

School of Mechanical and Electrical Engineering

Faculty of Health, Engineering and Sciences

Enabling Peer-to-Peer Remote
Experimentation in Distributed

Online Remote Laboratories

A thesis submitted by

Ananda Maiti

For the award of

Doctor of Philosophy

Australia
2016

Abstract

Remote Access Laboratories (RALs) are online platforms that allow human user

interaction with physical instruments over the Internet. Usually RALs follow a client-

server paradigm. Dedicated providers create and maintain experiments and

corresponding educational content. In contrast, this dissertation focuses on a Peer-to-

Peer (P2P) service model for RALs where users are encouraged to host experiments at

their location. This approach can be seen as an example of an Internet of Things (IoT)

system. A set of smart devices work together providing a cyber-physical interface for

users to run experiments remotely via the Internet.

The majority of traditional RAL learning activities focus on undergraduate education

where hands-on experience such as building experiments, is not a major focus. In

contrast this work is motivated by the need to improve Science, Technology,

Engineering and Mathematics (STEM) education for school-aged children. Here

physically constructing experiments forms a substantial part of the learning

experience. In the proposed approach, experiments can be designed with relatively

simple components such as LEGO Mindstorms or Arduinos. The user interface can be

programed using SNAP!, a graphical programming tool.

While the motivation for the work is educational in nature, this thesis focuses on the

technical details of experiment control in an opportunistic distributed environment.

P2P RAL aims to enable any two random participants in the system - one in the role

of maker creating and hosting an experiment and one in the role of learner using the

experiment - to establish a communication session during which the learner runs the

remote experiment through the Internet without requiring a centralized experiment or

service provider. The makers need to have support to create the experiment according

to a common web based programing interface. Thus, the P2P approach of RALs

requires an architecture that provides a set of heterogeneous tools which can be used

by makers to create a wide variety of experiments.

The core contribution of this dissertation is an automaton-based model (twin finite

state automata) of the controller units and the controller interface of an experiment.

This enables the creation of experiments based on a common platform, both in terms

of software and hardware. This architecture enables further development of

algorithms for evaluating and supporting the performance of users which is

demonstrated through a number of algorithms. It can also ensure the safety of

instruments with intelligent tools. The proposed network architecture for P2P RALs is

designed to minimise latency to improve user satisfaction and learning experience. As

experiment availability is limited for this approach of RALs, novel scheduling

strategies are proposed.

Each of these contributions has been validated through either simulations, e.g. in case

of network architecture and scheduling, or test-bed implementations, in case of the

intelligent tools. Three example experiments are discussed along with users' feedback

on their experience of creating an experiment and using others’ experimental setup.

The focus of the thesis is mainly on the design and hosting of experiments and

ensuring user accessibility to them. The main contributions of this thesis are in

regards to machine learning and data mining techniques applied to IoT systems in

order to realize the P2P RALs system.

This research has shown that a P2P architecture of RALs can provide a wide variety

of experimental setups in a modular environment with high scalability. It can

potentially enhance the user-learning experience while aiding the makers of

experiments. It presents new aspects of learning analytics mechanisms to monitor and

support users while running experiments, thus lending itself to further research. The

proposed mathematical models are also applicable to other Internet of Things

applications.

This thesis is entirely the work of Ananda Maiti except where otherwise
acknowledged. The work is original and has not previously been submitted for
any other award, except where acknowledged.

Student and supervisors signatures of endorsement are held at USQ.

Acknowledgments

I would like to express my sincere gratitude to my supervisor Assoc/Prof. Alexander

A. Kist, who has been a tremendous mentor for me. I would like to thank him for

encouraging my research and for supporting my growth as a research scientist. His

advice on both research as well as on my career have been priceless.

I would like to express my special appreciation and thanks to my co-supervisor Dr.

Andrew D. Maxwell for his continuous support and guidance throughout my PhD

study and related research.

I would also like to thank the members of the RALfie project: Dr. Lindy Orwin, Prof.

Peter Albion and Wu Ting for their continuous support and help for the last three

years.

This research has been supported through the Collaborative Research Network (CRN)

program of the Australian Government. I would like to thank especially Marisa Parker

and all other members of the CRN management at University of Southern Queensland

for their support during this research.

ix

Table of Contents

List of Abbreviations .. xv

List of Symbols ... xvii

Glossary of Terms .. xix

List of Figures ... xxi

Related Publications (2013-2016) ..xxv

1 Introduction .. 1
1.1 STEM Education and Remote Laboratories ... 5
1.2 RALfie – Remote Access Laboratories for fun, innovation and education 6
1.3 Challenges of a P2P RAL .. 10

1.3.1 Pedagogical Challenges ... 10
1.3.2 Technical Challenges ... 11

1.4 Scope of the Thesis .. 13
1.6 Thesis Outline ... 15

2 Literature Review .. 17
2.1 Remote Access Laboratories .. 18

2.1.1 System Architecture ... 19
2.1.2 Experiment Scheduling .. 23
2.1.3 Interactivity of Experiments .. 23
2.1.4 Deploying New Experiments .. 24
2.1.5 Nature of Experiments ... 24
2.1.6 Features and Trends of RLMS.. 26
2.1.7 Pedagogy .. 28
2.1.8 Common Advantages of Centralised RAL systems .. 29
2.1.9 Characteristics of RLMS and their Suitability for STEM 29
2.1.10 The Peer-to-Peer Architecture ... 31

2.2 Internet of Things ... 31
2.2.1 Common Components of IoT Applications ... 33
2.2.2 IoT and Human .. 34
2.2.3 P2P RAL and IoT ... 36

x

2.3 Summary... 38

3 P2P Remote Access Laboratories – Research Questions and Methodologies 39
3.1 General Experiment Components .. 40
3.2 The Notion of Distributed RALs .. 41
3.3 The Proposed Distributed Peer-to-Peer RAL ... 44

3.3.1 Differences between Centralised and P2P RAL .. 45
3.3.2 Properties of the new Distributed P2P RAL ... 47

3.4 The process of creating and running experiments ... 48
3.5 Technical Requirements of the P2P RAL ... 52
3.6 Research Questions .. 54
3.7 Contributions in Detail ... 54
3.8 Methodologies .. 57

4 Peer-to-Peer Control System Architecture .. 59
4.1 Usage Scenario of P2P RAL ... 60
4.2 Related Work – Hardware and Architecture .. 62
4.3 Related Work – Remote Control Technologies ... 64

4.3.1 Existing Examples in RAL .. 64
4.3.2 Industrial Protocols ... 65
4.3.3 Motion Description Languages and TeleRobotics .. 66
4.3.4 Standardization and messaging protocol for distributed control 67
4.3.5 Automaton and DES Controllers .. 68

4.4 Proposed Automaton Based Experiment Control Model.. 69
4.5 Controller Interface Model .. 71
4.6 Controller Unit Operating Model ... 73

4.6.1 CU Finite State Machine ... 74
4.6.2 CU Operation .. 77

4.7 Complex Languages ... 78
4.7.1 Communication Language ... 78
4.7.2 Types of Commands ... 80
4.7.3 Joint Parameters for Parallel Instructions and Toggle 82
4.7.4 Inverse Motion ... 82

4.8 Using the CI-CU Model .. 83
4.9 The CI-CU Model as IoT .. 83
4.10 Possibly Expanding to Many-to-Many CI-CU .. 84
4.11 Summary .. 85

xi

5 Implementation using Micro-Controllers .. 87
5.1 Control Strategies ... 87
5.2 Software Implementation of the Twin FSA .. 88
5.3 Micro Controller Units Alternatives for IEM Implementation 92
5.4 Messaging Protocol .. 94

5.4.1 Protocol Messages .. 94
5.4.2 Flow Control of Messages .. 96
5.4.3 Message Queuing .. 97

5.5 Relay and Remote Laboratory Management System Server 99
5.6 An Implementation – Results and Analysis ... 100

5.6.1 Test-bed Configuration ... 100
5.6.2 Latency Measurement with WebSockets ... 101

Conclusions .. 103

6 Intelligent Tools: Support and Validation and Evaluation ... 105
6.1 Markov Decision Process .. 106

6.1.1 Rig State Space ... 106
6.1.2 Related Work – Markov Decision Processes and Control 107
6.1.3 States in the MDP ... 108
6.1.4 The Experimental Rigs as MDPs .. 109
6.1.5 The MDP Generating Algorithm .. 112

6.2 Supporting Tools for Makers and Users ... 115
6.2.1 Control Policies for Centralised and P2P RAL ... 116
6.2.3 Indicators in the MDP .. 119
6.2.4 MDP Inputs ... 121
6.2.5 Rig Operation .. 122
6.2.6 Example and Results .. 124
6.2.7 Using MDP in P2P RAL... 125

6.3 Summary.. 129

7 Intelligent Tools: Advanced Evaluation .. 131
7.1 Clustering Commands .. 131

7.1.1 Literature Review - Clustering of data ... 132
7.1.2 Proposed Clustering in P2P RAL Control ... 133

7.2 Proposed Method of Evaluating User Interactions ... 134
7.2.1 Command Operations – Mathematical Notation ... 135
7.2.2 Command Flow ... 135

xii

7.2.3 Closely Related Components ... 136
7.2.4 Preparing the CRC List .. 137
7.2.5 Example and Testing .. 139

7.3 Summary.. 143

8 Intelligent Tools: Adaptive User Experience ... 145
8.1 Experiment Interaction Continuum .. 146
8.2 The Experiment Session .. 147
8.3 Identifying Functions Automatically .. 150
8.4 Automatically Altering Interactivity ... 152
8.5 Adaptive Control Interface Example ... 155
8.6 Summary ... 162

9 Enhancing Network Performance ... 163
9.1 P2P Overlay Networks ... 164
9.2 The P2P RAL - RALfie Network Setup ... 165
9.3 RALfie Implementation and Further Work ... 168

9.3.1 User VPN Gateway (RALfieBox) .. 168
9.3.2 RALfie Portal and Gateway ... 168
9.3.3 Increasing Network Performance .. 169

9.4 Background and Related Work - NDC and Overlay Networks 170
9.5 Basic Overview of the Overlay Network System ... 172

9.5.1 Estimating System Response Time for QoS ... 174
9.5.2 Creating Autonomous Peer-to-Peer Overlay Networks................................. 174
9.5.3 Users' Participation Probability .. 176

9.6 The Constrained HAC Algorithm ... 176
9.6.1 The cluster diameter limit - Ω .. 176
9.6.2 CHAC2 ... 177
9.6.3 Clustering Analysis .. 179

9.7 Application and Test Case .. 180
9.7.1 Test Case Population Participation Function .. 182
9.7.2 Determining the NDC Sites .. 183
9.7.3 Simulation and Results .. 184

9.8 Summary.. 186

10 Reliability ... 189
10.1 Related Works Reliability Analysis of Systems ... 190
10.2 RAL Architecture ... 191

xiii

10.2.1 Remote laboratory Sub-components .. 192
10.2.2 Operational Assumptions .. 193

10.3 Determining Reliability .. 194
10.3.1 Reliability Graph for P2P RAL ... 194
10.3.2 Experiment Control Reliability .. 195
10.3.3 Network Reliability .. 196
10.3.4 User Reliability ... 197

10.4 Analysis .. 199
10.4.1 Centralised vs P2P Reliability an Example ... 199
10.4.2 Application of the Reliability Analysis ... 200

10.5 The Case of the WoT .. 201
10.6 Summary ... 201

11 P2P RAL application in STEM Education ... 203
11.1 Related Work – Pedagogies for RALs in STEM Education 204
11.2 P2P RAL and EBL ... 206
11.3 Joining Games and Experiments ... 210

11.3.1 Related Work – Teaching Programming Languages and Robotics 211
11.3.2 P2P RAL Operation ... 212

11.4 P2P RAL Programming and Storage .. 213
11.4.1 Role of Programming Language .. 213
11.4.2 Activity as a Game... 215
11.4.3 Storage in the Content Management System .. 216

11.5 RALfie Implementations ... 216
11.5.1 The Instrument Programming Interface .. 216
11.5.2 Lesson and Quest Management Interface .. 221

11.6 Example Experiments .. 221
11.6.1 Pendulum Experiment .. 222
11.6.2 Gear Box Experiment ... 223
11.6.3 Traffic Light ... 224

11.7 User Trials and Feedback .. 226
11.7.1 Trial 1 - Evaluation with Students ... 226
11.7.2 Trial 2 – Evaluation with pre-service Teachers ... 227
11.7.2 Trial 3 – Second Evaluation with pre-service Teachers 230

11.8 Summary ... 231

12 Other Issues –Augmented Reality .. 233

xiv

12.1 Related Work – Augmented Reality .. 234
12.2 Augmented Reality in RALs ... 236
12.3 Levels of Augmented Reality... 236
12.4 Integrating AR in the P2P System .. 238
12.5 A Sample Implementation in RALfie ... 240
12.6 Limitations and Future Work .. 245
12.7 Summary ... 246

13 Other Issues – Scheduling ... 247
13.1 Scheduling .. 247
13.2 Related Work – Scheduling ... 248
13.3 Suitable method for P2P RAL for STEM ... 250
13.4 Identifying Constraints for Experiments and Users .. 252
13.5 Matching of Users and Makers .. 254
13.6 Implementation and Simulation ... 257
13.7 Results and Conclusions .. 259
13.8 Summary ... 261

14 Conclusions and Future Work ... 263

References .. 267

xv

List of Abbreviations

Abbreviation Meaning

CI Controller Interface

CPL Control Program Logic

CU Controller Unit (of an experiment)

EBL Enquiry Based Learning

IDE Integrated Development Environment

IEM Instruction Execution Module

IoT Internet of Things

LMS Learning Management System

MCU Micro-Controller Unit

MDP Markov Decision Process

MTBF Mean Time Between Failure

MTBR Mean Time Between Repair

MTTF Mean Time To Failure

MU Measurement Unit

P2P Peer-to-Peer

RAL Remote Access Laboratory

RALfie Remote Access Laboratory for fun, innovation and education

RLMS Remote Laboratory Management System

ROI Real Object Identification

RTT Round Trip Time

SNAP * This is not an abbreviation, but a name.

xvi

STEM Science Technology Engineering and Maths

UI User Interface

UIM User Interaction Module

VOC Virtual Object Creation

VPN Virtual Private Network

WoT Web of Things

xvii

List of Symbols

Abbreviation Meaning

S Finite State Machine for Controller Interface

Y Finite State Machine for Controller Unit; also the MDP for the controller
Unit

γ Maximum set size parameter in algorithm CHAC; also Interactivity level

δ Transition rules in Y

β Transition rules in S

ε Maximum distance parameter in CHAC

ψ Network Latency between S and Y

Σx Symbol set for FSM x

π Control Policy in MDP

λ ‘Null’ or ‘empty’ in FSM; failure rate in reliability theory

Φ closeness co-efficient in CRC

θ Usage probability in CRC

Ω Maximum distance parameter in CHAC2

ϑ Decay rate of VIA

R Set of ports on Y and recorded in S as well;

ɷ Stack in Y

σ Participation probability

Ω Diameter constraint in CHAC2

Г NDC site arrays

П Selected NDC sites

Ξ Reliability

xviii

Ч Set of initial sites

ә 2nd Indicator - Relative distance in MDP

ϖ 3rd Indicator – Weighted Relative distance in MDP

α Reward strategy in MDP

 𝕤 set

 𝕣 read command

 𝕨 write command

 𝕦 success

 𝕒 wait

 𝕖 error

 𝕗 fail

 𝕝 end

xix

Glossary of Terms

Term Meaning

administrators Experts who creates and maintains specification regarding RLMS;
same as makers/providers in centralized context

client A computer machine PC or mobile device used by a person to
consume online services

developer Creator (and host in P2P RALs) of experiments

experiment An experimental setup and it’s activity including user interface
accessible on the Internet

latency The time taken for communication or round trip time between
client and server in centralized context or CI and CU in P2P context

learner One who accesses an experiment for learning the corresponding
scientific concepts

maker Creator and host of experiments including user interface

rig An experimental setup

server A computer machine that runs software to provide online services
for 24x7 time

session A time period in which an user or maker accesses and runs an
experiment

user One who uses the system for learning; same as learner

RalfieBox A router that is programmed to act as gateway for the MCUs and
cameras to connect to the RALfie

xx

xxi

List of Figures

Figure 1.1 The basic centralised architecture of RAL where instruments and RLMS
are hosted at the server side.

Figure 1.2 Sample Experiment

Figure 1.3 P2P RAL system

Figure 1.4 The RALfie system Architecture

Figure 3.1 The RAL experiment components

Figure 3.2 The WBA command based RAL experiment architecture.

Figure 3.3 The distributed architecture of the proposed RAL system

Figure 3.4 The modular nature of the distributed RALs

Figure 3.5 The experiment creating procedure

Figure 3.6 The experiment running procedure

Figure 3.7 Maker and Learners in the P2P RAL

Figure 3.8 The research aspects of the P2P RAL system with regards to end-nodes
architecture.

Figure 3.9 The research aspects of the P2P RAL system with regards to network,
scheduling and Reliability

Figure 4.1 The relation between the two FSAs

Figure 4.2 The state transition diagram of the controller interface (S)

Figure 4.3 A state transition diagram for the RAL Control Unit (Y)

Figure 5.1 The user interaction to atomic commands conversion process.

Figure 5.2 The relation between the two FSAs in the P2P RAL system on the
Internet and from Learner end to Maker end.

Figure 5.3 IEM Implementation Architecture

Figure 5.4

Some examples of SNAP blocks (a) a hat block to start a sequence of
events by executing the block underneath it (b) Condition Check (c)
‘and’ Operator that fits into the ‘if else’ and (d) a block that is used for
animation of objects.

Figure 5.5 The throughput capacities of the MCUs

Figure 5.6 (a) Instruction message from CI to MCU (b) Acknowledgement message
from MCU to CI (c) Error message from MCU to CI

Figure 5.7 The distributed network architecture consisting of the user sites and the
experiment sites.

xxii

Figure 5.8 Queuing reduces traffic and response time

Figure 5.9 Flow control increases the session time.

Figure 6.1 Example of an experiment MDP graph.

Figure 6.2 Relationship between decay factor and the accuracy of the policy.

Figure 6.3 The system architecture of a RAL experiment showing the control
policies.

Figure 6.4 (a) A pendulum experiment setup (b) The control interface of a RAL
experiment in SCRATCH.

Figure 6.5
The final utilities or values of the states in each Ri corresponding to the
goals states C7, C16, C25, C34 For failed states only the highest value of
shown for all failed states for a valid state.

Figure 6.6 The distance to the nearest goal state for each state For failed states
only the smallest value is show for each corresponding valid state.

Figure 7.1 An example experiment session communication flows.

Figure 7.2 A sample setup with LEGO Mindstorms EV3.

Figure 7.3(a) The component set and CRC list

Figure 7.3(b) Change in the number of clusters and CRC list

Figure 7.3(c) The component set and CRC list

Figure 8.1 The interactivity continuum for an experiment

Figure 8.2 Clustering the repeating set of commands.

Figure 8.3 The system architecture to create, compile and upload the code into a
CU.

Figure 8.4 The solar tracker experiment rig

Figure 8.5 An Interactive mode Interface

Figure 8.6 An Batched Mode Interface

Figure 8.7 An example of a manually created composite command or function of
the solar trackers that is compiled and uploaded to the LEGO

Figure 9.1 The RAL experiment components.

Figure 9.2
An example of cluster regions C1 and C2 at particular time when users
at sites A and B are communicating through their respective cluster
heads.

Figure 9.3 CHAC2 Clustering with Ω = 700 gives a total of 29 clusters.

Figure 9.4 Site and Population distribution in the 29 clusters The population and
cluster size (in terms of number of sites) percentage for each cluster.

xxiii

Figure 9.5 The Number of clusters and the average system RTT when the cluster
diameter is changed from 50 kms to 2000 kms (step = 50 kms).

Figure 9.6 Change in position of the central NDC site when the cluster diameter is
changed from 50 kms to 2000 kms (step = 50 kms).

Figure 9.7a Time shift simulation.

Figure 9.7b Geographic transition in the position of the relay Δt shows the
geographic transition according to time shifts

Figure 10.1 The inter-relationship between the entities of the P2P RAL

Figure.10.2 The reliability graph of P2P RAL Experiment.

Figure 10.3 A typical P2P network system.

Figure 10.4 Reliability of the Centralised vs P2P system – an Example

Figure 11.1 The RAL Extension

Figure 11.2 The phases of EBL for STEM (left side) extended to include the RAL
features (right side)

Figure 11.3 The P2P experiment creation, storage and usage operational steps.

Figure 11.4 The RALfie Communication System Architecture

Figure 11.5 The message flow diagram

Figure 11.6 (a) The Narrator of the activity (b) An example of an input component

Figure 11.7 Code Example

Figure 11.8(a) The Pendulum example experiment UI in RALfie while initializing from
a users’ view.

Figure 11.8(b) The Pendulum example experiment UI in RALfie while initializing from
a makers’ view.

Figure 11.9 (a) The GearBox example setup with LEGO Mindstorms and (b) it’s UI in
RALfie.

Figure 11.9 (c) A different GearBox setup that can run with e same UI and CPL as the
last one.

Figure 11.10 The traffic light experiment example setup using a BeagleBone

Figure 11.11 The traffic light example UI in RALfie (maker’s view).

Figure 11.12 The trial 2 of the RALfie system with three EV3 robots

Figure 11.13 An example program created by makers

Figure 12.1 The SNAP environment and the experiment rig

xxiv

Figure 12.2 A traffic light example in SNAP with real LEDs and virtual cars

Figure 12.3

The pendulum Experiment (a) The difference in frames to identify the
moving object (i.e. the ball) (b) The original video feedback of the
pendulum experiment (c) The final video feedback with the sensor
value as shown to users.

Figure 12.4 The layers of AR components

Figure 13.1 An Example Scenario.

Figure 13.2 The ae set for each experiment.

Figure 13.3 The completion time of all users.

Figure 13.4 The average Satisfaction Score (W) of all users in every week.

Figure 13.5 The incomplete, unassigned users in every week.

xxv

Related Publications (2013-2016)

1. A. Maiti, A. A. Kist, A. D. Maxwell, and L. Orwin, Stem Oriented Remote Laboratories

With Peer-To-Peer Architecture, accepted in Online Experimentation: Emergent

Technologies & the Internet of Things, Eds: M. T. Restivo, A. Cardoso, and A. M. Lopes,

Publisher – IFSA, Portugal, 2015.

2. A. Maiti, A. A. Kist, and A. Maxwell, Real-Time Remote Access Laboratory with

Distributed and Modular Design, IEEE Transactions on Industrial Electronics, vol. 62, Iss.

6, 2015.

3. A. Maiti, A. D. Maxwell, A. A. Kist and L. Orwin, Merging Remote Laboratories and

Enquiry-based Learning for STEM Education, International Journal of Online Engineering

(iJOE), vol. 10. Iss 6, pp. 43-49, 2014.

4. A. Maiti, A. D. Maxwell and A. A. Kist, Features, Trends and Characteristics of Remote

Access Laboratory Management Systems, iJOE, vol. 10. Iss 2, pp. 22-29, 2014.

5. A. Maiti, A. A. Kist and A. D. Maxwell, Variable Interactivity with Dynamic Control

Strategies in Remote Laboratory Experiments, in International Conference on Remote

Engineering and Virtual Instrumentation 2016 (REV 2016), Madrid, Spain Feb 24-26

2016.

6. A. Maiti, A. A. Kist and M. Smith, Key Aspects of Integrating Augmented Reality Tools

into Peer-to-Peer Remote Laboratory User Interfaces, in International Conference on

Remote Engineering and Virtual Instrumentation 2016 (REV 2016), Madrid, Spain Feb

24-26 2016.

7. A. A. Kist, A. Maiti, A. D. Maxwell, L. Orwin, P. Albion, W. Ting and R. Burtenshaw, The

Game and Activity Environment of RALfie, in REV 2016, Madrid, Spain Feb 24-26 2016.

8. A. Maiti, A. A. Kist and A. D. Maxwell, Building Markov Decision Process Based Models

of Remote Experimental Setups for State Evaluation, Computational Intelligence, 2015

IEEE Symposium Series on, Cape Town, 2015, pp. 389-397.

9. A. Maiti, A. A. Kist and A. D. Maxwell, Latency-Adaptive Positioning of Nano Data

Centers for Peer-to-Peer Communication based on Clustering, IEEE International

Conference on Communications 2015 - Workshop on Cloud Computing Systems,

Networks, and Applications (CCSNA), London UK, 8-12 Jun 2015, pp. 9981-9987.

10. A. Maiti, A. A. Kist and A. D. Maxwell, Components Relationship Analysis in Distributed

Remote Laboratory Apparatus with Data Clustering, IEEE International Symposium on

xxvi

Industrial Electronics, Rio de Janeiro, Brazil, 3-5 Jun 2015, pp. 861-866.

11. A. A. Kist, A. Maiti and A. D. Maxwell, Introducing RALfie – Remote Access Laboratories

for Fun, Innovation and Education, IEEE exp.at 2015, Azores Portugal, 1-4 Jun 2015.

12. A. Maiti, A. D. Maxwell, A. A. Kist and L. Orwin, Joining the Game and the Experiment in

Peer-to-Peer Remote Laboratories for STEM Education, IEEE exp.at 2015, Azores

Portugal, 1-4 Jun 2015.

13. L. Orwin, A. A. Kist, A. D. Maxwell, A. Maiti, Using Gamification to Create Opportunities

for Engagement, Collaboration and Communication in a Peer-to-peer Environment for

Making and Using Remote Access Labs, IEEE exp.at 2015, Azores Portugal, 1-4 Jun 2015.

14. A. Maiti, A. D. Maxwell and A. A. Kist, Design and Operational Reliability of a Peer-to-

Peer Distributed Remote Access Laboratory, in Remote Engineering and Virtual

Instrumentation (REV), 2015 12th International Conference on, 25-27 Feb. 2015, pp. 94

- 99, Bangkok.

15. A. Maiti, A. A. Kist and A. D. Maxwell, Time Scheduling in a Peer-to-Peer Remote Access

Laboratory for STEM Education, in IEEE TALE 2014, Wellington, pp. 1-7.

16. A. Maiti, A. D. Maxwell, A. A. Kist, and L. Orwin, Integrating enquiry-based learning

pedagogies and remote access laboratory for STEM education, in IEEE EDUCON 2014

Istanbul, 2014, pp. 706-712.

17. A. A. Kist, A. Maiti, A. D. Maxwell, L. Orwin, W. Midgley, K. Noble, et al., Overlay

network architectures for peer-to-peer Remote Access Laboratories, in Remote

Engineering and Virtual Instrumentation (REV), 2014 11th International Conference on,

2014, pp. 274-280.

18. A. Maiti, A. A. Kist and A. D. Maxwell, Using Network Enabled Microcontrollers in

Experiments for a Distributed Remote Laboratory, in REV 2014, pp. 180 – 186.

19. A. Maiti, A. A. Kist and A. D. Maxwell, Estimation of Round Trip Time in Distributed Real

Time System Architectures, Telecommunication Networks and Applications Conference

(ATNAC), 2013 Australasian, 20-22 Nov. 2013, pp. 57 - 62.

20. A. Maiti, A. D. Maxwell and A. A. Kist, An Overview of System Architectures for Remote

Laboratories, in IEEE International Conference on Teaching, Assessment and Learning

for Engineering (TALE) 2013, pp. 661-666, 2013.

21. A. A. Kist, A. Maiti, A. D. Maxwell and L. Orwin, Performance Evaluation of Network

Architectures for Collaborative Real-Time Learning Systems, 2013 IEEE International

Conference on Teaching, Assessment and Learning for Engineering (TALE), Aug 2013,

pp.673-678.

1

1
Introduction

Laboratory education and practice are integral parts of the engineering education

curriculum. The combination of theoretical knowledge along with practical

experience linking the concepts is essential. They are also a requirement of

accreditation bodies such as Engineers Australia (EA). The theoretical delivery

commonly consists of lectures and exercises supplemented by textbooks and lecture

notes. Practical experience is gained through interaction with real technical

instruments and devices that exhibit real phenomenon as described in the theory.

Recent developments in Information and Communication Technology (ICT) have

enabled fast and rich ways of exchanging information between people from different

domains with a variety of applications. Such improvements in ICT and its

infrastructure have enabled the development of Remote Access Laboratories (RALs).

The development and use of RALs was identified as a trend in engineering and

science education aiming to allow remote, off-site and organized use of real

experimental equipment and resources [1]. These laboratories allow students to use

the Internet to change input parameters, operate instruments and collect resultant data

from equipment setups in remote locations.

RALs primarily fulfilled the role of on-site laboratories where needed in the early

years of their development from 1990s to mid-2000s [2]. Over the last decade,

modern RAL systems have further enhanced the pedagogies for laboratories by

incorporating advanced ICT technologies such as augmented reality and providing a

unique educational experience to students.

RALs have been a successful paradigm in providing an alternative platform to

practical education in on-site laboratories [2-4]. A Remote Laboratory Management

2

System (RLMS) is used to manage such RALs. The common functionalities of the

RLMS include: scheduling, rig operations, data transport, multimedia tools, data

about experiments, experiment user interface, accepting and processing user requests,

storing and maintaining user details [5-6]. Figure 1.1 shows an example of a typical

client server setup of remote laboratories. The user side connects and runs

experiments while the RLMS on the server side is responsible for management

functions. Such facilities are usually hosted by universities.

Remote laboratories can be of two types: real hardware based or simulated/virtual

laboratories. Instead of using any real experimental apparatus, virtual laboratories use

specialized software for experimentation. The real hardware laboratories use physical

equipment for experimentation. In the fields of science and engineering, real-

hardware based laboratories are common and suitable in many cases as they provide

realistic feedback and data. This work focuses on real hardware based RALs only.

Remote laboratories have their origins in efforts to provide remote access to

expensive equipment, such as that used in control engineering [2], as early as 1993-

95. In Europe, early examples of such projects include Remote Experiment

MOnitoring and conTrol (REMOT) project [7] and DYNAmical COnfigurable

Remote Experiment Monitoring & Control System (DYNACORE) [8] in late 1990s.

Since then many more systems have been deployed in universities around the world,

some of the prominent RLSM being iLab [9], Labshare [10], WebLab Duesto [11]

and hardware system VISIR [12].

The iLab is a flexible software infrastructure for the implementation of Internet

accessible labs at MIT, USA [9, 13]. It uses many programming languages including

LabVIEW to operate the instruments through its web servers. The University of

Queensland, Australia later extended some of its features [14].

Figure 1.1. The basic centralised architecture of RAL where instruments and RLMS

are hosted at the server side.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

3

At the University of Technology Sydney (UTS) an RLMS was developed and used

from 2000 to 2005. This system came to be known as SAHARA. It was adopted as

part of the much broader Labshare project [10]. The Labshare project focuses on

collaboration between several Australian institutions including the University of

South Australia, University of Technology in Sydney, Curtin University of

Technology in Perth, Queensland University of Technology in Brisbane and the Royal

Melbourne Institute of Technology. The SAHARA framework provides a generic set

of tools for setting up heterogeneous remote laboratories of physical instruments.

Virtual Instrument Systems in Reality (VISIR) was developed at Blekinge Institute of

Technology Sweden. It is an online workbench which acts as an open laboratory

platform [12]. The objective of the VISIR project is to create a lab community

consisting of several participant universities and organizations. This has been used to

implement online electronics laboratories at other locations for example at

Universidad Nacional de Educación a Distancia (UNED), Madrid.

Figure 1.2 shows an example of a RAL experiment. Figure 1.2 (a) depicts the

experiment site and (b) shows the remote users site. The experiment is composed of

the corresponding User Interface (UI) stored in the RLMS and is used for taking input

and displaying output. It is downloaded to the user's site every time a session is

started. The experiment also contains the corresponding experiment controller,

 Figure 1.2 (a) An experimental rig Figure 1.2 (b) A user interface

4

usually a personal computer or microcontroller. It acts as an intermediary between the

user and instruments and the measurement and operational rig itself.

Undertaking a laboratory activity in RALs usually involves three broad steps. First,

similar to face-to-face laboratory classes, the student peruses related learning

materials describing the aim of the experiment and the underlying concepts. In face-

to-face laboratories the next step would be to setup the experimental apparatus

sometimes with minor configurations for example a semiconductor laboratory [15]

and sometimes completely creating it from basic parts, for example electronics

laboratories [12]. In RALs, the rigs are already prepared and ready to use at any time.

In the second step, the student issues commands to the experimental rig through the

user interface on the Internet which is specifically designed for the experiment which

responds to the user’s command. Depending on the type of laboratory, students may

have to learn how to use the instruments in an on-site laboratory and determine ways

to record measurements. This is generally not required in the case of remote

laboratories that often have rich user interfaces.

Finally the student verifies the results obtained from the experiments to understand

the underlying learning concept and meet the objectives of the activity which they

convey in a lab report. This step is similar in both RALs and on-site laboratories.

RAL systems have been successful in their intended objectives of providing access to

resources along with additional services. Advantages of these systems include access

from anywhere and anytime, allowing more students to gain access, the safe running

of experiments, sharing of resources among universities and technical support and are

available as and when needed.

Two key aspects of remote laboratory experiments are their duration and the User

Interface. Based on the time intervals between user commands, experiments can be

broadly classified into interactive and batched. Whilst batched experiments are

easiest to implement and maintain, interactive experiments offer richer learning

experience [16]. Although the focus of this dissertation is on interactive remote

laboratory experiments, batched experiments are also addressed.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

5

1.1 STEM Education and Remote Laboratories

There is a worldwide skill shortage of high school graduates with sufficient Science,

Technology, Engineering and Mathematics (STEM) skills[17]. Insufficient numbers

of school students developing and maintaining an interest in STEM fields while at

school is one of the contributing factors. In Australia, for example, student

engagement and participation rates in STEM in secondary schools are low [17-18].

Primary school teachers, and some secondary teachers who are teaching outside their

content area, especially in remote area schools, have low levels of content knowledge

and pedagogical content knowledge in STEM [19].

ICT enrolments in tertiary courses have experienced negative growth in recent years.

As a consequence Australia may not have the skilled workforce to sustain future

productivity and economic growth [20]. In response, in recent years, the Australian

Government has committed resources to increase student uptake of STEM subjects in

primary and secondary schools across the country. One of the key focus areas is ICT

skills such as coding [21].

STEM students who engage in experiential learning through the use of experiments

develop deep understanding of content [22]. However, students do not all have equal

opportunities to participate in hands on experiments in STEM [23]. One way of

providing more support for STEM teachers and increase access to experiments for

learners is to use RALs. Although RALs have been used in tertiary education for

many years [24-25], it is only recently that these facilities have been made available

to schools through projects such as Labshare [9] in Australia and GoLabs in Europe

[26-27].

The pedagogies for school students in years 5-12 are diverse and differ from

pedagogies used in tertiary education [28]. One of the limitations of the traditional

RALs for its application in STEM school education is that it only allows experienced

and expert developers to create an experiment which reduces scalability i.e. the

number of experiments. The instruments and devices used are often costly and

complex to build and operate. Also, there is limited scope for collaboration among

students.

6

1.2 RALfie – Remote Access Laboratories for fun, innovation and education

The educational disciplines of science and engineering typically require learners to

demonstrate proficiency in bridging the theoretical and experimental world. As part of

these experiential learning experiences, RALs can be used for demonstrations of

actual events and experiments.

RALfie (Remote Access Laboratories for fun, innovation and education) has been a

three year project funded through the Collaborative Research Network initiatives of

the Australian Government. It has proposed a Peer-to-Peer (P2P) environment at a

conceptual level for the deployment of remote access laboratories where users create

lab activities and associated programs and share them through the Internet. The scope

of the RALfie project has been to establish the technology requirements and

specifications of such a RAL system and implement it to determine the pedagogical

advantages and effect in STEM education. The work reported in this dissertation has

been the technical foundation for the architecture of the RALfie project.

A P2P system such as the RALfie project can overcome some of the limitations of

traditional RALs. Participants in it can be both creators of experiments (called Makers

in the project’s agreed terminology) and share them with others or be user of others’

experiments. Once individuals are authorised to develop and host an experiment, it

can create more flexibility on the laboratory provider side. The students using these

laboratories may collaborate with each other on running the experiment setup thus

giving the users fresh views of the same problem. This way, new and interesting ideas

about practical learning and enquiry-based learning methodology may be

implemented.

In the field of Computer Science, Peer-to-peer (P2P) computing or networking

generally refers to a system with multiple individual nodes each of which can be both

servers i.e. provide data and be clients i.e. consume data. Such networks should not

ideally have a centralized node, the failure of which could cause the network to break

down. Most P2P software are focused on media sharing and P2P is therefore often

associated with piracy and copyright violation regarding large files. Some P2P

networks aim to provide real-time services with live call facilities such as Skype.

These aim to provide direct communication between two nodes where the content is

generated in real time, although it can allow for lossy communication.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

7

Different forms of social media can also be described as P2P social process [29-30] as

they enable direct communication between any two participating nodes where both

sides can generate and exchange data. However, in such cases, the participating nodes

do not have the responsibility of storing the data.

The term P2P in this thesis refers to a consumer level system similar to social

networks, instead of a P2P computing or network architecture, that provides an online

platform where two participants can communicate and exchange ideas or other

resources. Consequently, the actual users’ needs greatly influences the P2P RAL

technologies. The participants can be both a server node and client node while in the

system. The unique challenge here is that the nodes needs to host not only data as

files, but physical hardware that must be programmed to run on the internet with real

time commands. Thus the most important aim of this P2P system is to enable the

creation of the participant nodes with potentially unique individual features such that

any two nodes can still communicate and operate. Similar to Skype, the aim of this

P2P system is not efficient storage, but to simply enable communication where the

messages are generated and exchanged in real time. Obviously the P2P RAL system

needs to run on a network architecture which may or may not be a true P2P network.

Thus the P2P RAL can be described as a system where two random participants in the

system consisting of one maker creating and hosting an experiment and one learner

who wants to use the experiment, can establish a communication session during

which the learner runs the remote experiment through the internet without requiring a

centralized experiment or service provider. Figure 1.3 depicts a P2P RAL system with

Figure 1.3. P2P RAL system

8

multiple maker experiments and user sites with a global management system to

control access and authentication is also shown. The global management system only

provides the links for the online experiments at a given time to the learner's user

interface. Once the learner's UI has initiated the communication with the remote

experiment, there is no role for the management server. The global management

system is transparent with respect to running an experiment. It is essentially a portal

for the makers to start using the system. It may be noted that although the P2P RAL

systems ideally should run on a true P2P network, it is not feasible to create and

maintain such a true P2P network and the P2P RAL needs real-time, but lossless

communication in a an ad hoc network.

 The P2P RAL enables teachers and students to create and maintain their own

experimental rigs using hardware and software that may be acquired commonly such

as Micro-Controllers Units (MCU). With this, the P2P RAL system aims to bring both

the experiment building and operating experience close to the participants. The RLMS

implemented on a global management server has reduced functionality compared to a

centralized RLMS to provide a set of tools that enables the sharing and collaboration.

The operation of the P2P RAL is depicted in Figure 1.4. The entire system is made up

of three conceptual layers – the organization layer, participants layer and the systems

layer.

The organisation layer targets several objectives, the key being to motivate the

students to use the system. It also maintains a structural framework within the set of

experiments. It classifies experiments into groups and associates each of them with a

certain category which may be related to the level of difficulty or the subject area. It

creates the logical links that allow students to look up each other's experiments.

This layer is largely outside the scope of this dissertation. Instead, this thesis is

focused on the two underlying layers that can enable the operation of the organization

layer. The use of the P2P RAL in STEM Education and in particular this organization

layer is further discussed in Chapter 11.

The participants layer represents the actual students in the system. There are three

types of participants involved in the system:

• Learners (users): These participants use the system for learning purposes only.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

9

They log in to the system, change experiment parameters and explore outcomes

to gain knowledge.

• Makers (developers, providers): These participants share their equipment over

the Internet. They assemble rigs, program them and create the user-interface

that is accessed over the Internet. In a P2P RAL makers are responsible for

making the rigs as developers of the experiments as well as providers when

hosting the experiment for others.

It is noteworthy that makers in a P2P RAL create experiments but they are still

consumers of the system. Their interaction with the system forms part of their

learning outcomes and must be supported by the RLMS. The makers need to

have support to create the experiment according to a common web based

programing interface. Thus, the P2P approach of RAL requires an architecture

that provides a set of heterogeneous tools which can be used by makers to

create a wide variety of experiments.

• Moderators: A third group of participants is required to assess the quality of

experiments and the accuracy of content that are shared. Teachers, for example,

can do this.

Figure 1.4. The RALfie system architecture

10

Apart from these three roles, there are the administrators responsible for creating and

maintaining the online programming environment and related tools with which the

makers can create the experiments.

The ratio of makers to learners may be very low as the number of students able to

successfully fulfil the role of makers, may be low. However, even if a small

percentage of users create and share equipment, it can be used by many others thus

potentially inspiring them in the subject matter.

The systems layer is the bottommost layer that provides connectivity between users

and the ways to control the equipment. The P2P RAL follows a P2P service model

rather than actually implementing a real P2P network. It enables communication

between any two random sites with their human participants without the need for a

centralized service provider. This P2P RAL service model would ideally be built upon

a self-sustaining P2P network system. However, this is not practically possible as

most structured or true P2P networks are not scalable for large scale real life

implementation [31]. Thus the implementation of the P2P follows a hybrid of P2P

concepts enabling the end-to-end connection directly with a transparent service

provider in between that only relays the commands and data of the experiments. This

transparent service provider is not responsible for creating experiments or generating

the commands or data for an experiment in any way. Thus, at a conceptual level, users

communicate in a peer-to-peer manner, however, this may not be reflected by the

underlying network architecture as discussed in later chapters.

1.3 Challenges of a P2P RAL

Within the RALfie project and a P2P RAL in a larger context, there are two broad

areas of challenges for developing and using such an environment - pedagogical and

technical.

1.3.1 Pedagogical Challenges

The organisation layer is about addressing the pedagogical need of the RALs

application in STEM. Three main pedagogical areas are engagement, collaboration

and building rigs.

Engagement deals with the ways to motivate students to use the RAL system. The

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

11

organization of the experiments can be implemented in many ways such as a gamified

learning environment [32] which was deployed in the RALfie Project. Such a system

has a series of activities or quests that must be completed in sequence to earn badges

or experience points [33]. A collection of experiments can provide easy searching of

topics for the learners. Guilds are groups of makers sharing interest in a particular

topic of STEM who provide a community of practice to support each other and new

makers. This kind of system provides motivation to continue and engage while

learning the corresponding STEM concepts.

Second, collaboration must be encouraged between participants. The availability of

experimental rigs designed by peers can encourage others to survey them. It could

then potentially draw them into creating their own rigs. The procedures to create and

program rigs could be shared as plans and guides in text, photographic or video

format.

Third, the building of rigs aspect of the project aimed to establish the best practices to

help participants create and use the rigs with community support.

Details of the pedagogical requirements are out of scope and not directly addressed in

this thesis. However, these requirements impacted design choices that were made with

regards to the technical challenges addressed in this thesis.

1.3.2 Technical Challenges

The proposed distributed RAL architecture to address the pedagogical requirements

with regards to STEM poses technical challenges which are identified and addressed

in this dissertation.

Experiment Control, Automation and Programming

Each experiment has two end-nodes - one has a remote controller interface at the

learners' side and the experiment control unit is located at the maker's side. Unlike a

centralized RAL, the design and construction of an experiment is not known to the

P2P RLMS in a P2P RAL. The hardware required for constructing the experiment rig

may be of varied types and capabilities, must be easily available and must be able to

parse a common set of instructions even if the native operations of experiment

controllers i.e. MCUs are different. The P2P RAL must be able to deduce every

12

experiment as a common model such that a common control language and platform

can be provided. This homogeneity is required to enable large scale collaboration and

increase scalability which is the aim of this type of distributed RALs.

While running an experiment, the learners' commands must be validated to ensure the

rig safety. Also, in case of P2P RAL, the series of commands must be automatically

evaluated as well. The makers are not expected to implement all the evaluation and

support tools as in centralized RALs. A common model is also required to analyse

and support makers when creating the experiments as well as user interactions with

the experiments.

Connectivity, Authentication and Security

The P2P RAL uses a network architecture that allows each pair of learner-experiment

nodes to communicate directly with a possible transparent management node in

between. This resembles a true P2P architecture but is more like an unstructured P2P

network. The main concern in the P2P RAL is the latency between the nodes. The

system supports users from various locations with different kind of devices.

Experiment makers are expected to construct a rig, program it to able to connect to the

network and finally other users should be able to connect and control it over the

Internet. The network capabilities available to the users are different with firewalls

and Network Address Translators (NAT) segregating users into specific domains.

Unlike traditional RALs, these experiments are not expected to be online continuously

as dedicated equipment may not be available, thus the experiments in the system will

change dynamically with time. Finally, for running activities properly both

communication and end node systems must be responsive. The P2P system must

provide authentication of users to ensure the security of the experiments.

Experiment User Interface Design

Apart from creating the rigs, the maker must also create the user-interface for the

experiment. This interface must be able to automatically integrate into the RAL

system and deploy the programming paradigms along with the communication

protocol for experiment control.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

13

1.4 Scope of the Thesis

From the above discussions, it is clear that the P2P RAL research is multi-faceted and

has different levels. The broad focus of the thesis is RAL which is based on online

engineering principles. The proposed P2P RAL is a new type of RAL distinctly

different from the client server or the federated RAL architectures. P2P RAL itself has

multiple research aspects including its role in changing STEM education to include

the designing and making of experiments as opposed to only using experiments in

particular; the technologies to implement and use the P2P RAL; and the aspects of

making an experiment in the P2P RAL. Within the technologies for enabling the P2P

remote experiments in the RAL, there are two distinct but intertwined issues - the

control of an experiment and the underlying network. Within the control of the

experiments, three major issues will be addressed in turn with a strong technical focus

- evaluation, validation and guidance of the participants and the experiments in the

P2P RAL. These three issues are the core research issues in this thesis that enable the

P2P RAL to achieve its ultimate goals with respect to education.

Fig 1.5 The research aspects of the P2P RAL. The core contributions of this work are in the areas

depicted by the black leaf nodes of this tree.

14

 1.5 Summary of Contributions

The main contribution of the thesis with respect to RALs is the concept, design and

architecture of a distributed Peer-to-Peer RAL. In order to realize this architecture,

further research in the aspects of control systems with data mining and machine

learning led to the following major contributions in the technical aspects:

• Identifying and addressing issues regarding end node design with an

automaton based architecture that is directly implementable with

microcontrollers. The automaton provides a generic mathematical model of

the controllers and their communications.

• The generic model is then used to propose several technical methods to

analyse, support and enhance makers and user experience in a generic

platform that is applicable for multiple experiments to be created by makers

automatically. The generic model is also applicable to determine the

architecture of end nodes in many IoT applications as well.

• Methods to optimize network performance. Round trip time or latency using

clustering algorithms have been proposed. The latency is an important factor

to ensure a good user experience. A clustering based routing architecture that

can ensure availability of experiment related data when required in the P2P

RAL’s network system is proposed and validated through simulation. This

method may be applied in other IoT applications as well.

• The reduced and dynamic availability of experiments require a new scheduling

approach for users’ access to rigs. Thus a new RAL scheduling mechanism

based on availability of equipment is proposed.

• The P2P architecture has different aspects that can fail and affect user access

to the experiments. A method to measure reliability of components of rigs,

controllers and network is presented to determine the probability of failure of

an experiment. A basic form of the reliability measurement method could be

applied to determine the reliability of other IoT systems.

These contributions along with their role in the P2P RAL system are further discussed

Section 3.6.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

15

This thesis focuses mainly on the technical components such as algorithms and

network architecture to create the necessary tools to enable the users to create and

incorporate experiments into the P2P RAL system. A detailed study on the actual

impact of these tools is not within the scope of this thesis, although some user

experience results are reported proving usability of this architecture and its

components.

1.6 Thesis Outline

The remainder of the dissertation is organized in following chapters discussing and

addressing the individual aspects of the P2P RAL architecture:

Chapter 2 presents the literature review focused on the RAL and the IoT. It

provides the context and motivation for the new architecture. Specific literature

reviews that relate to individual research questions are discussed in relevant

chapters.

Chapter 3 provides the overarching description of the P2P RAL system. It outlines

the research questions, discusses how the solutions can work for P2P RAL and

how the different aspects of this thesis related to each other. It also states detailed

contributions of this dissertation.

Chapter 4 discusses the P2P control system architecture and it introduces a generic

experiment model.

Chapter 5 provides a comparative analysis of different hardware that can be used to

implement the generic model. It also introduces a prototype system based on the

model including discussions on the commands required and their performance

analysis.

Chapter 6 introduces an intelligent tool that enables the RLMS to validate

commands and support and evaluate user/maker performance or interactions with

the experiment.

Chapter 7 presents an extended intelligent tool for advanced evaluation of the

users’ interactions.

Chapter 8 presents a method to create an adaptive user interface with variable

16

interactivity based on the concept of experiment interactivity continuum which can

enable the RLMS to enhance the user-experiment interaction.

Chapter 9 introduces the networking architecture of the P2P RAL system. It

focuses on a model to evaluate average system latency and methods to improve the

quality of experience of users by minimising end-to-end delay.

Chapter 10 discusses reliability issues of IoT and P2P RAL systems. It addresses

how reliability can be measured in this context. A comparison between traditional

RALs systems and P2P RAL is discussed.

Chapter 11 provides details on how P2P RAL relates to STEM education along

with the RALfie instrumentation platform. Sample experiments are discussed and

feedback from user trials with the system is presented.

Chapter 12 investigates how augmented reality can be included in a P2P RAL

system. A set of generic tools are introduced that allow for simple augmentation

and are based on the generic model.

Chapter 13 presents a scheduling mechanism based on the unique properties of the

P2P RAL. This is necessary as experiment nodes are not available all the time and

some activities need to be completed in a predefined sequence.

Chapter 14 discusses the conclusions of this work.

The following chapter covers the related literature review in detail.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

17

2
Literature Review

This chapter discusses the current state of remote laboratories, their

components and effectiveness with respect to STEM education. It

also covers the Internet of Things and its influence on the RAL

architecture from a peer-to-peer perspective.

As stated in Section 1.4, the research presented here is multi-faceted. Thus, it is not

feasible to discuss a literature review encompassing all aspects of the research aspects

in this one chapter. This chapter focuses on two broad issues regarding the RALs that

provide the contexts and constraints of the research – nature of RALs and IoT. The

contents of this chapter lead to the formation of the research questions in the next

chapter.

The architecture and impact of RALs have been widely reported and investigated.

This chapter focuses on a detailed review of the RAL systems and establish their

suitability for STEM Education. First, the components of an experiment session with

respect to an RLMS are described. Some of the prominent RAL systems are analysed.

The literature review presented here is not exhaustive with respective to all aspects of

remote laboratories. Instead it focuses on the characteristics related to STEM

education and the characteristics addressed in this thesis. Third, remote laboratories

are compared with IoT to establish P2P RAL as an IoT system which lays the

foundation of the P2P RAL architecture.

The specific literature reviews of the different aspects addressing the research

questions are discussed in individual chapters.

18

2.1 Remote Access Laboratories

Within RALs there are traditionally two nodes: the server and the client. The user side

consists of the students engaging and learning from use of the experiment, with the

server side providing the experiment rig, as well as the experiment designers

responsible for designing, creating and maintaining the experiment designed to allow

experiential learning of concepts and learning materials. RLMS are responsible for

arbitrated interaction between all components and interfaces in the system. Typically

RLMSs have certain common components:

Scheduling: This aspect of RALs is well-investigated –in remote laboratories.

The scheduling aspect highlights the difference between on-site and remote

laboratories. Because online users are unaware of each other’s activities within a

system, interactions with the experiment hardware needs to be coordinated.

RLMSs have addressed this concept in different ways [34]. There are two

fundamental strategies used: queuing; and time-slotted booking [35]. In some

RAL systems where only brief interactions between users and rigs are required, a

reservation mechanism is used where users are presented with links to the

experiment on a first-come-first-serve basis.

Rig operations: An experimental rig typically consists of a group of devices or

instruments under local or remote computer control. The RLMS then makes

experiment requests of this system, both sending commands, and then receiving

collected data. This involves setting up a connection between these subsystems,

and following a particular format for data handshake exchange.

Network access: This is the communication link layer between the user interface

and the back-end instrumentation server for example HTTP or Remote Desktop

Protocols.

Multimedia tools/data about experiments: Any information system for e-

learning must provide documentation regarding the context of the experiment.

Many RLMS provide tools to view or analyse data obtained back from an

experiment. Often live video feedback is necessitated to observe in real-time the

feedback within the experiment. For certain types of experiments this visual

feedback may be an important or critical means of obtaining experimental data to

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

19

for example the mechanical and control theory laboratories.

Experiment user interface: Users interact with the experiment typically through

either a web browser, or a browser based thin-client, or in some cases a

standalone application [36]. These UIs allow the users to observe, interact and

control the test equipment, as well as acquire the data or results.

Accepting and processing user request: Experiments used for undergraduate and

graduate laboratories should have limited controls on the types of inputs that can

be accepted. As such, the system needs to prevent improper inputs from

damaging the equipment such as an electrical short circuit [12, 37] or high

excessive voltage on components. Hence the system should present both

corrective and limiting factors within the UI, and/or within the experiment. These

methods of protection has been referred to as a virtual fence [38].

User management: This is a fundamental block of any information system,

where critical information regarding the users is stored in central databases. User

details include courses, user groups and experiments they are required or eligible

to operate.

Some of the largest and most widely used RAL systems are studied and analysed for

different existing features because these have been developed and used for several

years for example iLab [9, 13] from MIT's Media Lab which was one of the first

RALs deployed, SAHARA [9] developed by a consortium of Universities through

Labshare in Australia and Weblab-Duesto [11].

2.1.1 System Architecture

The iLab has a three layered architecture called the iLab Shared Architecture (ISA).

Users connect with a service broker server, which in turn makes a connection with the

actual laboratory server. The system architecture is heavily dependent on web services

[9]. iLab has also been used to implement extensions such as iLab-MIT-Africa [38] in

African nations and some universities in Australia [14]. ISA is currently the architecture

employed by most laboratories globally. Experiments in iLab have been categorized into

three different delivery methods: batched, interactive and sensor [9]. Other RAL

systems offer more straight forward connections that follow a client-server

architecture, where all experiments were hosted at the centralised laboratories, and

20

accessed upon request by remote users. In this design, the lists of experiments are

stored by the central server, which is also responsible for other operational aspects

including running the RAL, scheduling, and operating the rig.

Recent developments in RLMS have moved towards grid architecture, but mostly

within partner institutions. A recent trend is the federation of remote laboratories

where the several institutions collaborate to share experiments. These institutions

possess the experiments including the hardware and the supplementary learning

materials which may not follow a standard in programming language or hardware.

Federated remote labs use a protocol among themselves to inter-connect the RLMS

and enable access to the experiments among each other. The federation approach of

inter-connecting labs [39]:

• enables transitive properties by allowing resource sharing in transition

• supports distributed load balancing by redirecting students to different remote

sites as per the network traffic at a given point of time

The federation allows large scale sharing of the instruments, but the experiments are

still part of the institutions’ domain. Unlike makers in the P2P RAL, these providers

are efficient producers while hosting experiments.

It has long been realized that due to resources being scattered throughout a geographic

area, a multi-tier distributed architecture has to be used to connect resources to allow

remote laboratory services [40-44]. Initial attempts were to create an efficient

brokerage between several physical labs across a wide geographic region. These

systems give the users a variety of experiments across multiple laboratories and

universities manage their local resources optimally [40].

Sharing laboratories has been suggested in [43] and a smooth interface between the

physical laboratories is said to be crucial to determine the extent of sharing. Labshare

and LiLa are collaborative projects of consortiums of laboratories that work in this

direction. A flexible architecture that connects and deploys hardware from different

physical laboratories into an experiment has been proposed in [42]. The main obstacle

identified was the service-oriented architecture (for example SOAP) which is difficult

to manage across heterogeneous networks and socket based communication is

suggested as an alternative. The problem of inter-hardware communication has been

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

21

eased with the advent of HTML5 and the new capabilities of JavaScript and

WebSockets [45]. These technologies can work in bidirectional full duplex mode and

in real-time.

In most cases distributed technology and resulting benefits are aimed at the service

model i.e. the universities, RAL developers and administrations. The overall

architecture of the system remains the same client/server where the user can only

view and perform a set of instructions and then acquire results.

Laboratory as a Service (LaaS) has been proposed that views laboratories as

independent component modules [46]. Recently, there have been attempts to

standardize the RAL command and data exchange based on this concept. The aim has

been to encapsulate the exchange of commands/data into a particular set of web

services or web based methods that can be incorporated for multiple experiment sites.

This aim of the approach is to enhance the federation architecture for RALs by

allowing a cloud based service provide LaaS [47-48]. These standards will make it

very easy for institutions to share their equipment.

However, in context of P2P RAL, the rigs are to be built by individuals and they must

be provided support in this regard. The standards of LaaS web services do not allow

ad hoc rigs to be controlled with a generic interface. The actual commands/data

exchanged for a specific experiment are often encapsulated in a higher level structure

such as XML preventing them to be seen by external sources or the governing RLMS.

This does not suit P2P RAL where the aim is to process the commands for

experiments and provide supporting tools accordingly.

Also, these are based on Web Services which are slow [49] and more importantly,

these rigs are not flexible enough and no universal approach is provided for students

to build them. These are an organized approach for sharing existing remote

laboratories among institutions. From a user’s point of view, the system architecture

remains in the service oriented model.

Web Instrumentation is the practice of controlling the actions of an instrument

through a network environment. This methodology is popular in RAL systems [50].

Web instruments use a set of web services associated with the components of the

instrument to operate them by calling the respective web service. This method is slow

22

as it initiates HTTP like connections procedure every time a web service is called and

also too complex, involving acute understanding of object-oriented programming,

creation of objects and attaching and mapping of methods. This makes it unsuitable to

be implemented by individuals, particularly students and school teachers.

The notion of devising a common hardware platform that is able to integrate multiple

experimental rigs potentially increasing collaboration between institutions and lower

design costs have been explored in [51]. This approach uses FPGAs based on the

IEEE1451.0 standard to attain a modular architecture for RAL. With respect to the

current context, drawbacks of this approach include the complexity and the use of a

separate micro-computer to intermediate between the user and the FPGA. The

proposed approach implements the control unit of the experimental rig as a 'ready-to-

go' component that can be directly plugged to the Internet. Personalized environments

can improve the learning experience of the users [52-53]. In [52] the monolithic user

interfaces such as the Java Applets are replaced by a set of even smaller applications -

the Web Widgets. This method allows the users to rearrange the UI as they wish.

However, this approach still does not allow the users to handle the actual rigs or

configure the instruments which are required in the context of this research project.

More recently, desktop sharing technologies have been used to share laboratory

experiments between users of different laboratories. A Relay Gateway Server (RGS)

architecture has been proposed in [54], where it is used for connectivity between

students, instructors, and experiments. The architecture consists of a publicly

accessible RGS which acts as an intermediary and pass information between the users

and the laboratory setups. In this system, the users conveniently access remote labs in

web-browsers using Java and Flash platforms.

The IEEE Networked Smart Learning Objects for Online Laboratories Working

Group (NSLOL WG) aims to develop an IEEE P1876™ standard for smart objects to

be used in Online Laboratories. The purpose of IEEE P1876 is to enable providers to

create remote laboratory experiments that have similar structural and operational

properties/capabilities. This in turn is expected for easy integration into larger

federated RAL systems. The P2P RAL follows a similar concept but needs to provide

more specific tools that can be used by 'individual' makers.

Whereas the systems discussed in this section allow experiment access via a common

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

23

portal and shared between institutions, these service oriented approaches are not

flexible enough to allow for individual experiments sites without extensive

infrastructure requirements.

2.1.2 Experiment Scheduling

There are two major methods of scheduling users: time slotting and queueing.

Combinations of these methods have also been proposed [16, 55]. Time scheduling is

directly related to the nature of the experiment in terms of how much time it takes to

complete one experimental activity event before the users have to provide further

input. Some experiments are dynamic and 'live', requiring constant vigilance on the

part of the user, whilst other activities may take a considerable amount of time to

operate after the user has provided a set of inputs.

2.1.3 Interactivity of Experiments

Based on the level of interactivity experiments can be divided into three types [9]:

interactive, batched and sensor experiments.

Interactive experiments take multiple inputs over a session and process them

immediately. An interactive experiment provides rich user experience and allows the

users to have greater control of the experimental rig. But due to the high rate of data

exchanged, these experiments are dependent on the condition of the network for good

user experience. Also ensuring the safety of the rigs becomes more difficult as it

requires real time monitoring of each commands coming from the user.

Batched experiments ideally take only one set of inputs in a particular session and

process them. The commands may not be executed immediately depending upon the

length of any queue for users. Batched experiments may take a considerable amount

of time to complete and usually generate large amounts of data [56]. Batched

experiments are safer to control as the commands need to be validated only once

when it has been issued and there is no need to execute it immediately.

Sensor experiments do not take any input from the user and are only about collecting

and analysing data.

Any proposed RAL architecture must address the issue of interactivity of the

experiments with respect to the nature of the experiments provided.

24

2.1.4 Deploying New Experiments

In all major RLMS new experiments are chosen by the administrators based on the

university curriculum and educational needs according to the subjects being taught.

The instruments used are typically of high cost featuring complex functions. Due to

the nature of the experiments, these systems have to be developed within the

laboratories of participating universities. The experiment configurations are generally

composed of several experimental apparatus operated by a high level language, and

typically involve a PC computer based controller. The user interface for the remote

laboratory is also typically created by the laboratory staff. The scheduling aspect is

easy to implement for instance as in the SAHARA software. These features allow

developers to implement their own laboratory management systems.

Some RAL hardware for example VISIR used in various RLMS, provide a

workbench environment and set of experiments, which is flexible but still limited to

the number of experiments that can be performed with the given restricted component

set [57].

2.1.5 Nature of Experiments

Remote access laboratories have been successfully used in teaching in fields from

education [58], business, nursing [59, 60], and geographic information systems [61] to

hydraulics and power engineering. This has been possible by extending the traditional

definition of remote laboratories from merely controlling hardware remotely to a

conceptual space of conducting experiments remotely [62].

Within iLab the experiments are varied in nature and maintained by different

laboratories at MIT with different experiment focus. The micro-electronics laboratory

for instance is the most prominent one. In addition to this, there are other laboratories

for control theory, circuits’ laboratory, micro-electronics and physics. All laboratories

are built with a key focus on the required laboratory experience for undergraduate and

graduate courses.

VISIR is restricted for use with analogue electronics basic experiments [63]. The UI

for experiments may feature considerable flexibility and intelligence. The users can

assemble and measure currents, voltage and other properties of serial and parallel

circuits. The environment can detect and immediately inform users making incorrect

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

25

connections such as short circuits. This increases the students understanding about

what can go wrong while designing a circuit. Although VISIR provides more definite

sets of experiments, it is restricted to core electrical and electronics education for

undergraduate students [63].

The experiments are all hosted at the university site and have been designed by

academics. Some RAL systems use the remote desktop sharing as an experiment

access paradigm where sessions are authenticated via a booking system that integrates

with the institutional LMS. It allows users to view the experiments and the interface

by directly transmitting the desktop image from the university servers to the user’s

desktop. A lot of different equipment can be run out-of-the-box using this approach

making it very easy to implement any experiment quickly without much expertise.

These systems use native programs of the rigs to operate them.

Traditional RALs often offer a static experiment environment with a fixed set of

experiments with students having limited operational control. There are few examples

of RAL experiments where the user plays a major role in deciding the design and

operation of the RAL rigs. For example, in [64] using remote laboratories that shares

equipment for research applications is described. It allows user defined programs for

controller in an automatic control laboratory. This still does not allow the students to

create the experiment setup. However, even if the students are able to reconfigure

some parts of one particular experiment, the list of experiments available remains

static for a given RAL system.

Go-Lab follows the federation approach of combining several online labs composed

of simulation, real equipment and data sets for large-scale use primarily in STEM

education [65-66]. The Go-Lab enables Enquiry-Based Learning (EBL) promoting

interest and learning of deep conceptual domain knowledge and inquiry skills which

are required in STEM education.

The Go-Lab is primarily focused on providing a rich educational experience in the

online learning system termed as inquiry learning space based on EBL methodologies.

It provides the pedagogical foundations of EBL in terms of RALs and corresponding

online tools that engages both teachers’ and students in creating digital material and

learning process of the concepts of STEM. However, Go-Lab largely ignores the

problem of providing any form of hands-on-experience which is vital for STEM

26

education. Hands-on-experience is the term used to refer to the skills acquired though

physically setting up any experiment before using them. The greater impact of 'hands-

on-experience' has been established in multiple cases [67]. Both in primary and

secondary schools, such options increase interest among the students in participating

in the activities. Many users and teachers regard it as a fundamental part of the

learning experience in STEM education [67].

Another difference between the proposed P2P RAL here and Go-Lab is that the

authentication of users into the system is the responsibility of the respective

institutions while in P2P RAL, the authentication is done with a single database in the

centralized global management.

2.1.6 Features and Trends of RLMS

Most laboratories have their origins in addressing problem of inaccessibility of

equipment (i.e. more students and limited instruments) including iLab, Netlab

(UniSA) and WebLab-Duesto. Some laboratories were developed to offer more

expensive and hence higher performance instruments than the ones being used in the

regular laboratories [9]. Later Labshare and LiLa were initiated to share resources

among different institutions in Australia and Europe [68]. Some RAL systems were

initiated to provide knowledge of the difference between simulated data and real

experimental data on a computer.

Further to the original aims of RALs, of providing access to the instruments over the

Internet, i.e. that users be able to access the instruments from their computers, several

innovative steps were introduced that can be used to enhance the student learning.

Co-operation between students in experiments: Operating experiments via the Internet

also allows for co-operation and collaboration between different students interacting,

watching or lurking within the same experiment simultaneously. All of the 3D

environments stated above already allow multiple users to access the experiment at a

given time. In these instances, the users are represented by their avatars. Should it be

desired, a multiuser interactive collaborative environment is required to allow

concurrent users to have control over the entire experiment simultaneously.

Collaboration skills can be acquired by conducting projects with an embedded remote

experiment and working as a part of a team. The RAL system NetLab gives students

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

27

the ability to form groups and negotiate time periods during which they can perform

an experiment as a group [69-71]. Collaboration refers to the practice of creating

small learning group of students where the group members actively support the

learning processes of each other. Each group member can have a different perspective

of the experiment and have different ideas for changing parameter to obtain the

accurate results [71]. While any one of them set the parameter and runs the

experiment, others can observe the result. Students feel the best utility of RALs is that

it gives the opportunity to perform experiments repeatedly [70].

This collaboration is however only while running experiments. The students do not

have the opportunity to the build the experiments together. The groups are focused on

a particular set of experiment and usually come from a specific cohort e.g. classmates

from a course. The P2P RAL aims to establish collaboration at a much higher level.

The participants are not only able to perform the experiment in collaboration but they

can also make it in collaborations. Also, one group of students can make something

and publish it on the internet which can be used by another group. This also includes

sharing the corresponding design of the experiments the program codes and any kind

of experiences.

Dynamic Components Assembly: VISIR system employs a relay based dynamic

circuit assembly system to allow students to build and test circuits during sessions by

using micro controllers through a computer server. The Netlab system also follows a

similar approach to connect several instruments together dynamically to form the

experiment. Other systems have implemented this technology [72].

Reconfigurable Laboratory Kit: One general drawback of RAL systems are that they

provide only a static set of experiments and the users never actually set them up.

There have been some efforts to create low-cost reconfigurable laboratory devices

that may be used by individuals to create and test experiments. An adaptable model of

remote laboratory platform that can be easily re-assembled/configured for electronics

laboratories allows large number of reconfigurations has been reported [73]. The

WebLab has also created one such device.

These features of dynamic assembly and reconfigurable components to create RAL

experiments are vital for the makers in a P2P RAL.

28

Lab on Mobile Platforms: Several RAL systems have tried and tested experiments

from mobile devices [74] like smartphones. Mobile Devices pose a problem of being

too compact and short on resources like Internet speed and computational power. So it

is difficult to recreate the same effects as that of a PC. Several technologies like SMS,

HTML5, Java and Adobe Flash have been used to implement different prototypes of

experiments, but this method of distribution is still not very popular and majority of

experiments are done through the PCs. This aspect of accessibility of the experiments

and the RAL interface in multiple platforms is important for any RAL system.

Virtual 3D Environment: Several RAL systems have used 3D interactive and

immersive environments to simulate the real world experience in the virtual world.

The RemoteElectlab (Porto) has presented a case study for accessing a digital multi-

meter through a 3D immersive environment [75]. iLab have created the TEALsim

system to provide interactive physics experiments on magnetism [76]. REXLab has

implemented a Young’s Modulus experiment in a 3D virtual laboratory environment

[77]. WebLab also introduced the most significant of these 3D systems, SecondLab,

which is based on the SecondLife virtual world environment [78].

2.1.7 Pedagogy

RALs have been traditionally seen as replicas of on-site laboratories and every effort

has been made to make these activities look exactly like traditional laboratory

experiments. Some RALs accurately replicate the actual instrument panels on the web

pages [69] while others use simplified interfaces and in some cases an enhanced

version of the experiment. For example in a 3D experiment interface that shows the

experiment action with additional simulated elements (the magnetic fields) otherwise

not possible in real laboratories [76] as a form of augmented laboratory reality.

However, as mentioned in [2], “It’s probably a safe bet that few, if any, engineering

programs implement remote labs for pedagogical reasons…” RALs usually do not

carry any additional pedagogical values. iLab and Labshare developers have studied

the factors affecting the convertibility of laboratories and experiments to RALs [9, 79-

80]. Students learning outcomes [81-82] with RALs have also been studied and found

to be adequate. Although there have been recent projects such as Go-Lab that have

deviated from providing the instruments only to a much more comprehensive

pedagogically driven RAL.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

29

2.1.8 Common Advantages of Centralised RAL systems

Traditional RAL systems have been successful for many years and the systems have

some key advantages. The experiments are designed with keeping a particular course

and curriculum in mind. In other words, the lists of experiments are equivalent to that

of an on-site laboratory. Since they are hosted by universities, there are qualified

personnel to maintain update, modify or add new experiments.

All of the leading RLMSs have been used for teaching at in several courses. Each one

has been used by more than a thousand students over several years. This suggests that

these laboratories have been successful in providing an alternative platform [2-3, 79].

Centralised RLMSs have good technical support and are available as and when

needed.

2.1.9 Characteristics of RLMS and their Suitability for STEM

While developers have improved and worked on different aspects of the RALs such

as user interface and experiment pedagogy, the core architecture has remained the

same.

The current trends for developing RALs allow only experienced and expert

developers to create an experiment. As a result, the experiment variety is limited and

concentrated in particular fields of higher education.

The instruments and devices used are mostly costly and complex to build and operate

[83]. They directly use industrial standards such as GPIB, LXI [84] and PXI to

connect the hardware to the computer servers. High performance software for

engineering such as LabVIEW, VEE and MATLAB are also widely used to

implement these experiment setups. Thus rig operation remains a matter of high

complexity in all RLMSs.

Laboratory management systems are predominantly client-server in nature. All users

need to log into a web address and provide user credentials to authorize access, select

an experiment before utilising it. Any grid technology implemented is essentially

limited to the server side of the architecture. The experiment configuration is also

centralised and maintained under high-end laboratory conditions. All laboratories are

designed to be operated for long periods and available to students all the time.

30

There is very limited scope for collaboration among students in different geographic

locations, and not typically available in RLMSs except for forums [10], although this

issue has been given importance in some systems [69,85-87]. There is also a trend to

incorporate 3D user interfaces for collaborative learning purposes [68-70]. There have

been multiple reports of 3D UI in various laboratories using different platforms, but it

is not clear how many students have used these systems, although the positive effects

on learning outcomes have been reported [77].

The experiments are mostly concentrated on providing for engineering courses in

undergraduate and graduate degrees. There appears to be little attention directed

towards school level science education, which is rapidly becoming an important area

for development using enquiry based learning methods.

The enquiry based learning methodology [88] in STEM requires students to analyse

problems and find solutions through the application of practical knowledge and

implementation to understand the concepts. As such there can be an infinite number

of different setups of rigs and devices that may be used for designing different

concepts. Moreover with the school systems, it is the teachers and students who are

closer to designing an experiment setup than experts who are already providing pre-

setup rigs. But, with the above stated features for creating new laboratories,

experiment setup is difficult for them.

There have been recent concerns on the slow adaption of remote laboratories with

teachers [89] for their students. Faculty resistance to incorporate new technology in

teaching and technical support issues have been cited as main reasons behind

underutilization of remote laboratory technologies. These reasons become more

prominent if the rigs that are supposed to be used by teachers are actually designed by

people other than themselves. Another study in Europe concludes that schools and

teachers are very interested in remote laboratories, but are unsure how to integrate

them into school curriculum [90]. This is mostly because they are incapable of

fulfilling computational requirements in RAL implementations and applying the

relevant pedagogical and technical concepts.

Since RALs are considered as extended on-site laboratories, their curriculum and

structure closely resembles the onsite laboratory. This is perfect for higher education

where experiments have a fixed nature and done with specific equipment. On the

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

31

other hand, in STEM education, while the list of objectives may be static, the physical

system on tends to be very flexible. The same kind of activity may be done with

various setups to understand the STEM concepts behind it. These setups need to be

built and used by students for effective learning.

2.1.10 The Peer-to-Peer Architecture

The proposed pedagogic solution for employing RAL experiments in STEM areas is a

distributed or P2P RAL system where participants may be both creators of

experiments (makers) or share them with others and be user of others’ experiments

(learners or simply users) creating more flexibility on the laboratory provider side.

School level children are capable of participating in this kind of activity as evident

from recent initiatives taken to incorporate RAL activities into schools such as the

robot-RALly project [27, 91]. A project with RAL at University of Southern

Queensland was used to create enquiry-based learning activities and facilitated

collaborative learning between elementary school children from Japan and Australia

[91]. The study indicated that such technology can thrive in school environment also

but will need transition from the client server to a peer to peer architecture where

students can directly interact with others and their experiments.

This change in architecture provides a potential solution to the incorporating STEM

and RAL, but requires a number of technical challenges to be resolved. The

fundamental challenge is the shift from a predominantly client-server RAL

architecture which is successful in terms of technical and operational capabilities to an

open ended architecture that would allow multiple users to participate in creating the

experiments. This may be done by drawing parallels between RAL systems and

Internet of Things applications.

2.2 Internet of Things

The Internet of Things [92-93] aims to create a network of regular objects used by

people in common everyday tasks with capabilities such as identification, sensing and

data processing. These objects (or devices) operate collectively over the Internet to

accomplish given objectives. By its very nature IoT applications rely on distributed

processing at least partially.

The IoT is composed of and dependent on a vast and heterogeneous set of objects,

32

each one of which provides certain specific information and functions. Each

instrument can be accessed through a particular set of instructions corresponding to its

platform.

For the over-arching application and its output interfaces to procure and display the

correct data there must be an abstraction layer capable of harmonizing the control of

each device in the system for example a common language [94] or a device must offer

discoverable services on a network.

The IoT is described as a convergence of three related areas [95]: The Internet and

how the devices such as personal computers, servers and mobile devices co-operate

with each other to exchange data. Things or small-embedded devices that are usually

capable of low level computing dedicated to a particular set of operations. Semantics

or the method to establish meaningful conclusion from a vast amount of gathered data

by parsing or analysing using computational techniques.

The advent of low cost micro-controller devices such as Arduino which are available

as consumer electronics devices has opened the door to a large number of possible

ways to create and configure the devices in IoT systems. These devices are not as

powerful as personal computers or even mobile devices, but their ability to operate

with multiple sensor and actuators makes them ideal for creating 'end-nodes' in an IoT

system. An end-node in the IoT system collects the data and sends to relevant

destinations for further processing. These devices are capable of connecting to

Internet and using full TCP/IP stack [93].

In this context the P2P RAL can be described as an IoT application with respect to the

communication and the end-node paradigms. However, where the P2P RAL adds or

improves upon the IoT is in the semantics by involving human user to a large extent

in parsing of data for learning purposes. It even requires the users to create and

dynamically add to the semantic processes of the IoT. The P2P RAL system is also a

changing or volatile system i.e. the end-nodes may not be continuously available for

service.

Normally, the interaction in RALs is one-to-one communication between the student

and the instrument. This is also true for P2P RAL, but there can be connection where

a single user may connect with multiple instruments at different sites (one-to-many)

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

33

and multiple users at different sites may share the same instruments (many-to-one).

However, the major focus of collaboration among STEM students is to work in a

group and to collect and analyse data. This is during the experiment setup phase and

subsequently in running the experiment locally and remotely. This can be achieved

with the technical implementations of both one-to-one and many-to-one. But from an

IoT perspective the connections will involves relatively fewer number of end-points.

2.2.1 Common Components of IoT Applications

Hardware: The hardware in a IoT is heterogeneous and run on various native

platforms and software. Many devices are based on RFID for tagging and location

estimation [93] of objects, or sensors and actuators to collect data and alter certain

physical system setups. The P2P RAL also has to enable the use of multiple devices

for the experiments controller. All of these devices must be able to communicate with

their corresponding learner nodes. These devices can be programmed to be smart i.e.

identify patterns in the incoming data and make decisions.

Middleware: Any IoT system is expected to operate on a vast numbers of devices with

heterogeneous interfaces. These generate enormous quantities of complex data. A

middleware is used to create a homogenous set of processed data streams from these

raw data from the IoT hardware which feeds to the overlying applications for users.

To enable exchange of ideas and experiment related design and experience data, a

middle ware is also required in the P2P RAL. This middle ware would essentially

convert the data from all the underlying devices into a common format such that the

makers or the learners can access the system with a uniform user interface for both

making and running experiments.

Search and Discovery: In a typical IoT system with a very large number of objects, it

is necessary to search for objects. Searching involves not only stable contents such as

identity of the objects but dynamic properties of the objects. It has been suggested that

special web browsers may aid in this operations. In case of P2P RAL, the number of

objects may not be very large, but the objects have variable properties and functions

depending upon what the owner of the object wants.

The Internet allows for the communication between devices. Some of the technologies

include RFID, Wireless Sensor Networks and ZigBee. The network between the

34

devices may be highly heterogeneous consisting multiple protocols and medium.

A cloud computing model based IoT system to share social devices has been proposed

in [96] which is part of the clouT project [97]. It provides a virtual execution

environment in a decentralized manner with high reliability without any space or time

constraints. This approach allows for easily reusing distributed IoT resources with an

enhanced homogenous service layer on top of their individual heterogeneous services.

Any consumer applications can be created by integrating those services and deploying

a package into a global service platform distributed in form of a cloud. This enables

secure exchange of data among the device connected to the cloud platform.

This work uses a three-layered architecture with a gateway as the middle layer. The

middle layer translates the heterogeneous services from the various IoT devices into

homogenous consumable web services as in REST or JSON format of data. These

data can then be consumed by the devices. Thus devices that would otherwise not be

able to communicate with each other can share data through the cloud based gateway.

A Semantic Gateway as Service (SGS) has been proposed to allow translation

between messaging protocols such as XMPP, CoAP and MQTT with multi-protocol

proxy architecture [98]. This also proposes to create a middleware to convert data to

be processed in a cloud based environment.

While the concept of a cloud based gateway for translation between heterogeneous

services is applicable for the P2P RAL as well, it is not suitable for translating the

service online in case of P2P RAL. The P2P RAL uses MCUs as the core of the

experiment rigs. Each MCUs as a part of an experiment can be programmed

differently. Thus the homogenous layers are individually software modules based on a

common algorithm that are placed on the experiment rigs instead of in a cloud based

environment. This allows for quicker processing of the commands as needed for

validation, evaluation and guidance.

2.2.2 IoT and Human

Recently, there has been effort to study the Human Computer Interface requirements

for IoT. Most research in IoT [99] is generally less concerned with what the hardware

components used are, but, more concerned on exactly how computing could be

incorporated into the objects. This approach is applied for RALs where the makers are

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

35

given the freedom to make anything using a large variety of objects. Although the

actual number of such objects is restricted for any practical purposes. Other studies

have focused on the ways humans can incorporate new objects in the IoT system with

least effort and error [99]. The connectivity between objects is also reported to impact

the way the IoT system will be designed and used [100].

Since IoT applications are created to operate discretely and do not require a core

centralised server, cloud computing principles can be easily applied for the IoT

Architectures. Also, the devices used in the IoT are usually available for a long

duration of time [93]. The application logic is not stored to operate on the external

interfaces visible to the outside environment, but stored in multiple nodes in the

system that communicate with each other and generate the data and operate the other

relevant nodes.

More recently integrating social networking concepts into IoT solutions has been

investigated [101]. It can support novel applications and networking services for the

IoT in more effective and efficient ways [101].This approach takes a non-traditional

view of Internet of Things (IoT) based on the concepts of opportunistic IoT. Instead

of connections between the physical devices in a global infrastructure only, it allows

for ad hoc, opportunistic networking of devices. The concepts of opportunistic IoT

closely tie the human element with the operations of the IoT devices. However, the

main focus of this work is data sharing that has a major impact on the underlying

service of the IoT systems concerned. The opportunistic IoT aims to send and share

data among suitable nodes in the network such that the information reaches the

correct nodes resulting in consumption of some resource that is represented by the

data. The end nodes for example smart phones or smart vehicles etc. are closely

related to their human owners who impact the sharing process.

In terms of P2P RAL, on a larger sociological context, human makers can impact the

learners with their presence in the system and change their practices in learning

STEM subjects. Also human users run the experiment and they must run it according

to some constraints set up in the experiment thus impacting their behaviour.

The most important concept that is also applicable in case of the P2P RAL is the

opportunistic or ad hoc communication between any pair of nodes. However, the

major aim of this thesis is to allow a direct one-to-one exchange of commands

36

between two node with an experimental rig at one and it's controller on the other end

and not data sharing based on personal devices such as mobile phones.

2.2.3 P2P RAL and IoT

RAL experiments based on IoT concepts have been developed before [102]. This

research focused on using Arduinos as controllers for an experiment that can facilitate

collaboration between different schools so that each can have access to laboratory

resources in the other. This work however, did not provide a peer-to-peer service

model for the RAL system or any generic model for the experiments that can have a

common programming platform. This work had a centralized approach where the

Arduinos were set up by experts for a fixed demonstration experiment and hosted in

the schools.

The Web of Things [103-104] is a newer concept that builds on the application layer

of the Internet of things. The Web of Things aims to use existing technologies into the

smart devices to create the web using web technologies i.e. Web Services or

WebSockets that are already available, instead of creating new low level protocols or

hardware for customized communication in IoT Systems. The advantage of WoT is

that it is easier to integrate into the existing Internet infrastructure with the need of

separate network capabilities.

In the Web of Things, smart devices could run web servers and provide and consume

services as any other fully capable computational device [103]. The functionalities of

the web servers will be limited to what is needed for the system. The P2P AL follows

this paradigm of IoT in particular. In P2P RAL, the MCUs provide the functionalities

of being the link between the users and the sensors and actuators. They can host web

servers and other tools to process incoming data which must follow the requirements

of the P2P RAL system.

In WoT resources or end-nodes can include physical objects such as temperature

sensors or abstract concepts such as collections of objects which must satisfy a

number of constraints [105]:

1. Resource identification by using unique strings such as URI

2. Uniform Interface with well-defined interaction semantics

3. Self-Describing Messages such as the XML or JSON that contains the

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

37

metadata along with the data

4. Hypermedia Driving Application State that allows the exploration of services

once the resource has been identified

5. Stateless Interaction requests as in HTTP.

Constraint 4 is not required or considered in the P2P RAL architecture. The MCUs or

experiment controller needs to have a static logical flow of operation for a given

experiment and all of it must be exposed through the P2P RLMS. The client in the

P2P RAL does not need to explore and find out about the services themselves.

The new P2P architecture requires several automated features in the RLMS in order to

aid the makers to create an experiment. This requires a generic model of the end

points in the system. This model of the two end-points one controller interface

(master) on the user side and one controller unit (slave) on the experiment side

requires a communication language that can be used to govern a wide range of

experiments. This communication language forms the new layer in semantics in terms

of IoT.

Thus the P2P RAL can be described as an IoT system due to the following

characteristics:

• Large number of devices interconnected to share data;

• Each devices being capable of collecting and processing data to at least some

extent;

• It is based on TCP/IP and devices are uniquely addressable; and

• It uses potentially intelligent devices capable of making decisions individually

and in groups.

However, there are also some unique aspects in the P2P RAL system as well. The P2P

RAL is designed to support human use i.e. directed towards human learning systems.

P2P RAL IoT incorporates two types of end-nodes - the experiment and the

participants (both makers and learners). The experiments are similar to any normal

node in IoT i.e. contains smart devices, but the user nodes are different. The user

nodes consist of a computing device such as PC or Mobile phones that runs the

experiment. The experiment is run from with an online environment accessible

through browser on the user node, which parses the human inputs to commands

38

suitable for the experiment. Hence the user nodes do not have sensors or actuators on

them, but still have to be smart enough to interpret the human user interaction.

The communications between the human and the nodes are segregated. Multiple

human users can connect to a single node and vice versa, but the ratio between human

user to devices i.e. the number of devices accessible to human users at a time is very

low compared to general approach IoT system.

2.3 Summary

RAL technologies have been largely confined to replicating the experience of on-site

laboratories. The focus has often been on the accuracy within a remote online

environment to maintain equivalent learning outcomes. These laboratories largely

focus on the fields of higher education, but lack the capability of infrastructure

support for STEM education and related physical activities. The resulting online

learning tools mainly aim to resolve the resource constraints of universities. STEM

education has other needs. Collaboration and hands-on experience of creating and

running experiments are key requirements. The current features of RAL systems are

complex and mark a barrier for individuals in schools with little experience in

networking, computer systems and instrumentation. By using newer web technologies

and the peer-to-peer access paradigm based on IoT principles of distributed network

of devices, RALs could provide much richer environments and experience for

students remotely interacting with experiments and collaborating in joint activities in

the context of STEM education.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

39

3
P2P Remote Access Laboratories – Research Questions

and Methodologies

This chapter presents a general description of the proposed P2P

architecture for RALs, the corresponding research questions and

methodologies.

The client-server architecture and different technologies that support RALs have been

previously investigated in detail [106, 107]. Hardware and RLMS are generally

hosted by universities. The RLMS is usually also responsible for authentication and

scheduling of users access. These systems employ the notion of a service provider that

provides experiments at the server side. This architecture allows for little operational

autonomy in regards to the physical location and the design of rigs. This limits the

pedagogies that can be employed in the remote laboratory space, as students are

generally not involved with the design of experiments [28, 108]. Many student

activities focus on outcomes, and experiments are used to collect results.

P2P RAL is a new concept introduced in this thesis that aims to enable students to

create their own experiments. Once an individual for example a STEM subject student

or teacher can create and share an experiment, other users can use that rig to learn.

They can also possibly modify on that design or create a new experiment based on the

available rigs. For experiments in STEM education, several students were involved in

a P2P approach of RAL in previous work, for example, Robot RAL-ly [108, 34, 49]

which has demonstrated the feasibility of an approach with users being able to setup

experiments. Thus the focus of this work is to develop tools to enable the students to

create these experiments using a common platform and share them through the

Internet.

40

This chapter first describes general experiment components in details in Section 3.1.

This section identifies unique components that are common to majority of the

experiments in RALs and relevant to the new P2P architecture. The notion of a

distributed remote laboratory system is discussed in Sections 3.2 along with two

unique strategies for control with respect to commands that are passed during the

experiment. This section also defines three major requirements of the RAL system

that needs to be applied in the new architectures as well. These three requirements

forms the basis of research in the next chapters. Section 3.3 describes the extended

Peer-to-Peer architecture based on the distributed RALs and their general properties.

Section 3.4 describes the two distinct activities of the P2P RAL - making an

experiment and running an experiment. The technical requirements and how they can

be addressed are described in Section 3.5 followed by the resultant research questions

in Section 3.6. The original contributions of the chapters are outlined in Sections 3.7

and the methodologies followed for the research in discussed in Section 3.8.

3.1 General Experiment Components

An experiment requires multiple components. In the context of this work, the main

components of an experiment are:

• Measurement Unit (MU);

• Controller Unit (CU);

• Remote Laboratory Management System (RLMS); and

• Controller Interface (CI).

Their relationship is shown in Figure 3.1. The user is depicted on the left hand side

accessing an experiment through the Internet. The MU encompasses the actual

experiment measurement and control instrument. It consists of a combination of

sensors and actuators that cause actions and collect experimental data. The MU

receives requests and responds with data or error information. The CU is the

component that connects the MU to the user of the activity through the RLMS. RAL

environments rely on the TCP/IP based Internet to establish connections between the

users and experiments. The CU is a networked computing device that hosts the

corresponding drivers to control the MU.

Experiment users control the system using the CI that contains Control Program Logic

(CPL) and user interface both created by the maker of the experiment. Commands to

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

41

the CU are issued in response to user interactions with the UI according to the

predetermined CPL. Any corresponding outputs from this interaction are generated by

the CU and returned to the CI. The RLMS stores the CI which is downloaded to the

client at the start of the session. It mediates between the CU and CI during run time

[28]. It also handles authentication, access control and scheduling of users. The CI is

provided by the creator of the experiment but run at the client site.

Undertaking an activity with an experiment involves the students interacting with the

UI and giving inputs which are then processed by the CPL to create commands for the

CU controlling the MU. Results are then returned to the UI. In relation to these

interactions, three critical aspects of implementing an activity include:

• validating commands to ensure safety of the experimental rig;

• evaluating student performance to ensure proper learning by determining

whether the users have performed certain acts and obtained the corresponding

results from the experimental setup; and

• enhancing user experience to ensure support is provided when needed.

3.2 The Notion of Distributed RALs

The distributed RALs aims to decentralise the location of the experimental resources

such as experiment hardware and learning materials. In a distributed RAL, multiple

experiments are available throughout geographically separated locations. Each

experiment is available for integration into multiple learning activities as required in a

given learning context. There can be two broad ways to implement distributed RALs

that we define as black box and white box approach.

For the black box approach the RAL systems and the control mechanism are

Figure 3.1. The RAL experiment components.

42

considered to be black boxes i.e. their internal mechanisms are not transparent. This

method is concerned with the end-to-end control functionalities. It does not focus on

the actual experiment control mechanisms. The RAL system is not concerned with

commands or their structure. Communication data is encapsulated and relayed

between the controller and the experiment. Experiment design and user inputs are

specified by the creators of the experiment.

The advantages of this approach are that it is simple to implement. Existing resources

can be easily geared to become available for integration into the RAL system.

However, it is assumed that the creators of experiment are able to implement the

common requirements including validation, evaluation and support. This limits the

number of experiment creators [109-110].

Go-Lab [111] and OnlineLabs4All [112] are two examples of Remote Laboratory

projects which may be regarded as largely following this black box approach. Go-

Labs provide an online environment to create a learning space customized to the

teacher using the system to create the experiment activity [109]. The learning contents

are presented in a customized manner and a set of tools to aid learning are provided

which the teacher can use to evaluate the learning outcomes. However, this process is

not automated and depends largely on the teacher creating the experiment activity. In

OnlineLabs4All a new approach is adopted in which queuing, lab data storage and

deployment are offered as a service for experiment owners, allowing the lab specific

part to be loosely coupled with the RLMS and lab server. An experiment must follow

a set of specifications set out by the RLMS for ensuring accessibility. These

specifications focus on checking availability, booking, passing on the messages for

control and results. The specifications do not govern the control of a given

experiment.

Using the white box approach (WBA) control mechanisms are at least partially

known, i.e. the structure of commands are fully known or can be derived from a

known set of rules. Learners in the system are encouraged to take responsibility for

creating experiments. Rigs are created by students for students. This enables wide

scale collaboration between participants. This approach enables the RAL system to

implement the requirements of the experiments automatically by analysing the

performance of the students with the experiments. This also allows for novice users to

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

43

become makers of experiments without having to learn in-depth programming and

automation skills.

The white box approach allows more hands-on-experience for learners who don't

possess the necessary skills. Once the participants have become used to creating rigs,

they may progress to a black box approach, whereby they can implement control

mechanisms beyond what the RAL system can deduce or provide support with.

The white box approach is the main focus of this dissertation, where the participants -

makers and users are considered absolute novices with very low experience and with

low quality resources at their disposal.

Figure 3.2 depicts a typical example of an experiment in WBA distributed RAL

system. There are two sides for communication in every experiment session - user and

the experiment. The RLMS establishes the connections between the two sides based

on certain predefined functions that are implemented in the experiment CU.

This research focuses on finding a generic control model for the CU (Y = F(c)) with

respect to a generic CI or user interface based on a fixed set of commands. The RLMS

defines the specific commands for a CU hardware. Typically, the commands are same

for every CU hardware, but implemented with different software depending upon the

actual hardware. This provides a universal set of basic commands. Obviously, more

complex commands may be created which are specific to a particular hardware or

even experiments derived from these basic commands. The experiment makers are not

required to have knowledge about the implementations of the basic commands on

hardware or the communication establishment between the nodes, all that is taken

Figure 3.2. The WBA command based RAL experiment architecture.. The same command library is

used to create the CPL in maker’s process and used by CI to send command to the CU in learner’s

process

44

care of by the RLMS.

However, as the RLMS is now aware about each command for the experimental rig, it

can automatically create a model of each individual experiment setup. The RLMS can

monitor the exact command that are being exchanged and determine the quality of the

session and provide the services of validation, evaluation and support automatically.

3.3 The Proposed Distributed Peer-to-Peer RAL

In this thesis, a new architecture namely the Peer-to-Peer architecture for distributed

RALs is introduced. This P2P approach follows the WBA i.e. support the participants

by monitoring commands.

The proposed distributed P2P RAL is a network controlled system driven by human

participation where the equipment and their users are distributed geographically. The

Internet is used as the medium of communication between users and the instruments.

The nature of the system is peer-to-peer, i.e. connections are established point-to-

point between users and experiments. Participants are responsible for creating and

managing experiments on the Internet. The distributed RAL system aims to

incorporate both experiments building and running experiments into the curriculum.

The entire system is to be run by users or the 'maker' community which includes

students as well. Once the maker has created and tested the equipment successfully,

the experiments are published online for others to access. The instruments at the

experiments side are operated from the Internet by the users.

Figure 3.3 shows the typical P2P RAL scenario with two end-nodes on the left and

right that are supervised by a cloud based repository and authentication system

(centre). This RLMS supporting the P2P RAL is responsible for creating the link

Figure 3.3. The distributed architecture of the proposed RAL system

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

45

between the users at the organisational, user and communication level. Such nodes

can be behind firewall and NATs and have variable network capabilities. Each end-

node is either an experiments rig consisting of all its parts i.e. the controller and rig

connected to the Internet or the user and the corresponding learning device, for

example, PC or mobile device connected to the Internet.

3.3.1 Differences between Centralised and P2P RAL

Typically RAL systems are catered using a centralised system [28], where experiment

rigs along with their CI are created and maintained by limited number of service

providers, such as universities. The CI, CPL, and UI are created specifically for a

particular rig and integrated into the RLMS by these providers. This allows for each

individual rig interface to be equipped with specific tools to monitor and validate the

interactions. One of the major shortcomings observed of many centralised RAL

systems [28] is the lack of direct hands-on-experience. The students are generally

provided with ready-made experiments for end use only. This is due to the high cost

and expertise required to construct traditional instrumentation experiments, and not

having a published RLMS protocol or flexible middleware.

In contrast, in the proposed P2P RAL system an ‘institution’ is no longer required to

conceive, build, or maintain experiment rigs. In this model, individual makers can

conceive, design and build experiments including the corresponding CPL/UI that can

be then used remotely by other users. However, unlike institutions, an individual

maker cannot include measures for monitoring and validation in their CPL/UI.

Individual makers, although hosting RAL experiments, are still consumers

of the RAL system unlike institutions.

In P2P RAL, makers start with only a small set of development tools (for example,

the communication protocol and the interface development tools) provided by the

RLMS. Makers then complete the experiment design through creation of the CPL and

UI for their rigs, thus allowing for varied open experimental sites. The RLMS, or its

administrators, have no direct control over the activity or experiment added to the

system.

As such, there are three general “roles” involved in P2P RAL:

46

• the administrators who are responsible for the RLMS features,

• the makers who design and build the experiment with the CU and MU (i.e. the

rig) along with the CPL and UI, and

• the users who interact with experiments for learning purposes

An individual maker is not expected to implement tools for evaluation, support,

commands validations or any other features that would otherwise be specifically

developed for each experiment if implemented by institutions. Thus the P2P RLMS

must be able to provide all these tools without the individual makers having to

implement it specifically. The P2P RLMS is just a supervisory unit that must monitor

and validate the user interactions with the instruments with universal tools based on a

generic model.

One distinct property of the P2P RAL is that the resources i.e. experiments are not

required to be ever-lasting as in a traditional RAL. On the contrary, several

participants can create experiments and then re-use the components to make another

experiment after some time. However, the tools of P2P RAL can enable teachers and

their students to create rigs that can be operating for a substantial amount of time,

before another group of new participants subsequently pick it up and create new rigs

for the same experiment, replacing the older ones in the P2P RAL system. Obviously,

a well-built rig may be kept online for a very long period of time if so desired. Thus

the P2P RAL provides great flexibility.

The differences between a centralized and a P2P RAL have been summarized in

Table 3.1.

Centralized RALs P2P RAL
All resources i.e. hardware and software
are concentrated at a particular place
and owned by a single entity.

Resources are distributed and owned by
individuals unknown to the RLMS.

Available for 24x7 Availability may or may not be 24x7

No Hands-on experience for setting up
the experiment

Full scope of hands-on experience for
setting up experience

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

47

Collaboration is limited and only
possible in running experiment in small
groups

Collaboration is possible in running an
experiments and in sharing the
experiment creation experience

The resources are expected to be ever-
lasting

The resources are not required to be
ever-lasting

No Re-usability of experiment
components

Wide scale re-usability of experiment
components is possible

No special support is needed Makers/Developers needs support while
constructing the experiments

All resources are available at a given
location, both in the network and
geographically

Resources are scattered over a large
geographic region and network
addresses must be allocated dynamically

3.3.2 Properties of the proposed Distributed P2P RAL

The proposed distributed P2P RAL approach aims to expand the one-to-many

approach, where a single or a collection of few central laboratories serves many users,

to a many-to-many approach with many users using multiple equipment setups

provided by different makers. In a distributed RAL, experiments are to be created and

hosted by individuals [113]. Users are all scattered in the network and anyone can

connect to anyone. In this model of RAL, the experiment module is no longer a part

of the RLMS as in a client-server model. This results in two types of modules, the

experiment modules containing the actual experimental setup including the hardware

and the software related to it and the user modules which remains the same as a

centralised RAL i.e. just using the interface of the experiment.

Designing an experiment will include assembling an equipment setup, programming

and run experiments locally and sharing the experiment with others by putting it on

the Internet. A distributed architecture has two characteristics: modularity and high

scalability.

A modular design consists of individual modules or entities, such that each of them

can operate independently as well as work together towards a larger goal. It allows

users to combine separate experiments to create the workbench without the need of

integrating it to a larger structure. In a modular design, new and improved

48

experiments setups that are built subsequently may replace older ones. It is not

necessary or expected that any of the experiments will be hosted for a long period of

time. This will enhance collaboration as several makers can work on individual

experiments at the same time, and then combining them together for a bigger project.

The experiments repository may extend without bounds with users adding their

creations to the system. New experiments could be directly added and made usable to

others students. This gives the creators full liberty on design and operational

paradigms. Any experiment can be added or removed from the system without having

to change the rest of the system.

Figure 3.4 shows the structure of the modular design with three modules and the data

that flows between them. The experiment modules and user modules are the two end

points in the architecture mediated by the RLMS. The user node goes through time

scheduling (for example, time slotted or queuing) with the RLMS. The experiment

node then authorizes the access at the appropriate time allowing the user node to start

issuing the instruction commands. These commands and the corresponding result data

are exchanged through a Virtual Private Network (VPN) or an underlying overlay

network as part of the RLMS on the Internet.

3.4 The process of creating and running experiments in the proposed P2P RAL

The P2P RAL contains two major roles – the makers and the learners. Figure 3.5

shows the making procedure in a P2P method. It needs to have the following steps:

i. Select: Selecting a STEM topic and looking through the RAL system if there

is any experiment of that nature.

Figure 3.4. The modular nature of the distributed RAL

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

49

ii. Create: Selecting a suitable CU hardware platform for the experiment. This

will depend upon the form factor, power capabilities and the number of types

of sensors and actuators it can handle.

iii. Program: Once the experiment is setup, it needs to be programmed. This must

be using a similar library for each experiment for enabling wide scale sharing.

The libraries are discrete set of basic commands that are provided by the

developers of the P2P RLMS protocols. The commands can then be used to

create the CPL and UI for each experiment specifically.

iv. Train: The maker can then train the experiment to create control models

specific to the experiments locally. These models can be used for the purpose

of validation, evaluation and support. The control model needs to be based on

a basic generic model that can be extended for any experiment. The training

may include several intelligent tools which are based on Markovs decision

process or clustering.

v. Publish: The maker then creates the experiment webpages with its descriptions

and aim and other learning related materials and publishes the experiment on

the internet. When published, the experiment hardware is uniquely identifiable

in the P2P RAL's network system with a set of links.

The technical aspects of enabling the Create, Program and Train phase with

appropriate tools and software are the main issues addressed in this thesis. This

includes:

Figure 3.5. The experiment creating procedure

50

• Analysis of suitable hardware platforms for the experiments.

• Analysing programming tools and characteristics and defining basic

commands

• Creating intelligent software tools based on Markovs Decision Process,

Clustering etc. to automatically analyse the user’s inputs.

Figure 3.6 shows the learners procedure for accessing the experiments. It is as

follows:

i. The learner logs in to the system and receives a list of online experiments and

selects that. The learner may book the experiments immediately or for a later

period of time.

ii. During the experiment session, the P2P RLMS authenticates the learner’s

node with the remote CU of the selected experiment. The RLMS then supplies

the CI common to all experiments and the CPL/UI and any other models or

learning materials specific to the particular experiment to the learner node.

The learner node then receives the links to the remote CU and starts to send

the commands to it.

iii. During a session, the commands can be monitored by the RLMS or in

particular the CI and associated tools on the learner node. The learner node

can use the models to identify any wrong commands that are passed and

evaluate the performance of the learner based on the inputs by comparing it

with the models.

Figure 3.6. The experiment running procedure

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

51

Figure 3.7 shows the process of creating experiments and using them with respect to

the internet. It shows the two different scenarios when the makers make the

experiment in the top half and the second scenario of users using the experiment in

the lower half. When the makers initially make the experiment they can use the local

network as LAN which will have negligible latency or they can use the P2P RAL

network which will have greater latency. The makers create the CPL specific for

experiment e1. While makers use the experiment the specific models for the

experiment based on Markovs Decision Process - MDP(e1) and clustering - Clt(e1)

can be created automatically and stored in the CU. When the remote users run the

experiment the global CI loads the CPL and the other models. The CI processes the

users’ inputs according to the CPL and sends the commands to the CI for the

experiment e1. This is always through the P2P RAL network on the internet. The CI

and CU can then collectively provide the services of validation, evaluation and

guidance based on the MDP and the clustering models.

The proposed method to create and use the MDP and Clustering algorithms assumes a

general network like the Internet as the medium. Thus the actual architecture of the

Figure 3.7. Maker and Learners in the P2P RAL

52

P2P network system does not disable the CI-CU command exchange. Obviously, the

better the structure of the P2P RAL network, with lower latency between the CI and

the CU, the higher the quality of learning experience.

3.5 Technical Requirements of the P2P RAL

The proposed P2P RAL system needs to meet the following technical challenges:

1. A generalized hardware base platform that is extendable to implement

multiple experimental rigs.

2. A generalized programming platform that build on top of the hardware which

can be used by students and teachers at schools.

3. A network of devices that can minimize the network latency to provide best

learning experience.

4. Allowing sharing of experiments among students maintaining system integrity

constraints such as reliability and availability.

5. Methods to measure the quality of learning experience and provide support to

students on the generalized hardware and software platform.

The first three requirements are addressed by using the proposed generic model and a

protocol presented in this thesis. This serves the needs of the distributed system at

various levels of communication routing, instrumentation programing and on-board

instruction exchange and execution. It is presented to the user in a transparent manner

and makers have no role in designing the overall system that enables communication

between end points. The proposed instrumentation tools may be structured in multiple

levels.

At the lowest level, it requires specifying the exact format of commands that are

exchanged between the devices and the user interfaces. Then, once the specifications

are established, it requires implementing flow control and queuing mechanisms of

messages with respect to the hardware capabilities in the P2P RAL system. Finally, it

must allow creating and supporting the actual thread of commands and co-ordinate the

input of the user and the output of the experiments online.

Apart from this, there needs to be search and discovery mechanisms as well as

optimised schemes for routing the commands and the data between the devices and

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

53

the user interface. As the P2P RAL is designed as an IoT system, the physical layer or

the communication medium can use a mixture of a variety of technologies. It is

considered that the system will use any such technologies available to connect to the

Internet such as Ethernet or Wi-Fi or some other technologies to communicate locally.

It may be noted that the underlying network architecture to enable Peer-to-Peer

remote experimentation, the actual network setup may be not a true P2P network.

Peer-to-Peer Systems can be defined at two levels - conceptual/service model and

implementations.

At a conceptual level a P2P system has multiple nodes that can connect to each other

in a stochastic manner. The system does not know when and which set of nodes will

communicate and for what purposes. The system must establish the communication

without any need for a service provider. However, in an implementation level it is not

always necessary to not have any centralized node. These centralized nodes are

transparent and provide minimal services in setting up the communication.

A true P2P system such as Chord, CAN, Tapestry etc. are both conceptually and

implementation wise P2P [114]. However, P2P mechanisms such as torrents use a

centralized model to implement the P2P system. Torrents have been widely classified

as P2P in the literature [17, 115-116]. There is a central node that helps with the initial

finding of the peers and authenticating them, but henceforth the communication is

P2P. The torrent servers essentially keep a list of peer nodes that hosts the

corresponding files. The reliability of such systems is guaranteed by keeping the

central node in the cloud and keeping parallel computers for it.

In a similar nature, the P2P RAL system is conceptually P2P as:

• From the P2P RLMS perspective, any two nodes can appear at any time they want

to connect to each other. The P2P RLMS must confirm that the nodes are

authenticated to do so and provide the communication links to each other. In case

of P2P RLMS it also provides some additional files only initially, which is part of

the authentication.

• Any two users of the systems, one maker and one learner can communicate ad hoc

without the need for the experiment hardware being hosted at a centralized

location. The maker and learner can communicate as they want.

The fourth requirement of ensuring availability can be ensured by new scheduling

54

mechanisms.

Finally, the last requirement of providing support to the makers/users is addressed

with an enhanced form of the smart devices paradigms [45]. This aspect of P2P RAL

is most important in context of the White Box Approach adopted in the RALfie

system. A set of tools in form of algorithms and procedure are described here which is

based on the generic description of the P2P RAL CI and CU.

3.6 Research Questions

Following on from the observations above, the following key research questions are

being addressed in this thesis:

Q1. What is the most suitable end-node architecture that incorporates:

a) Control of experiment rigs with transmission and execution of instructions in a

transparent manner (including flow control and queuing of instruction

messages)

b) A flexible architecture that can be used to implement several experiments that

adhere to the protocol a common hardware and software platform.

Q2. What are key intelligent tools required for the P2P RAL?

Q3. What are the key QoS parameters in the P2P RAL system design and how can

these be optimised?

Q4. What is the ideal scheduling scheme for peers given that access to resources is

limited in an RAL?

Q5. How can the usability and reliability of such a system be verified?

3.7 Contributions in Detail

To address the above research questions, a comprehensive research program was

undertaken. Figure 3.8 and 3.9 show the research aspects of developing the P2P RAL

architecture in more detail. It includes problems, corresponding solutions and the

contributions of this thesis. The core themes are shown in the black boxes and

detailed below.

i. End node design: The end nodes architecture describes the way an experiment

controller need to be constructed and how it should be communicated with.

The controller structure and the communication methods are used to establish

an environment to program multiple experiments.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

55

The contribution is a Finite State Automata (FSA) based architecture that is

directly implementable with MCUs such as Arduino, LEGO Mindstorms etc.

This architecture is termed as twin-FSA model. This type of end-node design

can be implemented as a generalized hardware platform. The automaton also

provides the basis of the programming language required to create the

experiments. It uses new and specific message formats and transmission

techniques to control these low-cost open source MCUs to control them

through a user interface, based on the underlying Peer-to-Peer network

architecture. This contribution addresses research question Q1 and is discussed

in Chapters 4 and 5.

Figure. 3.8. The research aspects of the P2P RAL system with regards to end-nodes architecture.

56

ii. Intelligent IDE Tools: The FSA model is extended to include smart

capabilities in the MCUs so that the experiments can themselves analyse,

support, validate and enhance users’ experience.

The new contributions include a clustering algorithm to analyse users’

interaction, a Markov Decision Process (MDP) model to validate and support

the users experience and objected identification and tagging procedures to

enhance users experience with augmented reality. With these tools the RAL

experiments can identify user's behaviour and support the learning. It can also

be used to make correct transitions in the rig to make them safe to operate.

This also helps in identifying certain usage patterns in the system. This

contribution relates to Q2 and is discussed in Chapters 6 – 8 and Chapter 12.

These new contributions are then implemented in a web-based platform as

described in Chapter 11.

iii. Network Performance: For RAL networking the Quality of Experience

(QoE) objective parameters is round trip time or latency. New clustering

algorithms are created in order to provide good quality learning experience.

They were tested with simulations in laboratory on computers to minimize

these parameters. This contribution addresses Q3 and discussed in Chapter 9.

Figure. 3.9. The research aspects of the P2P RAL system with regards to network, scheduling and Reliability.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

57

iv. Scheduling: A new scheduling algorithm for P2P RAL where availability is

not expected to be absolute and makers can take their experiments on and off

the system. This contribution corresponds to Q4 and discussed in Chapter 13.

v. Reliability: A method to measure the reliability of the P2P RAL system and

compare it to the centralised systems. This contribution is with regards to Q5

and discussed in Chapters 10.

The first two research aspects of end node design and intelligent tools are aimed at

creating the fundamental architecture of the P2P RAL system that can be used for

STEM Education. The other three are for enhancing the performance and additional

features of the basic P2P RAL architecture.

3.8 Methodologies

Evidently, answering each research question requires in-depth literature review into

the state of research in each corresponding fields of machine learning, data mining,

reliability theory and enquiry based learning in STEM education to formulate the

solutions or new contributions of the thesis that help the P2P RAL. As such, each

Chapter addresses a unique aspect of the P2P RAL. The literature review

corresponding to each research aspect e.g. machine learning, data mining and STEM

education have been discussed at the beginning in Chapters 4, 6-13.

Certain QoE Parameters for end-nodes that are subjective, including user-friendliness

of the UI, the number and types of devices supported and the performance of the

devices were evaluated on the user feedback and from device logs. Note that the aim

is to prove the usability of the architecture rather than measure the real impact of the

tools. The three main methodologies that were used include mathematical modelling,

simulations and test-bed implementations for testing network performance,

scheduling and intelligent tools.

The main original contributions of this thesis are

• A number of Algorithms 6.1, 6.2 for performance evaluation and

validation, Algorithm 7.1 and 9.1 for clustering, and Algorithm 13.1 for

scheduling.

• the CI-CU model and corresponding performance analysis of MCUs

58

The following table summarizes the broad method of obtaining and analysing the

results for the above:

Contributions Validation and Testing
methodology Purpose

Algorithms 6.1, 6.2 Testbed Implementations
and Simulation

Intelligent tool for validation
and support based on MDP

Algorithm 7.1 Testbed Implementations
Intelligent tool for advance
evaluation based on
clustering

Algorithm 13.1 Simulation Only
Scheduling algorithm for
creating time reservation for
users

Algorithm 9.1 Simulation Only
Clustering algorithm to
determine Nano Data Centre
sites

Performance
analysis of MCUs Testbed Implementations

Testing the suitability of the
MCUs as the CUs of the CI-
CU model

There is no global data collection. All of these algorithms have been tested by writing

computer programs and testing them with relevant hardware. In each Chapter 5-10

and Chapter 12-13 a dedicated section states the testing conditions or methodologies

used to obtain the results. The test setups are different for each chapter and in some

cases it is simulations while others used actual experimental setups.

User interviews are also recorded and analysed to establish the usability of the system.

The conditions for such interviews and associated activities are mentioned in Chapter

11.

It may be noted that while some of the questions are RAL specific (for e.g. Q4 about

scheduling) as they are driven by the impact of interaction between the human and

machines, other questions are applicable in larger context of IoT. In case of reliability

measurement, the process includes human factor, but excluding that makes it more

general to IoT application. Similarly, the network setup and communication routing

can also be used in other relevant IoT applications. However, the design for

experiment control is largely based on RAL and apart from the basic automation

architecture; other contributions regarding intelligence and evaluation are RAL

specific.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

59

4
Peer-to-Peer Control System Architecture

This chapter presents an automaton-based model of the

experiment and a communication protocol that can be used to

control the experiment remotely.

The P2P RAL architecture aims to increase flexibility in designing new experiments

by enabling users to create their own rigs. This involves the control aspects as well as

the user interface design. In order to implement a P2P RAL system, a suitable

hardware platform must be used to create rigs that are robust, network capable as well

as easy to use. Once designed, the rigs have to be programmed to communicate with

the system and accept commands and send results, which then have to be mapped to a

particular user interface. These core technical aspects of P2P RAL control system

provide the context of this chapter. It presents a modular peer-to-peer architecture for

distributed RAL instrumentation and control where any user or any experiment can be

joined or removed at the users’ discretion. The design of the RAL system is centred

around the use of micro-controller units as the key motion control and decision

making component in an experiment rig.

Each RAL experiment conceptually consists of two node types: a master, the CI at the

client side and a slave, the CU on the rig. Both are connected through the Internet.

The challenge is to develop and deploy an overall supervisory unit that governs the

multiple master-slave node combinations. While the supervisory unit is not aware of

node properties or operational capabilities, it is required to provide access control and

authentication across entire the system. Thus it is necessary to develop a generic

model for a CI-CU pair that enables the supervisory system to monitor and validate

60

the interaction between each of these pairs.

The major contribution of this chapter is this CI-CU model that allows the

construction of a common web-based platform acting as flexible middleware [117],

implementing uniform control method for heterogeneous hardware [118]. While the

model is generic and useful for various IoT applications, the focus here is specifically

on the application to a P2P RAL system exploiting these advantages. It can be

adapted for any distributed network controlled and monitoring system for example,

home automation and other IoT Applications.

The RAL experiments can be described as a Discrete Event System (DES) that

consists of two Finite State Automata or Machines (FSA or FSM): S as the Controller

Interface and Y as the Controller Unit operating in unison. It presents a generic and

flexible model of the experiment rigs, and the language utilized by the two FSAs,

which forms the foundation of the web-based platform, the communication protocol

and the CPL required to operate the rigs. Low cost Micro-Controller Units (MCU) for

example, Arduino etc. are the ideal CU for P2P RAL and the proposed architecture

may also be useful for other MCU based applications. Different configurations of the

rigs to achieve this modular distributed architecture are presented. The feasibility of

existing electronics devices to realize this framework is also discussed.

The usage scenario of P2P RAL is discussed in Section 4.1 and literature review

covering different controller and control technologies are discussed in Sections 4.2

and 4.3. The proposed generic model for experiments is described in Sections 4.4 to

4.7.

4.1 Usage Scenario of P2P RAL

P2P RAL aims to enable makers with limited expertise to progressively create their

own experimental setups with low cost components. This can include repeated

attempts, and possibly in collaboration with peers [118-119]. The P2P RLMS is the

supervisory unit in terms of IoT that must monitor and validate the user interactions

with the instruments with universal tools based on the CI-CU model. It provides

search and discovery of active online experiments, data storage [118] along with the

generic web-based platform in which makers can start their development.

Communication is done through a VPN [108] or overlay network, which provides

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

61

connectivity between learner nodes and maker experimental rigs. The CPL/UI created

by the individual makers are then stored alongside the experiment details in a

repository in the RLMS.

In use, the process of creating and sharing experiments for P2P RAL is similar to the

centralised RALs. It involves three steps of assembling, programming and publishing.

First, the makers assemble a rig consisting of sensors and actuators. Each sensor and

actuator is connected to the Controller Unit that is mapped to a unique identifier.

Secondly, the makers create a user interface and corresponding Control Program

Logic i.e. the CI that would drive the experiment based on the user's inputs in the UI.

Finally, once the makers are satisfied with the construction and operation of the rig, it

can be published i.e. made available to users on the Internet.

When the experiment is accessed, the CPL and UI created by the maker is

downloaded to the user device and run in the CI. Each experiment operates in a one-

to-one communication mode. But for P2P RAL there are two main issues of

experiment control.

First, different makers come from unknown technical backgrounds and may be unable

to create an interface without a standardized mode of communication and CPL/UI

design. A uniform web-based platform allows uniformity in the design of interfaces,

which is important in an educational setting.

Secondly, when defining a generic web based platform, there has to be sufficient

flexibility to enable makers to host various types of rigs. Flexibility can be ensured if

the protocol can support a control system with the least restrictions.

This context of a decentralised RLMS in a P2P RAL leads to two constraints for the

development of the generic model. First, The operation of the CU cannot be specific

for individual experiments. It has to be on a generic open platform. Secondly, the

paradigms for experiment control must be independent of the CU platform. As such,

only a small set of commands should be defined and executed by all CUs.

The CI can be created and run on any platform as long as it is able to address and

follow those paradigms. The P2P RAL, instead of a single remote controller with

single control equipment, requires a CI - CU model that is flexible enough to control

open-ended experiment designs in multiple configurations with multiple actuators and

62

sensors.

It may be noted that the generic CI/CU model presented here is also applicable in case

of a centralised RAL, provided it conforms to the model described here. However the

model is important in context of P2P RAL as a universal set of features based on the

generic model are required to create a platform-independent CPL/UI. These features

enable the RLMS to support various user-experience and performance-related

functions such as activity evaluation, validation and guidance.

These features can be specifically implemented for each centralised RAL experiment,

but in a P2P RAL the makers are expected to focus more on the experiment’s creative

learning objectives rather than the automation overhead with regards to user-

experience related issues while creating a rig. Thus a universal set of RLMS tools can

enable the makers to design and construct the rig, CPL and UI with minimum

deliberation. Also the RLMS can monitor step into any experiment session when

required to support or enhance user-experience.

Also in a centralised RAL, portability of CI design is very poor between different

systems. The federated RAL systems only allow simple access of the same

experiments across different lab systems but no way to share the CPL/UI [120]. The

P2P RAL's tools based on the generic model can enable wide-scale sharing and

collaboration among the users and makers.

The particular pedagogical needs for a P2P RAL are to share experiments and

consequently enhance collaboration in order to increase student’s interest in STEM

are based on sociological factors [121] which are discussed in Chapter 11 in details.

4.2 Related Work – Hardware and Architecture

This section discusses the related literature on various hardware platforms available

for remote instrumentation.

Remote Instrumentation and Grids

Grid computing is the collection of resources at several locations that work towards a

common goal. Unlike distributed systems these are loosely coupled i.e. they share no

knowledge about other separate resources in the grid. They mainly address the

requirements related to computational power and data storage for computer based

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

63

applications. Recently instruments have been incorporated as a resource in such grids

to enable grid instrumentation. A grid based RAL architecture has been proposed by

[41]. It incorporated a three tier setup - an internal serial remote lab bus connecting

Web-based control units and all other physical components, a bus protection unit to

authorize access to control units and a protection unit to check the validity of the

commands executed to protect the instruments.

Grid based network resource allocation optimized for quality of services parameters

for remote instrumentation has been implemented in [122]. The GRIDCC [122]

project has used simple, straightforward procedures for adoption of the grid

technologies to run instruments remotely. Instruments are represented in the

architecture as an abstract format called Instrument Elements (IE). IE details are

stored in a centralised information system. It uses the web services methods to

communicate between the sites. The instrument element design has also been used in

[123124] to describe a standards-compliant model for the representation of

instruments in a grid and for booking of instruments in advance (time-booking) or

immediately (queue). However, grids are complex to build and maintain. Grids are

also more static in structure and topology throughout their operational period.

Moreover the proposed distributed RAL system needs to operate between independent

and dynamic users directly. This is difficult to realize with a grid system.

Remote Control for Reconfigurable rigs

Programmable Logic Controllers (PLC) have been integrated with the SCADA

(Supervisory Control and Data Acquisition) system, usually used for automation of

manufacturing to create a highly reconfigurable RAL architecture [125, 126]. SCADA

is usually designed for monitoring and control of industrial equipment and hence not

suitable for peer-to-peer remote control. It requires expensive components and

complex setup mechanisms that are unfit for experimental setups for the target users.

However, the basic concept of SCADA for decentralised control system such as data

acquisition, communication and presentation are applicable here as well. A multi-

tiered RAL architecture consisting of remote users using web browsers, a central web

server and regional experiment servers with control units is discussed in [127]. But

these do not support creating rigs at the user end.

Radio Frequency (RF) based components and communication techniques for

64

monitoring and control system using micro-controller units has been proposed in

[128]. This system focuses on ensuring a low traffic between nodes to increase

efficiency. This system is however an automation system, built on components based

on close proximity using RF which is different from the peer-to-peer remote control

through the Internet. Another example of reconfigurable rigs is presented in [129]

where household robots fitted with microcontrollers and sensors are adapted to be

used for RAL. A WEB Micro-server has been developed by RExLab [130] targeted

for mobile learning. Its functionalities can be expanded to monitor and control other

devices. This however requires other devices to be controlled and lacks the support

for being a controlled experiment rig by itself.

Thus it can be concluded that multiple ways of creating controllers for instruments

and experiments have been successfully implemented previously. For the P2P RAL

for STEM education, the controller of the experiment needs to be modelled with a

generic architecture which may be implemented with multiple types of controller

types as described above.

4.3 Related Work – Remote Control Technologies

This section discusses existing motion control technologies and industrial protocols

used in automation to ascertain the required characteristics of the P2P RAL CI-CU

generic model.

4.3.1 Existing Examples in RAL

A rapid remote experiment implementation platform has been discussed in [131]. The

solution uses an embedded controller, MATLAB/Simulink for creating the

experiment control algorithm and LabVIEW for the user interface. This combination

of software and hardware allows quick and easy deployment of various interactive

remote control experiments. However, these use LabVIEW and MATLAB to control

a single type of controller. As the distributed P2P RAL is consumer driven, it should

be able to use multiple controllers.

A smart-device-based approach to empower the clients side has been presented in [45]

where the aim is to make the remote 'smart device' ubiquitous and autonomous. It

outlines the requirements and characteristics of using such devices in RALs. The

minimal requirements of the smart device paradigm are also incorporated here,

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

65

namely ‘state measurement’ in form of READ instructions and ‘state control’ in form

of WRITE instructions. However, the described approach in [45] does not incorporate

the paradigms into a common web-based platform for all users and experiments.

4.3.2 Industrial Protocols

There are existing standardized instrument control protocols like LAN extension for

Instrumentation (LXI) and Common Industrial Protocols that contains Control Area

Network Bus (CAN) [132-133], Highway Addressable Remote Transducer Protocol

(HART) [134], Ethernet/IP [135]. However these are not usable for a distributed

remote laboratory with individual users as:

• Either these technologies are not based on the TCP/IP protocol (such as CAN and

HART) which is needed to connect through the Internet or the MCUs are not

compliant with them (such as LXI and Ethernet/IP).

• They are platform and hardware specific and require specialized compliant

hardware for operation. Hence they are mostly used by industries and limited in

educational uses. For example, Agilent devices are compliant with GPIB and

LXI are widely used in RALs, but it is costly to interface it with the Internet.

• They are constructed as client-server application and not optimized for Internet

based peer-to-peer operations. The topologies supported by these protocols are

not ideal for P2P communications through the web and thus not suitable for the

modular architecture of a distributed RAL.

However, the characteristics of these are similar in that they advocate transmitting the

smallest amount of information in the quickest time possible, use frame or packets to

encode this information, and support a fixed but large number of commands that are

passed in the frames/packets and understood and executed at the instruments end.

These are not suitable for operating ‘ad-hoc’ rigs with both motion control and

decision making elements, created by individuals with MCUs over the Internet. As the

distributed RAL operates on the Internet, many of the features that are reliable in in

localized implementation, such as the periodic clock synchronizations, are not

effective.

66

4.3.3 Motion Description Languages and TeleRobotics

Motion Description Languages (MDL and MDLe) [136] give context free grammar

that can be used to control continuous systems such as robots using a set of atomic

behaviours, timers, and events. This approach works with self-autonomous robotic

systems without human intervention and input. This language uses an atomic

instruction σ = (u, ξ, T), that applies a input u to the robot until there is no

interruption (ξ = 1) or the Time period T is expired. This process of unit instruction is

effective for MCUs in RALs. Context Free Grammar (CFG) has been used to describe

the motion of robots [137] where the CFG is used to model provably correct

controllers for hybrid dynamical systems with context-free discrete dynamics,

nonlinear continuous dynamics, and nonlinear state partitioning. The advantages of

using such automata based grammar is that it provides a balance between

representative power i.e. to explicitly describe the motion of the robot and

computational efficiency. It allows the users to create a generalized architecture that

can generate multiple varieties of controllers and robotic apparatus. These can be used

to design variable controllers, but P2P RAL requires a specific design that can be used

to represent multiple controllers without changing the grammar.

Tele-robotics deals with the control of semi-autonomous robots from remote locations

[138,139]. P2P RAL follows the tele-robotics principles and uses the Internet as a

medium of communication to exchange control commands. In the P2P RAL humans

control experiment rigs based on the sensor inputs from it. In [139] it is shown that

the variables associated with teleoperation such as the quality of teleoperator interface

and network quality may seriously affect the telerobotic operations and system

performance even if a stable system is obtained and maintained, hence the importance

of uniformity in CI design and quality. Also, the issues of security and reliability in

industrial robotics can be traded off against flexibility in design for P2P RAL.

This work focuses only on tools and methodologies for experiment design in a

distributed RAL architecture with its different possible configurations and investigate

the usability of the suitable devices (MCUs) using a message based protocol for

communication to implement these peer-to-peer arrangements. MCUs are proposed to

be used as the fundamental building block in experimental rigs as well as core control

components of the real-time system where the remote instruments must respond to all

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

67

users' input within a given deadline.

4.3.4 Standardization and messaging protocol for distributed control

Standardization efforts have been made for Internet-based distributed measurement

and control (DMC) system before [140]. This has been incorporated into the IEEE

1451 smart Transducer Interface standards. The sensors or actuators developed with

IEEE 1451 standard have a physical memory chip component in the device. This

memory chip enables self-identification with stored information such as manufacture

name, identification number, device type, serial number, etc.,. It may also contain

calibration data depending upon the device. This information is referred to as the

transducer electronic data sheet (TEDS) which can be upgraded in the system.

In context of P2P RAL however, the experiments needs to be setup by individual

users with basic components that may not have any common structure for

information. The makers who construct the experiments are not expected to create

similar data sheets. The IEEE 1451 does not provides a generic control systems model

of the transducers and it will be difficult to maintain a standard common interface to

the programming interfaces for the RAL experiments at the makers site with different

hardware. This is because even if the hardware follows the IEEE 1451 they do not

have the common set of commands which is vital for educational purposes is it is to

be incorporated into a curriculum for teaching and sharing the experiments. This also

prevents the RLMS to identify the commands and provide automatic analysis and

services based on the learners’ inputs as required by the P2P RAL.

A platform based on the Extensible Messaging and Presence Protocol (XMPP)

has been proposed in [141] with the aim of development and provision of services

for highly distributed infrastructures with heterogeneous devices. XMPP was

proposed as a suitable protocol to provide real-time communication. XMPP is XML

based protocol for fast and efficient exchange of data between devices. The XMPP

has gained wide acceptance as communication protocol in the IoT systems [141-142].

It has been standardized by the IETF and several computer languages incorporate the

XMPP protocol stack [rfc6120]. An IoT like architecture had been suggested as a

possible future direction for large scale deployment of RALs [143]. This was based on

the idea of using XMPP to exchange commands and data. Although XMPP has not

been widely used for RALs yet, the proposed idea of encapsulating the commands and

68

data for inter-communication between labs have been used in federated type lab

infrastructure [144]. Also, IoT Systems with private/public IP systems using XMPP

has been proposed for IoT Systems [142]. This means that a device does not have to

possess unique public IP address on the Internet. As long as it is directly addressable

with a unique URI (web link) and specific commands can be send to it, a device can

be part of an IoT system.

The concept of having a message based middleware is used in context of P2P RAL as

well. However, XMPP is primarily designed for exchanging message which has been

customized for several IoT applications [141-142]. The P2P RAL on the other hand

requires a messaging system that can be used to handle a generic control system that

can be extended to various experimental rigs. It requires semantics that can be used

for controlling a robotic apparatus based on the generic model and that can be further

processed for validation and evaluation purposes.

4.3.5 Automaton and DES Controllers

Automaton has been previously used to express control systems. An evolutionary

methodology to automatically generate Finite State Automata (FSA) controllers to

control hybrid systems has been proposed in [145]. The transitions are described as

specifying the new states corresponding to the input. This approach however, requires

training periods to find optimal controller policies and also requires the developers to

accurately create the bond graphs of the rigs.

The states of a mechanical system have been analysed in symbols/language generated

in automaton form in [146] for finding erroneous behaviour. In [147], a discrete-

event-type controller is proposed to meet particular specifications, designed as FSA

and implemented on FPGA platform is reported. FSAs have been shown to have the

greatest potential for sequential DES control. Supervisory Control Systems (SCT) is

used to control DESs and make sure that the performance is in accordance with

specified expectations [148]. The DES is described as an automaton process,

𝔜𝑥 = (𝑋, 𝛴𝛬, 𝛿, 𝑞0, 𝑋𝑚) … 4.1

in the uncontrolled model, where X are various states of the system and Xm is a

marked or final acceptable state i.e. end of a given task. 𝛴𝔜 covers all the events that

are possible in the system. q0 ∈ X is the initial state and δ is a partial transition

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

69

function. Whilst this automaton is able to capture a flexible description for an

experimental rig in the P2P RAL, it can have a controller only if the parameters for δ

are known. For P2P RAL, the final capabilities for design of an experiment setup are

uncontrolled as the users may design activities with greatly varying capacities and

functions.

Thus, the specific characteristics that need to be associated with the P2P RAL

protocol may be summarised as:

• The experimental rigs must be designed around a controller capable of

following the smart device paradigms [45].

• Commands must be precise and short. They must be atomic to ensure best

control capabilities as seen in case of MDL/MDLe and industrial protocol.

• Automatons are a suitable structure to model the components of the rig [146]

and it’s controller which may be used to describe flexible experimental rigs as

in SCT.

4.4 Proposed Automaton Based Experiment Control Model

Educational experiments within both RALs and P2P RAL environments can be

modelled as DES with the two sides - the CI and the CU. The human at the CI (or S)

generates action which in-turn generates discrete events at the CI causing its state to

change, which is propagated to the CU (or Y). The CU responds with a change of its

state and a corresponding message to the CI. The experiments are DES as:

• The state space of the experimental rig is a function of a finite set of

variables (the actuators or sensors). Thus the state space is a discrete and

finite set.

• User interactions with the system lead to transitions in state space i.e. it is

event-driven.

Unlike a centralised RAL system, where the makers specifically integrate the

experiment with the RLMS using typically customized software and hardware

components, P2P RAL makers do not necessarily take such measures themselves and

the integration is required to be automatic. Thus from the perspective of a P2P RLMS,

70

the δ (in Equation 4.1) is unknown for any experiment. The goal is to define a set of

symbols Σ (= ΣS ∪ ΣY) such that Σ may be used in any S or Y and the number of

symbols (i.e. commands) in Σ is minimum and finite.

This is achieved by describing both S and Y as two automata that share a language

L(Σ) with common symbols and strings. A change of state in either of the two is

reflected in the other. The changes start with S where the human user starts the

session. This leads to a generalized architecture for CI and a working model for CU

that can be used to create human controlled semi-autonomous electro-mechanical rigs.

The language accepted by both for the communication can produce varying levels of

flexibility and complexity in rigs.

The basic system architecture is depicted in Figure 4.1. It shows the two components

CI and CU are two automata connected through a network and have the queues J and

K. The output of an automaton is placed in its corresponding queue (CI → J & CU →

K). This forms the input for the other automaton. The two automatons are depended

on each other although both of them are separate, hence the new proposed name twin-

finite state automata.

A set of ports (R) are variables in S and Y and identical in both. Each port corresponds

to an actuator or sensor address on the CU. The change in any port will change the

state of the rig and the CI. Any combination of the port values is part of the

experimental rigs state space. The ports used for control on the CU act as variables in

the CI. The CI changes the state of an actuator variable (x ∈ R) that is reflected in the

state of the rig and queries on the state of a senor to get its value. There is also a stack

ɷ associated with the CU that stores successfully executed commands.

A command is the message sent from the CI to CU. Commands contains instructions

are executed on the CU. A command may be composite i.e. perform multiple

functions with multiple instructions or it is atomic, i.e. it performs only one function

with a single instruction. An atomic command consists of one atomic instruction. The

Figure. 4.1. The relation between the two FSAs

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

71

CU responds with reply messages consisting of the resultant data. This includes

success or failure of the instruction execution as well as sensor data.

The assumptions made in this dissertation [149] are:

• The delay in the network (i.e. time taken to transfer the message from CI to CU

does not have any effect on the stability of the experiment setup. All

experimental actions take place on the rig when the instructions are received.

• The network is reliable and is able to deliver the data from the source CI to the

destination CU. The delay between the CI and CU could potentially be long.

4.5 Controller Interface Model

This section discusses the model of the Controller Interface (CI) as a an automata. The

Controller Interface is run on the users’ device accessing the remote rig. It takes input

from the user through the UI, makes decision with the UIM based on the CPL and the

command library and issues corresponding commands to the CU. The CI keeps the

status of each rig components, actuator and sensors, in a corresponding variable array

R. The CI can be described as a Finite State Machine S,

S = {G, 𝛴S, β, β0, E, J, R}

where G is all possible functional states in CI, i.e.

G ⊆ {INIT, ASSIGN, QUERY, DISPATCH, PAUSED, IDLE, STOP}.

Σs is the instruction set, i.e.

𝛴𝑆 ⊆ { 𝕤, 𝕣, 𝕨, 𝕦, 𝕒, 𝕖, 𝕗, 𝕝 } ∪ 𝑁

where β0 = INIT signifies the initial state. E is the set of final states, i.e. E = {INIT,

IDLE, STOP}, where the system is stationary. N is a set of composite commands stored

into a Symbol Table along with associated events related to the CI.

A symbol in ΣS represents a command, event or operation. An error symbol 𝕖

indicates either an error message from the CU or a timeout in case the rig fails to

respond within a time frame. This timeout threshold is determined by the actual

latency (ψ) between the MCU and the CI. This is determined at the beginning of the

operation i.e. within the 𝕤 (set) symbol. In case the latency is dynamic and changes

over time, this value will also change. However as the users will be interacting with the

72

rig for a short period of time (10-15 minutes), this is expected to remain static. The

initialization command 𝕤 is used by the CI to configure ports at the CU and to set their

initial values. The read 𝕣 and write 𝕨 instruction are issued when user actions leads to

an event request values or require changes to port variable values or its value be read.

Set 𝕤, wait 𝕒 , read 𝕣 and write ‘𝕨’ are intrinsic elements of 𝛴1. They are generated by

user actions on the CI and do not relate to messages received from the CU. Error 𝕖,

fail 𝕗, and success 𝕦 are extrinsic elements of 𝛴S exchanged in form of messages. They

are explicitly sent by the CU. Error 𝕖 indicates that an error occurred on the rig and

the CI remains in the PAUSED state. End 𝕝 signifies that the experiment session has

ended either due to reaching the allotted time or due to failure on the CU the

experiment session has been closed.

The state transition function β is

𝛽(𝑞, 𝐷) → 𝑞′ 𝑤ℎ𝑒𝑒𝑒, 𝑞, 𝑞′ ∈ 𝐺 𝑎𝑎𝑎 𝐷 = 𝑑1, 𝑑2 … ∈ Σ𝑆

A queue J stores outgoing messages and initially J is empty. Figure 4.2 depicts the

state transition diagram for the CI. The different functional states are described as

follows:

INIT - The initialization step starts with the local variables at the CI being set to

their initial values. This phase is executed at the beginning of an experiment

session. This state sends the ‘𝕤’ command to the rig, which initializes the CU. After

initialization, the CI starts the CPL where it can go to the EVENT state if there is

any event from the users’ interaction. Otherwise it goes to an IDLE state.

EVENT - This state validates a particular command c ∈ { 𝕣, 𝕨, 𝕒} ∪ 𝑁 against the

event (such as clicking a button on the UI) by matching it in the symbol table. For

processing only atomic instructions, this symbol table only contains 𝕨, 𝕣 and 𝕒. If

Figure. 4.2. The state transition diagram of the controller interface (S)

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

73

the CI has to send any composite commands they may appear in the table as well.

Once the command is validated, the corresponding symbols are placed in the

output queue J. Any local variable x ∈ R is updated. The system then moves to the

DISPATCH state. If any event cannot be validated, i.e. no valid command exists in

the symbol table for the event, the system moves back to IDLE state. If the CI

wants to end the session, CI can send the 𝕝 message.

DISPATCH: This state sends the content i.e. the command message in the queue J

to the CU. S enters a PAUSED state to wait for the reply message from the CU.

PAUSED - It is an idle state where the rig waits for a response from the rig. In the

paused state the user inputs are ignored or the user interface is disabled which

simply disables any user input an there is no change in J. Upon receiving a result

di(vt) which could contain the required values vt, S moves to next states. If a ‘𝕦’

message is received, the front instruction is deleted from the queue J, the value of

xi received from MCU is updated on the CI. Otherwise in case of ‘𝕗’, J is not

altered. If there are still messages in J then S goes to the dispatch state. If an 𝕖 is

received, the system remains in the PAUSED state until a 𝕗, 𝕝 𝑜𝑜 𝕦 message is

received.

IDLE - When the user does not gives any input and the CI itself does not have any

operations to execute.

STOP – If the CI determines after repeated queries, through DISPATCH state, that

the remote rig is incapable of returning the required result, it stops the experiment

execution. Users are not able to use the rig until the system is manually reset. The

CI also reaches this state at the end of the session.

State changes of the FSA, discussed above, are triggered by user inputs and messages

sent by the corresponding FSA that represents the CU. This is described in the next

section.

4.6 Controller Unit Operating Model

A model for the operation and the corresponding instructions of the CU are

introduced in this section. There is a master/slave relation between the CI and CU.

Instructions originate at the CI and are executed at the CU and data is collected at the

74

CU. As every instruction has to be executed in order, acknowledgements are

important. A CU has a processing unit, a memory unit, a network interface and an

array of input/output ports R. A port (x ∈ R) holds values depending on what it is

connected to. All peripheral devices are controlled by these ports. Instructions

executed on the CU alter the configurations by changing port values of the rig or

reads data at a given point of time. An experiment setup is controlled by consecutive

commands being executed by the CU.

4.6.1 CU Finite State Machine

The CU can be described as a Finite State Machine Y,

Y = (Q, ΣY, δ, p, F, K, R)

where Q is a set working state of the CU i.e. operations that are executed. Thus,

Q ⊆ {INIT, ACTION, DAQ, IDLE, DISPATCH, RESET, STALL}

and the instruction set ΣY,

𝛴𝑌 ⊆ {𝕤, 𝕣, 𝕨, 𝕒, 𝕖}

The state of the rig (Y) changes according to inputs from the CI or event on the rig.

The state transition diagram is depicted in Figure 4.3. User driven extrinsic inputs are

𝕤, 𝕣, 𝕒 and 𝕨 commands. Intrinsic input 𝕖 are triggered by the CU. The input 𝕖

occurs when the experiment setup fails to perform any action or data collection on a

specified port. In cases where a rig does not have sensors or actuators, some states, i.e.

ACTION or DAQ, are not used. This also applies to 𝛴Y as in these cases the 𝕣 and 𝕨

commands are not required. To be of practical relevance, at least one sensor or one

actuator is required. The wait 𝕒 command is used to stall the CU for a certain period

of time. A wait command with parameter v means the CU must remain dormant for v

units of time since the completion of the last instruction execution.

The control vector p indicates initial port-value tuples for an experiment. F = {INIT,

IDLE} is a set of stable control outputs where the CU is in a stationary state i.e. there

is no error generated. The state transition function δ is

𝛿(𝑞, 𝑐𝑖) → 𝑞′ 𝑤ℎ𝑒𝑒𝑒, 𝑞, 𝑞′ ∈ 𝑄 𝑎𝑎𝑎

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

75

𝑐𝑖 ∈ {𝑐1(𝑥1, 𝑣1), 𝑐2(𝑥2, 𝑣2) … } 𝑎𝑎𝑎 𝑐𝑖 ∈ 𝛴𝑌

where every command ci carries a corresponding port(s) xi and optionally some

value(s) vi. Additionally, queue K stores outgoing messages. Initially the queue is

empty. Messages are generated by state changes. There is also a stack ɷ associated

with the CU that stores previous successful 𝕨 instructions. The seven states of CU

operation are:

INIT - This phase is executed whenever an experiment session begins. All variables

that relate to the setup are set to initial values. The initialize command 𝕤 is a

command that signifies the start of a new control session. This state may involve

setting timestamps, starting new log files etc. For a system that supports languages

with composite commands as described later 𝕤 may be composed of 𝕨, 𝕣 and 𝕒

instructions to set initial values of the CU ports, i.e. 𝕤 = { 𝕣, 𝕨, 𝕒}* but for a simple

CU, 𝕤 = λ i.e. empty.

ACTION – Write 𝕨 instructions 𝑤(𝑥, 𝑣𝑥)𝑡 are used to control actuators. The

instruction 𝑤(𝑥, 𝑣𝑥)𝑡 received at time t, moves the CU to the ACTION state and

alters the value of port x to the value v.

𝑤(𝑥, 𝑣𝑥)𝑡 ≜ 𝑥𝑡 + 𝜈𝑥 … (4.2)

where vx is the value to be written in x at time t > 0. Once a 𝑤(𝑥, 𝑣)𝑡 command for

writing a value on a port x ∈ R is started, the CU is free to execute any new

instruction if available. It first changes to IDLE state (even if momentarily) and then

to DAQ or ACTION or the STALL state. If an instruction is completed then a

corresponding success message 𝕦 is put in K. It can also move into the DISPATCH

state if an error occurs. If the instruction is successfully executed, it is pushed to

Figure 4.3. A state transition diagram for the RAL Control Unit (Y)

76

stack (ɷ) along with the time t.

ɷ → (w(x, vx), t) · ɷ

Changes to a port variable result in a change of the state space of the controlled rig.

DAQ - Data AcQuisition is the step of collecting data at the rig. The DAQ state

reads values from specified ports. A read command ‘𝕣’ or r(x) will return the values

at port x to the CI. Once a read instruction is started the CU is free to execute any

new instruction if available. Similar to the ACTION, the system can go to DAQ or

ACTION or STALL state through IDLE state. After a value is read, a

corresponding 𝕦 message is created that includes the values and put in K. If there is

an error, it goes to the DISPATCH state.

IDLE - The IDLE state is a passive state that occurs between the ACTION, DAQ,

STALL or DISPATCH states. In the IDLE state, the CU does nothing. The IDLE

state can be held for an indefinite time i.e. long periods or even momentarily. It

occurs when CU is waiting for any input. If a 𝕝 message is received, the system goes

into RESET state where the session is terminated.

DISPATCH - This state puts the error 𝕖 of the Action or DAQ (if any) into the queue

K. Depending upon the number of errors in the session or the nature of known

errors, this state may put the fail 𝕗 in K. Any messages in K are sent to CI.

STALL - This state forces the CU to remain stalled for definite period of time v

specified as a parameter in the wait command - wait(v) since the finish time of last

execution (te). This deals with any variable time latency between the CI and CU as

the actual stall time will depend on when the stall command is received after te. If

the latency is too large and v is lesser than the time passed since te, then the CU does

not stall at all. Similar to the ACTION, the CU can immediately go to DAQ or

ACTION or STALL state through IDLE state.

RESET – This state occur at the end of the experiment session. The RESET phase

puts the 𝕝 message in K and does nothing until a set 𝕤 command is received when

the CU moves to the INIT to start a new session. In this case it is similar to the

IDLE state except that no other input that set 𝕤 is accepted.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

77

4.6.2 CU Operation

From (Equation 4.2), for any port x connected to an actuator can be altered by sending

an input ct= w(x, v)t at time t > 0. Thus the corresponding system may be described as

𝑌𝑡+1 = 𝐴𝑅𝑡 + 𝐵𝐶𝑡 … (4.3)

where Rt is the state vector corresponding to the |R| number of ports connected to an

actuator or a servo and A and B are constant matrices for a particular rig. Ct is the

control input vector at time t > 0 given by

𝐶𝑡 = [𝑐1 … 𝑐|𝑅|]

where ci = w(x, vx)t or ci = ∅ (null) or 0 if no command is given for x at time t > 0.

The system also contains the sensors for reading the data, but ‘𝕣’ operation do not

operate or alter the configurations or orientation of the rig directly.

The instructions may be received at any time t > 0 from the CI side i.e. Δ = t2 – t1 > 0

is not a constant. The system Y is however time invariant as delayed arrival (ϋ) of

instruction ci only means that Y remains in the IDLE state for a longer period (ϋ). The

instructions are executed when it arrives and the state of Y is changed at t + Δ + ϋ.

Hence,

𝑌𝑡+𝛥+ϋ = 𝐴𝑅𝑡 + 𝐵𝐶𝑡+ϋ … (4.4)

Equation (4.3) and (4.4) is a general equation of control systems [150]. Hence, Y can

be used to implement any kind of experimental rig governed by Equation (4.3 - 4). It

is suitable to implement an experimental setup containing physical motion with

fundamental mechatronics elements such as servos and sensors. RAL experiments

involving advanced machineries or virtual components are outside the scope of this

architecture.

One major difference between the CI and the CU is that the CU runs continuously

without any time bound unless it faces an error and require manual intervention to

reset it. The CI however starts and ends at definite points of time. Another difference

is the way of handling the error. In the CU an error is actually generated due to failure

in the hardware or the experiment setup. An error always ultimately resets the

experiment setup. However in the CI, error does not immediately cause a STOP and

78

the CI waits for a ‘𝕗’ reply before it is determined if the experiment has to be aborted.

4.7 Complex Languages

This section demonstrates how a hierarchy of complex languages can be based on

atomic instructions and discusses practical implications of using complex languages

in the context of RAL activities.

4.7.1 Communication Language

The language accepted by the automata forms the basis of the communication

protocol between the CI and the CU in an experiment. Each of the elements in the ΣS

(except 𝕤) is an atomic instruction i.e. each of these can be executed on a CU but

cannot be divided into further sets of instruction. Atomic instructions can be joined to

form composite instruction that can be called as a single command. The language

accepted by the CU is the regular language,

LY
0 = {𝑥𝑥 ∶ 𝑥 = 𝕤 ⋀ 𝑦 ∈ {𝛴𝑌 − 𝑥}∗ } … (4.5)

which means that the CU will only be an acceptable state in IDLE and INIT. The CI

has a language

LS = {𝕤𝕤𝕤 ∶ 𝑦 ∈ {Σ𝑆 − 𝕤 − 𝕝}∗ } … (4.6)

which means that the CI must start with a ‘𝕤’ command and finish with an ‘𝕝’

command. If η ∈ LY
0 then η is a word or combination of instructions sent in an

experiment session in order. The CU after executing all instructions in η is in a final

state f ∈ F. If η ∈ LS then η is composed of all user inputs (𝕤, 𝕒, 𝕣, 𝕨) and CU outputs

is (𝕦, 𝕗, 𝕝). The CI after reading all this inputs from η is in a final accepting state f ∈ E.

The actual communications to and forth between the CI and the CU essentially

involves 𝛴 = 𝛴S ∪ 𝛴Y.

For the CU, the symbols in LY
0 may be concatenated to form larger fixed set of strings

that can be referred by a symbol. This is creating functions on the CU consisting of

several 𝕨, 𝕣 and 𝕒 symbols which are invoked by a function name. Thus,

ΣY' = {𝕤} ∪ 𝐼 ∀ I ⊂ {{ΣY – 𝕤} +. {ΣY – 𝕤}+} … (4.7)

and the language accepted,

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

79

LY
1 = { 𝕤𝕤 ∶ y ∈ {ΣY' – 𝕤}*} … (4.8)

ΣY' does not support the basic elements of ΣY but composite words or strings from

LY
0 i.e. only composite commands.

From Equation 4.7, ΣY' is a finite set of composite commands. LY
1 is composed of all

words or strings in ΣY' that starts with 𝕤. Since I ⊂ {{ΣY – 𝕤}*}, I has fewer and fixed

number of symbols than can be composed from ΣY. A word g ∈ LY
1, then g = 𝕤𝕤 starts

with 𝕤 and the remainder y is composed of any combination symbols from {ΣY’ - 𝕤 }

i.e.

y ∈ { ΣY’ - 𝕤 }* ⇒ g ∈ LY
0 … from Equation 4.5 and 4.7.

Hence LY
1 ⊂ LY

0. However, conversely, since I has only a fixed number of symbols, if

g’ ∈ LY
0 then g’ = 𝕤𝕤′ starts with 𝕤 but the rest of the word (y’) may be composed of a

combination of {ΣY – 𝕤 }* i.e.

y' ∈ {ΣY – 𝕤 }* but y’ ∉ I ⇒ LY
0 ⊄ LY

1

Thus,

|LY
0 – LY

1| > 0

This means that there are many acceptable strings in the LY
0 that are not present in the

LY
1 which implies that LY

1 is incapable of executing certain sets of operations. This

creates a hierarchical level of language with each new level (LY
i+1) building upon the

previous level (LY
i) using Equations 4.5-8. This difference in language used can affect

flexibility, complexity and network properties of the rig control.

The CI-CU automaton model can be used to describe the relationship between the

flexibility and complexity of the experiments. Flexibility is a measure of freedom by

which makers of experiments can implement the rig. Complexity in programming the

rig is the number of different instructions that are required to create the program logic

and the number of commands that need to be transmitted between the CI and the CU.

Flexibility and hence complexity in the design of the rig and CPL/UI is reduced with

higher level composite commands. For all practical purposes, a P2P RAL system may

involve a language with relatively more number of composite commands. This is

done to ease the rig creation procedure at a reasonable loss of design freedom

80

depending upon the makers experience and expertise.

4.7.2 Types of Commands

An experimental rig built by the users has some actuators identified uniquely. The

commands when executed change the state of the rig which produces some output

which could be visual movements or other data. The commands will vary in the time

it takes to complete depending upon its type - atomic or composite. Each of these

commands is generated at specific times the users give their inputs.

An atomic command is one that cannot be sub-divided into any more commands i.e.

they are most fundamental of commands [119] – READ to read from a sensor,

WRITE to write a value to an actuator changing its state and WAIT. The wait

command is used to synchronize the command executions as much as possible.

The program logic, created by the makers, process the learner inputs for the UI to

generate the corresponding symbol sets or communication commands composed of a

combination of these three atomic instructions. Atomic commands provide greater

control flexibility but are difficult to implement. A greater number of atomic or lower

level commands must be issued per unit time from the CI to be able to successfully

operate the CU compared to using a smaller set of high level or composite commands.

Also using atomic commands is more susceptible to error depending upon the latency

in the network. On the other hand, by sacrificing flexibility, the users can be given a

set of composite commands that perform more specific tasks on the rig. This also

reduces the complexity of the CPL. Using fewer composite commands per unit time

reduces the traffic volume but takes away control freedom from the operator. The

exact level of suitable flexibility or complexity required is dependent on the context

the CI-CU model is used i.e. the nature of the experiment and the capabilities of

maker in the P2P RAL.

Each input given by the users is processed by the experiment individually regardless

of how many are sent at any given time. Thus the control length can be described as

the number of steps or instruction to complete a composite command. More than one

atomic command can be joined to provide specific CU/experiment related functions in

form of composite commands that will take variable time to complete depending upon

its constituents. The actual length i.e. number of steps within a composite command

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

81

depends on the parameters passed to it.

A basic composite command is formed from bunch of atomic commands that are

joined and sent at the same time with regular time intervals between them. More

advanced composite commands are parsed to generate a large set of atomic

commands which may involve use of program logic such as condition checking and

iterations to generate a set of sub-commands. Thus the constituent atomic commands

may not always be the same. The advantages of composite commands are:

• Composite commands being executed on the rig guarantees that the timing

between the sub-commands of the composite command is executed at equal

intervals for any given set of parameters.

• Composite commands allow creating reusable modules of instructions that may

be called without having to specify every single instruction explicitly in the

program. The modules are also more easy to understand i.e. human readable as

compared to a smaller atomic instructions.

Having specific modules or functions on the CU however makes the CU more akin to

certain kinds of experiments that follow the functions, but unable to support

conditions that do not conform to the logic or flow of the modules.

For a rig designed specifically for an experiment, the commands can all be composite

i.e. specific for the experiment. The UI can send these composite commands

depending upon the users' interactions with its UI. Such commands can written in a

variety of languages and have safety capabilities to ensure the integrity of the rig.

In a P2P scenario, for collaborations, the makers and users (between makers as well as

between makers and users) must all use a common platform to be able to share

experiment and maintain a homogenous UI. Thus the set of commands for the

common UI and programming platform cannot support a large number of composite

commands. As there are no limit of the RAL rig configurations there can be an

infinite number of such composite commands, making it difficult to create a finite set

of modules to serve all possible rigs. Thus for all practical purposes in the P2P RAL, a

finite set of composite command modules are provided at the expense of some control

freedom.

82

4.7.3 Joint Parameters for Parallel Instructions and Toggle

A composite command may resolve to a set of instructions that need to be run in

parallel. In such cases, the command is described as c(X, C’)t that may operate on

multiple ports in parallel where X ⊆ R and C’ is a set of atomic instruction

corresponding to each port in X. X may contain multiple ports but C' can only contain

instructions of the same type i.e. multiple WRITEs or multiple READs but not a mix

of any two. Restricting the instructions to be of the same type can ensure that the rig

does not try to read values or stall while writing to a port. In this case, the ACTION

state or the DAQ state in the CU will simultaneously operate on multiple ports, but the

rest of the process remains same. The outcome of the parallel operations is determined

as success if all atomic instructions were successfully completed, otherwise it a

failure.

In certain cases toggle behaviour is necessary, in which the command requires that the

CU holds the value of a port for a certain period of time before resetting it back to its

previous state. Toggling is composed of two different WRITE commands, but as the

time between the toggles is very small and the latency ψ between the CI and the CU

could be high, the MCU has to perform the toggle by itself. The instruction will itself

specify the toggle property. This is essential a composite instruction ′𝕨𝕨𝕨′.

4.7.4 Inverse Motion

Inverse motion is required if the rig has to roll-back on its states. It is applicable only

when an 𝕨 instruction fails to complete successfully. If the CU encounters a failure at

𝑐𝑖
𝑡 ∈ 𝑐(𝑋, 𝐶′)𝑡, while executing the composite command c(X, C')t, it cannot proceed

with any other already executed instruction in c(X, C')t and must roll-back. To reach a

stable state, it must roll-back all of the atomic commands 𝑐𝑖
𝑡 that have been executed

and stored in stack ɷ. Any current execution is stopped. The CU starts to pop

instructions from ɷ and executes them according to the difference of the time between

it and its previous instruction as recorded in ɷ. As the instructions are unique and not

relative to the previous instructions, each will take the rig back by one step.

At any state the system is able to successfully complete the all 𝑐𝑖
𝑡 ∈ 𝑐(𝑋, 𝐶′)𝑡, and

𝑐𝑖
𝑡 ∈ ɷ, Y is again in the stable state. At this point a 𝕗 message is generated. If none of

the instructions in ɷ can be executed successfully, then a 𝕝 message is sent signifying

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

83

to stop/abort the session. The role of executing this inverse motion and the messages

has to be taken by an external component to the CU. But despite using ɷ, it may not

always be possible to restore the rig to an active state and human intervention may be

required to reset the experiment; for example, when a robotic car is overturned.

4.8 Using the CI-CU Model

The twin FSA CI-CU model provides a generic model for experiments in the system.

This allows for a common CI and CU software to be used for all experiments. The

actual platforms for the experiment can be different i.e. the CIs may be run from

browser or stand-alone software and the CUs can be run from many hardware such as

Arduino, LEGO Mindstorms etc. These extensions of the CI-CU model are discussed

in Chapter 5. Chapter 5 provides the technical feasibility of using the model with

MCUs.

The CI-CU model addresses the core issues for underlying motivations of validation,

guidance and evaluation as discussed in Chapters 6-8 and 10. In Chapter 6, an MDP is

constructed based on the model where every instance of the values of the ports in the

CU is a state in MDP. Since the CU has a finite set of ports with finite limits of their

values, the MDP has a finite state space. The MDP is further used for validation and

guidance. In Chapter 7, a clustering method is proposed based in the temporal locality

of the commands in an experiment session based on the CI-CU model. In Chapter 8,

the different levels of commands possible as with the CI-CU model are used to

describe the experiment interactivity continuum. In Chapter 10, the reliability graph

contains the specific components of the experiments as described in the CI-CU model

- the peripheral devices (sensors and actuators), CUs, Network system and learners

and the four components of the reliability graph. Chapter 11 shows many

implementations of the CI-CU model in form of various example experiments.

4.9 The CI-CU Model as IoT

As mentioned in Section 2.2.3, the CI-CU model makes the P2P RAL an IoT system

or more specifically a subclass the Web of Things (WoT). The CI-CU model covers

all the required characteristic of an IoT/WoT as:

84

1. Each CU is uniquely addressable on the P2P RAL system. The CI when

running from the users' device can connect to CU with web link and send

commands through it.

2. The IEL provides a uniform set of commands for all the MCUs.

3. The CPL of the experiments describes the state space and the constraints of

the rig. Also the UI presents the ways to communicate with the rig.

4. The constraint 4 is not directly applicable to P2P RAL as all the MCU has the

same set of services thus exploration is not requires. The CI is all cases are

aware of the IELs capabilities. However, the models created for a particular

experiment based on MDP or Clustering as described in the next chapters

provides unique model of the experiment to each CI. This can be retrieved and

all commands can be validated or evaluated against these models. Using these

models can be regarded as explorations new services specific to the

experiments.

5. The communications are done using WebSockets and HTTP.

4.10 Possibly Expanding to Many-to-Many CI-CU

The CI-CU model can be extended to a many-to-many or one-to-many architecture in

a networked control system. This section briefly discusses the issues that need to be

addressed in this regard, although the actual methods to implement it is beyond the

scope of P2P RAL defined in this thesis.

Both the CI and the CU contains queues J and K. If one CI communicates with

multiple CU in one session, then the queues are filled with multiple messages

regarding the CUs. There are also multiple Ri sets corresponding to each CU Yi in the

CI. But the CUs all have only a single set R.

The PAUSE state behaves differently in this case. The CI can totally pause and accept

no input at all or the CI can stop accepting inputs with regards to a particular CU that

has not responded to the last command sent. The commands can be depended on each

other if the CUs are to be operated simultaneously in correspondence with each other.

There can be many CI connected with many CUs in the same session. More than two

CIs communication with the same CU means they have to coordinate which

commands have priority while making a request. There are several issues with these

multiple nodes in the same session such as:

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

85

• Time delays: If the CUs do not operate in mutual exclusions, then the

controlling CIs face problem with unknown network delays or jitters. The CIs must

ensure that the commands structure change with the required level of interactivity by

choosing appropriate level of composite commands.

• Concurrency issues: Having multiple CI-CUs that are interdependent can

result in the 'circular wait' conditions if the two CIs S1 and S2 tries to operate the same

CU Y1 in opposite conditions each trying to negate the other's command. To eliminate

this situation any group of CI with control of the same CU must be in communication

with each other.

4.11 Summary

A generic model for RAL experiments have been discussed that can describe the

operation of multiple experiments. This generic model can be used for further

expansion of common utilities that can be provided as part of RLMS. This model

facilitates the development of a P2P RAL architecture that allows for virtually

unlimited individuals to create and share their experiments over the Internet. An

RLMS based on the P2P architecture with the generic model can seamlessly integrate

any experimental rig automatically. The generic model is easily implemented with

MCUs such as Arduinos and LEGO Mindstorms as described in the next chapter. The

model is also the base for the extensions that are discussed in Chapter 6 to Chapter 8.

With respect to IoT the CI-CU model can be used in any situation where a large

number of master-slave nodes exist and the interaction needs to be monitored. A

supervisory system with such capabilities can govern a large number of nodes with

varying properties and control policies. It can also ensure the security and integrity of

the system if required. While the following chapters focus on tools primarily aimed at

aiding RAL experiments, the CI-CU model itself can be used to develop many other

types of tools to supervise different IoT systems as per requirements.

86

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

87

5
Implementation using Micro-Controllers

This chapter describes how the CI-CU model is used to implement the

P2P RAL. It looks into the software and hardware examples that can

be employed.

In the previous chapter a generic model was introduced that governs the CI – CU

interaction. In this chapter a practical implementation in the context of a P2P RAL

system is discussed. The CU evolves to the Instruction Execution Module (IEM) and

is the experimental rig designed by makers implemented using LEGO Mindstorms for

example. The CI evolves into the User Interaction Module (UIM) interface stored in

the RLMS implemented using SNAP as a case study.

The first two sections discuss the control strategies and a basic implementation of the

CI CU model in a P2P RAL context. The key contributions discussed in this this

chapter include a detailed analysis of different MCU platforms in Section 5.3 and a

flow control and queuing method to exchange messages in Section 5.4. An example

of an implementation is discussed in Sections 5.5 and 5.6. The contents of this chapter

are based on publications [118-119].

5.1 Control Strategies

The interaction of the UI with the experiment in P2P RAL can be divided into two

separate steps as shown in Figure 5.1. First, the user interactions with the UI are

converted to corresponding commands. Second, the commands generated in the first

step are converted to an atomic command i.e. Σ = {𝕣, 𝕨, 𝕒}.

The first conversion step is done in the UIM based on the CI model and the second

conversion can be attached as a Complex-Basic Command Translation (CBCT)

88

component to the CU model for implementation on the experiment site.

 In terms of P2P RAL the experiment control strategies can be broadly divided into

two categories: Direct Access Control and Undirected Access Control.

For Direct Access Control all instructions originate at the CI of the experiment

according to the users inputs. The commands are sent to the CU where they are

executed and results are returned in the CI. The CU does not have any decision

making capabilities regarding the control logic of an experiment, except when the

commands poses a safety threat to the experimental rig.

This kind of access natively supports interactive experiments as the users can issue

multiple commands in a short period of time. However, batched experiments can be

run in the same way, if the users are allowed to give a single input set at the beginning

of the experiment session and subsequently the CI issues all commands.

For Undirected Access Control the CU has partial decision-making capabilities in

regards to the control logic of the experiment. This requires the CI and CU to be

synchronized. The CU contains the specific functions for the experiment that are

invoked from the CI and the subsequent results are returned to the CI. This kind of

control natively supports the batched experiment and is unsuitable for interactive

experiment.

Both of these methods are supported by the CI-CU model described in Chapter 4. In

the following sections, a real implementation of this model is discussed primarily

focusing on direct access control. Undirected access control is discussed in Chapter

8. The following section discusses how the model is implemented.

5.2 Software Implementation of the Twin FSA

The P2P RAL rig operation is based on the Twin-FSA and shown in Figure 5.2. It

includes three key system components: the RLMS, UIM and IEM.

Figure. 5.1. The user interaction to atomic commands conversion process.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

89

The UIM is implemented as an extended component of the RLMS. When the system

page is loaded in a browser, it is downloaded to the remote controller device. The

UIM for the P2P RAL is a static environment providing basic programming tools to

create a CPL and UI. The UIM provides a uniform programming and UI platform,

which is available to both makers and learners. Learners cannot alter the CPL or UI

but use the interface.

The UIM contains the CI and associated structures such as symbol table (or command

library), Control Program Logic and the variables representing ports. The command

library stores an event-symbol string pair that represents a set of command symbols

associated with any event in the UIM from the user's interaction or any other source.

The CPL and the UI are created by the maker of the experiment and at the start of the

experiment session and copied into the UIM on the learner's device from the RLMS.

The UI contains all the buttons, textboxes and display components for acquiring

instruction from the users which are then passed on to the CI. The CI in the UIM

operates on the CPL and the Symbol Table to determine corresponding commands for

given events which is then passed onto the IEM.

At the maker’s side, the IEM contains the CU and associated structures like look-up

tables and translation modules to parse incoming commands and outgoing messages.

It contains the instrument drivers that actually runs the instruments attached to the

CU. The CPL is also created by the makers using the same UIM environment

available to the learners. The makers design their experimental rig around the CU.

There are several options for selecting CUs based on embedded control systems [151]

such as FPGAs and micro-controller Units [119]. For the P2P RAL, the MCUs with

Figure. 5.2. The relation between the two FSAs in the P2P RAL system on the Internet and from Learner end to Maker end.

90

fixed hardware architectures and microprocessors are used for implementing the CU

and associated structures. A number of MCUs are widely available and cost effective

[119]. These low cost units have low memory but possess sufficient computational

power to perform the tasks as IEM. MCU are discussed in Section 5.3 in more details.

For a given experiment, at any time one learner will be in control of one UIM that is

connected to one IEM via the RLMS. The RLMS provides the search, authentication

and storage facilities along with the UIM and IEM specifications that are loaded in the

learner's devices or the makers MCU respectively.

For different MCUs the IEM has a common architecture. It reads the incoming inputs

and processes them accordingly. The IEM has direct control over the peripheral

devices and corresponding drivers. The choice of MCU may affect the capabilities of

its IEM. An IEM consists of a Complex-Basic Command Translation (CBCT)

component as well which consists of the Translation forward and Translation reverse

modules to parse incoming commands to the lowest levels of commands. An IEM

contains the following components, as shown in Figure 5.3:

• Translation Forward Module (Tf) - This will convert the incoming composite

commands into a string of atomic instructions by searching through a pre-

defined look-up table. This table is the library of commands available to the

makers. The Tf will contain any string associated with the set command as well.

Multiple atomic instructions of the same type (for example, two WRITEs) may

be sent by the Tf, if the instructions are to be run in parallel i.e. one instruction

to be executed before the completion of the other. For LY
0, or the simplest

implementation, commands have only one atomic instruction which is directly

passed to and from the CU.

• Translation Reverse Module (Tl) - This will convert the atomic outputs of CU

i.e. success and failure messages into any complex response messages looking

through another look-up table.

• The CU is as described in Section 4.6. The CU output messages, put in K, is

parsed by Tl and sent to the CI.

• A Translation Error Module (Te) - In the Te, if an 𝕖 message is received, it is

passed to the CI through Tl and the Te tries to take the system to the last stable

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

91

state though inverse motion by retrieving instructions stored in ɷ. If an error

cannot be resolved then the CU remains stuck in an invalid state until the CU is

manually reset.

As, the size of the look-up tables has to be finite, only a finite set of composite

commands may be supported by a MCU command library.

The IEM allows the users or the programmers who host the experiments to use any

programming language to send commands to the MCU to control it. It is not required

for them to write any code specific to a MCU. The actual rig setup consisting of the

sensors and actuators, creating the CPL in the UIM and the corresponding user

interface are all done by the makers of the experiment. A higher-level IEM implies it

can support more complex and larger sized look-up tables compared to a lower level

IEM.

The UIM uses WebSockets for communication with the experiments as they can

traverse NATs and firewalls and can be implemented in all MCUs. They can provide

equivalent performance to binary sockets. WebSockets run on most computing

devices including portable devices and can be opened from inside web browsers. The

UIM opens a WebSocket communication with a particular experiment IEM at the

beginning of the experiment session.

For the RALfie implementations, the SNAP (http://snap.berkeley.edu/) programming

interface is used as the UIM environment. The SNAP language is a visual graphical

language with an exactly similar interface to SCARTCH [152, 153] from MIT that

allows the makers to create programs with drag and drop off commands as 'blocks'. A

block, as shown in Figure 5.4, is a specific function or operator in the SNAP program.

The RALfie system uses several custom blocks especially developed for the MCUs

Figure. 5.3. IEM Implementation Architecture

92

e.g. rotating motors and turning on ports with high and low voltages etc. The SNAP

platform and further details of why this chosen language was chosen for STEM

Education is discussed in Chapter 11. It may be noted that SNAP is only an example

language platform used in RALfie. Any other platform may be used as long as it

implements the corresponding libraries in similar manner.

5.3 Micro Controller Units Alternatives for IEM Implementation

Micro-controller units such as Arduino [154], Raspberry Pi (RP), BeagleBone Black

(BBB), Lego Mindstorms EV3 are suitable to control the experiments remotely i.e.

Table 5.1. Comparing MCUs

Properties
Arduino(UNO, Due,

Mega)
Raspberry Pi

BeagleBone
Black

EV3 Mindstorms

Native
Programming Yes No Yes Yes

Adaptive
Programming No Yes Yes No

Pins Analog/Digital Digital Only Analog/Digital Custom (I2C)
Network speed Good Good Good Good (Wi-Fi Only)

Processing
capability

Arm 7
(16- 90 MHz – Fair)

ARM 11
(700 MHz -

Good)

ARM Cortex-A8
(1 GHz - Very

Good)

ARM 9
(300 MHz -OK)

Visual capacity No Yes Yes No
Control

Capacity Medium - High Medium High
Medium (Custom

parts)
Community

Support Very Good Good Fair Very Good

Figure 5.4. Some examples of SNAP blocks (a) a hat block to start a sequence of events by
executing the block underneath it. (b) Condiotn Check (c) ‘and’ Operator that fits into the ‘if else’
and (d) a block that is used for animation of objects.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

93

they become the CU of an experiment. These MCUs have control ports that can be

used to set and reset properties of a rig component like motors and servos. They can

also collect various kinds of data from their surroundings through sensors. They also

have network capabilities to connect to the Internet with TCP/IP based protocols.

They are small, compact, cheap, readily available and the ideal CU for P2P RAL

activities as well. Table 5.1 shows a comparison of MCUs with regards to their

requirements as a control unit of a distributed P2P RAL system.

Achievable Throughput

Some experiments may require higher bandwidths for proper operation along with

transmission of videos, which consumes high bandwidth. All of the MCUs are

equipped with Ethernet connections but the maximum bandwidth supported by each

of them varies depending upon the computational capacity. To establish real

performance parameters an experiment was performed that involved transferring files

over the network and the real throughput was measured. Several files of different

sizes from 200KB to 95MB were transferred from a PC running Linux to the MCUs.

The transport had to be adapted for the MCUs. For the BBB, Raspberry Pi and EV3

(with custom Java firmware) the SCP command was used from PC to transfer files.

For an absolute bandwidth test for BBB and RP, the IPERF tool was used and it

reported the maximum of 90-95 Mbps. The results of the test are shown in Figure 5.5.

It is observed that for sending small amount of information (≤ 1MB), time taken is

very low as the throughput decreases with larger files and transmission time. Both the

RP and BBB can achieve download speeds of more than 2.5 MBps in a LAN. The

Figure 5.5. The throughput capacities of the MCUs

94

outgoing speeds of RP are on average 3.5 MBps and for BBB, 700KBps. The EV3

registered average speeds of 300 KBps for outgoing and 320 KBps for download.

These values are sufficient for any RAL activities. For Arduino UNO, a web server

was used to upload and download files. The speeds were below 10 KBps. This may

vary a little with different Arduino boards and implementations, but due to limited

computational capacity the speed will remain significantly smaller than the others.

To send video feedback, webcams are used that have in-built encoding mechanisms

such as support for high resolution with hardware based H.264 encoding. This

encoded stream is directly fed to the MCU which then transmits it over the network.

The BBB transmits video at 900 Kbps with the 320x240 resolution. Other devices like

IP cameras can be used along with MCUs that do not support video streaming.

A particular communication and control standard ensures consistent functioning,

integrity and compatibility of the devices used for RAL. Unlike FPGAs, the MCUs

proposed to be used as part of this architecture do not support any uniform standard

for communication and/or control such as IEEE1451.x [155] or LXI [84]. Moreover,

these protocols do not allow implementing a flexible programming logic required for

creating and running variable rig designs. Thus an alternative protocol is introduced in

Section 5.4. It has been implemented to investigate the networking and control

characteristics of the distributed architecture. This lightweight protocol covers a basic

set of commands that are used to control the rig and may be extended as a standard for

the P2P RAL in the future.

5.4 Messaging Protocol

The distributed systems consists of three entities and each of these entities features a

number of components - the experiment units implements the IEM, messaging

protocol flow control and queuing methods along with the UIM, the RLMS unit deals

with authentication and scheduling in a relay server and the user units has the UIM.

5.4.1 Protocol Messages

To exchange information about control, a set of messages are defined that are issued

by and interpreted at the nodes. Such messages are unidirectional i.e. an experiment

end-node can issue an ACK or EVENT message but not INSTRUCTION message

while an users node can only send INSTRUCTION messages. The messaging

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

95

protocol in this study implements the most basic requirements to control a remote

experiment. The main aim in designing the messages was to keep them small.

Network protocols for controlling robots can operate in either object-oriented manner

by associating specific functions with the devices or event-oriented manner. For

example, the software architecture of SNRP (Simple Network Robot Protocol) as

described in [156] is an object-oriented approach. In case of RALs, functional and

event-oriented programming is used where the users’ action generates messages that

represent the event, i.e. a read operation to get the status of the rig or a write operation

to change of state of the rig. Instruction messages are executed on the experiment

node.

Three messages are defined and their structure is depicted in Figure 5.6: instructions

from the UIM to the IEM, acknowledgements from the IEM to the UIM and error

messages from the IEM to the UIM.

Two message types based on the most basic operations, READ and WRITE are being

discussed. In essence these messages read port values or set port values. The UIM

sends a series of instructions and acknowledgement messages to communicate

between the MCU and the client. The Ino field is the instruction number for the

identification of this message. The W/R field can specify whether it is write or a read

message. Alternatively this field may be replaced with a number 0-255 for a much

larger set of composite commands ignoring the ports and value fields completely.

These messages may specify a variable number of fields by specifying multiple pin

numbers in one message. This may be done by introducing a NoF (Number of Fields)

block (to specify number of values) and a variable length message (see Figure 5.6).

Figure 5.6 (a) Instruction message from CI to CU (b) Acknowledgement message from CU to CI (c) Error
message from CU to CI

96

All of these messages can be built with a few bytes (7-8 bytes for a single message

representing a single event) making the information sent very small. The protocol

may be extended to include more complex elements to support the different types of

ports available on MCUs such as I2C and CAN ports. These can be used directly to

control the external peripherals. The START field can include information about the

final destination of the message, which can be used for routing it through the overlay

network.

For further control an EVENT message is used that originates from the MCU. The

Event message may send any information regarding an event that has occurred at the

experiment side. The user side may not have asked for this information, for example,

when an instruction is not received, the battery power is getting very low or a port

suddenly stops operating due to structural failure. The EVENT message starts with a

static START block followed by event number (for the client to keep track of events),

ecode stating a predefined numerical value for the event and finally the END block.

The queuing and flow control mechanisms are most effective for when using lower

levels of commands. The following sections assume that the experiment is using the

lowest levels i.e. atomic commands only.

5.4.2 Flow Control of Messages

The instructions sent to control the rig must be executed in the exact order and time

interval, hence each message is numbered in a session between users and the

experiment to maintain synchronization. However, it is observed that due to the low

computational capacities, the MCUs can lose messages i.e. not process every

incoming message and skip to the next one, if the messages are sent more frequently.

Even if the messages are delivered at the network level, they are dropped by the

MCU.

Messages originate and are sent in a particular order. An experiment session can have

a set of commands C = {c1, c2 …} dispatched at intervals Ĵ = {ɠ1, ɠ2 ...} where ɠl < ɠi

< ɠu such that the total time of the entire session T = Σɠi. ɠl and ɠu are the lower and

the upper bounds of the intervals. These values are dependent on the nature of the

experiment design. For any rig, the commands ci changes the rig position from one

state to another where the change is always deterministic. This is done in unit

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

97

operations according to ci, for example, a servo will always be issued commands with

moving up to a certain degree which guarantees that the behaviour of the servo is

entirely depended on the input given to it.

If the MCU detects that a message is missing, then an EVENT message is sent back

requesting the missing message. But if the client has to wait for each acknowledgment

before sending the next instruction, then it could cause significant delays. Assuming

that, in general, the underlying network will be reliable, i.e. most messages will be

delivered correctly, all messages may be sent directly without processing the

acknowledgement in in the CI but as a service in the UIM. This service keeps track of

all sent and acknowledged messages. The UIM is paused if the significant number of

instructions is sent without any acknowledgment. If some request is not received at

the MCU then the MCU sends an EVENT message may be sent to the UIM or the

service resends the messages again after a certain period of time. This method in

general follows the ‘Go-back N’ protocol. The service also keeps record of the time at

which each message was dispatched and when resending them maintaining the exact

time intervals.

The flow control is more useful in the Direct Access Control where the number of

messages is high as the actual logic or origin of instructions is on the users’ nodes

resulting in higher message loss compared to the undirected mode.

5.4.3 Message Queuing

Since the MCUs tend to induce delays in the processing of request, it is desirable to

send as many commands in one instruction message as possible. However, the

message from the UI may occur at random time thus simply waiting for a specific

number of commands is not feasible. Thus a queuing methodology is required to

optimize the waiting time and the number of the commands to be sent in an

instruction.

A simple time-stamp method is used in this study. Every action in the UI generates

one or more new messages to be sent over the network. Due to temporal locality, it is

expected that during state change on the rig, a number of independent instructions will

be executed simultaneously to create the action. These instructions originate with a

very small negligible time gap between them. As a new message is created it is

98

associated with a timestamp immediately. Depending upon the nature of the

experiment, a message may be delayed only by a certain amount of time (t). However,

this value is extremely small in most experiments.

If any message is created within this time frame, it is joined with the earlier message

to create a new combined message. This message retains the timestamp of the first

component message. Messages are combined by putting the new port and value

combinations into the earlier message and increasing the NoF field. The combined

message is then dispatched as soon as the delay reaches the value t, a small value

(<10ms) that does not alter the time intervals of the inputs. This way a lot of messages

can be accumulated together and the actual number of transmissions can be reduced

maintaining the order of instructions. The size of each message varies with the

frequency in which the messages are generated. A message may also be dispatched if

its size becomes equal to a maximum size allowed. However, since the individual

message sizes is 8 bytes, combining them will still not create a large sized message as

the time gap t is small and the number of instructions generated during the interval

will be low for all practical purposes. This should help in situations where multiple

events occur simultaneously and the instructions for each event can be combined

together.

With queuing, none of the interval is increases by more than t and ɠi has no impact on

ɠi+1. The message creation times and departure times are independent of following

messages. Hence the entire session time T does not increase by more than the value of

t which is negligible. Considering that there is y % intervals in J where ɠi ≤ t, the

entire command set may be reduced by y % at most in the best case if all such

messages appear after ɠj > t. In the worst case, if there is a single sequence of all ɠi =

t, then the number of messages can be reduced by y/2 per cent.

A similar approach has been used in previous work to reduce the transmission load by

withholding information from the nodes if the previously transmitted data are within a

tolerable range [40-41]. These approaches however considered closed-loop control

systems, but the proposed distributed RAL is not closed loop, as it does not operate

directly on any feedback from the rigs. The rig may gather data from its sensors which

is sent to the UI and can influence the next decisions, but a human user actually gives

the inputs to the rig. An alternate way to deal with lossy or reduced network traffic

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

99

will be to use a predictive system that can estimate the missing instructions according

to the expected behaviour of the rig. The MBPNCS (Model Based Predictive

Networked Control Systems) is a NCS mechanism that can overcome adverse

conditions of data loss and delay in a network by predicting the future control

behaviours based on a model of the end user control system [42]. This is however

difficult to implement in the current context as the rigs are designed without following

any pattern by different users who will require additional tools for creating a model.

5.5 Relay and Remote Laboratory Management System Server

All users will be interacting through the Internet. Hence, the network between the user

and the experiment may be heterogeneous with several layers of firewalls, network

address translators and proxies. To overcome these limitations in connectivity,

relay(s) or server(s) may be used to relay the messages between the user interface and

the experiment program. The relay server could be placed as part of the RLMS or part

of a broader network of makers and users nodes.

In a small network with low latency (such as within a city), a central relay server

(possibly the RLMS server itself) can be used as a relay node. Messages are just

passed without any modification.

The proposed RAL system is of P2P architecture. Thus multiple users will be

accessing the system and some of these can act as relay servers depending upon their

networking and processing capabilities. This architecture may be similar to Skype,

JXTA protocol or overlay network systems [157] covering a large region with varying

latency.

Regardless of the relay mechanism a central module as the RLMS is required. This

includes the management of MCUs, like assigning unique global identification

numbers to the MCUs and associating them with the user accounts. This should also

maintain a scheduling scheme for deciding which client can access the experiment

and when and authentication components for verifying that all messages being

transferred in a session originates from a valid source and transmitted to a valid

destination.

The network environment of P2P RAL is further discussed in Chapter 9.

100

5.6 An Implementation – Results and Analysis

This section discusses the setup of experiments, their operation, network

characteristics with respect to flow control and queuing assuming that the experiment

is using the lowest levels i.e. atomic commands only.

5.6.1 Test-bed Configuration

For the test setup the UIM and IEM described in Section 5.2 are used with minor

alterations to collect specific data at the UIM. Figure 5.7 shows the basic network

architecture of the system with the users’ side and experiment side being connected

by a cloud based relay server.

The maker side consists of a MCU and the actual rig with sensors and actuators.

When plugged in to the network with Ethernet, the MCU immediately registers itself

with the RLMS, which is a centralised server machine (for these tests) also acting as

the relay server and opens a WebSocket link to it. The user side consists of a PC that

can run the UIM which upon initiation also connects to the RLMS in a similar

manner. In reality the relay server may be replaced by an overlay network on the

Internet. The network also consists of a server machine with Wanem 3.0 [158]

running on it. The Wanem is a Linux based network emulator to create a simulated

network environment with different round trip time between the devices and also

other network properties such as bandwidth. The IEM to execute incoming

instructions was written in their native languages for Arduino UNO (C++) and

BeagleBone Black (boneScript based on NodeJS).

Figure. 5.7. The distributed network architecture consisting of the user sites and the experiment
sites

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

101

5.6.2 Latency Measurement with WebSockets

To test the latency induced in the communication process, the UIM was used to

measure the time between the dispatching a message and its acknowledgment. Figure

5.8 shows the percentage of increase in round trip time (RTT) and the message drop

rate for the random sequence of messages (with 95% confidence). A total of 8999

random integer values were generated in the IEM to represent the delay between 9000

instruction messages (ɠi). The value for ɠi was kept between (ɠl, ɠu) 90-100ms, 190-

200ms, 290-300ms, 390-400ms and 490-500ms with randomly introducing values

between less than 10ms. The final command sequence contained 38.9% instructions

generated within 10ms of the last one. This represents a typical scenario of a rig with

multiple or quick controls. An average RTT is recorded with and without the queuing

mechanism. The architecture follows the direct access control with the BBB. The

delay is caused by the propagation delay and the processing delay at the MCU. The

time taken for actual read write operation on Arduino and BeagleBone is in the order

of 1-10 µs which is negligible.

Figure 5.8. Queuing reduces traffic and response time

Figure 5.9. Flow control increases the session time.

102

The BeagleBone is the most suitable platform for the purpose of the P2P RAL

architecture based on the high processing, networking and control capabilities and

thus primarily used in this study. The BBB was able to reply to all messages in both

cases. With queuing the total number of messages was reduced to 67.32% of the

initial 9000 messages. The average RTT are similar for ɠu < 400 ms beyond which

there is a sharp fall of 74.07 ms for ɠu = 500ms in the average RTT. This is due to the

fact that with queuing, there are fewer messages been sent on the network. Indirectly,

this also reduces the probability of losing and resending messages on the Internet. The

overall session was not delay beyond 10ms.

To test the effects of flow control, a random sequence of 999 integer values

representing the time difference ɠi was generated and a total of 1000 messages were

sent with each message was sent after waiting for each ɠi with (ɠl, ɠu) = 50-200ms,

100-250ms, 150-300ms and 200-350ms. RTT between the user node and the Arduino

is set at 300ms and the window size was set to 5. Figure 5.9 shows the result of this

test. Without any flow control, 30% of the messages were lost or missed by the

Arduino.

The flow control algorithm with go back n was able to send all messages through to

the Arduino UNO. However the resultant time taken to send a sequence of 1000

messages was 318% of the total sum of all intervals (T) i.e. the actual time that should

have been taken between the first and the last message. With the flow control 77.5%

of messages were missed at least once by the Arduino UNO i.e. they had to be resent

at least once. The average net delay of a message i.e., the time between it is sent the

first time and it's acknowledgment received, is 590ms with a standard deviation of

255ms and the average gross delay i.e. time between it is sent the last time sent and

acknowledgment received is 196ms with standard deviation of 80ms. Changing the

delay bounds (ɠl, ɠu) from between 50-200ms to 200-350ms reduces the average net

delay to 450ms, the average gross delay to 162ms and the overall increase in total

time consumed (T) to 125%, without affecting percentage of messages that were

missed at least once.

None of these values are absolute for an MCU as these will differ with experiment

and network environment. Moreover, the effects of flow control and queuing with

high latency and low processing powers also diminish with the use of composite

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

103

commands. For a given experiment with consistent characteristics, such as ɠi,, key

observations include the following.

• Queuing is able to reduce the volume of messages sent and thus reduce the

delay per message in most cases. Thus a queuing mechanism improves the

performance of an experiment session.

• Applying flow control is able to send all messages through, but it can

considerably increase the total time consumed in a session for a slow MCU or

low values of ɠi. Thus a flow control mechanism may not always improve the

performance and should not be heavily relied upon.

• Increasing the frequency of messages increases the delay per acknowledgment

of messages.

This shows that all MCUs are not suitable for all experiments due to difference in

capacity. The distributed RAL system must identify the type of the experiment node

and follow corresponding flow control and queuing control methods. It is however the

maker who must decide the suitability of an MCU for an experiment.

Conclusions

The generic model can be used to create a remote laboratory environment that is

highly scalable with participants being able add their own rigs and share them with

peers. A potential key factor to real time control by users is the flow control and

queuing of instructions and their effects were studied here. The communication

protocol discussed here covers only the basic elements. Advanced queuing methods

and flow control may be used by creating tools for producing a model for individual

experiment rigs.

Although users do not have to manage the underlying messaging structures and data

exchange, there are two main issues that users need to be aware of whilst creating

their programs: port mapping and delays.

Ports are implemented and used in the program as variables that can then be used to

create the logic that drives the rig. This requires that users understand the linkage

between the physical connections and the software variables.

Despite implementing queuing and flow control, users may need to arrange their

104

program logic so that a forced delay is induced between command instructions for the

experiment. As such, the user must be able to produce an acceptable program

outcome when creating time sensitive program implementations. Time critical

programming however would not be typically required for basic data acquisition

situations of standard rigs.

This generic model provides the basic IEM architecture. The microcontrollers are the

key components of this framework and it has been shown that they are capable of

delivering acceptable performance with support for adequate bandwidth and latency

relative to the experiment. With respect to the P2P RAL, the generic model is capable

of reducing the makers’ efforts to create and host experiments to a great extent. This

chapters shows that common objects available commercially can be turned into smart

devices to be able to communicate over the network and Internet. While the

application of the proposed models has been specifically about P2P RAL, these

devices implementing the proposed models and methodologies can also be applied to

other distributed control scenarios, in particular in the context of the IoT.

The following chapters discuss several intelligent tools that are based on this CI-CU

model. These intelligent tools can support the makers to create their experiments and

maintain reliability and stability of the equipment.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

105

6
Intelligent Tools: Support and Validation and Evaluation

This chapter presents the homogenous set of tools that can be part of

the P2P RAL RLMS based on the automaton model.

In P2P RAL individual users are expected to create experiments and share them with

others. This requires the users work with a flexible, yet controlled environment both

in terms of hardware and software. MCUs as hardware platform can provide great

flexibility as shown in the previous chapter. For the software or programming

environment, the P2P RLMS must be able to view each experiment as a generalized

model to provide supporting tools to create a universal UI and control program logic

for the experiments. The automaton based model and its commands discussed in the

previous chapter provides the generalized model of the experiments.

This chapter introduces the methods of using this model to implement features that

improve users experience and operational reliability. This includes functions to

validate user commands to ensure rig safety and determine whether user support is

required. This also includes evaluating the user interactions with the experiment. A

universal set of supporting tools is required to address these functions to enable wide-

scale sharing and collaboration.

The extensions of the automaton model through Markov Decision Processes (MDP)

are an original contribution of this dissertation. The MDP-based model of the

experiments can be used to determine the correct course of the experiment run. MDPs

are created based on the recorded makers and subsequently user interactions creating

the unique states on the CU ports. MDP can be constructed from the state space of the

rigs which provides a set of experiment state transitions that are valid and permissible.

106

This way the MDP can be used by the experiment controller to ensure stability as well

as support other users by evaluating the current state of the rig in their experimental

session as described in Section 6.4.These contributions have been published in [159].

This process use training data initially collected from makers interacting with the

experiment before it is published for public use.

This chapter is divided into two major sub sections. Section 6.1 discusses Markov

decision processes in the context of experiment control in more detail and Section 6.2

introduces tools that used MDP to support makers and users.

6.1 Markov Decision Process

One major issue is the evaluation of the students’ performance and providing

guidance should the student require it during use of the experiment. While in a

centralised version, a specific interface for each experiment can be built, in a P2P

context a generalized set of tools is required. Evaluation and guidance can be based

on the same data structure. Evaluation requires verifying whether users have gone

through a set of states in the rig, possibly in a specific order. Guidance or support

[159] is the process of providing hints and feedback on what the next state should be

given a current state. Both the process of evaluation and guidance require the concept

of a finite set of definite states.

As described in Chapter 4, the CU can only have a finite set of ports R. The state of

each port can define the state of the rig. Note that this state is different from the state

of the CU working model described in Section 4.6. These states are the intermediate

‘physical’ states of the ports on the CU regardless of the current state of its operation.

The state of the experimental rig ports can be organized into a MDP [159] to

determine the best course of action (or command sequence) that will change the

experiments port states in the most desirable way with regard to learning outcomes.

6.1.1 Rig State Space

The state space of an experimental rig is dependent on the status of the ports. Each

port signifies a variable in the experimental rig whether it is connected to a sensor or

actuator. Changes in the state space are caused by changes in the value of any port as

in shown in Equation (4.2).

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

107

In terms of simple control, only actuators have any impact on state transition as these

are the only components that can directly change the orientation of the experimental

rig. But, from a decision and automation point of view, the state space contains the

values of all active ports on the MCU both sensors and actuators. The state space of

the rig is infinite as each actuator in the rigs can have a value between -∞ and ∞. But

in reality while training and running the rigs, it will only attain a finite set of states.

The rigs and its controller can be represented as twin-finite state automata. This

architecture consists of two sides, CI and the CU. The CU acts upon the inputs from

CI and the human users. The language between CI and CU is the communication

protocol for the instrument control in the P2P RAL. This language consists of the very

basic (or atomic) components of instrumentation - read (𝕣) for reading the value of a

port (sensors and actuators), write (𝕨) for writing a value to a port (for actuators) and

wait (𝕒) to pause the CU for maintain synchronization. The aim is to convert the finite

state space into a MDP.

6.1.2 Related Work – Markov Decision Processes and Control

MDPs are models to represent stochastic processes and have been applied in many

fields to model partly random decision processes. The Stochastic Shortest Path MDP

[160] or SSP MDP is a particular version of the MDP that specifies a set of goal states

that must be reached from any other state. For a system modelled by MDPs, there is a

decision maker or agent which decides what to do in the system. The agent is

provided with a plan or policy that gives the best chances with minimal cost or delays

to succeed in reaching certain goal states. From an MDP perspective, in a P2P RAL

experiment while the rig is being used, the human learner's input is a random factor

and they act as the agents.

MDPs are used to model systems that maintain the memoryless properties i.e.

choosing a new system state solely based on the current state and the corresponding

action. However, there are some approaches that store the past information into the

current state of the system and carry it forward [161]. The next best state and the

corresponding action are chosen based on a prescribed policy (π) that maps each state

to one action. Again the policy may not be static for every time step of the system

[162] and it may be updated with variable rewards within the system. MDPs are used

in artificial intelligence [163] to model and create decision-based support systems. It

108

provides a framework to model complex problems that have large state-spaces and

complex cost functions. It also provides a model to further develop learning

algorithms to aid reinforcement learning corresponding to the system. There are also

some well-known and efficient methods to solve MDPs such as the Value Iteration

Algorithm (VIA) [164].

In [165] the MDP is used to model the aircraft's movements and autonomously avoid

collision. The performances of different types of sensors are evaluated in the model.

But the aircraft state vector is fixed to the properties of an aircraft, thus limited to a

specific application. In the RAL scenario, MCUs provide a generic platform to create

variable experiments. Thus a method is required that can generate a MDP for any rig

using the MCU based architecture [119]. Similarly another particular application to

guide people with dementia is reported in [166]. It exploits the MDP’s implicit

capability to manage stochastic dynamics and capturing the trade-offs between

multiple objectives. All of these applications are capable of handling high

dimensional data and large number of states, although the computational capacity

required becomes a challenge on low-cost devices like MCUs.

The next section proposes a new MDP based on the experimental rigs and uses it to

implement intelligent tools for the CU.

6.1.3 States in the MDP

The experiment rigs in P2P RAL have to be intelligent enough to create the control

policies and avoid erroneous rig states. Thus creating the MDP for the rigs can help in

two ways:

First application is in setting up the admissible boundary of the state space of the

experimental rig. It can then always keep the rig in a valid state that can be obtained

from the MDP. There can be two broad types of states:

• Valid state: a possible rig state that is stable and in the MDP, thus permissible. It

is when the rig is not executing any command and the rig's parameters are not

changing.

• Error state: a possible rig state that will break the rig and make it inactive, thus

not permissible.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

109

The valid states can be determined in the MDP. But error states are not possible to be

identified as they are never recorded in the MDP. There can be two other types of

states:

• Interpolated state: a possible rig state that is not in the MDP, but may be valid.

Whether the state is valid or not may be determined by interpolating nearby

valid state.

• Undesired states: A possible state that is not in the MDP, but cannot be

validated in any way i.e. it may not break the rig, but not permissible either. An

undesired state is essentially assumed to be an error state by the rig.

The second application MDPs are in determining the next best step towards the

immediate goals keeping in view any other goals depending solely upon the current

state of the rig. The learners’ actions are matched against these best moves to evaluate

their interaction and determine if any support is required for them.

6.1.4 The Experimental Rigs as MDPs

The MDP is created from the state space of the experimental rig. An experimental rig

may consist of multiple sensors (or actuators with feedback mechanisms) each of

which is considered a variable in the state space. For actuators, it contains sensors to

determine their current state. The conversion of the experimental rig's state space into

MDP maintains a direct relationship between the MDP states and the rig’s state space,

i.e. rig's state that are positioned in the MDP adjacent to other states that precedes or

succeeds them during the course of rig control. This can help in evaluating whether

the transition in experimental rig state is desirable.

Construction of the MDP requires a training data set containing sample input

commands. The training set X has the set of makers’ inputs during testing phase of the

experiment,

X = { 𝑥𝑛
0, 𝑥𝑛

2, 𝑥𝑛
3 … 𝑥𝑛

𝜚 } … (6.1)

where 𝑥t
n is the state vector at time t of the experimental rig, n is the dimension of the

feature vector i.e. the number of variables (or sensors) in the rig and ϱ is a finite

integer. The feature vector contains the values of all ports connected to a component,

both sensors and actuators. Each 𝑥𝑛
𝑡 is a stable rig state when a command has finished

110

executing and before the beginning of the next command execution. A command can

be composite i.e. contain multiple instance of 𝕣, 𝕨, 𝕒 to accomplish an action that

requires to either maintain strict time intervals between multiple states transition from

𝑥𝑛
𝑡 to 𝑥𝑛

𝑡+1 (e.g. 𝕨1𝕒𝕨2) or even change multiple ports in parallel in a single 𝕨

command. However, each composite command can be broken down to its

corresponding set of atomic instructions and executed in reverse order (e.g.

𝕨2𝕒𝕨1) to get back to the previous state xtn.

Thus, the MDP for the rig system is defined as

Y = {Ш, A, T, G, α1, α2 ... α|G|} …(6.2)
where, Ш = E ∪ F. E contains all the valid states the rig can be in. F is a set of failed

states corresponding to each transition t ∈ T for valid states. E represents a small

subset of all possible states of the rig as most others would be error or undesired. Each

element in E corresponds to one or more elements in X.

A = { w(P, V)} are the write commands that are issued by the user. This is the random

factor in the MDP as the agent may choose to issue any command regardless of

whether that is optimal or not. P is a set of port(s) the command works on and V are

the values to be written.

T is a set of transition rules (or edges) that defines action allowed from a state, that

would lead it to the next state(s) if the associated command is executed. t ∈ T also

contains the probability of success of the transition i.e. 0 ≤ T(s, s') ≤ 1.

G is the set of goal states and G ⊂ Ш.

αi are rewards strategies corresponding to each goal state i ∈ G. Each reward strategy

consists of a matrix of rewards for each transition t ∈ T.

The Figure 6.1 shows an example of the MDP where A, B, C, D, E, G are valid states, D

is a goal state and FAB, FAD, FBC ... are failed states corresponding to the actions of a

valid states. The characteristics of the MDP graph are:

• There can be no self-loop in the MDP graph i.e. there can be no action that

will keep or bring the rig to the same state.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

111

• There can be many numbers of actions (or commands) in the MDP

corresponding to the components on the CI. But any action from a state s can

lead to only one other valid state s’. So, the actions can be represented simply

by the corresponding states (si, sj) it is between i.e. the edges between valid

states represents a command. For two states s and s', if there is only one edge

(s, s') during training with a command (e.g. 𝕨1𝕒𝕨2), the edge (s', s) may be

created by reversing the command (e.g. 𝕨2𝕒𝕨1), if that is permitted.

• A path should exist from every node to another node i.e. it cannot have an

absorbing state or locking states. This means, that the rig cannot stall at any

position with that learner having no control over it to bring it another state.

The existences of the routes are vital as the rig may have to automatically

restore itself to certain states from any other state by executing the commands

or action associated with each edge in reverse. There may be two pairs of

states that have only one directed edge, but these should allow traversal from

one side of the graph to another. A single edge between two nodes represents

a one-way transition. This may be due mechanical constructions such as

valves that operate in one-way. But being a semi-autonomous system, the rig

must be able to reach to a state preceding the single edge transition i.e. there

must be an alternate path.

• For every pair of adjacent state (s, s') in the rig, there is a failed state fss' for it

connected to only s. The failed state represents the situation when a command

fails and the rig enters a state that is basically an undesired state. It represents

only the failure of its connected valid state s to reach s'. Thus, the aim of the

Figure. 6.1. Example of an experiment MDP graph.

112

rig in the fail state is to move to a valid state automatically which is always

the corresponding connected valid state. The probability of success from each

failed state to the success state is always considered 1. If it is unable to

restore itself to its valid state then the rig is considered broken. There can be

no specific command associated with the edges on fss'.

• There are nodes that represent the goal states. Goal state may be determined

by a number of ways - the node with the highest degree or the most visited

node during training. But the best way is to collect the goal states from the

makers explicitly. These states signify the achievement of a target i.e.

learning outcome in the experiment. Goal states or task can be a single state

in the MDP or there can be multiple states in which case the MDP includes

multiple rewards strategies (αi). This will generate multiple policies for each

reward strategy. Each reward strategy αi allocates the maximum utility to the

goal state i. Correspondingly, a policy exists for each goal state i as = π1, π2,

... πg. each reward strategy αi or πi gives most importance to the goal state i ∈

G.

Another important aspect of the MDP is its quality as MDP is trained by its maker.

The makers are not expected to cover all possible states and transitions during

training. For this purpose, a number of edges may be added by the rig itself depending

upon conditions set by the maker. The quality of a MDP after training then can be

defined as:

𝑄𝑄𝑄𝑄𝑄𝑄𝑄 =
𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷

𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 𝑡ℎ𝑒 𝑟𝑟𝑟
 … (6.3)

Quality can indicate the competence of the makers, for example. It provides a

measure of how well a rig is built which may affect the maker evaluation in a learning

context.

6.1.5 The MDP Generating Algorithm

The MDP is generated using the following proposed new algorithm from the training

data that explicitly contains the goal states. Makers can use the following steps to

generate the MDP:

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

113

Algorithm 6.1

1) When the experiment is run by the maker for training, record each command and the

corresponding state (𝑥t
n) that is reached when it finishes i.e. the values of the ports along

with the goal states. This recording provides the training data set.

2) For each state transition, s1 to s2 recorded, add the states and action as the directed edge

(s1, s2) in the MDP.

3) Check whether there is any node that is not reachable from any other node. If there is any

such node, check whether all the transitions can be bi-directional.

(i) If yes, for each pair of state that has one directed edge, add another edge in

the opposite direction with the reversed command. The number of such

addition is noted to calculate the quality of the training set.

(ii) If no, then the training data is insufficient and more data is need. The

algorithm stops here.

4) For each edge (s, s') set probability T(s, s') = 0.99.

5) For each edge (s, s'), add a fail state fss’ with edge T(s, fss’) = 0.01 and T(fss’, s) = 1.

When an MDP is created for the first time, Step 4-5 assigns static values for the probabilities

of transition. In subsequent training sessions, the success rate of any existing edge (s, s') may

be recorded and the values for probabilities in T(s, s') and T(s, fss') can be updated.

6) Calculate the degree deg(s) of each state s ∈ Ш. For each reward strategy, 𝛼𝑖

(i) Initially assign for each edge (s, s’) in the MDP a reward value αi(s, s') =

deg(s’)2.

(ii) Then the reward for goal state i, corresponding to αi, αi(s, i) = 2 × max (deg(s’)2).

(iii) For all fail states fs from state s, αi(s, fs) = 0.

7) Once the MDP is constructed, the Value Iteration Algorithm (VIA) is used to determine

the best policies (πi) for the MDP.

The VIA() starts with the value function V0
r (s) = 0 for all state s ∈ Ш. Then the following is

repeated until for all s ∈ Ш, 𝑉(𝑖+1)
𝑟 (s) - 𝑉𝑖

𝑟 (s) ≤ 0.001 i.e. it converges.

114

𝑉𝑖+1
𝑟 (𝑠) = 𝑚𝑚𝑚

𝑠′∈ 𝐸
𝑇(𝑠, 𝑠′)[𝛼(𝑠, 𝑠′) + 𝜗 ∙ 𝑉𝑖

𝑟(𝑠′)]} … (6.4)

 for i = 1, 2, ..., where, ϑ is the decay rate. In each iteration for each state s, the policy (πr)

records the state s' as the best next state for whichVr
i+1(s) is the highest. The VIA itself is

repeated for all rewards strategies αi to generate corresponding policy plan for each goal

state. The algorithm generates the MDP and a set of optimal policy plans corresponding to

each goal state.

Analysis of the MDP generating tool

Step 1-5 creates the MDP according to the properties discussed earlier and adds the

fail states. Step 4 makes sure that the probability of transition is never 1 for transitions

between valid states. Even if no failure is recorded, there is always a chance of failure.

Step 6 calculates the reward matrix (αi) for each goal state in G. It ensures that each of

the edges leading to the goal state has the highest reward value. Step 7 calculates the

best reward possible i.e. value function for each αi. Note there is no summation as in

the regular VIA [162] because every successful command or action leads to only one

valid state and fail states are not counted.

Different MCUs have different computational capacities and power resources. The

number of states generated in the MDP may be very large and edges between each

state even larger. Processing the VIA to calculate the best policy map takes the largest

computational effort. This algorithm has a decay rate (ϑ) that may be altered to

increase or decrease the speed of the algorithm.

Figure. 6.2 shows the effect of changing ϑ from 0.99 to 0.5. While the iterations

reduce exponentially, the quality of the policy will drop at certain point (in this case ϑ

= 0.65). Thus, a suitable value for ϑ may be determined for a particular rig for a given

Figure. 6.2. Relationship between decay factor and the accuracy of the policy.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

115

training data set. This will change respective to MCUs and the experiments built

around them and useful when the policy needs to be recalculated quickly such as

during an experiment session.

The MDP is used to address the issues of enhancing user experience by changing the

level of commands to be used and validation and support of users experience in the

next sections.

6.2 Supporting Tools for Makers and Users

As mentioned before, the P2P RLMS must provide universal tools to support both

makers and users. There can be two types of support provided - while creating an

experiment as a maker and while using the experiments as a learner.

Supporting makers is done by providing adequate tools with which the maker can

create the experiment CI after assembling the experiment setup. These include

validating the commands that are executed on the rig and attempting recovery.

Supporting users is the process of determining whether the user is performing

optimally for an experiment and then providing possible support in taking the future

steps in the experiment session.

Both of these are done with the MDP described earlier. For each experiment, there is

a CU that follows predefined control policies created by the experiment maker to

operate the experimental setup as shown in Figure 6.3 to guarantee stability and

reliability. The control policies are conceptually a separate functional feature that lies

between the CI and CU and processes the command flow between them. The control

Figure. 6.3. The system architecture of a RAL experiment showing the control policies.

116

policies may be applied in many ways such as along with the UI and CPL or separate

software. However, in P2P RAL [119], it is difficult for makers to create specific

control policies by themselves. Each experiment has definite goals to achieve

corresponding to its learning outcome and unless proper guidelines are set by the

makers, the learners may be unaware on how to operate the rig to get to those goal

states.

6.2.1 Control Policies for Centralised and P2P RAL

Remote Access Laboratories being remote in nature must have some form of

automation of the experimental rigs to help guide the experiment run without the

assistance of humans. The automations often involve a mechanical or electro-

mechanical device that re-configures the experiment rigs as the current learner wants

in a given experiment session. The RLMS implements the control policies that

determine the exact manner of operations and the limits of parameters both inputs and

outputs. The control policy differs between experimental setups depending upon the

components used and their configuration. The main aims of control policies are

validating commands and attempting recovery.

Validation of commands is the process of identifying whether the rig will reach an

invalid state. The CI in the RLMS must make sure that the rig is always in a stable

state by blocking or rejecting any inputs that are not within the allowed range of

parameters. Validation of commands before executing them is very important as in a

remote laboratory condition, the access to experiment is automated and if a an

experiment becomes unavailable due to improper command execution, then it may

take lengthy periods of time to reset the experiment to a usable state.

Despite taking measures, rigs can still enter into unstable states. Attempting recovery

includes steps to bring the rig into a stable state if that happens. The CU informs the

RLMS and makers about any unstable state that is persistent and cannot be rectified

without human intervention.

In a centralised or federated RAL, the RLMS is managed from a select set of

computer nodes. The entire RLMS is provided as a service by universities or

institutions [167]. The RLMS stores the control-interface (CI) created by the maker,

which collects inputs for operating these rigs. The control policies regarding the

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

117

inputs are hard encoded into the control program. For example the definite limits of

an actuator are specified in the program. This requires deep understanding of

programming to create such policies. Also, it is more difficult to alter these policies in

case the hardware is changed.

Supporting Makers

In a P2P RAL, individual makers are given the opportunity to create a rig and it’s CI.

The maker, based upon their knowledge of any particular experimental activity

creates and shares an experimental setup. MCUs give enough flexibility to create an

experimental rig along with necessary automation. Makers can connect any sensor

and actuator to the ports and create the CI using a visual programming language on an

online platform [118].

However, providing this flexibility comes at the cost of lower reliability of the

components used in the rig. The validation of commands is even more important in

case of P2P RAL as there could be very little support from experiment hosts. The rig

must be protected from entering a state from which it cannot transit to another valid

state. Also, the makers of the experiments have disparate backgrounds and knowledge

about control and automation. The experimental rigs and CI created by them are less

reliable both in terms of the control policy implemented as well as the actual

equipment are not guaranteed to perform accurately for a lengthy period of time

especially without human supervision. Thus the makers must train the rigs to create

the appropriate control policy for an experiment setup.

The control program logic created by the maker, process the learner inputs for the UI

to generate the corresponding symbol sets or communication commands composed of

a combination of these three atomic instructions.

Figure 6.4(a) illustrates a typical example of a MCU based experimental rig. It is built

using LEGO Mindstorms parts and based on a LEGO smart Brick as the MCU. This

experiment demonstrates a pendulum with 3 actuators. The aim is to swing the

pendulum and take measurements at different heights of the ball. Figure 6.4(b) is the

corresponding web browser based CI with a number of buttons relating directly to an

actuator on the rig. The users can view the outcome of the experiment via a web-

camera stream as shown in Figure 6.4(a). There is also an animated character that can

118

provide feedback and guidance (red circle).

Makers have difficulties in hard encoding control policies in the CI as these require

expert knowledge. They are however, capable of running the experimental rig with

basic commands associated with a control interface. Systems constraints include:

1. The users and experimental rigs can be geographically located anywhere and

interact with the rig via the Internet. Video feedback is used for viewing

experiment outputs. As the system uses the Internet, control message between

learner and experiment node are subject to delays. This means that there can be

a chance that the learner may give an asynchronous wrong input depending

upon what they perceive as the current state of the rig.

2. MCUs have limited computational capacity to process data per unit time.

3. The learners who interact with the experiment are provided with detail about the

experiment and its goals. But, initially they will not be aware of the exact steps

that need to be completed to achieve the experiment outcomes.

Also, as the P2P RAL is decentralised, there is no external entity to co-ordinate

between the learner and the experiment rigs.

Supporting Users

Every experiment will have a set of tasks that signifies the completion of the

experiment successfully. This means the experimental rig must go through the

particular states of its state space within the experiment session. These set(s) of state

Figure. 6.4. (a) A pendulum experiment setup Figure 6.4 (b) The control interface of a RAL experiment in
SCRATCH.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

119

may be called goal states. In the P2P RAL system, it is difficult identify whether the

learner have met those goals. However, the makers are able to run their rigs as they

desire. This way they can train the experimental rigs to accept valid inputs only.

The MDP can not only provide the admissible boundary of the state space but

determine the best sequence of actions leading to the optimal state transitions. Thus

once the CU has the MDP of an experiment, it can determine whether a user has

traversed the rig through certain states that meets the learning objectives i.e. the goal

states.

While the Validation of commands and recovery attempts are important and integral

requirements of the CU, supporting users may not always be required. This feature

may be optional and disabled at maker’s discretion depending upon the experiment.

6.2.3 Indicators in the MDP

The progress quality in the transition of the states is measured with the following

values:

1. Absolute distance - dij (and Δd) - The primary indicator is the raw distance (d)

between the current state and the goal state. This distance is the length of the

shortest path in the corresponding policy πj for current state i to goal state j.

With each new state of the rig, the change in value of d indicates whether the

learner has moved away from the goal state or not. Δd < 0 when the rigs state

moves towards goals state and vice versa.

2. Relative distance ә (and Δә) given by

ә𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿ℎ�𝑃𝑖𝑖� �𝐿𝐿𝐿𝐿𝐿ℎ�𝑃𝑖𝑖� + 𝑛𝑎(𝑖𝑖)�� … (6.5)

where Pij is the shortest path in the MDP graph, between current state i and the goal

state j and na(i,j) is the number of pairs of adjacent nodes in the path Pij for which are

not adjacent in the policy πj. This value indicates the relative distance to the rigs state

from the goal state. A value of 1 indicates that the rig can transit to the goal state and

it is right on track. A lower value indicates, that in order to reach the goal state the

rigs has to go through some suboptimal paths in the policy which indicates it is off-

track. Varying probabilities of success in the MDP means that sometimes the shortest

transition may not always be the most preferable option in π. Δә is the change in ә

120

between state transitions.

ii) Weighted Relative Distance ϖ (and Δϖ) given by

𝜛𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿ℎ�𝑃𝑖𝑖� 𝐿𝐿𝐿𝐿𝐿ℎ�𝑃𝑗𝑗� . … (6.6)�

This indicates the weight of the immediate action of the MDP. For a rig MDP that

may have at least two directed edges that does not have an opposite directed edge but

still maintaining a directed path between all states, this indicator (Δϖ) shows any

sudden change in the rig state that is very faulty in terms of getting to the goal state.

For instance, in Figure 6.1 if the rig is in position A, then going to D takes is 1 step,

but if there is one bad decision of moving to B, then the feasible path length

immediately increases suddenly. This sudden change could indicate severe learner’s

mistakes particularly for one-way transitions of states. Δϖ is the change in ϖ between

state transitions. Note that only when a learner makes a wrong choice and chooses a

wrong one-way path, Δϖ > 0. For all other type of transitions before and after that,

Δϖ = 0. Thus it is very easy to detect such a mistake.

The change in indicators may be used in multiple ways, depending upon the system it

is being used in, to obtain a value representing all three changes. The rig can then

automatically decide whether it should intervene in the agents control commands and

how much it should govern itself.

Using the indicators

While the indicators may be used in multiple ways to evaluate the system and the

agent's status during the operation of the rig, in case of RAL a simple binary

evaluation is proposed here. The purpose of the intelligence in the MCU using the

MDP is to guide the learner automatically and decide whether helping the learner is

required or not. Thus the evaluation result (к) can have only the values 'yes' if the state

change was profitable in some way or 'no' otherwise., depending upon the rigs

position in the MDP. However to make the decision, the last few transitions must be

monitored and recorded accordingly.

Whenever a command is executed, the Algorithm 6.2 Evaluate(i) is run for the current

state i. If the current state is a goal state, then all variables are reset. There are three

variable to monitor the d, Δϖ and the total number of transitions. The number of time

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

121

d increases for all goal states, number of time Δϖ ≠ 0 for any goal state and the

number of transitions are recorded in q, r and p. If any of these goes over a threshold

rc, qc or pc respectively without reaching a goal state, then the users is in need of

assistance and к return 'yes'. The threshold pc is determined by the distance to the

closest goal state at the beginning of the experiment session or when a goal state is

reached. A tolerance of ε that maybe added to pc along with the values of rc and qc are

system settings put by the system administrator or the maker changing the difficulty

level of getting any help for the learner.

Algorithm 6.2 Evaluate(i) with global counter variables p, q, r

if i ∈ G then

 p ← 0, q ← 0, r ← 0, pc ← min𝑗∈𝐺 ∀ 𝑖≠𝑗 𝑑𝑖𝑖

else

 if ∃ k ∈ G, Δϖik ≠ 0 then

 q ← q + 1

 if ∄ j ∈ G, Δdij < 0 then

 r ← r + 1

 p ← p + 1

if p > pc + ε or q > qc or r > rc then κ ← yes

else κ ← no

6.2.4 MDP Inputs

There are few variable components that need to be defined or acquired from the

makers to be able to create or use the MDP properly. These are:

1. Initial state: As mentioned earlier, in the MDP there exists a path between

every pair of states. Thus the maker can choose an initial state. The

experimental rig will revert back to the initial state at the start of each

experimental session by traversing through all the intermediate states.

2. Whether all transitions can be treated as bi-directional?

122

3. Whether state interpolation is allowed? The MDP defines a boundary which

is at the best partially known as maker is not expected to cover all possible

feasible state of the rig in the training. It is in theory possible for the MCU to

transit to an intermediate state that lies on the path between any two known

states. However, such interpolation may not be allowed at all if the rig is not

completely free to operate and may break down at certain states that are in

between known stable states. Allowing interpolation assumes bi-

directionality is allowed.

6.2.5 Rig Operation

The rig operates by first receiving the incoming commands and then processing it.

With the MDP architecture, the rig is intelligent enough to make decisions on its own

whether the learner/agent is following a feasible chain of control commands. The rig

operation goes through the following steps:

Step 1. At the beginning of each learner’s experiment session, the rig reverts

back to the initial position and the values of d, ϖ and initial pc are

calculated.

For every new write instructions, the steps 2-7 are repeated. Other instructions (read

and wait) are executed immediately.

Step 2. When a write command 𝕨(P, V) is received in state si the

corresponding expected state is calculated. It is checked whether executing

this command will lead to a state (si+1) such that, si+1 is valid and (si, si+1)

exists in the MDP. If it is not valid and interpolation is allowed si+1 is

checked if it can be interpolated.

For a state (si+1) to be an interpolated state, there must exist at one other state 𝑠2 ∈

 {Ш – 𝐺} such that,

• si, s2 exists in MDP and

• the feature vector i.e. the values of all the n ports must be exactly the same

except only for one port (say nj) in si, si+1, s2 and the value for nj in si+1

should lie between nj in si and s2 i.e.

si[nj] < si+1[nj] < s2[nj]

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

123

This ensures that the interpolated state is actually traversed by the changing port, but

not recorded. This may occur when there are different parameters, like speed of the

servos (see Figure. 6.4), used while training from the one used by the learner. If it is

not valid and interpolation is not allowed then si+1 is undesired.

Step 3. If the new state is not undesired i.e. valid or interpolated, then the

command is executed. Otherwise the command is rejected. After multiple

rejections of write commands, the rig can decide that the user needs

support.

Step 4. The resultant state (s’i+1) of the command execution is matched with

the expected state (si+1). If si+1 ≢ s'i+1, then the rig is in the failed state. In

this situation, the rig tries to recover back to the previous state si by trying

to write the value to the ports as in si.. If the rig cannot restore the states of

all ports to the earlier values, it is considered broken and requires the

makers intervention.

Step 5. Once a state is successfully changed, the values for Δd and Δϖ are

calculated. In the RAL scenario, the probability of success of an action

from any given state is very high and generally equal for all transitions. So

the value of Δә is not useful in context of RAL. However, the other two

indicators, Δd and Δϖ are very important. The value for к is then calculated

with Algorithm 6.2 Evaluate() for the resultant state. If к is ‘yes’, the

learner is provided with hints to the next feasible state towards the nearest

goal state. The nearest goal state j is the one for which the path is the

shortest in corresponding policy πj from the current state for all active goal

states.

Step 6. Once a goal state is achieved, it is considered done and from the

learner’s perspective there is lesser incentive to re-approach that state.

Thus, once a task state j is reached, its corresponding values for Δd and Δϖ

are not considered for calculating к in Evaluate() i.e. removed from G.

Step 7. If the current state s' is interpolated from previous state s, then add s’

to the MDP. At this point there is no edge between s' and s which could

also be the case if s was interpolated by the last command. In either case

124

add edges (s, s') and (s', s) and incorporate them with the fail states fss' and

fs's into the MDP by following Step 4-6 of MDP generating Algorithm 6.1

(as in Section 6.1) accordingly by applying the steps on the new

edges/states. Then re-calculate the policies.

There may be possible temporal relation between learning objectives and

correspondingly the goals states. In some experiments it may be required to complete

a set of tasks before proceeding to others. This can be handled by activating a new

reward strategy at the given time once a certain goal state is reached.

To do this a directed graph of goal state (GT) nodes may be maintained. Any directed

edge a → b ∈ GT implies that the goal state b can be active only when goal state a has

been attained at least once. Thus initially only a small set of goal state are active and

available. In some experiments there can be only one initial active goal state if the

order of learning objective is very strict. Note that the user may or may not go to a

goal states that is currently not active, but it will not be counted as part of the

evaluation until all it's previous state have been attained.

Using the tree, for algorithm Evaluate(), only those goal states are considered that are

currently active. Once a goal state a is achieved all goals sates b that are connected to

it such that a→b ∈ GT are considered active and a itself becomes inactive.

6.2.6 Example and Results

The example considered to illustrate the use of MDPs is the pendulum experiment

mentioned earlier. This experiment has three actuators i.e. the feature vector in each

state contains three values of the actuator (n = 3). The values returned are integer

numbers (if the servos rotates twice full circle, the value is 720 degrees; if it rotates

backwards then the value is -720 degrees). The rig was trained with a sequence

contains (ϱ = 79) transitions that generated 73 states in the MDP. There are 4 goal

states defined in the experiment - C7, C16, C25 and C34. The learner starts with the

state C0 which is the initial starting position. The learner can send commands to the

rig and leave the experiment in any random position at the end of their session. The

rig takes its state back to C0 for the next session. The probability of success of each

command to the rig is 0.99. This is a high value as there is little probability of it

failing and it is and it is equal for all transitions as all the actuators have the same

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

125

reliability. The training allowed addition of bidirectional edges as all state transitions

(s1, s2) recorded can be done in reverse (s2, s1).

Figure 6.5 shows the final values of each state after the VIA is run corresponding to

the 4 goal states. For each of them the goal state has got the highest value followed by

the state that is closest to it e.g. C7 is adjacent to C6, C8, C12 and C13. The fail states

also get high values, but as the failed states are only connected one valid state (and the

reward for the transition from the valid to the fail state is 0) for all fail states, the

outgoing edge is chosen in the policy (πi). The values of all the fail state closely

follow that of their corresponding valid state, but are always smaller.

Figure 6.6 shows the distance form any state to the nearest task state. As the

probabilities of transition success are all same and the transition are bi-directional, the

values for Δϖ and Δә always remains the same. So this experiment, the value of Δϖ

has no meaning and the evaluation (к) is solely depended on the value of d. For

example Δd > 0 if the ball is moved up many times beyond the reach of the hand lever

as in states C6 to C0 and to C3. The distance will keep increasing to all the goal

states.

Note the significant increase in the distance for the states from C50 to C73 in Figure

6.6. This is due to bad training as these states were generated as part of the training

data set. They basically represent the maker generating transitions that are not very

effective towards reaching the goal. This is important for system like RAL for

teaching purposes if the maker want to make the usage of the rig as flexible as

possible.

6.2.7 Using MDP in P2P RAL

The MDP creates a unique data structure for an experiment interaction. It presents a

mathematical model of the experiment usage and thus the MDP can be used in the

P2P RAL to aid both makers and users.

Makers’ main advantage is that they do not have to enforce the control policies on

their own and hard code them into the CI. The maker's inputs to the creation of

control policies are minimal. The CUs can identify the most ideal sequence of

activities and act accordingly. The safety and integrity of the experiment setup can be

ensured with the validation and by keeping the rig within a desired limited state space.

126

Fi

gu
re

. 6
.5

.
Th

e
fin

al
 u

til
iti

es
 o

r v
al

ue
s o

f t
he

 st
at

es
 in

 e
ac

h
α i

 c
or

re
sp

on
di

ng
 to

 th
e

go
al

s s
ta

te
s C

7,
 C

16
, C

25
, C

34
. F

or
 fa

ile
d

st
at

es
 o

nl
y

th
e

hi
gh

es
t v

al
ue

 o
f s

ho
w

n
fo

r a
ll

fa
ile

d
st

at
es

 fo
r a

 v
al

id
 st

at
e.

Fi

gu
re

. 6
.6

.
Th

e
di

st
an

ce
 to

 th
e

ne
ar

es
t g

oa
l s

ta
te

 fo
r e

ac
h

st
at

e.
 F

or
 fa

ile
d

st
at

es
 o

nl
y

th
e

sm
al

le
st

 v
al

ue
 is

 sh
ow

 fo
r e

ac
h

co
rr

es
po

nd
in

g
va

lid
 st

at
e.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

127

If any recovery procedure is successful, the makers can be saved the trouble of

resetting experiments as well in case something goes wrong. The RLMS can

automatically keep track of the user interactions and thus determine whether the user

has performed as desired by the maker.

For the users, they can be provided with support and be monitored. The CU can

provide the support by detecting whether the user made a wrong decision with regards

to reaching the goal of the experiment activity. This could also help in making time-

critical decisions when required.

With the MDP, the rig is intelligent enough to judge the quality of the users’ use of

the rig. Thus the system can allow for evaluating the learner's performance. A higher

number of instances where the users make wrong decisions (Δd > 0 and Δϖ ≠ 0) can

be recorded and a feedback may be provided on the interaction.

All of this can be achieved without setting any specific limits in the IEM for the CU.

The rigs i.e. CUs can all run the same algorithms to create and parse the MDP

regardless of the experiments.

Presenting Guidance to Users

Once the CU determines that guidance or support is required, it has to be presented to

the user. The exact methods of providing guidance to the learner is out of scope, but

once the decision to guide is made and the path to the goal state established, the rig

can guide the users using any visual cue. For the MCU controlled experimental rigs,

the actions are each individual commands allowed from the CI components. All

actions may not be defined for all states restricting the learner and implementing the

control policy. A catalogue of learner-friendly terms may be defined for each

command or MDP action 𝕨(𝑃, 𝑉) by the maker and stored against the corresponding

edge (s, s'). While presenting the guidance, the next steps can be presented on the

interface by using the corresponding terms of the action required to change from

current state to the next state in πj in the shortest path towards the nearest goal state j.

Limitations of using MDP

There are some limitations of the MDP approach. The major limitation is the need for

training data. The experimental rig must be used multiple times by the makers and

128

testers to generate a sufficiently large training data set that can encompass all aspects

of the experiment. This means that the rig must be used to its operational limits to

ensure that the training data set as well as the corresponding MDP can cover all

possible states. This is difficult to do perfectly as makers may not foresee all possible

uses of the rig, thus rendering certain inputs from the users invalid with the respect to

the MDP even though they may not be unstable. In case of remote laboratories, it is

used for learning purposes and the proper way to achieve the goals is as important as

the learning goals themselves. Thus, following the makers’ steps is acceptable when

applying the MDPs to the RAL scenario.

Also, the goal states may be difficult to judge. In a poorly designed rig, the actual

events of the experiment result may not be captured properly from a particular state.

In those cases, the effectiveness of the indicators reduces. But, this can be resolved by

adding a dedicated sensor which will confirm the task events taking place. The

particular variable then can uniquely identify the task state.

Finally, recovering a rig is very difficult if multiple ports’ values were changed in

parallel in the previous command. But it is simple if only one port is changed in one

atomic command i.e. there is no parallel change in the ports.

The flexibility to match intermediate states can mitigate the impact of improperly

trained rigs to certain extent, but the interpolating techniques needs to be improved

and the rigs, very well trained. However, with a large number of users using the

system as part of the training, the MDP can be accurate.

The MDP can be used to determine whether the user has reached the desired goal

states and corresponding learning objectives. This could suffice to evaluate the users’

performance with the experiment in most cases where there are clear goal states.

However, some experiments may have goals state that needs to be reached multiple

times. In these cases, the just reaching goal states do not indicate a good learning

outcome. The exact manner in which the experiment is used must be determined to

evaluate the users. An example of this could be an experiment of moving a robotic car

in an open space. The state space of the car is finite and there can be certain goal

states corresponding to positions reached in the space, but reaching those states does

not guarantee that the user has used the experiment correctly.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

129

The solution to this involves profiling the user interaction and comparing it with the

maker interactions. The profiling requires data mining techniques and a special

clustering algorithm is proposed in the next chapter.

6.3 Summary

This chapter described MDPs a universal tool for evaluation, validation and guidance

during a users' experiment session. An MDP based model of the experiment is

presented which is an extension of the CI-CU model by converting its state space into

an MDP. This MDP is then used to evaluate the user's performance, provide support

and ensure the safety of the rigs.

In terms of IoT or WoT, the MDP model of rigs and the clustering algorithm can be

used for any application with multiple operational master-slave nodes. The main

contributions are the three indicators. In a given applications such as an IoT system,

these indicators may be used in various ways to determine the course of actions and

also find out whether the system is taking the best decisions or not. It is useful in

determining the impact of decisions in any environment with autonomous agents

taking decisions.

130

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

131

7
Intelligent Tools: Advanced Evaluation

This chapter presents a method for advanced evaluation and

validation of users’ interactions with experiments.

As mentioned in the previous chapter that the MDP may become ineffective in certain

circumstances. Thus a different approach is required to match and evaluate user

interactions with respect to the maker interactions for a given rig. This approach is

based on the relative difference in size and frequency of composite and atomic

commands with respect to time. The chapter focuses on using the temporal

relationship between commands.

A new constrained clustering algorithm is proposed in Section 7.1 for advanced

evaluation of the user interactions and also adaptive user interfaces. The clustering

algorithm creates/identifies and analyses the clusters or groups of executed commands

within a time period to determine the manner in which the rigs were used. It can be

used to create clusters of commands with desired properties. For creating clusters, all

commands passed during maker experiment interactions must be recorded according

to be used as training data. The content of this chapter is based on [168].

Clustering is used to obtain composite commands from the atomic commands.

Clustering commands allows the experiment controller to obtain usage patterns as

described in Section 7.2 for a particular experiment. It also identifies composite

commands when necessary as discussed in the next chapter.

7.1 Clustering Commands

As discussed in Section 4.7, several levels of commands can exist for a given

experiment. A higher level of language or composite command can be composed of

132

smaller lower level or atomic commands. The clustering algorithm aims to aggregate

atomic or lower level commands into a definite set that can be referred to as closely

related commands.

Such a set of commands can be loosely coupled i.e. not strictly part of any higher

level composite command. But it will indicate which components i.e. CU ports and

their corresponding devices in the experiment are closely related or frequently

accessed for an experiment. This chapter use the loosely coupled approach to create a

profile of the experiment interaction based on the makers’ interactions. The set of

commands clusters can be closely coupled as well when it forms a definite higher

level composite command. This property is exploited in the next chapter.

The aggregation of commands signifies multiple repeated instances of the same set of

atomic or lower level commands being executed. This aggregation can be done with a

data clustering algorithm as described here. The input is a set of commands according

to a timeline collected from the makers’ interactions. It is represented as a one-

dimensional data set D.

7.1.1 Literature Review - Clustering of data

Clustering is a large aspect of data mining related system implementations. It aims to

create groups of data from given datasets such that each group contains similar data

points which are different from other groups. There are several strategies of clustering

based on the user’s requirements [169]. Clustering has also been widely used in

networking and geographic information systems [170]. Some of the major clustering

algorithms are Hierarchical Agglomerative Algorithm (HAC), DBSCAN and k-

means. Some of the common strategies for creating a cluster are Distance-Based

Clustering, Partition-Based Clustering e.g. k-means and Density-Based Clustering.

Distance-Based Clustering assumes the relationship between each points or entities in

terms of the Euclidian distance between each of them, i.e. the closer the points are, the

more likely they are to be in the same cluster. The well-known Hierarchical

Agglomerative Algorithm method is the widely used implementation of this strategy

[169]. However, general hierarchical clustering does not specify any upper bound on

the cluster size in terms of the distance. HAC follows a greedy method to iteratively

join the nearest data points together to form a new cluster until a desired condition is

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

133

achieved.

The k-Means Clustering Strategy [169] works by first assuming a predetermined

number of clusters present in the data space. Then a set of positions are generated

either randomly or using a metrics such as Kaufman Allocations. [171]. These are

each assumed to be the mean or median of a cluster representing it at the start.

Subsequently, data points are compared and merged with the existing clusters to

generate new means or median until all points are merged.

Density-Based Clustering creates clusters based on the proximity of points [170]. The

DBSCAN is the most popular implementation of this method. This method uses two

inputs - a lower limit on the number of data points in a cluster and an upper limit of

the maximum distance between two points in a cluster. This method is faster than the

previous two in all cases and can identify irregular shaped concave clusters. However,

there is no way to specify an upper bound on the diameter of the clusters. Hence, the

clusters are formed by gathering all closely situated points or sites into one cluster

regardless of the diameter.

For creating the clustered command sets, a constrained hierarchical agglomerative

clustering (CHAC) method is used. The data mining approach of clustering usually

aims at maximizing the size of a cluster without any constraints and defines cluster

size as the number of data instances in a cluster. A clustering approach with

maximum size has been discussed previously [172]. This assumes that the number of

clusters is known beforehand. Some of the prevalent clustering strategies are

examined for their suitability to use in this problem.

The following sections propose a new clustering algorithm approach based in HAC to

create a cluster of commands. This proposed approach is then used to identify closely

related components to create profiles of experiment interactions.

7.1.2 Proposed Clustering in P2P RAL Control

The HAC [168] is performed by a greedy method where initially every element is

considered to be in its own cluster. The HAC algorithm then iterates through all pair

of elements and in each iteration the two closest clusters in distance are combined to

form a larger one. This creates a hierarchical structure of clusters. The iteration stops

when a desired condition in terms of clustering is obtained. In the current context, two

134

constrains are implemented for the CHAC(D, ε, y):

• Two clusters may be joined together only when the distance between them

is less than ε.

• No cluster can have more than γ elements in it. Hence, if the shortest

distance is determined to be two clusters that could have a combined size

i.e. number of elements of more than γ then they can never be joined. The

algorithm then moves on to check the pair of clusters with the next shortest

distance.

The clustering process begins with a one-dimensional set of data points (D) that

represents the command and the distance between them is a single integer value

representing the time difference between them. The CHAC process iterates through

each pair of commands and joins the two commands that are closest to each other

respecting the two conditions mentioned above. The algorithm stops when no clusters

can be joined any further.

Clustering on a timeline with commands with respect to time will generate a set of

clusters with at most γ commands in them and the time difference between each

successive command is ≤ ɛ.

7.2 Proposed Method of Evaluating User Interactions

In this section, a proposed Closely Related Component (CRC) list is described as a

 Algorithm 7.1 CHAC(D, ε, γ)

Initially each command c1… cn ∈ D is in its own cluster P1… Pn

allsitesclustered ← false

While allsitesclustered = false

Find the pair of clusters Pi, Pj with minimum distance i.e. min{d(Pi, Pj)}

 If d(Pi, Pj) < ε and |Pj| + |Pi| ≤ γ //according to Constrains

 Join Pj to Pi and remove Pj

 If ∄ �𝑃𝑖, 𝑃𝑗� 𝑠𝑠𝑠ℎ 𝑡ℎ𝑎𝑎 d(Pi, Pj) < ε and |Pj| + |Pi| ≤ γ then

 allsitesclustered ← true

End while

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

135

method to determine whether the rig has been used according to makers intended

design.

7.2.1 Command Operations – Mathematical Notation

The commands are issued to a particular port that sets a value for it. The state of the

ports on the experimental rig is reflects the state of each port of the CI. For any

component xi, Λ(xi) represents all commands that are issued to xi. For a set of

components J, 𝛬(𝐽) = 𝛬(𝑥0) × 𝛬(𝑥1) ×. . .× 𝛬(𝑥|𝐽|). As discussed, there are two

basic types of commands:

• READ - This command returns the value of the specified port that is connected

to a sensor to gather data from the rig's environment. For example 𝑙 ∈

 𝛬(𝑥𝑖) ⇒ 𝑙 = 𝑅𝑅𝑅𝑅(𝑥𝑖).

• WRITE - This command sets the port specified connected to a particular

component (for example, an actuator) in the rig to a particular value. The

WRITE commands returns with true is the command was executed successfully

or false otherwise. For example 𝑙 ∈ 𝛬(𝑥𝑖) ⇒ 𝑙 = 𝑊𝑊𝑊𝑊𝑊(𝑥𝑖, 𝑣𝑣𝑣𝑣𝑣)

Conversely, if xi ∈ Λ-1(u), then xi is referred by the command u. Likewise a set of

components may be called as a component set (J) of a group of commands B if there

is a one to one relation between successive commands in B and components in J.

Also, l1 = WRITE(xi, v1) is ideally different from l2 = WRITE(xi, v2).

For finding the closely related components, the values passed in the WRITE

commands or whether it is a read or write command are not relevant and this section

concentrates on the invoked components only. In the current context, this provides

with a less restricted profile of the users' interaction. The values and command types

may be taken into account of necessary for very strict profiling.

7.2.2 Command Flow

During the experiment duration, the state of the system changes according to the user

command i.e. Yt'(i) = ft (ci-1) where ci ∈ Σ. The controller must ensure that commands

ci are executed in order and with the time interval such that

 𝑌𝜏′(𝑖 + 1) − 𝑌𝜏(𝑖) = 𝑓𝑡′(𝑐𝑖) − 𝑓𝑡(𝑐𝑖−1) for i = 1,2,…

136

where τ' and τ represent the time instants at the rig and t' and t represent the time

instants at the CI when the commands (ci and ci+1) are issued. The latency (ψ) in the

network means the execution of the command will be i.e. τ > t.

Figure 7.1 shows a typical communication flow between the CI (S) and the CU (Y).

𝑙, 𝑢, 𝑣, 𝑤 ∈ 𝛬(𝑋) are instructions or commands from S to Y. Due to network delay or

latency, the command l arrives after ψl time to Y.

7.2.3 Closely Related Components

From the CI-CU model, Y has a finite set of physical states based on its ports R as

described in the MDP. Let these states be

QR = QA ⋃ QB

where QA is a set of stable states and QB is a set of unstable or intermediate states. Due

to the nature of the CI-CU model, discrete functions are associated with the CI for a

given experiment. This means that each experiment has a unique profile of commands

that are executed on it depending upon the commands (atomic or composite) called

from the UI. Thus a rig will enter a set of commands that will keep it in QB i.e. an

unstable state in terms of the experiment for a period of time before it enters a stable

state in QA which signifies the end of a composite command. Hence there can be a

repeating sequence of commands in the communication i.e.

𝐿𝑌
𝑗 ∋ 𝑢𝑣𝑖𝑤 𝑓𝑓𝑓 𝑖 ≥ 0, 𝑗 > 0

where u is a starting instruction of a composite command which take the rig to QB and

Figure. 7.1. An example experiment session communication flows.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

137

w is the final one which brings it back to QA. Any set of commands v may be repeated

in between u and w. Whenever the rig is not being used, it is in QA.

A CRC set (J) is a set of components that are referred to in the command sequence

repeatedly i.e. there exist uviw ∈ Λ(J) for i ≥ 0 and within a short period of time limit

(ɛ). J = {x0 ... xj} is a complete CRC if there does not exist any 𝑥 ∈ 𝐽 and 𝑥 ∈ 𝐽’ ≠ 𝐽

and 𝐽′ is also a CRC. A component may be adjudged closely related to itself, if

commands are repeatedly executed over it within ɛ. The time difference between each

successive commands {𝑢, 𝑣} ∈ 𝐴, is ideally negligible, or the commands are

simultaneous i.e. tv - tu ≈ 0. However for clustering analysis, the time difference

between the executions of two CRC commands may not be larger than the limit.

τv - τu ≤ ɛ

The components may not be complete CRCs and for any J, the strength of the relation

between components may be defined as closeness co-efficient (Φ(J)) and usage

probability as θ(J) with both values between 0 and 1. It may be noted here that the

value of ε is considerably greater that the time gaps (< 10ms) between commands

considered in Section 5.6 for queueing purposes.

The goal is then to identify and record the probability of occurrence of such command

chains or actions (uviw) that appear in high frequency in an experiment session. To do

this, first a clustering step is performed to identify the dense command zone and

command chains (A) over a timeline. Once these command chains have been

discovered they are used to establish the characteristics θ(J) and Φ(J) of these.

7.2.4 Preparing the CRC List

The clustering process partitions the whole set of commands in an experiment session

into a set of command chains 𝐵𝛾 ⊂ 𝐿, such that, for all elements y ∈ Bγ, |y| ≤ γ. The

CRC list is a 2-dimensional matrix with each row depicting a CRC Set and its

properties (θ and Φ). For a given historical data set (D) of an experiment session

containing all commands according to time they are executed on the instrument, a

CRC list (WC) is obtained as follows:

Step 1. First a suitable value for ε is chosen depending on the desired application of

the CRC List.

138

Step 2. Then the Bγ = CHAC(D, ε, γ) is executed repeatedly for γ = 2, 3 …, until a

desired precision of differences in successive Φγ(J) and θγ(J) are achieved i.e.

they converge. At the most the γ can be increased up to |D|, but both Φ(J) and θ(J)

converge after only a few iterations as the clustering is restricted by the distance

constraint (ε). For each value of γ, the following steps are performed:

Step 2.1 Once the clusters are formed, each cluster of commands b ∈ Bγ is

replaced by its component set. For example if b = luv where l ∈ Λ(x0), u ∈ Λ(x1),

v ∈ Λ(x2), then the component set of Λ-1(b) = x0x1x2. Thus all clusters in Bγ can be

re-structured as its component sets to obtain Tγ where a ∈ Tγ ⇒ a = Λ-1(b ∈ B) i.e.

Tγ contains all the components sets of each clusters of B. This gives the cluster of

components as they are referred by the commands. Any cluster can contain

multiple instances of the same component.

Step2.2 A global list (W) of all unique clusters obtained for various values of γ is

updated with records as <J, E(J)> where J ∈ Tγ and E(J) is the number of times J

as appeared in Tγ for all γ until and including this iteration. J may appear in Tγ for

multiple values of γ. A new CRC list (WC) is prepared from W in each iteration of

γ and matched with the previous iteration. WC has each entry as

<J, θ(J), Φ(J)>

For each J ∈ W (and also in WC) there is a probability of being executed in the

experiment session given by,

𝜃(𝐽) = 𝐸(𝐽) 𝑇⁄

where E(J) is taken from W and T represents the sum of all E(J) in W i.e. the total

number of separate clusters of components sets recorded until and including this

iteration.

𝑇 = � 𝐸(𝐽)
𝐽∈𝑊

Also, for each J i.e. CRC set, there can be a degree of closeness among its

components,

 𝛷(𝐽) = (𝐸(𝐽) + 𝐺(𝐽)) (𝐸(𝐽) + 𝑁(𝐽)⁄)

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

139

where E(J) is taken from W and

𝑁(𝐽) = � 𝐸(𝑥)
𝑥∈𝑊 ⋀ 𝑥 ≠ 𝐽 ⋀ 𝐽 ∩ 𝑥 ≠ ∅

N(J) > 0 means that the components called in J are not exclusive to J and some

component of it has been invoked from another components set x. This basically

gives the probability, at a given time, of J being executed in the experiments

session, provided any of its components is being called at that time. G(J)

represents the sum of all 𝐸(𝑥) for any x ∈ W such that x = Ji for i > 0 i.e. x is

composed solely by repeating J. Note that any command set with Φ(J) = 0 or θ(J)

= 0 will not appear on the CRC list.

The CRC list obtained in the final iteration of Step 2 is the CRC list of the

experimental rig obtained with D.

For two training data sets D1 and D2, if the value of ɛ is same, then they may be

concatenated and processed. Otherwise two separate CRC lists are created and

merged such that the resultant CRC list:

• has all rows for each J ∈ D1 or J ∈ D2

• the values for θ(J) and Φ(J) are averaged if J is common for D1 and D2

This list may be sorted according to γ, θ(J) or Φ(J) depending upon the required

information from the list. For example sorting the list by decreasing order of θ gives

the indication of probability of any command set J to be executed in an experiment

session from highest to lowest while sorting on the Φ gives an indication of most

strongly bonded CRC sets and the corresponding command chains. It may be sorted

on γ to obtain the number of commands set for each value of γ.

The next sections presents a test case, results and applications of an experimental rig

and its CRC list.

7.2.5 Example and Testing

For testing the proposed CRC List generating process, a LEGO based robotic vehicle

with a mounted sensor (see Figure 7.2) was built. The two wheels actuators A and B

work in a differential manner for making the robot turn and move in parallel for

moving front and back. Two sensors (D and E) are mounted atop actuator (C). The

140

sensor (D and E) do not stream any value but the user has to request the value through

an UI when they desire. A, B and C are also controlled through an UI. So there are a

total of 3 actuators and 2 sensors in the rig i.e. X = {A, B, C, D, E}.

The maker of this experimental setup is unable to create any mathematical model of

the rig and thus the only commands can be from the list as shown earlier in L(Σ). The

users inputs passed to the UI are executed on CU i.e. the LEGO Mindstorms. The

experiment is designed to move the robot around and collect data with the sensors at

certain positions. A session of 145 seconds is recorded and used as a training data set.

The network latency is negligible.

Choosing the values of ε is very critical to the correct use of the CRC List. The value

of ɛ is dependent on the context the CRC List is used. For this example ε = 50ms is

considered. This value is recorded as the minimum difference between inputs at the

UI for this experimental setup. The corresponding CRC list can be used to analyse

user experiences with respect to the user interaction.

Essentially, in this example all states, except the states that break the sensor wires by

turning the sensor at higher angles, are goal states. This means that only actuator C is

bounded by a lower and upper limit, but other two actuators can move infinitely

within the open space.

Results

Figure 7.3 (a) shows the different commands sets or cluster that appear most

frequently. The commands set AB appears most frequently with a θ(AB) = 0.69. Also

it is obvious that AB are the most tightly bonded (Φ(AB) = 0.65) components as the

experiments relies on the robot being moved frequently and then collecting data.

Figure. 7.2. A sample setup with LEGO Mindstorms EV3.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

141

However, C has been used less indicating that the user relied on moving the robot to

different positions rather that rotating the actuator C to different positions.

For Figures 7.3 (a & c), the step two iterations were performed from γ = 2 to 14 and

15. The values of the Φ(J) and θ(J) are almost similar and will continue to converge

with increasing γ. Note that increasing γ also results in newer and larger command

sets. The convergence is shown only for J common in both γ = 14 and 15. There are

much larger clusters in Tγ with γ =15. If the iterations are continued then there will be

larger component sets and even more instances of AB will be generated. Thus any

further values of γ may be used if searching for a particular large component set.

Figure 7.3(a) The component set and CRC list

Figure 7.3(b) Change in the number of clusters and CRC list

Figure. 7.3(c) The component set and CRC list (D2)

142

Figure 7.3 (b) shows the number of clusters formed and the size of the CRC list itself

i.e. the number of unique command sets identified with changing γ. The |Tγ| value

keeps decreasing and reached a stable state for γ = 34 while the CRC list increases

almost linearly with increase in γ. Figure 7.3 (c) shows a different session of the same

experiment (145 s), where the rig has been used differently. AB is still the most

tightly bonded component set. But C has been used more frequently in this session.

The main application of this method of finding CRCs is for analysing and identifying

individual actions. The method of obtaining CRCs list can be used to compare any

two experiment sessions by analysing the most occurring commands sets and most

accessed components of the rig. The makers' interaction with the experiment while

building it generates the training data set (Dm) which can be used to create the CRC

list CRC(Dm). The CRC list then cane be matched with other users' interaction (Du)

which can be used to generate a CRC list CRC(Du) as well. While the two lists are not

expected to match exactly equally, if the list contains similar elements with similar

values for θ and Φ then the user can be deemed to have used the experiment correctly.

Otherwise if there is new elements in CRC(Dm), then the user has done the experiment

in a different way than the makers' expected.

After repeated use of the rigs, definite actions may be identified involving the CRCs

pertaining to a particular experiment. The actions are classified as most likely to least

likely as well as undesired. This will allow for determining whether of the rig is being

operated in a desired manner or not. The rig can use the training data set to possibly

identify certain inputs that will put it in an unusable state.

While this method to use the CRC list can indicate whether the rig is used according

the makers desires or not, it cannot guarantee whether the learning objective have all

been attained in the exact manner if there is strict temporal relation between the

learning objectives and the corresponding goal states. But if a user reached all the

goal states and has the CRC list matches the makers CRC list, then it is mostly likely

that the user had good learning outcomes.

While learning outcomes are largely related to the way the rig is uses, thus making a

fixed sequence of state changes in the rig most desireable, it may be possible in

certain circumstances to entirely use different commands to still attain the same

objectives. This is illustrated in the Figure 7.3 (c) which uses the same experiment in

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

143

a different way, but still could have collected the required data. However, the

clustering cannot determine whther the rigs was used to achieve the required

learninng objectives. Future works can look into resolving this issue.

7.3 Summary

This chapter has presented a cluserting algorithm that can be used to create profiles of

the nodes behavior and validate any communication based on that. This form of

evaluation can be effective where there is no clear goal state. User interactions are

mapped to the maker interactions to identify differences. The discussions in this

chapter have focused on relaxed clustering considering only closely related

components an ignoring type and parameters. But if it necessary, the function Λ can

be modified to generate specific symbols for type and parameters so that Λ has only a

single element for a given combination of port, command type and parameter as a set

which will apply a very strict form of evaluation.

In broader terms, with respect to the IoT, this tool can be used to identify and measure

interactions of different master slave combinations in a master slave environment. It

can also highlight any temporal differences for the same combination. This can add to

the intelligence of each master and slave on what is an ideal communication exchange

if the devices to communicate with multiple master or slaves with time.

In the next chapter, the clustering algorithm is used to further enhance user experience

by identifying commands automatically.

144

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

145

8
Intelligent Tools: Adaptive User Experience

This chapter presents a method for adapting user experience with

regards to network conditions.

On the Internet, constant latency between the CI and CU is not guaranteed. Lost

messages result in additional latency for re-transmission and queuing results in jitter.

Thus, depending upon the experiment, if the events of the CI have any strict time

properties, a higher level language using composite commands is required in order to

maintain the required discrete events and corresponding commands. A composite

command initiates a finite chain of executable instructions on the CU. This fixed set

of instructions can retain any time-interval property required by the experiment. Also,

for network-based control systems, fewer messages lead to higher system efficiency

[150] and messaging quantity may also be reduced by queuing and using a proper

protocol as discussed in Chapter 4-5.

This chapter concentrates on the problem of interactivity of an experiment in the

context of RALs. First an experiment is describes as in a continuum in terms of its

interactivity in Section 8.1. Then the clustering algorithm is used for ensuring a good

learning experience as well as rig safety by altering the interactivity depending upon

network conditions as described in Sections 8.2 to 8.4. Section 8.5 provides an

example of the experiment continuum with a particular experiment.

This chapter entirely consists of new contributions [173] and discussions based on the

previous chapters. It focuses on the transition between the two control strategies,

DAC and UAC where commands can be aggregated into functions, which are stored

on the CU and invoked by the learner at the CI. The automaton model helps in

identifying the constituent commands of repeatable functions to be stored in CU.

146

The user experience can be enhanced by changing the interactivity of the experiment

according to the network conditions and by providing them the best interaction with

the experiment for given network conditions.

8.1 Experiment Interaction Continuum

The interactivity between the user and the experimental rig can be represented as a

continuum from a fully real-time interactive experiment, to a fully batched experiment

(see Figure 8.1). The same experimental setup can be expressed as a fully batched or

fully interactive depending upon how much input per unit time is given by the users.

The interactivity level depends upon the types of commands used (atomic or

composite) and used according to the desired learning outcomes of the experiment.

Although all experiments can in theory be run as both batched and interactive, not all

experiments will have a suitable application in terms of educational outcomes.

The interaction between the user and the experiment can be defined based on learning

objectives and rate of commands. In the current context, a learning outcome is the

completion of a set of tasks or the rig being in a given state that explains some

knowledge concept. An experiment session may be composed of a set of goal states

(G) that occur after the commands from the users have been executed. The feedback

of such a goal state is usually through video or some other data format. In P2P RAL it

is through visual feedback and CU acknowledgements. There can be several

intermediate states between goal states called the milestone states which are valid

states that lead up to a goal state which is also a milestone state.

Any pair of commands must be issued to the experiment at a definite rate such that

time between each pair of command corresponding to their goal states is static for the

experiment.

An experiment can be described as "absolutely" interactive if it only uses atomic

commands i.e. gives complete freedom to the users. The components of the

experimental rig may still be subjected to a range of possible conditions, but the users

Figure. 8.1. The interactivity continuum for an experiment

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

147

are allowed to execute commands that make the minimum possible change in the rig's

condition.

On the other hand an experiment may be described as a completely batched

experiment, but not technically absolutely batched as the size of composite commands

that can be created from the set of lower level commands is virtually infinite by

staking multiple levels of instructions executions. An experiment can be said to be

complete batched if the UI issues composite commands that causes maximum change

in the experiment corresponding to the objective of the experiment. For a complete

batched experiment, there can be only one command passed possibly with multiple

parameters that gets the result all at once.

8.2 The Experiment Session

A goal state can be accomplished most effectively if the corresponding commands

leading to the milestone states are executed with fixed time intervals in between. In a

given experiment session (e), the goal states can be expressed as an unordered set G =

{g1, g2, g3 ... gn} where n > 0. Each element in G is accomplished after at least one

relevant command has been executed for it resulting in the goal state. Thus

C(gi) = { c1t1, c2t2, ... cptp}

where p > 0. If C(gi) is ordered then the commands can be aggregated into a

composite command. But C(gi) may not always be ordered in which case smaller

composite or atomic commands may be used. The most important factor is the time

interval between the commands in C(gi). The value for the time gap for any pair of

commands i.e.{ti+1 - ti} must be less that a constant value for ensuring rig safety.

However, giving users control of the experiments requires that the users issue more of

the commands in C(gi), rather than the CU automatically issuing them as a part of a

higher level composite command.

It may be noted here that these time gaps ti+1 - ti is considerably larger than the time

gaps (< 10𝑚𝑚) considered in Section 5.6 for queueing. These time gaps represent

events that occur considerably apart in time to affect visual or structure changes on

the rig and thus the learning outcomes.

For a given experiment and its goal state set, the experiment can be assigned a most

148

suitable or default spot on the interactivity continuum. For example an experiment

involving moving a car will be highly interactive and use atomic commands and thus

by default is near the absolutely interactive type. However, each experiment can be

altered in terms of the rate of commands to become a more batched version of the

same experiment by using more composite commands. If the rate of commands is

compromised heavily it may affect the milestone state set. It could also affect the

goals states if the goal states have strict time gap properties between them. For

experiments that are by nature interactive, the learning outcomes are best if the rate of

command is higher compared to its batched version. For example if a robotic car was

to go from a point A to point B in a n experiment with interactive control, the user can

run several atomic commands to complete the task. This could involve many

milestone states and goal states in between the two points. On the other hand if a

single function i.e. composite command in batched mode was used to accomplish the

task, then the robot will still reach B from A possibly completing all the goal states

but the user will have no control over the robot and can only watch the events.

Static time gaps can be achieved easily if the remote node and the experiment rig

were close to each other such as in a LAN. In the P2P context, the makers can achieve

this perfection every time they perform the experiment, as the latency is negligible on

the maker site between the makers CI and the CU. The learning experience when

operating remotely is dependent on the ability of the system to maintain the time

interval as much as possible. The risk of not being able to maintain the time gap

increases with lower orderliness of the components of C(gi) in which case, commands

with smaller control length have to be used.

However, being on the Internet, the user experience is largely depended on the status

of the Internet services specifically bandwidth and response time. While sending and

receiving commands and corresponding data do not involve large bandwidth

requirements, latency between the user and the experiment is very important. This

becomes more obvious in a P2P scenario where the experiments themselves are

widely distributed as compared to the "centralised versions". Thus depending upon

the current condition of the Internet and the capacities of the device being used by the

users, an experiment may be scaled down to a lower interactivity session involving

composite commands.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

149

To support multiple levels of interactivity of the same experiment alternative user

interfaces are required. Each UI will have corresponding components that invoke

respective command sets. The CI has to select which UI or UI components can be

active during the experiment session. This change in interactivity levels can happen as

a single initial change or multiple dynamic changes.

For a single initial change, the network condition is determined at the beginning of

the session and the relevant parameters are set for the entire duration of the

experiment. The default interactivity level of the experiment may be downgraded if

required. This however may not be suitable if the experiment sessions are long. This

will require the CI to select only one UI at the beginning of the session.

For multiple dynamic changes the network condition is periodically checked and the

interactivity levels are periodically updated as well. This however creates an irregular

flow in the experiment session possibly interrupting the learning experience. This will

also require the CI to select between multiple UIs or UI components that are valid at

different points of time in the experiment session.

In changing the interactivity levels, some of the milestone state or goal states may not

be attainable, but at least some of them will be achieved. Obviously, with better

Internet connection, more of the goal states may be achieved. However, to implement

the changing interactivity levels, the corresponding composite commands must be

stored on the CUs for it to be able to parse them. This can be done in two ways.

One way is that the maker may create the different levels of commands explicitly so

that the UI can fall back to the interactivity level required. This enables fine-tuned

operations to be executed on the CU, but requires expertise from makers.

Alternatively, the CU may be intelligent enough to determine the chain of commands

that are executed repeatedly and store them as functions in consultation with the

makers. This restricts the function’s capabilities to the intelligent capabilities of the

CU, but allows automatic identification which is easy for makers.

The clustering mechanism described earlier can provide for automatic detection of

some of the repeating sequence and store them as functions. With it, multiple levels of

commands for different interactivity may be stored in the CU and used accordingly.

This may be done for if network conditions become unsuitable for highly interactive

150

experiments. For such experiments the time gap between the commands executed are

of high importance with respect to learning experience. But this may not be

maintained with high latency. It is necessary to maintain acceptable quality of

learning experience while ensuring the safety and integrity of the rig, if the network

conditions are bad.

Also, the maker of the experiment may deem an experiment to be run in different

ways for different learning outcomes for particular users' condition. In that case they

can specifically create the composite commands at desired levels and associate them

with different CI or UI.

8.3 Identifying Functions Automatically

The clustering algorithm in CHAC() may be used to determine the set of commands

that are executed repeatedly on an experimental rig. The clustering algorithm works

by joining closely executed commands into groups. The clustering algorithm takes

two inputs ε and γ. ε represents the maximum time gap between the commands

execution and γ represents the maximum size of the cluster.

The clustering algorithm can be used to identify closely related commands if the

commands are considered individually along with any parameters. This algorithm

works on the maker interaction (or possibly other previous experiment sessions) with

the rig as training data (D). This interaction which is a set (D) of commands according

to a timeline is used as training data as shown in Figure 8.2. Note that the latency at

the makers’ side is zero and thus the CI-CU interaction and performance is optimal.

Figure. 8.2 Clustering the repeating set of commands.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

151

Thus for different values of ε and γ different sized clusters may be obtained. Figure

8.2 shows three levels of changing γ with a fixed value for ε.

By incrementally increasing the values for γ for a given ε, several repeating sequences

of commands may be identified. γ is kept increasing until no new cluster can be

formed and there is a convergence. The CU then calculates which clusters are most

repeated during an experiment session. Once these clusters have been identified, the

commands can be aggregated into a newly named function.

The value of ε needs to be set appropriately for an experiment. A smaller value for ε

will create smaller clusters thus representing a more interactive communication

compared to a larger value for ε which will encompass a larger number of commands

into a cluster which represents more composite commands.

Thus, the clustering mechanism may be used to obtain composite commands at

various levels. For example (in Figure 8.2) with γ = 4, two individual functions F1

and F2 are identified. These two functions maybe stored in the CU and called

accordingly. Invoking F1 and F2 guarantees that the constituent commands f each

functions is executed in order with time gaps. However, at γ = 4, it is not guaranteed

that the time gap between F1 and F2 can be maintained with an adverse network

condition. Thus with γ = 7, a larger composite command is created by combining F1

and F2, which will guarantee that the commands are all executed in time. This

however reduces interactivity as F1 and F2 cannot be executed independently, thus

prohibiting any goal state that may be associated within these functions. This

parameter γ may be called the interactivity level.

The clustering algorithm here requires a closely coupled approach of aggregating

lower level commands as described in Section 7.1. This means that the commands

repeated and accumulated into a cluster must be strictly part of a higher level

command. The mathematical representation in Section 7.1 can now include the type

and parameter of the commands passed, into account while clustering. This means

that

𝑗𝑣 ∈ 𝛬′(𝑥) ⇒ 𝑗 = 𝑊𝑊𝑊𝑊𝑊(𝑥, 𝑣) 𝑜𝑜 𝑗 ∈ 𝛬′(𝑥) ⇒ 𝑗 = 𝑅𝑅𝑅𝑅(𝑥)

for x ∈ R, (set of ports on the CU), where j is a command and j ∈ {𝕣, 𝕨} for a given

parameter 𝑣.

152

This means that a command sequence that is clustered can be

𝐽 = 𝑎0𝑎1𝑎2 …

where a ∈ R, (set of ports on the CU) and ai represents the commands with parameter

i. Then the clustering can be performed in a similar manner using Λ′ instead of Λ as

mentioned in Section 7.2.4. This will generate the group of clusters of commands and

then the value of θ and Φ for each of them. Once again the list of potential identified

commands must have θ(J) > 0 and Φ(J) > 0.

Limitations

This approach of identifying commands however does not identify the composite

commands with conditional checks. Only composite commands that are repetitive

sub-commands with the same parameters can be identified and grouped together.

They will also not be able to identify commands that have large time gaps. There can

be other methods to identify commands, but they will definitely have a interactivity

level associated with them relative to the positon in the interactivity continuum.

This method can only identify potential functions, and the maker must approve any

function to be saved on the CU or the RLMS services. Whilst storing a function e.g.

F1, the maker may be able to add a static input parameter set to the function. The

input parameters to a function may alter the subsequently generated atomic

instructions from it. But as the function is being executed on the CU, it will always

take constant time T(F1, p1) for a given parameter set p1.

8.4 Automatically Altering Interactivity

Each experiment can be altered in terms of the rate of commands to become a more

batched version of the same experiment by using more composite commands. For

this, multiple UIs may be created for each level of interactivity. The UIM can find out

the most suitable UI for a given latency and maximize the number of milestone states

and goal states covered. The problem may be formulated for a given experiment e as

𝐺𝑟 = max|𝐺(𝑒)| 𝑠𝑠𝑠ℎ 𝑡ℎ𝑎𝑎

𝑡(𝑐𝑖+1) − 𝑡(𝑐𝑖) < ∆ ∀ 𝑐𝑖+1, 𝑐𝑖 ∈ 𝐶�𝑔𝑗� ∀ 𝑔𝑗 ∈ 𝐺(𝑒)

where ∆ is a constant and |G(e)| is size of goal state set G(e) of e.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

153

With the clustering the CU has the ability to identify the functions automatically. The

functions are then stored in the CU with the makers' knowledge. Using the various

levels of commands will require the users to create different components on the UI or

create entirely different UIs for each level of interactivity with different command

sets. Next it is important for the CI to determine when to change the level of

interactivity.

For a good learning experience, the rate of command execution must stay above a

minimum limit corresponding to the current level of interactivity (γ). Thus for a given

experiment, the rate of commands

ke
min ≤ re(F1, F2) ≤ ke

max

where F1, F2 ∈ D which is the set of all commands in the experiment session

timeline. For an experiment using absolutely interactive UI which issues only atomic

commands, the rate is expected to be high. The rate however could vary with time as

some goal state may require slow rate of inputs compared to others. Thus for a given

set of goal states in an experiment, G = {g1, g2, g3 ...} that is independent of time, the

rate of commands is

kg
min ≤ rl(F1, F2) ≤ kg

max

where g ∈ G and F1, F2 ∈ Dl which is the set of all commands in the experiment

session timeline corresponding to g. It is difficult to determine what the learners

intention is if the components of G are unordered i.e. the learners can choose any

change in the rig for a new learning event without following a specific order. If there

is an order i.e. G is an ordered set or the current objective of the learner is

determinable, then the experiment may act differently for each gi to maintain the

different rates.

In a real time experiment session, it may become difficult to maintain the rate due to

network conditions. The goal state of an experiment may occur only when a

command Ci = {a1, a2, a3 ... an} with n ≥ 1 is executed.

Thus, for each individual goal state gi, the minimum rate required can be determined

by analysing the makers’ interaction with the instruments. For example if F

constitutes of two different functions F1 and F2, then the time between F1 and F2 has

154

to be constant or the functions must be executed at a constant rate. In other words for

experiment e,

re(F1, F2) = T(F1, p1) + τ(F1, F2) + T(F2, p2)

where

• τ min(F1, F2) < τ (F1, F2) < τ max(F1, F2) represent the range of time gap

between the current function F1 and the all possible next functions F2 as

obtained from the training data.

• T(F1, p1) and T(F2, p2) are the time taken to execute the function F1 and F2

with any input sets p1 and p2 respectively.

τ (F1, F2) is the only variable that may change with erratic latency. T(F1, p1) and

T(F2, p2) will be constant for a CU whether they take an inputs p1 and p2 that alters

the number of instruction or not.

If the value of τ(F1, F2) cannot be maintained between the ranges as read from the

training data i.e. if

τ(F1, F2) > network latency

for any F1, F2 ∈ D, then the CU and CI automatically change the current rate of

interactivity i.e. increase γ and choose to run F.

Assuming an experiment starts with a default value for γ depending upon the default

interactivity, the change in the interactivity levels can be done in two ways, as a single

initial change or multiple dynamic changes.

For a single initial change, the CI and CU checks the time gap τ (F1, F2) for all pairs

of stored functions and atomic commands (F1, F2) ∈ Dy corresponding to the current γ

from the training data from the makers interaction. For a pair (F1, F2), τ(F1, F2) may

lie within a τmin(F1, F2) < τ (F1, F2) < τmax(F1, F2). If it is found that the value of τ

(F1, F2) may not be held within the range for any (F1, F2) ∈ Dy, the interactive level

is dropped i.e. γ is increased by 1 and the time gaps are checked again. This process

goes on until a suitable value for γ is obtained where all τ(F1, F2) for a γ can be within

the range as found in the training data. The SIC method only works for a short

experiment session, as the latency could change largely over a lengthy period of time.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

155

For multiple dynamic changes, the method has to be online. There is a current

function F1 being executed at any given time or when a new function F1 is started,

the CI and CU checks the time gap τ (F1, F2) for all pairs of stored functions and

atomic commands F1, F2 ∈ Dy. If it is found that the value of τ(F1, F2) may not be

held within the range for any (F1, F2), the interactivity level is changed i.e. γ is

increased by 1 and the time gaps are checked again. This process goes on until a

suitable value for γ is obtained where all τ(F1, F2) can be within the range as found in

the training data. Alternatively if all the values of τ(F1, F2) are found to be in the

range, then γ is decreased and the process is continued until τ (F1, F2) remains in

range. Multiple dynamic changes are difficult to implement, as it will require a very

dynamic and responsive UI that could handle the change.

Since the training data set is static, the commands in the CU can be associated with a

value of γ offline prior to the start of any experiment. The CU does not have to

calculate the τmin and τmax online.

8.5 Adaptive Control Interface Example

While the clustering and monitoring of the network latency can automatically switch

between interactivity levels, the makers themselves can create the individual

composite commands or functions, which can be more sophisticated including

conditional checks, for example. This section illustrates the implementation of an

experiment as both batched and interactive experiment.

The P2P RAL Programming Platform

The P2P RAL system RALfie, uses SNAP 103 as a programming platform to create

the program logic and the UI or CI for the experiments. The program created by the

makers may or may not contain functions that are stored on the CU depending upon

whether the makers wants the experiment to be absolutely interactive or complete

batched. But if the programing platform is able to find repeating sequences of

commands or the makers explicitly creates the composite command i.e. functions,

they are then stored by the CU. The steps required to create a stored function in the

RALfie programming environment are as follows:

1. The makers create an UI and the program logic of the experiment in the

SNAP environment on the browser.

156

The makers can create exclusive functions for an experiment, or the system itself may

identify any function as described earlier.

2. Either way, the corresponding function code is uploaded to the RALfie cloud,

which then compiles it corresponding to the target MCU.

3. A compilation confirmation is sent to the SNAP in the maker's browser with

the development environment.

4. The maker's browser then notifies the CU to download the compiled function

from the cloud and store it locally.

5. The MCU downloads and saves the functions. The makers UI at this point

can issue the command though a SNAP block. The MCU runs the command

during which the UI may disconnect. Alternatively the maker can improve the

code, and re-upload it multiple time to get the desired outcome.

6. Once the function is saved and the experiment is published, the UI used by

makers/users can call the functions with a SNAP block which the users

cannot alter. When the function is completed, the output file is stored for

downloading later.

The SNAP functions are referred by a name as the maker desires and the function is

then called from the UI the maker creates. Once the functions starts executing the

users/makers can close the connections, but the MCU can still be operating the

function depending upon the number of the instructions.

Figure. 8.3. The system architecture to create, compile and upload the code into a CU.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

157

The Solar Tracker Experiment

As an example a solar tracker experiment is discussed. The aim of the experiment is

to track the sun’s path in the sky during a year. The procedure of the experiment is to

find the position of the sun in the sky in terms of θ (horizontal) and φ (vertical). The

rig is shown in Figure 8.4. It consists of two actuators to rotate a sensor in the three-

dimensional hemi-sphere space. The actuator and sensors can be controlled from the

LEGO Brick which is the CU in this experiment. The actuators can also be read to

find out the actual degree of rotation.

The variable parameters in this experiment are the values from the sensors reading,

i.e.

1. The ambient light intensity return by the sensor (r)

2. The horizontal rotation by actuator 1 (θ)

3. The vertical rotation by actuator 2 (φ)

Thus the learning outcomes for this experiment is the change in the values of

the [𝑟, 𝜃, 𝜑]. If there is a change in r after changing the θ or φ, then it must be

processed and forms a goal state (all milestone states in this experiment are goal

states). Even though the values of r may not change for a given (θ, φ) it is still a goal

state. The goal state occurs with changes in the actuators.

Figure. 8.4. The solar tracker experiment rig

158

This experiment may be run with various levels of interactivity as both an interactive

and batched process. These two experiment cases are discussed here:

1. A absolutely interactive experiment:

To run it as an absolutely interactive experiment, the makers can create four

buttons representing the unit change in each direction as shown in Figure 8.5.

The top and bottom buttons are for moving actuator 1 in opposite direction

and the other two provide similar functionality for the actuator 2. Each of the

button issues atomic instructions to rotate the corresponding actuator by unit

distance, (5 degrees in case of the LEGO motor). The unit distance will

depend upon how accurately the hardware can be used. The Actuator 1 is

limited to angles between 0 and 355 degrees while the Actuator 2 is limited

between 0 and 90. The user presses the button as they desire and reads the

value of the sensor. After taking sufficient readings, the user can determine

the location of the sun. Each time the user presses a button, there is a new

goal state regarding this experiment’s learning outcomes on the rig that is

noted by the user.

2. As a complete batched experiment:

To run it a complete batched experiment, the maker creates specialized

functions in SNAP. These functions are converted to the corresponding

Figure 8.5 An Interactive mode Interface

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

159

programs suitable for the MCU. In this example, the SNAP function is

converted to Java and compiled on the RALfie cloud and downloaded into

the LEGO Brick. In the case of solar tracker, the following algorithm is

implemented explicitly in the function READ_SUN().

Function READ_SUN(a)

rb ← ∅ and temp ← ∅

 For time from 1 to 11 step 1

 Rotate Actuator 1 from 1 to 360 degrees with step 5 degrees

 Rotate Actuator 2 from 1 to 90 degree with step 5 degrees

 r ← read sensor value

 if(r > rb)

 rb <- r

 temp ← θ, φ

 End if

 Next Rotation

 Next Rotation

 Store the highest value rb with temp and time a

 Wait until an hour has pass since starting to measure

 a ← a + 1

 End For

The code is then attached to a single component i.e. button in the user interface as

shown in Figure 8.6.

Figure 8.6 An Batched Mode Interface

160

This function runs for 11 hours in a day. After the function is finished the data is

extracted from the log files and stored in a readable format. The user can log in at a

later time to check the progress of the experiment or get the data after it has

completed.

In Figure 8.7, the ‘Rotate’ blocks are write commands and considered atomic. It

rotates the motors by the degree specified. Assuming it takes approx. 5 mins to find

Figure. 8.7. An example of a manually created composite command or function of the solar

trackers that is compiled and uploaded to the LEGO

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

161

the sun (this will depend upon what devices are used) each time, it stores the highest

values of the motor angles for each hour represented by variable f. The starting hour is

passed to the function. The ‘say’ blocks store the output of its contents into a file on

the CU for later references.

Results and Discussions

This example illustrates the continuum in the experiment interactivity. With an

interactive mode of the experiment, the users have more control over the experiment.

The engagement is also higher than a batched experiment. This provides real-time

learning activities rather than reading a chart of data after the experiment is complete.

Alternatively the batched version allows collecting more data over larger period of

time, but engages the experiment for longer periods for one user (or user group)

compared to the interactive version.

This example also illustrates the difference between the "absolutely" batched and

"complete" batched experiment. The term complete and absolutely may be used

interchangeably, if the level of clustering of commands into function(s) is maximum

possible in context of the experiment i.e. how much time or how many commands can

be allocated to a user per experiment request. In this case, the students can initiate the

READ_SUN function with a parameter they desire which allocates up to 11 hour

period to the particular user or user group which is the maximum considered for this

experimental setup. Thus the experiment is completely batched as well as absolutely

batched for this experiment using the function READ_SUN.

Much more complex functions may be developed that generates a larger number of

atomic commands. For example, the entire Function READ_SUN may be put inside

another loop that runs the algorithm for 7 days, thus giving the user control of the rig

for a week and create a more complete batched experiment. Alternatively, the same

user/user group may be allowed to run the experiment 7 times on 7 days, thus

generating the same set of commands executed, with much more interaction.

With regards to application in P2P RAL, the maker can build the experiment and run

it locally multiple times. If the contents of the function READ_SUN are in the main

program of the maker (without it being a specific function), the same set of

commands are sent from the CI. As the commands sequentially, the P2P RLMS is

162

able to identify the cluster of commands that will ultimately resolve to the

READ_SUN function. Thus the maker need not explicitly identify the function on the

system.

8.6 Summary

The clustering method can also be used to create adaptive user interfaces. This can

improve user experience with respect to network conditions involves changing the

level of composite commands used dynamically. The concept of an experiment

continuum was introduced which shows that experiments can be altered from

interactive to batched versions. A Clustering Algorithm was used for determining the

level of complexity of commands for selecting the correct UIs for corresponding

network latency. The adaptive CI is however applicable for experiments that

conforms to the CI-CU model described in earlier Chapters. Experiments that cannot

be described with the CI-CU model, may have a different kind of goal state set which

may prevent the adaption process.

In the context of IoT or WoT, alternating interfaces could be useful in determining the

rate of flow of commands. In a IoT system with time-critical constraints, it is

necessary to adapt to network conditions. This would ensure that all commands are

executed securely and with respect to time.

The next chapter introduces the RALfie network system and the ways to optimize

performance.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

163

9
Enhancing Network Performance

This chapter presents the RALfie network system and an overlay

network scheme to minimize the network latency between two nodes

in the P2P RAL system using the concept of Nano Data Centres.

For real-time remote laboratories network latency is an important factor in regards to

usability and user experience. P2P RAL evolves at least two nodes, the experiment

and user site. If no direct connections between the nodes are possible, a relay node is

also required. The network architecture for peer-to-peer RAL can be implemented in a

number of ways. The simplest way is to setup a TCP socket between the MCU and

user. But, whilst TCP sockets are the simplest option, due to different NAT structures

in the Internet it requires additional network mechanisms like UDP hole punching or

STUN methods, both of which are not guaranteed to work in all environment. The

entire system is a P2P network and thus the nodes can be organized with an efficient

overlay network to minimize the latency between them.

This chapter discusses the P2P network system literature review with respect to RALs

in section 9.1. Then it discusses the network setup of a P2P RAL system involving

VPN and WebSocket technologies in Sections 9.1 and 9.2. In addition, a method is

proposed in Sections 9.3 to 9.6 to minimise latency between network end-nodes. The

proposed approach has been tested by simulation to determine relay node locations.

The concept of Nano Data Centres (NDC) is used to establish an overlay network

scheme.

The content of this chapter is based on [108, 174, 175].

164

9.1 P2P Overlay Networks

A P2P Overlay Network is a computer network built on the top of another computer

network. It does not control routing of packets in the underlying network but co-

ordinates the communication from outside between its nodes. It allows routing of

messages to destinations without mentioning destination IP addresses at the source. A

P2P overlay network consists of a set of super peer nodes associated with other peer

nodes, which aids in transferring data between nodes that are otherwise incapable of

communicating directly. A P2P overlay network dedicated to NAT traversing is

discussed in [176]. This approach also selects a random number of relay nodes (super-

peers) for every peer. However, no consideration is given to the method of selection

and optimizing the distribution of the peers among the super-peers.

Both structured and unstructured overlay P2P systems (e.g. Chord [31], CAN [31],

etc.) are designed for quick search and efficient file storage mechanisms for a huge

number of files. Also, the data may be divided into separate parts and efficiently

stored and distributed to guarantee access to them. However, the RAL system does

not need such a storage mechanism, instead peers or super peers are required to share

their bandwidth for relaying information. The data exchange is point to point. P2P

architectures for distributed laboratories have been proposed in [177]. This allows

implementation of distributed experiments that operate through the network. It

however does not address the problem of selecting proper routes dynamically such

that QoS parameters are optimized.

In RALs, the data is not only exchanged in real-time, but the data itself is generated in

real-time i.e. live. There is no scope (or very limited possibility) to determine future

actions and states of the client or rig nodes. As such the chunk and cache [178] based

approaches which are successfully used in overlay networks for streaming media

cannot be used here. This makes it more important that the possibility of peers getting

orphaned or left without super-peers be minimized. To do this affectively, the peers

must be distributed more widely among the super-peers.

QoS Optimization in Overlay Networks

Clustering based approaches have been used to enhance the QoS of P2P overlay

networks [179]. The overlay network scheme tackles triangular inequality violations

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

165

of RTT in the internet with an Internet Coordinate System (ICS). Each node requires

knowledge about all other nodes through direct measurements between each node or

partially estimating network distances thus sacrificing accuracy. Thus the proposed

method although reducing RTT is not effective with high churn rates (rate of change

in users) [179] due to slow algorithms (for estimation or measurements of RTT). This

also requires an ICS algorithm to be run on the nodes which is computationally

expensive. None of this is applicable or possible for RALs using low-power MCUs or

smart devices in IoT systems.

Real-time multimedia P2P systems (e.g. Skype [12]) that are based on overlay

network are used for audio/video streaming between mobile devices. These, although

being real-time, can allow for lossy transmissions with techniques like adaptive bitrate

[180] and lossy compressions [181] maintaining an acceptable quality. Such systems

focus on finding powerful nodes to process and relay information with higher

bandwidth. However, with respect to RALs, instrument instructions can neither be

compressed (as they are too small and compact, carrying the minimal critical

information regardless) nor be lost. Also, the instructions must be executed on a

certain timeline on the rig for proper execution.

Thus the relevant P2P network systems that have been proposed are not inherently

suitable for the P2P RAL. All of these can be used as the P2P RAL's network system,

but they do not address or optimize the specific requirements of the P2P RAL

altogether i.e. real-time, but lossless communication in a an unstructured network.

Thus the real implementation of the RAL system has been kept very simple using a

VPN server as described in the next section. This system achieves the transparent

direct communication between the CI and CUs.

The mechanism discussed later in this chapter (Section 9.4-9.8) aims to create clusters

with the nearest possible NDC in terms of QoS parameters like RTT.

9.2 The P2P RAL - RALfie Network Setup

Due to the types of network connectivity available at the participating sites, not all

nodes will have unrestricted access to the Internet. Some nodes will reside on private

networks and require Network Address Translation (NAT) to access the Internet. For

example, most home networks fall into this category as a home networking router

166

manages connection between the residents and outer world. There are a number of

options to overcome the limitations that are imposed by the widespread use of NATs.

Port mapping can be setup either manually or automatically using Universal Plug and

Play (UPnP). In corporate environments, nodes are often located behind proxy servers

and are not able to run servers. The peer-to-peer community has developed

mechanisms to overcome these limitations (for example Skype and JXTA [157])

where the restricted nodes use unrestricted nodes to exchange data between them.

The nature of P2P RAL means that nodes are geographically distributed. Figure 9.1

depicts two maker sites (green clouds on the right) that connect to a central Virtual

Private Network (VPN) via User VPN Gateways. The local network that makes up the

site connects the computer that is controlling the experiment as well as cameras and

other networked equipment. An Access Gateway with an associated user and site

database is also connected to the VPN and this gateway is also connected to the public

Internet. Two users are shown on the right hand side.

The core of this P2P RAL is a peer-to-peer virtual private network. Previous work has

demonstrated that latency is critical [175] and P2P communication is essential for

real-time interactive applications [182]. In the context of an Australia-wide system,

relay nodes can introduce considerable network delays which results in unacceptable

lag for users. If users and makers communicate directly, the effect of network latency

Figure. 9.1. The RAL experiment components.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

167

is minimised. As a secondary effect, access traffic is distributed to many nodes and

not concentrated at one particular gateway.

The diagram omits the Internet that is required to setup the VPN between the sites.

From the perspective of the devices, i.e. the Access Gateway and the User VPN

Gateway, these are connected to the same IP subnet and can be reached directly. At

the local maker site, the experiment and other equipment has to be connected to the

P2P RAL network. There are potentially two options to achieve this: use existing

local networking infrastructure or set up a separate local network. The former requires

less additional infrastructure, but potentially means that a third party has access to the

local network and the computers that are connected to this network. As security

settings for local networks are often permissive, this can be a security concern. This

option also requires considerably more configuration and requires the correct setup of

the local network. Furthermore, settings will have to be adapted to existing local

configurations. Another issue is that both experiments and video feeds need to be

authenticated and this has to occur transparently and independent of the networking

environment.

To overcome these issues and to make the deployment as seamless as possible, the

proposed system uses a separate local network. This also implies a separate IP subnet

for maker sites. To ensure the separation between the local private network that

provides Internet access and the local experiment network, the experiment are placed

in a Demilitarized Zone (DMZ). All participants, including users and makers, need to

be authenticated to connect to the P2P RAL system and in essence gain access to

nodes connected to the VPN. The Access Gateway maintains both user/maker and

experiment databases. It is also the network node that authenticates users.

Whereas authenticating users via a central web gateway is straight forward,

authenticating peer-to-peer connections is more complicated. Both users and makers

generate a public and private key pair at the time of registration and the public keys

are known to the central broker node. Once a peer-to-peer session for a particular user

has been authenticated, the broker node has to distribute the respective public keys to

the node that are party to the transaction. For the maker site, the key of the user has

also a Time to Live (TTL). The session is active, as long as the key at the experiment

site is valid. If the session is terminated prematurely, the keys are revoked.

168

9.3 RALfie Implementation and Further Work

This section discusses specific details of a P2P RAL system that has being developed

for the RALfie project.

9.3.1 User VPN Gateway (RALfieBox)

From a participant’s perspective, a RALfieBox is the core of the system. Technically

this is a User VPN Gateway managing the local network that hosts the experiment,

connecting to the VPN overlay and authenticating user access. These systems are

based on common low cost home gateway devices and run custom Linux firmware.

These devices are preconfigured in a way that automatically joins them to the overlay

network once the node is connected to the Internet on the WAN port. The LAN ports

are used for RAL appliances such as cameras and controllers. The systems are based

on OpenWrt firmware (http://openwrt.org/) and specific hardware is not required.

Makers have no administrative access to the RALfieBox. The WAN port is connected

to the Internet and the VPN client establishes one external connection to the VPN note

on the Access Gateway. All other incoming traffic on the WAN interface is dropped

except incoming VPN connections.

Makers can use the local network to configure the local activity and setup the camera

etc. Each device is paired with the RALfieBox. This involves an initial step of

identifying the IP Camera and MCU network interface and pairing them to the

RALfieBox. But this step needs to be done only once and can be done by an expert

before the RALfieBox can be used to create the experiment without further support.

All RALfieBoxes use the same local IP subnet. By using the same address space

across all local P2P RAL networks configurations, instructions and support are

simplified. Makers do not have to deal with IP addresses at any stage.

9.3.2 RALfie Portal and Gateway

The RALfie portal and gateway on the internet (https://ralfie.net) is the main website

and the experiment details repository in the system. This portal also contains the

gateway that provides the connection between the VPN and the outside world i.e. the

Internet. When an users logs into the RALfie portal and selects an experiment, the

user id not part of the VPN. Instead the users' connection is established with the portal

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

169

which then relays the communication to the corresponding RALfieBox depending

upon the experiment selected.

The portal also stores the experiment data that are created for an experiment for

example the corresponding CI including UI and CPL and experiment activity details

including the aim and descriptions of the experiment. While ideally these should be

stored in a distributed manner, the current RALfie version stores this on the portal

based on cloud services. The next sections focus on the possible network setup and

how the RALfie portal and gateway services could be setup in a completely

distributed manner using Nano Data Centres (NDC).

9.3.3 Increasing Network Performance

Simply setting up the RAL network as described above successfully provides the end-

to-end connection. But it does not guarantee the best network conditions with regards

to network latency. The following sections propose an overlay network based on

NDCs that tries to optimise i.e. reduce the network latency as much as possible. At

this point the proposed method has not been implemented and has been tested through

simulation only.

Nano Data Centres are a new concept of using a large number of low spec computing

devices such as home gateways to provides services that are normally provided by

full-scale data centres, e.g. computing and storage services [183, 184]. Such systems

have been studied in the context of content distribution systems like video on demand,

for example. On the other hand, highly interactive systems for peer-to-peer

applications place stringent requirements on end-to-end QoS metrics such as delay

and jitter to be accepted by users. Latency is thus an important aspect of such systems

[185]. For interactive real time systems both the source and the destination contribute

to delays and its effects. In P2P systems, all nodes are capable of originating and

terminating connections. Depending on the connection type, nodes act either as clients

or servers.

This works well for application where the P2P system is concerned only with the

peers exchanging data among themselves. For certain systems, such as distributed

remote laboratory systems, a number of centralized data storage and content-

distribution services are required. Limited by their network access, some peers will

170

not be able to expose server ports to the Internet easily. Users are often located on

private networks accessing the Internet via proxies, firewalls and Network Address

Translators (NAT) [186]. In such architectures users can initiate connections to the

outside world, but nodes on the outside cannot initiate connections with nodes on

local networks. Technical solutions exist to overcome these issues, for example port

forwarding; however, these are often prohibited by the network administrators out of

security concerns or require technical knowledge to be setup. In this case it is

necessary to relay data via additional nodes.

This sections addresses the following problem: Given a set of geographically

distributed sites with peer nodes with (a) their probability of using the system, (b)

their inability to listen to incoming connections from other peers and (c) the

requirement of a supporting content distribution system, the aim is to ensure optimal

locations of NDCs with respect to geographic routing principles [187, 183]. The

Round Trip Time (RTT) between any two peers must be minimized subject to node

capability constraints. As end-to-end delay is a critical factor, the geographic location

of NDCs is critical in ensuring minimal latencies [175]. This is particularly important

as nodes are potentially distributed over a large area.

A clustering approach similar to Section 7.2 is used to group sites into clusters from

which a set of NDC sites is selected. The clusters are created according to the system

characteristics based on its sensitivity to a QoS parameter - the response time. The re-

clustering with respect to time is shown to be adaptive and improves the average

system RTT. This is a part of response time by determining the optimal path based on

the principles of geographic routing.

9.4 Background and Related Work - NDC and Overlay Networks

This section discussed the literature review of the NDCs and Overlay network. NDCs

are normally used to create content delivery networks. For content delivery, a number

of replication servers can be setup around the world to minimize latency with respect

to geographical location [184]. NDCs allow saving considerable energy and still

maintaining scalability. Such systems are more spread apart geographically than

conventional data centres and are often larger in numbers to make up for their lower

performance. In the context of establishing an end-to-end connection between users,

NDCs may play a role in relaying data as well as in addressing communication issues

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

171

such as firewalls. The Traversal Using Relays around NAT (TURN) [188] protocol

uses this principle. A significant impact of protocols like Interactive Connectivity

Establishment (ICE) [189], STUN, and TURN protocols on delays in operation of

P2P Session Initiation Protocol is presented in [190]. These factors further necessitate

correct positioning of the relay NDC nodes.

A similar overlay architecture, Service Overlay Network (SON), has been described

in [191]. It is designed to address point-to-point QoS to facilitate the creation and

deployment of Internet based P2P systems. Internet infrastructure supports primarily

best-efforts connectivity service. The data in a network system from one node to

another node typically traverses multiple domains. The focus is on the bandwidth

allocation as a major problem of setting up such SONs in [191]. In [192] a balancing

strategy has been proposed to overcome the unbalanced data flow distribution in a

SON by aiming to achieve system optimization by adapting to the condition of the

network. This work aims to create a topology similar to SON based on multiple NDC

sites.

Overlay networks based on Distributed Hash Tables is another form of P2P network

architecture. DHT based P2P networks are mainly designed for storage and search

mechanisms. They are optimised to deal with changing network topologies, as the

majority of nodes in the system are unreliable [31]. Other P2P approaches can also

identify a set of super-peers among a set of peers who host certain quantities of

content that are then consumed by other peers [31]. In the current context, ensuring

the low latency is of utmost importance. Any search and storage mechanism may

enhance the system performance as NDC sites (equivalent to super-peers) are

identified. Unstructured P2P system allows the peers to join the network without any

prior knowledge of the network topology [8]. This type of network uses flooding

mechanisms to communicate and locate necessary information. Peer respond to a

query with a list of all matching content to its higher level nodes. Despite these

systems being computationally in-efficient due to flooding, the unstructured P2P

systems such as torrents are the most widely used P2P network system on the internet

[8]. This is mainly because of their higher reliability i.e. there are some nodes that are

always present and efficiency in practical situations. The NDC mechanism proposed

in this thesis follows this pattern of P2P network.

172

There are some methods used for location-based routing in ad-hoc networks [193,

194]. All nodes have knowledge of their neighbours and in some cases discover

distant nodes called anchors [193]. Source nodes pass data to the next available node

in the direction of the desired destination. The next receiving node again passes the

data to the best suited note in the direction of the destination. Based on these

principles, a greedy strategy - the GRA (Geographic Routing Algorithm) is proposed

[194]. There have been a number of studies about proper positioning of super-peers in

a network [195] that aims at the determination of placement of relay stations of

WiMAX systems in different geographical scenarios such as mountains, lakes etc. In

the context of this work, the policy of sending data based on distance and geographic

position is the main target, although the network is not ad-hoc. The system can

however adapt its topology over time.

Geographical Load Balancing [196] is a system with clusters at various locations

across the globe that dynamically routes data to such nodes based on proximity to the

user, system load at that time and local electricity cost [197]. The proposed

methodology in this work can be used to determine NDC site positions and change

between them dynamically based on user participation in the system by considering

only relative response times. However, other parameters may be incorporated in the

clustering algorithm.

The main aim is to minimize the RTT in a real-time system given the problems of

node location uncertainty and changing users’ probability by determining the

positions of the NDCs using actual geographic positions. The desired network

characteristics may be centred on two parameters - average system response time and

percentage of population covered within a limit [175]. These two parameters may be

measured for all the candidate sites to determine the NDC site. For this work, the

average system RTT is used as the indicator.

9.5 Basic Overview of the Overlay Network System

The P2P RAL system poses the following problem with the respect to any P2P

overlay network system: There are dynamic users who can enter or leave the system

at will. The duration of the users being in the system is variable but finite, yet not

spontaneous. The probability of the number of users from a certain location is variable

and depends on its population and various other factors. The NDCs can host a large

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

173

amount of information repositories such the experiment list and corresponding

multimedia data including text videos and images related to the experiments. NDCs

are also responsible for relaying data between users due to firewall or security issues.

The objective of the overlay network of NDCs is to minimize a certain cost associated

with the exchange of information such as average system RTT. This includes

configurations where only one NDC node is used as a relay node/site [175] by the

entire system, and a set of super-peer NDC nodes used among all peer nodes. The

probability of users’ participation changes with time and is assumed to be predictable.

The input parameters in the procedure to determine the NDC sites are

• a series of sites (Ч) where multiple users’ nodes are located

• the changing user nodes participation pattern in them (σ) and

• the distance (considered proportional to the latency) between them (𝜓).

The communication is assumed to be one-to-one. The corresponding network

architecture consists of several nodes that are situated across a wide geographical

area.

The process of finding the NDC sites start with clustering the sites in Ч according to

their distance with each other. Each site is placed into clusters such that each of them

is within a certain limited distances from all other nodes in their respective clusters.

The clustering can change over time as users behaviour changes. These clusters may

be used in two scenarios:

If the participation pattern of the users is cyclic i.e. the change in clustering

displays a static pattern, the NDCs may be permanently assigned in

determined centres sites of clusters. This way a SON for the system may be

implemented.

Otherwise, the clustering has to be done repeatedly and the desired NDCs may

be activated when they are suitable and de-activated to conserve energy [183]

when there is new set of more suitable NDCs sites i.e. the cluster and the

cluster centres change. This requires that each site in Ч at least possess a NDC

even if it is de-activated intermittently.

174

In a practical scenario an NDC site would be data centres or in case of P2P RAL

participating schools with dedicated servers.

9.5.1 Estimating System Response Time for QoS

Response time is an important performance factor in real time systems. In a

distributed system with multiple peer nodes interacting with each other through one

NDC, the system average delay can be estimated by calculating the distance

proportional, population weighted average delay [1175]. The average RTT of the

system with relay station 𝑎 in a system of known n nodes (Ч) with available

population data is given by:

Ψ𝑠𝑠𝑠𝑠𝑠𝑠(𝑎, 𝑆) = � � 𝑃(𝑖, 𝑗) × 𝜓𝑎(𝑖, 𝑗)
𝑛

𝑗=1
 … (9.1)

𝑛

𝑖=1

where a is one of the candidate NDC nodes, P(i, j) is the probability of participation

between nodes i, j ∈ Ч and the 𝜓𝑎(𝑖, 𝑗) is the RTT between nodes i and j with a as

relay centre [175]. The selected optimal NDC site R is then given by:

𝑅(𝑆) = min�Ψ𝑠𝑠𝑠𝑠𝑠𝑠(𝑎) : 𝑎 ∈ 𝑆 … (9.2)

9.5.2 Creating Autonomous Peer-to-Peer Overlay Networks

Using just one central relay Ri node for a time period ti – ti - 1 can put excessive load

on it. It is not very efficient in terms of response time and a peer-to-peer system is

more efficient. It is also prone to failure if the central node fails. In order to reduce

risk and load on a particular NDC, multiple NDC may be used as stations at any point

of time.

Each node is to be associated with a nearest feasible node that can act as a relay and

represent it to other nodes in the network. For e.g., if A and B are two sites in clusters

C1 and C2 as shown in Figure 9.2, A can communicate with C1 which then relays to

C2 and subsequently B. Clustering the available nodes can produce an appropriate set

of cluster centres for relay. The cluster centres can independently act as individual

relay stations representing all sites within the cluster. There is no single ‘dominant’

NDC but an overlay network of NDCs that operate in a P2P manner. The system RTT

may be calculated as [175]:

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

175

Ψ𝑠𝑠𝑠𝑠𝑠𝑠 = � � 𝑃(𝑖, 𝑗) × 𝜓(𝑖, 𝑗)
𝑘

𝑗=1

𝑘

𝑖=1
… (9.3)

where P(i, j) is the probability of communication between the clusters i and j.

However, the users’ probability of entering and leaving the system is dynamic and

changes with time. If user nodes are constantly associated with particular centres such

as A with C1 or B with C2, then the system becomes inefficient. In this example, if

other nodes in cluster C2 become inactive, A and B, although close to each other will

end up with a longer route resulting in higher RTT. Thus the clusters must be re-

created with respect to time for obtaining optimized path.

 The clustering also changes with time as the probability of the users accessing the

system changes or the number of users accessing from a particular site changes over

time. This can be done by either calculating the sites in real-time after periodic

intervals or may be pre-calculated for a longer period of time if the user pattern (σ) is

stable and known before-hand. The output of the algorithm is a vector of NDC site

arrays (Γ) from a pool of available sites (Ч) according to time.

Γ𝜎(𝑆) = { 𝑄1
𝑡1, 𝑄2

𝑡2, 𝑄3
𝑡3 . . . 𝑄𝑛

𝑡𝑛 }

where Ч is the set of sites, σ is a function representing the change in users’

accessibility with time, 0 < t0 ... tn are the points in time when the NDC site array is

changed to Qi ⊂ Ч. Each site q ∈ Qi will act as the NDC site for their clusters from

that point of time (ti) to generate the optimal point-to-point response time i.e.

Equation (9.3). Additionally, a set of central control NDC nodes 𝑅𝑖
𝑡𝑖(𝑄𝑖

𝑡𝑖) using

Equation 9.2, may be decided among NDC sites in a similar manner according to time

ti.

Π𝜎(Γ) = { 𝑅1
𝑡1, 𝑅2

𝑡2, 𝑅3
𝑡3 . . . 𝑅𝑛

𝑡𝑛 }

Figure 9.2. An example of cluster regions C1 and C2 at particualr time when users at sites A anbd B are
communicating through their respective cluster heads.

176

9.5.3 Users' Participation Probability

The users' participation probability σ(i)t for a site is the proportionate number of

active user population from i ∈ Ч compared to all sites at time t. The definition of

active is the number of people who could log into the system at t. This value of σ(i)

may not be cyclic, as users may respond to real world scenarios. However, this

proportion is considered to be predictable. One forms of data that can be indicators to

σ(i) is Scheduling. If a large number of users have booked time with the system for a

certain period, this data can give a good estimate of how many people will access the

system. However, the users may not use it at that time and thus the σ(i)t only remains

an indicator. The time gap (Δt) between the users booking and accessing the system

could be small and thus requires the clustering and calculations of the NDC nodes in

real time. This is applicable for P2P RAL systems where users are required to follow

scheduling of some sort [198].

Overall the σ(i) is determined depending upon various factors that could affect the

users' behaviour from a particular location. For the calculations in this chapter, post

codes and corresponding population data are used as a source of geographic and

population data. RTT estimations are based on the distance between two sites. It is a

crucial measurement that determines the propagation delay and response time

between two sites. There are around 2500 different sites in Australia which are

identifiable by their postal code stored in the database and the geographic latitude and

longitude of each site is gathered from Google Maps [199]. The population for each

postal code is available from the Australian Bureau of Statistics [200] covering 92%

of the total population of Australia.

9.6 The Constrained HAC Algorithm

In this section a new Constrained HAC (CHAC) algorithm is presented that limits the

size of a cluster by Ω kms.

9.6.1 The cluster diameter limit - Ω

For most network-based information and multimedia systems such as RAL, the

resultant RTT is negligible for QoS or performance up to a certain distance (Ω).

Hence, to generalize the distance, the sites need to be clustered into groups such that

the RTT within a cluster is negligible in regards to the service requirements. To

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

177

achieve this, the geographic size of clusters has to be linked to a system performance

parameter. The geographic spread of the group must be limited by a value Ω (in kms)

determined by [175]:

𝛺 = 𝜏 (𝑐 × 𝜈) … (9.4)

where τ is the RTT, c is the speed of light and ν (= 0.27) is the geographic propagation

delay constant [201]. The effective network capabilities of communication links is

dependent on factors like type of fibre, the number of repeater nodes (routers,

switches, hubs, etc.), the route of the linking cables, etc. geographic signal

propagation rate ν was proposed to account for these factors while calculating the

propagation delay.

The distance between two sites is calculated using haversine formula as follows:

𝑑 = 𝑅𝐸 × 2 × tan−1 ��
𝑎

(1 − 𝑎)� … (9.5)

where,

𝑎 = sin2(∆𝜙/2) + sin2(∆𝜆/2) × cos 𝜙1 × cos 𝜙2

and 𝜙 is the latitude, 𝜆 is the longitude, ∆𝜙 and ∆𝜆 represent the change in the latitude

and longitude and RE is the radius of the earth (= 6371 kms). The RTT between any

two sites i and j is when directly linked [175]:

𝜓(𝑖, 𝑗) = 𝑟𝑓 × 𝑑𝑖𝑖 (𝑐 × 𝑣)⁄

where rf ≥ 1 is a small random factor to simulate the real environment. Ω is the limit

for the diameter of any cluster. The value for Ω will depend on the system it is applied

to.

9.6.2 CHAC2

This algorithm is similar to the CHAC in Section 7.2, but has only one parameter

corresponding Ω to ε. In general, HAC creates a tree structure called dendo-gram. At

each level of the dendo-gram a new cluster is created by merging two lower level

clusters. If the dendo-gram tree is cut at one particular level, the nodes in that level

represent the resultant clusters. However, if the tree is cut in such way then the intra

178

cluster distance is not taken into account. To obtain clusters of limited size, the tree

has to be pruned at different levels starting at different nodes. In the current context

the condition is that Clusters C1 and C2 are merged only if all pairs of node-node

distances are less than the limit i.e.

𝑖 ∈ 𝐶𝑘 ∄ 𝑖, 𝑗 ∈ 𝐶1 ∪ 𝐶2 ∶ 𝑑𝑖𝑖 ≥ Ω … (9.6)

where Ck is the merged cluster and 𝑖 ∈ 𝐶1 ∪ 𝐶2 . This step increases the computational

complexity of the algorithm, but it still remains in the order of 𝑂(𝑛2 log 𝑛) using

priority queues. The centroid, center or head (q ∈ Qi) of each cluster (Ci) is

determined by averaging the X (longitudes) and Y (latitude) axis position of the sites

located within the cluster (average linking).

To further increase the efficiency of the algorithm, a near-node list is kept for each

cluster. The near-node list stores all nodes that are within the distance of Ω from the

centre of the cluster. This near node list is kept because any cluster cannot be joined

with another cluster at a distance greater than Ω. When a cluster is created from two

clusters then its centre is created by averaging the nodes of the constituents’ clusters

on both axes.

The near-node list is updated by inserting all the nodes from two clusters into that of

the new one. Nodes must not be repeated in the list so before inserting it has to be

checked whether the node already exists in the other's list. Also a new node may be

inserted into the list only if its distance from the new centre is less than Ω. The

CHAC2 algorithm is as follows:

Algorithm 9.1 CHAC2(Ω)

Initially each site S1… Sn ∈ Ч is in its own cluster C1… Cn

allsitesclustered ← false

prepare near-node list Li for all clusters Ci

While allsitesclustered = false

 For each Ci search through the Li to find the pair of clusters Ci, Cj with

minimum distance i.e. min{d(Ci, Cj)}

 If d(Ci, Cj) < Ω //according to Equation .9.6

 Join Cj to Ci and remove Cj

 Join Li and Lj and remove Lj

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

179

 If all pairs of site (Ci, Cj) > Ω then

 allsitesclustered ← true

End while

This algorithm is not distributed and can only be done on a single computer. It is

designed to determine the set of NDC sites i.e. the cluster centres (Qi) from a much

larger set of (postal code) sites. These NDC sites are used for routing. It may not be

optimal and marginally improves on the HAC algorithm, but is able to produce the

required type of clusters based on Ω.

9.6.3 Clustering Analysis

Figure 9.3 shows the clustering of sites with Ω = 700km. There are 29 clusters (or

NDCs) with an average diameter of 479 kms. The population as shown in Figure 9.4

is very unevenly distributed preserving the original population distribution but this

also means there is disparity in probability of communication load from a cluster. The

numbers of sites within clusters change even more drastically as there are remote

places in Australia which by them becomes a cluster. The cluster diameter (Ω) was

changed from 50 km to 2000 km. The number of clusters reduces drastically from

above 300 to less than 10 (see Figure. 9.4). This means that to maintain the same

quality of service more number of NDC sites in higher density must be setup for

lower values of Ω i.e. the system is more sensitive to the QoS Parameter.

The central NDC sites 𝑅Ω(Ч) were determined by using the Equation 9.2. The

average system RTT was calculated with a random factor rf = 1.1 to simulate the real

environment. But the average system RTT remains almost the same for the all the

selections (see Figure. 9.5) with a standard deviation of 3.28 ms and average RTT of

63.75 ms. This confirms that the clustering can effectively partition the set of NDC

sites as required by the value of Ω to determine the positions of the NDCs, but the

does not affect the outcome of the RTT estimation. There are changes in the position

(ΔRΩ) of the NDC station (see Figure 9.6), as the relay position changes are less than

500 kms for each value of Ω below 1000 kms although, the centre changes abruptly

after that (see Figure. 9.7a). Note that inside a cluster the RTT is considered as

negligible and the RTTs calculated only account for the NDC sites at the cluster

centres.

180

9.7 Application and Test Case

The last section described the method to create clusters of sites based upon their

proximity with each other in terms of response time between them. Each site has a

different population size and the probability of users' joining from them is considered

directly proportional to the population. Geographic routing principles [194] aim to

deliver packets or data governed at least partially by the geographic data of source,

destination and intermediate nodes. In this clustering approach, the cluster regions

may be used in two ways:

Figure 9.3. CHAC2 Clustering with Ω = 700 gives a total of 29 clusters.

Figure 9.4. Site and Population distribution in the 29 clusters. The population and cluster

size (in terms of number of sites) percentage for each cluster.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

181

If the system needs one single operating central NDC, such as for authentication,

introductory look-up tracker node etc., the clusters heads may be considered as

representative sites for all sites with the cluster and the NDC may be determined.

If the system operates with a series of NDCs operating in a P2P manner, the cluster

heads q ∈ Qi can become the local NDC node for each cluster and each of them relays

the data on behalf of their respective clusters’ nodes.

A system may constitute both kinds of architectures simultaneously. An introductory

look-up node or tracker node (e.g. such as in a P2P torrent) is required where any peer

will first make their query. This introductory look-up introduces the querying peer

node to the system. It keeps track of the users’ location and participations, uses the

CHAC2 algorithm to create clusters and the current list of cluster heads (Qi) and the

sites in cluster Ci ∈ Qi they could cover in Ω limit. If any user from the site s ∈ Ci

Fig 9.5. The Number of clusters and the average system RTT when the cluster diameter is changed

from 50 kms to 2000 kms (step = 50 kms).

Fig 9.6. Change in position of the central NDC site when the cluster diameter is changed from 50 kms
to 2000 kms (step = 50 kms).

182

joins the system, it is assigned to the cluster head node hosting the local NDC.

9.7.1 Test Case Population Participation Function

The population and site data may vary with time. In this case study, the following

scenario is considered to illustrate the use of σ in generating Γ and Π.

Considering there is a two hours’ time difference between the east and west coast of

Australia. This means it may be expected that at some point in time there will be more

users at the east coast than the west coast and at another point of time it will be vice

versa. This factor changes the probability of users from a particular site with time.

The system must adjust relay locations accordingly in regular interval of time to

minimize the RTT for the users at that particular time period. The longitude is used

here to present a generic case where no sufficient additional data is available on a

parameter (other than time) upon which the population distribution may be dependent.

It also illustrates a scenario where a cluster may be spread over multiple zones. Time

data is however available for every location and can be directly used for this purpose

instead of longitude difference.

In its simplest implementation it may be assumed that the users will only start to use

the system during the day time of 7 AM to 9 PM. Hence, if a user's or the site's time is

outside this range, then the probability of the site in the system is assumed to be zero.

This way the number of users will initially increase and as the day progresses the

number of users and their geographic spread will reach a saturated level and continue

for the day. At the end of the day, once again the users’ numbers will start decreasing.

The user’s probability in an active site of joining the system may change throughout

the day, such as, it is more probable for the users to join the system as the day

progresses during the later hours in the afternoon and evening and finally decreasing

sharply at night. The users’ participation function is given by:

𝜎(𝑖) = �𝑇𝑆 ≤ 𝑇(𝑖) ≤ 𝑇𝐸 𝑃(𝑖) × 𝑠𝑠𝑠(𝜃)
𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0

 … (9.7)

where

𝜃 = (𝑇(𝑖) − 𝑇𝑆) ×
𝜋

(𝑇𝐸 − 𝑇𝑠)
 … (9.8)

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

183

where, TS, TE are constant starting and ending timelines for the users and T(i) is the

current time for the site i. sin 𝜃 here returns a probability factor that is multiplied with

the population (P(i)) to obtain an actual population ratio [175] representing the users'

participation probability of the site i at time T(i). This is obtained for individual sites

within a cluster and all such values are added to get the total population ratio value of

the cluster as a cluster may be spread over multiple time zones. The participation

probability P(Cj, Ck)t between two clusters Cj and Ck is then given by [175]:

𝑃�𝐶𝑗, 𝐶𝑘�
𝑡

=
𝑃(𝐶𝑗) ∙ 𝑃(𝐶𝑘)

𝑃𝑡
2

where Pt is the total active population across all cluster at time t. P(Cj, Ck)t is used in

Equation 9.1-9.3 to obtain R and average Ψ.

9.7.2 Determining the NDC Sites

For a system where the users’ participation function (σ) is not cyclic the central NDC

tracker node is required to keep track of the changing conditions in the network

topology. The tracker node performs the following tasks at time ti > 0 with a list of

sites Ч and a matrix of distance/response time between them:

1. Calculate any change in the users’ participation probability and

𝜎𝑡𝑖
(𝑗) for all sites j∈ Ч.

2. After periodic intervals Δt execute the CHAC2 algorithm on the

current user sites where the user probability 𝜎𝑡𝑖
(𝑗) > 0.

3. Store the entire newly formed clusters (Q𝑡𝑖+1), activate the newly

determined NDCs (q ∈ Q𝑡𝑖+1) and deactivate the old ones (q ∈ Q𝑡𝑖) and

assign each site s with its’ new local NDC 𝑞 ∈ Q𝑡𝑖+1.

4. Using the NDCs in Γ calculate the central NDC site R’ according to

Equation 9.2 i.e. R(Γ).

5. If a new central NDC Rt+1 is determined, the current central NDC is

replaced with the new one.

6. If a new user node wants to join the system i.e. makes a join request, it

is pointed towards its current local NDC.

184

If σ is cyclic as in Equation 9.7-8 which can be repeated for every day and the

population of the sites do not change, the sites may be calculated only once and NDC

sites can be fixed permanently.

9.7.3 Simulation and Results

The site related data used in this chapter has been discussed earlier in Section 9.5. For

the participation function (σ) Equation 9.7-8 is used with T(i) derived in Equation 9.9.

There are time zones available for each site, but to make it more generic, the

Longitude or Y axis of the sites λ(i) are taken as the metric to differentiate between

times T(i) for site i. The time period of a site is calculated by taking the current time

of western most parts (𝑤𝑡) as the eastern parts are ahead in time. The starting and

ending time lines are assumed to be TS = 7:00 AM and TE = 21:00 PM. the iterations

are done for wt = 5 to 21 as the largest difference between time at 7:00AM in east

coast is 5:00AM at wt. The clusters are recalculated every hour (Δt = 1hour) and the

time function is as follows:

𝑇(𝑖) = Λ(𝑖) + 𝑤𝑡 … (9.9)

where,

Λ(𝑖) = �
113 ≤ 𝜆(𝑖) ≤ 133 0
133 < 𝜆(𝑖) ≤ 140 1
140 < 𝜆(𝑖) ≤ 160 2

where the upper and lower bound are again flexible according to the nature of the

system. In this case, it is roughly assumed that the 113⁰ E, 133⁰ E and 140⁰ E are the

points of transition. The Λ(i) function can also collect data about the time from a

database directly or σ can be obtained from a different source altogether.

Figure 9.7a shows the change in System RTT, number of clusters and position of

relay in Euclidean distance. The system RTT is related to the number of clusters

which in turn is dependent on the participation function based on time. The value of Ω

is considered 700 kms. The central NDC during these times shifts (ΔR) it position

across the map (see Figure. 9.7b) with changing probability of participation from each

site. The change in central NDC site is not frequent and dependent on the number of

clusters and population ratio. The average System RTT adapts with the changing

probability of the sites by starting at around 40 ms when most of eastern sites starts to

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

185

enter the system. Then with the day progressing, maintains the time of 65 ms as

shown in the previous section and finally again drops to 40 ms when the western sites

are only participating. The central NDC sites generated are

Π𝜎 = { 𝑆0, 𝑆1, 𝑆2, 𝑆3, 𝑆4 }

The cluster heads in Γσ each have an active NDC until the clusters are changed. These

NDCs act as a P2P overlay network by intermediating on behalf of their clusters node.

Each node gets associated with the best possible centre node such that the

communication is the quickest. The maximum total number of clusters and

corresponding active local NDCs during the day was 29 and the minimum was 10 at 9

PM. The average system RTT recorded with the data being passed through the local

cluster NDCs nodes in P2P manner is 39 ms for most of the day. This is considerably

Fig 9.7a. Time shift simulation.

Fig. 9.7b. Geographic transition in the position of the relay. Δt shows the geographic transition

according to time shifts

186

lower that using a single central NDC site for all data exchanges and storage. Note

that while calculating RTTs the RTT within a cluster is negligible and only RTT

between the cluster centres local NDCs are considered. With a different or more

dynamic σ(i), there could be larger number of NDC sites in Πσ and Γσ.

 This approach of finding NDC sites for a P2P network does not guarantee the QoS

unless σ is very accurate for all times. However, the proper placements lead to overall

improvement of the system performance. One limitation of this approach of clustering

sites on geographic locations and finding suitable location of NDCs is that it is

dependent on the geographic distance between the sites.

9.8 Summary

This chapter discussed the actual implementations of the network setup of the P2P

RAL. It uses VPN connections to establish the end-to-end connections between the

users and the experiments. For the makers, a RALfieBox is required to setup the VPN

connections. The RALfieBox runs VPN software that establishes the end-to-end

connection for the users/makers. Each RALfieBox VPN software runs with as unique

identification number. The users do not need any kind of special devices ad can

access the experiment through the RALfie access gateway on the Internet. The CU

and camera(s) are connected to the RALfieBox by the makers. The RALfie RLMS

automatically integrates the CU and camera into the system according to the

RALfieBox identification number. Thus every experiment is connected to a

corresponding RALfieBox number and this is displayed on the RALfie Portal.

Further to the actual RALfie setup, a method to optimize the latency between nodes

has been proposed. This method uses the constrained clustering algorithm to create

different geographic zones where relay nodes may be located to easiest and quickest

access for the makers and users. The proposed scheme of selecting relays first clusters

nearby geographic regions into clusters and then select the best regions to host the

Nano Data Centres. These selected relay node location(s) can store the experiment

data and other RLMS features in the respective Nano Data Centres.

The network connections in the proposed P2P RAL system are helpful for any IoT

system with time factors. The proposed method of selecting relay nodes can be used

to setup NDCs across a large geographic region for various services to ensure

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

187

quickest delivery of data between end nodes. This methodology although focused on a

P2P centric architecture can be used for catering centralized services as well.

The next chapter discusses the reliability of the P2P RAL as a whole including the

components used for rig creation, network and user capabilities.

188

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

189

10
Reliability

This chapter discusses the design and operational reliability issues of

a peer-to-peer remote laboratory and the Web of Things systems.

Involving amateurs in building and operating experiments has its unique challenges.

The system is community driven and built; thus people from different backgrounds

with varying experience build the experiment. While this can help grow the variety

and number of experiments on the system, the experiments themselves may be of

lower cost and quality compared to a traditional, centralised RAL system. There are

also other technical differences including network [175], types of controller and

peripheral devices. As the experiments are physically under the control of the makers

in isolated locations, there is no centralised monitoring or recovery policy to deal with

faulty experiments. Besides, social and other technical challenges, these factors also

have direct impact on availability and reliability of experiments in P2P RAL systems.

Reliability of a system is a measure of its availability for use at a particular time [202]

and the study of reliability focuses on identifying weak points in a system with a view

to improve its availability. Reliability theory is concerned with the statistical nature of

failures of devices over their typically useful life. It focuses on random failures, where

the failure rates are predictable. ‘Random’ failures can be attributed to many

components within a P2P RAL system. Reliability analysis of the whole system will

lead to a better understanding of the P2P RALs operation under load, and present

ways to identify the ‘weak’ links.

A distributed P2P RAL aims to establish collaboration between users and exploit the

190

individual users' creativity regarding the experimental rigs which impacts reliability.

In a P2P configuration makers/users are responsible for their experimental rigs, where

the rigs must be created and maintained by them. Stochastically with time, any two

pair of users' node, 1 learner and 1 experimental rig will setup a connection and the

experiment will be run. Rigs may not be kept online 24x7 i.e. there could be certain

periods of time when a particular experiment is not available.

The P2P RAL allows multiple makers to host the same experiment with subtly

different configurations. This allows virtually an unlimited number of experiments in

the system. The system is designed to accommodate rigs as individual modules. Each

rig is typically in a different site location and is hence mutually independent of each

other, where they can enter or leave the system as the maker desires.

In this chapter, a methodology to determine the reliability of a P2P RAL and similar

WoT is presented. It is dependent on three different factors - components and design

of experimental rigs, network and users/developers characteristics. The model allows

for a comparison of the reliability of distributed and centralised architectures.

The rest of the chapter is organized as follows: a brief description of the reliability

analysis modelling is given in Section 10.1.1 to 10.1.3 followed by discussions about

the components of the P2P RAL experiments in Section 10.2. The reliability graph

and a model to measure the reliability of P2P RAL system is presented in Section

10.3. Section 10.4 shows a comparative analysis between the centralised approach and

the P2P system based in this model and Section 10.5 give a generalized description

for WoT systems without human factors.

10.1 Related Works Reliability Analysis of Systems

Reliability analysis of large systems is modelled in many ways. Three major types of

reliability models are [203]:

• Parts-count models where only critical components are identified and the failure of

any component leads to a complete system failure (e.g. the experimental rigs).

• Combinatorial models include creating and analysing fault trees, success trees, and

reliability graphs of the system. The overall P2P system is modelled as a

combinatorial model in a reliability graph.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

191

• State-space models where are possible states of the system generated by any event

are taken into account for calculating the reliability.

The reliability modelling process works in a recursive manner by first identifying the

major subcomponents of the system. These sub-components may be dependent or

connected a serial configuration or parallel configuration [202]. If the subcomponents

are simple and uniquely quantifiable then their reliability is taken into account.

Otherwise the subcomponent is then further divided into finer subcomponents until a

simple component is found.

Reliability for single items is measured in terms of constant-failure rates (λ) and

constant-repair rate (μ). For a given repairable item, the measures become mean time

between failure (MTBF) = 1/ λ and mean time between repair (MTBR) = 1/ μ. The

reliability is then calculated as [204]

𝛯 =
𝜇

𝜆 + 𝜇

For non-repairable items, the mean time to failure (MTTF = 1 / λ) is used. Ideally,

where a composite chains of devices exists in series, the failure rate of the system can

be defined as

λ𝑠 = � 𝜆𝑖 … (10.1)

Network Reliability

Network Reliability is another important factor. It is defined in two broad terms [204]

– first, the two terminal reliability which measures the probability that two nodes in a

network system will be able to connect to each other, given the network conditions.

Secondly, the all-terminal reliability extends this by applying the two terminal

reliability for all pairs of nodes in the system thus formulating a result for an entire

system of nodes with a given network configuration at a particular time. If

broadcasting is allowed, then the reliability must account for 1-to-many connectivity

as well. In the current context, the two-terminal reliability is considered.

10.2 RAL Architecture

This section discusses the components of a remote laboratory and the assumptions

192

made with regards to P2P RAL.

10.2.1 Remote laboratory Sub-components

In order to develop a better understanding of the reliability of the overall peer-to-peer

system, individual sub-systems are considered separately. These domains are depicted

in Figure 10.1 and include:

• Electronic or controller sub component (A): These are the peripheral devices or

actual pieces of the hardware (sensors and actuators) that either gather data from

the environment or produce some action that changes the rig configuration or

environmental status.

• Controller (C): The Controller connects the peripheral devices to the Internet. It

also hosts the program logic of the experiments. Controllers range from powerful

server PCs [9-12], embedded PCs [205] in ELVIS through to MCUs. These vary in

their capabilities and reliability. The smaller, portable and cost effective MCUs are

used for the distributed P2P RAL.

• Network (N): To provide connectivity between nodes a Virtual Private Network

(VPN) is setup. This allows the peers to directly communicate with each other over

the Internet. With overlay networks [108] there is no central control component

and the peer discovery and authentications are done in a distributed manner. Unlike

the controller or peripheral devices, the network is not under the control of an

individual user.

Figure. 10.1. The inter-relationship between the entities of the P2P RAL

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

193

• Users (U): Users are also an important component of the system. For any

experiment, there is a developer and the learner who uses it. The developer creates

the program logic and the user interface for the experiments. The learner uses the

UI for controlling the experiment.

Figure 10.1 shows the relationship between the different components in the P2P RAL

system. A Rig (X = {C, A}) is a composition of a master controller with possibly

multiple slave controllers and multiple peripheral devices. If any device a ∈ A or c ∈

C fails i.e. stops working, the whole rig X is considered as failed and non-operational.

10.2.2 Operational Assumptions

For modelling purposes, two operational assumptions are made. Operational issues

are encountered as a result of running the whole system and the individual rigs. These

include the durability of components and the ability to establish a network.

Durability of the component

 Each components used in the rig (C, A) is susceptible to wear and tear with time. The

longer the rig is used or powered-on, the reliability will correspondingly worsen with

time. The components used in the P2P RAL experiments would typically be beyond

their initial phase of the `bath-tub curve’ [206] of their product life, and hence it is

assumed that the reliability will be constant with time.

Network

There are two types of network nodes in the system: peers and super-peers. Not all

nodes on the Internet will be able to freely connect to other nodes without the aid of

another type of super-node [176] or through the use of technologies such as STUN

[157]. This concept forms the basis of an Overlay Networks. Thus reliability in the

network is subject to the availability of super-peers. The super-peers nodes are also

responsible for search mechanism to find the experiments.

While the operational issues are simple components and can be directly measured in

terms of MTTF or availability, the design related issues are dependent on human

behaviour and cannot be quantified easily.

194

10.3 Determining Reliability

This section presents the reliability graph and equation for P2P RAL and discusses

the components of this graph.

10.3.1 Reliability Graph for P2P RAL

The reliability graph of the P2P RAL system is shown in Figure 10.2. The P2P RAL

is composed of three distinct components: makers/developers (D), rigs (C, A) and the

Network (N) connected in serial configuration [202]. The failure events can be

triggered by failure of a maker. There are multiple developers for any given

experiments and many developers/makers for many experiments. All of the makers

for an experiment have to fail in either creating the rig or making it available in time.

This portion itself follows a parallel configuration [202].

The next phase is comprised of the rigs themselves. The controllers of the rigs must

operate, in addition to each actuator in the experiment. This portion is in a serial

configuration, where each of the components in P(Ci) to P(Ani) for a rig i must

succeed to be able to generate any data.

The final component is the Network. This component is generic in nature. As the P2P

RAL system uses the Internet, there are no finite requirements except that the

connection must be established between the two ends. There are essentially multiple

paths between the experiment nodes where this is also composed of an undefined, but

finite, number of routes where at least one is required to succeed.

The reliability of the whole system is depended on the controllers, components,

Figure.10.2. The reliability graph of P2P RAL Experiment.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

195

network and the users' reliability. The failure between these are multiplicative i.e. for

any experiment session to be successful all must succeed. Hence the reliability of a

peer-to-peer RAL system with the above components is the probability that a user u at

time t will be able to successfully perform experiments E.

𝛯(𝑢, 𝐸)𝑡 = (1 − 𝑃(𝐸)𝑡) ∙ (1 − 𝑃(𝑁)𝑡) ∙ (1 − 𝑃(𝐷)𝑡) … (10.2)

where, at time t

P(E) is the failure probability of an Experiment E

P(D) is the failure probability of the Makers D

P(N) is the failure probability of the Network N

10.3.2 Experiment Control Reliability

As the rig X = {C, A} will fail if just one of the components in X fails, Equation 10.1

does not hold true for P2P RAL. The rig X is repairable but the components C or A is

not repairable and their MTTF determines the reliability of X. The reliability of the

experiment rigs is dependent on the failure rates of the composing elements. A means

to measure and quantify these parameters and variables is derived as follows:

A peripheral device will have a definite mean time to fail (MTTF) [207] or expected

lifetime (LA) depending upon the type of the device. Hence, at any given time t the

probability that the device will fail is

𝑃(𝐴)𝑡 = �
1

𝐿𝐴 − 𝑇𝐴
𝑡 𝑇𝐴

𝑡 < 𝐿𝐴

 1 𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒
 … (10.3)

where TA
t is the time for which A has operated already at time t. Now a rig is

composed of a number of components i.e. 1 ≤ |A| ≤ n. Hence the probability of a rig

(X) to fail at any point of time is,

𝑃(𝑋)𝑡 = max
1≤𝑖≤𝑛

𝑃(𝐴𝑖)𝑡 … (10.4)

Assuming that there are q copies of any experiment, the probability that an

experiment E is absolutely unavailable i.e. all copies E = {X1, X2 ... Xq} are

inaccessible is

196

𝑃(𝐸)𝑡 = � 𝑃(𝑋𝑖)𝑡

𝑞

𝑖=1

 … (10.5)

This is because each site of the experiment is independent of another. Therefore all of

them must be unavailable at any given time for the user to be unable to access that

particular experiment.

In case of devices to be used for P2P RAL, the controllers, such as Arduinos, have a

high reliability and are used in experimental rigs in centralised versions as well [209].

The peripheral devices used are of lesser reliability and must be used intermittently to

maintain their availability for a longer time. With a longer performance time, the

operational lifetime of an actuator is reduced due to higher temperature and stress on

the components [210]. The typical actuators and sensors used for P2P RAL are

consumer grade, constructed of plastic, and mass produced for the educational market,

as opposed to industrial grade actuators, typically reserved for commercial automation

installation. For example, the same experiment in [83] may also be created for P2P

RAL with LEGO based controllers but have to be used at a lower duty ratio to ensure

a useful life-span. The reliability of these components can be measured to create a

database for monitoring and can also be collected from sources like [211].

10.3.3 Network Reliability

 The P2P RAL system not only aims to establish a peer-to-peer collaboration

methodology among the users, but actually uses a P2P communication method to

establish the connection. P2P is in general more autonomous than centralised systems.

For instance, no system administrator is required in the P2P system, as each user is

responsible for their own node devices and can control their shared resources.

However, unlike other P2P systems [31, 157], P2P RAL resources are tangible

physical items and unable to be instantly duplicated over the network to ensure

availability, in case some nodes fail. Hence in order to maintain availability, multiple

copies of the same experiment must be made available. Additionally, if any one

particular user is unable to connect to the system, it does not hamper the preposition

of the other users.

A P2P system [176], as shown in figure 10.3, has multiple paths available between

each node in the network. This ensures that if a particular route (e,g, a) is blocked

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

197

temporarily from the system, there will be other routes available between any pair of

nodes. In a connected graph there exists a path between each pair of nodes. A

connected graph of the network is considered as the Internet is the connecting

medium. If a node is 'active' i.e. is turned on and able to connect to the Internet, then it

can connect to any other node. The service of establishing a connection between the

peers (the learner and the maker) is guaranteed, irrespective of the quality of the

service.

 However, as there are multiple peer nodes in the system with at least some of those

behind firewalls or NAT [24, 176], it is possible that despite being able to connect to

the Internet, two nodes may not be able to directly connect.

Let y be the probability that a user is behind a non-traversable firewall or NAT. Thus

the probability that, despite being online, the user cannot connect to the experiment is

equal to the probability that both are behind NATs that cannot be traversed, and that

no other super-peer is present to mediate between them. Assuming there are p

numbers of nodes in the system, the probability for each individual one being behind

a firewall is y. Thus the probability that no nodes are available to be a super peer is

𝑃(𝑁)𝑡 = (𝑦)𝑝 … (10.6)

In [176] a survey was conducted of more than 1600 devices, where 25% were unable

to traverse the NAT or firewall i.e. y = 0.25. Thus, for a substantially larger number of

peers (p > 10), the value for P(N) ≅ 0. This is based on data from [176] and can be

adapted to other applicable results.

10.3.4 User Reliability

Users’ reliability P(D) is the hardest to determine and quantify. Developer/makers

reliability P(D) in the system is then dependent on availability or the ability to create

Figure. 10.3. A typical P2P network system.

198

the correct program.

Ensuring accessibility in RALs is a major challenge. RAL is dependent on physical

hardware to operate properly. Scheduling algorithms [211] determine when and how a

user gets access to an experiment. The P2P RAL can employ an extended time

reservation scheduling scheme as discussed in Chapter 13. This allows the makers to

setup their experiments at definite periods of time and the users access them during

those periods of time slots. This allows the equipment used in the experiment to 'cool-

off' maintaining their reliability over longer duration. Other method may include

sending reminders to the makers through emails, SMS etc. or implementing additional

technologies such as Wake-on LAN [212] or other wake up mechanisms that turn on

the devices through the network. This can be done through the network ensuring that

the nodes are 'alive' when the learner is present in the system.

The second problem is the fundamental issue with a remote laboratory based on user-

oriented features. Users may not be able to create a fully-fledged UI or implement

correct control program logic. However, the intelligent tools proposed in Chapter 6-8

are capable of ensuring that the rig will be reliably operational even if insufficient for

best educational outcomes. Further to that, the moderator in the RAL system can

improve the quality of the experiment activities in terms of educational outcomes. A

screening process can guarantee a properly functioning UI. The program logic and the

rig assembly could still be at risk. But thorough use of the experiment before being

published on the Internet could ensure the entry of only 'good' quality and properly

functioning rigs in the P2P RAL system.

While these measures can increase the reliability of the P2P RAL system, users’

capabilities still remains the weakest link in the reliability chain and is much less

reliable compared to the centralised versions.

The developer's reliability is representative of the entire developer population in the

system. P(D)t at any time t, can be thus determined by :

1. The number of sessions until time t where developers have failed to keep their

systems online when required (Df) and the number of experiment sessions (Ds).

2. The ratio of the number of failed experimental rigs (Dr) to the total number of rigs

in the system (Dl) until time t. A failed rig due to users can be a result of

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

199

incorrectly assembled experimental rigs, or incorrect program logic.

𝑃(𝐷)𝑡 = 1 − ��1 −
𝐷𝑓

𝐷𝑠
� ∙ �1 −

𝐷𝑟

𝐷𝑙
�� … (10.7)

10.4 Analysis

The Equation 10.2-10.4 and Eq.10. 7 are applicable for centralised RALs as well.

Only the network architecture is different where the value for P(N) will be calculated

differently. A comparison of the centralised and distributed RAL system is described

in this section.

10.4.1 Centralised vs P2P Reliability an Example

An example of the way this reliability measurement can be used is illustrated in this

section. Table 10.1 shows the assumed values of different parameters. It is considered

TABLE 10.1. Assumed Parameters

Parameters Centralised P2P

Df 1 50
Dr 1 5
Ds 500 500
Dl 50 50

P(N)t 0.00001 N/A
yt N/A 0.25
pt N/A 10

P(X) 0.01 0.05
q 1 1-5

Figure. 10.4. Reliability of the Centralised vs P2P system – an Example

200

that Df(Centralised) << Df(P2P) and Dr(Centralised) << Dr(P2P) as developers are

well established and implement industrial techniques, etc. The centralised system is

dependent on a single server and as such the failure probability of the network is

considered as constant 0.00001. The reliability of the P2P system however depends on

the numbers and types of users in the network. The P(X) in case of centralised

systems is again considered lower than the distributed system due to usage of lower

quality devices. The number of nodes in a system at any point of time is considered as

10. The number of sessions (Ds) is considered 10 times of the total number of rigs (Dl)

that were available until time t are considered same for both.

The value of q i.e. the number of copies that an experiment can have in a P2P system

was increased from 1 to 5. Note that in the case of centralised system, the value of q

always remains constant. The reliability for a centralised system is 0.968 with

assumed parameters in Table 1. The reliability of the P2P system increases from

0.769 to 0.809 and then stabilizes as shown in Figure 10.4. For any reasonable set of

assumptions in Table 1, the reliability of the P2P system will be slightly lower than

that of the centralised RAL system. This also indicates the strength of the P2P lies

within having multiple copies and owners of the experiments.

10.4.2 Application of the Reliability Analysis

The purposes of the reliability analysis are:

• to detect faults in the P2P RAL system; and

• to prevent them from occurring as much as possible.

 From devices to the users, every entity has certain symptoms that can be monitored

as part of reliability analysis. When these symptoms are not correct, then recovery

measures may be taken. This may involve replacing an actuator, resetting an

experiment after it has malfunctioned, finding a new route to the experiments node

from the peer node or notifying users about upcoming schedules.

The P2P system is less reliable than the centralised RALs on at least the user related

areas. However, the P2P mechanisms are attractive for the following reasons:

1. The over-all cost of building and maintaining this type of RAL is comparatively

less.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

201

2. It ensures higher engagement with more 'hands-on experience' for students and

collaborations between them.

3. The scalability of such as system is higher with more users joining the system.

10.5 The Case of the WoT

In context of the web of things the human factor can be ignored. In a general web of

things system, the impact of human controllers is very limited and the end nodes are

not regularly altered. However all other considerations regarding the controllers,

components and network are also applicable for any other web of things applications.

Such systems contain large numbers of smart end nodes where there is a probability

that some of those may fail after some time. Those nodes are responsible for

producing collective outputs by cooperating with each other. Failure in any node will

decrease the efficiency of the system overall, if not leading to a catastrophic failure.

Thus removing the human factor i.e. PD, for WoT, the reliability of a master node m

operating a slave node s is

𝛯(𝑚, 𝑠)𝑡 = (1 − 𝑃(𝑠)𝑡) ∙ (1 − 𝑃(𝑁)𝑡)

This equation may be used in the same way as illustrated example to determine the

reliability and monitor the performance of the WoT system.

10.6 Summary

Like the centralised RALs P2P RAL also offer access from anywhere, and on any

type of device. But, one unique characteristic of P2P RAL is that it is intended to be

self-sustainable and community driven. Typically centralised systems are monitored

by technical staff that ensures that experiments are accessible all the time. Thus

ensuring reliability is very important as discussed in this chapter. It is based on three

aspects of the system namely the hardware (including the actuators and CUs), the

Network and the Users. The P2P RAL can provide similar reliability as the centralised

RAL systems in case of Hardware. It can provide better reliability in terms of network

being a P2P service. However, being developed by users, it is less reliable in the

users’ domains with UI creation and rig maintenance. These issues can be dealt with

through adequate training and screening of experiments. Reliability analysis can lead

to identification of faults, their origin and rectification at the earliest onset.

202

With the system being constructive and collaborative, there can be higher number, as

well as variety, of experiments in the system. While it may be possible to maintain the

reliability of these rigs, it next step is to measure and analyse the quality of these

experiments to for quality assurance.

The next chapter discusses how all the technologies for P2P RAL described in the

earlier chapters can be used in the context of STEM education

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

203

11
P2P RAL application in STEM Education

This chapter discusses the integration of STEM education with P2P

RAL.

Tools and architecture of the P2P RAL have been discussed in detail in Chapters 4 -

10. This chapter focuses on how P2P RAL is used to enhance the STEM education

experience. Science, Technology, Engineering and Mathematics are key subjects in

school education that develop skills required to progress into the science and

technology related tertiary study and careers. Enquiry-Based Learning (EBL), as well

as problem-based and project-based learning, are effective ways to teach STEM in

school education [213]. These teaching strategies encourage students to think on their

own, work in teams, design solutions and study their effects to gain knowledge and

experience of STEM concepts. Generally, these strategies are limited to the local

environment at schools. Collaboration between schools to share activities and use

them remotely could provide a number if benefits.

RALs can be used to aid in this goal of teaching STEM with EBL providing access

for more students to a more diverse range of experiments and creating the opportunity

for collaborative networks of students who are using these experiments to share,

compare and aggregate data. Previous research has shown that current RAL systems

are deficient in features to support STEM education [28]. Most of the RALs are

initiated to complement the regular laboratory teaching at universities as a means to

increase accessibility to increasing number of enrolled students. Hence activities are

designed around services that are provided by universities. Usually these provide a

fixed set of experiments that are directly related to the university curriculum. The

204

experiments are often pre-configured and students have to collect data by changing

experimental conditions. Most of these RALs allow little collaboration between

students.

While EBL pedagogies has well-established methods, in this chapter, remote

laboratory technology described in the previous chapters is merged with EBL

methodologies to create an integrated architecture that can support STEM education

more efficiently than either of these individually. The limitations of current RAL

systems for using it in enquiry-based learning in STEM education are analysed in

Section 11.1. A system model for RALs is presented and used to determine the

similarity between the RALs and on-site laboratories and determine the areas to

expand in Section 11.2.

P2P RAL allows the expansion of the traditional centralised model to a distributed

RALs in pedagogic terms. The application of P2P RAL in STEM education is largely

facilitated through EBL and the merging of integrating P2P RAL architecture into

STEM Education pedagogies is one of the key contributions in this chapter discussed

in Section 11.2.

Other key contributions are the specifications for a platform for the UIM that can

incorporate language and communication techniques described in Chapter 4 to 9. This

leads to the development and implementation of programming tools for creating and

hosting rigs (Section 11.3 to 11.5). The P2P RAL employs a quest based learning

approach consisting of several game activities to engage students built within this

programming environment. Several example experiments are presented in Section

11.6 and user and maker feedback is discussed in Section 11.7 respectively. The

contents of this chapter are largely based on [113, 118, 121].

11.1 Related Work – Pedagogies for RALs in STEM Education

To understand the STEM requirements of RAL systems, an educational model must

be used. A comprehensive comparison between the structure and expected learning

outcomes of hands-on and remote laboratory has been done in [184]. A 4-dimensional

model of evaluating a laboratory was suggested. It concluded that compared to on-site

laboratories, RALs are similar in two of the four dimensions - developing professional

skills and conceptual understanding, a little short in the third - social skills and very

poor in case of the fourth - design skills. Another work used university- based remote

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

205

experiments to teach physics education in primary schools [215]. This work

concluded that there is a relation between students’ learning and active participation

in experiments. It used a 3-dimensional model by removing the design skills.

An educational system model of RALs in general is presented in this section. RAL

systems may be described by analysing the two most basic dimensions mentioned

above [215-214]: operational autonomy and pedagogy. Operational autonomy is the

scale of technical flexibility offered to the student in an experimental activity. It is low

when the students have access to only a fixed experiment rig experiment that needs

minimal (or no) interaction to get the data; and high when the students can create and

alter the experiment conditions to get different results. Pedagogy is the conceptual

learning values associated to an experiment i.e. how the experiment is presented and

done by the student like enquiry-based learning and project-based learning. A static

pedagogy indicates that the RAL experiment replicates the most essential components

of learning from the corresponding hands-on experiment and more flexibility in

pedagogy implies that RAL experiments are presented in innovative ways taking

advantage of ICT for delivery, motivation, and flexibility and student engagement.

Figure 11.1 depicts four quadrants that indicate different levels of operational

autonomy and pedagogy. Both of these must go hand in hand and with the increased

complexity in pedagogical needs, the complexity and requirements standards of

operational autonomy also increase. Current RAL systems offer little flexibility in

operational autonomy and associated pedagogy [28]. These are suitable for

development of general concepts in higher education where equipment used is

Figure 11.1. The RAL Extension

206

expensive. Experiments are often measurements generating huge amount of data from

some phenomenon within certain conditions. Experiments do not need to be

customized according to specific problem sets for users to use them. Users are

prohibited from designing rigs. However, in STEM, to understand a concept, one

must build, run and see what happens with the experiment. Students may want to

share their results with others to get feedback and get new ideas from different

perspectives of the same problem. Pedagogical needs of RAL systems are now limited

to what is available in a hands-on laboratory as shown in [214]. The concepts are

understood as one would read, perform and understand them in an onsite laboratory.

The nature of STEM experiments differs from higher education experiments. STEM

experiments may be easily constructed but often creating the rig or setting up the

experiment is an important part of the learning experience. This allows the students to

better understand concepts and problems related to the activity, which is the main

challenge. In higher education laboratories, on the other hand, the equipment is often

expensive, proprietary and hard to reproduce. This also means that many experimental

setups are static. Users of the experiments are not required to design or build the rigs

that support the practical activities.

Enquiry-based learning [216] in STEM aims to make students think and find solutions

to a problem by themselves. If this approach is applied in the context of RALs,

experiments cannot be reduced to set of instruction. There is a need to present the

activity as a problem. Solutions and approaches through which the outcomes are

achieved may vary; however, the system has to be able to support students in

implementing an experimental rig and related procedures.

11.2 P2P RAL and EBL

This section presents a new methodology to integrate P2P RAL and EBL. The enquiry

based learning methodologies encourage students to think of different solutions to a

given problem on their own. Usually a given activity produces a question that needs

to be answered in order to understand the activity. The cycle of enquiry based

learning then follows as: investigation on the topic to find out more details, create a

solution typically something physical, observe and record the outcomes and discuss

the results among peers. The cycle goes on until the results are perfected to the

hypothesis in the ask or investigation phase. In enquiry-based learning for STEM

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

207

activities [217] the following are the most common steps performed by students:

• Given a problem, the first step is to formulate the problem statement that

raises questions to the users.

• Prepare a hypothesis of the given problem i.e. what is ideal and most

likely?

• Decide on subsequent required experimentations to test the hypothesis.

• Creating an interface that gives proper reflection of the experiment to be

performed in a real environment.

• Take measurements and collect data from experiments and analyse them.

• Take cue from other users’ results when required, for guidance.

• Teachers are able to facilitate and confirm the correctness of the result

obtained.

The EBL stages can be combined with the distributed RALs as follows as shown in

Figure 11.2:

1. In the investigation phase after students have gone through the concepts and

are ready to make their own design, they can look up in the RAL systems

about what others have done.

2. During the create phase they create their own setup to test the hypothesis and

use them.

3. Then they use others’ system and compare them to find the differences and

understand the concepts and improve their own design.

4. Once the setup is finalized, the setup can be put on the RAL system for others

Figure 11.2. The phases of EBL for STEM (left side) extended to include the RAL features (right side)

208

to use.

Thus, the create and discussion phases of EBL can be easily incorporated into and

improved by the P2P RAL system. Clearly, a simple client-server RAL cannot

natively support these kinds of activities and thus both the dimensions i.e. Operational

Autonomy and Pedagogy of RAL must be extended.

11.3 Expanding RALs through a P2P Learning Approach

Building on the technical P2P RAL method, the P2P approach also works in an

educational sense. Students themselves become makers of the experiments and use

each other’s creations. Remote laboratories can be extended through increasing the

scope of design and operation, providing flexibility in organising experiments and

collaboration.

When increasing the design scope, students are allowed to plan and design their own

experimental rigs for given problems. Designing a STEM experiment includes

assembling an equipment setup, programming and running the experiment locally;

and sharing the experiment with other students remotely via the Internet.

Students are exposed to several high-end technologies from a young age. So they

become capable in learning and using simple electronic devices ranging from

programmable robotics like LEGO Mindstorms to mobile phones. These are

consumer electronics that are available easily. To run an experiment requires a student

to program the different parts of the rig so that they can communicate with each other

and the Internet. The only way to put a rig on the Internet is by using a network

enabled computing device. This raises the question of student’s capability to program

a rig.

With computers fast becoming an integral part of our lives, there are several graphical

programming languages being taught to young students today such as SNAP, Alice,

Tynker and LEGO's LabVIEW based language. These programing languages are able

to deliver the same capability of any high level language including multithreading,

process communication and programming constructs. These languages can be easily

used by students to create their own experiments. The entire scheme gives them full

flexibility to think on the problem and come up with their own solutions.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

209

Another problem with traditional RAL infrastructure is the way the experiments are

handled. From a user’s point of view, the experiments offered are static to-do lists.

This limits the RAL system to provide the same capability as that of on-site

laboratories. In a distributed form, the RAL experiment list is not static and users can

upload whatever they want. As experiments are typically created following a

curriculum, the nature of the experiments remains same but the way they are

implemented differs from user to user. This provides a competitive or collaborative

environment and this platform may be used to develop a game-based RAL pedagogy

[218] where students can achieve certain levels and milestones for successfully

creating and completing their own and others’ experiments. One manner of

continuing activities and providing context is through a series of quests [33]. These

are a combined group of activities with a greater common goal, and may serve to

create a learning path for a more abstract concept to be learnt.

Collaboration is another key aspect of learning. When both dimensions of RAL are

increased, there is an added advantage of collaboration between students as peers. As

students are running each other’s experiments, they are capable of providing feedback

on their peer's experiments and learning from each other. When experiments are

designed and run collaboratively, these add to the learning outcomes [219, 220].

Students can also help each other by reciprocal teaching as stated in [193] i.e. each

student upon completing an activity contributes their experiment and knowledge to

the system which is then used by other new students in the system. 3D virtual world

technologies have been used successfully to provide a hands-on technology to

students via distance collaboration platform [221] and can be used here in a similar

manner.

A P2P RAL system implemented can provide the tools and flexibility required for

creating a STEM activity is practically available to average users [91]. However, the

creation and hosting process have to be standardized according to the automaton

models. Apart from constructing a rig, the makers need to create the Control program

and the user interface of the experiment. These need to automatically fit into the

RLMS. The following sections describe a web-browser based environment for doing

this and its requirements.

Before describing in details the RALfie implementations, two notations need to be

210

defined based on the previous discussions. An experiment activity is the learning

related materials associated with the experiment. An experiment activity does not

contain any hardware but only the software i.e. UI, CPL and corresponding data in

form of a game. An activity uses an experiments setup to create a learning task called

quest. When a user performs an activity, they run the UI corresponding to it with the

aims of that particular activity. This allows for the same experiments to be used for

various purposes.

11.3 Joining Games and Experiments

A stated earlier, each experiment interface is designed as a game based on the

concepts of SCRATCH [222]. These games provide an attractive motivation to use

the experiments The UI components within this game provides the interaction with

the users and makers and collects the inputs. The games and its logic is created and

saved using a Web-Browser based environment which is a common platform for all

makers and users. This platform implements the P2P RAL technologies and

establishes the communication between the UI and the CU.

Computer-based games are fundamentally designed for quick, colourful and creative

fun and entertainment. Other than entertainment, games have also been used to create

environments for the students (players) to acquire knowledge and skills [223].

Gamification of learning environments can take many forms. In context of RALfie a

quest-based approach is taken. Students access experiments through quests, which

provide context and guidance. The content of quests is presented as a set of

instructions and associated resources. It guides the interaction between the students

and the UI of the experiment. Quests are organized into hierarchical groups as a larger

game-based learning environment [33, 224] where individual users can accomplice

bigger goals by completing multiple quests. In addition, experiments themselves can

be designed as interactive games.

The creation of experiments by the makers involves programming to develop a user

interface and to control the experiment. This often involves setting parameters and

retrieving data. However, learning programming languages can be challenging for

new users as they have their own syntax and semantics to describe complex

functionalities.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

211

Several methods have been suggested in previous work to teach programming to

young learners using either library based or visual methods [223] which are discussed

in the next section.

11.3.1 Related Work – Teaching Programming Languages and Robotics

A computer game has been used as a tool for teaching object-oriented programming

methodologies and paradigms in a computer science course in [225]. This was a

character based role-playing game where the player’s character has to follow a

storyline and clear some objectives. In doing so, the character (object) acquires traits

(properties) and performs tasks (methods). The player gets experience points or

rewards for finishing the given set of objectives. Game oriented procedures have been

implementing in STEM fields [226]. Student motivation mainly includes intrinsic

goals and tasks of the game.

Natural Language has been used to teach programming fundamentals [227]. It has

been shown to be a good alternative to traditional programming languages defined by

context free grammar. The natural language although attractive, may not be directly

applied to RALs, due to its complex use of ports used to control peripherals. A visual

drag and drop language like SCATCH [152] which is a simple language used to teach

programming concepts to K12 students is more suitable. The drag enabled

programing building blocks allows the pedagogical principles of teaching

programming with a low threshold for entry.

Robotics and automation are integral parts of online laboratories. Robotics

components are added to a localized version of the experiment setup to make it

accessible from remote locations. LEGO based robotics is designed for teaching K12

students about robotics. These have been part of many school based STEM initiatives

[228].

RAL programming uses various programming languages although often it is

LabVIEW. Pastor et al [229] describe user based custom programming. This approach

uses XML to specify the components and the corresponding functions which are then

recompiled as Java programs. The students rely on using a XML based Laboratory

Experimentation Description Markup Language for creating the laboratory modules

and joining them to form experiments. This form of language is not suitable for

212

STEM students.

The following sections describe new implementation strategies and user related data

about the application of P2P RAL in STEM.

11.3.2 P2P RAL Operation

The operation of the proposed P2P maker-learner experimental rig sharing is shown in

Figure 11.3. The process starts with the maker identifying/given a STEM problem.

Once it is decided on what is to be built, the corresponding experimental setup is

prepared. The experimental rig uses automation components such as actuators into the

experimental rig that enables its computer-based/remote control. The additional of the

automation tools may require minor re-design of the rigs. These two steps are a

repeated until a satisfactory control interface and the rig is setup.

Once the setup is ready, it needs to be stored as a published experiment in a repository

where other users can search them. This storage mechanism id modelled around the

quest-based learning [33].

After the experiments are published, it is available to the learners. They run the

experiments, collect data and complete activities to gain experience points and collect

badges in the quest based system. The creation to publishing affects the users

experience with the system in the reverse order –

• Search is affected by storage policy,

• Experiments run and answering the questions is affected by automation and

Figure. 11.3. The P2P experiment creation, storage and usage operational steps.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

213

programming of the rig and its interface.

• The learning outcome and ‘game incentives’ in the form of badges,

eXperience Points (XP) or achievements gained by the learner is dependent

on the type of rig and the experiments chosen by the experiment makers.

In the current context, the focus is on the "Automation and Programming" and

“Storage Mechanisms” from a maker’s perspective. In order to provide a unified,

consistent, and easily understood programming interface to represent the states of the

experimental activity, the following Sections 11.4 to 11.5 outlines the requirements of

a programming language and supporting technical tools for a P2P RAL environment

and evaluates the feasibility of using a graphical languages as the Integrated

Development Environment (IDE) to create a Human-Machine interface for

experiments.

11.4 P2P RAL Programming and Storage

Proper programming language and development environment must be used to enable

users to connect the instruments to the Internet in a homogenous manner.

11.4.1 Role of Programming Language

Once an experimental rig has been assembled, it must be programmed to

communicate with the UI through the Internet. From the perspective of young learners

programming languages may be divided into several groups.

Procedural vs. Object Oriented Programming

The aspect differentiates between programs that have a simple flow control with

programs that associates every data to a conceptual object. Experiments in RALs are

usually operated by a small finite set of commands for a session. As such, it should be

procedural in operation i.e. the code composed must start and end without initializing

any object. Using objects adds higher overhead of associating each function with an

object.

Text-Based vs. Visual Languages

This aspect differentiates between the styles of representing language components. A

text-based language requires more typing of code, with the associate potential for

214

errors, while the visual languages are more colourful and primarily uses drag and drop

methods. Visual languages are more appealing to the users with less to no

programming background [230].

Declarative vs. Imperative Languages

This aspect differentiates between the structures of languages. The declarative

strategy specifies the logic of the computation without specifying the manner in which

it will be obtained (e.g. SQL). The imperative programming explicitly specifies the

line of code. A former is more suitable for teaching young learners but requires high

levels of computational flexibility for interpreting the users input.

Hence a declarative, visual and procedural language was chosen for RALfie. For a

P2P RAL like RALfie, the fundamental capabilities required for its programming

language are:

1. Iterative and conditional abilities: These are the two most commonly used

programing constructs and needed to write any sort of program.

2. Data logging abilities: The language must be able to read and write with a

range of sensors and actuators.

3. Rapid user interface design capabilities: A GUI and an IDE are also important

to easily (re-) configure any program. The visual nature of a program is more

appealing to young learners [152]. A GUI allows the users to be more

expressive and it provides an easy way for setting up the actual user-interface

for the experiment.

4. Event capturing capabilities: It must be event oriented. Capturing an event at

the user interface and responding to that is vital to a remote laboratory

experiment program. Thus events must be clearly defined and a wide variety of

events must be supported.

5. Browse- based: the language and the corresponding IDE should preferably run

in a web browser.

6. Packaging: Packaging refers to the capability of creating modular software and

re-using code as much as possible. Users may share their codes and designs

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

215

with others.

7. Network capabilities: Obviously to communicate through the Internet the

language must be equipped with the best Internet connectivity features. Note

that this feature is not required for RALfie users. The users only create code

and run it with the experiment. The underlying network infrastructure is hidden

from the actual users of RALfie.

There are multiple graphical languages that fulfil some of these criteria, especially 1-

4, like SCRATCH. However, Blockly and SNAP have the additional capabilities of

being browser-based and supporting HTML5. They also allow packaging. SNAP has

been chosen because of its similarity to SCRATCH which is a wide used language.

The network capabilities are not sufficient in SNAP but an additional network module

was added for RALfie and thus it forms the basis of the RALfie platform as described

in the next section.

11.4.2 Activity as a Game

In order to present the activity to the learner, a quest is created. A quest is basically a

game with an objective that must be achieved with in game mechanics provided by

the makers. To make the quest interesting and hold the attention of the learners, it is

presented as a story. The storyline follows a sequence of interactions between the

learner and the interface which leads to a final solution where the interface tells the

learner whether the user has reached a correct stage or not.

In case of RALfie a narrative approach [231] is taken where a character is used to

first describe the UI environment i.e. the tools available on screen such as buttons,

indicators etc. Then the learner is presented with the quest logic during which they are

simply asked for a set of values through a set of questions. The answers to these

questions are the input parameters to the experiments. The learners then observe any

change in the experiments site through the video feedback or data feedback on the UI.

At the end of the quest the learner is presented with quest questions. The answer to

these final set of questions lies within the previous interactions with the UI and will

indicate the learning outcome of the quest.

216

11.4.3 Storage in the Content Management System

Once an experiment is created, it must be hosted as part of structured hierarchy so that

users are able to search for them and access them in the appropriate sequence. For

ease of use and ubiquitous access Content Management Systems (CMS) are often

associated with RALs. These provide the learning materials and task instructions that

give the context for the experiment. Traditionally these would form lessons delivered

by a Learning Management System such as Moodle or Blackboard.

In order to increase communication and collaboration between learners, RALfie

deploys a non-traditional, gamified approach. Content in RALfie is delivered within a

quest. In the RALfie system, there are a series of quests at different levels that must

be completed in series to gain knowledge about a particular topic. One lower level

quest may be required for multiple subsequent higher level quests. Also, multiple

lower level quests may be required to be completed to get access to a higher level

quest. Learners receive eXperience Points (XP) for completing a quest that

accumulates to earn badges that indicate competency. Learners are members of guilds

that provide an online learning community. This gamified approach has implications

for the design and delivery of content and learning experiences. However, the

requirements of the distributed RALs described in this section remain constant

whether a traditional lesson structure or a quest-based system is used in relation to a

P2P network of user-generated RAL.

11.5 RALfie Implementations

This section presents the technical implementation regarding the programming

environment, communication and user feedback for the RALfie.

11.5.1 The Instrument Programming Interface

The system components are shown in Figure 11.4. The backbone of the P2P RAL

communication is the VPN or overlay connection between users. Especially

designed/programmed routers i.e. RALfieBox connect each experiment node to the

VPN. Each experiment setup has one such RALfiebox. One RALfieBox is ideally

associated with one controller although it may connect to multiple controllers.

A web-browser based IDE of SNAP is used as the programming interface. SNAP is a

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

217

graphical programming interface that allows drag and drop of commands to form the

program. The interface is exactly same in syntax and structure as that of SCRATCH .

This allows quick understanding of the user interface. The only difference between

SNAP and SCARTCH are that SNAP is written in JavaScript allowing it to be

executed on any browser. SNAP also allows creating custom blocks which are

essentially subroutine or custom functions.

The RALfie re-deploys these tools based on SNAP with the additional requirements

of RAL hardware interaction. This adds to new programming paradigms that need to

be implemented and used by the makers.

The controllers for the experiments are low-cost microcontrollers units for example,

LEGO, Arduino etc. with multiple ports/pins for controlling sensors and actuators.

These MCUs have the IEM and associated tools that run the command coming from

the SNAP based UI. One controller can potentially run multiple setups that are part of

different experiment activities.

The message flow in the system

Figure 11.5 shows the message flow in the system. All experiment CUs when they

become online registers with the P2P RLMS. The P2P RLMS assigns an unique ID to

each CU and creates corresponding web links or URIs for the experiments. All such

experiment are stored in a list in the P2P RLMS. The list is updated in the following

events:

1. A CU enters the system: The CU sends a joining message and is recorded into

the system list. Initially, all CUs are marked as not engaged in the list.

2. A CU is engaged by a learner: The CU sends a message about their status: true

Figure 11.4. The RALfie Communication System Architecture

218

which is recorded in the list.

3. A CU is released by learner: The CU sends a message about their status: false

which is recovered in the list.

4. A CU leaves the system: The P2P RLMS removes the CU from its active list

of experiments.

In the beginning of the session, the learner opens the webpage (ralfie.net) and logs in

to the system. The P2P RLMS verifies the log in and broadcasts a message to all

known experiment CUs.. The CUs that are engaged are marked as such and the users

cannot request that experiment for a window of time. The experiment sessions are

limited to 15 minutes in the RALfie system, but this may be changed by the makers.

The program to query the P2P RLMS runs from within the learner’s Web browser.

The P2P RLMS checks whether the CUs are online and there status every 2 minutes

Figure. 11.5 The message flow chart

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

219

and update the learners list on their web browser accordingly. When the P2P RLMS

finds a new CU or a CU with status as true, the learners list is updated. The learners

can choose an experiment that they want to do. The P2P RLMS authenticate the

learner against the CU and then allows the learner to download the CI which is global

and common to all experiments, the CPL and other files corresponding to the

experiments.

The P2P RLMS returns the links for the experiment to the CI. There are at least two

links -one for the CU WebSocket connects for commands and the other for the

Camera feedback. There can be additional camera feedbacks links as well. The CI

runs from the web browser and uses the links to pass the commands to the CU. When

the WebSocket connection is opened the CU changes its status to false. Once the

experiment session is over, either due to end of time limit or the learner closed the

session, the CI sends the end message. If the end message is received or the

WebSocket session ends, CU changes its status to true.

Programming Paradigms of RALfie Experiments

There are three main advanced features in SNAP that are used extensively for

RALfie. First is the Network Capabilities. When the SNAP IDE is opened, it

establishes a WebSocket connection to the target controller on the VPN. Henceforth,

each new command for the rig is sent through a WebSocket.

The second is using Sprites as Objects/Components. SNAP uses specific images

called ‘sprites’ that represent each component of the user interface. These represent

aspects of ‘object oriented programming’. Each sprite in the interface may be

regarded as objects with its associated code. But the program is written in a functional

manner and no object is ever explicitly used.

Every object in the UI is a sprite that can initiate its own code execution or perform a

particular function. This implicitly implements the concurrency between execution

driven by user generated events such as clicks and key-press, but the concurrency

need not be part of the program logic. The most common sprites in the UI are:

• The Narrator: This object tells the objective of the experiments (see Figure

11.6a). It does not take any input either for the UI or the experiment, but

simply presents a set of instructions and waits for the users’ actions.

220

• The input components: These include anything like a button that may be

clicked to generate an event (see Figure 11.6b). Any image file can be used as

the input components. Upon an event, these take an input either as numeric or

text value or the click itself.

• The output components: These are those components of the UI which simply

change state depending on the output received from the experiment. The

output components on the SNAP interface may be optional as there is always a

video feedback and certain experiments may solely rely on the video for

showing the output.

All other functional blocks available in SNAP are used related with the sprites.

The third feature is using Ports as variables. Each controller is equipped with

ports/pins and each pin is connected to a sensor or actuator of the experimental rig.

Additional READ and WRITE components have been written for RALfie for

interacting with hardware at different ports of the MCU. These were created under the

control and sensor block in the SNAP. The READ commands take an input of a port

number to return the value of sensor at that port. The WRITE command takes a port

and value parameter to be written at that port to operate an actuator. These commands

are put into other command structures to create the program logic of the rig operation

as depicted in Figure 11.7. It shows a program where an actuator that is connected to a

port is issued a write command.

Figure. 11.6 (a) The Narrator of the activity (b) An example of an input component

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

221

11.5.2 Lesson and Quest Management Interface

The IDE and its usage must be according to the characteristics described above.

However, just satisfying the IDE requirement does not guarantee success of the

system. The experiments must be stored in a cloud repository. RALfie uses a native

Content Management System (CMS). Each quest is associated with a general

description of the problem and related materials. The CMS also mentions the XPs and

badges one can obtain for a particular quest. Also the CMS can store the pre-

requisites of the experiments. The user’s final set of answers to the activity are

submitted to meet quest completion criteria. Other users' feedback on the quest, its

due time and availability are also maintained by the CMS.

The SNAP programs can be converted to XML format including the images or sprites.

Once the maker is ready with a fully functional experiment and UI, they can publish

the experiment by saving it on the cloud. The corresponding XML file is stored in the

cloud servers and associated with the activity in the RALfie. For the learners, the

experiment xml file is downloaded and executed on the SNAP environment to run the

experiment. They can only access the UI, but they do not have access to the

associated code.

11.6 Example Experiments

This section presents selected examples of experiments that have been implemented

in the P2P RAL environment RALfie. Both makers and users use the same portal to

access the experiments. The makers can with between a maker interface where they

Figure 11.7 (a) Code example

Figure.11. 7(b) Code Example

222

can create the program. The users do not have such capabilities and not authorised to

see the maker's program in the interface. They can however download the program

separately for sharing and further development.

11.6.1 Pendulum Experiment

The Pendulum experiment consists of a metal ball hanging by an extendible thread

and a pushing mechanism to push the ball to generate a swing. LEGO Mindstorms

EV3 components are used for this. There are three actuators for a) moving the ball up

and down b) pushing the ball c) moving the pushing mechanism up and down.

The same experiment setup can address two alternative learning objectives: to

determine the value of acceleration due to gravity (g) constant or the value of length

of the swing thread. These objectives can be satisfied by moving the ball up and down

and then measure the time taken for minimum 20 oscillations. Two alternative UIs

with minor alteration have been built to support the two activities. This feature can

encourage sharing of the program code among users and increase the number of

activities as well.

Figure. 11.8(a) The Pendulum example experiment UI in RALfie while initializing form a users’ view.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

223

Figure 6.4 in Chapter 6 as well as the Figure 11.8 (inset) shows the pendulum

experiment and it's UI in RALfie. The actuators are all controlled by the CU, which is

a EV3 brick. The EV3 runs the corresponding IEM written in JAVA. Figure 11.8(a)

shows the UI as developed by the makers and published in the RALfie website

(https://ralfie.net) where other users can access it. The Figure 11.8 (b) shows the

maker’s view of the same experiment where they can edit the code. The UI consists of

three control elements, one each for every actuator. Additionally, there is the narrator

character, which describes the aim of the experiment and methods to operate the CI.

11.6.2 Gear Box Experiment

The Gearbox experiment consists of multiple gears that are interconnected. Each gear

it connected to a particular coloured marker. Similar to the pendulum experiment, the

LEGO components are used for the setup. Only one actuators is used for rotating the

gears. The angle is the only input to the experiment.

The objective is to determine the ratio of the gears and understand that the relative

speed of interconnect gears of different sizes. This is done by rotating the input gear,

marked as red, by a certain angle as given by the user. The number of times the other

gears rotate is observed to determine the ratio.

Note that this experiment setup may be used to run multiple experiment activities with

Figure. 11.8(b) The Pendulum example experiment UI in RALfie while initializing form a makers’ view.

224

different narration, although the objective is always the same. For example, the same

gear box experiments may be setup is multiple way with different sized gears, thus

making a large variety of experiment setups. The same program however can be used

to run all the rigs as long as the same port is used. This enables wide scale sharing of

the CPL/UI among users.

Figure 11.9 shows the gearbox experiment and it's UI in RALfie. Similar to the

pendulum experiment, the actuator is controlled by the CU which is a EV3 brick. The

UI is developed by the makers and published in the RLMS website where other users

can access it. The UI consists of one button for taking the user input. There is also the

narrator character, which describes the aim of the experiment and methods to operate

the experiment. Figure 11.9(c) shows a different gearbox setup that could be run with

the same CI which may be shared from the previous example in 11.8(a & b).

11.6.3 Traffic Light

The traffic light experiment consists of LEDs that are placed on a printed paper map

Figure. 11.9 (c) A different GearBox setup that can run with e same UI and CPL as the last one.

Figure. 11.9 (a) The GearBox example setup with LEGO Mindstorms and (b) it’s UI in RALfie.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

225

of road. Simple wires and cardboard are used create this rig.

The objective is to create a program that runs different aspects of the traffic light

system. For example, create a rig consisting of 4 LEDs (Red, Green, Yellow and Blue

for pedestrians). This activity consists of an infinite loop that turns on the red, green

and yellow at definite intervals and checks the users inputs. The user can press a

button for a pedestrian crossing on the UI that will turn on the blue LED when the red

light is on next time. This activity runs with Direct Access Control by sending all

instructions for operating the LEDs to the MCU from UIM on client computer for

Red, Green and Yellow on the MCU (a BeagleBone in this case) and the UI sending

only the ‘button pressed’ instruction.

Note that this experiment setup may be used to run multiple experiment activities. The

Figure. 11.10. The traffic light experiment example setup using a BeagleBone.

Figure. 11.11. The traffic light example UI in RALfie (maker’s view).

226

main focus however is for initiating makers into creating a rig.

Figure 11.10 shows the traffic light experiment setup and it's UI in RALfie is shown in

Figure 11.11. The actuators are all controlled by the CU which is a BeagleBone

Black. The BeagleBone runs the corresponding IEM written in NodeJS. The CI is

developed by the makers and published in the RALfie website (https://ralfie.net) where

other users may access the default program for viewing only and then further develop

the code. The UI consists of at least one button components for control, but the UI can

vary depending upon the way the experiment is designed. Once published, the

experiment can be used by other users.

11.7 User Trials and Feedback

This section presents the user feedback and results of using the RALfie system to

create and/or use experiments. The primary aims of the trials were to determine

whether the RALfie interface is usable and the concept of sharing experiments is

feasible.

11.7.1 Trial 1 - Evaluation with Students

The proposed P2P RAL system is aimed to be used by students and teachers. It is

necessary that they understand the concepts of constructing and programming a rig.

To gauge the conceptual understanding of potential users, a group of students took

part in a trial to create a traffic light experiment and access it online on the network.

The evaluation of the participants focused on these aspects. A total of ten participants

took part in the activity. In order to ascertain the impact of the delays and port

variable linkage, survey questions were asked of the participants. The results were:

1. All participants were able to assemble the experiments and plug them into the

Internet within 10 minutes and then complete the activity as per the

instructions provided.

2. They were able to change the values of the ports to make the necessary

changes to the state of the peripheral devices connected.

3. They were able to change 'delay' or 'wait' values to modify the behaviour of

the rigs i.e. slow down or speed up the rigs operation.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

227

Whilst it required an extra compilation step to execute the code to communicate with

the target MCU (a BeagleBone Black), this extra procedural step was easily

understood and able to be performed without any interjection by staff. Collaborative

team work with the activity was clearly evident as participants used differing pre-

existing knowledge bases to satisfy overall knowledge and skill requirements to

complete the activity. For linking the two parts of the activity together (UI and CPL),

having a team was also particularly useful. Participants also spent a considerable

amount of time reverse engineering the activity to ensure that connections were

attached correctly.

11.7.2 Trial 2 – Evaluation with pre-service Teachers

A second trial was held with students from the University Education Faculty. They

were pre-service teachers in an undergraduate education program doing a subject

called EDP4130 Technology Curriculum and Pedagogy. This trial had 10 participants

who had experience in classrooms. The aims of the trial was to

1. Establish whether hand on experience was essential.

2. Find out if the programming interface is suitable.

3. Determine the capabilities of making a physical experiment rig.

4. Understand the overarching architecture of publish and sharing experiments.

5. Finally, whether teachers would be interested in using these tools.

The following sequence of activities were conducted

• Users’ preliminary proficiency with procedural programming in SNAP.

• Users’ ability to create simple activity and the usability and effects of

Procedural Programming for the purpose.

• Integrating a constructed hardware robot including a MCU and three Actuators

into a small activity.

• Collaborating with each other to setup a activity

• Remotely using it to run the activity.

Participants were guided through the basics of the SNAP language and completed two

sample example programs designed to familiarize participants with the development

228

environment, as well as the custom component to talk to the MCU in this case the

LEGO Mindstorms EV3.

Each group was given an LEGO Mindstorms EV3 set along with the corresponding

IEM installed on it, the RALfieBox, Cameras and Ethernet cables. The participants

set up the RALfieBox which automatically connects to the Internet, and the RALfie

RLMS. They then connected the EV3s to the respective RALfieBoxes.

Participants then constructed 3 wheel based robots. An activity was developed for this

trial in which one of the groups robot was a goal keeper and the other two were

competing robots trying to score a goal. This setup is shown in Figure 11.12.

The participants were asked to create the corresponding SNAP programs in RALfie

website and save them. Figure 11.13 shows an example of a program. Once the robots

were tested to run locally, the participants were taken to another room to run the

activity remotely by viewing through the camera only on the RALfie website.

Observations

In the event that followed, all participants were able to gradually create the necessary

program, having first established the networking to their robot, then creating the

Figure. 11.12. The trail 2 of the RALfie system with three EV3 robots

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

229

sprites to which code would be related. Participants then built upon this with use of

the SNAP output component to move each actuator in turn. This program was then

built up until the robots were able to move in a controllable and predictable manner

using skid steering.

All participants were successful in being able to move their robots through the field,

whilst problem solving the skid steering, as well as the speed and loop parameters of

their program.

During a focus group discussion afterwards, several key issues were identified:

Whilst participants themselves were aware of the objectives of the exercise, this was

not reflected in their program sprites or control interface for the activity. Participants

understood the link between the software “ports” and the hardware “ports”, however

this was considered a threshold concept, where both ports needed to be synchronized,

thus clear documentation and output component design is desirable.

It was also identified by participants that this could also cause confusion where LEGO

Mindstorms (or other MCU) hardware faults were present, particularly poor wiring

connections, or mechanical design flaws) would cause incorrect response to the SNAP

program. As such debugging systems (although not present in the trial) are desirable

within the SNAP interface.

With regards to instrumentation and sensors, participants were unsure what these

devices or mechanisms were, and thus some examples or tutorials on sensors and

instrumentation was requested, and although not specific to SNAP highlights the issue

of open-ended hardware design with novice programmers.

Figure. 11.13. An example program created by makers

230

Participants indicated that the organization of the SNAP interface was at first

confusing, but related to familiarity with the interface. When creating the interface,

participants felt a more interactive interface was required, where SNAP blocks

showed or indicated what the physical object would do with any given SNAP block.

Participants felt the most appealing aspect was to have a quest, and achieve a level of

operation or understanding about that quest. In this case moving the physical robot

around.

With respect to the aims of the trial the results were:

1. The kind of hands-on-experience done in the trials is essential and suitable for

school children.

2. All participants had successfully created the program.

3. All groups were able to create their own robot with various designs.

4. All the participants understood that they could use RALfie to demonstrate

someone else’s rig first, to understand the capabilities of the system before

building their own. Participants indicated that a bank of example activities

would considerably help their understanding of the concepts. Additionally, it

was indicated that sharing of the activities with other participants was the most

memorable aspect of the trial.

5. All participants indicated that this type of activity could be done at schools but

may not be suitable for homes.

11.7.2 Trial 3 – Second Evaluation with pre-service Teachers

In order to test the feasibility of makers being able to make the experiments, further

interviews were done. 10 Participants from another course were shown the 3

experiments described in the last section - pendulum, traffic light and gearbox. All the

participants performed the 3 experiments remotely and were shown the components

of the actual rig.

Table 11.1

Question Yes No

To run an experiment you need to have video cameras and

robots. If we provide all the gear to you, do you think you
75% 25%

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

231

can host an experiment from home?

If you build this experiment at home and share with the

RALfie system, can you keep the experiment online for

24x7?

0% 100%

Will it (the time frame) depend on the nature of the

experiment as well?
100% 0%

The participants were asked the following questions and their responses are shown in

Table 11.1.

Most participants indicated that they can create the experiments and host them from

home provided they have adequate online support materials. All of them indicated

that a good communicate support is required where the process of making simple

components related to the experiment they are trying to create is essential.

All of them agreed that keeping an experiment at home online for 24x7 is impossible.

However, 50% indicated that in a school setting, the experiments can be kept

available for a few months until a target group of students have all run it.

All participants indicate that the time for which an experiment can be kept online will

depend on the nature of the experiment and how it can be constructed. If an

experiment can be constructed with simple but sturdy components taking less space,

they can be kept online for longer period of time.

The above result shows that individual makers can create and host experimental rigs

ta their home.

11.8 Summary

This chapter has discussed the implementation of P2P RAL technologies for STEM

education particularly for the RALfie project. It can enable individual makers to

create and share their experiments. The experiment setups can be used for multiple

experiment activities. Each of these activity could use the same rig but with different

aims and narrations and learning outcomes. The activities were set up as web based

SNAP programs. The concepts of P2P RAL such as ports and delays (wait command)

are implemented in the RALfie system. The programming environment is graphical

232

with drag and drop components. A narrator-based approach is used where an

animated character is used in the UI to describe the aim of the experiment and

describe the methods to use the UI. This follows the principles of creating small

games for learning purposes.

Finally three different examples of experiments/activities that are created and

available on the RALfie system are discussed. Results of two user trails were reported

where the usability of the online RALfie system along with the process of creating

rigs and programs were positively established.

The RALfie implementation of the P2P architecture creates huge opportunities for

makers including students and teachers in STEM education. The method of enabling

makers to create their own rigs to share with others cannot only grow their own

interest the STEM subjects but attract others as well. The P2P RAL does not

implement a laboratory in the strictest sense of an experiment being part of a

predefine curriculum that must be finished within a time period. Instead it is focused

on enable makers to communicate and share as much as they can and as long as they

can. Such principles are prevalent in the use of social media and could be expected to

be used efficiently in STEM education as well. Further research is required to

successfully deploy this system with appropriate pedagogies.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

233

12
Other Issues –Augmented Reality

This chapter discusses preliminary work in an additional area -

augmented reality tools for P2P RAL.

This chapter discusses an additional feature in the context of P2P RAL - augmented

reality tools. Augmented Reality (AR) is technology to embed media information in

video streams to create a rich interactive user interface. Embedded AR components

can be text or highly complex graphics. AR technology reacts to the surrounding

environment. It responds with AR components depending upon the visual inputs to

the system. AR components must be updated in real time by recognising the input

video frames’ contents and processing it according to a pre-determined logic. Other

common inputs apart from static objects are gestures from the users themselves which

is also part of the environment. AR systems can also take conventional inputs such as

mouse and keyboards.

AR is used in many areas of science and technology including computer games for

recreational purposes, sports and entertainment, navigation and tourism. AR has also

been used in education [232]. In this section, the aspects of integrating AR into RALs

are discussed. A P2P RAL creates the challenge that the experiments must all be

provided with a set of tools that are useful for all types of experiments. Thus a

common set of requirements and conditions are considered. Four different levels of

relationships between the real and virtual components in an AR application have been

identified depending upon their activeness. Two different solutions of has been

proposed as a part of the P2P RAL system to deal with these cases, super-imposing

animated and interactive objects on video streams and identifying and tagging objects

to corresponding sensor values. These solutions in form of AR tools can be used for

multiple experiments independently designed by different makers.

234

The rest of the chapter is organized as follows: Section 12.1 discusses the current

status of AR and its applications in education and in particular RALs. Section 12.2

discusses the P2P RAL system and identifies conditions and alternative approaches to

AR in RAL context. The SNAP programming platform [118] and the AR tools are

presented in Section 12.3. Section 12.4 discusses the implementation methods of the

tools described. The contents of this chapter are based on related publication in [233].

12.1 Related Work – Augmented Reality

Augmented Reality can be perceived in multiple ways. Most commonly it is defined

as a mixed environment that blends digital information with real world objects in a

meaningful way [234]. The amount of real world entities in the environment should

be more than the overlay information for it to be AR [235].

There are different classes of AR environment based on how immersive they are. One

common form of devices includes a head mounted displays system and possibly hand

gloves with feedback [236]. These are fully immersive environments that enable users

to experience whole of the reality environment with augmented features. It also

allows more accurate interaction with the AR environment. Fully immersive AR is

achieved by using wearable devices such as smart glasses or head mounted displays.

These devices have cameras mounted on them which are capable of running

applications to process the video which is the visual area of the user. The view of the

user is then enhanced with overlaid information.

The other type is desktop AR [237] which only covers partial portion of the

surrounding of the user, in particular what can be shown in the desktop screen. The

view is limited and interaction with the environment happens with regular input

devices for example, mouse and keyboard. While full immersive AR is more

attractive and advantageous, they have many problems. The hardware required is

expensive for being a commonly available tool to be used for educational purposes.

They require high precision to recreate the augmented feature. It requires expertise to

set up and maintain the system. They are prone to errors [238].

Moreover, fully immersive AR works by augmenting the local environment with

virtual objects. This by itself takes considerable cost, processing power and

technology. It is more difficult and unnecessary to recreate a remote real environment

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

235

completely and then augment it with virtual objects. The ability to view remote real

environment is much reduced and only a fixed set of views are available through

cameras. Thus these video streams can be projected directly onto screens.

With immersive AR, it is difficult to obtain a generalized environment to create a

number of interfaces from a single platform. This causes disparity between the

interfaces of different systems with little in common. Also, immersive AR is not

always necessary for good educational outcome [234].

AR in education mainly aims at providing rich educational experiences. Such systems

usually concentrate on the desktop AR or mobile devices. Traditionally, some systems

use markers for identifying the location in the real world stream to be replaced with

the augmented information of objects as well as a unique identifier for what to

display. The augmented objects are stored in a database, against a unique identifier

and reproduced when the desired marker with that identifier appears on the screen.

This also requires accurate computer vision techniques to correctly identify the

marker and the encoded identifier within it.

This type of technology helps in understanding operation and models of the objects

that are available in-place with real world learning materials. They present the users

with a quick in-depth augmented multimedia experience during their interaction with

real world environment.

Augmented Reality features have been added to RAL experiments before [232, 235,

239]. Usually, the AR is desktop type and mostly the augmentation is overlaid virtual

components such as switches that can be manipulated by users. In [235] the virtual

elements on FPGA boards, users can remotely interact with the real and virtual

devices. The real devices are viewed through a camera video feedback. This approach

leads to a very realistic environment, as the majority of what the users see as part of

the user interface is real objects: here the FPGA board. Only small portions of the

video feed back are overlaid with other information and graphics that takes users

inputs.

The main limitations in the broader context of P2P RAL are that these examples are

designed specifically for one experiment. Moreover, the co-ordinates of the virtual

objects are directly tied to the co-ordinates of the hardware in the video feedback.

236

Any change in the hardware orientation may require change in the AR setup as well.

As part of a P2P RAL, a common web-based instrumentation platform is used by

multiple users with different hardware setups. Thus the P2P RAL systems must

identify which objects in the real environment need to be supplemented. This enables

makers to specify certain objects in the video feedback and associate the virtual

components with them within the online environment.

12.2 Augmented Reality in RALs

This section describes the application areas of AR in RALs, and types of AR and

constraints of applying them.

In general augmented reality can be used in many ways [234] but the most common

approach is to draw virtual objects onto the real world video feed. Augmented reality

in RALs can serve two key purposes: to show hidden or invisible views and to display

additional information.

In certain experiments some objects/entities may not be visible to the camera. For

example magnetic fields that attract magnetic materials generated and studied by

using different electromagnets [240]. These entities which are part of the experiment,

may be implanted into correct positions by using animations. This involves re-

drawing certain objects such as arrows over the region to indicate the presence and

orientation of the entities.

Another set of objects that needs to be presented is text information relating to certain

real objects in the video. It is best to draw the text onto the video feedback close to the

associated object. To do this however, the objects must be identified and tracked in

real-time during the experiment. Overlaid text information must be updated in real

time as well to reflect the change in the state of the object.

12.3 Levels of Augmented Reality

In the current context, AR is the process of overlaying virtual objects including scalar

images or vector animations or both onto the video feedback. The video feedback has

a definite frame rate and resolution and thus a fixed number of pixels (P) for each

frame. For the AR, a pixel p in the feedback may contain either real-object or virtual

object (or maybe fractionally both). Thus two measurements can be defined -

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

237

Virtual Pixels (PV), the average number of pixels that relate to a virtual object. Then,

ΔPV and ΔρV are two parameters that signifies average change in the PV and ρV over

time in the video feedback where ρV is the matrix representing the position of the

virtual pixels.

Real Pixels (Pr), the number of pixels that relate to real objects. ΔPr and Δρr signifies

average change in the Pr and ρr over time in the video feedback where ρr is the

matrix representing the positon of the real pixels.

This allows for different degrees of virtual and real objects to be blended. In the P2P

RAL, AR may be implemented by having

Case 1. More virtual components with more active behaviour than that of the

real objects. i.e.

PV > Pr and (ΔPV)(ΔρV) > (ΔPr)(Δρr)

Case 2. More virtual components than the real objects but less active in

behaviour than the real objects. i.e.

PV > Pr but (ΔPV)(ΔρV) < (ΔPr)(Δρr)

Case 3. Fewer virtual components than the real objects but more or equal

active in behaviour than the real objects i.e.

PV ≤ Pr but (ΔPV)(ΔρV) ≥ (ΔPr)(Δρr)

Case 4. Fewer virtual components than the real objects. i.e.

PV < Pr and (ΔPV)(ΔρV) < (ΔPr)(Δρr)

The first scenario is in the space of augmented virtuality [241] (not in scope of this

section) where both virtual visibility and associated information are high and the real

objects do not change their orientation much. In the second scenario real objects

change their orientation more often compared to (or equally to) the induced

visibility/information. In the 3rd scenario the users have fewer virtual components and

the real world objects, both can be equally active. In the 4th scenario, users interact

largely with the real components and only supporting information are displayed as

visible information.

238

In the P2P RAL system, all AR capabilities are embedded in the online platform.

Makers can use AR tools to incorporate virtual objects onto the UI along with a video

feedback from the corresponding Camera.

12.4 Integrating AR in the P2P System

The role of AR comes into the programming part of the rig. The AR information

includes two type of procedure Virtual Object Creation (VOC) and Real Object

Identification (ROI).

For the VOC, the makers can create animations in the SNAP environment and these

needs to be aligned correctly to the video feedback. This can be achieved by ensuring

that the virtual objects and all of their re-orientations are within the bounds of the real

objects coo-ordinates in the video feedback.

For the ROI, as mentioned earlier, makers are not expected to create markers [239] for

AR objects. It is also not possible as the SNAP system does not know what the maker

wants in the AR. Thus any real object that needs to be augmented with virtual objects

must be identified by the SNAP system in the video feedback. Once the desired

objects are identified, they may be associated with corresponding virtual objects or

overlaid text information.

The maker has to perform these tasks as a part of building the rig which is supported

Figure. 12.1. The SNAP environment and the experiment rig

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

239

by the SNAP platform. The UI and CPL is also created in the SNAP Platform. A

separate AR engine (also part of the SNAP platform) can combine the stored Virtual

objects and corresponding Virtual objects/components into the video feedback during

run-time for any user.

Figure 12.1 shows the SNAP system with the various AR related components. There

are two separate streams that feed into the UI - the resultant data and the SNAP AR

frames. The resultant data is the data obtained from the experimental rig i.e. sensor

data of actuator success or failure data. The SNAP AR Engines generates the frames

for the UI that shows the video frame received from the experimental setup modified

with the AR components. The video feedback is received through an IP Camera as a

MJPEG stream in the SNAP which is further processed according to the experiment

and the corresponding objects saved in the database. The maker is responsible for

both ROI and VOC both of which are optional for a given experiment. The objects

identified and their associated media by ROI or created by VOC and their activities

are stored in a database alongside the experiment. This database is used by the SNAP

AR engine. The SNAP AR tools run on top of the SNAP execution engine that

processes the users' program and communicates with the experiment.

For P2P RAL, the Cases 2, 3 and 4 as mentioned in Sections 12.3 can be addressed as

follows.

The Cases 2 and 3 can be handled by super-imposing the desired virtual objects on to

the camera feedback. This allows for the camera feedback to directly display the real

objects without any alteration. This will work only if the amount of virtual objects

pixels is less than or equal to the number of pixels for the real objects. This does not

work well if ultimately the number of virtual object pixels is greater than that of real

objects as a large number of pixels are required to be re-drawn in each frame of the

video, reducing system performance. It also increases complexity of real-virtual

object pairing and the ways to store them in the database and display them farther

affecting performance and experience.

The Case 4 is displaying information associated with certain components of the rig.

The virtual components are not special objects but only text that is updated in real

time. In the rigs, each actuator will result in change of orientation. This change may

be associated with a certain component in the rig and thus a corresponding sensor may

240

be able to read the changed values. These values can be shown in real time over or

near the component in the video feedback.

These help makers in understanding key components of the design and identify any

weakness. It also helps makers to quickly associate sensor value to any object with the

need of displaying them explicitly. This saves screen space which is very important

for mobile devices. For the user, the augmented components helps in identifying and

understanding the changes in the experiment easily without having to look into

detailed UI reports [242].

12.5 A Sample Implementation in RALfie

This section discusses the methods to implement the two solutions to the Cases 2, 3

and 4 as generic tools for the online SNAP platform in conjunction with a P2P RAL.

Super-Imposing the Camera View

The SNAP platform has a designated area of screen that is called a stage. The stage is

where all the objects of animation and other output data are displayed. The simplest

form of AR is to super-impose the cameras view below the stage. This is done by

connecting the stage background to the camera stream. The camera steam may be

resized and placed at any position on the stage or a full screen mode can be applied.

Makers must include a command to start the AR. If the AR is not started then the

SNAP environment behaves like a typical non-AR setup. Once the AR mode is

started, the camera is visible. Then the makers can include any object they wish on the

stage that will appear on top of the video stream. The makers can make precise

movements according to the underlying changes in the camera feedback.

Figure 12.2 shows an example of this type of AR. The experiment activity concerned

is a traffic light system as shown in Figure 11.9. The rig has LEDs that go on and off.

Virtual objects are cars which stop and move according to the LEDs status. The LEDs

are connected to ports on the MCU and controlled with commands from the SNAP UI

to the MCU. The video feedback shows the LEDs and the background roads as well

as the car movements. These are controlled through SNAP depending upon the data

received from the MCU.

This type of AR suffers from two problems: stability of the camera view and network

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

241

response time. The camera view is assumed to be static. The problem may arise if the

view changes due to the camera getting moved accidentally. This could be addressed

by detecting changes in view and notifying makers to put the camera back in place.

However, if AR objects are precisely programmed, they may require re-calibration of

coordinates to ensure correct UI interactions. There is no object identification

procedure to re-align the virtual objects accordingly.

The response time is the time taken to retrieve any data or video from the maker node

to the user node. On the Internet this may be high. The animation frame rate will be

typically faster than the frames from the video, thus it will create a lag in user

interaction if every frame of the stage is attached to a new video frame. For this

purpose, the video is handled by a separate process that runs parallel to the SNAP

execution platform running the virtual objects activity. Whenever the video frame is

retrieved, the stage background is updated accordingly. Thus the users’ interaction

with the UI components remains unaffected.

A second problem is the difference between the arrival rate of data and the SNAP

animation frame rate. Due to response time, the data may arrive at a later time than

the relevant frame where the data was supposed to have any effect. Thus, all SNAP

execution including animation is suspended when a message or instruction a is issued

from the SNAP to the MCU at time Ta. During this period the virtual objects do not

move or operate thus creating a paused state until the data is received. With higher

latencies, the number of paused states will increase in an interval of time, thus

affecting quality of experience. But the data and SNAP animation will remain

synchronized thus not affecting the learning objectives.

Figure. 12.2. A traffic light example in SNAP with real LEDs and virtual cars

242

The last problem is the arrival time difference between the data and video stream.

Typically, the command and sensor data exchanged between the nodes is very small

and delivered at faster rate than the video as well. This causes the problem of de-

synchronization between the video frame and the virtual objects. Thus, the SNAP

execution engine is paused until a new video frame 𝑇𝑎
𝑣 is received after receiving a

new data 𝑇𝑎
𝑑 after an instruction a is issued. With stable Internet conditions, there will

be least effect on the performance and interaction of the users. Thus the paused time

after an instruction a is issued to the experimental rig from the user interface is:

𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇(𝑎) = max{ 𝑇𝑎
𝑣 − 𝑇𝑎 , 𝑇𝑎

𝑑 − 𝑇𝑎}

this means that the paused time is the greater of whichever arrives last, the video

feedback or the data feedback.

Object Identification and Tagging

The second approach is the solution to Case 4 where the objective is to identify

individual objects in the video stream and tag them. The objects cannot be mapped to

any fixed global database in SNAP as there is no limit to what the users can use to

create the rig. Thus the SNAP platform must be able to store these additional

components alongside the control logic program for every experiment.

The following steps describe the process of identification and tagging:

• The SNAP AR engine identifies objects that change position (or shape) over

time. This process is ROI.

• A record of the desired objects is created for the particular experiment based

upon physical properties of the objects i.e. colour, contour, size or even an

image of the object. The record is stored in the database for the experiment

alongside the control logic.

• Once these objects are recorded, the makers can attach a sensor's value to the

object, which is also stored in the corresponding record.

Actuators cause changes in the rig positions. The magnitude of the change can be

measured by sensors. For example, Figure 12.3 (b) depicts the pendulum experiment.

It the user has to drop the ball, the corresponding actuator has rotated by a certain

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

243

degree. The ball then changes position in the video stream. The length of the drop is a

function of the rotation. This change in the balls position can be displayed in real time

as augmented texts pointing towards the ball.

The maker is able to attach the sensor values x as a function f(x) which is constantly

updated on the screen. The maker can also designate a particular area of the screen

where the text is displayed. This should ideally be a space that does not have any

meaningful object and the text should not overlap such objects. However, in certain

cases where, the rig has massive change in position, no such suitable space on the

screen may be available for the entire duration of the experiment. The SNAP AR

engine must determine a suitable space to put the text. The user is also able to switch

on and off the AR components to make them visible or invisible.

A prototype ROI mechanism has been developed in P2P RAL - SNAP as follows:

1. The initial image of a video stream when a session starts is stored as the

background image (B).

2. Once any object moves in image Fi, it is isolated by subtracting Fi’ = Fi - B. A

residue of the object is left in B, which is identified using subsequent frames,

as the residue will always remain static. The pixels of the object residue in B

are replaced with the corresponding pixels in the current frame Fi.

3. A clustering mechanism is used to remove noise and get the actual objects.in

the frame F'i. The clustering mechanism takes into account the potential radius

(as specified by the maker) of the target object that needs to be tagged. Thus

any object that is larger than the size is automatically put off the list. Figure

(a) (b) (c)

Figure. 12.3. The pendulum Experiment. (a) The difference in frames to identify the moving object (i.e.
the ball) (b) The original video feedback of the pendulum experiment (c) The final video feedback with

the sensor value as shown to users.

244

12.3(a) depicts an identified object.

4. The makers can then select the object(s) that need to be stored permanently

and will be used for AR.

5. The maker then uses a SNAP block to associate a sensor value with the

desired object and also mention its x, y coordinates on the stage.

6. Each object is stored in a database and marked with a unique identifier. The

object does not need to be identified in real world as what it is, but only

matched relatively in each experiment session.

It may be noted that the actual algorithms to realize each part can be implemented in

multiple ways. For example, the DBSCAN algorithm [243] is used for creating

clusters of right size.

When the users run the experiment, the AR module checks if any of the objects,

stored in the database while creating the experiment is in the frame. If there is any

such object, then the corresponding, sensor values are shown if AR tools are

activated. Figure 12.3(c) shows the final output of the Object Identification and

Tagging (OIT) process where the ball is tagged with the value of the sensor measuring

its height. This image frame is placed in the stage of the SNAP environment.

The AR module in SNAP to create each frame of the video feedback to the user works

in two steps as shown in Figure 12.4. First, the video feedback is analysed and for

each frame, the objects are identified and tagged according to the makers’ selection

and function. Second, the virtual objects created by the makers are then placed in the

video feedback.

The prototype system for ROI (or its implementation - OIT) is successful in principle

Figure. 12.4. The layers of AR components

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

245

to provide a generic tool to create AR interfaces for multiple experiments using the

steps described earlier. But it is not able to support all types of experiments. There are

major performance shortcomings that were noticed.

 First, the JavaScript based SNAP environment runs in a web-browser. The

OIT AR tools increase the CPU rate to more than 33% on a 2.5GHz, Intel i5 processor

using the web browser Firefox version 41. This indicates that AR tools require

considerable computational power which may not be available on mobile devices.

 Second, in Step 3, a clustering algorithm the DBSCAN algorithm is used

which has 2 inputs ε and p where ε signifies the radius around a point and p is the

minimum number of points (or pixels) around a given point. The resultant clusters

will have each point in the cluster surrounded by a minimum of p clusters within a

radius of ε. This is an ideal way to determine objects and reduce noise in the video

input. However, this also adds to parameters that need to be altered to an extent to

identify the desired objects correctly. Further improved implementations of this have

to either automatically adjust this or makers choose desirable values.

 Third, in Step 4, the objects properties - average colour for red, blue and green

along with a range of minimum and maximum heights and widths of the detected

clusters are stored. While this is sufficient to identify small and mobile objects with

uniform colour, it may fail in some scenarios with larger objects.

12.6 Limitations and Future Work

One of the limitations of the implementations described here includes the need for

static camera positions. Ambient lighting changes can also affect the outcome. This

will create larger differences between the background (B) and any subsequent frames.

Thus the experiments with AR tools must be set up in a well-defined environment.

Further work will look into minimizing the effect of response time on the

performance of AR tools.

The OIT in this work assumes that there are fewer moving or changing components

compared to static objects in an experiment view. At the moment issues such as

occlusion are not addressed, i.e. when an object is covered by other objects. The OIT

described here can be used only for moving or largely changing objects visible to the

camera and if there are no two similar objects in the feedback.

246

12.7 Summary

A set of generic augmented reality tools has been discussed that can be integrated into

a P2P remote laboratory architecture, as the P2P RLMS must provide generic tools for

all makers to create a variety of experiments. AR tools are based on the activity level

of the virtual and real components in the experiment video. Such tools can help users

of the experiments to quickly identify the changing parameters of the experiment and

help makers get acquainted with the relationship of the parameters and the rig

operation. In short, augmented reality tools can help users and makers recognise the

most important learning concepts in the experiment. It can highlight important data

and help users to understand the experiment. The proposed methods are also

applicable to other RAL experiments.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

247

13
Other Issues – Scheduling

This chapter discusses preliminary work in an additional area -

scheduling for P2P RAL.

This chapter discusses a new scheduling mechanism in the context of P2P RAL.

Scheduling is important as the users in a remote laboratory can only use a device

individually and the RLMS must organise access such that user sessions do not

overlap with each other in harmful ways affecting learning outcomes. The scheduling

in the RALfie system can be more complicated given a situation where multiple users

could be trying to access the same experiment which may have been implemented in

multiple sites and the makers having constraints on how long they can keep their rigs

online.

The rest of the chapter is organized as follows: Characteristics of scheduling

mechanisms used for traditional RALs are discussed in Section 13.1and 13.2 followed

by an analysis of which of these is suitable in the context of P2P RAL and quest-

based education. Requirements and assumptions regarding the new scheduling

strategy are presented in Section 13.3. The terminal assignment problem and its

application in this context are discussed in Section 13.4. Section 13.5 presents

simulation results on the proposed scheduling method. The contents of this chapter

are based on related publication in [211].

13.1 Scheduling

RAL environments enable users to control equipment and collect data from them

without the need to be present in the laboratory or classroom. This means that users

248

work in a disjoint manner, unable to co-ordinate the usage of the experiment manually

with other participants as it often occurs in a regular on-site laboratory. Generally, the

remote laboratory management system (RLMS) handles scheduling and user access,

as multiple users typically cannot control experimental instruments simultaneously.

The P2P RAL uses quest-based learning [33], a special instance of game-based

learning where the players are given a set of targets or goals to achieve. These target

objectives relate to particular learning objectives. The RALfie [244] project

introduces quest-based learning to P2P RAL environment to allow school students to

design and build their own experiments [245] and then run each other's experiments.

Each experiment is a quest which in turn is part of a large hierarchy of the quests that

are related to different fields of study. Completing a series of such quests means the

player has gained the knowledge about a particular STEM topic. The use of quest-

based learning adds new varieties of motivating factors and user requirements to

achieve certain goals in the entire RAL based game and thus affect the scheduling.

It may be noted that without the unique requirement of the RALfie system’s quest

based learning, queueing or time reservation method can be easily used for the P2P

RAL system.

Time scheduling, i.e. making sure that each user can access experiment effectively,

has been addressed in the context of traditional RALs [55]. Scheduling users in a

distributed environment that features a gaming approach poses new challenges:

Firstly, experiments will usually not be online all the time, but be limited to specific

time periods. This is in contrast to regular RALs where the equipment is typically

available ‘24×7’. Secondly, due to the nature of quest-based learning, there are a

number of prescribed sequences in which experiment have to be completed, i.e. users

will have varying requirements while selecting experiments. In technical terms, both

identify additional constraints for the user-scheduling problem.

13.2 Related Work – Scheduling

Time scheduling in remote laboratories has been investigated in the past [55,34, 35,

198]. Time scheduling in RALs is essentially solving a problem of resource allocation

within a given set of equipment (resources) that can perform various operations. The

solution will vary depending on the nature of rig operation for example, time taken,

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

249

amount of data etc. The goal is to maximize both the efficiency of the instruments’

use as well as the quality of users learning.

Time Slotting or time reservation divides a given period of time into discrete slots

according to the experiment nature. Each slot is then allotted to a user during which

the user has full control over the equipment. One characteristic of the time slotting

mode include that the user gets the full access and gives inputs at will. The user input

gathering and processing does not have to be at periodic interval. The inputs may be

given at random time within the time slot. This allows the users to apply a wait and

see approach where they can take time and analyse their current position in the

experiment and then move forward.

This feature is most suitable for experiments that are fast experiments involving a

variable environment and the users making multiple decisions to get the required

result. By allotting a time slot to individual users the utilization of the resources drops.

A poorly designed time slot length can cause the users to finish the experiments too

early. Also, the users may not use the equipment much within the time slots and spend

more time on the decision-making component leading to internal slot fragmentation.

Since the times at which the users may start the experiment are discrete, they are

allotted the slots in a First-Come-First-Serve basis. This may result in multiple time

slots being unassigned if none of the target users can use it at that time leading to

external slot fragmentation. The number of slots limits the total number of users that

can be served.

Queuing is the converse of time-booking. It creates a list of users’ requests and

processes one request at a time. The user gives a set of inputs for an experiment and

each of these requests (with a set of inputs) are put in a queue by the experiment

controller or the RLMS. The requests are then executed in order i.e. FIFO manner.

The characteristics of the queuing mode include that users get full access but are

unable to provide inputs at will. The users’ inputs are bundled as one closed packet of

information that is processed as whole at discrete intervals of time. The inputs may be

given at any time but the response will depend upon the number of requests in the

queue before that. This denies the users an interactive session and there is no scope

for changing inputs once experiment processing starts.

This feature of reduced accessibility is most suitable for experiments that are slow and

250

can be done with automated instruments that perform experiments with user inputs.

The environment variables can be set only once and the users have only one chance to

get the required result. Obviously he RLMS allow the users to post another modified

request in future, so the users can always get accurate results under the desired

environment variables. By forcing each instruction set in a queue and executing them

successively, the utilization of the resources is optimal. The instruments are never

idle. There is no scope of internal or external fragmentation of time. But it is

inapplicable for experiments that are fast and interactive.

Several attempts have been made to combine the two methods to exploit the

advantages of each and overcome their disadvantages. In [16] a mechanism that is

adaptive and can be used to optimize the usage of instruments depending upon the

number of users to be supported and the nature of and time taken for the experiment is

presented. By setting the parameters of timeslot length and number of users in it, this

method can be used for almost all kinds of experiment.

The viability of RALs to support laboratory related experiences in Massively Open

Online Courses (MOOCs) has been discussed in [246]. The parameters for

determining scalability were: student numbers, laboratory activity duration, average

laboratory sessions per student and the usage window of an experiment in a day.

While these parameters are relevant for MOOC based laboratory systems, they do not

provide a solution to the operational management of distributed P2P laboratories

based on the students’ immediate learning requirements or interests.

In a P2P RAL, users are typically unable to start an experiment session at any random

time, as the limited capabilities, time and resource constraints of the makers must also

be taken into account. The server side flexibility and unpredictable availability results

in scarcer experiment availability where management of assigning experiments to

users must be further optimized.

13.3 Suitable method for P2P RAL for STEM

STEM experiments have a number of unique characteristics compared to typical

RALs used by tertiary undergraduate students. Experiments are typically composed of

actuators and sensors that have visible locomotion as opposed to any integrated

measurement system. The STEM RAL aims to develop the students’ basic concepts

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

251

of science and technology by relating or representing them to real-world objects i.e.

visible or audible phenomenon. The RAL for undergraduate experiments on the other

hand may rely on raw measurement data (in text form) from a setup that does not

change over the experiment duration.

Thus, the time reservation mode is most suitable for the STEM based laboratory

because most STEM based experiments are highly interactive. Students require acute

understanding of the experiment running by viewing or hearing the events in real

time. Thus sufficient time must be allocated to each session.

It may be noted that queuing may also be successfully implemented, but this section

focuses on the time reservation mode.

The regular time scheduling scheme followed by a centralised mechanism cannot be

directly applied in the P2P RAL as the user are not expected to provide 24x7 service.

A basic solution to the problem can be obtained by simply extending the time

scheduling to two sets of users. This approach requires the following steps:

1. Hosts creates time block suitable for them during which the experiments will

be available.

2. Each time block is then divided into slots depending upon the estimated

average time for completion of the experiment.

3. The users book the slots within this time slots as suitable to them.

This approach suffers from the three major deficiencies. First, the time for which the

experiments will be turn online has to be minimized. But with no information on

when or how many users will be using the experiment, the makers may have to keep

their equipment for long periods of time or short intermittent period without anyone

actually using them. Second, while some users may get their best choice of

experiments, others may get only the experiments that are not allotted already

although they want something else. This may result in irregular learning pattern.

Also, it reduces the time for which the experiments are available to the users. If users

do not turn up in their allotted slot it creates a lag in time for all users.

252

13.4 Identifying Constraints for Experiments and Users

The use of quest-based learning [33] in the context of RALs has an impact on

scheduling strategies. Different types of incentives [33] in the quest based learning

approach provides for a variable user requirements and interest in experiments

available. Generally quests, related to the users' field of interest or courses, will be

used to guide them through the relevant experiments within a short time period of a

few days in order to gain experience points and badges within the quest game system.

Therefore experiment clusters relating to quests are important to a particular user for

that period of time.

The overall satisfaction score (W) of users in the system can be defined as the average

of all users’ satisfaction relating to what experiment they can perform in the duration

of the next time period. This is based on the importance of the quest/experiment the

user performs in a particular period of time with respect to their immediate goal (for

example, to obtain a badge) in the game.

Why are experiments only available for a limited time?

The distributed nature of P2P RAL enables users to become makers of resources. But

individual makers cannot guarantee or be obliged to serve each and every users

request. The makers of experiment may wish to provide the experiments online

periodically for two main reasons. First, the experiments are heavily dependent on

video feedback for the entire duration of the experiments session. This video

feedback, despite the best compression mechanisms, will consume a large amount of

Internet data. Apart from that the rigs themselves may consume large amount of data.

Periodic availability will ensure lower or uniform consumption of data over constant

period of time compared to 24/7 availability. Second, the experiment may require

vigilance during operation as these are prepared by individuals and could fail during

operation.

Thus a limited exposure of the experimental rig will ensure lower cost and higher

longevity of the rigs. The assumptions with regards to user-maker time scheduling in

this work are that the users will be available for any actual duration in real time for

which the experiments are online. This may be done through negotiations between the

user and the maker. Another assumption is that the maker is able to keep their rigs

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

253

online according to the user demands at all reasonable time periods but would like to

limit the actual time due to reasons specified earlier.

Input Parameters

Following are the inputs required by the system in order to perform the assignment of

time slots to the users:

1. Total Time Period: In the RAL system makers will keep their rigs online for a

particular period of time within a larger window of time. For example, 2

hours every week, where a week is the time period (T) and 2 hours is the

value for de.

2. The total number of experiments available (n): This is the total of different

experiments that are available in the next time period. Each experiment will

have a duration for which the experiment will be available online de in T as

fixed by the user.

3. User Preference: To increase the efficiency of the assignments between the

users and makers, the users are asked about the preferred experiments. Each

user rates n number of experiments according to preference that they would

have time to do in the next T. Each user is however allowed to do only one

among these experiments. The total number of users is U.

Cost and Choice values of User-Experiment relation

Once the users select the experiment there are U × n number of relations formed

between each user and the experiments. Whilst calculating the assignments using the

TAP solution the cost values c(u, e) for user u and experiment e is used and while

calculating the satisfaction score (W), the original choice or priority values as

considered. A choice or priority value, i(u, e), for an experiment e is the users’ entry

to the system when they choose the priority of the experiments in order 1, 2, 3 ... n

where a lower number indicates higher preference. The cost c(u, e) is then based upon

the priority, depending upon the users’ condition in the system compared to others.

The user-experiment relationship may be valued as follows:

1. Polynomial: The costs may be assigned in quadratic or following a

polynomial function For example

254

c(u, ei) = f(i(u, e)) …(13.1)

where i(u, e) is the priority value of the choice value that ultimately determines the

value of the cost c(u, e). i(u, e) is a subset of the natural numbers 1, 2, 3, ..., n.

This gives different levels of priority to user-experiment relations and makes relevant

experiments more important than the others compared to the linear approach. These

may relate to other factors relating to assignments in the previous rounds. For

example if some user is unassigned in the previous round due to unavailability,

others’ costs may be increased compared to them, so that while minimizing this

particular user gets a better chance of getting the satisfactory allocation. These will

lead to polynomial type relations.

2. Linear: The relationships are priced linearly i.e.

c(u, e) = i(u, e) … (13.2)

In a linear case no consideration is given to the users’ condition in the prior

assignments and the cost values for assignment is equal to the current priority of the

experiment for the user.

The user-experiment relationship represents the importance of the experiment to the

user with respect to the users’ goal in the game based learning system. This

relationship may not necessarily be determined by the students themselves but could

account for other factors as well.

13.5 Matching of Users and Makers

This section discusses how the scheduling problem in P2P RAL can be described as a

Terminal Assignment Problem, its solution and ways to use it with the P2P RAL.

Formulating the TAP

The scheduling problem can be described as a Terminal assignment problem as

follows:

1. There are users (or terminals) that are to be assigned to the experiment

sessions.

2. Each user has the equal weight (qu) of 1 that is the number of experiment

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

255

they can perform in the next time period.

3. Each experiment has an average usage time te associated with it. The

number of time the experiment can be done in the next time period T is

obtained by using the makers available time de for an experiment as

𝑎𝑒 =
𝑑𝑒

𝑡𝑒
 … (13.3)

Thus there are ae copies of the experiment e that are to be assigned.

4. The total number of experiments sessions (E) comprising all experiments’

sessions s, that can be performed in the next time period T is

𝐸 = �
𝑑𝑒

𝑡𝑒

𝑛

𝑒=1

The total number of users that may be accommodated

U ≤ E

5. The experiments (or contractor) are the other set of nodes to which the

users are assigned to. The capacity of each experiment session (ae) is

variable.

6. The cost c (u, e) between each user u and an experiment e is the based on

Equation 13.1 or Equation 13.2 which represents the preference values of

the experiments for the users.

Figure 13.1 shows as example of the scenario with 7 users and 3 active experiments,

where ae is the number of experiment session that may be run in the next time

available period. In a sample analysis, for experiment 1, let this value be 3, and for

experiment 2 the value is 1 and for experiment 3 it is 5. The users u1 to u7 have all

requested the 3 experiments with their preferred choices. Users u1 and u2 have chosen

experiment 1 as their first choice, u3 and u4 have chosen experiment 3 as their first

choice while users u5, u6 and u7 has chosen experiment 2 as first choice. Clearly, not

all of them can be assigned to their first choice experiments in the next time period T.

256

Solving this terminal assignment problem will assign the user with the lowest edge

values i.e. the highest preference or lowest possible choice values for each users such

that the

 𝑃 = �𝑚𝑚𝑚 � 𝑐(𝑢, 𝑠)
𝑢 ∈𝑈, 𝑠∈𝐸

�

and the satisfaction score (W) is then obtained as dividing the sum of all assignments

choice values (P) by the number of users (|U|),

𝑊 = 𝑃 |𝑈|⁄ … (13.4)

The solution to the TAP will make sure that every user gets their most preferred

choice as possible maintaining an optimized satisfaction level. One optimal solution

to the example in Figure 13.1 is {u1, u2, u5} → e1, {u3, u4, u6} → e3 and {u7} → e2. The

lesser choices for u5 and u6 is because, they along with u7 opted for e3 which is

available for only one time slot during the next T.

The TAP in general terms for variable requirements weights of the terminals and the

variable capacities of concentrators are NP-Hard problems. However, for TAP with

equal weights (qu) for all terminals as in this case the augmenting path algorithm can

solve the problem in polynomial time an provide a correct solution [247, 248]. The

TAP solution implemented is based on the algorithm described in [248]. It splits the

concentrators or each experiments session into individual nodes with capacity = 1.

Using the Predictor Model in P2P RAL

In P2P RAL, the global management server or the distributed P2P RLMS is

Figure. 13.1. An Example Scenario.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

257

responsible for executing the assignment algorithm. The duration of a time period T is

taken as a week or 7 consecutive days. The scheduling is done in the follow the steps:

Algorithm 13.1

1. The maker enters the de for the experiment in the P2P RAL system

2. Using equation 13.3, the value for ae may be obtained as per t makers wishes

and the value for te of their experiment.

3. The maker also inputs certain lengths of time for the availability of the

experiment in the week.

4. If a maker does not wish to keep their experiment online at all, then the value

de is marked 0. The list of experiments provided to users is the experiments

with non-zero de values.

5. The users then assign the priority or choice values i(u, e) from 1, 2, 3, ... n, for

the available experiments.

6. After this the P2P RAL system does the assignment procedure and informs

the user about the experiment that has been assigned.

7. The users then book a time slot from the makers list.

A specific function for determining the actual cost of each user-experiment relation

c(u, e)t for a given time period t is deployed for an implementation to balance the

users satisfaction (see Equation 13.5). This function however may vary from system

to system depending upon how the users are related to their experiment. Very

important user-experiment relations, For example an experiment that must be done by

a user in the next Time period, may be pre-scheduled before starting to assign the

experiments.

13.6 Implementation and Simulation

Assuming that a rig may be created by a group of up to 5 students, the example

presented here considers a total of 20 experiments. The 20 experiments are to be kept

online at different rates ae depending upon the availability and feasibility of the

hosting sites. The ae is generated as a random number between 2 and 5. The number

258

of users is considered equal to the total number of experiment sessions (U = E)

available. As discussed earlier, makers of an experiment are not obliged to

accommodate every user that may be in the system. But, if makers are aware of the

number of users in the system, they will keep the values of de accordingly so that U ≤

E always. The worst-case scenario of U = E is considered here.

It may be assumed that these students belong to a certain cohort, say 10th standard

students from 3 schools. Each of these users are also part of a small group of peers

that creates at least one of the 20 rigs and hosts it. Each student will run all the 20

experiments personally as part of their quests in the game during a year. The RAL

system now must assign the users (or students) with the experiment of their best

choice. Choices for any experiment for any user will be depended on their

requirements regarding the class work or their motivation in selecting quests related to

their field of interest, all of which are variable with time.

Time period (T) is considered to be a week. Hence, at least 20 weeks will be required

for all students to complete each of the experiment, if all users choose unique

experiments each week as their first choice. For each user, a random priority values is

generated for each week in the simulation. The experiments that have already been

done are not expected to be done again. Thus, these experiments have no priority at

all. The priority (or choice i(u, e)) of each user always starts with the value of 1and

then vary according to the number of experiments that has been completed. The user’s

cost for any experiment e in for the time period T is given by,

 𝑐(𝑢, 𝑒)𝑡 = (𝑖(𝑢, 𝑒))1+𝑦 … (13.5)

for,

𝑦 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑢)𝑡 − min
𝑥 ∈(𝑈−𝐷𝑡)

{𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥)𝑡}

where, i(u, e) is the priority of the experiment assigned to the user u in week j.

CompletedExperiment(u)t is the number of experiments that have been completed by

user u by week t. Dt is a set of users who have completed all experiments by week t.

Note that, from Equation 13.1 and Eq.13.4, the choice or priority i(u, e) must be

minimized and the lower the value of choice, the higher the actual priority of the

experiment for the user.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

259

This ensures that if a user is unassigned for a week, then all other users' costs are

increased to give the unassigned user a fair chance in the next week. The costs

associated with the user-experiment relationship is thus dependent on the satisfaction

score (W) in previous rounds of experiments assignments. The user array is randomly

changed in the system to simulate the different orders the users may come in to the

system.

The simulation measures the satisfaction score for each week which must be low to

ensure good assignments and the time taken for completing experiments. While

calculating W, if an user is unassigned in week j, the i(u)j is assumed to be equal to n

(=20) to indicate total dissatisfaction. Thus the satisfaction score for assigned users in

week t is

𝑊𝐴
𝑡 = �� 𝑖(𝑎)𝑡

𝑎 ∈𝐴

� |𝐴|� … (13.6)

where i(u)t is the choice value of the experiment assigned to user u for week t and A

is a set of active users who have been assigned to an experiment in week t, and Thus

the satisfaction score for all incomplete users (S = U - Dt) in week t is

𝑊𝑆
𝑡 = �� 𝑖(𝑎)𝑡

𝑎 ∈𝑆

� |𝑆|� … (13.7)

For calculating W, the original choice number i(u)t is used instead of the modified

cost of user-experiments relationship c(u).

13.7 Results and Conclusions

Figure 13.2 to 13.5 shows the results where U = E = 74. Figure 13.7 shows the ae

assigned to each of the 20 experiments. Note that the three experiments with ae = 2

have to be done for at least 37 weeks because with the current system only two users

can use them in a week.

The allocation of experiments is done based on the user choices. For all users, the

number of weeks taken for completing 20 experiments is between 20 to 37 weeks (as

shown in Figure 13.3) with a mean of 26.7 weeks and a standard deviation of 5.7

weeks.

Figure 13.4 and 13.5 show the simulated performance of the scheduling scheme. The

260

observations can be summarised as follows.

The number of active users i.e. the users which have been assigned to at least one

experiment in the next week starts with 74 and remains so for the first few weeks after

which they start to fall as experiments that are available for more slots are already

done by the users and the scarcer experiments resources are now assigned as much as

possible.

Likewise the Satisfaction score (WA for active users) is very low (< 2) for all weeks

which indicates good assignments. The WS, considering all users left (U - Dt) with Dt

number of users having completed all the experiments, is similar to WA for the first

few weeks after which, it increases. As experiments start becoming scarcer, the

algorithm makes compromises for every assignment in the smallest amount so that no

one is disadvantaged. As there are more clashes of choices between the users after the

initial periods, many users are unassigned for the following weeks largely increasing

the values of WS. The number of users completing all experiments by any given week

increases since week 20.

After week 15, the availability of required or active experiments drops drastically as

shown in Figure 13.4. The users who still need to do experiments declines after week

Figure.13.2. The ae set for each experiment.

Figure.13.3. The completion time of all users.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

261

20, but the number of active experiments drops earlier causing a large number of

users remaining unassigned for the later weeks (> 15). The number of unassigned

users again drops when experiments become more available compared to the number

of users left. No user is assigned the same experiment more than once.

This shows that the proposed scheme can judicious assign the experiments to the

users, such that all users have completed their experiments in the quickest possible

way.

13.8 Summary

This chapter has discussed the scheduling problem in the remote access laboratory

with a P2P approach where the makers have limited capabilities for hosting remote

Figure. 13.4. The average Satisfaction Score (W) of all users in every week.

Figure. 13.5. The incomplete, unassigned users in every week.

262

experiments. The RAL experiments are set up as a quest-based hierarchy where users

interests could widely affect the experiments they would like to perform. With limited

resources in a P2P setup the users must be judiciously assigned to the most required

experiments. Using the proposed scheme based on the solution to terminal assignment

problem, users are accommodated as best as possible to the experiments depending

upon the user-experiment relationships.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

263

14
Conclusions and Future Work

This research has shown that a P2P RAL can be an alternative approach for creating

distributed remote laboratories. Such a system can potentially provide high scalability

and engage students in more hands-on-experience. The main aim of this research was

to develop tools to enable makers to create and host an experiment based on everyday

objects along with a microcontroller. It also focused on ensuring users accessibility in

the P2P RAL to communicate to and control the experiment created by makers. A

VPN overlay network is used to implement the network requirements. The P2P RAL

architecture conceptually establishes point-to-point connections between makers and

users. Reliability issues have been discussed and a method to measure reliability was

presented. This method can be used to monitor the condition of experiments and

prevent failure of accessibility of the experiment for users.

In terms of WoT or IoT, the CI-CU model presents a generic model that may be

applied to any scenario where a supervisory system is required to monitor multiple

master-slave combinations in a system. The semantics used for the P2P is unique to

the control commands used here. But, the semantics may be altered and enhanced to

be application specific for WoT or IoT systems.

In terms of control strategies, the model presented is largely master-slave. While the

CI can send multiple and various types of messages to the CU, the CU is capable of

only sending a fixed set of messages. However, this model can be further extended to

include different messages being transferred from the CU to the CI instead of only a

select few as described here. This gives greater flexibility in design, but brings in new

issues with synchronization of the CI and CU.

264

In terms of MDP based modelling of the experiment, such a system is also applicable

in IoT application where the devices have well defined states and transitions between

them. The CU is capable of automatically creating the MDPs and uses them to

identify user actions. A major challenge is to create the proper interface where the

makers can manage the MDPs and their properties.

Clustering mechanisms were used to create various levels of composite commands.

This also creates a profile of how an experiment is used and how it is accessed by the

users. These profiles can be used to compare the different user sessions. Further work

in this regard can look into identifying composite commands with advanced features

such as conditional checks within them. The use of both these learning analytics tool

can be used and modified to monitor users’ performance in RALs and other similar

systems.

Another area to expand the P2P tools is in pattern recognition possible with artificial

intelligence. The MDP based experiment model can only evaluate the interactions

based on the current and next state. The advanced evaluation tools based on clustering

can only match two interaction sessions in a relative manner. The next level is to

determine whether, the users' interaction has a sequence of state changes that matches

the makers’ state changes when the command sequence may not be equal. In terms of

IoT, this will help identify similar patterns in the behaviour of master-slave

communication when the semantics are different for different pair.

The proposed CI-CU model covers a wide variety of experiments, but is limited to the

experiments that can be implemented with the port based architecture. For the P2P

RAL for STEM Education this is sufficient. However, future works can identify other

models and compare or relate them to the proposed model here.

The tools developed as a part of the P2P RAL can enhance STEM education. The P2P

RAL architecture is suitable for the STEM subject as the teacher and students have

little support with technical resources and knowledge. However, the practical

knowledge of how to create the experiment setup and learn to measure and collect

data is important for learning outcomes. If this practice is employed from an early age

it could potentially grow interest in the STEM fields in higher studies. A graphical

programming language is used that helps the users/makers to create the program

easily. Such graphical programs have been used to teach programming at schools.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

265

This research showed that certain aspects of programming such as ports and delays

are possible to be explained to the makers in the target group of RAlfie and

incorporated in the learning experience while creating the rig. The future work

includes improving the tools for more practical use with better human usable

interfaces as well as developing pedagogies for using the P2P RAL in the field. Also,

the time scheduling algorithm presented is shown to be capable of handling the

requirements of the P2P RAL, but it may need to be further improved in a real life

scenario.

From a remote laboratory perspective, the main contribution of this thesis is the white

box perspective against a traditional black box approach. Most experiments in

traditional remote laboratories used for undergraduate or STEM education rely on

human evaluators and developers to create, host, evaluate and monitor experiments.

The white box approach proposed in this dissertation does not eliminate the need of

human evaluation and maker roles, but greatly reduces the reliance on their

capabilities to create the perfect experiment setup along with user interfaces. The

tools discussed in here enable makers to create and host experiment with minimum

deliberation. The P2P RAL aims to exploit these features to enable wide scale sharing

and collaboration among the target users.

The most important research aspects that need to be addressed are the ways the tools

can be used with respect to the context they are used in. The MDP and clustering

algorithm offers methods to calculate the difference in user/maker interaction, but

exactly how much deviation is acceptable for the application e.g. STEM education

needs to be established from the relevant context. This research has focused on

creating the tools and proving their usability only. Further research can also look into

enhancing the performance of these tools or propose new ones. Also, the CI-CU

model while being capable of providing a model for a large number of experiments,

an improved model may be develop to incorporate experiments with more unique

features.

266

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

267

References

[1] L. Johnson, S. Adams Becker, M. Cummins, et. al., "NMC Horizon Report: 2016 Higher

Education Edition", Austin, Texas: The New Media Consortium, p.g. 18.

[2] J. García-Zubía and G. R. Alves (eds.), "Using Remote Labs in Education", University of

Deusto, Bilbao, 2011.

[3] L. Gomes and J. Garcia-Zubia, Eds., "Advances on Remote Laboratories and e-Learning

Experiences", University of Deusto, 2007.

[4] T. Kostulski and S. Murray, "Student Feedback from the First National Sharing Trial of

Remote Labs in Australia," REV 2011, pp.203-211, 9, 2011

[5] A. Maiti, A. D. Maxwell and A. A. Kist, "An Overview of System Architectures for Remote

Laboratories," in TALE 2013, pp. 661-666, 2013.

[6] M. Tawfik, E. S. Cristobal, A. Pesquera, R. Gil, S. Martin, G. Diaz, et al., "Shareable

educational architectures for remote laboratories," in Technologies Applied to Electronics

Teaching (TAEE), 2012, 2012, pp. 122-127.

[7] H. M. A. Andree, J. Habets, M. Koopmans, W. Koopmans, G. Kemmerling, M. Korten, et al.,

"Virtual control room, the REMOT project, networking pilot studies," IEEE Transactions on

Nuclear Science, vol. 45, pp. 1999-2003, 1998.

[8] I. Mougharbel , A. El Hajj , H. Artail and C. Riman, "Remote lab experiments models: A

comparative study", Int. J. Eng. Educ., vol. 22, no. 4, pp. 849-857, 2006

[9] V. J. Harward, J. A. Del Alamo, et al., "The iLab shared architecture a web services

infrastructure to build communinities of Internet accessible laboratories," Proceedings of the

IEEE, vol. 96, pp. 931-950, Jun 2008.

[10] D. Lowe, S. Murray, E. Lindsay, and D. K. Liu, "Evolving Remote Laboratory Architectures

to Leverage Emerging Internet Technologies," IEEE Transactions on Learning Technologies,

vol. 2, pp. 289-294, 2009.

[11] J. Garcia-Zubia, P. Orduna, et al., "Application and User Perceptions of Using the WebLab-

Deusto-PLD in Technical Education," FIE 2011.

[12] M. Tawfik, E. Sancristobal, S. Martin, R. Gil, G. Diaz, A. Colmenar, et al., "Virtual

Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic

Circuits on Breadboard," IEEE Transactions on Learning Technologies, vol. 6, pp. 60-72,

2013.

268

[13] I. L. Hardison, K. DeLong, P. H. Bailey, and V. J. Harward, "Deploying Interactive Remote

Labs Using the iLab Shared Architecture," Fie: 2008 Ieee Frontiers in Education Conference,

Vols 1-3, pp. 1246-1251, 2008.

[14] M. Schulz, A. Rudd and L. Payne, "RESTlabs: Service broker architecture for remote labs,"

Remote Engineering and Virtual Instrumentation (REV), 2012 9th International Conference

on , vol., no., pp.1,6, 4-6 July 2012, doi: 10.1109/REV.2012.

[15] J. Del Alamo, L. Brooks, C. McLean, J. Hardison, G. Mishuris, V. Chang, et al., "The MIT

microelectronics WebLab: A web-enabled remote laboratory for microelectronic device

[16] A. Maiti, "A hybrid algorithm for time scheduling in remotely triggered online laboratories,"

in Global Engineering Education Conference (EDUCON), 2011 IEEE, 2011, pp. 921-926.

[17] G. N. Masters, "A shared challenge: Improving literacy, numeracy and Science Learning in

Queensland Primary Schools," Australian Council for Educational Research, Camberwell,

Vic2009.

[18] S. Thomson, N. Wernert, C. Underwood, and M. Nicholas, "TIMSS 2007: Taking a closer

look at mathematics and science in Australia," Camberwell, Vic2008.

[19] P. J. Fensham, "Science education policy-making: Eleven emerging issues," UNESCO, Paris,

France2008.

[20] K. Macpherson, "Digital technology and Australian teenagers: consumption, study and

careers," The Education Institute, Canberra, ACT2013.

[21] http://www.innovation.gov.au/page/agenda

[22] L. D. Feisel and A. J. Rosa, "The role of the laboratory in undergraduate engineering

education," Journal of Engineering Education, vol. 94, pp. 121-130, 2005.

[23] L. Johnson, "The future of education: The 2013 NMC Horizon Project Summit communique,"

New Media Consortium, Austin, TX2013.

[24] A. A. Kist and P. Gibbings, "Inception and management of remote access laboratory project,"

in 21st Annual Conference of the Australasian Association for Engineering Education,

Sydney, Australia, 2010, pp. 5-8.

[25] V. J. Harward , J. A. del Alamo , V. S. Choudary , K. DeLong , J. L. Hardison , S. R. Lerman ,

J. Northridge , C. Varadharajan , S. Wang , K. Yehia and D. Zych, "iLabs: A scalable

architecture for sharing online laboratories", Int. Conf. Eng. Educ. 2004, 2004.

[26] D. Lowe, P. Newcombe, and B. Stumpers, "Evaluation of the Use of Remote Laboratories for

Secondary School Science Education," Research in Science Education, vol. 43, pp. 1197-

1219, 2013/06/01 2013.

[27] A. A. Kist, A. Maxwell, P. Gibbings, R. Fogarty, W. Midgley, and K. Noble, "Engineering for

primary school children: Learning with robots in a remote access laboratory," presented at the

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

269

SEFI 2011: Global Engineering Recognition, Sustainability and Mobility, Lisbon, Portugal,

2011.

[28] A. Maiti, A. D. Maxwell, and A. A. Kist, "Features, Trends and Characteristics of Remote

Access Laboratory Management Systems," International Journal of Online Engineering, vol.

10, pp. 31-37, 2014.

[29] G. Eysenbach, J. Powell, M. Englesakis, C. Rizo, and A. Stern, "Health related virtual

communities and electronic support groups: systematic review of the effects of online peer to

peer interactions," BMJ, vol. 328, p. 1166, 2004-05-13 21:55:00 2004.

[30] S. J. H. Yang and I. Y. L. Chen, "A social network-based system for supporting interactive

collaboration in knowledge sharing over peer-to-peer network," International Journal of

Human-Computer Studies, vol. 66, pp. 36-50, 1// 2008.

[31] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, "A Survey and Comparison of Peer-

to-Peer Overlay Network Schemes," Ieee Communications Surveys and Tutorials, vol. 7, pp.

72-93, 2005.

[32] L. Orwin, A. A. Kist, A. D. Maxwell and A. Maiti, “Using Gamification to Create

Opportunities for Engagement, Collaboration and Communication in a Peer-to-Peer

Environment for Making and Using Remote Access Labs”, exp.at’15 — Online

Experimentation, Portugal.

[33] C. C. Haskel, “Design Variables of Attraction in Quest-Based Learning”, May 2012.

[34] D. Lowe, "Integrating Reservations and Queuing in Remote Laboratory Scheduling,"

Learning Technologies, IEEE Transactions on , vol.6, no.1, pp.73-84, First Quarter 2013, doi:

10.1109/TLT.2013.5

[35] L. Yaoye, S. K. Esche, and C. Chassapis, "A scheduling system for shared online laboratory

resources," in Frontiers in Education Conference, 2008. FIE 2008. 38th Annual, 2008, pp.

T2B-1-T2B-6.

[36] Z. Nedic, J. Machotka, and A. Nafalski, "Remote Laboratory NetLab for Effective Interaction

with Real Equipment over the Internet," Human System Interactions, Conference on, Vols 1

and 2, pp. 858-863, 2008.

[37] T. Fischer and J. Scheidinger, "VISIR - Microcontroller extensions," in Remote Engineering

and Virtual Instrumentation (REV), 2015 12th International Conference on, 2015, pp. 177-

179.

[38] Samuelsen, D. A H; Graven, O.H., "Virtual fences as protection against damage on physical

equipment used in remote laboratories," REV 2012 9th International Conference on , 4-6 July

2012.

[39] P.Orduna, "Transitive and Scalable Federation Model for Remote Laboratories", PhD Thesis,

May 2013.

270

[40] M. Auer, A. Pester, D. Ursutiu, and C. Samoila, "Distributed virtual and remote labs in

engineering," IEEE Int. Conf. on Ind. Technology, pp. 1208-1213 Vol.2, 2003.

[41] K. Henke, S. Ostendorff, H.-D. Wuttke, and S. Vogel, "A grid concept for reliable, flexible

and robust remote engineering laboratories," Int. Journal of Online Engineering (iJOE), vol. 8,

pp. 42-49, 2012.

[42] J. García-Zubia, P. Orduña , I. Angulo, et. al., "Towards a Distributed Architecture for Remote

Laboratories," Int. Journal of Online Engineering (iJOE), vol. 4(S1), pp. 11-14, 2008.

[43] M. Diponio, D. Lowe, and M. de la Villefromoy, "Supporting Local Access to Collections of

Distributed Remote Laboratories," in AAEE 2012 Conference, Melbourne, Australia, 2012.

[44] H. Wenshan, L. Guo-ping, and Z. Hong, "Web-Based 3-D Control Laboratory for Remote

Real-Time Experimentation," IEEE Trans. on Ind. Electron., vol. 60, pp. 4673-4682, 2013.

[45] C. Salzmann and D. Gillet, "Smart device paradigm, Standardization for online labs," in IEEE

Global Engineering Education Conference (EDUCON), 2013, pp. 1217-1221.

[46] M. Tawfik, C. S., D. Gillet, D. Lowe, et. al., "Laboratory as a Service (LaaS): a Model for

Developing and Implementing Remote Laboratories as Modular Components", in Int. Conf.

on Remote Engineering and Virtual Instrumentation (REV) 2014, pp.11-20, 2014.

[47] L. Tobarra, S. Ros, R. Pastor, R. Hernandez, M. Castro, A. Al-Zoubi, et al., "Laboratories as a

service integrated into learning management systems," in 2016 13th International Conference

on Remote Engineering and Virtual Instrumentation (REV), 2016, pp. 103-108.

[48] A. C. Caminero, A. Robles-Gomez, S. Ros, L. Tobarra, et al., "Deconstructing remote

laboratories to create Laboratories as a Service (LaaS)," in 2014 IEEE Global Engineering

Education Conference (EDUCON), 2014, pp. 623-629.

[49] Y. Wei-feng, S. Rong-gao and W. Zhong, "Distributed Remote Laboratory using Web

Services for Embedded System," in Proceedings of the 3rd WSEAS Int. Conf. on Circuits,

Systems, Signal and Telecommunications (CISST'09), pp. 56-59, 2009.

[50] D. Ursutiu, D. T. Cotfas, M. Ghercioiu, et. al., "WEB Instruments," in IEEE Education

Engineering (EDUCON) 2010, 2010, pp. 585-590.

[51] R. J. Costa, G. R. Alves, and M. Z. Rela, "Embedding Instruments & Modules into an

IEEE1451-FPGA-based Weblab Infrastructure," Int. Journal of Online Engineering, vol. 8,

2012, pp 4-11.

[52] E. Bogdanov, C. Salzmann, and D. Gillet, "Widget-Based Approach for Remote Control

Labs," IFAC Symposium on Advances in Control Education, 2012.

[53] D. Gillet, "Personal learning environments as enablers for connectivist MOOCs," in

Information Technology Based Higher Education and Training (ITHET), 2013 Int. Conf. on,

2013, pp. 1-5.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

271

[54] A. Melkonyan, A. Gampe, M. Pontual, et. al., "Facilitating Remote aboratory Deployments

Using a Relay Gateway Server Architecture," IEEE Trans. on Ind. Electron., vol. 61, pp. 477-

485, Jan 2014.

[55] P. Orduña and J. Garcia-Zubia, "Scheduling schemas among Internet Laboratories

ecosystems", REV 2011, Brasov, Romania, July 2011.

[56] M. F. Schulz and A. Rudd, "Design and Implementation Issues in a Contemporary Remote

Laboratory Architecture", in Remote Engineering and Virtual Instrumentation Conference

2011, Brasov, Romania, pp. 380-384, 2011.

[57] A. V. Fidalgo, G. R. Alves, et. al., "Using remote labs to serve different teacher's needs A case

study with VISIR and RemotElectLab," REV2012,pp.1,6, 4-6 July 2012, doi:

10.1109/REV.2012.6293149

[58] A. A. Kist, A. Maxwell, P. Gibbings, R. Fogarty, W. Midgley, and K. Noble, "Engineering for

primary school children: Learning with robots in a remote access laboratory," 1st World

Engineering Education Flash Week, SEFI Annual Conference (European Society for

Engineering Education), 2011.

[59] L. Bowtell, C. Moloney, A. A. Kist, V. Parker, A. Maxwell, and N. Reedy, "Using remote

access laboratories in nursing education," Proceedings of the 9th International Conference on

Remote Engineering and Virtual Instrumentation (REV 2012), pp. 1-7, 2012.

[60] L. A. Bowtell, C. Moloney, A. A. Kist, V. Parker, A. Maxwell, and N. Reedy, "Enhancing

Nursing Education with Remote Access Laboratories," International Journal of Online

Engineering (iJOE), vol. 8, 2012.

[61] A. A. Kist and B. Basnet, "Providing Equivalent Learning Activities with Software-Based

Remote Access Laboratories," International Journal of Online Engineering (iJOE), vol. 9, pp.

pp. 14-19, 2013..

[62] A. A. Kist, A. Maxwell, and P. Gibbings, "Expanding the Concept of Remote Access

Laboratories " presented at the 119th ASEE Annual Conference and Exposition, San Antonio,

Texas, 2012.

[63] G. R. Alves, et. al. "Using VISIR in a large undergraduate course: Preliminary assessment

results," IEEE EDUCON 2011, pp.1125-1132, 4-6 April 2011.

[64] I. Santana, M. Ferre, E. Izaguirre, et al., "Remote Laboratories for Education and Research

Purposes in Automatic Control Systems," IEEE Trans. on Ind. Informatics, vol. 9, pp. 547-

556, 2013.

[65] L. Rodriguez-Gil, P. Orduna, L. Bollen, S. Govaerts, A. Holzer, et al., "The AppComposer

Web application for school teachers: A platform for translating and adapting educational web

applications," in Global Engineering Education Conference (EDUCON), 2015 IEEE, 2015,

pp. 889-897.

272

[66] O. Dziabenko and J. García-Zubía, "Planning and Designing Remote Experiment for School

Curriculum", Proceedings of the 6th IEEE Global Engineering Education Conference,

EDUCON 2015, IEEE Computer Society, Tallin, Estonia, 2015.

[67] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, et al., "Active

learning increases student performance in science, engineering, and mathematics,"

Proceedings of the National Academy of Sciences, vol. 111, pp. 8410-8415, June 10, 2014

2014. M. W. Gilmore, "Improvement of STEM Education: Experiential Learning is the Key",

Modern Chemistry & Applications, doi: 10.4172/2329-6798.1000e109.

[68] T. Richter, Y. Tetour and D. Boehringer, "Library of Labs - A European Project on the

Dissemination of Remote Experiments and Virtual Laboratories," IEEE ISM 2011, pp.543-

548, 5-7 Dec. 2011.

[69] Z. Nedic, J. Machotka, and A. Nafalski, "Remote Laboratory NetLab for Effective Interaction

with Real Equipment over the Internet," Human System Interactions, Conference on, Vols 1

and 2, pp. 858-863, 2008.

[70] A. Nafalski, et. al., "International Collaboration in Remote Engineering Laboratories: an

Approach to Development", REV 2011.

[71] A. Mujkanovic, D. Lowe, C. Guetl and T. Kostulski, "An architecture for automated group

formation within remote laboratories", REV 2011, Brasov, Romania, pp. 91-100.

[72] J. A. Asumadu, R. Tanner, J. Fitzmaurice, M. Kelly, H. Ogunleye, J. Belter, et al., "A Web-

based electrical and electronics remote wiring and measurement laboratory (RwmLAB)

instrument," Instrumentation and Measurement, IEEE Transactions on, vol. 54, pp. 38-44,

2005.

[73] D. A. H. Samuelsen and O. H. Graven, "Design of a general purpose platform for easy setup

of low-cost remote laboratories in electronics," in Remote Engineering and Virtual

Instrumentation (REV), 2013 10th International Conference on, 2013, pp. 1-6.

[74] P. Garaizar, M. Á. Vadillo, and D. Lopez-de-Ipina, "Benefits and Pitfalls of Using HTML5

APIs for Online Experiments and Simulations," International Journal of Online Engineering

(iJOE), vol. 8, 2012.

[75] D. Costa, G. Alves, P. Ferreira, J. Silva, "Remote Labs Accessible through 3D environments

A Case Study with Open Wonderland," in REV 2011 Proceedings, pp. 191-196.

[76] B. Scheucher, P. H. Bailey, C. Gütl, and J. V. Harward, "Collaborative Virtual 3D

Environment for Internet-Accessible Physics Experiments," International Journal of Online

Engineering (iJOE), vol. 5, 2009.

[77] R. Marcelino, J. B. Silva, V. Gruber, and M. S. Bilessimo, "3D virtual worlds using open

source platform and integrated remote experimentation," in REV 2012, Bilbao, 4-6 July 2012.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

273

[78] J. Garci'a-Zubia, J. Irurzun, et.. al., "SecondLab: A remote laboratory under Second Life,"

Education Engineering (EDUCON), 2010 IEEE , vol., no., pp.351,356, 14-16 April 2010.

[79] T. Kostulski and S. Murray, "Student Feedback from the First National Sharing Trial of

Remote Labs in Australia," REV 2011, pp.203-211, 9, 2011.

[80] Lindsay, E.D. and Murray, S.J. and Lowe, D.B. and Tuttle, S.W., "Derivation of Suitability

Metrics for Remote Access Mode Experiments", in REV 2010, Stockholm, Jun 29 2010.

[81] E. D. Lindsay and M. C. Good, "Effects of laboratory access modes upon learning outcomes,"

IEEE Transactions on Education, vol. 48, pp. 619-631, Nov 2005.

[82] Z. Nedic, J. Machotka and A. Nafalski, "Enriching student learning experiences in remote

laboratories", 2nd Annual Conference on Engineering and Technology Education, pp. 9-14,

January 2011.

[83] C. M. Paiva, P. Nogueira, et. al., "A Flexible Online Apparatus for Projectile Launch

Experiments," iJOE, vol. 9, 2013.

[84] J. García-Zubia, U. Hernandez-Jayo, et al., "LXI Technologies for Remote Labs: An

Extension of the VISIR Project," iJOE, vol. 6, 2010.

[85] M. J. Callaghan, J. Harkin, M. El Gueddari, T. M. McGinnity, and L. P. Maguire, "Client-

server architecture for collaborative remote experimentation," 3rd International Conference on

Information Technology and Applications, Vol 2, Proceedings, pp. 125-129, 2005.

[86] D. Gillet, A. V. N. Ngoc, and Y. Rekik, "Collaborative web-based experimentation in flexible

engineering education," Ieee Transactions on Education, vol. 48, pp. 696-704, Nov 2005.

[87] C. Salzmann and D. Gillet, "Remote labs and social media: Agile aggregation and exploitation

in higher engineering education," in EDUCON 2011 IEEE, 2011, pp. 307-311.

[88] Center for Science Mathematics and Engineering Education. Committee on Development of

an Addendum to the National Science Education Standards on Scientific Inquiry., Inquiry and

the National Science Education Standards : a guide for teaching and learning. Washington,

D.C.: National Academy Press, 2000.

[89] S. W. Tuttle, D. B. Lowe, and B. Moulton, "A Survey of Issues and Approaches to Remote

Laboratory Adoption by Teacher-Academics," 2011 Frontiers in Education Conference (Fie),

2011.

[90] O. Dziabenko and J. Garcia Zubia, "Secondary School Needs in Remote Experimentation and

Instrumentation," iJOE, vol. 8, 2012.

[91] A. Maxwell, R. Fogarty, P. Gibbings, K. Noble, A. A. Kist, and W. Midgley, "Robot RAL-ly

international - Promoting STEM in elementary school across international boundaries using

remote access technology," in Remote Engineering and Virtual Instrumentation (REV), 2013

10th International Conference on, 2013, pp. 1-5.

274

[92] L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A survey", Computer Networks,

vol.54, 2010, pp.2787–2805.

[93] T. L. Koreshoff, T. Robertson, and T. W. Leong, "Internet of things: a review of literature and

products," presented at the Proceedings of the 25th Australian Computer-Human Interaction

Conference: Augmentation, Application, Innovation, Collaboration, Adelaide, Australia,

2013.

[94] A. Whitmore, A. Agarwal, and L. Xu, "The Internet of Things--A survey of topics and

trends," Information Systems Frontiers, vol. 17, pp. 261-274, 2015.

[95] D. Singh, G. Tripathi, and A. J. Jara, "A survey of Internet-of-Things: Future vision,

architecture, challenges and services," in Internet of Things (WF-IoT), 2014 IEEE World

Forum on, 2014, pp. 287-292.

[96] Y. Benazzouz, et al., "Sharing user IoT devices in the cloud," in Internet of Things (WF-IoT),

2014 IEEE World Forum on, 2014, pp. 373-374.

[97] http://clout-project.eu/

[98] P. Desai, A. Sheth, and P. Anantharam, "Semantic Gateway as a Service Architecture for IoT

Interoperability," in 2015 IEEE International Conference on Mobile Services, 2015, pp. 313-

319.

[99] T. L. Koreshoff, T. W. Leong, and T. Robertson, "Approaching a human-centred internet of

things," presented at the Proceedings of the 25th Australian Computer-Human Interaction

Conference: Augmentation, Application, Innovation, Collaboration, Adelaide, Australia,

2013.

[100] D. Bandyopadhyay and J. Sen, "Internet of Things: Applications and Challenges in

Technology and Standardization," Wireless Personal Communications, vol. 58, pp. 49-69,

2011.

[101] B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou, "Opportunistic IoT: Exploring the

harmonious interaction between human and the internet of things," Journal of Network and

Computer Applications, vol. 36, pp. 1531-1539, 11// 2013.

[102] N. Dlodlo and A.C. Smith, "The Internet-of-things in remote-controlled laboratories", Annual

Conference on World Wide Web Applications, Johannesburg, 14-16 September 2011, pp. 5-

13.

[103] D. Guinard, V. Trifa, F. Mattern and E. Wilde, "From the Internet of Things to the Web of

Things: Resource Oriented Architecture and Best Practices", Springer, New York, Dordrecht,

Heidelberg, London (2011) (Chapter 5).

[104] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, "Internet of things: Vision,

applications and research challenges," Ad Hoc Networks, vol. 10, pp. 1497-1516, 9// 2012.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

275

[105] D. Guinard, V. Trifa, and E. Wilde, "A resource oriented architecture for the Web of Things,"

in Internet of Things (IOT), 2010, 2010, pp. 1-8.

[106] J. Garcia-Zubia, P. Orduna, D. Lopez-de-Ipina, and G. R. Alves, “Addressing software impact

in the design of remote labs,” IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4757–4767, Dec.

2009.

[107] L. Gomes and S. Bogosyan, "Current Trends in Remote Laboratories," IEEE Trans. on Ind.

Electron., vol. 56, pp. 4744-4756, Dec 2009.

[108] A. A. Kist, A. Maiti, A. D. Maxwell, et. al., “Overlay Network Architectures for Peer-to-Peer

Remote Access Laboratories”, in Int. Conf. on Remote Engineering and Virtual

Instrumentation (REV) 2014, 26-28 Feb. 2014, Porto, Portugal, pp.274-280.

[109] S. Manske, T. Hecking, L. Bollen, T. Göhnert, A. Ramos, and H. U. Hoppe, "A Flexible

Framework for the Authoring of Reusable and Portable Learning Analytics Gadgets,"

presented at the Proceedings of the 2014 IEEE 14th International Conference on Advanced

Learning Technologies, 2014.

[110] D. Gillet, T. de Jong, S. Sotirou, and C. Salzmann, "Personalised Learning Spaces and

Federated Online Labs for STEM Education at School: Supporting Teacher Communities and

Inquiry Learning," presented at the 4th IEEE Global Engineering Education Conference

(EDUCON), Berlin, Germany, 2013.

[111] S. Govaerts, Y. Cao, A. Vozniuk, A. Holzer, D. Zutin, E. Ruiz, et al., "Towards an Online Lab

Portal for Inquiry-Based STEM Learning at School," in Advances in Web-Based Learning –

ICWL 2013. vol. 8167, J.-F. Wang and R. Lau, Eds., ed: Springer Berlin Heidelberg, 2013,

pp. 244-253.

[112] Michael E. Auer, D. G. Zutin, and M. Amir, "A Toolkit to Facilitate the Development and Use

of Educational Online Laboratories in Secondary Schools," Seattle, Washington.

[113] A. Maiti, A. D. Maxwell, A. A. Kist and L. Orwin, “Merging Remote Laboratories and

Enquiry-based Learning for STEM Education”, International Journal of Online Engineering

(iJOE), vol. 10. Iss 6, pp. 43-49, 2014.

[114] H. Park, J. Yang, J. Park, S. G. Kang, and J. K. Choi, "A Survey on Peer-to-Peer Overlay

Network Schemes," in Advanced Communication Technology, 2008. ICACT 2008. 10th

International Conference on, 2008, pp. 986-988.

[115] M. Amoretti, "A survey of peer-to-peer overlay schemes: effectiveness, efficiency and

security," Recent Patents on Computer Science, vol. 2, pp. 195-213, 2009.

[116] H. Park, J. Yang, J. Park, S. G. Kang, and J. K. Choi, "A Survey on Peer-to-Peer Overlay

Network Schemes," in Advanced Communication Technology, 2008. ICACT 2008. 10th

International Conference on, 2008, pp. 986-988.

276

[117] G. Faraut, L. Pietrac, and E. Niel, "Formal Approach to Multimodal Control Design:

Application to Mode Switching," Industrial Informatics, IEEE Transactions on, vol. 5, pp.

443-453, 2009.

[118] A. Maiti, A. D. Maxwell, A. A. Kist, and L. Orwin, "Joining the Game and the Experiment in

Peer-to-Peer Remote Laboratories for STEM Education," in exp.at'15, Portugal, 2015, pp.

213-218.

[119] A. Maiti, A. A. Kist and A. D. Maxwell, "Real-Time Remote Access Laboratory with

Distributed and Modular Design", IEEE Trans. on Ind. Electronics, Jun 2015, pp. 3607-3618 .

[120] P. Orduna, A. Almeida, D. Lopez-de-Ipina, and J. Garcia-Zubia, "Learning Analytics on

federated remote laboratories: Tips and techniques," in IEEE EDUCON 2014, pp. 299-305.

[121] A. Maiti, et. al., "Integrating enquiry-based learning pedagogies and remote access laboratory

for STEM education," in Global Engineering Education Conference (EDUCON), 2014 IEEE,

2014, pp. 706-712.

[122] D. Adami, S. Giordano, and M. Pagano, "Dynamic Network Resources Allocation in Grids

through a Grid Network Resource Broker," in Grid Enabled Remote Instrumentation, F.

Davoli, N. Meyer, R. Pugliese, and S. Zappatore, Eds., ed: Springer US, 2009, pp. 115-130.

[123] C. Kotsokalis, T. Ferrari, et. al., "Grid-Enabled Instrument Representation and Reservation,"

in IEEE Fourth Int. Conference on eScience, 2008, 2008, pp. 16-22.

[124] M. Prica, R. Pugliese, A. Del Linz, et.al., "Adapting the Instrument Element to Support a

Remote Instrumentation Infrastructure," in Remote Instrumentation and Virtual Laboratories,

F. Davoli, N. Meyer, R. Pugliese, and S. Zappatore, Eds., ed: Springer US, 2010, pp. 11-22.

[125] Z. Nedic and A. Nafalski, "Suitability of SCADA for development of remote laboratories," in

Remote Engineering and Virtual Instrumentation 2013, pp. 1-4, 2013.

[126] R. Marques, J. Rocha, S. Rafael and J.F. Martins, "Design and implementation of

reconfigurable remote laboratory, using oscilloscope/PLC network for www access", IEEE

Trans. on Ind. Electron., vol. 55, pp. 2425-2432, June 2008.

[127] H. Wenshan, L. Guo-ping, and Z. Hong, "Web-Based 3-D Control Laboratory for Remote

Real-Time Experimentation," IEEE Trans. on Ind. Electron., vol. 60, pp. 4673-4682, 2013.

[128] G. Patricio and L. Gomes, "Smart house monitoring and actuating system development using

automatic code generation," in IEEE Int. Conference on Ind. Informatics 2009, pp. 256-261,

2009.

[129] P. Kaushik, A. K. M. Azad and K. C. Vakati, "Customizing Household Mobile Robot for

Remote Laboratories", in Int. Conf. on Remote Engineering and Virtual Instrumentation 2014

(REV), pp.144-150.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

277

[130] J. B. da Silva, W. Rochadel, R. Marcelino, et. al., "Mobile remote experimentation applied to

education", IT Innovative Practices in Secondary Schools: Remote Experiments, Olga

Dziabenko and Javier García-Zubía (eds.), University of Deusto, pp.281-302, 2013.

[131] A. Gardel Vicente, I. Bravo Munoz, et. al., "Remote Automation Laboratory Using a Cluster

of Virtual Machines," IEEE Trans. on Ind. Electron., vol. 57, pp. 3276-3283, 2010.

[132] S. Mubeen, J. Mam-Turja, and M. Sjodin, "Extending response-time analysis of Controller

Area Network (CAN) with FIFO queues for mixed messages," in Emerging Technologies &

Factory Automation (ETFA), 2011 IEEE 16th Conference on, 2011, pp. 1-4.

[133] S. Corrigan, "Introduction to the Controller Area Network (CAN)", Application Report, Aug

2002 – Rev. Jul 2008.

[134] J. M. D. Pereira, O. Postolache, and P. S. Girao, "HART protocol analyser based in

LabVIEW," Ieee International Workshop on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications, pp. 174-176, 2003.

[135] P. Brooks, "Ethernet/IP-industrial protocol," in IEEE Intl. Conf. on Emerging Technologies

and Factory Automation, 2001, pp. 505-514.

[136] D. Hristu-Varsakelis, M. Egerstedt, and P.S. Krishnaprasad, “On the structural complexity of

the motion description language MDLe”, In IEEE CDC 2003, 4, pp. 3360–3365 vol.4, Dec.

2003.

[137] N. Dantam and M. Stilman, "The Motion Grammar: Analysis of a Linguistic Method for

Robot Control," Robotics, IEEE Transactions on, vol. 29, pp. 704-718, 2013.

[138] J. Burgner, et al., "A Telerobotic System for Transnasal Surgery," Mechatronics, IEEE/ASME

Trans. on, vol. 19, pp. 996-1006, 2014.

[139] J. Yunyi, X. Ning, L. Shuang, Z. Huatao, and B. Sheng, "Multi-objective optimization for

telerobotic operations via the Internet," in IEEE Intelligent Robots and Systems (IROS), 2012,

pp. 5197-5202.

[140] K. B. Lee and R. D. Schneeman, “Distributed Measurement and Control Based on the IEEE

1451 Smart Transducer Interface Standards”, in IEEE Transactions on Instrumentation And

Measurement, vol. 49, no. 3, June 2000, pp. 621-627.

[141] S. Bendel, T. Springer, D. Schuster, A. Schill, R. Ackermann, and M. Ameling, "A service

infrastructure for the Internet of Things based on XMPP," in Pervasive Computing and

Communications Workshops (PERCOM Workshops), 2013 IEEE International Conference

on, 2013, pp. 385-388.

[142] M. Kirsche, R. Klauck, "Unify to bridge gaps: Bringing XMPP into the Internet of Things,"

Pervasive Computing and Communications Workshops, IEEE International Conference on,

pp. 455-458, 2012 IEEE International Conference on Pervasive Computing and

Communications Workshops, 2012.

278

[143] F. S. Mark and L. Phillip, "Possible Futures for Remote Laboratories," in Internet Accessible

Remote Laboratories: Scalable E-Learning Tools for Engineering and Science Disciplines, K.

M. A. Abul, E. A. Michael, and V. J. Harward, Eds., ed Hershey, PA, USA: IGI Global, 2012,

pp. 493-510.

[144] D. G. Zutin, M. Auer, P. Ordu, and C. Kreiter, "Online lab infrastructure as a service: A new

paradigm to simplify the development and deployment of online labs," in 2016 13th

International Conference on Remote Engineering and Virtual Instrumentation (REV), 2016,

pp. 208-214.

[145] J. Dupuis and F. Zhun, "Evolved finite state controller for hybrid system in reduced search

space," in Advanced Intelligent Mechatronics, 2009, IEEE/ASME International Conference

on, 2009, pp. 833-838.

[146] A. Khatkhate, A. Ray, E. Keller, S. Gupta, and S. C. Chin, "Symbolic time-series analysis for

anomaly detection in mechanical systems," Mechatronics, IEEE/ASME Transactions on, vol.

11, pp. 439-447, 2006.

[147] K. Jezernik, R. Horvat, and J. Harnik, "Finite-State Machine Motion Controller: Servo

Drives," Industrial Electronics Magazine, IEEE, vol. 6, pp. 13-23, 2012.

[148] M. Garcia Valls and P. Basanta Val, "Usage of DDS Data-Centric Middleware for Remote

Monitoring and Control Laboratories," Industrial Informatics, IEEE Transactions on, vol. 9,

pp. 567-574, 2013.

[149] Y. Tipsuwan, M. Chow, Control methodologies in networked control systems, Control

Engineering Practice, Volume 11, Issue 10, October 2003, Pages 1099–1111

[150] Z. Jinhui, X. Yuanqing, and S. Peng, "Design and Stability Analysis of Networked Predictive

Control Systems," Control Systems Technology, IEEE Transactions on, vol. 21, pp. 1495-

1501, 2013.

[151] A. Malinowski and Y. Hao, "Comparison of Embedded System Design for Industrial

Applications," Industrial Informatics, IEEE Transactions on, vol. 7, pp. 244-254, 2011.

[152] P. Gruenbaum, "Undergraduates Teach Game Programming Using Scratch," Computer, vol.

47, pp. 82-84, 2014.

[153] https://scratch.mit.edu/

[154] K. Baraka, M. Ghobril, S. Malek, et al., "Low Cost Arduino/Android-Based Energy-Efficient

Home Automation System with Smart Task Scheduling," in CICSNC 2013, pp. 296-301,

2013.

[155] R. J. Costa, G. R. Alves, and M. Z. Rela, "Embedding Instruments & Modules into an

IEEE1451-FPGA-based Weblab Infrastructure," Int. Journal of Online Engineering, vol. 8,

2012, pp 4-11.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

279

[156] R. Marin, G. Leon, R. Wirz, et al., "Remote Programming of Network Robots Within the UJI

Industrial Robotics Telelaboratory: FPGA Vision and SNRP Network Protocol," IEEE Trans.

On Ind. Electron., vol. 56, pp. 4806-4816, 2009.

[157] S. A. Baset and H. Schulzrinne, "An analysis of the Skype peer-to-peer Internet telephony

protocol," Proc. of the INFOCOM '06, 2006.

[158] Wide Area Network Emulator, 2008, Avaiable at: http://wanem.sourceforge.net/

[159] A. Maiti, A. A. Kist and A. D. Maxwell, “Building Markov Decision Process Based Models

of Remote Experimental Setups for State Evaluation”, Computational Intelligence, 2015 IEEE

Symposium Series on, Cape Town, 2015, pp. 389-397.

[160] M. A. Kolobov, and D. S. Weld "A theory of goal-oriented MDPs with dead ends", In

Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’12), 2012.

[161] S. Adlakha, R. Madan, S. Lall, and A. Goldsmith, "Optimal control of distributed Markov

decision processes with network delays," in Decision and Control, 2007 46th IEEE

Conference on, 2007, pp. 3308-3314.

[162] M. A. Wiering and E. D. de Jong, "Computing Optimal Stationary Policies for Multi-

Objective Markov Decision Processes," in ADPRL 2007. IEEE International Symp. on, 2007,

pp. 158-165.

[163] C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning: Structural assumptions and

computational leverage,” J. Artif. Intell. Res., vol. 11, pp. 1–94, 1999.

[164] O. Madani, "Polynomial value iteration algorithms for detrerminstic MDPs", Proc. of the 18th

UAI, pp.311–318, 2002.

[165] S. Temizer, et. al, "Collision Avoidance for Unmanned Aircraft using Markov Decision

Processes", AIAA Guidance, Navigation, and Control Conference 2 - 5 Aug. 2010, Toronto,

Canada. http://hdl.handle.net/1721.1/61341

[166] J. Boger, J. Hoey, P. Poupart, C. Boutilier, et.al., "A planning system based on Markov

decision processes to guide people with dementia through activities of daily living,"

Information Technology in Biomedicine, IEEE Transactions on, vol. 10, pp. 323-333, 2006.

[167] E. G. Guimaraes, E. Cardozo, D. H. Moraes and P. R. Coelho, "Design and Implementation

Issues for Modern Remote Laboratories," IEEE Transactions on Learning Technologies, vol.

4, pp. 149-161, 04/01 2011.

[168] A. Maiti, A. A. Kist and A. D. Maxwell, “Components Relationship Analysis in Distributed

Remote Laboratory Apparatus with Data Clustering”, IEEE International Symposium on

Industrial Electronics, Rio de Janeiro, Brazil, 3-5 Jun 2015, pp. 861-866.

[169] R. Xu and D. Wunsch, "Survey of clustering algorithms," Ieee Transactions on Neural

Networks, vol. 16, pp. 645-678, May 2005.

280

[170] Z. L. Lin, G. Chen, X. X. Bai, H. R. Lv, W. J. Yin, and J. Dong, "Customer Clustering Using

Semi-supervised Geographic Information," IEEE Intl. Conf. on Service Operation, Logistics

and Informatics, pp. 465-470, 2009

[171] J. M. Pena, J. A. Lozano, and P. Larranaga, "An empirical comparison of four initialization

methods for the K-Means algorithm," Pattern Recognition Letters, vol. 20, pp. 1027-1040, Oct

1999.

[172] S. Zhu, D. Wang, and T. Li, "Data clustering with size constraints," Knowledge-Based

Systems, vol. 23, pp. 883-889, 12// 2010.

[173] A. Maiti, A. A. Kist and A. D. Maxwell, “Variable Interactivity with Dynamic Control

Strategies in Remote Laboratory Experiments”, in International Conference on Remote

Engineering and Virtual Instrumentation 2016 (REV 2016), Madrid, Spain Feb 24-26 2016.

[174] A. Maiti, A. A. Kist and A. D. Maxwell, “Latency-Adaptive Positioning of Nano Data Centers

for Peer-to-Peer Communication based on Clustering”, IEEE International Conference on

Communications 2015 - Workshop on Cloud Computing Systems, Networks, and

Applications (CCSNA), London UK, 8-12 Jun 2015, pp. 9981-9987.

[175] A. Maiti, A. A. Kist, and A. D. Maxwell, "Estimation of round trip time in distributed real

time system architectures," in Telecommunication Networks and Applications Conference

(ATNAC), 2013 Australasian, 2013, pp. 57-62.

[176] S. A. Baset and H. Schulzrinne, "Reliability and relay selection in peer-to-peer

communication systems," presented at the Principles, Systems and Applications of IP

Telecommunications, Munich, Germany, 2010.

[177] L. Caviglione and L. Veltri, "A P2P Framework For Distributed And Cooperative

Laboratories," in Distributed Cooperative Laboratories: Networking, Instrumentation, and

Measurements, F. Davoli, S. Palazzo, and S. Zappatore, Eds., ed: Springer US, 2006, pp. 309-

319.

[178] A. Bestavros and S. Jin, "OSMOSIS: Scalable Delivery of Real-Time Streaming Media in Ad-

Hoc Overlay Networks," Distributed Computing Systems, 23rd Intl. Conf., 2003, pp. 214-219.

[179] F. Cantin, B. Gueye, M. A. Kaafar, and G. Leduc, "A Self-Organized Clustering Scheme for

Overlay Networks," Self-Organizing Systems, Proceedings, vol. 5343, pp. 59-70, 2008.

[180] S. Lederer, C. Müller, and C. Timmerer, "Dynamic adaptive streaming over HTTP dataset,"

presented at the Proceedings of the 3rd Multimedia Systems Conference, Chapel Hill, North

Carolina, 2012.

[181] A. Mittal, A. K. Moorthy, and A. C. Bovik, "Visually Lossless H.264 Compression of Natural

Videos," The Computer Journal, vol. 56, pp. 617-627, May 1, 2013.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

281

[182] A. A. Kist and A. Maxwell, "Performance and Quality of Experience of Remote Access

Laboratories," presented at the IEEE TALE 2012 Hong Kong, China, 2012. doi:
http://dx.doi.org/10.1109/TALE.2012.6360346

[183] V. Valancius, et.al., "Greening the internet with nano data centers," presented at the

Proceedings of the 5th international conference on Emerging networking experiments and

technologies, Rome, Italy, 2009, pp 37-48.

[184] I. Kurniawan, et. al., "Cost-Effective Content Delivery Networks Using Clouds and Nano

Data Centers," in Ubiquitous Information Technologies and Applications. vol. 280, Y.-S.

Jeong, Y.-H. Park, C.-H. Hsu, and J. J. Park, Eds., ed: Springer, 2014, pp. 417-424

[185] W. Peng and L. Yan, "The real-time computing model for a network based control system,"

in Control, Automation, Robotics and Vision Conference, 2004, pp. 310-315, vol. 1, 2004.

[186] V. Paulsamy and S. Chatterjee, "Network convergence and the NAT/Firewall problems," in

System Sciences, 2003. Proceedings of the 36th Annual Hawaii Intl. Conf. on, 2003, pp. 1-10.

[187] Z. Liu, M. Lin, A. Wierman, S. Low, and L. L. H. Andrew, "Greening Geographical Load

Balancing," Networking, IEEE/ACM Transactions on, pp. 1-1, 2014. doi:

http://dx.doi.org/10.1109/TNET.2014.2308295

[188] B. Ford, P. Srisuresh, and D. Kegel, "Peer-to-peer communication across network address

translators," Proceedings of the annual conf. on USENIX Annual Technical Conf., Anaheim,

CA, 2005.

[189] J. Rosenberg , Interactive Connectivity Establishment (ICE): A Protocol for Network Address

Translator (NAT) Traversal for Offer/Answer Protocols, RFC 5245, April 2010.

[190] J. Maenpaa, V. Andersson, G. Camarillo, and A. Keranen, "Impact of Network Address

Translator Traversal on Delays in Peer-to-Peer Session Initiation Protocol," in IEEE

GLOBECOM 2010, pp. 1-6.

[191] Z. Duan, Z.-L. Zhang, and Y. T. Hou, "Service overlay networks: SLAs, QoS, and bandwidth

provisioning," IEEE/ACM Trans. Networking., vol. 11, pp. 870-883, 2003.

[192] M. Zheng, Q. Hong, and Y. Shoubao, "A Flexible Load-Balancing Traffic Grooming

Algorithm in Service Overlay Network," in Cloud Computing and Big Data , 2013 Intl. Conf.

on, 2013, pp. 211-216.

[193] L. Blazevic, S. Giordano, J. L. Boudec, "Self-Organizing Wide-Area Routing", In Proceedings

of SCI 2000/ISAS, 2000.

[194] R. Jain, A. Puri, and R. Sengupta, "Geographical routing using partial information for wireless

ad hoc networks," Personal Communications, IEEE, vol. 8, pp. 48-57, 2001.

[195] Z. Abichar, A. E. Kamal, and J. M. Chang, "Planning of Relay Station Locations in IEEE

802.16 (WiMAX) Networks," in Wireless Communications and Networking Conf.,

2010 IEEE, 2010, pp. 1-6.

282

[196] Z. Liu, M. Lin, A. Wierman, S. Low, and L. L. H. Andrew, "Greening Geographical Load

Balancing," Networking, IEEE/ACM Transactions on, pp. 1-1, 2014.

[197] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, "A taxonomy and survey of energy-

efficient data centers and cloud computing systems," Adv. Comput., vol. 82, no. 2, pp. 47–

111, 2011.

[198] D. Lowe, "Impacts of Scheduling Algorithms on Resource Availability", ACSILITE 2012, 25-

28 November 2012.

[199] Google Geocoding API, http://developers.google.com/maps /documentation/geocoding

[200] Regional Population Growth, Australia, Australian Bureau of Statistics,

http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3218.02011?OpenDocument.

[201] S. Laki, et.al., "A detailed path-latency model for router geolocation," in Testbeds and

Research Infrastructures for the Development of Networks & Communities and Workshops.

TridentCom 2009. pp. 1-6..

[202] M. L. Shooman, "Appendix B: Summary of Reliability Theory," Reliability of Computer

Systems and Networks: Fault Tolerance, Analysis, and Design, pp. 411-474, 2002.

[203] A. L. Reibman and M. Veeraraghavan, "Reliability Modeling: An Overview for System

Designers," Computer, vol. 24, pp. 49-57, 1991.

[204] M. L. Shooman, "Networked Systems Reliability," in Reliability of Computer Systems and

Networks, John Wiley & Sons, Inc., 2002, pp. 283-330.

[205] H. G. Msuya and A. J. Mwambela, "Integration of a low cost switching mechanism into the NI

ELVIS iLab Shared Architecture platform," in REV 2012 9th International Conference on,

2012, pp. 1-5.

[206] K. S. Wang, F. S. Hsu, and P. P. Liu, "Modeling the bathtub shape hazard rate function in

terms of reliability," Reliability Engineering & System Safety, vol. 75, pp. 397-406, 3// 2002.

[207] I. Bazovsky, Reliability theory and practice: Courier Dover Publications, 2004.

[208] J. B. da Silva, W. Rochadel, R. Marcelino, et. al., "Mobile remote experimentation applied to

education", IT Innovative Practices in Secondary Schools: Remote Experiments, Olga

Dziabenko and Javier García-Zubía (eds.), University of Deusto, pp.281-302, 2013.

[209] A. Bogdanov, S. Chiu, L. U. Gokdere, and J. Vian, "Stochastic Optimal Control of a Servo

Motor with a Lifetime Constraint," in Decision and Control, 2006 45th IEEE Conference on,

2006, pp. 4182-4187.

[210] Department Of Defense, "Military Handbook Reliability Prediction Of Electronic

Equipment", 1991 Avail : http://www.sre.org/pubs/Mil-Hdbk-217f.Pdf.

[211] A. Maiti, A A Kist, A. Maxwell, "Time Scheduling Scheme in P2P Remote Laboratories",

IEEE TALE 2014, pp 152-158.

http://www.sre.org/pubs/Mil-Hdbk-217f.Pdf

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

283

[212] M. Popa and T. Slavici, "Embedded server with Wake on LAN function," in EUROCON

2009, IEEE, 2009, pp. 365-370.

[213] A. Zollman, "Learning for STEM Literacy: STEM Literacy for Learning," School Science and

Mathematics, vol. 112, pp. 12-19, 2012.

[214] J. Ma and J. V. Nickerson, "Hands-on, simulated, and remote laboratories: A comparative

literature review," ACM Comput. Surv., vol. 38, p. 7, 2006.

[215] M. Kostelníková, M. Ožvoldová, "Remote Experiments in Primary School Science

Education," International Journal of Online Engineering (iJOE), vol. 9(5), pp. 39-44, 2013.

[216] D. C. Edelson , D. N. Gordin , R. D. Pea, "Addressing the Challenges of Inquiry-Based

Learning through Technology and Curriculum Design", The Journal of the Learning Sciences,

vol. 8, pp. 391-450, 1999.

[217] R. F. Owens, J. L. Hester, and W. H. Teale, "Where do you want to go today? Inquiry-based

learning and technology integration," Reading Teacher, vol. 55, pp. 616-625, 2002.

[218] S. Barab, M. Thomas, T. Dodge, R. Carteaux, and H. Tuzun, "Making learning fun: Quest

Atlantis, a game without guns," Educational Technology Research and Development, vol. 53,

pp. 86-107, 2005

[219] O. A. Herrera and D. A. Fuller, "Collaborative model for remote experimentation laboratories

used by non-hierarchical distributed groups of engineering students," Australasian Journal of

Educational Technology, vol. 27, no. 3, pp. 428–445, 2011.

[220] T. Luis de la, "Providing Collaborative Support to Virtual and Remote Laboratories," IEEE

Transactions on Learning Technologies, vol. 99, pp. 1-1, 06/04 2013.

[221] L. Divine and R. Williams, "STEM collaboration in virtual world academy," in Collaboration

Technologies and Systems (CTS), 2013 International Conference on, 2013, pp. 569-575.

[222] B. Kaucic and T. Asic, "Improving introductory programming with Scratch?," in MIPRO,

2011 Proceedings of the 34th International Convention, 2011, pp. 1095-1100.

[223] I. F. de Kereki, "Scratch: Applications in Computer Science 1," in Frontiers in Education

Conference, 2008. FIE 2008, pp. T3B-7-T3B-11.

[224] S. Villagrasa and J. Duran, "Gamification for learning 3D computer graphics arts," presented

at the Proceedings of the First International Conference on Technological Ecosystem for

Enhancing Multiculturality, Salamanca, Spain, 2013.

[225] W. Yoke Seng, M. H. M. Yatim, and T. Wee Hoe, "Use computer game to learn Object-

Oriented programming in computer science courses," in IEEE EDUCON 2014, pp. 9-16.

[226] S A. Nikou and A. A. Economides, "Transition in student motivation during a scratch and an

app inventor course," in Global Engineering Education Conference (EDUCON), 2014 IEEE,

2014, pp. 1042-1045.

284

[227] O. L. Oliveira, A. M. Monteiro, and N. Trevisan Roman, "Can natural language be utilized in

the learning of programming fundamentals?," in Frontiers in Education Conference, 2013

IEEE, 2013, pp. 1851-1856.

[228] I. Rothe, "Organization of a Lego-robots contest offered to high school kids by engineering

students within a project based learning environment," in IEEE EDUCON 2014, pp. 36-39.

[229] R. Pastor, R. Hernandez, S. Ros, D. Sanchez, A. Caminero, A. Robles, et al., "Online

laboratories as a cloud service developed by students," in Frontiers in Education Conference,

2013 IEEE, 2013, pp. 1081-1086.

[230] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, "The Scratch Programming

Language and Environment," Trans. Comput. Educ., vol. 10, pp. 1-15, 2010.

[231] B. Mott and J. Lester, "Narrative-Centered Tutorial Planning for Inquiry-Based Learning

Environments," in Intelligent Tutoring Systems. vol. 4053, M. Ikeda, K. Ashley, and T.-W.

Chan, Eds., ed: Springer Berlin Heidelberg, 2006, pp. 675-684.

[232] A. Cardoso, et al. C. Marques, et al., "Online experimentation: Experiment@Portugal 2012,"

in Remote Engineering and Virtual Instrumentation (REV), 2014 11th Intl. Conf. on, 2014,

pp. 303-308.

[233] A. Maiti, A. A. Kist and M. Smith, Key Aspects of Integrating Augmented Reality Tools into

Peer-to-Peer Remote Laboratory User Interfaces, in International Conference on Remote

Engineering and Virtual Instrumentation 2016 (REV 2016), Madrid, Spain Feb 24-26 2016.

[234] H.-K. Wu, S. W.-Y. Lee, H.-Y. Chang, and J.-C. Liang, "Current status, opportunities and

challenges of augmented reality in education," Computers & Education, vol. 62, pp. 41-49, 3//

2013.

[235] J. M. Andujar, A. Mejias, and M. A. Marquez, "Augmented Reality for the Improvement of

Remote Laboratories: An Augmented Remote Laboratory," Education, IEEE Trans. on, vol.

54, pp. 492-500, 2011.

[236] H. Kaufmann and D. Schmalstieg, "Mathematics and geometry education with collaborative

augmented reality," Computers & Graphics, vol. 27, pp. 339-345, 6// 2003

[237] J. Camba, M. Contero, and G. Salvador-Herranz, "Desktop vs. mobile: A comparative study

of augmented reality systems for engineering visualizations in education," in Frontiers in

Education Conference (FIE), 2014 IEEE, 2014, pp. 1-8.

[238] D.W.F. van Krevelen and R. Poelman, "A Survey of Augmented Reality Technologies,

Applications and Limitations", The International Journal of Virtual Reality, 2010, 9(2):1-20.

[239] S. Abu Shanab, S. Odeh, R. Hodrob, and M. Anabtawi, "Augmented reality internet labs

versus hands-on and virtual labs: A comparative study," in Interactive Mobile and Computer

Aided Learning (IMCL), 2012 International Conference on, 2012, pp. 17-21.

Peer-to-Peer Remote Experimentation in Distributed Online Remote Laboratories

285

[240] M. B. Ibáñez, Á. Di Serio, D. Villarán, and C. Delgado Kloos, "Experimenting with

electromagnetism using augmented reality: Impact on flow student experience and educational

effectiveness," Computers & Education, vol. 71, pp. 1-13, 2// 2014.

[241] S. Ternier, R. Klemke, et. al., "ARLearn: Augmented Reality Meets Augmented Virtuality",

Journal of Universal Computer Science, vol. 18, no. 15, 2012, 2143-2164.

[242] Z. Nedic, J. Machotka, and A. Nafalski, "Remote laboratories versus virtual and real

laboratories," in Frontiers in Education, 2003. FIE 2003 33rd Annual, 2003, pp. T3E-1-T3E-6

Vol.1.

[243] V. Estivill-Castro, "Why so many clustering algorithms: a position paper," SIGKDD Explor.

Newsl., vol. 4, pp. 65-75, 2002.

[244] A. D. Maxwell et.al., "An inverted remote laboratory - makers and gamers", Proceedings of

the 2013 AAEE Conference, Gold Coast, Australia, 2013.

[245] L. Orwin, "Maker, Hacker, Gamer, Learner: Exploring the digital future of Remote Accessed

STEM Labs", Queensland Society for Information Technology in Education conference,

September, 2013. doi : http://dx.doi.org/10.1109/REV.2014.6784219

[246] D. Lowe, "MOOLs: Massive Open Online Laboratories: An analysis of scale and feasibility,"

in REV, 2014, pp. 1-6.

[247] S. Khuri and T. Chiu, "Heuristic algorithms for the terminal assignment problem," presented

at the Proceedings of the 1997 ACM symposium on Applied computing, San Jose, California,

USA, 1997.

[248] A. Kershenbaum, “Telecommunications network design algorithms” : McGraw-Hill, 1993.

	List of Abbreviations
	List of Symbols
	Glossary of Terms
	List of Figures
	Related Publications (2013-2016)
	Introduction
	1.1 STEM Education and Remote Laboratories
	1.2 RALfie – Remote Access Laboratories for fun, innovation and education
	1.3 Challenges of a P2P RAL
	1.3.1 Pedagogical Challenges
	1.3.2 Technical Challenges

	1.4 Scope of the Thesis
	1.6 Thesis Outline

	Literature Review
	2.1 Remote Access Laboratories
	2.1.1 System Architecture
	2.1.2 Experiment Scheduling
	2.1.3 Interactivity of Experiments
	2.1.4 Deploying New Experiments
	2.1.5 Nature of Experiments
	2.1.6 Features and Trends of RLMS
	2.1.7 Pedagogy
	2.1.8 Common Advantages of Centralised RAL systems
	2.1.9 Characteristics of RLMS and their Suitability for STEM
	2.1.10 The Peer-to-Peer Architecture

	2.2 Internet of Things
	2.2.1 Common Components of IoT Applications
	2.2.2 IoT and Human
	2.2.3 P2P RAL and IoT

	2.3 Summary

	P2P Remote Access Laboratories – Research Questions and Methodologies
	3.1 General Experiment Components
	3.2 The Notion of Distributed RALs
	3.3 The Proposed Distributed Peer-to-Peer RAL
	3.3.1 Differences between Centralised and P2P RAL
	3.3.2 Properties of the proposed Distributed P2P RAL

	3.4 The process of creating and running experiments in the proposed P2P RAL
	3.5 Technical Requirements of the P2P RAL
	3.6 Research Questions
	3.7 Contributions in Detail
	3.8 Methodologies

	Peer-to-Peer Control System Architecture
	4.1 Usage Scenario of P2P RAL
	4.2 Related Work – Hardware and Architecture
	4.3 Related Work – Remote Control Technologies
	4.3.1 Existing Examples in RAL
	4.3.2 Industrial Protocols
	4.3.3 Motion Description Languages and TeleRobotics
	4.3.4 Standardization and messaging protocol for distributed control
	4.3.5 Automaton and DES Controllers

	4.4 Proposed Automaton Based Experiment Control Model
	4.5 Controller Interface Model
	4.6 Controller Unit Operating Model
	4.6.1 CU Finite State Machine
	4.6.2 CU Operation

	4.7 Complex Languages
	4.7.1 Communication Language
	4.7.2 Types of Commands
	4.7.3 Joint Parameters for Parallel Instructions and Toggle
	4.7.4 Inverse Motion

	4.8 Using the CI-CU Model
	4.9 The CI-CU Model as IoT
	4.10 Possibly Expanding to Many-to-Many CI-CU
	4.11 Summary

	Implementation using Micro-Controllers
	5.1 Control Strategies
	5.2 Software Implementation of the Twin FSA
	5.3 Micro Controller Units Alternatives for IEM Implementation
	5.4 Messaging Protocol
	5.4.1 Protocol Messages
	5.4.2 Flow Control of Messages
	5.4.3 Message Queuing

	5.5 Relay and Remote Laboratory Management System Server
	5.6 An Implementation – Results and Analysis
	5.6.1 Test-bed Configuration
	5.6.2 Latency Measurement with WebSockets

	Conclusions

	Intelligent Tools: Support and Validation and Evaluation
	6.1 Markov Decision Process
	6.1.1 Rig State Space
	6.1.2 Related Work – Markov Decision Processes and Control
	6.1.3 States in the MDP
	6.1.4 The Experimental Rigs as MDPs
	6.1.5 The MDP Generating Algorithm

	6.2 Supporting Tools for Makers and Users
	6.2.1 Control Policies for Centralised and P2P RAL
	6.2.3 Indicators in the MDP
	6.2.4 MDP Inputs
	6.2.5 Rig Operation
	6.2.6 Example and Results
	6.2.7 Using MDP in P2P RAL

	6.3 Summary

	Intelligent Tools: Advanced Evaluation
	7.1 Clustering Commands
	7.1.1 Literature Review - Clustering of data
	7.1.2 Proposed Clustering in P2P RAL Control

	7.2 Proposed Method of Evaluating User Interactions
	7.2.1 Command Operations – Mathematical Notation
	7.2.2 Command Flow
	7.2.3 Closely Related Components
	7.2.4 Preparing the CRC List
	7.2.5 Example and Testing

	7.3 Summary

	Intelligent Tools: Adaptive User Experience
	8.1 Experiment Interaction Continuum
	8.2 The Experiment Session
	8.3 Identifying Functions Automatically
	8.4 Automatically Altering Interactivity
	8.5 Adaptive Control Interface Example
	8.6 Summary

	Enhancing Network Performance
	9.1 P2P Overlay Networks
	9.2 The P2P RAL - RALfie Network Setup
	9.3 RALfie Implementation and Further Work
	9.3.1 User VPN Gateway (RALfieBox)
	9.3.2 RALfie Portal and Gateway
	9.3.3 Increasing Network Performance

	9.4 Background and Related Work - NDC and Overlay Networks
	9.5 Basic Overview of the Overlay Network System
	9.5.1 Estimating System Response Time for QoS
	9.5.2 Creating Autonomous Peer-to-Peer Overlay Networks
	9.5.3 Users' Participation Probability

	9.6 The Constrained HAC Algorithm
	9.6.1 The cluster diameter limit - Ω
	9.6.2 CHAC2
	9.6.3 Clustering Analysis

	9.7 Application and Test Case
	9.7.1 Test Case Population Participation Function
	9.7.2 Determining the NDC Sites
	9.7.3 Simulation and Results

	9.8 Summary

	Reliability
	10.1 Related Works Reliability Analysis of Systems
	10.2 RAL Architecture
	10.2.1 Remote laboratory Sub-components
	10.2.2 Operational Assumptions

	10.3 Determining Reliability
	10.3.1 Reliability Graph for P2P RAL
	10.3.2 Experiment Control Reliability
	10.3.3 Network Reliability
	10.3.4 User Reliability

	10.4 Analysis
	10.4.1 Centralised vs P2P Reliability an Example
	10.4.2 Application of the Reliability Analysis

	10.5 The Case of the WoT
	10.6 Summary

	P2P RAL application in STEM Education
	11.1 Related Work – Pedagogies for RALs in STEM Education
	11.2 P2P RAL and EBL
	11.3 Joining Games and Experiments
	11.3.1 Related Work – Teaching Programming Languages and Robotics
	11.3.2 P2P RAL Operation

	11.4 P2P RAL Programming and Storage
	11.4.1 Role of Programming Language
	11.4.2 Activity as a Game
	11.4.3 Storage in the Content Management System

	11.5 RALfie Implementations
	11.5.1 The Instrument Programming Interface
	11.5.2 Lesson and Quest Management Interface

	11.6 Example Experiments
	11.6.1 Pendulum Experiment
	11.6.2 Gear Box Experiment
	11.6.3 Traffic Light

	11.7 User Trials and Feedback
	11.7.1 Trial 1 - Evaluation with Students
	11.7.2 Trial 2 – Evaluation with pre-service Teachers
	11.7.2 Trial 3 – Second Evaluation with pre-service Teachers

	11.8 Summary

	Other Issues –Augmented Reality
	12.1 Related Work – Augmented Reality
	12.2 Augmented Reality in RALs
	12.3 Levels of Augmented Reality
	12.4 Integrating AR in the P2P System
	12.5 A Sample Implementation in RALfie
	12.6 Limitations and Future Work
	12.7 Summary

	Other Issues – Scheduling
	13.1 Scheduling
	13.2 Related Work – Scheduling
	13.3 Suitable method for P2P RAL for STEM
	13.4 Identifying Constraints for Experiments and Users
	13.5 Matching of Users and Makers
	13.6 Implementation and Simulation
	13.7 Results and Conclusions
	13.8 Summary

	Conclusions and Future Work
	References

