelation is based on Tobler’s first law of geography: everything is
related to everything else, but near things are more connected than distant things. Thus,
spatial correlation is the correlation of any single event with itself through space. The
spatial autocorrelation (Global Moran’s I) tool is run to identify the patterns and trends
in the bushfire events, i.e., whether these disaster events show a random, dispersed, or
clustered pattern. The tool compares the mean of the target feature and the mean for all
features to each neighbor’s mean and the mean of total features. The Moran’s I statistic for
spatial autocorrelation is calculated using Equations (1)–(5).

I =
n ∑n

i=1 ·∑n
j=1 wi, jzizj

S0 ∑n
i=1 z2

i
(1)

where zi is the deviation of an attribute for feature I from its mean (xi − x), wi,j is the spatial
weight between features i and j, n is equal to the total number of features, and S0 is the
aggregate of all the spatial wights.

S0 =
n

∑
i=1

n

∑
j=1

wi,j (2)

https://firms.modaps.eosdis.nasa.gov/download/create.php
https://firms.modaps.eosdis.nasa.gov/download/create.php
https://firms.modaps.eosdis.nasa.gov/download/create.php
https://firms.modaps.eosdis.nasa.gov/download/create.php
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The zi-score for the statistic is calculated as:

zI =
I − E(I)√

V(I)
(3)

E (I) = −1/(n − 1) (4)

V (I) = E [I2] − (E [I])2 (5)

where E (I) is the expected value, n is the number of samples, and V (I) is the variance.

2.1.3. Monitoring of Hotspots Using Getis-Ord Gi* Statistics

After assessing the spatial correlation, the hotspot analysis based on Getis-Ord local Gi*
spatial statistics is performed to see if the fire pixels are statistically significant. Before the
incremental spatial autocorrelation, the tool is operated, beginning distance and distance
increment are required to be set. Calculate Distance Band from the Neighbor Count tool is
used to monitor these parameters. The tool gives the minimum, average, and maximum
distance at which each point has at least one neighbor. The resultant maximum distance
is used as the beginning distance, whereas the average distance achieved from the tool is
used as the distance increment. Later, the incremental spatial autocorrelation tool is used
to measure data grouping in space at an increasing distance. The tool gives an output in
the form of a graph of increasing distances and their corresponding z-score. The clustering
distance is later used in the Getis-Ord Gi* analysis as a distance band or radius. The
Getis-Ord local statistic is calculated using Equations (6)–(8).

Gi∗ =
∑n

j=1 wij·xj− x ∑n
j=1 wij

S
2

√ [
n ∑n

j=1 wi2·j−∑n
j=1 wij]2

]
n−1

(6)

x =
∑n

j=1 xj

n
(7)

S = 2

√√√√n
n

∑
j=1

xj2 − (x)2 (8)

where xj is the attribute value for feature j, wi,j is the spatial weight between the feature i
and j, and n is the number of features. x is the mean, and S is the standard deviation of
all measurements. The G* is a zone, after which no more calculations are required. The
Gi* statistic returned for the features in the fire datasets is a z-score. For the z-scores to be
statistically significant, the higher the z-score value, the more intense the cluster will be,
thus depicting a hot spot. Consequently, the cluster will have low values for statistically
strong negative values, identifying it as a cold spot. Therefore, the spots can be classified
into hotspots or cold spots for assessing the fires.

2.2. Bushfire Management Using UAV

Figures 3 and 4 illustrate bushfire detection using UAVs. Figure 3 provides a holistic
conceptual setup for detecting fires in the VIC region using UAVs and their control vans
or control centers. Accordingly, multiple vans and UAV swarms can be used to cover the
entire region. The ignition of bushfires is detected by satellite and field-based sensors. The
relevant disaster management control unit is alerted to take necessary remediation action,
as shown in Figure 4.
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Depending on the area under bushfire, multiple control unit vehicles are sent to the
nearest safe place to the disaster location as per Figure 4. This reduces the distance and
time that UAVs must travel, thus saving their battery power. It must be kept in mind
that these UAVs have limited battery times when planning disaster responses. Most
commercially available UAVs have an operation time of 45 min to 2 h. The central control
unit must appropriately allocate the task to the UAV, ensuring that maximum coverage can
be provided to the impacted area. Any mismanagement of the UAVs by the operator may
result in UAV attrition. The response manager finds the shortest distance by applying a
UAV routing algorithm to carry out the mission. The UAVs communicate with the central
unit and with neighboring UAVs to complete the task in minimum time. The cameras
and sensors are attached to the UAVs to capture the image and provide real-time data
to the control unit. The gathered information is disseminated to the fire department to
conduct relief operations to save people’s lives, animals, reduce property damage, and
further spread wildfire.

UAV swarm systems are assigned to different regions affected by bushfires during
post-disaster relief operations and can be used for disaster impact analysis, as shown in
Figure 5. The monitoring of UAVs is carried out through the control center remotely. UAV
communicates with each other based on the designed algorithm and communication from
the control center and responds to changing conditions. Each UAV adopts the specific
path assigned for maximum area coverage and captures the disaster region’s images.
UAV detects and stores individual knowledge and returns it to the control unit or depot,
where the knowledge is combined from all the UAVs. This is used to analyze the damage,
highlight optimized UAV routes to and from the depot, and map burnt area. The initial
assessment by the UAV swarm will give the direction for the disaster response planning.
The images will help rescue stranded people find the safest and shortest routes to access
the areas for providing relief services. In addition, the survivors can be detected via image
analysis, where the rescue team can establish contact with the survivors and perform quick
rescue operations. The UAVs have been employed in the United States to provide relief
services through enhanced imagery over fire areas [64].
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2.3. Problem Formulation and the Proposed Solution

The vehicle routing problem (VRP) model is composed of a set of vehicles that are to
be used to carry out relief operations. Each vehicle has a specific capacity, representing the
amount or volume of relief goods it can carry. In this problem, all vehicles (UAVs) have the
same capacity. Hence these vehicles are referred to as homogenous vehicles. The disaster
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locations to be visited by these UAVs are called nodes, while the paths followed to reach
these nodes are known as edges. These edges connect two nodes. A set of these nodes and
edges make up a directed graph. In the current study, the node represents a disaster area
that must be visited so that aid and recovery items could be delivered there [65]. A single
depot serves as the disaster relief station, from where these UAVs are dispatched, as shown
in Figure 6.
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Each UAV has a limited capacity to carry the relief items, which must be delivered
to the victims present at these nodes. In terms of the directed graph, each node is called
the vertex. The victims to be visited are denoted by 1, 2, 3, . . . , m, which belongs to set C.
As each route starts and begins on the same depot, the graph’s total number of vertices is
|C| + 2, where the depot is represented by nodes 0 and m + 1. The vertices in the graph
are denoted by 0, 1, 2, 3, . . . , m + 1. The edges in this graph connect depot to the victims
or the victims to each other. Each edge originates from the depot node 0, and each route
terminates at the depot node m + 1. A cost value is associated with each edge connecting
two customers, r and s. Each vehicle has a limited capacity, and each customer has a
demand regarding relief. All these notations and terminologies are defined in Table 4.
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Table 4. Definitions of the mathematical notations.

Notation Definition

V Set of homogenous UAV
C Set of victims to be visited
G Directed graph
crs Cost (distance) required to move from victim r to victim s
m Total number of victims to be visited

m + 1 Depot node where each route terminates
q The capacity of a UAV
dr The demand of the victim r
N Set of vertices 0,1,2,3 . . . m + 1
D Depot

startv
D the departure time of UAV v ∈ V at depot

endv
D return time of UAV v ∈ V at the depot

openD Opening time of depot
closeD The closing time of depot

The following variables are used to model the UAV routing problem with time windows:

xt
rs

{
1 i f vehicle t visits a victim r a f ter victim s

0 otherwise

The major goals of the UAV routing problem with the time windows model are
outlined below:

• Formulate a set of routes with minimum costs.
• Each vehicle will have one route assigned to it.
• Each victim will be visited once only.
• Each route starts at node 0 and terminates at node m + 1.

Based on these goals, the objective function and constraints for the system are shown
in Equations (9)–(17):

min ∑
t∈V

∑
r∈N

∑
s∈N

crsxrst (9)

∑
t∈V

∑
r∈N

xrst = 1 ∀ r ∈ C (10)

∑
r∈C

dr ∑
s∈N

xrst ≤ q ∀t ∈ V (11)

∑
s∈N

x0st = 1 ∀t ∈ V (12)

∑
r∈N

xrit − ∑
s∈N

xist = 0 ∀ i ∈ C, ∀t ∈ V (13)

∑
r∈N

xrm+1t = 1 ∀t ∈ V (14)

xrst ∈ {0, 1}, ∀ r, s ∈ N, ∀ t ∈ V (15)

startv
D ≥ openD ∀ v ∈ V (16)

endv
D ≤ closeD ∀ v ∈ V (17)

As presented in Equation (9), the objective function ensures that the total distance/costs
are minimized. The constraint given in Equation (10) ensures that each victim is visited
only once. According to the constraint in Equation (11), the load carried by each vehicle
should not exceed its capacity. The constraints provided in Equations (12)–(14) ensure that
each UAV starts the journey by leaving the depot node 0. On reaching a victim’s location
and completing its task, the UAV leaves the victim again. Finally, the UAV arrives at the
depot node m + 1. The constraint in Equation (15) is the integrality constraint that models
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the discrete nature of the decision. The constraint in Equation (16) ensures that UAV’s
starting time is greater than the depot’s opening time. As given in Equation (17), the last
constraint ensures that the vehicle completes its mission within the depot’s closing time.
The pseudocode and associated solution approach based on tabu-search and nearest node
rules is presented in Figure 7.
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Figure 7. The pseudocode for the proposed tabu algorithm.

Figure 8 illustrates the UAV’s routing solution algorithm. In this illustration, the
algorithm begins from step 1, where an initial solution InitSol is developed, comprising a
set of routes (Route1, Route2, Route3). Each route consists of a set of nodes that are to be
traversed by the UAV. The initial solution is determined using the nearest neighbor rule,
which aims at arriving at an optimal solution. The algorithm first considers a potential
solution in the nearest neighbor approach and checks the solution sets identical to it to find
a better one. When an initial solution is determined, the algorithms move to step 2, where
the initial solution’s fitness f is calculated. This value is determined by taking a sum of the
total distance d and demand or quantity q of the aid goods that are to be carried by the
UAV. After calculating the fitness of the InitSol, the algorithm reaches step 3, where the
best solution (BestSol) is initialized as the initial solution. The system then enters a loop
consisting of 11,000 iterations containing steps 4, 5, and 6. At step 4, a random solution
(RandSol) is generated using the same nearest neighbor rule. The fitness of this solution is
then determined in step 5. At step 6, the value of RandSol is compared against BestSol. If
the random solution is better than the best solution in terms of fitness, the random solution
is the best solution. Otherwise, BestSol remains unchanged. This process is carried out
iteratively until the most optimal routes are achieved in the best solution.
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Figure 8. Steps of the route determination algorithm.

The goal is to determine the optimal routes for the UAV swarm that start their journey
from the depot. To select an approximation of the optimal solution, heuristic approaches
are used. Here, it is crucial to compare the proposed tabu search method results with other
state-of-the-art optimization approaches. Accordingly, the key tests are performed using
five algorithms. In the first test, the PSO algorithm is run. PSO is a heuristic method that
starts its search process using an initial population of particles. Each particle represents a
potential solution to the problem. There is a multi-dimensional search space where these
particles move around until they reach a constant state or the computational constraints are
fully exhausted. PSO mimics the behavior of birds in a flock or sheep in a herd. It is based
on a collection of particles in a swarm where each particle represents a possible solution to
the problem. Figure 9 outlines the procedure for the source location on the PSO algorithm.
In the second test, the tabu search algorithm is initiated in conjunction with the nearest
neighbor-based model to solve UAV routing in the post-disaster scenario.
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The best solution is obtained in this method and checked in each iteration until the
most optimal one is reached. In the third test, a greedy search-based solution is explored to
select a solution in each iteration. This selection is based on which solution seems best at
present, without considering whether it will make sense in the next iterations. In test 4,
an intra-route heuristic algorithm is applied. According to this strategy, two edges from a
route are removed, and another two edges are added to make a connected route. Using
this heuristic, an affectee can be assigned a new position in the same route. Finally, an inter
route method is applied in the last test to reduce the UAVs used in the solution. The idea is
to choose two edges from two distinct routes and exchange their end portions to generate
two new routes. Using this scheme, an affectee can be assigned a new position in all routes.

As shown in Figure 9, the PSO algorithm is initialized randomly depending on
the source position and particle (UAV) velocity. The particles update their velocity and
position throughout the optimization process. The initial population is evaluated based
on the objective function and fitness value. The particle with optimum fitness values is
selected, and the position and velocity are updated accordingly. The updated population
is re-evaluated for its fitness, and if necessary, coordinates are updated. If the output
conditions, i.e., source coordinates and velocity, are satisfied, then the optimization process
is completed; otherwise, the process is repeated. The output of the optimization process is
the obtained best solution for the PSO parameters.
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3. Results and Discussion
3.1. Burned Area Mapping Using the Active Fire Products

As explained in the method, the first mapping of the burnt area is performed using the
ArcGIS tool. The aggregated fire events from the MOD14 fire products for the distances of
375, 1000, 1125, and 1500 m are shown in Figure 10a–d. Similarly, for VIIRS, Figure 11a–d
presents the aggregated fire events for the distances of 375, 1000, 1125, and 1500 m. Notably,
aggregated MODIS and VIIRS samples illustrated an excellent efficiency for detecting some
small active fire clusters missing in the burned mask layer. Among these products, VIIRS
perimeters showed better identification of the fire sites, depending on the 350 m resolution
data. This is due to thermal bands of active fires’ capability to detect fine pixels of small
fires that can not be captured by the course reflectance burnt area band. Precisely, the
aggregates of 1500 m are the most accurate visual depiction of the burnt area (along the
coastal region including Sale, Orbost, Genoa, Bairnsdale, and NSW’s border Wodonga,
Bombala, and Eden) due to the 2020 bushfires. The bushfires’ spatial pattern also showed
that the fires are propagating outwards from the coast and NSW regions.
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The current study shows that active fire products have an immense potential for
evaluating large fire perimeters. Previous studies focused on individual fires at local
scales [52]; the current study, on the other hand, has a much broader scale where the
burnt area in the state of VIC is focused and estimated. The emphasis is to assess fire
products’ applicability to delineate the regions burnt in an almost near-real time frame
to establish a sophisticated early warning system. The available sensors and products
provide the burned area products; however, the results are accessible one month after the
hazard. This issue can be tackled with the usage of fire products. Thus, the fire products are
incredibly useful in approximating the widespread progression in near-real-time extents
and geolocation. This method can be used on a wide scale to help monitor and recover
management through early disaster detection and assessment. These early estimates can
facilitate operational near-real-time fire management planning and decision making. The
method adopted for this study can successfully be used to delineate the burnt area both for
the individual and collective fires. Moreover, such interpolated aggregates can open ways
for the researchers to initialize and calibrate the fire propagation models to help real-time
operational decisions.
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Geographically Weighted Regression (GWR) is a spatial regression technique used in
geography and other disciplines. It evaluates a local model of the variable or process under
consideration or predicts the outcomes by fitting a regression equation to every feature
in the dataset. The GWR statistics for the current study are presented in Table 5. Table 5
summarizes the local model of the fire events in VIC, intending to understand and predict
the fire events by fitting a regression equation to each feature in the respective datasets.
The corrected Akaike Information Criterion (AICc) measures the model performances
and its facilitation for comparing varying models. Accordingly, the lower AICc value
reflects better model performance and vice versa. In the current study, the active fire
product aggregates show negative values, depicting the model’s better performance. R2

is a measure of goodness of fit whose values can range from 0 to 1, with higher values
as preferable. For all the aggregates, the R2 values are between 0.91–0.99, indicating the
method is fit to use. Finally, the R2 adjusted values are used to normalize the numerator
and denominator by the degrees of freedom. The adjusted R2 is almost always lesser than
the R2, as shown in Table 5. However, it is also expected to lose some interpretation when
the adjustments are made. Therefore, AICc is the preferred way of comparing the models.
The statistics in the current study context signify that the estimates using the aggregates
method can be adapted for medium to large-scale studies. Although there is a slight chance
of omission and commission errors in some small fire events delineation, the method
can map the burnt regions in the broader and more impactful sense of the application.
Conversely, in some instances, some minor fires are also detected in the processing, which
is omitted in MODIS burn mask. Although some smaller fires may be detectable with the
aggregates, it is preferred to use the fine higher-resolution imagery for refined results.

Table 5. Geographic Weighted Regression Results for the Respective Fire Products Aggregates.

Aggregated Distance (m) AICc R2 R2 Adjusted

750 −4475.9 0.995 0.89
1000 −2463.3 0.940 0.92
1125 −1841.5 0.92 0.90
1500 −1309.05 0.91 0.88

3.2. Spatial Autocorrelation

To know about the distributions of the bushfire events in VIC, spatial autocorrelation
is performed. This highlights if the fire events are clustered at a particular point or
otherwise randomly scattered. Figure 12 shows the statistical significance of the observed
fire locations.
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The results show the z-score as −0.08 and the p-value to be 0.93. As previously
discussed, for the z-scores to be statistically significant, the higher the z-score value, the
more intense the cluster will be. This means that the fire events are randomly scattered
throughout VIC. The associated Moran’s Index value is −0.004. The geostatistics results
indicate that the fire events show a random distribution along the state of VIC. This spatial
autocorrelation method, i.e., the Global Moran’s I, is an inferential statistic based on the
probability theory. In this case, the probability is a measure of chance. The underlying
statistical patterns (either directly or indirectly) are probability calculation, which assesses
the likelihood of a fire event occurrence in a specific location. This suggests that although
the data values in these fire databases are fixed, the spatial occurrences and arrangement
of bushfires within VIC state vary.
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3.3. Mapping the Bushfire Hotspots

A strong z-value index in the current study depicts the statistical significance of the
hotspots. The values are varying from 0.03 to 2.9. The map showing the clusters of weak
to strong hotspots for VIC fires is given in Figure 13, where the Getis-Ord Gi* output is
provided. Figure 13a presents the output in the form of a Gi Z Score map highlighting the
hot spots and cold spots within VIC. The polygons show the hotspots and cold spots.

The features with high values are shown in red, classifying them as the hot spot that
progressively lowers down towards the relatively cold spots with blueish colors. The
z-score determines whether the pattern within the data is random or statistically significant
clustering is prevalent. Hence, the values are higher for the statistically significant positive
z-score, and the cluster is intense to depict the hotspot. The location of all the hotspots
and cold spots is within the southeastern areas of the VIC. The visual identification of the
clusters of fires is made using Google Earth. All the bushfires clusters included the zones
of Snowy River National Park, Cape Conran Coastal Park, Mount Elizebath NCR, Coopra-
cambra National Park, Burrow-Pine Mountain National Park, Mount Buffalo National
Park, Alpine National Park, and Martin’s Creek.

Additional spatial directional analysis of the 2019–2020 VIC bushfires is shown in
Figure 13b. The deadly fire smoke traveled to NSW, and its impacts were observed in the
other regions. The spatial distribution shows the directional propagation of the fires. The
widespread radius of the impact of the fire indicates that these Australian bushfires have
a global impact [2]. Hence, it boils down to the climate change phenomenon. Australia’s
previous climatic records showed that the country is continuously experiencing hotter
temperatures with each progressing year since 1910. The all-time maximum temperature
record was broken in December 2019 [13]. The average maximum temperature of 41.9 ◦C on
18 December 2019 is the highest for any day of December in Australia. This is interesting for
climatologists since a climatic phenomenon is responsible for the extreme heatwave: Indian
Ocean Dipole (IOD). The IOD is an event in which ocean surface temperatures are hotter
on the ocean’s western side and colder on the east. Due to this phenomenon, Australia is
expected to have prevalent intense weather and higher fire risks p in the upcoming years.
Therefore, preparedness and management must be taken religiously to gear up before the
next bushfire season.

Inverse distance weighted (IDW) is applied to the Gi* statistics tool’s hotspot map.
This interpolation method is widely used to map the hotspots’ spatial extent produced
in the previous step. IDW determines cell values using a linearly weighted combination
of a set of sample points. The weight is a function of inverse distance. The surface being
interpolated should be that of a locationally dependent variable. IDW smoothens the
continuous surface of hotspots, as shown in Figure 14a. The very high (Red) areas show
that these areas are incredibly prone to bushfire and require the concerned authorities’
attention. The very low zones shown in blue depict the statistically significant pattern of
negative z-score. These areas are free from fire danger; however, the high, moderate, or
low-prone areas all require individual attention due to the area’s underlying properties.
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The final hotspots map of VIC is depicted in Figure 14b. The map’s highlighted areas
include the southwest region, including the Portland, Homerton, Killara, Greenwald, and
the western areas, including Dergholm, Kadnook, and Goroke. Most of the hotspots lie
towards the coastal and southeastern border region towards NSW, a bushfire-prone area.
The areas covered are the national parks along Bairnsdale and Bright. The fire hotspots
are mostly seen along the VIC border, indicating it had spread outwards onto the NSW.
Identifying hotspots is primarily important for the response and recovery systems to plan
and devise a proper response plan [23,40]. As the public is informed before these risks
occur, they can evacuate or move to securer places, as suggested by the government. Since
the stakes are high in bushfire incidents, the preparedness and response should be timely.
In case of serious risk of bushfires’ onset, the concerned authorities can generate a warning
system and instruct everyone to evacuate. However, this is easier said than done. As
Whittaker et al. (2020) discussed, sometimes, people do not take the warnings seriously.
Instead, they feel threatened to obey the authorities, and several others intend to keep
their properties and possessions safe. Therefore, to ensure that the warnings are fully
understood, the government must clarify three things: firstly, people are supposed to leave
before the catastrophic fire starts. Secondly, houses are not defended in catastrophe, and
the earlier they leave, the better response can be planned by authorities.

3.4. UAV Route Optimization Results and Discussions

Table 6 shows the results generated after running the five algorithms to solve the
UAV routing problem. A scenario was considered where there is a fleet of 10 homogenous
UAVs at the disaster relief camp. Each UAV has the capacity of capturing, storing, and
transmitting 50 images of the disaster region and some capacity of delivering first aid kits
to the affectees. Initially, the number of affectees is 20, where each affectee is randomly
located on the map. Each node contains one affectee only. The input parameter, which is
the number of affectees to be visited by the UAV, is then changed to determine the nature of
output under varying conditions. Other parameters such as UAV capacity and the number
of UAVs are kept constant, as in real-world scenarios [65].

Table 6. Experimental Results for Solving VRP using Greedy Search, Tabu Search, Inter Route, and Intra Route Search
Heuristics, With Total Vehicles = 10.

UAV
Capacity

No. of
Affectees

UAV
Utilized

Greedy Search Tabu Search Inter Route Intra Route PSO

Runtime
(ms) Cost Runtime

(ms) Cost Runtime
(ms) Cost Runtime

(ms) Cost Runtime
(ms) Cost

50

20 3 344 590 76 470 70 470 87 565 74 465
30 5 375 793 114 637 47 644 61 761 98 578
40 6 354 957 96 816 64 816 61 907 87 796
50 8 382 1179 163 1027 71 1036 64 1136 158 989
60 9 346 1562 158 1149 123 1294 164 1484 141 1005
70 10 359 1645 148 1334 62 1379 79 1504 139 1201

100

20 2 323 615 79 434 40 434 61 612 73 403
30 3 338 616 105 542 43 570 54 594 98 517
40 3 367 635 193 589 149 589 79 613 145 563
50 4 347 953 154 749 66 784 75 915 150 737
60 5 340 969 243 844 71 864 80 962 201 827
70 5 360 1144 186 1024 57 1043 69 1091 157 987
80 6 348 1423 302 1079 124 1079 65 1286 289 1009

These factors are predetermined and mostly do not change during disaster relief
missions. The results show that by increasing the number of affectees to be visited, more
UAVs are consumed, and consequently, more cost is incurred. As depicted in Table 6, only
three vehicles are utilized by the algorithms when the number of affectees is 20, which
changes linearly with increasing the number of affectees. All ten vehicles are utilized when
the number of affectees is increased to 70. Increasing the number of affectees to 80, the
algorithms fail to solve VRP, which shows that ideally, the need of up to 70 affectees can be
attended by 10 UAV, each having a capacity of 50 units. Using the five methods applied to
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the problem scenario, the results achieved show that the least-cost solution is attained using
the tabu search algorithm, while the greedy search delivered the highest-cost solution.

Other approaches like intra and inter routing also delivered better results than greedy
search. However, the results of the PSO search surpassed all the tested methods. This
demonstrates the PSO routing scheme’s success over other standard optimization methods
like greedy search, inter, intra, and tabu search routing search heuristics. Table 6 also shows
the time taken by each algorithm to reach the optimal solutions. According to the results, a
greedy search solution was generated at the highest time, while the PSO-based method
took less time than the tabu search to prepare the solution in all successful test runs. Also,
both inter and intra route search heuristics took less time than these two methods. After
generating results for 50 units for ten homogenous UAVs, the UAV capacity was increased
to 100 units to view the results. As shown in Table 6, a significant reduction in the number
of vehicles utilized for the same number of affectees is observed. The algorithms showed
the same patterns in terms of run time and cost in that the PSO algorithm yielded the least
cost among all the algorithms and took less run time than the greedy search. Another
significant observation is that the cost is also reduced when the UAV capacity is increased.

Figure 15a–e shows the directed graphs generated by the greedy search, inter route,
intra route, tabu search, and PSO, respectively, for a scenario where the number of vehicles
is 10, the capacity is 50 and the number of affectees to be visited is 30. Figure 15 clearly
illustrates that there are no crossing edges for PSO and tabu search, and the routes generated
are the clearest and discrete. The software simulation for a UAV is illustrated in Figure 15e
using the PSO algorithm. The number of UAVs and their capacity is configured to be 15
and 10, respectively, along the equalized axis. The green marks depict the number of UAVs,
and the red squared spot at the center shows the depot, from where the UAV will take off
and land.

Based on the results demonstrated in Table 7, the percentage of improvements yielded
by PSO over each of the tested algorithms has been calculated. The average improvement
shown by the PSO algorithm over the greedy search-based method is approximately 2%
concerning the reduction in cost and 2% reduction in run time. PSO yielded 1.5% fewer costs
than the inter-route scheme. However, no reduction in run time was recorded as compared
to the run time of inter-route. PSO showed a 1.2% improvement in costs than the intra
routing algorithm and a 1% reduction in run time. The percentage improvement values
demonstrated by each algorithm over the PSO-based approach have been summarized in
Table 7.



Fire 2021, 4, 40 29 of 34

Fire 2021, 4, x  29  of  34 

 

 

 

Figure 15. Results of the route optimization algorithms for 10 UAVs, 30 victims, and 50 units of capacity (a) Greedy search,
(b) Inter route search, (c) Intra route search, (d) Tabu Search, (e) PSO Search.
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Table 7. Percentage reduction in run time and costs of PSO over other tests results.

Method Runtime Costs

Tabu Search 1% 1%
Greedy Search 2% 2%
Intra Routing 0% 1.2%
Inter Routing 1% 1.5%

The solution for the runtime and cost obtained by the PSO method was statistically
significant, as shown in Table 8. It demonstrated optimum solution for runtime over tabu
search (p = 0.01, R2 = 0.81), greedy search (p = 0.0008, R2 = 0.95), intra routing (p = 0.031,
R2 = 0.67) and inter-routing (p = 0.02, R2 = 0.76). A maximum percentage reduction in cost
over PSO was observed for the greedy search (p = 0.005, R2= 0.85), while the minimum was
observed for the tabu search (p= 0.001, R2 = 0.67). The p values show that all results are
statistically significant.

Table 8. Performance comparison of PSO algorithm with other techniques.

Method Runtime Costs

Tabu Search p = 0.01, R2 = 0.81 p= 0.001, R2 = 0.67
Greedy Search p = 0.0008, R2 = 0.95 p = 0.005, R2= 0.85
Intra Routing p = 0.031, R2 = 0.67 p = 0.001, R2 = 0.78
Inter Routing p = 0.02, R2 = 0.76 p = 0.001, R2= 0.79

The statistical results show that the R2 values are significant for all the aggregates,
indicating the methods are fit to use. The spatial correlation results show that the fire events
are randomly scattered throughout VIC. The global Moran’s I suggest that although the data
values in these fire databases are fixed, the spatial occurrences and arrangement of bushfires
within the state of VIC can vary. A healthy z-value index depicts the statistical significance
of the hotspots from 0.03 to 2.9. All the bushfires’ clusters included the zones of Snowy
River National Park, Cape Conran Coastal Park, Mount Elizebath NCR, Coopracambra
National Park, Burrow-Pine Mountain National Park, Mount Buffalo National Park, Alpine
National Park, and Martin’s Creek. Most of the hotspots lie towards the coastal and
southeastern border region towards NSW, a bushfire-prone area. The areas covered are
the national parks along Bairnsdale and Bright. The fire hotspots are predominantly seen
along the VIC border, indicating it had spread outwards onto the NSW. Additional spatial
directional analysis of the 2019–2020 VIC bushfires shows a widespread radius of the fires
that boils down to the climate change and IOD phenomenon [23,24]. Based on the current
study results, it can be concluded that the active fire products have an immense potential
for the evaluation of large fire perimeters. This method can be used on a broad scale to
help monitor disaster regions and instigate property response plans through early disaster
detection and assessment. Both individual and collective fires can be delineated using the
proposed method. Moreover, such interpolated aggregates can open ways for researchers to
initialize and calibrate the fire propagation models to help real-time operational decisions.

4. Conclusions

Against the backdrop of a national bushfire crisis, the 2019–2020 fire season in VIC was
the most important test of the reformed emergency management arrangements after the
disastrous 2009 VIC bushfires. Finding the right balance in maintaining a readiness level
to respond to bushfires in VIC is a complex calculation. The required resources in terms
of personnel, vehicles, equipment, and UAVs need to be scalable according to seasonal
requirements and cannot readily be switched on and off if conditions alter rapidly. In
VIC, there are significant standing resources spread across the responder agencies. Every
year, the fire season wreaks havoc in VIC’s state. It damages the environment and the
biodiversity and sustenance of life around the huge smoke and fire. The current study
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assessed the aggregation of active fire products of VIIRS and MODIS for monitoring
the burnt areas within the state of VIC. The aggregates showed high efficiency in the
identification of the burned areas. The burnt area generated the same output regions
as referenced in the burn mask product. The study found that the aggregate of 1500 m
produced the best output to estimate the burnt areas in VIC. MODIS-based MOD14 is used
to generate high-grade fire products to identify thermal anomalies, fires, and volcanoes.
The data tracks are almost 2030 km from the point of origin. In case of a bigger distance, the
algorithm will shift towards a low quality of fire-mask, assurance, power, and the fire pixels
will likely be negatively affected. Secondly, the spatial autocorrelation results showed that
the fire events were distributed randomly and had no specific spatial distribution pattern.
The hotspots identified are mainly found along the eastern belt of the state and were
progressing north, which was the same location where the fires happened. The directional
distribution showed the fire had spread across the border towards NSW. Hence, Getis Ord
Gi* hotspot analysis was extremely advantageous in rapid preparation in the fire events.

Using the five methods applied to the problem scenario, the UAV path optimization
results show that the PSO search results surpassed all the tested methods. This demon-
strates PSO’s success over other standard optimization methods like greedy search, inter,
intra, and tabu search routing search heuristics. Further, this algorithm yields the least cost
among all the algorithms and takes lesser time. The cost can also be reduced by increasing
the capacity of the UAVs. Further, there are no crossing edges in the PSO and tabu search,
and the routes generated are the clearest and discrete, thus reducing the chances of UAV
collisions. The average improvement demonstrated by the PSO algorithm over the greedy
search-based method is approximately 2% concerning the reduction in cost and 2% reduc-
tion in run time. Similarly, in comparison with others, PSO yielded 1.5% fewer costs than
the inter-routing scheme and showed a 1.2% improvement in costs than the intra routing
algorithm and a 1% reduction in run time.

The methodology adopted in the current study can be used to study other fire events,
whether individual or collective, to readily study the specific study area’s fire behavior.
The methodology adopted in this study can provide a near-real-time indication of the
damaged and affected areas. This may prove valuable for countries with recurrent fire
seasons like Australia. It also suggests that although the datasets may not be statistically
significant, they can have a lasting spatial impact. Therefore, timely warning and response
management must be taken seriously to avoid any bigger damages. A possible limitation
in the aggregation algorithm from active fire data may arise due to overestimating the
artifacts achieved in some regions. Moreover, owing to the bulk of data provided in the
dataset, there is a chance of omission and commission errors. Hence, validation through
reliable field data or high-resolution imagery is preferred. Therefore, the UAV obtained
imagery can tackle this issue and provide a holistic two-way system where high-quality
real-time images can be remotely sensed and cross-checked with UAV acquired imagery to
stage a proper response plan. UAVs’ usage to assist in real-time bushfire assessments and
mitigation planning is a humble addition of the current study to the body of knowledge
and practice. Using the proposed PSO-based UAV system, Australia’s concerning disaster
management authorities can plan for, timely assess, and mitigate the emerging bushfires to
reduce their harmful and damaging effects.

It is recommended for future studies to address and quantify the potential of small
fire detection against fine resolution imagery. The algorithms utilized in the current study
can be supplemented through additional scholarly works and coding to enable the UAVs
to demarcate an evacuation route for the bushfire victims that can be shared with the fire
and disaster management departments. Further, the proposed system can be applied to
various phenomena such as human activity patterns, climatic and phenological features, in
addition to fire data for more detailed and refined estimation of the fire burned areas. The
study can be further enhanced by evaluating other social and natural causes to map the
risk of fires in the study area. Moreover, these processed geographic layers can also be run
in real-time using Web Mapping Service.
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