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Abstract 

Pakistan is a drought-prone agricultural nation where hydro-meteorological imbalance 

and increasing scarcity of water resources are immensely constraining water, leading to 

a reduction in agricultural productivity. Rainfall and drought are imperative matters of 

consideration, both for hydrological and agricultural applications. The naturally chaotic 

characteristics of meteorological and agronomic variables can exhibit non-linearity and 

non-stationarity, leading to significant challenges in any model to generate reliable 

forecasts. Another key challenge that could significantly affect the accuracy and 

applicability is the selection of the pertinent features. To feasibly emulate the future 

rainfall, drought and crop yield, probabilistic and artificial intelligence forecasting 

models are promising tools in the modern era of data science. 

The aim of this doctoral thesis is to design new hybridized probabilistic and artificial 

intelligence forecasting models for rainfall, drought and crop yields within the 

agricultural hubs in Pakistan. The choice of these study regions is a strategic decision, to 

focus on precision agriculture given the importance of this particular province in socio-

economic activities of Pakistan, a nation where agriculture is considered to be the 

lifeblood of its people. This thesis is constructed upon three primary objectives to design 

probabilistic and machine learning models with subsequent robust evaluations of these 

models by means of statistical score metrics and diagnostic plots.  

The first objective establishes the online sequential extreme learning machines 

(OSELM) model hybridized with the Markov Chain Monte Carlo based copula models 

and the artificial intelligence-based Bat algorithm was used to develop the MCMC-Cop-
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Bat-OS-ELM hybrid model to forecast monthly rainfall. A total of 25 different Markov 

Chain Monte Carlo based copula models were developed at a first stage. The Bat 

algorithm was used to select the best copula model incorporated in OSELM algorithm.  

The second objective of this research has three distinct milestones. Firstly, an ensemble 

modelling strategy was designed. An ensemble-ANFIS based uncertainty assessment 

modeling approach was constructed for medium and long term (i.e., 3-, 6-, 12-months) 

drought forecasting horizons at three diverse geographic locations. Secondly in this 

objective, a new ELM based committee of modeling approach is developed for the 

purpose of short term drought forecasting using multiple climatological inputs. Thirdly, 

a new multivariate approach utilizing the multivariate empirical mode decomposition 

(MEMD) algorithm to enable multiple predictor inputs is devised to forecast near-real-

time short and long-term drought with kernel ridge regression (KRR) and random forest 

(RF) models. Feature optimization process was also carried out with the simulated 

annealing (SA) selection algorithm.  

Objective 3 of this thesis consists of two major findings. This involves a new approach 

for cotton yield prediction with Markov Chain Monte Carlo-based simulation model 

integrated with the genetic programing algorithm (i.e. GP-MCMC-Cop) using multiple 

meteorological data in the agricultural zones in Punjab and Sindh province. While the 

second outcome was to develop a universal two-phase hybrid ACO-OSELM model 

using OSELM and a feature based input selection ant colony optimization (ACO) 

algorithm to predict wheat yield within the Punjab province.  



 
                                                                                                         iii 

 

In conclusion, this study ascertains the potential applicability of probabilistic and 

artificial intelligence predictive models in hydrology and crop yields. The major 

implications of this research thesis is that the current forecasting models developed at 

multiple horizons are likely to help design and reinforce new scientific tools as well as 

constructing knowledge-based systems for precision agriculture, climate change 

adaption policy formulation and major decisions made by agronomists, government and 

other stakeholders. 
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Chapter 7 (Objective 3, Article 1 – Published, Agricultural and Forest Meteorology, 
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Figure 1 Map of the selected study region in Pakistan. 
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Figure 2 A flow chart of the hybrid genetic programming algorithm integrated 

with a Markov Chain Monte Carlo based copula model. 

Figure 3 Marginal distribution of average climate (temperature, rainfall, 

humidity), GP based predicted cotton yield (Cpred) and observed cotton 

yield (Cobs) with Kendall’s tau (red) for (a) Multan, (c) Nawabshah and 

(c) Faisalabad station. 

Figure 4 Empirical cumulative probability distribution (ECP) of average 

(temperature, rainfall, humidity), GP based predicted cotton yield 

(Cpred) and observed cotton yield (Cobs) with Kendall’ tau (fit) for (a) 
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Figure 5 Joint and marginal distribution of uniformly distributed average 
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(Cpred) and observed cotton yield (Cobs) for (a) Multan station, (b) 

Nawabshah station and (c) Faisalabad station. 

Figure 6 Dependence structure of the GP-MCMC-copula based prediction cotton 

yield, MCMC based copula with average temperature, rainfall, humidity 

climate parameters versus the observed cotton yield for (a) Multan, (b) 

Nawabshah and (c) Faisalabad. Note: Both the GP based predicted cotton 
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Figure 7 Posterior distributions of the GP copulas derived by MCMC simulation 

within a Bayesian framework for the stations (a) Multan, (b) Nawabshah 

and (c) Faisalabad. Blue asterisks show the copula parameter derived by 
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parameter of the MCMC. (For interpretation of the references to colour in 

the text, the reader is referred to the web version of this article.) 

Figure 8 Predicted (Cpred) and observed (Cobs) cotton yield generated by GP-

MCMC copulas against MCMC copulas and GP models in the seasons of 

the testing period for the stations (a) Multan, (b) Nawabshah and (c) 
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Figure 9 Scatterplot of predicted (Cpred) and observed (Cobs) cotton yield using 

the GP-MCMC-copula, MCMC-copula and standalone GP models, with 

the coefficient of determination (r
2
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(a) Multan (b) Nawabshah and (c) Faisalabad. 

Figure 10 Box-plots of absolute prediction error (APE, kg/ha) of GP-MCMC based 

copula models vs. MCMC based copula models and the standalone GP 

model in predicted cotton yield for the stations for (a) Multan (b) 

Nawabshah, and (c) Faisalabad. 
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Figure 2  Bar graphs of the root mean squared error (RMSE)  encountered by the 

Ant Colony Optimisation algorithm in the selection of training study sites 

for each testing study site: Site 1: Rahimyar Khan,  Site 2: D. G. Khan, 
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Figure 3  Time series of the annual wheat yield data for the training stations 

selected by the Ant Colony Optimisation algorithm for each testing study 



xxvi 

site. Site 1: Rahimyar Khan, Site 2: D. G. Khan, Site 3: Kasur, Site 4: 
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the ACO-OSELM vs. ACO-ELM and ACO-RF models in predicting 

wheat yield for Site 1:  Rahimyar Khan, Site 2: D. G. Khan, Site 3: 

Kasur, Site 4: Sialkot, Site 5: Rawalpindi and Site 6: Jhang. 
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Chapter 1 

Introduction 

1.1: Background 

The recent variability in long-term climate (e.g., seasonal) and short-term (weather 

patterns) due to natural variability and anthropogenic factors has significant impacts on increased 

vulnerability of agricultural crop yield and water resources. The chaotic behaviours of these 

climatological events induce nonlinearity and non-stationarity within the crop yields. Extreme 

weather events such as excess rainfall, droughts, hail, heatwaves and extreme temperatures have 

often caused significant impacts on the crop yield, even in high agricultural yield and 

technological countries. Since the inter-annual climate variations explain a third of global crop 

yield variability, it caused huge challenges to the global food security in ensuring sufficient food 

for the increasing population in the 21st century. Therefore, it is urgent for improvements in the 

understanding of climate risks on the crop yield in order to minimize the climate-related impact 

and support agricultural and water resource managers in strategy development and decision-

making to avoid any probable catastrophes. 

Notably, a significant change in the rainfall events can generally affect economic 

growth, particularly in developing countries (Odusola and Abidoye, 2015). Extreme precipitation 

can also have severe impacts on the world climate (Kundzewicz et al., 2006). Anthropogenic and 

naturally-induced aberrations in regional-scale rainfall can directly affect the agricultural sector 

since rainfall plays a vital role in both the growth and the production of crops (Maraseni et al., 

2012). Additionally, it also brings major water-related disasters (Barredo, 2007) such as the 

shortage of rainfall on the long run can lead to water scarcity (Langridge et al., 2006; 
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Vörösmarty et al., 2010) while excessive amounts of rainfall can cause flooding and damage to 

human and wildlife health, infrastructure and the economy (Bhalme and Mooley, 1980). 

   Prolonged precipitation/rainfall deficits with a series of dry spell epochs cause 

meteorological drought events. Drought is characterized as a climatological menace that can 

occur in arid, semi-arid, or tropical rainforest zones (Keyantash and Dracup, 2002; Vicente-

Serrano, 2016; Wilhite et al., 2000). Drought events can last from short to long period ranging 

from one month to four years as recent climate change significantly affects rainfall patterns 

(Vicente-Serrano, 2016). Drought severely disturbs water resources, agriculture crops, energy 

supply and industrial sectors, and it is a growing concern (Deo et al., 2009; IPCC, 2012; 

McAlpine et al., 2007; Yaseen et al., 2018b). Long-term droughts significantly pose challenges 

to groundwater reservoirs and cause significant water scarcity (Cai and Cowan, 2008) and the 

related socio-economic costs (Dijk et al., 2013; Wittwer et al., 2002). 

Climate variability is one of the most important factors affecting year-to-year crop 

production and subsequent revenues (Deo et al., 2009; IPCC, 2012; McAlpine et al., 2007; 

Yaseen et al., 2018). In particular, extreme weather events such as droughts, hail, heatwaves and 

extreme temperatures have often caused significant impacts on the crop yield, even in high 

agricultural yield and technology countries. Since the inter-annual climate variations explain a 

third of global crop yield variability, it caused huge challenges to the global food security in 

ensuring sufficient food for the increasing population in the 21st century. Therefore, it is urgent 

for improvements in the understanding of climate risks on the crop yield in order to minimize the 

climate-related impact and support agricultural managers in strategy development and decision-

making. 
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The ability to forecast rainfall and drought events and crop yields under climate change 

in an accurate manner, particularly in agricultural belt regions, can increase the ability of 

stakeholders to formulate better water planning and resource management decisions. Hence, the 

forecasted rainfall and drought information are important in managing hydrological and 

agricultural drought events, and designing early warning systems. Precise and reliable future 

information on rainfall would assist in constructing of prudent and timely procedures and 

techniques for optimal distribution and utilization of water for industrial, hydro-electricity 

generation and recreation. In addition, the advanced or projected knowledge of the rainfall, 

drought, and crop yield at micro-scale would allow farmers and farm managers to make 

proactive sustainable decisions for efficient irrigation, grazing, water quality monitoring, yield 

predictions (Gill et al., 2006) and be wary of seasonal cropping. This information has the 

potential of being cascaded into the design of knowledge-based systems for monitoring water 

resources, flood events and empowers precision agriculture. 

Recent advances in computational capacity have allowed for application of the 

probabilistic and machine learning based predictive models in many areas. The full dependence 

structure between climate variables and crop yield captured by the copula approach will provide 

better appreciate climate risks and impacts and useful information to agricultural and climate 

modeler in terms of managing climate risks. While the data-driven models extract pertinent 

predictive features from historical data sets. Since forecasting is an important aspect of 

climatological, hydrological and agricultural sustainability, it is an open area of research. 

Largely, a systematic layered improvement has been the key element in technological evolutions 

and is the way to develop newer models for hydrological and agricultural applications as well. 

Therefore, new and advanced predictive models hybridized with copula and feature optimization 
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and multi-resolution analysis approaches are being explored in this study to forecast rainfall and 

drought as well as agricultural crop yield prediction within Pakistan’s agricultural hubs. 

1.2: Statement of the problem 

         Anthropogenic and naturally-induced anomalies in regional-scale rainfall can directly 

affect the agricultural crops (Maraseni et al., 2012), water scarcity (Langridge et al., 2006; 

Vörösmarty et al., 2010) while excessive amounts of rainfall can cause flooding and damage to 

human and wildlife health, infrastructure and the economy (Bhalme and Mooley, 1980). Drought 

is a socio-economic hazard poses severe threats to groundwater reservoirs, leading to the scarcity 

of water, crop failure, disturbed habitats and loss of social or recreational opportunity (Deo et al., 

2015; Mpelasoka et al., 2008; Riebsame et al., 1991; Wilhite et al., 2000). The occurrence of 

drought leads to consequences for runoff that affects stream flow in agricultural sectors (Cai and 

Cowan, 2008) with substantial economic costs (Dijk et al., 2013; Wittwer et al., 2002).  

Pakistan is an agricultural nation, among top ten countries suffering from global warming 

(Pachauri et al., 2014). An abrupt change in rainfall trend over Pakistan has been observed in the 

last few years (Aamir and Hassan, 2018) which leads to major flooding events that severely 

damage the economy including infrastructure and agricultural crops (News, 2010). The estimated 

damage in the 2010 event to infrastructure was approximately 4 billion US dollars whereas the 

damage in the agricultural sector amounted to about 500 million US dollars (Hicks and Burton, 

2010). Excessive rainfall events in 2010 and 2017 caused damage costs of approximately 43 

billion US dollars (NOAA, 2017; WMO, 2017) and 500 billion US dollars, respectively 

(Mansoor, 2010; Tarakzai, 2010). Equally, drought events have been a major contributing factor 

towards reduced agricultural crop yields and significant reductions of the gross domestic product 

of Pakistan. Thus, for facilitating prudent strategies for water resources management and 
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mitigation of drought impacts on agriculture and its repercussions, it is imperative for 

hydrologists, agriculturalists, and resource planners to develop effective modelling and 

prediction techniques for rainfall and drought events. 

                As Pakistan is an agriculture nation and agriculture is known to contribute to about 

21% of the county’s GDP (Sarwar, 2014). Important crops grown in Pakistan are wheat, rice, 

cotton, sugarcane, maize, different vegetables and fruits. Cotton is an integral commodity for the 

economic development of Pakistan as the nation is highly dependent on the cotton industry and 

its related textile sector due to which the cotton crop has been given a principal status in the 

country. In the past, the prediction of cotton yields has been based primarily on the effect of 

climate change with the adoption of traditional approaches (Ayaz et al., 2015; Hina Ali, 2013) 

for a large area, either for a whole province, or national region, but not for a small locality.  

 In the past, Pakistan has faced significant crises of wheat supply, particularly in the 

period of 2012-2013, which occurred due to the failure of the province of Punjab, to meet its 

target production value. A plausible reason for this deficit was attributed to the poor agricultural 

planning and inaccurate estimations to satisfy the national grain needs (Bokhari, 2013). A report 

published in the Express Tribune (Sajjad, 2017) indicates that, similar to the past experience, 

Pakistan is likely to further face wheat shortages into the future. In 2005, the actual yield in 

Pakistan was relatively low compared to the predicted yield, and as such, poor estimations have 

moderated the market price and prompted the government to export the grains from the 

international market (Dorosh and Salam, 2008; Niaz, 2014).  

Due to such uncertainties that directly have a detrimental impact on income and food 

security for the already staggering economies of developing Pakistan, the government and 
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policymakers require improved forecast models to facilitate them to estimate the potential 

reductions and associated food security risks due to a shortage of wheat yield. This justifies the 

pivotal role of advance probabilistic and artificial intelligence models that can predict more 

accurately at a micro scale which can provide help for decision-making in precision agriculture 

and farming systems. 

               Robust probabilistic and artificial intelligence predictive models with better accuracies 

could serve as suitable alternatives for forecasting rainfall, drought and crop yields. However, the 

foremost and critical issues of selecting the non-redundant (and most important) input data 

remain a problem of interest for forecasters. This is because the use of irrelevant inputs can add 

unnecessary challenges in the model execution and consequently increases the model complexity 

whilst reducing the model’s forecasting accuracy (Hejazi and Cai, 2009; Maier et al., 2010).  

             Additionally, rainfall trends, drought events and crop yields and the interrelated 

climatic/hydrological inputs exhibit a complex temporal behavior with non-stationarity features 

(e.g., trends, seasonal variations, periodicity and jumps in time-series) that can affect the 

preciseness of data-driven models (Adamowski and Chan, 2011; Adamowski et al., 2012). The 

copula models which can perform a careful assessment of the dependence structure in terms of 

probability can be applied to ameliorate this issue in predictive model development. The 

hybridization of probabilistic and machine learning models can certainly improve the accuracy 

utilizing the probabilistic predictive features. 

           The ensemble based uncertainty assessment modelling approach can also enabled 

uncertainty between multi-models to be rationalized more efficiently, leading to a reduction in 

forecast error caused by stochasticity in drought behaviours. In this research thesis, a 10-member 
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ensemble-ANFIS modelling approach has been trailed. Model combinations are also very 

uncommon in climatological applications and have been overlooked in environmental 

applications (Baker and Ellison, 2008).  

In this thesis, a new model combination based on “The wisdom of crowds” philosophy is 

developed. The notion is to extract the pertinent information simulated by the standalone expert 

models and generate a collective forecast. The conventional model combinations required simple 

averaging of forecasts from various models. However, the weaknesses of combinations based on 

simple averaging is that the overall model performance is compromised by the worst performing 

model(s). On the other hand, the committee based models approach could overcome the inherent 

drawbacks of individual standalone models, building on the aptness, and subsequently surpassing 

the individual performances (Barzegar et al., 2018; Rostami et al., 2014). In this study, 

committee based extreme learning machine (Comm-ELM) model is developed and evaluated. 

           Owing to the variability in climate-based for a drought model, a suite of multi-resolution 

analytical tools can be useful to extract embedded features in a non-static time series signal that 

are related to a drought variable, and thus, they may help to improve an existing data intelligent 

model. The multivariate empirical mode decomposition (MEMD)  is an advance generalized 

form of EMD and CEEMD which demarcates multivariate inputs to performs accurate 

investigation of composite and nonlinear procedures (Rehman and Mandic, 2009). Additionally 

the MEMD fixes the mode alignment problems arise in the joint analysis within a multi-

dimensional data (Looney and Mandic, 2009). Due to data dependent and  self-adaptive nature 

(Alvanitopoulos et al., 2014), the MEMD is useful to extract relevant features without any loss 

of information and temporally preserve the physical structure of the inputs (Wu et al., 2011). 
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Another advantage of MEMD methods is that, it overcomes the non-stationarity and non-

linearity problem via decomposition of the original time series. 

The climate change is high influence on agricultural crops yields. Another hybrid copula 

based machine learning algorithm is developed utilized the several meteorological input 

variables. There is a statistically significant relationship with historical agricultural crop yield 

estimation and for this purpose, a feature based input selection artificial intelligence model is 

developed that conditioned to search for the suitable, statistically relevant data sites. Overall, this 

research thesis intends to address issues of appropriate input selection, non-linearity and non-

stationarity of the input data in forecasting the rainfall and drought as well as crop yield 

prediction within the agricultural hubs in Pakistan. 

1.3: Objectives 

The primary aim of this research, presented as a collection of journal papers, was to develop a set 

of high-precision hybrid probabilistic and machine learning models for hydrological purposes 

(rainfall and drought forecasts) and agricultural crop yield prediction to analyze the inter-

association between climate variables and crop yields. 

Therefore, this PhD thesis, presented as a collection of 6 Quartile 1 (Q1) papers, has adopted 

various copula functions within a statistical modelling framework and the relevant data 

intelligent models to achieve following specific objectives: 

Objectives 1: Develop Rainfall Forecasting Model 

1. To develop hybridized online sequential extreme learning machine (OSELM) model with

Markov Chain Monte Carlo based copula models and Bat algorithm to forecast monthly 
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rainfall. Several (i.e. 25) Markov Chain Monte Carlo based copula models were 

developed at first. The Bat algorithm was used to select the best four copula models that 

are incorporated in OSELM, ELM and RF models. The preciseness of the hybrid model 

was validated in respect to the ELM and RF models. 

This work has been published in Atmospheric Research journal (Scopus Quartile 1). 

Objectives 1: Design Drought Forecasting Model 

This objective has three main findings in developing drought high precision forecasting models. 

These findings are discussed below: 

1. Develop and explore an ensemble-ANFIS based uncertainty assessment modeling

approach for medium and long term (3-, 6-, 12-months) drought forecasting. Applying 

10-member simulations, ensemble-ANFIS model was validated for its ability to forecast 

severity (S), duration (D) and intensity (I) of drought. This enabled uncertainty between 

multi-models to be rationalized more efficiently, leading to a reduction in forecast error 

caused by stochasticity in drought behaviours. The results are benchmarked with the M5 

Model Tree and Minimax Probability Machine Regressions (MPMR). 

This work has been published in Atmospheric Research journal (Scopus Quartile 1). 

2. Develop and explore a new committee of modeling approach for short term (monthly)

drought forecasting using multiple climatological inputs. Committee of modeling is a 

model combination technique, which is uncommon in climatological studies. In this 

study, the ELM-based committee was investigated and bench marked PSO-ANFIS-based 

committee and MLR-based committee models. 
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This work has been published in Computers and Electronics in Agriculture journal 

(Scopus Quartile 1). 

3. Devise a new multivariate approach to MEMD modeling to allow for utilization of

multiple predictor inputs. This new multivariate MEMD modeling technique has been 

developed and evaluated to forecast near-real-time short and long term drought with KRR 

and RF models. Feature optimization was carried out with the simulated annealing (SA) 

selection algorithm. 

This work has been published in Journal of Hydrology (Scopus Quartile 1).

Objective 3: Agriculture Crop Yield Prediction Modelling 

It is clearly seen that this objective has two key outcomes. The first outcome indicates the use of 

multiple meteorological variables by developing a hybrid model to predict cotton yield. On the 

other hand, the second outcome is based on the development of a universal wheat yield data 

intelligent model utilizing wheat yield data at district level. These findings are following:    

1. Cotton yield prediction with Markov Chain Monte Carlo-based simulation model

integrated with genetic programing algorithm using multiple meteorological data of 

rainfall, temperature and humidity. Several different types of GP-MCMC-copula models 

were developed, each with the well-known copula families (i.e., Gaussian, student t, and 

Clayton, Gumble Frank and Fischer-Hinzmann functions) to screen and utilize an optimal 

cotton yield forecast model for the present study region. 

This work has been published in Agricultural and Forest Meteorology journal 

(Scopus Quartile 1). 



11 

2. To develop a two-phase hybrid OSELM, ELM and RF models using feature based input

selection ant colony optimization (ACO) algorithm to predict wheat yield. The ACO 

algorithm is conditioned to search for the suitable, statistically relevant data sites for the 

model’s training, and the corresponding testing sites by virtue of a feature selection 

strategy utilizing a total of 27 agricultural counties’ datasets in the agro-ecological zones 

in Punjab province in Pakistan. The developed model can be explored as a decision-

support tenet for crop yield estimation in regions where a statistically significant 

relationship with historical agricultural crop is well-established. 

This work has been reviewed once and is under second review in IEEE Access 

(Scopus Quartile 1). 

1.4: Significance of the Research study 

The findings of this research are significant as Pakistan is an agriculture nation. griculture in 

Pakistan is contributing about 21% of the county’s GDP (Sarwar, 2014). Cotton is one of the 

cash crops which is an integral commodity for the economic development of Pakistan as the 

nation is highly dependent on the cotton industry and its related textile sector due to which the 

cotton crop has been given a principal status in the country. Cotton crop is grown from May-

August as an industrial crop in 15% of the nation's available land area  producing 15 million 

bales during 2014-15 (Reporter, 2015). Pakistan is fourth largest cotton grower, third largest 

exporter and fourth largest  consumer  (Banuri, 1998). In 2013, 1.6 million farmers (out of a total 

of 5 million in all sectors) engaged in cotton farming, growing more than 3 million hectares 

(Banuri, 1998; Reporter, 2015). On the other hand, wheat accounts for 2.6% of Pakistan’s GDP 

and 12.5% to the GDP of the agronomy sector (Survey, 2012). According to United Nations 

Food and Agriculture Organization, Pakistan was placed in the eighth position as a global wheat 
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producer from 2007 to 2009 (FAO, 2013). Wheat accounts for nearly 36% of the total cropped 

area, 30% of the value added by major crops and 76% of the total production of food grains. The 

developed hybrid probabilistic and artificial intelligence models are vital for policy makers and 

governments for better future planning in relation to trade, development policies. Moreover, 

these modelling strategies can provide timely information for rapid decision-making during the 

growing season. Additionally, it can be used as early warning decision support systems for food 

scarcity, water scarcity due to high increase in population. 

1.5: Thesis layout 

The schematic diagram illustrating the overview Thesis is shown in Figure 1.1. It clearly outlines 

the graphical abstract for understanding and the need for reliable and precise forecasting tool for 

rainfall, drought and crop yield. This thesis is organized into nine distinct chapters, as follows: 

Chapter 1 

This chapter presents the introductory background and the statement of problem pertaining to the 

research and presents the objectives of this study. 

Chapter 2 

Chapter 2 describes the study area; data and general methodology used in this study and 

sets the scene for the following chapters. This Chapter provides general view points while 

the specific study area, data, and methods are presented in the respective chapters. 

Chapter 3 

This chapter is presented as a published journal article in the journal, Atmospheric 

Research (https://doi.org/10.1016/j.atmosres.2018.07.005). It is devoted to the 

establishment of Markov chain Monte Carlo based copula modelling hybridized with Bat 
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algorithm and online sequential extreme learning machine (MCMC-Cop-Bat-OS-ELM 

model for rainfall forecasting. It outlines the issues with traditional approaches, model 

development and outcomes with respect to comparative MCMC-Cop-Bat based extreme 

learning machine (MCMC-Cop-Bat-ELM) and MCMC-Cop-Bat based random forest 

(MCMC-Cop-Bat-RF). The modelling process involves the development of 25 members 

of MCMC based copula models. The selection of best MCMC based copula model was 

done by Bat algorithm and finally incorporated those selected member of MCMC-copula 

models in the OSELM model to forecast the rainfall. Chapter 3 addresses the first 

research objective of this study. 

Chapter 4 

This chapter is presented as a published article in the journal, Atmospheric Research 

(https://doi.org/10.1016/j.atmosres.2018.02.024). This chapter describes the application 

of ensemble modelling strategy using adaptive-neuro fuzzy inference system (ANFIS) 

approach for drought forecasting. Chapter 4 is the first outcome in response to the second 

research objective of this study whereby medium and long term drought is forecasted 

using newly developed a 10-member ensemble-ANFIS based uncertainty assessment 

model in comparison with M5tree and mini-max probability machine learning regression 

(MPMR) models. Applying 10-member simulations, ensemble-ANFIS model was 

validated for its ability to forecast severity (S), duration (D) and intensity (I) of drought. 

This enabled uncertainty between multi-models to be rationalized more efficiently, 

leading to a reduction in forecast error caused by stochasticity in drought behaviours. 

https://doi.org/10.1016/j.atmosres.2018.02.024
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Chapter 5 

This chapter is presented as a published journal article in the journal, Computers and 

Electronics in Agriculture (https://doi.org/10.1016/j.compag.2018.07.013). This chapter 

is devoted to the application of committee modelling approach for short term drought 

forecasting. The monthly drought is forecasted using this innovative committee of models 

based on extreme learning machine (Comm-ELM) in comparison with Comm-PSO-

ANFIS and Comm-MLR models. It outlines the model development and performances of 

these committee models. Chapter 5 captures the second outcome of research objective 2 

of this study. 

Chapter 6 

This chapter is presented as published article in the top ranking Journal of Hydrology 
(https://doi.org/10.1016/j.jhydrol.2019.06.032). The main theme of this chapter is to  

(MEMD) forecasting technique for 1-month, 3-month, 6-month and 12-month drought 

forecasting. The short, medium and long term drought is forecasted using MEMD 

simulated annealing (SA) with feature selection. It outlines the development of the novel 

MEMD-SA-KRR model and its performances with respect to a comparative MEMD-SA-

RF) and the standalone KRR and RR models. This chapter targeted the issue and gaps in 

outcome 1 and 2 of objective 2. Chapter 6 turns out the third milestone of the second 

research objective of this study. 

Chapter 7 

This chapter is presented as a published journal article in the journal, Agricultural and 

Forest Meteorology (https://doi.org/10.1016/j.agrformet.2018.09.002). Cotton yield 

prediction with Markov Chain Monte Carlo-based simulation model integrated with 

present the development of a novel multivariate empirical mode decomposition 

https://doi.org/10.1016/j.compag.2018.07.013
https://doi.org/10.1016/j.agrformet.2018.09.002
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genetic programing algorithm using multiple meteorological data of rainfall, temperature 

and humidity. Several different types of GP-MCMC-copula models were developed, each 

with the well-known copula families (i.e., Gaussian, student t, and Clayton, Gumble 

Frank and Fischer-Hinzmann functions) to screen and utilize an optimal cotton yield 

forecast model for the present study region. Chapter 7 is the first finding in response to 

the third research objective. 

Chapter 8 

This chapter is presented as a submitted manuscript (under review) in IEEE Access 

journal. A two-phase hybrid OSELM model using feature based input selection ant 

colony optimization (ACO) algorithm to predict wheat yield. The ACO algorithm is 

conditioned to search for the suitable, statistically relevant data sites for the model’s 

training, and the corresponding testing sites by virtue of a feature selection strategy 

utilizing a total of 27 agricultural counties’ datasets in the agro-ecological zones in 

Punjab province in Pakistan. The developed model can be explored as a decision-support 

tenet for crop yield estimation in regions where a statistically significant relationship with 

historical agricultural crop is well-established. It outlines the model development (ACO-

OSELM) and the outcomes benchmarked against comparative ACO-ELM and ACO-RF 

models. Chapter 8 is the second outcome in response to the third research objective. 

Chapter 9 

This chapter presents the synthesis of the study with concluding remarks, limitations, and 

recommendations for future works. 
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Figure 1.1: Schematic view of thesis. 
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Chapter 2 

Data and Methodology 

This chapter provides an overview of the study locations adopted in this research Thesis in 

developing the hybrid probabilistic and artificial intelligence predictive models. Different sites 

within the study region were selected to achieve each objective, which is described in detail in 

each of the chapters. The description of data used, length of data and limitations if any, are also 

presented. This chapter also introduces a brief account of methodology, while specific model 

development techniques have been described in respective chapters. The description of the study 

area is given next. This is followed by the data used and the general procedure used in this work 

for hybrid probabilistic and artificial intelligence models development. 

2.1: Study area 

The study areas focused in this thesis are the rich agricultural zones in three provinces of Punjab, 

Sindh and Khyber Pakhtunkhwa (KPK) located in Pakistan. Pakistan is an agriculture nation and 

agriculture contributes about 21% of national GDP. Important crops grown in Pakistan are 

wheat, rice, cotton, sugarcane, maize, different vegetables and fruits. The drought and floods 

have become a frequent phenomenon in Pakistan. Pakistan hosts five major deserts which were 

historic forests. Pakistan is also one of the best destinations for tourists and an estimated 1.1 

million foreign tourists in 2011 contributing 351 million dollar to the economy. Some of the 

most beautiful and attractive tourist spots are:  
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Figure 2.1: Famous tourist areas are Shangrila Lake, Cold Desert, Skardu, Nattar valley and  

                  Neelum valley. 

The importance of these provinces and selected study sites are discussed below in detail:  

2.1.1: The Province of Punjab 

           Punjab is the second largest province by area of approximately 205,344 km
2
 with a 

population of approximately 110 million (PBS, 2017). The capital city of Punjab is Lahore which 

is a historical, cultural, economic and industrial hub (PBS, 2017). Punjab is an industrialized 

province that contributes 24% to the province’s GDP (strategy, 2018). It is also one of South 

Asia’s most urbanized regions with approximately 40% of people living in urban areas(strategy, 

2018). Punjab has total 36 districts that highly dependent on agriculture. 
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             It has tropical wet and dry climate experiencing extreme weather conditions with foggy 

winter. The temperature varies between -2
o
C to 45

o
C. The landscape in Punjab mostly consists 

on alluvial plains surrounded by Indus, Jhelum, Chenab, Ravi and Sutlaj rivers. Agricultural 

sectors in Punjab province play a vital role in the economy with contributions ranging from 

56.1% to 61.5% (strategy, 2018). Further, extensive irrigation systems make this region a rich 

agricultural hub. The major crops are cotton and wheat whereas other important crops include 

rice, sugarcane, millet, corn, oilseeds, pulses, vegetables, and fruits. Livestock and poultry 

production are also common. Punjab contributes approximately 76% to annual food grain 

production in Pakistan. Cotton and rice are considered to be important cash crops that contribute 

substantially to the national exchequer. Small and medium farming strategies are more practicing 

for the purpose of gaining independency in agriculture sector. Considering the region as a major 

agricultural belt, the development of hybrid probabilistic and artificial intelligence models for 

rainfall, drought and crop yield prediction is an interesting research endeavor. 

2.1.2: The Province of Sindh 

            Sindh is located in the southeast of Pakistan, and is one of the third largest province by 

area and second largest province by population. According to the 2017 census, Sindh had 

approximately 47.9 million populations. Karachi is the capital of Sindh province which is the 

most populous city in Pakistan. Sindh is divided into 29 districts. The contribution of Sindh’s 

province to country GDP is between 30% - 32%. The contribution in agriculture sector varies 

from 21.4% - 27.7% whereas manufacturing sector shares from 36.7% - 46.5%.  Sindh has a 

much diversified economy varying from industry and finance to extensive agriculture sector. 

           The climate varies from tropical to subtropical which is hot in the summer and mild to 

warm in winter. The temperatures in summer normally rise above 46 °C while drops to 2 °C 



 

                                                                                        20 

during winter in the northern and higher elevated areas. The average annual rainfall is 

approximately 177.8 millimeter. The region's shortage of rainfall is compensated by the 

inundation of the melting of Himalayan snow and rainfall in the monsoon season. Agriculture 

crops such as cotton, rice, wheat, sugar cane, dates, bananas, and mangoes are very important in 

Sindh. Pakistan is the world’s 4
th

 largest Mango producer mostly grown in Sindh and Punjab 

provinces. 

2.1.3: The Province of Khyber Pakhtunkhwa (KPK) 

             The province of KPK located in the northwest of Pakistan. It is the third largest province 

by population (40.5 millions) and third largest in economy as well (10.5% of Pakistan) whiles 

the smallest by area (101,741 km
2
). The capital of KPK is Peshawar which is one of the oldest 

cities in the world. The northern areas in KPK are cold and snowy with heavy rainfall in winter. 

The KPK province is a central hub for tourism due to it snow-capped peaks and lush green 

beauty (Report, 2013).  

            The climate of KPK differs hugely for an area of its size that includes almost all of the 

climates encompassing found in Pakistan. Dera Ismail Khan is declared on of the hottest places 

in South Asia (NWFP, 2010). Agriculture is an important sector in KPK and highly depends on 

cash crops. The main cash crops include wheat, maize, tobacco, rice; sugar beets, sugarcane, as 

well as fruits are grown in the province. The part of the economy that KPK dominates is forestry, 

where its contribution has normally varies from of 34.9% to 81%, with an average of 61.56%. A 

Billion Tress Tsunami project was initiated in KPK province in 2014 to tackle the challenge of 

global warming. 
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Figure 3 shows these provinces and their geographic locations in Pakistan. 

Figure 2.2: Map of Pakistan showing the provinces of Punjab, Sindh and KPK.  

2.2: Data description 

A variety of data sources was utilized in developing hybrid probabilistic and artificial 

intelligence forecasting models for rainfall, drought and agricultural crop yield. In a concise way, 

Table 2.1 describes the data used with respective sources and other relevant details in achieving 

each objective. 
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Table 2.1 Details of all data used in this research. 

Data used Source Study 

period 

Forecast 

horizon 

O
B

J
E

C
T

IV
E

 1
 

Paper 1 

(Chapter 3) 

Predictors: 

Antecedent Lags 

of rainfall 

Pakistan 

Meteorological 

Department (PMD) 

January 1981 

to December 

2015 

Monthly 

Target: Rainfall 

O
B

J
E

C
T

IV
E

 2
 

Paper 1 

(Chapter 4) 

Predictors: 

Rainfall and 

antecedent Lags 

of drought index 

(i.e. SPI) 

Pakistan 

Meteorological 

Department (PMD) 

January 1981 

to December 

2015 

3-, 6- and 

12 month 

Target: SPl 

Paper 2 

(Chapter 5) 

Predictors: 

Meteorological 

Variables and 

SOI index 

Pakistan 

Meteorological 

Department (PMD),  

Bureau of Meteorology 

Australia (BMA) 

January 1981 

to December 

2015 

1-month 

Target: SPl 

Paper 3 

(Chapter 6) 

Predictors: 

Meteorological 

Variables and 

Synoptic scale 

climate mode 

indices 

PMD, BMA and 

various other sources 

January 1981 

to December 

2015 

1-, 3-, 6- 

and 12 

month 

Target: SPl 

O
B

J
E

C
T

IV
E

 3
 

Paper 1 

(Chapter 7) 

Predictors: 

Meteorological 

Variables 

PMD and Federal 

Bureau of Statistics, 

Pakistan 

January 1981 

to December 

2013 

Yearly 

(seasonal) 

Target: Cotton 

yield 

Paper 2 

(Chapter 8) 

Predictors: 

Antecedent Lags 

of wheat yield Federal Bureau of 

Statistics, Pakistan 

January 1981 

to December 

2013 

Yearly 

(seasonal) 

Target: Wheat 

yield 
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2.2.1: Meteorological data 

          The meteorological data were obtained from the Pakistan Meteorological Department, 

Pakistan (PMD, 2016). The study period is 1981 to 2015. The predictor inputs comprised of 

mean monthly rainfall (mm), mean monthly temperature (°C) and mean monthly humidity. The 

missing values of monthly rainfall were substituted by average of the respective time-averaged 

value from the climatological period because the rainfall for those months is not available. 

2.2.2: Agricultural crop yield data 

             The agricultural crop yield data was sourced from the Federal Bureau of Statistics 

(Economic wing), Islamabad, Pakistan and Agriculture Marketing Information Service, 

Directorate of Agriculture (Economics & Marketing) Punjab, Lahore Pakistan (Districts, 2008; 

Service, 2012; Service, 2014). The area and production data of crop estimates were supplied by 

the provincial Crop Reporting Services and compiled by the Economic Wing of the devolved 

Ministry of Food and Agriculture and later by the Federal Bureau of Statistics. Crop yield in the 

year 2009 was not available in the acquired dataset. To overcome this situation, the average 

value of all the cotton yield data from 1981-2013 was substituted for the missing 2009 data. The 

acquired crop yield data were in the units of toons and hectares which are not the standard units. 

Therefore, the first task was to convert the yield data in the standard unit (kg/ha).  

2.2.3: Synoptic scale climate indices – various sources 

The monthly synoptic scale climate indices are southern oscillation index (SOI), sea 

surface temperatures (Nino3SST, Nino3.4SST, Nino4SST), pacific decadal oscillation (PDO), 

Indian ocean dipole (IOD), El-Nino southern oscillation Modoki index (EMI), southern annular 

mode (SAM) were sourced from National Climate Prediction Centre (Nicholls, 2004; SST, 

2018), Joint Institute of the Study of the Atmosphere and Ocean (JISAO, 2018), Bureau of 
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Meteorology, Australia (BMA, 2018), Japan Agency for Marine-Earth Science (JAMSTEC, 

2018) and from the British Antarctic Survey (BAS, 2018). Among these indices, the sea surface 

temperatures (SSTs) are the most important ones as they indicate climate variability, while the 

other indices (i.e., Pacific Decadal Oscillation (PDO), the Indian Ocean Dipole (IOD) and El 

Nino Modoki Index) are contingent upon them. 

2.2.4: Periodicity (i.e. number of months) factor 

The periodicity factor also plays a vital role in performance of the data intelligent models. In our 

case, it improves the accuracy of the hybrid machine learning models.  

2.2.5: Multi-scaler standardized precipitation index (SPI) 

The SPI quantifies the wet and dry scenarios based on statistical probability theory. The multi-

scaler SPI index was computed by utilizing the approach in (McKee et al., 1993).  

2.3: General methodology  

           Prior to develop hybrid probabilistic and machine leaning models, data quality checking 

phase is necessary. A calendar averaging technique was applied to replace all missing data 

during this phase. The meteorological and crop yield data and the interrelated atmospheric 

parameters, as well as the climatic indices, naturally display stochastic behavior. In addition, the 

inputs are in the different set of units or are dimensionless. As a result, appropriate scaling or 

normalization is required to avoid the dominance of inputs with large numeric ranges that in turn 

may undermine the effects of lower range values. Normalization also brings the data to a 

common scale. The data are normalized between [0, 1] and due to invertible nature of the 

normalization, the results is not be affected (Hsu et al., 2003). The normalization is carried out 

following Eq. (1) to handle large variation in the data (Hsu et al., 2003). 
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min

max min

norm


 

 
                                                       (1) 

In Eq. (1),   represents the input/output, min is the minimum value, max is the maximum 

value of the data and norm is the corresponding normalized numeric value.  

             In this research, various forecasting models are considered for an evaluation of their 

preciseness in emulating rainfall, drought and crop yield since a robust modelling approach is 

necessary. The models range from the well-known Markov Chain Monte Carlo based copula 

(MCMC-copula),   online sequential extreme learning machine (OSELM), extreme learning 

machine (ELM), random forest (RF), Kernel ridge regression (KRR), ensemble based adaptive 

neuro fuzzy inference system (ensemble-ANFIS), mini-max probability machine regression 

(MPMR), M5 Tree, particle swarm optimization based ANFIS (PSO-ANFIS), multiple linear 

regression (MLR) and genetic programming (GP) are adopted. 

          Copulas are powerful mathematical tools that have the ability to connect two or more time-

independent variables (Nelsen, 2003) that provide a systematic way of observing the causal 

dependent structure which generates a basis for constructing families of bivariate (multivariate) 

distributions (Fischer and Hinzmann, 2006). ELM is a state-of-the-art data intelligent model 

developed by Huang et al. (2006) used for the purpose of designing a Single Layer Feedforward 

Neural Network (SLFN). ELM is relatively faster, and thus computationally efficient compared 

with other traditional learning algorithms (Rajesh and Prakash, 2011). As a variant of the 

classical ELM model, the online sequential extreme learning algorithm (OSELM) operates in 

two learning phases) i.e., initialization and a sequential learning phase. The M5 Model tree and 

random forest are regression tree based algorithms. However, the main difference is that the M5 
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Tree model is based on a single regression tree while the RF model uses an ensemble of 

regression trees with bootstrap-aggregation technique (Breiman, 1996; Mitchell, 1997; Quinlan, 

1992). KRR model is based on kernels and a ridge regression approach (Zhang et al., 2013), 

which  is used to deal with over-fitting in the regression using regularization and the kernel 

technique to capture non-linear relationships (You et al., 2018). ANFIS was introduced by (Jang, 

1993) which is an improved ANN technique that is fundamentally identical to the fuzzy 

inference systems (FIS) model, yet utilizing the merits of both ANN and FIS designed on a 

common paradigm. MPMR, a non-linear probabilistic machine regression model that has the 

capability of maximizing the least probability within the interval of true regression of the 

objective function (Strohmann and Grudic, 2003). To improve the versatility of ANFIS model,  

particle swarm optimization (PSO) technique (Çavdar, 2016) to tune the ANFIS parameters. 

MLR is a generalized form of the simple regression model from single to multiple predictors 

where the objective is to deduce a model that can exhibit the maximum deviations in the 

predictor data to evaluate their corresponding regression coefficients equation (Draper and 

Smith, 1981; Montgomery et al., 2012). Genetic programming is a heuristic evolutionary 

algorithm which has the potential to offer solutions of any form without the user specifying the 

problem (Koza, 1992). 

           In order to handle the non-stationarity features within the inputs, data pre-processing via 

proper multi-resolution analysis tool is necessary. Hence, hybridized models with advanced self-

adaptive multi-resolution tools including multivariate empirical mode decomposition (MEMD) 

are adopted. In addition, new approaches are developed and explored including a committee of 

models. 
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 Appropriate input selection is imperative for input dimension reduction and improves the 

model performances. The optimization by means of feature selection approaches also has its own 

advantages and disadvantages and therefore many algorithms were explored including the linear 

partial-auto correlation function (PACF), Bat algorithm, simulated annealing (SA) algorithm, ant 

colony optimization (ACO) algorithm. In addition to the standalone approaches, the specific 

hybrid models developed in this study include: 

1. Three hybrid models, MCMC-Cop-Bat-OS-ELM, MCMC-Cop-Bat-ELM and

MCMC-Cop-Bat-RF for monthly rainfall forecasting. PACF was utilized for 

determination of significant lags. Bat algorithm was utilized for selecting best copula 

model. 

2. The 10-member ensemble based ANFIS model was designed to forecast medium and

long term drought forecasting. PACF was utilized for determination of significant 

lags. 

3. A novel ELM based committee of models (Comm-ELM), Comm-PSO-ANFIS and

Comm-MLR for short term (monthly) drought forecasting with ELM, PSO-ANFIS 

and MLR as the underlying expert models. 

4. New multivariate empirical mode decomposition (MEMD) based models to address

non-stationarity within multiple predictor inputs in MEMD transformation were 

developed. Feature optimization was achieved using the simulated annealing 

algorithm leading to hybridized MEMD-SA-KRR and MEMD-SA-RF models. 

5. The genetic programming (GP) was hybridized with several MCMC based copula

models but GP-MCMC-Clayton copula was the most responsive hybrid model to 

predict cotton yield. 
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6. Three hybrid models, ACO-OSELM, ACO-ELM and ACO-RF for wheat yield

prediction. ACO algorithm was utilized for selecting best training sites in relation to 

testing site. PACF was utilized for determination of significant lags. 

For model evaluations, a diverse range of statistical metrics were used including the 

Pearson’s correlation coefficient (r), mean squared error (MSE), root-mean-square-error 

(RMSE), mean absolute error (MAE),Willmott's Index (WI), Nash–Sutcliffe Efficiency (ENS), 

the Legates-McCabe’s index (LM), Likelihood value (MaxL), Akaike Information Criterion 

(AIC), The Bayesian Information Criterion (BIC) and confidence of interval (CI). In addition to 

the use of numerical assessment metrics, diagnostic plots including box plots, scatter diagram, 

histogram, time series plot, polar plot and Taylor plots are also utilized for a robust evaluation. 

Relative measures (i.e., relative root-mean-square-error (RRMSE), and mean absolute error 

(MAE)) are also used for model comparisons at geographically distinct sites. 

 The mathematical realizations of each model, feature optimization techniques, multi-

resolution analysis tools and the model evaluation metric, as well as the specific model 

development procedures, are described in the respective chapters. 
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Chapter 3  

Multi-stage hybridized online sequential extreme learning machine 

integrated with Markov Chain Monte Carlo copula-Bat algorithm 

for rainfall forecasting 

Foreword 

This chapter is an exact copy of the published article in Atmospheric Research journal (Vol. 213, 

Pages 450-464). 

It describes the hybridization of the probabilistic and machine learning models. The Markov 

Chain Monte Carlo based copula (MCMC-cop) models integrate with bio-inspired feature 

selection based Bat algorithm and online extreme learning machine (OS-ELM) model for rainfall 

forecasting. Extreme learning machine (ELM) and random forest (RF) models were also 

hybridized in this study. The MCMC-Cop modeling approach establishes the probabilistic 

forecast of rainfall using 25 different types of copulas. The Bat algorithm then select the best 

possible forecast of MCMC-Cop models that are later utilize in OS-ELM model to forecast the 

final rainfall for the selected regions of study. 

The newly designed hybrid models MCMC-Cop-Bat-OS-ELM is compared against MCMC-

Cop-Bat-ELM and MCMC-Cop-Bat-RF for monthly rainfall forecasting at the three rich 

agricultural zones in Punjab province, Pakistan. The performance of MCMC-Cop-Bat-OS-ELM 

model was better than the other comparative models. 
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A B S T R A C T

To ameliorate agricultural impacts due to persistent drought-risks by promoting sustainable utilization and pre-
planning of water resources, accurate rainfall forecasting models, addressing the dynamic nature of drought
phenomenon, is crucial. In this paper, a multi-stage probabilistic machine learning model is designed and
evaluated for forecasting monthly rainfall. The multi-stage hybrid MCMC-Cop-Bat-OS-ELM model utilizing on-
line-sequential extreme learning machines integrated with Markov Chain Monte Carlo (MCMC) based bivariate-
copula and the Bat algorithm is employed to incorporate significant antecedent rainfall (t–1) as the model's
predictor in the training phase. After computing the partial autocorrelation function (PACF) at the first stage,
twenty-five MCMC based copulas (i.e., Gaussian, t, Clayton, Gumble, Frank and Fischer-Hinzmann etc.) are
adopted to determine the dependence of antecedent month's rainfall with the current and future rainfall at the
second stage of the model design. Bat algorithm is applied to sort the optimal MCMC-copula model by a feature
selection strategy at the third stage. At the fourth stage, PACF's of the optimal MCMC-copula model are com-
puted to couple the output with OS-ELM algorithm to forecast future rainfall values in an independent test
dataset. As a benchmarking process, standalone extreme learning machine (ELM) and random forest (RF) is also
integrated with MCMC based copulas and the Bat algorithm, yielding a hybrid MCMC-Cop-Bat-ELM and a
MCMC-Cop-Bat-RF models. The proposed multi-stage hybrid model is tested in agricultural belt region in
Faisalabad, Jhelum and Multan, located in Pakistan. The testing performance of all three hybridized models,
according to robust statistical error metrics, is satisfactory in comparison to the standalone counterparts,
however the multi-stage, hybridized MCMC-Cop-Bat-OS-ELM model is found to be a superior tool for forecasting
monthly rainfall. This multi-stage probabilistic learning model can be explored as a pertinent decision-support
tool for agricultural water resources management in arid and semi-arid regions where a statistically significant
relationship with antecedent rainfall exists.

1. Introduction

Anthropogenic and naturally-induced anomalies in regional-scale
rainfall can directly affect the agricultural sector since rainfall plays a
vital role in both the growth and the production of crops (Maraseni
et al., 2012; Nguyen-Huy et al., 2018). The effect is not only restricted
to the agricultural sector but it also brings major water-related disasters
(Barredo, 2007) such as the shortage of rainfall on the long run is
leading to drought events (Palmer, 1965). This can lead to water
scarcity (Langridge et al., 2006; Vörösmarty et al., 2010) while ex-
cessive amounts of rainfall can cause flooding and damage to human
and wildlife health, infrastructure and the economy (Bhalme and

Mooley, 1980). The economy of Pakistan, a nation that is still in its
developing phase, has also been severely damaged due to major
flooding events, including the damage to infrastructure and agricultural
crops (News, 2010). The estimated damage in the 2010 event to in-
frastructure was approximately 4 billion US dollars whereas the da-
mage in the agricultural sector amounted to about 500 million US
dollars (Hicks and Burton, 2010). The total economic damage was
considerably large, totaling to approximately 43 billion US dollars in
2010 (Mansoor, 2010; Tarakzai, 2010). Equally, drought events (Ali
et al., 2018) have been a major contributing factor towards reduced
agricultural yields and significant reductions of the gross domestic
product of Pakistan. Further, prolonged decline of adequate rainfall can
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cause a fall in hydraulic heads having severe consequences for crop
irrigation from wells due to changes in the properties of groundwater
reservoirs (Santos et al., 2014). Therefore, the ability to forecast rainfall
in an accurate manner, particularly in agricultural belt regions, can
increase the ability of stakeholders to formulate better water planning
and resource management decisions.

Data-intelligent models, particularly developed for local (e.g., farm)
scales, have the ability to utilize past data, and hence may offer a viable
and reasonably accurate solution to drought disaster management
through a projection of future rainfall (Luk et al., 2001). The study of
Chiew et al. (1998) developed data-intelligent, predictive models for
rainfall forecasting using an empirical method, whereas Sharma (2000)
developed a nonparametric probabilistic model to forecast seasonal to
inter-annual rainfall in Australia. Burlando et al. (1993) used an auto-
regressive moving average (ARMA) model for short-term rainfall fore-
casting in the USA whereas Hung et al. (2009) applied an artificial
neural network (ANN) model for rainfall forecasting in Thailand and
Lin et al. (2009) forecasted hourly rainfall using support vector ma-
chines for Taiwan. Yaseen et al. (2017) developed a rainfall forecasting
model using the novel hybrid intelligent model based adaptive neuro
fuzzy inference system(ANFIS) integrated with Firefly algorithm (FFA)
for Pahang river catchment located in the Malaysian Peninsula, Mason
(1998) forecasted seasonal rainfall of South Africa using a nonlinear
discriminant analysis model while Nguyen-Huy et al. (2017) developed
a novel copula-statistical rainfall forecasting model in Australia's agro-
ecological zones. Accurate rainfall forecasting is a significant challenge
for Pakistan due to high variation in seasonal, annual and inter-annual
rainfalls, exacerbated by climate change.

Despite the need, only a few studies on rainfall forecasting, parti-
cularly at local or regional scales, have been carried out in Pakistan. For
example, the study of Salma et al. (2012) forecasted rainfall trends in
different climatic zones of Pakistan utilizing the autoregressive in-
tegrated moving average (ARIMA) model. Archer and Fowler (2008)
applied meteorological data to forecast seasonal runoff on the River
Jhelum, Pakistan on the basis of multiple linear regression models.
Reale et al. (2012) forecasted an extreme rainfall event (in the Indus
River Valley, Pakistan, 2010) with a global data assimilation and
forecasting model. Faisal and Gaffar (2012) utilized the Thiessen
polygon method of weighted rainfall forecast in Pakistan, whereas the
study of Ahasan and Khan (2013) simulated flood producing rainfall
events in 2010 over north-west Pakistan using weather research and a
forecasting model. These studies have provided immensely useful in-
formation to various stakeholder, revealing the capability of data-
driven models to generate acceptably accurate rainfall forecasts where
only historical datasets were applied to construct the forecast model.

The aforementioned studies (Ahasan and Khan, 2013; Archer and
Fowler, 2008; Faisal and Gaffar, 2012; Reale et al., 2012; Salma et al.,
2012) focused in Pakistan indicate that rainfall forecasting has been
mostly based on statistically-based models. In addition to this, a ma-
jority of these studies have been conducted to forecast seasonal rainfall
using several different datasets. Moreover, there is a limitation of ap-
plying advanced data-intelligent models (considering significantly non-
linear behavior of rainfall and its predicators) for accurate forecasting
at a micro (or landscape) scale, which can provide help in decision-
making for a better management of water resources and flood model-
ling in the future aimed to reducing the overall risk. For example ac-
curate forecasting is beneficial at catchment scale for agro-forestry
applications (Terêncio et al., 2018; Terêncio et al., 2017). Accurate
rainfall forecasting can have several economic benefits, for example, a
realistic forecast of heavy rainfall could allow airline dispatches to rout
their flights in a timely manner (Graham, 2002). In addition to this, a
more accurate rainfall forecasting tool might enable appropriate deci-
sion about flooding, crop sowing and harvesting and managing of water
resources (Graham, 2002; Jones et al., 2000; Toth et al., 2000). To
address these issues, there is an apparent need for data intelligent
models to forecast rainfall more accurately than the currently

statistically-based (i.e., regression) approaches that have various data
distribution or linearity assumptions.

In this study, for the first time, a multi-stage online sequential ex-
treme learning machine (OS-ELM) model integrated with Markov Chain
Monte Carlo (MCMC) based copulas and the Bat algorithm is developed,
denoted as the “MCMC-Cop-Bat-OS-ELM model”. For the purpose of
comparison, the standalone extreme learning machine (ELM) without
any hybridization and the random forest (RF) models are also devel-
oped. The proposed multi-stage MCMC-Cop-Bat-OS-ELM model is
tested for rainfall forecasting in three agricultural districts: Faisalabad,
Multan, and Jhelum located in Pakistan. The novelty of this study is
therefore, to design and apply the newly proposed multi-stage, hybrid
MCMC-Cop-Bat-OS-ELM model for rainfall forecasting in Pakistan, a
developing nation where accurate predictions are likely to promulgate
significant benefits to agriculture, climate adaptation and decision-
making in the water resources sector.

To test the applicability of the proposed multi-stage MCMC-Cop-Bat-
OS-ELM model, this study fulfils four objectives: (1) To develop a
probabilistic MCMC based copula model integrated with the Bat algo-
rithm in order to determine the optimal MCMC-copula model; (2) To
incorporate the selected optimal MCMC-copula model based on the Bat
algorithm in the OS-ELM model to develop a multi-stage MCMC-Cop-
Bat-OS-ELM hybrid prediction tool; (3) To incorporate the significant
antecedent lagged rainfall to effectively forecast the current and future
rainfall in the consequent month; and (4) To validate the forecasting
ability of the proposed hybrid MCMC-Cop-Bat-OS-ELM model for
rainfall forecasting in Pakistan.

The literature on accurate rainfall forecasting shows that several
approaches were adopted using data intelligent models.

2. Previous work

Accurate rainfall forecasting provides a key role in agriculture,
water resources and early flooding warning systems (Yaseen et al.,
2018, 2017, 2016). Ortiz-García et al. (2014) used support vector
classifiers to forecast rainfall in Spain using meteorological variables
and observational data to forecast rainfall in Spain using support vector
classifiers in comparison with multi-layer perceptron, extreme learning
machine, decision trees and K-nearest neighbor model. Kashiwao et al.
(2017) developed a neural network-based local rainfall prediction
system in Japan using different climatological data but their findings
were not significant as Japan Meteorological Agency. Their findings
were based on different precipitation levels (volume of rainfall) at
different times (hours). Sánchez-Monedero et al. (2014) modelled
rainfall utilizing hierarchical nominal–ordinal support vector classifier
in Spain. Their work was based to forecast the occurrence and amount
of rainfall using meteorological variables. Abbot and Marohasy (2014)
applied artificial neural network to forecast monthly rainfall in Aus-
tralia utilizing climate indices and they found Inter-decadal Pacific
Oscillation has significant influence on rainfall.

Literature on rainfall forecasting using different data intelligent
models around the globe is widely available. For example; Villafuerte
et al. (2014) analyzed long-term trends and variability of rainfall ex-
tremes in the Philippines where the results were showing that inter-
annual variations in extreme precipitation indices are influenced
greatly by the El Niño–Southern Oscillation Moazami et al. (2014)
designed Gaussian copula methods to estimate rainfall in Iran using
satellite data where the results were slightly improved by 35.42%
(RMSE) and 36.66% (r). Terêncio et al. (2017) developed a model based
on flexible weights by incorporating Multi Criteria Analysis and Geo-
graphic Information Systems for allocating rainwater in Portugal on the
basis of physical, socio-economic and ecologic variables. In another
study, Terêncio et al. (2018) conducted a study on the balance of
rainwater between sustainability and storage capacity using dam wall
height as evaluation parameter. Several other rainfall studies have been
developed based on statistical or machine learning models (Bellu et al.,
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2016; Dai et al., 2014; Darji et al., 2015; Hardwinarto and Aipassa,
2015; He et al., 2013; Khedun et al., 2014). In this work, a multi-stage
probabilistic machine learning model (MCMC-Cop-Bat-OS-ELM) is de-
signed which utilizes MCMC based copula in combination with a Bat
algorithm and OS-ELM model which is tested in different geographic
locations in Pakistan.

3. Theoretical framework

3.1. Online sequential extreme learning machine (OS-ELM)

ELM is a state-of-the-art data intelligent model developed by Huang
et al. (2006) used for the purpose of designing a Single Layer Feed-
forward Neural Network (SLFN). ELM is relatively faster, and thus
computationally efficient compared with other traditional learning al-
gorithms (Rajesh and Prakash, 2011; Deo and Şahin, 2015; Deo et al.,
2017). The SLFN with M hidden nodes of N arbitrary inputs
(xk,yk)∈ Γn× Γn with an activation function f(.) can be mathematically
formulated as:

∑ =
=

ρ f x c w y( ,; , )
i

M

i k i i k
1 (1)

Where k=1, 2, ⋯, N, ci∈ Γis the bias of ith node which is assigned
randomly whereas wi∈ Γ is a random input weight vector. The function
g(xk, ;ci, wi

) denotes the output corresponding to the ith hidden node
with respect to inputxk. Therefore Eq. (1) reduces to the following form:
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solution of the linear systems provides the following output weight:

= +β YΗ (3)

Where Η+represents the Moore–Penrose generalized inverse ofΗ.
The SLFNs with random input weight selection effectively acquire dis-
tinct training examples with minimum chance of error (Huang, 2003;
Tamura and Tateishi, 1997).

The traditional ELM uses all N-samples of data for training purposes
but in real applications, this data may use chunk-by-chunk (or one-by-
one) because the learning process is time consuming in ELM which
requires each time new training data.

As a variant of the classical ELM model, the online sequential ex-
treme learning algorithm (OS-ELM) operates in two learning phases)
i.e., initialization and a sequential learning phase. In OS-ELM, the
matrix H0 in the initialization phase is filled which is later used in the
learning phase. In the initialization phase, the random weights and
biases are assigned to the small chunk of initial training data to com-
pute the hidden layer output matrix. The sequential learning phase is
then commenced either on a one-by-one or chunk-by-chunk basis and
the used data is not allowed to be used again. For more details on OS-
ELM, the readers are referred to a number of previous studies (e.g., (Lan
et al., 2009; Liang et al., 2006; Yadav et al., 2016)).

3.2. Markov chain Monte Carlo (MCMC) based statistical copula model

In this study we hybridize the OS-ELM algorithm with a copulas, a
set of powerful mathematical tools that have the ability to connect two
or more time-independent variables (Nelsen, 2003). A copula function
is basically a mathematical function that is defined from I2(F,G) to I(H)
such that [F(x),G(y),H(x,y)] is a point in I3with I∈ [0,1] and X, Yare
continuous random variables with distribution functions F(x)= P
(X≤ x) and G(y)= P(Y≤ y), and H(x,y)= P(X≤ x,Y≤ y) is a func-
tion that describes their joint distribution.

In this paper, we utilize the 25 different types of copulas to improve
the performance of the OS-ELM model. The primary copulas can be
written mathematically as follows:

I. the Gaussian copula (Li et al., 2013), expressed as:

∫ ∫ ⎜ ⎟
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II. a t-copula (Li et al., 2013), formulated as:
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III. a Clayton copula (Clayton, 1978), written as:
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IV. a Frank copula (Li et al., 2013), which may be defined according to
the following mathematical formulation:
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V. a Gumble copula (Li et al., 2013), expressed as:

− − + − ∈ ∞( )a b θexp ((( ln( )) ) ( ln( )) ) , [1, )θ θ θ
1

(8)

VI. a Fischer-Hinzmann copula (Fischer and Hinzmann, 2006), given
as:

+ − ∈ ∈θ a b θ ab θ θ[ (min( , )) (1 )( ) ] , [0, 1],θ θ
1 1 1 2θ2 2

1
2  (9)

The remaining 19 different types of copulas used in this paper have
been discussed in previous studies (Mojtaba Sadegh and AghaKou,
2017). In all types of copula-based models an unknown process κ links
observation ∼Y to parameters θ∗in the modelling inference analysis
(Mojtaba Sadegh and AghaKou, 2017) and can be given through the
following equation.

= +∼ ∗Y κ θ ξ( ) (10)

Where ξindicates a vector of measurement errors. The vector
= −∼e Y Y is called the error residual and e={e1,e2,⋯,en}where n is

the number observations that include the effects of model structural
errors (Mojtaba Sadegh and AghaKou, 2017). Bayesian analysis is going
to be carried for model inference and uncertainty quantification pur-
poses because Bayesian analysis quantifies uncertainty with a prob-
ability distribution (Mojtaba Sadegh and AghaKou, 2017).

Bayes' law attributes all modelling uncertainties to the parameters
and estimates the posterior distribution of model parameters by the
following equations (Mojtaba Sadegh and AghaKou, 2017):

=∼
∼
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p θ p Y θ
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Where p(θ)and ∼p θ Y( | ) defines prior and posterior distribution of
parameters, respectively. Further, ≃∼ ∼p Y θ L θ Y( | ) ( | ) denotes the
likelihood given as,
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To solve Eq. (12) analytically and numerically, a Markov Chain
Monte Carlo (MCMC) simulation technique will be adopted to sample
from the posterior distribution. For more details, readers are referred to
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(Mojtaba Sadegh and AghaKou, 2017).

3.3. Bat algorithm

The bio-inspired Bat algorithm is used to rank the best MCMC based
copula models in this paper where the performance of the OS-ELM al-
gorithm can be improved with a copula-driven approach. The Bat al-
gorithm originally introduced by Yang (2010) is mainly based on the
echolocation behavior of micro bats. In this ranking algorithm, each bat
is encoded with a velocity, frequency and location at an integration in a
space (solution space) (Fister et al., 2014). The location is then con-
sidered the desired solution of the problem in the Bat algorithm.
Mathematically, the modified location xt

j with velocity νt
j can be ex-

pressed as:

= + −f f f f β( )j min max min (13)

= + −− −
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j
t

j
t

j j
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Where x∗ is the current location and β∈ [0,1] is a vector from a
uniform distribution.

= +−x x νt
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t
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1 (15)

Further, the loudness and pulse emission rated can be given as:

=+ αΦ Φj
t

j
t1 (16)

= − −+t r γt(1 exp( ))j
t

j
1 0 (17)

Where 0 < α < 1 and γ > 0. At first stage, the initial population
with parameters is generated to determine the best solution in the po-
pulation.

In the next stage of modelling, the bats are then moved to update
the rules in the search space to improve the best solution using random
walks. Next, the best solution is evaluated by conditional archiving to
update the current best solution. Detailed literature on the Bat algo-
rithm can be seen in (Cai et al., 2014; Fister et al., 2014; Fister Jr et al.,
2013; Yang, 2011; Yang and He, 2013).

3.4. Random forest model

To assertain it a robust forecast rool, the skill of multi-stage hy-
bridized MCMC-Cop-Bat-OS-ELM model is benchmarked with a random
forest (RF) equivalent data-intelligent model. It is noteworthy that the
ensemble learning strategies such as bootstraping and bagging gen-
erates classifiers and aggregates the results in the form of decision trees
(Breiman, 1996; Schapire et al., 1998). Therefore, the random forest
(RF) model is basically a baggging approach with an additional layer of
randomness in the prediction process (Breiman, 1996). Each node is
split using randomly chosen best subsets of predictors that perform very
well and are robust against the overfitting (Breiman, 2001).

The strategy of RF can be presented in the following steps.
Step 1: Construct ntrees of bootstrapping from the input data where n

is the number of trees.
Step 2: Grow an unpruned regression tree by randomly sample mtry

of the predictors to select best split among the variables.
Step 3: Aggregate the predictions of ntrees to predict new data.
Detailed analysis on RF can be seen in (Breiman, 2001; Liaw and

Wiener, 2002; Robert et al., 1998; Segal, 2004).

4. Materials and method

4.1. Rainfall data

In this paper, we use the rainfall data obtained from the Pakistan
Meteorological Department, Pakistan for the year 1981 to 2015 (PMD,
2016) for the selected regions, Faisalabad, Multan, Jhelum in Punjab, as
shown in Fig. 1.

To evaluate the versatility of the multi-stage, hybridized MCMC-
Cop-Bat-OS-ELM model for rainfall forecasting in Pakistan's agricultural
belt, the study sites were chosen carefully to ensure that they were
broadly representative of the diverse climatic conditions. The first site,
Faisalabad, is classified as desert with average annual rainfall of
375mm, and it is situated in the rolling flat plains of northeast Punjab
(Table 1) (Servey, 2016). It is especially noted that Faisalabad is a
major producer of wheat, rice, cotton, sugarcane, maize, vegetables and
fruits. The next study site, Multan is located in the southern part of
Punjab province. At this site, the climate is generally arid with rela-
tively hot summers, and an average temperature of 42.3 °C. The third
study site, Multan bears some of the most extreme temperatures in the
country as well as the coldest winters (Department, 2010; PMD, 2016).
It is noteworthy that Cotton, Citrus, and Mango are heavily reliant upon
the availability and sustainable management of water received through
rainfall and it is the major economic crop in Multan. Jhelum, on the
other hand, is located in the Pothohar Plateau of the Punjab province of
Pakistan where agriculture in the district Jhelum is strongly dependent
on rainfall. Major crops such wheat, pulses, bajra, maize, rice, fruits and
vegetables are known commodities that support the livelihood of the
Pakistani people.

4.2. Development and validation of the proposed forecasting model

Historical rainfall data were used to develop the proposed mutli-
stage MCMC-Cop-Bat-OS-ELM model. The original rainfall data with
statistically significant lagged values at (t – 1) as the input predictor was
employed in the first stage of model development. The proposed
MCMC-Cop-Bat-OS-ELM model was developed under the MATLAB en-
vironment on a Pentium 4 2.93 GHz dual core Central Processing Unit.
The development and validation of the multi-stage MCMC-Cop-Bat-OS-
ELM model can be described in the following four stages:

Stage 1: The statistically significant lags were calculated from the
original rainfall data using the partial autocorrelation function (PACF)
that can be seen in Fig. 2.

Stage 2: After incorporating the significant lag at (t – 1) as the input
predictor, the MCMC simulation technique adopts the global and local
optimization appraoch to determine the best copula parameters.
Twenty-five different types of MCMC based bivariate copulas were
employed at this stage. The MCMC algorithm begins with a random
search to find the optimum copula parameters adapting the Shuffled
Complex Evolution algorithm (Duan et al., 1993). The sample selection
acquires the highest likelihood value as the initial point for a Markov
chain in intelligent prior sampling. The jump direction is then diversi-
fied by the adaptive metropolis algorithm (Haario et al., 2001) to en-
hance the search. The MCMC based copula models are then moved in
the next stage for ranking purposes.

Stage 3: The bio-inspired Bat algorithm is applied to rank the MCMC
based copula models and determine the best copula models using a
feature selection strategy. Some predefined parameters need to be de-
fined at this stage. The number of bats in this research were 100 with
250 iterations where a predefined minmum and maximum frequency
(20 and 50 respectively) were used.

Stage 4: Again, the PACF was used to calcuate the statistical sig-
nificant lag of the selected MCMC based copula models. The signifcant
lags of each selected MCMC copula models based on the Bat algortihm
are then incporated as input predictors in the OS-ELM model the for
final rainfall forecasting. Different acitvation functions were tested to
determine the best acitvation function. The optimal radial base function
(rbf) was found when the number of hidden neurons was 60 and block
size set to 1 in the development of MCMC-Cop-Bat-OS-ELM. For com-
parison purpose, extreme learning machine (ELM) and random forest
(RF) models were evaluated (Fig. 3).

Following (Deo et al., 2017), data were partitioned into 70% and
30% for training and testing purposes. The normalization of data was
accomplished by statistical rules to overcome the numerical difficulties
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caused by the data features, patterns and fluctuations (Hsu et al., 2003)
using:

= −
−

x x x
x x
( )

( )norm
min

max min (18)

where x describes any datum point of input or output variable, xminis
the minimum value of the whole dataset, xmaxis the maximum value
and xnormdenotes the normalized datum point. The correlation coeffi-
cient ‘r’, in combination with the mean squared error, MSE was applied
to investigate the performance of the MCMC-Cop-Bat-OS-ELM with
other counterpart models in the training period (Table 2).

The magnitudes of r and MSE attained in training of the hybrid
MCMC-Cop-Bat-OS-ELM model for monthly rainfall forecasting at
Faisalabad were seen to be: (r=0.984, MSE=381.40mm). Equivalent
metrics for Jhelum were found to be: (r=0.992, MSE=568.69mm)
and finally for Multan were: (r=0.990, MSE=48.13mm). For com-
parison, the MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF model were
also studied.

The magnitudes of these assessment metrics can be seen in Table 2.
Overall, the training performance of the MCMC-Cop-Bat-OS-ELM model
was high for all of the study regions. It is thus envisaged that the

MCMC-Cop-Bat-OS-ELM model testing performance, as seen later, is
relatively accurate for rainfall forecasting at these tested sites.

4.3. Model performance criteria

In this paper, we have applied different types of assessment tools in
model evaluation phase. The mathematical formulations of all these
assessment metrics are given as follows:

I. The Likelihood value (MaxL) (Thyer et al., 2009), calculated as:
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II. The Akaike Information Criterion (AIC) (Akaike, 1974), given by:
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Fig. 1. Map of the agricultural regions in Pakistan showing the sites considered for the development of the multi-stage hybrid MCMC-Cop-Bat-OS-ELM model.

Table 1
Descriptive statistics of the study sites.

Station Geographic characteristics Rainfall (mm)

Longitude Latitude Elevation (m) Mean Std. Min Max Skewness Kurtosis

Faisalabad 73.080 31.420 184 35.40 49.28 0.10 435.3 3.04 14.01
Jhelum 73.720 32.920 234 75.66 92.25 0.20 648.6 2.32 7.07
Multan 71.47o 30.190 129 21.70 30.44 0.10 217.3 3.17 13.11
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III. The Bayesian Information Criterion (BIC) (Schwarz, 1978), is given
by:
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IV. Correlation coefficient (r) (Dawson et al., 2007), expressed as:
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V. Willmott's Index (WI) Willmott (1981), expressed as:
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VI. Nash-Sutcliffe coefficient (NSE) (1970), expressed as:

= −

⎡

⎣

⎢
⎢
⎢
⎢

∑ −

∑ −

⎤

⎦

⎥
⎥
⎥
⎥

=

=

NS
R R

R R
1

( )

( )
E

i

N

obs i for i

i

N

for i for i

1
, ,

2

1
, ,

2

(24)

VII. Root mean square error (RMSE) is expressed as:
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VIII. Root mean square error (RMSE) (Dawson et al., 2007), expressed
as:
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IX. Mean absolute error (MAE) (Dawson et al., 2007), expressed as:
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X. Legates-McCabe's Index (LM) (Legates and McCabe, 1999), ex-
pressed as:
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XI. Relative root mean square error (RRMSE¸%) (Legates and McCabe,
1999), expressed as:
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XII. Relative mean absolute percentage error (RMAE; %) (Legates and
McCabe, 1999), expressed as
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where Robs, i and Rfor, i are the observed and forecasted ith value of
rainfall R, Robs i

_
, and Rfor i

_
, are the observed and forecasted mean of R,

and N is the number of tested data points.

It is important to clarify that =
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and CSis a constant,
Eqs. (19)–(21) are used to assess the fitting of copula models whereas
Eqs. (22)–(27) show the performance accuracy of the proposed MCMC-
Cop-Bat-OS-ELM model while Eqs. (28)–(30) are utilized for

Fig. 2. Partial autocorrelation function (PACF) of historical monthly rainfall time-series in the model's training phase for Faisalabad, Multan, and Jhelum stations
used in this study. The green dashed lines denote the statistically significant boundary at the 95% confidence interval. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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geographical comparison of different sites. For further details about
these performance metrics, readers are to consult other research works
(e.g., (Dawson et al., 2007; Ertekin and Yaldiz, 2000; Legates and
McCabe, 1999; Mohammadi et al., 2015; Nash and Sutcliffe, 1970;
Willmott, 1981, 1982, 1984; Willmott et al., 2012)).

5. Results

The results of the MCMC-Cop-Bat-OS-ELM with the comparative

models, MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF have been eval-
uated based on the above criterion (Eqs. (19)–(30)). Table 3 shows the
selected MCMC-copula model using the Bat algorithm on the basis of
feature selection. Out of a total of twenty-five tested MCMC-copula
models, seven were selected to be the best by the Bat algorithm for
Faisalabad, eight for Jhelum and seven for Multan station. The accuracy
error of the Bat algorithm for Multan station is approximately 0.042
between the cost and objective function during the selection of MCMC
based copula models. Similarly, this error for Jhelum and Multan

Fig. 3. Flow chart of the proposed multi-stage, hybrid MCMC based copulas integrated with Bat algorithm and OS-ELM model.

M. Ali et al. Atmospheric Research 213 (2018) 450–464

456



station is 0.044 and 0.052 respectively.
Table 4 shows the values of Local (αi, i=1,2,3) and MCMC

(βi, i=1,2,3) parameters with 95% confidence interval (CI) of MCMC
based bivariate copula models. The MCMC based MCMC-Gumble co-
pula attained these values (α1≈1.48, β1≈1.48, CI([1.46 1.49]))
whereas MCMC- Joe copula (α1≈1.81, β1≈1.81, CI([1.77 1.85])) and
MCMC-Cubic (α1≈2.00, β1≈2.00, CI([1.52 1.99])) for Faisalabad (see,
Table 4). Similarly, Table 4 shows the values of these metrics for Multan
and Jhelum stations. Since the values of CI for all selected MCMC based
copula models are positive, the fitting of copulas are correct and results
are significant.

Table 5 presents the preciseness of selected MCMC based copula
models in terms of AIC, BIC and MaxL. The MCMC based F-H copula in
Faisalabad station attained the highest values of AIC≈ −3961.3, BIC≈
−3953.2, MaxL≈ 1982.7, followed by the MCMC-Gumble copula
where, AIC≈− 3909.1, BIC≈− 3905.1, MaxL≈ 1955.6 and MCMC
based on a Cuadras-Auge copula with AIC≈− 3897.9,
BIC≈− 3893.9, MaxL≈ 1950.0. For Multan, the best MCMC copula
appeared to be BB5 which obtained AIC≈− 3890.8, BIC≈− 3882.7,
MaxL≈ 1947.4, followed by MCMC based BB1 copula
(AIC≈− 3887.9, BIC≈− 3879.8, MaxL≈ 1945.9) and MCMC-Frank-
copula (AIC≈− 3887.4, BIC≈− 3883.4, MaxL≈ 1944.7). For Jhelum
station, the MCMC based Roch-Alegre copula attained high perfor-
mance accuracy (AIC≈− 4083.7, BIC≈− 4075.6, MaxL≈ 2043.9)
followed by Joe (AIC≈− 4007.2, BIC≈− 4003.2, MaxL≈ 2004.6)
and Fischer-Hinzmann (AIC≈− 4002.0, BIC≈− 3993.9,
MaxL≈ 2003.0). Overall, Jhelum attained highest accuracy in terms of
AIC, BIC and the MaxL criterion followed by Faisalabad and Multan.

Fig. 4(a-c) displays a scatterplot showing the goodness-of-fit. Its
correlation coefficient r is also shown to depict the extent of agreement
between forecasted and observed rainfall. The MCMC-Cop-Bat-OS- ELM
model is clearly better than MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-
RF in terms of r2 (MCMC-Cop-Bat-OS-ELM≈0.972, MCMC-Cop-Bat-
ELM≈0.940, MCMC-Cop-Bat-RF≈ 0.908) for Faisalabad station.
Again, the proposed MCMC-Cop-Bat-OS-ELM model is more accurate
for Multan, and Jhelum stations in terms of the achieved r2 as compared
to MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF models. Overall, the
proposed multi-stage MCMC-Cop-Bat-OS-ELM model convincingly
outperforms the comparison models for all the study regions, confirmed
by attaining the larger r2-value.

The percentage of the empirical cumulative distribution function
(ECDF) was plotted at each station for different forecasting abilities in

Fig. 5. According to this figure, the MCMC-Cop-Bat-OS-ELM method
was slightly better than MCMC-Cop-Bat-ELM for all stations, and both
models were superior to the MCMC-Cop-Bat-RF model. Based on the
percentage of errors in the bracket (0 to±300mm) for the Faisalabad
Jhelum and Multan station, Fig. 5 clearly confirms that the MCMC-Cop-
Bat-OS-ELM method was the most responsive model in forecasting
rainfall data.

Table 6 presents the preciseness of the proposed multi-stage MCMC-
Cop-Bat-OS-ELM model in comparison with the MCMC-Cop-Bat-ELM
and MCMC-Cop-Bat-RF models, evaluated for all stations in terms of
RMSE, MAE, r, NSE and WI. The proposed MCMC-Cop-Bat-OS-ELM
model in Faisalabad station attained the lowest values of
RMSE≈16.59mm, MAE≈12.83mm while the highest values of
r≈ 0.986, NSE≈ 0.971 and WI≈0.972 were followed by MCMC-Cop-
Bat-ELM (RMSE≈24.89mm, MAE≈18.64mm, r≈ 0.968,
NSE≈ 0.9344 and WI≈0.935) and the MCMC-COP-Bat-RF
(RMSE≈29.65mm, MAE≈19.43mm, r≈ 0.953, NSE≈ 0.899 and
WI≈0.900). For Multan and Jhelum stations, again the MCMC-Cop-
Bat-OS-ELM appeared to the best followed by MCMC-Cop-Bat-ELM and
MCMC-Cop-Bat-RF models.

The proposed MCMC-Cop-Bat-OS-ELM shows good accuracy in
comparison with the other two counterparts. Multan attained the
highest accuracy in terms of lowest RMSE, and MAE values and the
highest r, NSE and WI agreements followed by Faisalabad, and Jhelum.

Fig. 6 compares boxplots of the MCMC-Cop-Bat-OS-ELM model with
MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF models for each station.
The outliers specified by + in every boxplot represent the extreme
magnitudes of the forecasting error |FE| within the testing period
(months) along with their upper quartile, median and lower quartile
values. The distributed |FE| is justified by these boxplots showing a
much lesser spread was achieved by the MCMC-Cop-Bat-OS-ELM model
for Faisalabad followed by the MCMC-Cop-Bat-ELM and MCMC-Cop-
Bat-RF models.

The proposed MCMC-Cop-Bat-OS-ELM model again achieved a good
accuracy in terms of |FE| for Jhelum station in relation to the coun-
terpart models. Similarly, the MCMC-Cop-Bat-OS-ELM model per-
formed well for Multan station in rainfall forecasting followed by the
MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF models. By observing
Fig. 6, the accuracy of the MCMC-Cop-Bat-OS-ELM model for all sta-
tions appeared to be better than the other models.

Table 7 shows a geographical comparison of the proposed multi-
stage MCMC-Cop-Bat-OS-ELM model using relative root mean squared
error (RRMSE), relative mean absolute error (RMAE) and Legates &
McCabe's Index (LM) for the different locations (Faisalabad, Jhelum,
and Multan). Jhelum appeared to be the most accurate station in
forecasting rainfall by MCMC-Cop-Bat-OS-ELM (LM≈0.881,
RRMSE≈11.27%, RMAE≈40.12%), MCMC-Cop-Bat-ELM (LM≈0.769,
RRMSE≈21.56%, RMAE≈132.50%) and MCMC-Cop-Bat-RF
(LM≈0.584, RRMSE≈40.87%, RMAE≈303.60%) followed by Multan
and Faisalabad respectively. In terms of site-averaged performance, the
MCMC-Cop-Bat-OS-ELM model was found to yield the highest Legates-
McCabe's agreement and lowest relative percentage errors (RRMSE,
RMAE).

Fig. 7(a-c) is a Taylor diagram. This diagram provides a more con-
crete and conclusive argument about the statistical summary of how
well the forecasted rainfall matched with the observed rainfall in terms
of their correlation. The similarity between forecasted and observed

Table 2
The performance evaluation of the proposed hybrid MCMC-Cop-Bat-OS-ELM in
respect to the hybrid MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF models in the
training period based on the mean square error (MSE) and correlation coeffi-
cient (r).

Model Faisalabad Jhelum Multan

r MSE (mm) r MSE (mm) r MSE (mm)

MCMC-Cop-Bat-
OS-ELM

0.984 381.40 0.992 568.69 0.990 48.13

MCMC-Cop-Bat-
ELM

0.974 635.05 0.972 1956.24 0.984 80.13

MCMC-Cop-Bat-
RF

0.938 1741.66 0.917 8424.31 0.903 549.14

Table 3
The selected Markov Chain Monte Carlo (MCMC) based copula models ranked by the Bat algorithm. Note that a total of 25 MCMC-copula models were used here.

Station Selected copula models Total selected model MSE (mm)

Faisalabad Gumbel Joe FGM Cuadras-Auge Cubic Burr F-H TAWN 7 0.042
Multan Frank Joe Burr M-O F-H BB1 BB5 8 0.044
Jhelum Joe Cuadras-Auge Cubic Burr F-H Roch-Alegre BB1 7 0.052
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rainfall is quantified in terms of their correlation and standard devia-
tions.

For Faisalabad station, the correlation of the MCMC-Cop-Bat-OS-
ELM model with observations was about 0.98, followed by MCMC-Cop-
Bat-ELM≈0.96 and MCMC-Cop-Bat-RF≈ 0.95. The MCMC-Cop-Bat-
OS-ELM model was closer to the observed rainfall as its correlation is
about 0.991 compared to MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF
for Jhelum station. Similarly the MCMC-Cop-Bat-OS-ELM again ap-
peared to be the best model for Multan station because its correlation
lies within close neighbourhood of observed rainfall data. Overall, the
correlation of the MCMC-Cop-Bat-OS-ELM model was closer to the
observed rainfall compared to the other models.

6. Discussion: limitations and opportunity for further research

Accurate rainfall forecasting can complement and facilitate better
planning of water management (Terêncio et al., 2018; Ali et al., 2018;
Yaseen et al., 2016, 2017, 2018). (Terêncio et al., 2018). Furthermore,
accurate predictions of rainfall can reduce water-related natural

disasters (Barredo, 2007; Langridge et al., 2006; Palmer, 1965;
Vörösmarty et al., 2010), and potential impacts upon wildlife health,
infrastructure and the economy (Bhalme and Mooley, 1980). The total
economic damage done by rainfall in Pakistan, the case study in this
paper, can be considerable, totaling more than 40 billion US dollars in
2010 (Mansoor, 2010; Tarakzai, 2010). Advance data-driven models
can offer a viable and reasonably accurate solution to disaster man-
agement through a projection of the future trends in rainfall utilizing
past datasets (Luk et al., 2001).

This paper has designed a new hybrid multi-stage MCMC-Cop-Bat-
OS-ELM model that uses historical significant rainfall lags (t – 1) as a
predictor to forecast the current and future rainfall within the agri-
cultural region of Pakistan. The proposed hybrid multi-stage MCMC-
Cop-Bat-OS-ELM model is compared with the MCMC-Cop-Bat-ELM and
MCMC-Cop-Bat-RF models to evaluate its predictive ability. The de-
signed MCMC-Cop-Bat-OS-ELM model performed reasonably well be-
cause of the improved features estimated by the distribution of MCMC
copula models (Mojtaba Sadegh and AghaKou, 2017). The MCMC based
copula used Bayesian analysis centred on likelihood function estimate

Table 4
Local (αi, i=1,2,3) and MCMC (βi, i=1,2,3) estimated copula parameters with the 95% confidence of interval (CI).

Faisalabad

Copula α1 α2 α3 β1 β2 β3 95% CI (α1,β1) 95% CI, (α2,β2) 95% CI,
(α3,β3)

Gumbel 1.38 1.48 [1.46 1.49]
Joe 1.81 1.81 [1.77 1.85]
FGM 1.00 1.00 [0.99 1.00]
Cuadras-Auge 0.48 0.48 [0.47 0.48]
Cubic 2.00 2.00 [1.52 1.99]
Burr 1.11 1.11 [1.06 1.16]
Fischer-Hinzmann 0.43 0.61 0.43 0.61 [0.41 0.44] [0.49 0.73]
Multan
Frank 1.02 1.12 [1.06 1.18]
Joe 1.24 1.24 [1.22 1.25]
Burr 3.54 3.54 [3.35 3.75]
Marshal-Olkin 12.73 23.93 0.31 0.16 [0.15 0.33] [0.14 0.30]
Fischer-Hinzmann 0.26 −1.14 0.26 −1.16 [0.23 0.29] [−1.94 -0.67]
BB1 28.52 31.80 0.02 1.14 [0.00 0.04] [1.11 1.15]
BB5 1.00 0.39 1.00 0.38 [1.00 1.15] [0.01 0.38]
TAWN 1.00 0.92 1.1534 1.00 0.98 1.1464 [0.50 0.99] [0.45 0.98] [1.14 1.31]
Jhelum
Joe 1.42 1.42 [1.40 1.44]
Cuadras-Auge 0.31 0.31 [0.29 0.32]
Cubic 0.75 0.75 [0.11 1.37]
Burr 2.09 2.09 [2.01 2.15]
Fischer-Hinzmann 0.52 −3.64 0.52 −3.68 [0.49 0.53] [−4.02–3.25]
Roch-Alegre 0.35 1.50 0.35 1.49 [0.26 0.41] [1.46 1.53]
BB1 0.00 1.23 0.00 1.23 [0.00 0.00] [1.22 1.24]

Table 5
Evaluation of the MCMC based copulas models constructed with model data significant at a lag (t – 1) using the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) and Maximum Likelihood (Maxl) criterion for each station.

Faisalabad

Criteria Gumbel Joe FGM Cuadras-Auge Cubic Burr F-H

AIC −3909.1 −3490.9 −3452.3 −3897.9 −2566.7 −3571.8 −3961.3
BIC −3905.1 −3486.9 −3448.3 −3893.9 −2562.6 −3567.8 −3953.2
MaxL 1955.6 1746.5 1727.2 1950.0 1284.3 1786.9 1982.7
Multan

Frank Joe Burr M-O F-H BB1 BB5 TAWN
AIC −3887.4 −3820.9 −3874.5 −3787.1 −3802.5 −3887.9 −3890.8 −3884.6
BIC −3883.4 −3816.9 −3870.5 −3779.0 −3794.5 −3879.8 −3882.7 −3872.5
MaxL 1944.7 1911.5 1938.3 1895.6 1903.3 1945.9 1947.4 1945.3
Jhelum

Joe Cuadras-Auge Cubic Burr F-H Roch-Alegre BB1
AIC −4007.2 −3669.3 −2945.6 −3985.2 −4002.0 −4083.7 −3798.3
BIC −4003.2 −3665.3 −2941.6 −3981.2 −3993.9 −4075.6 −3790.2
MaxL 2004.6 1835.7 1473.8 1993.6 2003.0 2043.9 1901.2
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Fig. 4. Scatterplot of the forecasted and observed rainfall (mm) in the testing phase for the proposed hybrid MCMC-Cop-Bat-OS-ELM, MCMC-Cop-Bat-ELM and
MCMC-Cop-Bat-RF models using the 1-month (t – 1) significantly lagged data including the coefficient of determination (r2) and a linear fit inserted in each panel for
study zones (a) Faisalabad, (b) Jhelum and (c) Multan.
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copula parameters with underlying uncertainties (Mojtaba Sadegh and
AghaKou, 2017).

In this paper, the Bat algorithm ranked the MCMC-copula models to
select the optimal bivariate copula. The frequency of the Bat algorithm
was tuned continuously which used echolocation to find the optimum
MCMC-copula (Yang and He, 2013). Moreover, the automatic zooming
in Bat algorithm searched for promising optimal MCMC-copulas at a
faster convergence rate (Yang and He, 2013). The ability of parameter
control in the Bat algorithm provides optimal MCMC-copula models
(Yang and He, 2013). Finally the online- sequential learning strategy
(Yadav et al., 2016) adopted in OS-ELM model to further optimize the
forecasting accuracy using the selected MCMC-Cop-Bat models.

The proposed MCMC-Cop-Bat-OS-ELM with its counterpart models
was successfully evaluated to yield high accuracy based on RRMSE and
RMAE metrics respectively with a reasonably large statistical correla-
tion of Legates-McCabe's (LM≈0.881) between the forecasted and ob-
served rainfall for Jhelum station and similarly for other stations
(Table 7). The proposed MCMC-Cop-Bat-OS-ELM is a suitably optimized
model because of the selected optimum MCMC-copulas based on the
Bat optimization algorithm as well as tested several activation functions

in combination with hidden neurons for a more advance fast learning
algorithm, OS-ELM. Therefore, the proposed MCMC-Cop-Bat- OS-ELM
model can be used to forecast rainfall in the future where the fore-
casting of rainfall will likely become even more important due to in-
creasing demand for water resources and agricultural growth in terms
of irrigation and where such large datasets are available for model
training.

This study can be extended to other locations where rainfall data is
available to provide accurate forecasting of future rainfall.
Furthermore, the present study can also be extended by an alternative
method for rainfall prediction within a probabalistic framework using a
vine copula approach and the multi-stage MCMC-Cop-Bat-OS-ELM
model can be compared accordingly (Nguyen-Huy et al., 2017). Due to
the superior and accurate performance, it is to be noted that the pro-
posed MCMC-Cop-Bat-OS-ELM model may be a successful predictor of
other related data sets such as crop yield estimation, droughts events,
etc. This may be of great interest to government policy makers and
agricultural engineers to avoid the possibility of inaccurate estimation
in the future (Akhtar, 2014; Niaz, 2014).

Due to the aforementioned qualities of the proposed multi-stage
MCMC-Cop-Bat-OS-ELM model, it is possible to apply it to the fore-
casting of other climatological parameters such as temperature, hu-
midity, wind speed, solar radiation, and soil moisture. As Pakistan is
currently suffering from global warming (Abubakar, 2017), heatwave
and drought forecasting may be another possible avenue for future
work using these models. Another possible study may involve use of
several types of climatological parameters and indices to forecast
rainfall. The rainfall data of several different stations may be used for
training to develop a future universal rainfall forecasting model for
Pakistan.

In terms of model optimization for rainfall forecasting, the hy-
bridization of different models has the potential to generate better es-
timates than standalone models. Therefore, the proposed models could
be optimized with ensemble methods (Ali et al., 2018; Dietterich, 2002;
Lei and Wan, 2012; Yun et al., 2008) to achieve more accurate results
and confidence intervals, improving on the current level of uncertainty
and information (e.g., error bars). The ANFIS algorithms which are very
powerful can be another optimization method to be considered in this
regard (Jang, 1993; Yaseen et al., 2017). Moreover, the more advanced
models such as the Ensemble methods (Dietterich, 2002), Particle

Fig. 5. Empirical cumulative distribution function (ECDF) of the forecasted error |FE| (mm) generated by the proposed hybrid MCMC-Cop-Bat-OS-ELM model versus
its counterpart models in the testing period for Faisalabad, Jhelum and Multan stations.

Table 6
Evaluation of hybridized multi-stage MCMC-Cop-Bat-OS-ELM vs. MCMC-Cop-
Bat-ELM and MCMC-Cop-Bat-RF models using root mean square error (RMSE;
mm) and mean absolute error (MAE; mm), correlation coefficient (r), Willmott
index (WI), and Nash-Sutcliffe coefficient (NSE) in the testing period. The best
model is boldfaced (red).

Model RMSE (mm) MAE (mm) r NSE WI

Faisalabad
MCMC-Cop-Bat-OS-ELM 16.59 12.83 0.986 0.971 0.972
MCMC-Cop-Bat-ELM 24.89 18.64 0.968 0.9344 0.935
MCMC-Cop-Bat-RF 29.65 19.43 0.953 0.899 0.900
Multan
MCMC-Cop-Bat-OS-ELM 6.99 5.46 0.991 0.983 0.988
MCMC-Cop-Bat-ELM 10.28 7.91 0.981 0.963 0.974
MCMC-Cop-Bat-RF 26.83 21.47 0.891 0.752 0.786
Jhelum
MCMC-Cop-Bat-OS-ELM 24.37 19.16 0.992 0.989 0.989
MCMC-Cop-Bat-ELM 46.63 37.31 0.969 0.938 0.958
MCMC-Cop-Bat-RF 87.50 68.30 0.907 0.787 0.807
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Swarm Optimization (Chen and Yu, 2005; Zhisheng, 2010), Genetic
algorithms (Davis, 1991), chaos theory (Briggs and Peat, 1989) etc.
coupled with traditional and even the newly explored vine copulas
(Nelsen, 2003; Nguyen-Huy et al., 2017; Nguyen-Huy et al., 2018) may
be able to generate good results due to their optimization ability.

The regression models (Draper and Smith, 2014) may be coupled
with copulas in a way to optimize the forecasting ability of possible
hybrid copula models. A more generalized framework of hybridizing
copulas with generalized mixed models (Draper and Smith, 2014) to
develop MCMC-copula mixed models for rainfall is currently being
prepared in upcoming work. Autoregressive fractionally integrated
moving average (Ling and Li, 1997) based copula (ARFIMA-copula) and
least square support vector machine-based copula (LSSVM-copula)
models may also be used to forecast rainfall. As the standard statistical
approaches avoid the hurdle of model uncertainty that leads to over-
confident inferences and more risky decisions, Bayesian model aver-
aging (BMA) techniques (Hoeting et al., 1998; Raftery et al., 2005) have
the ability to model uncertainty for accurate predictions. Therefore,
BMA techniques provide yet another option to be used to model

uncertainty in rainfall that is produced due to several factors such as
missing climate data, extreme weather conditions and the likely influ-
ence of climate change.

Multi-resolution tools like frequency resolution may also be applied
to broaden the scope of this study. In this regard, maximum overlap
discrete wavelet transformation (Holschneider, 1988; Khalighi et al.,
2011; Prasad et al., 2017), empirical mode decomposition EMD (Al-
Musaylh et al., 2018; Rilling et al., 2003), and singular value decom-
position (De Lathauwer et al., 1994) have the potential to be utilized for
improved predictions. Other options could be the use of feature selec-
tion techniques (Guyon and Elisseeff, 2003; Jain and Zongker, 1997;
Salcedo-Sanz et al., 2018) where several variables may also be used to
screen the optimal predictors to forecast rainfall with a greater accu-
racy. While the present study has not utilized these ancillary tools, the
relatively good accuracy of the OS-ELM model does provide an avenue
for further independent studies.

Fig. 6. Box-plots of the forecasted error |FE| (mm) in testing phase for the proposed hybrid MCMC-Cop-Bat-OS-ELM model with counterpart models of monthly
forecasted rainfall for (a) Faisalabad, (b) Jhelum and (c) Multan.

Table 7
Geographic comparison of hybridized multi-stage MCMC-Cop-Bat-OS-ELM vs. MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF model using relative root mean squared
error (RRMSE; %), relative mean absolute error (RMAE; %) and the Legates & McCabe's Index (LM). The best model is boldfaced (red).

Station MCMC-Cop-Bat-OS-ELM MCMC-Cop-Bat-ELM MCMC-Cop-Bat-RF

LM RRMSE, % RMAE, % LM RRMSE, % RMAE, % LM RRMSE, % RMAE, %

Faisalabad 0.827 17.76 46.26 0.749 26.64 81.05 0.723 31.93 54.97
Multan 0.878 11.36 49.91 0.823 16.70 41.72 0.530 44.06 245.64
Jhelum 0.881 11.27 40.12 0.769 21.56 132.50 0.584 40.87 303.60
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Fig. 7. Taylor diagram showing the correlation coefficient between the observed and forecasted rainfall and standard deviation for the proposed hybrid multi-stage
MCMC-Cop-Bat-OS-Elm model in comparison with MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF models for the station (a) Faisalabad, (b) Jhelum, and (c) Multan.
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7. Conclusion

For the first time, this paper has developed a hybrid multi-stage
MCMC- Cop-Bat-OS-ELM model using the significant antecedent lags of
monthly rainfall as predictor variables to forecast future rainfall for
different geographical sites in Pakistan. The rainfall data from 1981 to
2015 for a total of three stations were used to develop the proposed
multi-stage MCMC- Cop-Bat-OS-ELM model in order to achieve a high
level of accuracy. Further, several types of evaluation criterion were
adopted to assess the performance of the proposed model.

In the multi-stage MCMC- Cop-Bat-OS-ELM model, after in-
corporating the input rainfall data, the MCMC algorithm adopted global
optimization as well as a local optimization technique to find the best
copula parameters that helped in developing 25 MCMC-copula models.
These MCMC based copula models were then ranked by the bio-inspired
Bat algorithm to extract the best MCMC-copula models using a feature
selection strategy. Finally, the statistically significant lags of selected
MCMC based copula models were utilized in the OS-ELM model as
predictors to generate the final forecast. Further, ELM and RF models
were used for comparison purposes. Evidently, the performance of all
the proposed models was better but the MCMC-Cop-Bat-OS-ELM model
was found to be superior among others (see, Tables 6 and 7) as evident
by its low relative forecasting errors and high performance metrics. The
forecasting errors by the best MCMC-Cop-Bat-OS-ELM model for the
Jhelum station were RMSE≈24.37mm whereas the MAE was
19.16mm, respectively. While the performance metrics were
(r≈ 0.992, NSE≈ 0.989, WI≈0.989).

By assessing the performance of the multi-stage MCMC-Cop-Bat-OS-
ELM model for Jhelum station using the most advanced normalized
metrics of Legates-McCabe's, the MCMC-Cop-Bat-OS-ELM model was
found to have the highest agreement. The obtained LM agreement va-
lues between the forecasted and observed rainfall for Jhelum station
were LM≈0.881 whereas the relative percentage errors RRMSE and
RMAE were 11.27%, 40.12%. The proposed multi–stage MCMC-Cop-
Bat-OS-ELM model also generated convincingly better results for
Faisalabad and Multan stations.

This study provides a baseline relevant with other models being
potentially utilized to forecast rainfall and other climatological para-
meters more accurately in future studies. The proposed multi-stage
hybrid MCMC-Cop-Bat-OS-ELM model can be applied to other areas
such as agricultural crop yield prediction, drought forecasting and so
on. Further to this, agricultural policy makers in Pakistan can use this
model for prior rainfall forecasting that will assist in the optimal
management of crop sowing, harvesting and irrigation. Moreover, ac-
curate future rainfall forecasting can warn the government and im-
pacted stakeholders prior to significant flooding and the allocation of
water resources for future.
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Chapter 4 

An ensemble-ANFIS based uncertainty assessment model for 

forecasting multi-scalar standardized precipitation index 

Foreword 

This chapter is an exact copy of the published article in Atmospheric Research journal (Vol. 207, 

Pages 155-180). 

Ensemble techniques are supervised learning algorithms that are used to minimize the 

uncertainty and to produce more reliable and consistent predictions. Further to rainfall 

forecasting (Chapter 3), forecasting of another important hydrological variable, the drought, is 

undertaken in this chapter with the employment of ensemble modelling technique. An ensemble 

adaptive neuro-fuzzy inference system (ensemble-ANFIS) based uncertainty assessment 

modeling approach is developed for medium and long term (3-, 6-, 12-months) drought 

forecasting. Applying 10-member simulations, ensemble-ANFIS model was validated for its 

ability to forecast severity (S), duration (D) and intensity (I) of drought. This enabled uncertainty 

between multi-models to be rationalized more efficiently, leading to a reduction in forecast error 

caused by stochasticity in drought behaviours. 

The results of ensemble-ANFIS model are benchmarked with M5Model Tree and Minimax 

Probability Machine Regression (MPMR) at three candidate sites in Pakistan. The accuracy of 

ensemble-ANFIS model is better than M5Tree and MPMR models. 
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A B S T R A C T

Forecasting drought by means of the World Meteorological Organization-approved Standardized Precipitation
Index (SPI) is considered to be a fundamental task to support socio-economic initiatives and effectively miti-
gating the climate-risk. This study aims to develop a robust drought modelling strategy to forecast multi-scalar
SPI in drought-rich regions of Pakistan where statistically significant lagged combinations of antecedent SPI are
used to forecast future SPI. With ensemble-Adaptive Neuro Fuzzy Inference System (‘ensemble-ANFIS’) executed
via a 10-fold cross-validation procedure, a model is constructed by randomly partitioned input-target data.
Resulting in 10-member ensemble-ANFIS outputs, judged by mean square error and correlation coefficient in the
training period, the optimal forecasts are attained by the averaged simulations, and the model is benchmarked
with M5 Model Tree and Minimax Probability Machine Regression (MPMR). The results show the proposed
ensemble-ANFIS model's preciseness was notably better (in terms of the root mean square and mean absolute
error including the Willmott's, Nash-Sutcliffe and Legates McCabe's index) for the 6- and 12- month compared to
the 3-month forecasts as verified by the largest error proportions that registered in smallest error band. Applying
10-member simulations, ensemble-ANFIS model was validated for its ability to forecast severity (S), duration (D)
and intensity (I) of drought (including the error bound). This enabled uncertainty between multi-models to be
rationalized more efficiently, leading to a reduction in forecast error caused by stochasticity in drought beha-
viours. Through cross-validations at diverse sites, a geographic signature in modelled uncertainties was also
calculated. Considering the superiority of ensemble-ANFIS approach and its ability to generate uncertainty-
based information, the study advocates the versatility of a multi-model approach for drought-risk forecasting and
its prime importance for estimating drought properties over confidence intervals to generate better information
for strategic decision-making.

1. Introduction

Drought is considered a slow onset natural hazard that can last for a
prolonged dry period in natural climate cycles, and is usually restricted
to arid, semi-arid, desert or rain-forest regions (Keyantash and Dracup,
2002; Vicente-Serrano, 2016; Wilhite et al., 2000). The occurrence of
drought can happen in any climate zone. Environmental parameters
such as high surface temperature and winds, low humidity and the
timing and characteristics of rainfall are greatly influenced by drought
occurrences. Distribution of rain days in crop growing seasons, intensity
and duration of rainfall, as well as onsets and terminations are im-
portant factors that influence the duration and severity of drought. The
occurrence of drought leads to consequences for runoff that affects
stream flow in agricultural sectors (Cai and Cowan, 2008) with sub-
stantial economic costs (Dijk et al., 2013; Wittwer et al., 2002).

Advanced intelligent data models can effectively manage the drought-
risk with better economic returns (Koehn, 2015; Qureshi et al., 2016;
Timbal and Hendon, 2011; Williams et al., 2015). Therefore, modelling
approaches have been adopted to forecast drought behaviour, utilizing
hydrological models (Brown et al., 2015), Markov chain (Rahmat et al.,
2016), Bayesian space–time models (Crimp et al., 2015) and recently,
data-intelligent models (Abbot and Marohasy, 2012; Abbot and
Marohasy, 2014; Dayal et al., 2016a; Dayal et al., 2016b; Dayal et al.,
2017; Deo et al., 2017; Deo and Şahin, 2015a; Deo and Şahin, 2015b;
Deo and Şahin, 2016; Deo et al., 2016b). Moreover, the study of Rahmat
et al. (2016), the study of Deo et al. (2017) and Dayal et al. (2016a)
have utilized Markov chain and multiple intelligent data models, re-
spectively, to forecast the standard precipitation index (SPI), a primary
indicator of drought status.

Drought is a socio-economic hazard, happening on a year-to-year
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and a season-to-season basis with severe threats to groundwater re-
servoirs, leading to the scarcity of water, crop failure, disturbed habitats
and loss of social or recreational opportunity (Deo et al., 2015;
Mpelasoka et al., 2008; Riebsame et al., 1991; Wilhite et al., 2000). The
impacts of drought are extremely aggravated in drought-prone regions
which suffer even warmer and drier conditions. The severe scarcity of
water resources due to rapid growth of population and an expansion of
agricultural, energy and industrial sectors is a growing concern (IPCC,
2012; McAlpine et al., 2007). Hence, the challenges posed by drought,
particularly prolonged drought events, can influence hydrologists,
agriculturalists and natural resource managers in everyday strategic
decision tasks (Bates et al., 2008; Deo et al., 2016a; Mishra and Singh,
2010; Mishra and Singh, 2011; Wilhite and Hayes, 1998). To tackle
drought-related issues, effective strategies that aim to tackle the impact
of current, and predict the occurrence of future drought events are
imperative.

Drought indices are used to monitor and forecast drought (Mishra
and Singh, 2010; Mishra and Singh, 2011). Different indices have been
developed based on their appropriateness in a given region. Palmer
Drought Severity Index (PDSI), designed by Palmer (1965), measures
the dryness based on precipitation and temperature. PDSI is an effective
index in determining long-term drought, extending over several
months, but it is not that effective for describing short-term events.
Other complexities of the PDSI include the estimation of soil moisture
amounts and the ‘hard-to-calibrate’ drought parameters, including
evapotranspiration and recharge rates in climatically diverse global
regions. Responding to the drawbacks associated with the PDSI, re-
searchers have developed the Crop Moisture Index (CMI), particularly
for agricultural drought events (Palmer, 1968). CMI enumerates the
rank of the precipitation to compute positive and negative precipitation
anomalies. CMI is a weekly based index capable of determining the
short-term drought impact on agriculture. However, it has a weakness
for long-term drought, as improvements in the short-term may be in-
sufficient to offset the long-term issues. Byun and Wilhite (1999) in-
troduced the Effective Drought Index (EDI) that was developed on daily
precipitation data. As also advocated by the study of Deo and Şahin
(2015a, 2015b), the EDI can be considered as a relatively good index
for operational monitoring of meteorological and agricultural drought,
although the consideration of precipitation alone does not take into
account other environmental parameters that also cause drought (e.g.,
the impact of temperature).

In this paper we focus on the SPI, an index introduced by McKee
et al. (1993) as a global drought monitoring tool that was based on the
Lincoln Declaration of drought by the World Meteorological Organi-
zation (Hayes et al., 2011). National Meteorological and Hydrological
Services in USA and elsewhere have adopted the SPI to characterize
meteorological drought (Cancelliere et al., 2007; Choubin et al., 2016;
Hayes et al., 1999; Jalalkamali et al., 2015; McKee et al., 1993; Svoboda
et al., 2012; Yuan and Zhou, 2004), with a recent study of Deo et al.
(2017) that has also applied this index for drought modelling in Aus-
tralia. SPI is a powerful index because: (1) it examines the water
shortage situation that construct a statistical distribution of rainfall
ranging from 1 to 48months (enabling short and long-term assess-
ments); (2) it generates a normalized standard metric of rainfall sur-
pluses/deficits in relation to a benchmark climatology (Hayes et al.,
1999; McKee et al., 1993; Yuan and Zhou, 2004) (enabling its com-
parison in geographically diverse regions); (3) it has been explored for
drought mitigation studies in diverse climatic regions (Almedeij, 2016;
Choubin et al., 2016; Svoboda et al., 2012); and (4) SPI has the po-
tential to represent short and long-term drought in a probabilistic
fashion on multiple timescales. These broad representations and usages
of SPI makes it possible to examine soil moisture levels that express the
precipitation anomalies on a comparatively short timescale with hy-
drological reservoirs to replicate long-term anomalies (Svoboda et al.,
2012). Due to these features, SPI has become an ideal metric for
management of not only hydrological but also agricultural drought

events (Guttman, 1999).
Intelligent models used to forecast drought based on SPI have been

explored. An SPI-based methodology was proposed by Cancelliere et al.
(2007) to evaluate the probabilities of drought transition in Sicily, Italy.
Jalalkamali et al, (2015) in Yazd, Iran conducted a study to forecast SPI
using multilayer perceptron artificial neural network (MLP ANN),
adaptive neuro-fuzzy inference systems (ANFIS), support vector ma-
chine (SVM), and autoregressive integrated moving average (ARIMA)
multivariate models. In another study, ANFIS and ANN Wavelet models
were used by Shirmohammadi et al. (2013) to forecast SPI for Azer-
baijan. An SPI-based forecasting study was done by Santos et al. (2009)
using an ANN model for San Francisco. Moreira et al. (2015) have
utilized satellite-based image data with climate indices (North Atlantic
and Southern Oscillation Index) for drought forecasting with ANN. A
non-parametric model was developed by Cancelliere et al. (2006) to
forecast SPI for Sicily and Belayneh in Italy. An ANN model in com-
parison with SVR and wavelet neural network models were used by
Adamowski et al. (2012) for estimation of SPI in the Awash River
(Ethiopia). Choubin et al. (2016) used ANFIS, M5 model tree (M5Tree)
and an MLP algorithm to present SPI forecasting estimates. Drought
forecasting using SPI thus has an extensive history in the available lit-
erature (Bonaccorso et al., 2003; Deo et al., 2017; Guttman, 1999;
Hayes et al., 1999; Jalalkamali et al., 2015; Moreira et al., 2008; Paulo
and Pereira, 2007; Sönmez et al., 2005).

Moreover, several member bootstrap and ensemble techniques have
been extensively used to reduce the uncertainty and to produce more
reliable and consistent predictions (Cannon and Whitfield, 2002; Jeong
and Kim, 2005). The bootstrap and ensemble techniques are based on a
computational procedure that utilizes intensive resampling with re-
placement, in order to minimize uncertainty (Efron and Tibshirani,
1994). Abrahart (2003) developed a bootstrap technique for rain-
fall–runoff modelling to continuously sample the input space. Jeong
and Kim (2005) designed an ensemble neural network using bootstrap
technique to forecast monthly rainfall–runoff. Srivastav et al. (2007)
proposed a bootstrap ANN model for uncertainty analysis to forecast
river flow. Tiwari and Chatterjee (2010b) developed an ensemble
technique for hourly flood forecasting capable of quantifying un-
certainty and found the outputs to be more stable and accurate than
comparative models. Tiwari and Chatterjee (2011) developed a wave-
let–bootstrap–ANN model for daily discharge forecasting. In another
study (Tiwari and Chatterjee, 2010a), they designed a wavelet–boot-
strap based ANN model for accurate and reliable hourly flood fore-
casting.

Drought hazard has impacted Pakistan, the present study region
quite significantly since the last few decades (Pakistan, 1950–2015)
with severe socio-economic impacts. The duration of drought in 1998
reduced Pakistan's national agricultural production by 2.6% during the
period 2000–2001 (Ahmad et al., 2004). Drought modelling studies in
this developing nation has been very limited. The blockage of the
Western Depression that carries rainclouds to the northern areas of
Pakistan from the Mediterranean can catastrophically shift weather
patterns making accurate long-term predictions difficult. El Niño, in
particular, has a strong effect on the sub-tropical jet stream that man-
ifests itself in the form of a potential drought event in summer (Zaidi,
2016). Khan and Gadiwala (2013) conducted a study of drought be-
haviour using the SPI at different timescales in the province of Sindh,
Pakistan. Similarly, Xie et al. (2013) used a spatiotemporal variability
analysis based on SPI data to forecast drought and recently, the study of
Ali et al. (2017) forecasted drought based on Standardized Precipita-
tion-Evapotranspiration Index (SpeI) with a multilayer perceptron-
based artificial neural network model. Ahmed et al. (2016) utilized
antecedent SPI for characterization of seasonal drought in the Ba-
lochistan Province of Pakistan. However, to the best of the authors'
knowledge, there has been no study focussing on forecasting drought
using SPI modelling in Pakistan.

In context of the gaps identified in current literature that relate to
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Pakistan's socio-economic future, the focus of this paper, is to illumi-
nate the utilization of the Ensemble-ANFIS approach and its comparison
with M5 Tree and MPMR models for SPI forecasting in drought-rich
regions of Pakistan where drought management is contingent upon
accurate forecasting, especially over multiple horizons to support dif-
ferent kinds of socio-economic activities. The objectives are as follows.
(1) To use 34-years of rainfall (1981–2015) and compute multi-scale
SPI for 1, 6 and 12months. (2) To develop the forecasting model with
an Ensemble-ANFIS approach incorporating statistically significant
lagged historical SPI data (i.e., incorporating antecedent drought be-
haviour) to reduce the uncertainty and forecast the future drought
behaviour more reliable and consistent. (3) To benchmark the three
different data-driven models: Ensemble-ANFIS vs. M5 Tree and MPMR
models. (4) To evaluate the ensemble-ANFIS model by checking for the
severity (S), duration (D) and peak intensity (I) of drought events de-
termined from the forecasted and observed SPI. (5) To provide a pre-
dictive uncertainty assessment framework for multi-scalar SPI fore-
casting at diverse study sites.

2. Theoretical overviews

An overview of the objective forecasting model, Ensemble-ANFIS
with the comparative counterpart models, M5Tree and MPMR, is pre-
sented in this section.

2.1. Ensemble based adaptive neuro fuzzy inference system (ensemble-
ANFIS) model

ANFIS was introduced by Jang in 1993 as a division of the adaptive
tool (i.e. the outputs being dependent on the parameters belonging to
the input nodes). This is an improved ANN technique that is funda-
mentally identical to the fuzzy inference systems (FIS) model, yet uti-
lizing the merits of both ANN and FIS designed on a common paradigm.
During the training process, two types of learning algorithms are used
to tune the parameters for optimal performance. The foresaid system
utilizes two inputs to generate one output employing the fuzzy ‘if-then’
rules of Takagi-Sugeno-Kang's (TSK) (Hoffmann et al., 2007) fuzzy
model which can be defined as:

= + +α β f p α q β sRule(a): if is Γ and is Ω , then1 1 1 1 1 1 (1)

= + +α β f p α q β sRule(b): if is Γ and is Ω , then2 2 2 2 2 2 (2)

where α and β represents the input of the ANFIS whereas Γand Ω are the
fuzzy set with fj(j=1,2) being the first order output polynomial of the
TSK fuzzy inference system, while pj, qj and sj(j=1,2) are the set of
consequent parameters. Fig. 1(a) describes the ANFIS architecture.

The elementary construction of ANFIS can be seen as a 5 layer
feedforward neural network. Each node j is an adaptive node in layer 1
with a suitable membership function related to the input to nodej.

= = =
−

μ α μ β jΘ ( ), Θ ( ), ( 1, 2)j j1, Γ 1, Ωj j( 2) (3)

In Eq. (3), α, β denote the input nodes whileΓ and Ωare the linguistic
labels with μ(α), μ(β)representing the membership function (usually
bell-shaped) that specifies the degree to which the given input satisfies
the quantifiers Γ, Ω. The membership function is defined as:

=
+ −( )

μ α( ) 1

1 α c
a

b( )j

j

j

(4)

where aj, bjand cj are the parameters. The bell-shaped function adopts
different forms of membership with the variation of these parameters.
Each parameter in this layer is termed as antecedent. In layer 2, the
node is a fixed circular node, labelled as Πwhere the input is multiplied
with the node function to act as the output which is following.

= = ×ω μ α μ βΘ ( ) ( )j j2, Γ Ωj j (5)

here ωj is the firing strength of a rule. Every node in layer 3 is also a
fixed circular node labelled N with normalized firing strength as output
which is basically the ratio of jth rule's firing strength to the sum of all
rule's firing strength. Mathematically

= =
+

ω
ω

ω ω
Θ j j

j
3,

1 2 (6)

In layer 4, each node is turned to be an adaptive node marked by a
square that is given by,

= = + +ω f ω P α q β sΘ ( )j j j j j j j4, (7)

where ωj refers to the 3rd layer output with (pj,qj, sj) being the para-
meters that are called consequent parameters. In layer 5, the con-
sequent parameters are then expressed into a linear combination to
compute the overall output of the fixed nodes. Consider,

= = ∑ = +

= =
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(8)

In the forward pass, the premise parameters (αj,βj,cj) are stable
while the least square estimation tries to identify the optimal con-
sequent parameters. Then the backward pass starts with these para-
meters fixed to back propagate the ratio of the output node from the
output end towards the input end. The gradient descent then updates
these premise/antecedent parameters (Goyal et al., 2014; Jang et al.,
1997; Karthika and Deka, 2015; Mayilvaganan and Naidu, 2011;
Moosavi et al., 2013; Nayak et al., 2004; Pérez et al., 2012; Sehgal et al.,
2014; Shirmohammadi et al., 2013). In this paper, several membership
function were tested where the π-shaped curve membership function
(pimf) was found to generate better results. The mathematical for-
mulation of the π-shaped membership function is:

=

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

≤

≤ ≤

− ≤ ≤

≤ ≤

− ≤ ≤

≤ ≤

≥

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

−
−

+

−
−

+

−
−

+

−
−

+

( )
( )

( )
( )

μ α a b c d

α a

a α

α b

b α c

c α

α d

α d

( , , , , )

0,

2 ,

1 2 ,

1,

1 2 ,

2 ,

0,

α a
b a

a b

α b
b a

a b

α c
d c

c d

α d
d c

c d

2

2
2

2

2

2
2

2

(9)

To improve the versatility of a classical ANFIS model, we have de-
signed 10-member ensemble frameworks to attain the most accurate
forecast of SPI over multiple timescales. It is especially noted that
several studies have used this 10-model ensemble approach, such as
Burges et al. (2011) who developed 10 ensemble model using the
lambda-gradient method, Deo et al. (2009) who developed a 10
member ensemble for modelling daily climate extremes including
droughts with global climate models in eastern Australia, and Rajathi
and Jayashree (2016) who designed 10 ensemble models to forecast soil
moisture in India. Some other literature can also be seen in previous
works (e.g., Bachman et al., 2014; Jamroz et al., 2016; Opitz and
Maclin, 1999; Strauss et al., 2017; Taniar, 2009). Generally, an en-
semble (Lei and Wan, 2012; Zhou et al., 2002) is a multiple component
learner technique where several lots of training procedures are applied
to perform the same objective task. In this study, the technique of
random sampling of the training data was adopted to construct the
ensemble forecasting systems (Zhou et al., 2002).

2.2. Minimax probability machine regression (MPMR) model

MPMR, a non-linear probabilistic machine regression model that

M. Ali et al. Atmospheric Research 207 (2018) 155–180

157



Fig. 1. Basic structure of: (a) Ensemble-ANFIS, (b) MPMR and (c) M5 Tree models.
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has the capability of maximizing the least probability within the in-
terval of true regression of the objective function, was also applied to
benchmark the Ensemble-ANFIS model. Fig. 1(b) outlines the MPMR
model.

MPMR is developed on linear discriminant and convex optimiza-
tions (Strohmann and Grudic, 2003) that makes MPMR an advanced
and improved version of Support Vector Machines (Strohmann and
Grudic, 2003). The data are analysed by shifting all of the regression
data between +ϕ and−ϕ along the axis of the dependent variable. The
area between them is called a regression surface where upper and lower
bounds of probability identify the regions for misclassifying a point
without making distributional assumptions by the model (Bertsimas
and Sethuraman, 2000). The learning (d-dimensional inputs) generated
from an unknown regression is a function of the form (Strohmann and
Grudic, 2003):

→f : DR R

= +Y f x σ( ) (10)

where x ∈ RD is the input vector according to a bounded distributionΩ,
Y ∈ ℜ is an output vector and variance (σ)= ρ2 (ρ)= σ2 ∈ ℜ. The
function f is an approximated function in MPMR for xi generated from
Ω. Y is given by

=Y f x( ) (11)

The estimated bounds calculated by the model is based on the
minimum probability (Ψ) that f x( ) is within ϕ of Y (Strohmann and
Grudic, 2003).

= − ≤Y Y ϕΨ inf Pr{| | } (12)

The predictive ability of a true regression is then evaluated from Eq.
(12) by a boundary based on the minimax probability to deduce Ψ
directly between ϕ of the true function shown below:

∑= = +
=

Y f x α K x x σ( ) ( , )
i

N

i i j
1


(13)

In Eq. (13), Ki, j= θ(xi,xj) is a kernel function satisfying the mercer
condition, vector xi is from the learned data andαi, σ are the output
parameters.

2.3. M5 tree model

Ensemble-ANFIS is benchmarked with respect to the M5 Tree
model. The original M5 Tree model was pioneered by Quinlan (1992) as
a hierarchical model developed on binary decision structure. The linear
regression at terminal (tree) nodes develop connections between inputs
and output (Mitchell, 1997). For the construction of the decision tree,
the input-output matrix is partitioned into subsets in two distinct phases
(Rahimikhoob et al., 2013). The characterization of N-sample training
matrices through input patterns in relation to a predictor, is related by a
model that is developed by the M5 Tree algorithm (Bhattacharya and
Solomatine, 2005). Based on matching attributes, the M5 Tree estab-
lishes a relationship between inputs and the SPI data used in drought
forecasting. Fig.1(c) describes the M 5Tree structure.

The model utilizing an M5 Tree paradigm is developed based on the
divide-and-conquer rule in which the associated N data points to a leaf
or test criteria that branches into subgroups parallel to the test out-
come. The process is recursive based on which N data points splits into
subgroups trailing a principal that relies on the standard deviation and
decreasing the model training error, ρR (Bhattacharya and Solomatine,
2005; Kisi, 2015):

∑ ⎜ ⎟= − ⎛
⎝

⎞
⎠

ρ ρ ρ(Ω)
Ω
Ω

(Ω )R
j

j
(14)

here Ω represents the set of examples while Ωjis the subset of

thejthoutcome.
In order to design an optimal M5 Tree model with a lowest ρR, M5

Tree picks them to optimize ρR by attaining the maximum split com-
prising the patterns and data attributes. The process of splitting stops
either when the class value of all split cases reach a stationary node or
only a few instances are left. As a result, the division rules that operate
on input data may lead to a very large complex network structure that
needs to be pruned back. To overcome the sudden discontinuities ap-
pearing from a smaller set of training data, a smoothing technique is
needed to tackle what can happen between neighboring linear models
at the leaves of the pruned tree (Bhattacharya and Solomatine, 2005;
Kisi, 2015). This optimizes the tuned model to achieve a better accu-
racy. The purpose of the smoothing is to modify the linear equations in
order to bring closer the equations corresponding to the forecasted
output of the input variables (Quinlan, 1992).

2.4. Standardized precipitation index (SPI)

SPI is essentially a probability-based drought metric that provides a
representation of abnormal wetness and dryness conditions. Prior to the
design of a forecast model for the selected study regions in Pakistan, the
short- and long-term SPI index was calculated following the notion of
McKee et al. (1993). The computation of SPI involved the fitting of a
Pearson Type III distribution to monthly rainfall (ppt) data.

Mathematically, the Pearson Type III distribution/gamma distribu-
tion function is given below:

= − −g ppt
β α

ppt e( ) 1
Γ( )

( )α
α x β1 /

(15)

where α and β denotes the estimated parameters using the maximum
likelihood solution:

⎜ ⎟= ⎛
⎝

+ + ⎞
⎠

α
A

A1
4

1 1 4
3 (16)

=β α
P (17)

and

∑= −A ppt ppt Nln( ) ( ln( ))/ (18)

where N=the number of rainfall observation months. The cumulative
probability can then be given by

∫ ∫= = − −G ppt g ppt dppt
β α

x e dppt( ) ( ) 1
Γ( )

P

α

P
α P β

0 0

1 /

(19)

Suppose that m= ppt/β, that reduces Eq. (18) to an incomplete
gamma function:

∫= − −G ppt
α

m e dm( ) 1
Γ( )

m
α m

0

1

(20)

As for ppt=0, the gamma function is undefined, so the cumulative
probability becomes:

= + −H ppt q q G ppt( ) (1 ) ( ) (21)

where q is the probability of zero. The cumulative probability H(ppt)
can be transformed into the standard normal random variable with
mean zero and variance of one. This yields the monthly value of SPI,
viz:
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⎧

⎨
⎪
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+ − < ≤

− − < ≤

+ +
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In Eq. (22), m is given by:
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The values of the constants in Eq. (21) are as follows:
c0= 2.515517, c1= 0.802853, c2= 0.010328, d1= 1.432788,
d2= 0.189269 and d3= 0.001308 (McKee et al., 1993). These con-
stants are used in the transformation of cumulative probability H(ppt)
into the standard normal random variable SPI with mean zero and
variance 1. Further, these constants are helpful in categorize the
drought conditions. Moreover, the So, the standardized precipitation
index represents an SPI-score or the number of standard deviations that
an event deviates from the mean (Loukas and Vasiliades, 2004; McKee
et al., 1993; Sujitha, 2017). Based on the calculated SPI, drought can be
categorized as moderately dry= (−1.5 < SPI≤ 1.0), severely
dry= (−2.0 < SPI≤−1.5), and extremely dry= (SPI≤−2.0).

Fig. 2 illustrates the 1 and 3month SPI time-series, depicting the
progression of drought events from Sep 2009–Dec 2010 for the Isla-
mabad station. The onset of drought using the running sum approach of
Yevjevich (1967a, 1991) can be deduced as the particular month when
the SPI value declined below 0 and the termination of drought when the
SPI value first returned to positivity. In concurrence with this, the cu-
mulative rainfall appears to be reduced significantly in this dry period.
The drought duration is then the sum of all months with SPI < 0 and
the drought's peak intensity occurs when the SPI value is at its
minimum point.

3. Materials and methods

In this section the description of the acquired rainfall data for the
study region in Pakistan, the development of data-intelligent models
and the performance evaluation are presented.

3.1. Rainfall data

The rainfall data (1981–2015) were sourced from the Pakistan
Meteorological Department, Pakistan (Department). The rainfall of
TRACE (amount of rainfall < 0.1 mm) per month was replaced by the
average of the respective time-averaged value from the climatological

period. Prior to developing the drought model, the rainfall data were
used to compute multi-scale short- and long term SPI from 1981 to
2015 for the study regions.

3.2. Study region

The three study regions for this work are: Dera Ismail Khan (denoted
‘D. I. Khan’), Islamabad and Nawabshah. Fig. 3 shows a map of the
study regions.

D. I. Khan (31.8424° N, 70.8952° E) is situated in Khyber
Pakhtunkhwa (KPK) province. The climate consists of hot summers and
mild winters. Water scarcity due to drought in D. I. Khan had badly
affect wheat production in 2012 (Amir, 2012). The average annual
rainfall is about 268.8 mm. Islamabad (33.7294° N, 73.0931° E) is the
capital of Pakistan which has a humid subtropical climate with five
seasons: winter, spring, summer, rainy monsoon and autumn. The
average monsoon rainfall is about 790.8mm. Islamabad received the
heaviest 620mm rainfall in just 10 h on 23 July 2002, which was the
heaviest rainfall in the past 100 years. The annual average rainfall is
1142.1 mm. Nawabshah (26.2442° N, 68.4100° E) is a city of Sindh
province, located 50 km from the River Indus. The climate is considered
to be the hottest of all 3 locations with summer temperatures reaching
as high as 53 °C. A record breaking severe heatwave hit Nawabshah in
2010 (Department). The average annual rainfall is 114.1 mm and the
climate is also affected by monsoons in Nawabshah.

Table 1 describes the latitude, longitude, elevation, minimum,
maximum, standard deviation, skewness and kurtosis of rainfall and SPI
data of the selected study regions that are used to develop the fore-
casting models in this paper. A 35 year rainfall dataset from 1981 to
2015 was acquired from the Pakistan Meteorological Department (De-
partment) to calculate SPI. Antecedent months from this dataset were
used as significant SPI lags to develop the forecasting model where SPI
data for 35 years were partitioned into 70% (training) and 30%
(testing) periods.

To investigate the dependence of the input variable with itself at
two points in time (that recognises the role of memory in forecasting
SPI), partial autocorrelation function (PACF) was used to deduce out
the autocorrelation that measured the dependency of one variable after
removing the effect of the other variable(s). The autocorrelation can be
obtained following Box et al. (2015) and Hamilton (1994).

Fig. 2. The 1 and 3month Standardized Precipitation Index (SPI) with rainfall data for drought periods (Sept 2009 to Dec 2010) at Islamabad station, Pakistan.
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where k=0, 1, 2, ⋯ indicates the order of autocorrelation with ob-
served seriesxt fort=1, 2, 3, ⋯, n and x represents the mean SPI and
the partial autocorrelation is defined as a regression series:

= + +− −x x x eΦ Φt t t t21 1 22 1 (25)

where xt represents the original series minus the sample mean and the

estimate of ϕ22 is expected to yield the value of the partial auto-
correlation of the order 2. Extending the regression with k additional
lags, the estimate of the last term is expected to give the partial auto-
correlation of orderk. A larger positive partial autocorrelation is better
for extracting the features in developing an accurate forecasting model.

Fig. 4(a–c) displays ρk vs. significant time lags of the multi-scalar SPI
for 3, 6 and 12months presented at 90% to 95% confidence interval for
statistically significant ρk of D. I. Khan, Islamabad and Nawabshah. At
lag (t–1) with the shifting of input data by 1 unit timescale, the largest
ρk attained was about 95% and this was accomplished for the partial
autocorrelation of SPI12; followed by about 90% for the SPI6 and SPI3 at

Fig. 3. Map of the study sites.

Table 1
Descriptive statistics of the study sites' geographic, hydrologic and drought characteristics.

Station Geographic characteristics Hydrological statistics (1981–2015): Rainfall (ppt)

Longitude Latitude Elevation (m) Mean Std. Min Max Skewness Kurtosis

D. I. Khan 70.91 31.83 175.00 29.46 38.59 0.30 376.00 3.30 18.49
Islamabad 73 33.74 604.00 107.21 130.70 0.01 743.30 2.03 4.49
Nawabshah 68.41 26.24 35.08 16.57 36.88 0.10 328.20 4.59 26.31

Drought statistics

SPI3 SPI6 SPI12

Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max

D. I. Khan 0.00 1.00 −2.10 3.13 1.00 0.00 −2.12 2.61 0.00 1.00 0.00 2.29
Islamabad −0.01 1.00 −2.38 2.52 −0.01 1.00 −1.78 2.40 −0.01 1.00 −1.80 2.08
Nawabshah −0.04 0.98 −1.88 2.86 −0.03 0.98 −1.88 2.65 −0.03 0.98 −2.04 1.94
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about 85%. For Islamabad station, the partial autocorrelation was
found to be high for the SPI12 and SPI6 at about 95%, followed by the
SPI3 at about 90%. Similarly, the same pattern was attained for the
station Nawabshah. This confirms the pivotal role of the predictor
variables in the forecasted value of SPI. Moreover, the partial auto-
correlation analysis aids in verifying that the chosen variables used to
forecast SPI are appropriate, at least in the statistical sense, and they
comprise of the inherent predictive features that could explain the
multi-scalar evaluation of future SPI. Thus, the SPI at significant lag

(t–1) for each tested station was used as the significant input to develop
the new Ensemble-ANFIS and its counterpart models.

3.3. Development of drought model

Normalization of multi-scalar SPI input-target data was performed
by statistical rules to overcome the numerical difficulties generated by
the data attributes, patterns and fluctuations (Hsu et al., 2003). Math-
ematically, it is written as:

(a)

(b)

(c)

Fig. 4. Partial autocorrelation function (PACF) of historical SPI time-series based on 3, 6, and 12month scale for stations: (a) D. I. Khan, (b) Islamabad, (c) Nawabshah. The blue line
denotes the statistically significant boundary at the 95% confidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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where xSPI describes any datum point of the SPI (input or output), xSPImin

is the minimum value of the whole SPI dataset, xSPImax
is the maximum

value whereas xSPInormalized
denotes the normalized datum point.

In this paper multi-scalar SPI data were used to develop the fore-
casting Ensemble-ANFIS model, executed under the MATLAB environ-
ment with a Pentium 4, 2.93 GHz dual core Central Processing Unit.
Prior to model design, PACF was used to find the significant lags for the
purpose of obtaining the features and the optimization of the model.
The inputs based on significant lags were selected randomly in Layer 1
to construct the ensembles based on the ANFIS model. The fuzzy
membership functions were then allocated to this randomly selected
data in Layer 2 which were then passed into Layer 3 for the assignment
of the antecedent rules as per FIS framework. The weighted functions
were used in Layer 4 to yield the normalization strengths to the ante-
cedent fuzzy rule membership functions. The rule consequences were
applied to them in Layer 5. These layers (2–5) were referred to as
hidden layers, while the inference of the defuzzification process was
carried out in Layer 6 (i.e., the output layer) to obtain the final ANFIS
model output. The final output in Layer 7 was the mean of 10 different
ANFIS model outputs (i.e., a 10-fold model development stage was
adopted to reduce model stochasticity by a universally averaged set of
output). The correlation coefficient ‘r’, in combination with the mean
squared error, MSE was applied to investigate the performance of the
models in the training phase. The results generated by the Ensemble-
ANFIS model have been summarised in Table 2.

r and MSE values attained in training of Ensemble-ANFIS model for
SPI3, SPI6 and SPI12 forecasting at D. I. Khan were found to be: r(0.888,
0.966, 0.988) and MSE(0.207, 0.065, 0.022) respectively. Equivalent
metrics for Islamabad are found to be: r(0.923, 0.977, 0.994) and MSE
(0.142, 0.043, 0.011) and for Nawabshah are found to be: r(0.936,
0.976, 0.989) and MSE(0.116, 0.044, 0.001). Overall, the training
performance of the Ensemble-ANFIS model was considerably high for
all of the study regions. It is thus envisaged that the Ensemble-ANFIS
model testing performance, as seen later, will be relatively accurate for
forecasting multi-scalar drought events at these sites. It is noteworthy,
however, that the Ensemble-ANFIS model was able to attain a better
training performance (in terms of both r and MSE) for the Islamabad
station compared to D. I. Khan and Nawabshah but as a whole assess-
ment, the accuracy was high at all 3 study sites (Table 2).

With M5 Tree algorithm, a tree-based forecast model was designed
that operated on the ‘divide-and-conquer’ principle (Kisi, 2015;
Rahimikhoob et al., 2013). For D. I. Khan station, r and MSE values
attained in the training phase for forecasting multi-scalar SPI yielded: r
(0.882, 0.961, 0.989) and MSE(0.192, 0.062, 0.017); for Islamabad, the

trained model yielded: r(0.941, 0.979, 0.994) and MSE(0.099, 0.037,
0.009) and for Nawabshah, the trained model yielded r(0.947, 0.978,
0.992) and MSE(0.089, 0.037, 0.013) for SPI3, SPI6, and SPI12 forecasts,
respectively. This analysis showed that the trained M5 Tree model was
able to forecast slightly better in terms of both a higher r and a lower
MSE values for Islamabad compared to D. I. Khan and Nawabshah but
as a whole assessment, the accuracy of M5 Tree was lower than the
Ensemble-ANFIS model (Table 3).

Development of the MPMR model depended on a kernel function
due to its reliance on the inner product of support vectors. In our case, a
linear kernel equation was considered most appropriate. Moreover, the
width and size of error threshold can also affect the performance of the
MPMR model. The width of the error tube in this study was found to be
1.0 for the optimal model, whereas the kernel parameters, ker.p1 and
ker.p2 were set to 2.0 and 23.0, respectively. At D. I. Khan station, the r
and MSE values in the training period used to forecast multi-scalar SPI
were: r(0.859, 0.961, 0.986) and MSE(0.225, 0.062, 0.021) while for
Islamabad station, these were r(0.926, 0.978, 0.994) and MSE(0.123,
0.038, 0.009). The correlation coefficient and mean squared error used
to estimate SPI3, SPI6, and SPI12 at Nawabshah station were: r(0.936,
0.977, 0.991), and MSE (0.106, 0.039, 0.013). In this respect, it is no-
ticeable that the M5 Tree model forecasted slightly better in terms of
both r and MSE for Islamabad compared to the other stations but as a
whole, the accuracy of MPMR was high at all 3 stations. Table 3 il-
lustrates these comparisons.

3.4. Model performance and their interpretation

The American Society for Civil Engineering (Yen, 1995) re-
commends two categories of model evaluation procedures that com-
prise of the statistical (or visual comparison of the observed and fore-
casted data) and the standardized performance metrics. The statistical
metrics are used to investigate the differences between the minimum,
maximum, mean, variance, standard deviation, skewness, and kurtosis
factors while the standardized metrics are used for the validation of the
predicted outcomes with respect to the observed data.

The mathematical formulations are as follows (Dawson et al., 2007;
Deo et al., 2016c; Legates and McCabe, 1999; Willmott, 1981; Willmott,
1982; Willmott, 1984).

I. Mean square error (MSE) is expressed as:

∑= −
=

MSE
N

SPI SPI1 ( )
i

N

FOR i OBS i
1

, ,
2

(27)

II. Correlation coefficient (r) is expressed as:

Table 2
Training performance of 10-member (‘ensemble-ANFIS’) model with correlation coefficient (r) and mean square error (MSE). Note: The inputs are based on statistically significant lagged
data, SPI (t – 1).

D. I. Khan Islamabad Nawabshah

SPI3 SPI6 SPI12 SPI3 SPI6 SPI12 SPI3 SPI6 SPI12

Ensemble No. MSE r MSE r MSE r MSE r MSE r MSE r MSE r MSE r MSE r

M1 0.218 0.892 0.067 0.960 0.020 0.990 0.148 0.921 0.049 0.972 0.012 0.994 0.1088 0.934 0.038 0.978 0.022 0.988
M2 0.201 0.887 0.061 0.969 0.024 0.987 0.145 0.918 0.041 0.980 0.010 0.995 0.1058 0.944 0.045 0.974 0.022 0.988
M3 0.198 0.892 0.062 0.968 0.024 0.986 0.127 0.933 0.047 0.976 0.010 0.994 0.1166 0.937 0.046 0.973 0.017 0.990
M4 0.213 0.885 0.066 0.968 0.025 0.987 0.128 0.929 0.045 0.978 0.010 0.994 0.1334 0.929 0.052 0.970 0.021 0.988
M5 0.212 0.893 0.064 0.968 0.021 0.989 0.152 0.920 0.042 0.978 0.011 0.993 0.1182 0.936 0.036 0.982 0.022 0.988
M6 0.238 0.867 0.070 0.966 0.018 0.990 0.155 0.918 0.045 0.978 0.012 0.993 0.1081 0.945 0.044 0.978 0.017 0.991
M7 0.195 0.897 0.066 0.964 0.022 0.989 0.146 0.917 0.042 0.977 0.011 0.994 0.1200 0.934 0.048 0.973 0.018 0.990
M8 0.199 0.891 0.062 0.966 0.019 0.990 0.142 0.917 0.039 0.979 0.012 0.993 0.1253 0.931 0.046 0.976 0.019 0.989
M9 0.203 0.876 0.064 0.969 0.022 0.988 0.119 0.937 0.046 0.977 0.011 0.993 0.1338 0.926 0.041 0.978 0.017 0.990
M10 0.190 0.902 0.064 0.965 0.025 0.986 0.157 0.921 0.038 0.978 0.012 0.993 0.0969 0.948 0.041 0.977 0.023 0.987
Average 0.207 0.888 0.065 0.966 0.022 0.988 0.142 0.923 0.043 0.977 0.011 0.994 0.1167 0.936 0.044 0.976 0.020 0.989
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III. Willmott's index (WI) is expressed as:
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IV. Nash-Sutcliffe coefficient (EV) is expressed as:
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V. Root mean square error (RMSE) is expressed as:
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VI. Mean absolute error (MAE) is expressed as:

∑= −
=

MAE
N

SPI SPI1 |( )|
i

N

FOR i OBS i
1

, ,
(32)

VII. Legates-McCabe's (LM) is expressed as:
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where SPIOBS and SPIFOR are the observed and forecasted ith value of
multi-scale SPI. SPIOBS and SPIFOR are the observed and forecasted mean
of SPI in the (test) set and N is the number of tested data points.

Due to the standardization of the observed and forecasted means
and variance, the robustness of r can be limited (Chai and Draxler,
2014). The “goodness-of-fit” relevant to high values are measured by
RMSE while in contrast; MAE evaluates all deviations from observed
data both in the same manner regardless of sign. The performance of a
model can be reduced to partial peaks and higher magnitudes that can
exhibit larger error and obtuse to small magnitudes (Dawson et al.,
2007). Willmott's Index (WI) was introduced to counter this issue by
considering the ratio of mean squared error instead of the differences
(Mohammadi et al., 2015; Willmott, 1981; Willmott, 1982; Willmott,
1984; Willmott et al., 2012). Nash-Sutcliffe efficiency (NSE) is another
normalized metric that determines the relative magnitude of residual
variance of forecasted data in comparison to the measured variance

(Nash and Sutcliffe, 1970). Legates-McCabe's (LM) is a more advanced
and powerful metric than both WI and NSE which utilizes the adjust-
ment of comparison in the evaluation of WI and NSE. LM can be quite
robust in evaluating the results by addressing the weaknesses of r and
using WI and NSE as baseline-adjusted indices together with an eva-
luation of RMSE and MAE (Legates and McCabe, 1999).

4. Results and discussion

In this section the results of multi-scalar SPI forecasts (i.e., 3-, 6- and
12-months) generated by the new ensemble-ANFIS model (with 10-fold
validation procedure) are analysed. In order to construct the model, the
importance of input variables (i.e., significant lags) was checked in
terms of the forecast accuracy. Then, based on statistical criteria (Eqs.
(27)–(33)), the Ensemble-ANFIS models were developed and compared
with M5 Tree and MPMR models.

In Table 4(a–d) we show the accuracy of the 10 model ensembles of
ANFIS in the testing phase constructed with significant lag (t–1) SPI as
an input. Each table presents 10 ensemble-ANFIS with an average en-
semble-ANFIS as a final (boldfaced) result. The magnitude of RMSE,
MAE, r, WI, NSE and LM between forecasted and observed multi-scalar
SPIs are examined for each site with the respective input lag combi-
nations to generate ten ensemble-ANFIS modelling scenarios (denoted
as ‘M1–M10’) (Table 4) with average metrics representing the final en-
semble-ANFIS model.

According to the results for Nawabshah station, the (average) en-
semble-ANFIS model yielded a value of RMSE (0.315), MAE (0.214), r
(0.946), WI (0.927), NSE (0.893), LM (0.721) for SPI3. For SPI6, the
Table shows RMSE(0.223), MAE(0.141), r(0.974), WI(0.966),
NSE(0.948), LM(0.824) and for SPI12, it shows RMSE(0.033), MAE
(0.019), r(0.990), WI(0.987), NSE(0.981), LM(0.902) with significant
lagged (t–1) inputs. It is noteworthy that models denoted as M9 (SPI3),
M4 (SPI6) and M8 (SPI12) appear to be the best ensemble-ANFIS models
for the Nawabshah study site (Table 4).

The magnitude of performance metrics for the study regions
Islamabad and D. I. Khan can also be seen in Table 4 respectively.
Moreover, for these sites, the models M8 (SPI3), M7 (SPI6) and M10

(SPI12) seem to be the most accurate ensemble-ANFIS models for Isla-
mabad (Table 4) whereas the models M6 (SPI3), M1 (SPI6) and M10

(SPI12) are the most accurate ensemble-ANFIS models for D. I. Khan
(Table 4). Overall, the statistical performance of the ensemble-ANFIS
model for all three study sites are quite impressive, and those for Na-
wabshah station appears to be the best, followed by slightly lower
performance for Islamabad and D. I. Khan stations, respectively.

Fig. 5(a–c) represents the uncertainties in multi-scalar SPI forecasts
for the test period. Here, the ensemble-ANFIS model results attained
from 10-fold simulation are shown in terms of the maximum and
minimum absolute forecasting error (AFE) (i.e., indicated as error bars)
and the average of all 10 model ensemble (i.e., shown in green) which is
compared with the real (i.e., observed) SPI data for 3-, 6-, and 12-
months. These error bars are practically useful, as they provide a clear
confidence interval of worst and average simulations and the varying
degrees of uncertainties at each of the test points for the ensemble
member, and are more easily comparable using the length of the bars.

Table 3
Training performance of M5 Tree and MPMR models. Note: The inputs are based on statistically significant lagged data, SPI (t – 1).

Model M5Tree MPMR

SPI3 SPI6 SPI12 Parameters SPI3 SPI6 SPI12

Station MSE r MSE r MSE r ϕ scale Kernel Ker.p1 Ker.p2 MSE r MSE r MSE r

D. I. Khan 0.192 0.882 0.062 0.961 0.015 0.989 1.0 none linear 2 23 0.225 0.859 0.062 0.961 0.021 0.986
Islamabad 0.099 0.941 0.037 0.979 0.009 0.994 1.0 none linear 2 23 0.123 0.926 0.038 0.978 0.009 0.994
Nawabshah 0.089 0.947 0.037 0.978 0.013 0.992 1.0 none linear 2 23 0.106 0.936 0.039 0.977 0.013 0.991
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Note that the maximum error indicated on this plot is the difference of
the actual error between the highest or worst ensemble-ANFIS model
member (i.e., as indicated by the performance metrics) and the average
error in forecasted multi-scalar SPI. Likewise, the minimum error is the
forecasting error between the average and the lowest or worst en-
semble-ANFIS model member (i.e., as indicated by the performance
metrics). For D. I. Khan, the error bars for the forecasted and observed
SPI12 for each test point demonstrate a relatively small error value as
compared to SPI3 and SPI6 forecasts (see Fig. 5(a)). This is then fol-
lowed for Islamabad station (Fig. 5(b)) and the Nawabshah station
(Fig. 5(d)) as the SPI3 has larger errors which are reduced gradually in
the SPI6 and SPI2 forecasts, respectively. Overall, the error bars of
Nawabshah appear to be relatively small, which is then followed by
Islamabad and then D. I. Khan station.

To compare directly the forecasted and observed multi-scalar SPI,
Fig. 6(a-d) plots the 10-member averaged ensemble-ANFIS vs. M5 Tree
and the MPMR model simulated absolute forecasted error for each
tested month. Further, to analyse the model performance more closely,
a scatterplot showing the goodness-of-fit and its correlation coefficient r
is shown to depict the extent of agreement between forecasted and
observed multi-scalar SPI. The ensemble-ANFIS model convincingly
outperforms the M5 Tree and the MPMR model in all tested points. The
absolute forecasted error is seen to exhibit a reasonably larger magni-
tude for M5 Tree and MPMR as compared to the ensemble-ANFIS model
throughout the testing phase. Therefore, it is clear that the ensemble-
ANFIS model has a better ability to simulate the multi-scalar SPI with
good accuracy, as confirmed by the larger r-value.

In Table 5, the preciseness of the ensemble-ANFIS model in relation

Table 4
Ensemble-ANFIS model evaluated in testing phase with Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Correlation Coefficient (r), Willmott Index (WI), Nash-Sutcliff
(NSE) and Legates & McCabes Index (LM) for 3, 6, and 12month forecasts. The best model is boldfaced (blue).

D. I. Khan

SPI3 SPI6
SPI12

Ensemble No. RMSE MAE r WI ENS LM RMSE MAE r WI ENS LM RMSE MAE r WI ENS LM

M1 0.427 0.336 0.881 0.871 0.775 0.561 0.241 0.175 0.977 0.9754 0.9534 0.816 0.172 0.113 0.984 0.983 0.969 0.866

M2 0.467 0.360 0.895 0.879 0.797 0.569 0.262 0.180 0.963 0.963 0.927 0.784 0.146 0.100 0.989 0.988 0.978 0.880

M3 0.473 0.347 0.883 0.862 0.775 0.589 0.260 0.174 0.966 0.956 0.929 0.787 0.148 0.101 0.990 0.989 0.980 0.885

M4 0.439 0.345 0.898 0.890 0.806 0.590 0.244 0.178 0.965 0.964 0.928 0.773 0.133 0.096 0.989 0.988 0.979 0.875

M5 0.443 0.354 0.881 0.873 0.774 0.541 0.248 0.185 0.965 0.966 0.929 0.771 0.166 0.107 0.985 0.985 0.970 0.871

M6 0.377 0.294 0.929 0.919 0.863 0.656 0.225 0.163 0.970 0.970 0.939 0.787 0.180 0.119 0.984 0.984 0.968 0.859

M7 0.480 0.350 0.872 0.870 0.758 0.570 0.238 0.168 0.973 0.970 0.946 0.806 0.157 0.104 0.986 0.986 0.973 0.869

M8 0.479 0.351 0.882 0.842 0.768 0.571 0.259 0.191 0.970 0.966 0.938 0.777 0.177 0.115 0.984 0.984 0.967 0.860

M9 0.467 0.358 0.909 0.893 0.814 0.607 0.250 0.177 0.963 0.963 0.926 0.771 0.162 0.112 0.988 0.986 0.975 0.872

M10 0.487 0.376 0.861 0.842 0.741 0.536 0.250 0.171 0.970 0.968 0.941 0.806 0.138 0.097 0.991 0.990 0.982 0.889

Average 0.454 0.347 0.889 0.874 0.787 0.579 0.248 0.176 0.968 0.966 0.935 0.788 0.158 0.107 0.987 0.986 0.974 0.873

Islamabad
M1 0.372 0.285 0.929 0.900 0.861 0.640 0.184 0.146 0.985 0.982 0.970 0.835 0.103 0.075 0.993 0.992 0.987 0.897

M2 0.382 0.297 0.933 0.911 0.870 0.657 0.223 0.170 0.971 0.963 0.942 0.766 0.123 0.090 0.991 0.989 0.982 0.873

M3 0.428 0.324 0.904 0.857 0.816 0.584 0.195 0.143 0.980 0.972 0.960 0.815 0.122 0.091 0.992 0.990 0.985 0.889

M4 0.424 0.315 0.914 0.874 0.831 0.613 0.207 0.151 0.975 0.970 0.951 0.798 0.126 0.093 0.992 0.990 0.984 0.888

M5 0.360 0.277 0.929 0.913 0.863 0.632 0.219 0.164 0.976 0.970 0.951 0.793 0.115 0.084 0.994 0.992 0.988 0.902

M6 0.356 0.279 0.931 0.916 0.866 0.651 0.207 0.157 0.974 0.968 0.948 0.780 0.105 0.082 0.994 0.993 0.989 0.902

M7 0.381 0.287 0.934 0.909 0.869 0.667 0.218 0.160 0.976 0.970 0.952 0.799 0.118 0.086 0.991 0.988 0.983 0.881

M8 0.390 0.289 0.932 0.908 0.866 0.672 0.232 0.171 0.974 0.968 0.948 0.792 0.104 0.075 0.995 0.993 0.989 0.910

M9 0.445 0.335 0.897 0.858 0.802 0.583 0.196 0.146 0.977 0.971 0.955 0.795 0.115 0.083 0.994 0.992 0.988 0.904

M10 0.349 0.262 0.930 0.899 0.860 0.631 0.238 0.175 0.975 0.968 0.950 0.799 0.103 0.078 0.995 0.993 0.990 0.910

Average 0.389 0.295 0.923 0.894 0.850 0.633 0.212 0.158 0.976 0.970 0.953 0.797 0.114 0.084 0.993 0.991 0.987 0.896

Nawabshah
M1 0.360 0.240 0.948 0.921 0.886 0.733 0.250 0.163 0.970 0.961 0.941 0.810 0.121 0.078 0.991 0.988 0.983 0.897

M2 0.347 0.234 0.933 0.913 0.869 0.698 0.220 0.137 0.979 0.971 0.957 0.842 0.121 0.072 0.992 0.990 0.985 0.911

M3 0.315 0.217 0.946 0.935 0.894 0.720 0.213 0.133 0.979 0.973 0.958 0.842 0.159 0.096 0.987 0.984 0.975 0.888

M4 0.263 0.182 0.961 0.949 0.924 0.761 0.183 0.120 0.984 0.980 0.969 0.859 0.128 0.079 0.991 0.988 0.983 0.901

M5 0.309 0.210 0.946 0.923 0.896 0.708 0.255 0.164 0.961 0.948 0.923 0.780 0.123 0.073 0.991 0.989 0.983 0.903

M6 0.341 0.229 0.926 0.905 0.856 0.664 0.224 0.139 0.970 0.960 0.939 0.808 0.158 0.090 0.985 0.980 0.970 0.882

M7 0.305 0.209 0.953 0.932 0.905 0.732 0.201 0.128 0.980 0.975 0.960 0.844 0.152 0.083 0.987 0.982 0.974 0.893

M8 0.284 0.182 0.956 0.941 0.915 0.763 0.212 0.134 0.974 0.964 0.948 0.819 0.139 0.083 0.989 0.986 0.978 0.890

M9 0.256 0.190 0.967 0.957 0.933 0.763 0.238 0.149 0.970 0.960 0.940 0.808 0.158 0.088 0.989 0.987 0.977 0.903

M10 0.374 0.250 0.923 0.899 0.852 0.670 0.236 0.144 0.972 0.966 0.944 0.824 0.113 0.069 0.993 0.991 0.987 0.916

Average 0.315 0.214 0.946 0.927 0.893 0.721 0.223 0.141 0.974 0.966 0.948 0.824 0.137 0.081 0.990 0.986 0.979 0.898

The red values represents the highest values of an ANFIS model out of 10 model.
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to the M5 Tree and MPMR models is evaluated where the results of
SPI3, SPI6 and SPI12 for all three study sites in the testing phase are
shown. For all sites considered, the accuracy of ensemble-ANFIS ap-
pears to have generally improved in the forecasts of SPI6 and SPI12 data,
as compared to those of SPI3. This can be proved by the remarkable rise
in the correlation coefficient computed between the observed and
forecasted multi-scalar SPI and a corresponding decrease in the RMSE
and MAE values. However, for the ensemble-ANFIS model, the im-
provement in forecasting accuracy declined with no further increase in
value of r, or a reduction in the value of RMSE and MAE with an ad-
ditional combination of significant lagged data after (t–1) (not shown

here). This is plausibly due to the 80%–95% feature extraction evident
from the lag (t–1) while the additional lagged historical SPI did not
significantly contribute to an improvement in the final model. For the
comparative analysis among the forecast models (i.e., ensemble-ANFIs
vs. M5 Tree and MPMR) between the observed and the forecasted
multi-scalar SPI data for all three study regions, we refer to Table 5. The
ensemble-ANFIS model for the site Nawabshah appears to be the most
accurate in terms of these assessment metrics computed between the
observed and the forecasted multi-scalar SPI in contrast to those of
MPMR and M5 Tree model.

Fig. 7(a-c) displays the frequency distribution of the ensemble-

(a)

Fig. 6. (Left) Times-series of Ensemble-ANFIS vs. M5Tree and MPMR models-generated absolute forecasting error (AFE). (Right) Scatterplot of the forecasted and observed SPI in the
testing phase based on 3, 6, and 12month scales. (a) D. I. Khan, (b) Islamabad, (c) Nawabshah. For each scatterplot, the least square fitting line and its respective correlation coefficient is
shown.

Fig. 5. Ensemble-ANFIS model results attained from 10-fold simulations, analysed in terms of the maximum and minimum absolute forecasting error (AFE) (i.e., bars) and the average of
10 model ensemble forecasts (i.e., green) compared with observed SPI for 3, 6, and 12month scale data for testing months. (a) D. I. Khan, (b) Islamabad, (c) Nawabshah. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ANFIS vs. M5Tree and MPMR model's absolute forecasting error in the
testing phase. Moreover, the percentage of each month in the testing
period with an error level (± 0.12) has also been presented. The
forecasting error frequency generated by the ensemble-ANFIS model in
the forecasting of multi-scalar SPI, within the smallest error range
(± 0.12)was observed to be the highest for D. I. Khan station (i.e.,
SPI3≈ 56%, SPI6≈ 79%, SPI12≈ 94%,), followed by Islamabad station
(SPI3≈ 52%, SPI6≈ 89%, SPI12≈ 83%,) and Nawabshah station
(SPI3≈ 79%, SPI6≈ 89%, SPI12≈ 86%,). This showed that the overall
performance attained with the ensemble-ANFIS model was con-
siderably better with a majority of the lower forecasting errors in the
test phase (Fig. 7).

In Fig. 8(a–c), we illustrate a boxplot of the ensemble-ANFIS vs.
M5Tree and MPMR model's forecasting error for multi-scale SPI of all
the study sites. The outliers specified by + in every boxplot represent
the extreme magnitudes of the forecasting error within the testing

phase along with their upper quartile, median and lower quartile va-
lues. The distributed forecasting errors are justified by these boxplots
showing a much lower spread was achieved by ensemble-ANFIS with a
relative smaller magnitude of quartile statistics and median values in
comparison with M5 Tree and the MPMR model. The net shift for the
M5 Tree and MPMR models in the forecasting errors towards larger
magnitudes are consistent with Fig. 7. Accordingly, the ensemble-
ANFIS model remains the superior and highly optimized model for D. I.
Khan, Islamabad and Nawabshah stations applied to forecast multi-
scalar SPI data in terms of the illustrated clustered error distribution
towards smaller magnitude.

Table 6 displays the computed values of duration (D), peak intensity
(I), and severity (S) with their actual differences (Δ= SPIFor− SPIObs)
between D, I and S (10 sets of values plus a mean value) deduced from
forecasted and observed datasets for all the three study site Dera Ismail
Khan, Islamabad, and Nawabshah. The accuracy of the ensemble-ANFIS

(b)

Fig. 6. (continued)
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model in forecasting of drought properties was tested by quantifying
the D, I and S using running-sum approaches (Kim et al., 2009;
Yevjevich, 1967b). Based on the forecasted values of multi-scale SPI, a
drought was seen to be occur in a month when the monthly value of the
SPI was negative (i.e. rainfall conditions were lower rainfall than the
normal period). The severity of the drought was then the accumulated
value of the negative SPI and the duration as the sum of all months
when this drought status was sustained. It shows the analysis of fore-
casted drought properties (in terms of the errors) of 10 model ensemble-
ANFIS where the uncertainty in every model is shown. 10 model ANFIS
can be used a decision tool for drought-risk assessment. When com-
pared by S, there was a significant difference in observed and forecasted
magnitudes of SPI3 in comparison with SPI6 and SPI12 for all stations
(see. Table 6). However, the drought severity for Dera Ismail Khan and
Islamabad was greater than Nawabshah in SPI3, SPI6 and SPI12

respectively. Similarly the drought intensity was higher for Islamabad
and Dera Ismail Khan in regard to Nawabshah while the drought
duration was found to be larger in Nawabshah for almost all 10 en-
semble models as compared to other two stations.

The ability of the ensemble-ANFIS model has been extended to as-
sess the predictive uncertainty in multi-scale SPI forecasting for all
study regions in Table 7. In the forecasted 10 ensemble models the
fluctuation (or variation) in the drought property is seen to occur in
every simulation; hence this can be used to decide on a particular
confidence interval of the simulated drought from 10 members, com-
pared to the observed. The 10 ensemble models are first used to gen-
erate the range of simulations, and then we extract the properties of
drought for each model. By doing so, a decision-support system can be
developed to provide the stakeholders more strategic information in
terms of the risk (i.e. how much can a simulation varies from the

(c)

Fig. 6. (continued)
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observed value). On the other hand, if a single simulation is used
without the ensemble approach, which does not determine the range of
uncertainty in drought properties which is a very important task for
decision-making. Upper bound (UB) and lower bound (LB) of con-
fidence intervals show the uncertainty involved in the drought duration
predictions. It is clear from the Table 7 that the drought duration un-
certainty values are slightly higher for SPI3 as compared to SPI6 and
SPI12 in all stations. Geographically, the predictive uncertainty in
monthly multi-scale SPI forecasting is higher for Nawabshah, followed
by Dera Ismail Khan and Islamabad station.

5. Further discussion: limitations and future direction

To strategically address the foregoing challenges, researchers must
design versatile predictive models for better forecasting of drought,
particularly in nations that are sensitive to climate change (2016;
Ahmad et al., 2004; Amir, 2012; Pakistan, 1950–2015; Zaidi, 2016).
The 1998 drought in Pakistan was the worst in 50 years, and it was a
primary factor responsible for poor economic growth (Haider, 2016).
The Baluchistan province, especially the western and the central parts,
often remain in the grip of drought almost all year round in Pakistan
(Haider, 2016). Improved prediction of SPI is likely to assist such re-
gions in preparing for expected changes in rainfall distribution. In
earlier studies, data-driven models based on climatic parameters found
the variability of models over large, sparsely distributed regions (Abbot
and Marohasy, 2012; Abbot and Marohasy, 2014; Deo and Şahin,
2015a; Deo and Sahin, 2016; Deo et al., 2016b; Xie et al., 2013). The
development of models to target specific localities will likely be ne-
cessary to improve drought prediction.

This study has designed for the first time an ensemble-ANFIS fra-
mework tested against the M5 Tree and MPMR model for multi-scalar
SPI forecasting with significantly lagged inputs. It is worth mentioning
that 10-member ensemble-ANFIS was evaluated to yield a large statis-
tical correlation between observed and forecasted SPI based on the
Legates-McCabe's Index (Table 4). The performance of the 10-member
ensemble-ANFIS model was remarkable, compared to the M5 Tree and
MPMR model in terms of the attained statistical accuracy. Therefore,
the 10-member ensemble-ANFIS model was proven to be a valuable
predictive tool for forecasting drought in the present work. Data-driven
models are likely to become important tools in core decision-making in
hydrology and water sciences that aim to address drought-related issues
arising from imminent global warming scenarios and the increasing risk
of water scarcity in the first world as well as developing nations.

In spite of the enormous accuracy, our study does have some lim-
itations that could seed new, future research. ANFIS was employed via
an ensemble technique, but in terms of the model's optimization, the
hybridization of different data-intelligent ‘add-in’ algorithms could
yield more promising results (Behmanesh et al., 2014; Liang et al.,
2015; Vairappan et al., 2009; XingXing et al., 2008; Zhou et al., 2011).
Some of the other advanced optimisation methods that enable more
robust feature extraction applied could include: the Particle Swarm
Optimization (PSO) (Chen and Yu, 2005), Quantum-Behaved Particle
Swarm Optimization (Q-PSO) (Zhisheng, 2010), Genetic Algorithm
(GA) (Reeves, 1995) and the Firefly Algorithm (FA) (Yang, 2010)
technique that has been tested in climate applications as an improve-
ment to the ANFIS model (Deo et al., 2018; Ghorbani et al., 2017;
Raheli et al., 2017; Yaseen et al., 2017). In a following up work, ex-
treme learning machine (Huang et al., 2006), artificial neural network
(Abbot and Marohasy, 2014), support vector machine (Cortes and
Vapnik, 1995) etc. can also be utilized to forecast drought events in
Pakistan.

While the above-mentioned approaches are well-established, a new,
more generalized framework for hybridizing the ANN with the in-
tuitionistic fuzzy (Takeuti and Titani, 1984) and neutrosophic logic
(Smarandache, 2001) that may also be achieved instead of using a fuzzy
logic integrator. The later are known to handle uncertainty, in-
determinacy, incompleteness and inconsistency in the predictor-target
data. Since the standard statistical approaches tend to avoid the hurdle
of model uncertainty that potentially leads to over-confident inferences
and risky agricultural decisions, Bayesian Model Averaging (BMA)
(Foresee and Hagan, 1997) is another data-intelligent tool to model
uncertainties which can be used in ranking model performance. Multi-
resolution analysis (e.g., empirical wavelet transform (Gilles, 2013),
empirical mode composition (Huang et al., 1998), maximum overlap
wavelet (Kormylo and Mendel, 1982) and singular value decomposition
(Golub and Reinsch, 1970) could broaden the accuracy and scope of
this study.

6. Conclusion

Machine learning-based simulation of drought behaviours utilizing
the standardized rainfall deficits and surpluses can be used as a key task
for developing effective drought mitigation strategies. Due to the severe
impacts of drought hazard, SPI based drought forecasts are an accep-
table tool utilized globally that can manage the associated future risk to
agriculture, water management, demand, pricing and policy. In this

Table 5
Comparison of 10-member average of the Ensemble-ANFIS vs. the M5 Tree and MPMR-based SPI forecasting performance. Note that the best model is boldfaced (blue).

D. I. Khan

SPI3 SPI6 SPI12

Model RMSE MAE r WI ENS LM RMSE MAE r WI ENS LM RMSE MAE r WI ENS LM

E-ANFIS 0.454 0.347 0.889 0.874 0.787 0.579 0.248 0.176 0.968 0.966 0.935 0.788 0.158 0.107 0.987 0.986 0.974 0.873

M5Tree 0.452 0.365 0.870 0.771 0.739 0.503 0.260 0.181 0.954 0.937 0.905 0.744 0.174 0.112 0.982 0.974 0.961 0.848

MPMR 0.393 0.306 0.891 0.822 0.779 0.557 0.258 0.179 0.956 0.940 0.910 0.753 0.166 0.106 0.984 0.977 0.966 0.859

Islamabad
E-ANFIS 0.389 0.295 0.923 0.894 0.850 0.633 0.212 0.158 0.976 0.970 0.953 0.797 0.114 0.084 0.993 0.991 0.987 0.896

M5Tree 0.465 0.356 0.831 0.700 0.668 0.458 0.246 0.184 0.950 0.927 0.896 0.709 0.139 0.096 0.985 0.979 0.968 0.855

MPMR 0.447 0.336 0.843 0.784 0.693 0.489 0.238 0.174 0.952 0.938 0.903 0.724 0.135 0.092 0.986 0.980 0.970 0.861

Nawabshah
E-ANFIS 0.315 0.214 0.946 0.927 0.893 0.721 0.223 0.141 0.974 0.966 0.948 0.824 0.142 0.086 0.989 0.986 0.978 0.892

M5Tree 0.409 0.273 0.916 0.883 0.836 0.655 0.264 0.179 0.967 0.954 0.933 0.784 0.191 0.116 0.984 0.980 0.967 0.871

MPMR 0.359 0.227 0.935 0.915 0.874 0.712 0.249 0.151 0.970 0.961 0.940 0.817 0.178 0.100 0.986 0.983 0.971 0.888
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(a)

Fig. 7. Cumulative frequency of errors generated by the ensemble-ANFIS vs. M5Tree and MPMR model- based on the 3, 6 and 12month SPI forecasts. (a) D. I. Khan, (b) Islamabad, (c)
Nawabshah. Note that the percentage is shown in the respective error bracket.
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(b)

Fig. 7. (continued)
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(c)

Fig. 7. (continued)
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study, the 10-member ensemble-ANFIS model was benchmarked with
the M5 Tree and MPMR models for both short- and long-term SPI
forecasting at three major locations in Pakistan where agriculture plays
a significant role in the nation's food supply and economic growth. The
models were developed using significant lags of SPI (i.e., historical
behaviour of drought) in order to test the relative performance of the
models for multi-scalar SPI forecasting. In terms of assessing the model

accuracy, MSE and r (in the training phase), RMSE, MAE, r, WI, NSE and
LM (in the testing phase) were used between the forecasted and ob-
served multi-scalar SPI for 3-, 6- and 12-month forecast horizons.

Our results revealed that using the SPI of the antecedent period to
forecast in the consequent month plays a vital role in terms of fore-
casting accuracy of the data-intelligent models. Comparison of these
models revealed that the 10-member ensemble-ANFIS, M5 Tree and

(a)

(b)

(c)

Fig. 8. Boxplot of the distribution of absolute forecasting error (AFE) generated by the ensemble-ANFIS vs. M5 Tree and the MPMR model 3, 6 and 12month scale SPI forecasts. (a) D. I.
Khan, (b) Islamabad, (c) Nawabshah.
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Table 6
The performance of the ensemble-ANIS model in all station for quantifying drought, as measured by the actual difference
(Δ= SPIFor− SPIObs) between the forecasted and the observed properties of drought over the testing period; Severity, S≡ accumulated
negative SPI after the onset of drought is detected (SPI < 0); Intensity, I≡minimum value of the SPI; Duration, D≡ sum of the
consecutive months in which drought status is sustained for all stations. Note that the average model is boldfaced (blue).

Dera Ismail Khan

SPI3

Drought Duration (D) Drought Intensity (I) Drought Severity (S)

Models SPIFor SPIObs Δ SPIFor SPIObs Δ SPIFor SPIObs Δ

M1 89 86 3 -2.085 -1.912 -0.173 -54.769 -58.560 3.790

M2 82 80 2 -2.046 -1.912 -0.134 -53.734 -60.234 6.500

M3 79 83 4 -1.86 -2.385 0.525 -46.609 -55.689 9.080

M4 85 79 6 -1.450 -2.385 0.935 -45.201 -51.378 6.176

M5 80 74 6 -1.944 -2.061 0.116 -46.985 -47.729 0.743

M6 70 71 1 -1.842 -2.385 0.543 -38.641 -44.897 6.256

M7 73 75 2 -2.058 -1.912 -0.146 -45.874 -56.758 10.883

M8 81 73 8 -1.591 -2.079 0.488 -47.693 -52.061 4.36

M9 80 75 5 -1.685 -2.061 0.375 -45.402 -56.939 11.537

M10 85 83 2 -1.402 -2.385 0.983 -50.499 -55.342 4.843

Average 80.4 77.9 2.5 -1.796 -2.148 0.351 -47.541 -53.959 6.417

SPI6

M1 80 78 2 -1.693 -1.781 -0.088 -59.681 -59.763 -0.081

M2 81 81 0 -1.722 -1.781 -0.059 -51.124 -51.303 -0.178

M3 83 84 1 -1.713 -1.781 -0.068 -54.742 -57.933 -3.191

M4 76 73 3 -1.695 -1.781 -0.086 -50.415 -50.051 0.364

M5 80 80 0 -1.777 -1.732 0.044 -58.769 -57.394 1.374

M6 76 76 0 -1.657 -1.778 -0.121 -46.511 -45.335 1.176

M7 75 74 1 -1.584 -1.732 -0.148 -48.382 -48.199 0.182

M8 74 76 2 -1.705 -1.752 -0.047 -52.211 -52.546 -0.334

M9 88 86 2 -1.720 -1.669 0.051 -56.61 -55.859 0.750

M10 79 79 0 -1.666 -1.752 -0.085 -57.465 -57.230 0.234

Average 79.2 78.7 1.1 -1.693 -1.754 -0.060 -53.591 -53.561 0.029

SPI12

M1 79 78 1 -1.611 -1.635 -0.023 -51.934 -51.623 0.311

M2 79 80 1 -1.778 -1.795 -0.017 -61.016 -62.480 -1.464

M3 72 73 1 -1.586 -1.640 -0.053 -50.293 -51.169 -0.876

M4 77 78 1 -1.772 -1.640 0.132 -60.806 -60.637 0.168

M5 80 80 0 -1.783 -1.795 -0.011 -58.792 -59.360 -0.568

M6 76 75 1 -1.783 -1.636 0.146 -59.847 -59.924 -0.077

M7 79 81 2 -1.582 -1.795 -0.213 -49.001 -50.366 -1.365

M8 78 79 1 -1.635 -1.640 -0.004 -61.792 -62.556 -0.764

M9 77 77 0 -1.584 -1.795 -0.211 -55.376 -55.396 -0.019

M10 80 79 1 -1.602 -1.795 -0.193 -55.967 -56.458 -0.491

Average 77.7 78 0.9 -1.672 -1.717 -0.045 -56.482 -56.997 -0.514

(continued on next page)
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Table 6 (continued)

Islamabad

SPI3

M1 69 71 2 -1.443 -1.737 -0.294 -52.432 -55.772 -3.339

M2 69 65 4 -1.806 -2.103 -0.296 -50.440 -56.048 -5.608

M3 74 70 4 -1.902 -1.939 -0.037 -58.248 -66.626 -8.378

M4 62 61 1 -1.763 -2.002 -0.239 -46.926 -52.938 -6.012

M5 70 66 4 -1.447 -1.972 -0.525 -49.508 -50.404 -0.895

M6 72 68 4 -1.844 -1.972 -0.128 -54.404 -58.782 -4.377

M7 63 62 1 -1.987 -2.103 -0.116 -49.349 -50.633 -1.284

M8 72 82 10 -1.837 -2.002 -0.164 -55.729 -67.2971 -11.567

M9 61 63 2 -1.752 -2.103 -0.350 -43.57 -50.331 -6.761

M10 65 71 6 -1.542 -1.767 -0.224 -48.371 -57.031 -8.6606

Average 67.7 67.9 3.8 -1.732 -1.970 -0.237 -50.898 -56.586 -5.688

SPI6

M1 70 69 1 -2.096 -2.088 0.007 -65.068 -63.709 1.359

M2 64 66 2 -1.925 -1.835 0.090 -54.697 -55.526 -0.828

M3 70 73 3 -1.739 -1.866 -0.126 -50.533 -58.045 -7.512

M4 63 65 2 -2.026 -1.867 0.159 -49.412 -50.229 -0.816

M5 65 65 0 -1.927 -1.835 0.091 -58.561 -58.053 0.507

M6 63 60 3 -1.976 -1.835 0.140 -47.414 -44.442 2.971

M7 66 69 3 -2.012 -2.088 -0.075 -52.348 -54.835 -2.486

M8 61 69 8 -1.995 -2.088 -0.093 -51.981 -54.761 -2.780

M9 75 72 3 -2.018 -2.088 -0.069 -60.148 -58.795 1.357

M10 68 71 3 -1.95 -1.972 -0.022 -57.773 -58.396 -0.622

Average 66.5 67.9 2.8 -1.9667 -1.956 0.010 -54.793 -55.678 -0.885

SPI12

M1 64 65 1 -1.953 -2.073 -0.119 -52.803 -53.870 -1.067

M2 71 72 1 -2.027 -2.076 -0.045 -60.739 -62.236 -1.496

M3 69 71 2 -2.045 -2.076 -0.030 -62.476 -62.201 0.275

M4 67 66 1 -2.015 -2.076 -0.061 -54.734 -55.656 -0.922

M5 64 62 2 -2.039 -2.076 -0.037 -52.032 -52.277 -0.245

M6 62 61 1 -2.054 -2.074 -0.020 -52.642 -52.089 0.552

M7 65 65 0 -2.038 -2.074 -0.036 -50.357 -50.534 -0.177

M8 64 65 1 -2.065 -2.076 -0.011 -60.285 -59.392 0.892

M9 64 64 0 -1.936 -1.988 -0.051 -54.563 -57.813 -3.250

M10 66 68 2 -2.013 -2.076 -0.063 -55.702 -56.251 -0.549

Average 65.6 65.9 1.1 -2.018 -2.067 -0.048 -55.633 -56.232 -0.598

(continued on next page)
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MPMR models can all be successfully adopted for multi-scalar SPI
forecasting, although there was a significant variation (in terms of
model forecasting accuracy) (i.e., between the performance of the en-
semble-ANFIS versus M5 Tree and MPMR models). The ensemble-
ANFIS model achieved the highest accuracy for D. I. Khan, Islamabad

and Nawabshah stations, which was confirmed in both the training
(Table 2) and the testing phase of the model (Table 4). That is, in the
case of forecasting moderate drought, severe drought and extreme
drought, the ensemble-ANFIS performance was quite impressive for D.
I. Khan, Islamabad and Nawabshah due to the model exhibiting the

Table 6 (continued)

Nawabshah

SPI3

M1 85 85 0 -1.770 -1.889 0.092 -51.842 -59.104 7.262

M2 84 85 1 -1.797 -1.889 0.147 -56.499 -59.698 3.199

M3 82 79 3 -1.741 -1.889 0.149 -49.420 -49.764 0.343

M4 89 90 1 -1.739 -1.889 0.135 -55.285 -57.678 2.392

M5 99 97 2 -1.754 -1.889 0.152 -63.464 -64.957 1.492

M6 93 92 1 -1.736 -1.889 0.136 -57.802 -59.155 1.353

M7 94 92 2 -1.753 -1.889 0.121 -62.330 -61.710 -0.62

M8 94 95 1 -1.767 -1.889 0.178 -67.39 -68.681 1.290

M9 86 81 5 -1.710 -1.889 0.148 -54.291 -54.92 0.636

M10 89 84 5 -1.740 -1.889 0.148 -53.712 -55.350 1.637

Average 89.5 88 2.1 -1.751 -1.889 0.141 -57.204 -59.102 1.8988

SPI6

M1 84 80 4 -1.799 -1.889 0.089 -53.780 -53.005 -0.775

M2 87 88 1 -1.818 -1.889 0.070 -57.890 -58.713 0.822

M3 84 82 2 -1.792 -1.889 0.096 -51.616 -53.163 1.546

M4 85 79 6 -1.793 -1.889 0.096 -53.071 -52.169 -0.902

M5 89 88 1 -1.809 -1.889 0.080 -56.092 -56.245 0.153

M6 87 84 3 -1.814 -1.889 0.075 -52.619 -52.91 0.298

M7 88 83 5 -1.836 -1.889 0.052 -59.959 -59.903 -0.056

M8 91 88 3 -1.802 -1.889 0.087 -56.063 -56.733 0.670

M9 87 82 5 -1.813 -1.889 0.076 -54.043 -53.180 -0.863

M10 83 83 0 -1.831 -1.889 0.058 -50.874 -51.521 0.646

Average 86.5 83.7 3 -1.811 -1.889 0.078 -54.601 -54.755 0.1540

SPI12

M1 94 94 0 -1.774 -1.986 0.211 -61.211 -60.999 -0.211

M2 87 85 2 -1.836 -1.813 -0.022 -63.156 -62.129 -1.026

M3 91 91 0 -1.941 -2.038 0.096 -57.427 -57.929 0.501

M4 92 93 1 -1.945 -1.889 -0.056 -62.577 -63.483 0.906

M5 92 93 1 -1.944 -1.986 0.0416 -58.909 -59.569 0.659

M6 85 83 2 -1.559 -1.564 0.005 -48.092 -47.550 -0.542

M7 91 89 2 -1.804 -1.763 -0.040 -51.893 -51.844 -0.048

M8 91 92 1 -1.854 -2.038 0.183 -59.241 -59.520 0.278

M9 79 70 9 -1.894 -1.986 0.091 -56.006 -56.876 0.870

M10 89 89 0 -1.99 -1.885 -0.107 -58.414 -58.562 0.1481

Average 89.1 87.9 1.8 -1.854 -1.895 0.040 -57.692 -57.846 0.1534
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lowest value of RMSE and MAE and highest magnitudes of r, WI, NSE
and LM.

This research has set the foundation for the potential of using more
extensive predictor data products such as climate predictors (i.e.,
rainfall, temperature, humidity etc.), climate mode indices (SOI, PDO,
EMI etc.) and satellite data with reanalysis and ground-based products
for forecasting future drought in Pakistan and elsewhere. The technique
applied is practically beneficial for multi-period drought analysis in
respect to the forecasting variable. While the present study presents
only a case study in Pakistan, the developed framework can be ex-
tended to any other location in the world. For example, to increase its
practicality in future drought forecasting, the ensemble-ANFIS model
could be applied to other agricultural and water resource reservoir
zones where water scarcity threatens long term sustainability. Due to
the aforementioned potential and abilities of the ensemble-ANFIS, it is
possible to apply such a model for the forecasting of stream and river
flow, wind forecasting, soil moisture forecasting and crop yield esti-
mation in Pakistan. Another possible extension to the present study may
employ several different types of climate data (temperature, humidity,
sunshine, rainfall) with climate indices for drought forecasting in dif-
ferent regions as each of these variables are likely to impact drought
severity and duration.
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Chapter 5 

Multi-stage committee based extreme learning machine model 

incorporating the influence of climate parameters and seasonality 

on drought forecasting 

Foreword 

This chapter is an exact copy of the published article in Computers and Electronics in 

Agriculture journal (Vol. 152, Pages 149-165). 

The ensemble-ANFIS model in Chapter 4 has the limitation of short term (i.e. monthly) drought 

forecasting. Therefore addressing this issue, a new soft-computing committee based drought 

modelling framework for short term forecasting was designed in this study. Committee of 

modelling technique is a model combination technique, which is uncommon in climatological 

studies. In this study, the ELM-based committee (Comm-ELM) was developed using multiple 

meteorological input predictors and explore for monthly drought forecasting in three regions of 

Pakistan. 

For comparison purpose, the PSO-ANFIS-based committee (Comm-PSO-ANFIS) and MLR-

based committee (Comm-MLR) models were also designed. The results shows the Comm-ELM 

outperformed in relation to Comm-PSO-ANFIS and Comm-MLR. The Comm-ELM is only 

capable of forecasting short term (i.e. monthly) drought. It is unable to forecast medium and long 

term drought forecasting. 



Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Original papers

Multi-stage committee based extreme learning machine model incorporating
the influence of climate parameters and seasonality on drought forecasting
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A B S T R A C T

Drought forewarning is an important decisive task since drought is perceived a recurrent feature of climate
variability and climate change leading to catastrophic consequences for agriculture, ecosystem sustainability,
and food and water scarcity. This study designs and evaluates a soft-computing drought modelling framework in
context of Pakistan, a drought-stricken nation, by means of a committee extreme learning machine (Comm-ELM)
model in respect to a committee particle swarm optimization-adaptive neuro fuzzy inference system (Comm-
PSO-ANFIS) and committee multiple linear regression (Comm-MLR) model applied to forecast monthly stan-
dardized precipitation index (SPI). The proposed Comm-ELM model incorporates historical monthly rainfall,
temperature, humidity, Southern Oscillation Index (SOI) at monthly lag (t− 1) and the respective month (i.e.,
periodicity factor) as the explanatory variable for the drought’s behaviour defined by SPI. The model accuracy is
assessed by root mean squared error, mean absolute error, correlation coefficient, Willmott’s index, Nash-
Sutcliffe efficiency and Legates McCabe’s index in the independent test dataset. With the incorporation of per-
iodicity as an input factor, the performance of the Comm-ELM model for Islamabad, Multan and Dera Ismail
Khan (D. I. Khan) as the test stations, was remarkably improved in respect to the Comm-PSO-ANFIS and Comm-
MLR model. Other than the superiority of Comm-ELM over the alternative models tested for monthly SPI
forecasting, we also highlight the importance of the periodicity cycle as a pertinent predictor variable in a
drought forecasting model. The results ascertain that the model accuracy scales with geographic factors, due to
the complexity of drought phenomenon and its relationship with the different inputs and data attributes that can
affect the overall evolution of a drought event. The findings of this study has important implications for agri-
cultural decision-making where future knowledge of drought can be used to develop climate risk mitigation
strategies for better crop management.

1. Introduction

Drought is a socio-economic hazard posing severe threats to
groundwater reservoirs, leading to a scarcity of water resources, crop
failure and socio-economic challenges (Mpelasoka et al., 2008;
Riebsame et al., 1991; Wilhite et al., 2000; Deo et al., 2009). A general
scarcity of sufficient palatable water due to rapid growth of human
populations and an expansion of agricultural, energy and industrial
sectors is also a growing concern (IPCC, 2012; McAlpine et al., 2007).
Climate change further escalates the potential severity and frequency of
drought events (Deo et al., 2009; McAlpine et al., 2009). Large-scale
climate mode indices including the Southern Oscillation Index (SOI) is
significantly correlated with fluctuations in rainfall and onset of
drought (Mishra and Singh, 2010; Morid et al., 2007; Nguyen-Huy

et al., 2017; Özger et al., 2012). Hence drought forecasts that in-
corporate climate factors can assist hydrologists, agriculturalists and
resource planners in strategic decisions to address socio-economic
challenges posed by a drought, particularly in cases of prolonged events
(Bates et al., 2008; Deo et al., 2016a; Mishra and Singh, 2010, 2011;
Wilhite and Hayes, 1998).

Traditionally, drought indices are used to measure, monitor and
forecast drought. Several different indices have been developed ac-
cording to their appropriateness for a given geographic region (Mishra
and Singh, 2010, 2011). The Palmer (1965) Drought Severity Index
(PDSI) measures the overall dryness based on precipitation and tem-
perature datasets. PDSI is particularly useful in pointing out long-term
drought events and it is not appropriate for a region with generally high
surface run-off (Mishra and Singh, 2010, 2011). To tackle the
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complexities associated with PDSI, researchers have developed the Crop
Moisture Index (CMI), particularly for assessing agricultural drought
events (Palmer, 1968). CMI is based on the rank of the precipitation
records and aims to compute both positive and negative precipitation
anomalies. However, CMI in the short-term is insufficient to offset long-
term issues. Byun and Wilhite (1999) developed the Effective Drought
Index (EDI) based on daily precipitation data. EDI is a good index for
operational monitoring of meteorological and agricultural drought, al-
though the consideration of precipitation alone does not take into ac-
count other environmental parameters that also cause drought (e.g., the
impact of temperature). Several drought indices have been developed
built on PDSI to take into account additional data on precipitation and
crop moisture, however the standardized precipitation index (SPI) is
used universally as a standard metric (Deo et al., 2017a).

The importance of modelling SPI is derived from the notion that: (1)
SPI is able to assess the water shortage situations built on a statistical
distribution of rainfall that can enable both short-term (i.e. monthly)
and long-term (i.e., seasonal and annual) drought assessments (ranging
from 1 up to 48months). (2) SPI is presented as a normalized standard
metric of rainfall surpluses/deficits in relation to a benchmark clima-
tological period (Hayes et al., 1999; McKee et al., 1993; Yuan and Zhou,
2004), and therefore, it can enable a comparison of the drought beha-
viour in geographically and climatologically diverse regions. (3) SPI has
been explored and validated for drought mitigation studies in diverse
climatic regions (Almedeij, 2016; Choubin et al., 2016; Svoboda et al.,
2012). (4) SPI has the potential to represent both short (1 and
3months) and long-term (6–12months) drought in a probabilistic
fashion, largely on multiple timescales. In the case of agricultural
drought, the SPI makes it possible to examine the soil moisture status
with respect to precipitation anomalies on a comparatively short
timescale using hydrological reservoirs to replicate long-term climate
anomalies (Svoboda et al., 2012). Due to the advantageous features, the
SPI is an ideal metric for the management of not only hydrological, but
also for agricultural drought events (Deo et al., 2017a; Guttman, 1999).
In this study, SPI based on 1month is utilized for drought forecasting as
there is no study on a monthly drought in the selected study regions,
although the study of Ali et al. (2018a) designed a study using en-
semble-ANFIS model for long term (3–12months) drought forecasting
and Ali et al. (2018b) developed a multi-stage hybridized online se-
quential extreme learning machine integrated with Markov Chain
Monte Carlo copula-Bat algorithm for rainfall forecasting, both focussed
in Pakistan.

In the existing literature, data-driven models have been used to
model SPI for drought forecasting. For example, an SPI-based metho-
dology was designed by Cancelliere et al. (2007) to forecast probabil-
istic drought alterations in Sicily, Italy. Jalalkamali et al. (2015) in
Yazd, Iran conducted a study to forecast the SPI using several model
variants, including a multilayer perceptron artificial neural network
(MLP ANN), an adaptive neuro-fuzzy inference system (ANFIS), support
vector machines (SVM), and an autoregressive integrated moving
average (ARIMA) multivariate model. In another study, models based
on ANFIS and ANN Wavelet tools were adopted by Shirmohammadi
et al. (2013) to forecast SPI in Azerbaijan. An SPI-based forecasting
study was also performed by Santos et al. (2009) using an ANN model
for San Francisco, USA. Drought forecasts using SPI have an extensive
history in the current literature (Adamowski et al., 2012; Bonaccorso
et al., 2003; Cancelliere et al., 2006; Choubin et al., 2016; Deo et al.,
2017b; Guttman, 1999; Hayes et al., 1999; Jalalkamali et al., 2015;
Moreira et al., 2015; Moreira et al., 2008; Paulo and Pereira, 2007;
Sönmez et al., 2005). However, SPI based drought forecasts are yet to
be explored for agricultural regions in Pakistan where the influence of
drought is a major impeding factor for crop productivity and farmers’
livelihoods.

Drought hazard continues to severely affect the agriculturally de-
pendent nation of Pakistan (Report, 1950-2015). The severe drought
event of 1998 led to a significant reduction in Pakistan’s national

agricultural productivity by 2.6% over 2000–2001 (Ahmad et al.,
2004). In spite of such pressing issues, drought models for local agri-
cultural zones in Pakistan have been very limited: (1) Khan and
Gadiwala (2013) aimed to investigate drought behaviour using SPI at
multi timescales for the province of Sindh: (2) Xie et al. (2013) applied
a spatiotemporal variability analysis based on the SPI data to also
forecast drought behavior, and most recently, (3) the study of Ali et al.
(2017) forecasted drought based on Standardized Precipitation-Evapo-
transpiration Index (SPEI) where a multilayer perceptron-based artifi-
cial neural network model was employed. (4) The study of Ahmed et al.
(2016) has utilized antecedent SPI data for the characterization of fu-
ture seasonal drought events in Balochistan, Pakistan and (5) Ali et al.
(2018a) implemented an ensemble strategy based on the ANFIS model
to forecast the SPI using the historical SPI to forecast future SPI. While
it was not specifically on drought forecasting, a recent study of Ali et al.
(2018b) has forecasted rainfall in Pakistan using a multi-stage online
sequential extreme learning machine integrated with Markov Chain
Monte Carlo copula-Bat algorithm. However, there has been no study in
Pakistan specifically on future drought models or drought indices uti-
lising different climatological parameters.

Considering a lack of drought models for developing nations like
Pakistan, the aim of this research is to develop and evaluate Comm-ELM
(a data-intelligent model) with universal approximation capabilities.
The specific objectives are:

(i) To develop a committee based extreme learning machine (Comm-
ELM) model following its successful application elsewhere, e.g.,
(Barzegar et al., 2018; Prasad et al., 2018) and evaluate its pre-
ciseness for forecasting future SPI incorporating the relevant
hydro-meteorological dataset (i.e., temperature, rainfall, humidity,
Southern Oscillation Index) and the seasonality metric (i.e., peri-
odicity) as predictors for the period of 1081–2015. Here, a multi-
stage model strategy is adopted incorporating antecedent climate-
based variables at (t− 1) and corresponding periodicity in the first
stage, and the forecasted SPI.

(ii) To elucidate the importance of periodicity as a pertinent factor in
drought forecast models and seasonal influences on drought pro-
gression using data monitoring for Pakistan, a nation vulnerable to
significant agricultural and water management issues.

(iii) To compare the performances of Comm-ELM in respect to Comm-
PSO-ANFIS and Comm-MLR models for SPI-forecasting.

2. Theoretical background

2.1. Standardized precipitation index (SPI)

The SPI drought forecasting metric, centred on normalized prob-
abilities of dryness relative to a base climatology, provides a depiction
of irregular wetness and dryness situation. Before developing the
forecast model for the designated regions in Pakistan, the monthly SPI
index was calculated using precipitation (PCN) data (Deo et al., 2017a;
McKee et al., 1993). Pearson Type III distribution/gamma distribution
function is given by the following mathematical expression:

= − −g PCN PCN e( ) ( )β α
α x β1

Γ( )
1 /

α (1)

where α and β represents the estimated parameters using the maximum
likelihood. The cumulative probability can be given by

∫ ∫= = − −G PCN g PCN dPCN
β α

x e dPCN( ) ( ) 1
Γ( )

P

α

P
α P β

0 0

1 /

(2)

Suppose that m= PCN/β, this reduces Eq. (2) to an incomplete
gamma function:

∫= − −G PCN
α

m e dm( ) 1
Γ( )

m
α m

0

1

(3)
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As for PCN=0, the gamma function is undefined, so the cumulative
probability becomes:

= + −H q q G PCN(PCN) (1 ) ( ) (4)

where q is the probability of zero. This yields the monthly value of SPI,
viz:

=
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The magnitudes of the constants in Eq. (5) are as follows:
c0= 2.515517, c1= 0.802853, c2= 0.010328, d1= 1.432788,
d2= 0.189269 and d3= 0.001308 (McKee et al., 1993). These con-
stants are used in the transformation of the cumulative probability H
(PCN) into a standard normal random variable SPI with mean zero and
variance 1. The standardized precipitation index represents an SPI-
score (Loukas and Vasiliades, 2004; McKee et al., 1993; Sujitha, 2017).
Based on the calculated SPI, drought can be categorized as moderately
dry= (−1.5 < SPI≤ 1.0), severely dry= (−2.0 < SPI≤−1.5),
and extremely dry= (SPI≤−2.0).

Fig. 2 show the monthly SPI time-series, portraying the evolution of
drought episodes from May 1991–Mar 1992 for Multan, Pakistan. The
onset of drought using the running sum approach of Yevjevich (1967,
1991) can be deduced as the particular month when the SPI value de-
clined below 0 and the termination of drought when the SPI value first
returned to positivity. In accord with this, the cumulative rainfall ap-
pears to be reduced significantly in this dry period. The drought se-
verity is then the sum of all months with SPI < 0 and the drought’s
peak intensity occurs when the SPI value is at its minimum point.

In the proposed Comm-ELM model, the SPI is used as an objective/
observed variable in this study.

2.2. Extreme learning machine (ELM)

ELM is a state-of-the-art data intelligent model developed by Huang
et al. (2006) used for the purpose of designing a Single Layer Feed-
forward Neural Network (SLFN). ELM is relatively faster, and compu-
tationally efficient compared to traditional algorithms such as back
propagation (BP) or support vector machines (SVM) (Rajesh and
Prakash, 2011). The standard Single Layer Feedforward Neural Net-
work (SLFN) with M hidden nodes of N arbitrary inputs

∈ ×x y( , ) Γ Γk k
n n with an activation function f (.) can be mathemati-

cally formulated as:

∑ =
=

ρ f x c w y( , ; , )
i

M

i k i i k
1 (6)

where = ⋯k N1, 2, , , ∈c Γi is the bias of ith node which is assigned
randomly whereas ∈w Γi is a random input weight vector that connects
the ith hidden node with the output node. The function g x c( , ; )k i w, i

denotes the output corresponding to ith hidden node with respect to
input xk. Therefore Eq. (1) reduces to the following form:

=β YH (7)

where =
⎡

⎣

⎢
⎢

⋯
⋮ ⋯ ⋮

⋯

⎤

⎦

⎥
⎥

×

f x c w f x c w

f x c w f x c w
H

( , ; , ) ( , ; , )

( , ; , ) ( , ; , )

M M

N N M M N M

1 1 1 1

1 1

,

= ⋯ ×β β β βH ( , , )T T
L

T T
m M1 2 and = ⋯ ×Y t t t( , , )T T

L
T T

m M1 2 . The least square
solution of the linear systems provides the following output weight:

= +β YH (8)

where +H represents the Moore–Penrose generalized inverse ofH. The
SLFNs with random input weight selection effectively acquire distinct
training examples with minimum chance of error (Huang, 2003;
Tamura and Tateishi, 1997).

Fig. 1(a) illustrates the basic structure of the ELM model.

2.3. Particle swarm optimization based adaptive neuro fuzzy inference
system (PSO-ANFIS)

The ANFIS model was developed by Jang (1993) as a division of the
adaptive tool (i.e. the outputs being dependent on the parameters be-
longing to the input nodes). The ANFIS model utilizes two inputs to
generate one output employing the fuzzy ‘if-then’ rules of the Takagi-
Sugeno-Kang (TSK) (Hoffmann et al., 2007) fuzzy model which can be
defined as;

= + +α β f p α q β sRule a( ): if is A and is B , then1 1 1 1 1 1 (9)

= + +α β f p α q β sRule b( ): if is A and is B , then2 2 2 2 2 2 (10)

where αand β represent the input of the ANFIS model whereas Aand
Bare the fuzzy set with =f j( 1, 2)j being the first order output poly-
nomial of the TSK fuzzy inference system, while p q,j jand =s j( 1, 2)j
are the set of consequent parameters. The elementary construction of
ANFIS can be seen as a 5 layer feedforward neural network. Each node
jis an adaptive node in layer 1 with a suitable membership function
related to the input to node j.

= = =
−

μ α μ β jΦ ( ), Φ ( ), ( 1, 2),j j1, A 1, Bj j( 2) (11)

In Eq. (11), α β, denote the input nodes whileA and Bare the lin-
guistic labels with μ α μ β( ), ( ) representing the membership function
(usually bell-shaped) that specifies the degree to which the given input
satisfies the quantifiersA, B. The membership function is defined as:

=
+ −( )

μ α( ) 1

1 α c
a

b( )j

j

j

(12)

where a b,j jand cjare the parameters. The bell-shaped function adopts
different forms of membership with the variation of these parameters.
These outputs are the fire strength rules given by,

= = ×ω μ α μ βΦ ( ) ( )j j2, A Bj j (13)

Here ωjis the firing strength of a rule. Every node in layer 3 is also a
fixed circular node labelled N with normalized firing strength as output
which is basically the ratio of jth rule’s firing strength to the sum of all
rule’s firing strength. In layer 4, each node is turned to be an adaptive
node marked by a square whereas in layer 5, the consequent parameters
are then expressed into a linear combination/summation to compute
the overall output of all the fixed nodes. In ANFIS, the epoch of hybrid
learning consists of a forward and backward pass (Goyal et al., 2014;
Jang et al., 1997; Karthika and Deka, 2015; Mayilvaganan and Naidu,
2011; Moosavi et al., 2013; Nayak et al., 2004; Pérez et al., 2012;
Sehgal et al., 2014; Shirmohammadi et al., 2013).

In this paper, the Fuzzy c-mean clustering method (FCM) designed
by Dunn (1973) and Bezdek et al. (1984) is utilized to determine the
antecedent membership functions. FCM is a data clustering algorithm
which allows one piece of data to belong to two or more clusters in such
a way that each data point belongs to a cluster to a degree specified by a
membership grade. The collection of n vectors Xi, = ⋯i n( 1, 2, 3, , ) is
partitioned through FCM into C-fuzzy groups to determine a cluster
centre in each group to minimize the cost function of dissimilarity
measure.

To improve the versatility of ANFIS model using the FCM algorithm,
we used the Particle Swarm Optimization (PSO) technique (Çavdar,
2016) to tune the ANFIS parameters. A particle changes its position
each time by tuning its velocity. The velocity vector is then updated
corresponding to the position of global best gbest( ) and personal best
pbest( ) position of each particle that can be defined mathematically as:

+ = × + × ℵ − + × ℵ −v t w v t C pbest p t C gbest x t( 1) ( ) ( ( )) ( ( ))i i i1 1 2 2

(14)

+ = + +x t x t v t( 1) ( ) ( 1)i i i (15)
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Here, v t( )i is called the agent velocity, x t( )i is the agent current
position at iterationt ; C1, C2 are cognitive and social accelerations; w is
the weight of inertia; ℵ ℵ ∈, (0, 1)1 2 are uniformly distributed random
numbers whereas gbest( ), and pbest( ) is the global best and personal best
positions related within the swarm and ithparticle respectively.
Fig. 1(b) describes the schematic view of PSO-ANFIS.

2.4. Multiple linear regression (MLR)

MLR is a generalized form of the simple regression model from
single to multiple predictors where the objective is to deduce a model
that can exhibit the maximum deviations in the predictor data to
evaluate their corresponding regression coefficients (Deo and Sahin,
2017). MLR guarantees that the forecast model minimizes the varia-
tions that appear in data due to unexplained “noise”. For n observations

of k predictor variables, an MLR model adapts the following regression
equation (Draper and Smith, 1981; Montgomery et al., 2012):

= + + + +c α α αM M ... Mk k1 1 2 2I (16)

where +n( 1)I is a matrix of forecasting SPI, ×n kM( ) is a vector of
input/predictor variable(s), cis the y-intercept and αis the coefficient of
multiple regression for each regressor variable(s) (Civelekoglu et al.,
2007; Şahin et al., 2013).

It should be noted that the value of αis approximated through least
squares (e.g., (Apaydın et al., 1994; Ozdamar, 2004)) for each predictor
variable. The multiple linear equations are fitted to a model with a set
of I and Mmatrix in the training period. The fitted MLR model then uses
the coefficients and the y-intercept to generate the forecasts of I values
as well as Mvalues in the testing phase.

Fig. 1. Schematic view of the (a) ELM and (b) PSO-ANFIS models.
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3. Materials and method

3.1. Climate data

The climate data utilized in this study includes precipitation (PCN),
mean monthly temperature (T) and mean monthly relative humidity
(H). These parameters were obtained from the Pakistan Meteorological
Department (PMD, 2016) for the period 1981–2015. Prior to devel-
oping the drought forecasting model, the monthly SPI index was com-
puted using the rainfall data from 1981 to 2015.

As machine learning models rely on a prognostic features in his-
torical data to forecast the future drought, the climate index named SOI
(Nicholls, 2004) was used as an input with the climate data (PCN, T, H)
of historical antecedent month at (t− 1) in the proposed drought
forecasting models. This followed several earlier studies where drought
and streamflow has been forecasted using synoptic-scale climate drivers
(Deo et al., 2017a; Deo and Sahin, 2016). SOI computes the difference
in surface air pressure between Tahiti and Darwin which is best at a
monthly or longer duration. The positive values of SOI indicate La Niña
(cold phase) while negative values represent El Niño (warm phase).

SOI has been utilized in this study because it has significant influ-
ence on the climate in Pakistan (Afzal et al., 2013) as compared to other
climate index. Finally, the periodicity/seasonality (number of months)
was incorporated in the proposed forecasting models to study their
effect on the drought events and analyse their contribution to the model
accuracy.

3.2. Study region

The regions for this study are: Islamabad, Dera Ismail Khan (de-
noted ‘D. I. Khan’) and Multan (Fig. 3). These stations are important for
agriculture production as well as different geographical environments
in which to test the model.

Islamabad is the capital city of Pakistan (population approximately
1.152million) and has a humid subtropical climate with four seasons:
winter (December-February), spring (March-May), summer (June-
September) and autumn (October-November). The average monsoon
rainfall is about 790.8 mm. Islamabad received the heaviest 620mm
rainfall in just 10 h on 23 July 2002, which was the heaviest rainfall in
the past 100 years. The annual average rainfall is 1142.1 mm. D. I. Khan
(a regional centre of population 1.627million) is located in the pro-
vince of Khyber Pakhtunkhwa (KPK). The climate entails hot summers
and mild winters. In 2012, water scarcity due to drought in D. I. Khan
had badly affected the agriculture sector (Amir, 2012). The average

annual rainfall is about 268.8 mm while the average annual tempera-
ture is 24.5 °C. Multan (another regional centre, population million) is
located in southern part of Punjab province. The climate is arid with hot
summers and cold winters. The average temperature of Multan in
summer is 42.3 °C while the record breaking highest temperature was
50.0 °C in May 2010 (Department, 2010). The average annual rainfall is
186.8 mm and the climate is also affected by monsoon seasons. The
average annual temperature is 25.6 °C in Multan. Multan has also ex-
perienced the worst heat waves in Pakistan’s history on three occasions
(Department, 2010; Salman, 2006).

Table 1 describes the latitude, longitude, elevation, minimum,
maximum, standard deviation, skewness and kurtosis of rainfall, tem-
perature, and humidity and SPI data for the designated regions that has
been utilized during the development of the forecasting models.

3.3. Development of data-driven committee based ELM model

Historical climate data (T, PCN, H), SOI index and periodicity
(months) were used to develop the proposed Comm-ELM model in re-
lation with Comm-PSO-ANFIS and Comm-MLR. It is important to note
the proposed approach concurs with earlier research performed
(Barzegar et al., 2018). However, this study adopt the ELM as the
committee-based model which is more advanced and highly optimized
data intelligent model (Huang et al., 2006; Rajesh and Prakash, 2011).
The origional data with the historical antecedent month at (t− 1) as
input predictors were employed to forecast the drought. The proposed
Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models were de-
veloped under MATLAB environment on a Pentium 4 2.93 GHz dual
core Central Processing Unit. The development and validation of the
proposed Comm-ELM model can be describe in the following steps:

Step 1: First the historical antecedent month at (t− 1) were cal-
culated from the T, PCN, H, SOI and corresponding periodicity month at
first stage.

Step 2: In the second stage, after incorporating historical tem-
perature at (t− 1) as input predictor, the ELM model was applied to
simulate the SPI. Next, the temperature and rainfall at lag (t− 1) were
employed together to compute SPI. Further, the combination of hu-
midity was incorporated with temperature and rainfall to forecast SPI
index. Moreover, the SOI index was taken together with temperature,
rainfall and humdity to estmiate SPI and finally, the respective number
of month (periodicty) were combined with temperature, rainfall, hu-
midity and SOI index to forecast the drought index at significant lag
(t− 1). The regression ELM type for training was selected first with
hidden neurons from 1 to 60. Moreover, all the activation functions

Fig. 2. Monthly standardized precipitation index showing drought characteristics and the correspondence with precipitation (PCN) data of the drought period (May
1991 to Mar 1992) for Multan Station. The unit of PCN is millimetre (mm).
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(sigmoidal, sine, hardlim, triangular basis, radial basis) were tested to
select the best (optimum) activation function for the optimum fore-
casting model.

Step 3: In this stage, the benckmark PSO-ANFIS and MLR models
were also applied to forecast SPI index based on ELM, PSO-ANFIS and
MLR.

Step 4: At this stage, the corresponding simulated SPI index on the
basis of ELM, PSO-ANFIS and MLR models were incorporated together
in the ELM model as a predictor varaibles to develop the committee
bassed ELM (Comm-ELM) mode for the forecasting of final SPI index.
Similarly, the Comm-PSO-ANFIS and Comm-MLR models were devel-
oped by using the same strategy adopted in the Comm-ELM model.

Step 5: The final forecasted SPI is obtained in stage 5. Fig. 4 sum-
marizes these stages of the proposed Comm-ELM vs. Comm-PSO-ANFIS
and Comm-MLR model.

Following (Deo et al., 2016c), in this paper, the data were

partitioned into 70% and 30% for training and testing purposes. Nor-
malization of input-target data was accomplished by statistical rules to
overcome the numerical difficulties caused by the data features, pat-
terns and fluctuations (Hsu et al., 2003). Mathematically, this is written
as:

=
−

−
x

x x
x x
( )

( )SPI
SPI SPI

SPI SPI
NORMALIZED

MIN

MAX MIN (17)

where xSPI describes any datum point of input or output variable, xSPIMIN

is the minimum value of the whole dataset, xSPIMAX is the maximum
value, whereas xSPINORMALIZED denotes the normalized datum point.

In the development phase of the Comm-ELM model, a major task
was to optimize effectively the network architecture between inputs
and the objective variable for a robust predictive modelling system
(Barzegar et al., 2018; Prasad et al., 2018). The correlation coefficient
‘r’, in combination with the mean squared error (MSE) was applied to

Fig. 3. Map of the study regions Islamabad, Multan and D. I. Khan in Pakistan.
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investigate the performance of the proposed Comm-ELM model in the
training phase. The results generated by the Comm-ELM model have
been summarised in Table 2.

The magnitudes of r and MSE attained in training of the Comm-ELM
model for monthly SPI forecasting at Islamabad were seen to be:
(r=0.973, MSE= 0.115) with periodicity (M5 model). Equivalent
metrics for Multan were found to be: (r= 0.953, MSE= 0.213) model
(M5). Finally, for D. I. Khan the metrics were: (r= 0.983,
MSE= 0.077) model (M5). Overall, the training performance of the
Comm-ELM model was considerably high for all of the study regions. It
is thus envisaged that the Comm-ELM model testing performance, as
seen later, will be relatively accurate for forecasting drought events at
these sites.

The comparative forecasting model Comm-PSO-ANFIS was required
to tune the parameters for fuzzy membership functions (Gaussian in this
case) by the PSO technique to achieve the desired optimum model.
After incorporating the forecasted SPI based on ELM, PSO-ANFIS and
MLR again into the PSO-ANFIS in the form of inputs to develop the
Comm-PSO-ANFIS model, the process of modifying the ANFIS para-
meters by PSO tuning is continued until the desired performance is
achieved. The data was then passed in the ANFIS layer 1 to establish the
ANFIS training process, within the training layer. The trained ANFIS
was then passed through the testing layer for testing to attain the output
(i.e., the final forecasted SPI). For Islamabad, these metrics were seen to
be: (r=0.986, MSE= 0.091) with periodicity. Similarly for Multan,
they are: (r= 0.923, MSE= 0.300) with periodicity and finally for D. I.
Khan these were found to be: (r= 0.995, MSE= 0.031).

Development of the Comm-MLR model depends on the inspection of
the cause and effect association between forecasted SPI and predictor
variables. The values of r and MSE for Islamabad were found to be:
(r= 0.456, MSE=0.882). Equivalently, for Multan, they were:
(r= 0882, MSE= 0.456) with periodicity and finally for D. I. Khan
these were found to be: (r= 0.983, MSE= 0.099). Table 2 illustrates
these comparisons.

3.4. Model performance measures and their interpretation

American Society for Civil Engineering (Yen, 1995) recommends
two classification metrics for model assessment methodology that in-
volve the factual (or visual correlation of the observed and forecasted
information) and the institutionalized execution measurements. The
mathematical formulations for these are as follows (Dawson et al.,
2007; Deo et al., 2016c; Legates and McCabe, 1999; Willmott, 1981,
1982, 1984).

I. Mean square error (MSE) is expressed as:

∑= −
=

MSE
N

SPI SPI1 ( )
i

N

FOR i OBS i
1

, ,
2

(18)

II. Correlation coefficient (r) is expressed as:

Table 1
Descriptive statistics of the study sites’ geographic, drought and hydrologic characteristics over the study period (1981 to 2015).

Station Geographic characteristics Drought statistics: SPI

Longitude Latitude Elevation (m) Mean Std. Min Max Skewness Kurtosis

Islamabad 70.91o 31.83o 175.00 −0.0409 0.9781 −3.1445 2.9328 −0.0580 −0.1169
Multan 71.47o 30.190 129.00 −0.0138 0.9888 −2.5380 4.4304 0.4934 1.7644
D. I. Khan 68.41o 26.24o 35.08 −0.0033 0.9830 −2.7480 3.50972 0.1228 0.1228

Hydrological statistics

Temperature (T) Precipitation (PCN) Humidity (H)

Mean (°C) Std. (°C) Min (°C) Max (°C) Mean (mm) Std. (mm) Min (mm) Max (mm) Mean (%) Std. (%) Min (%) Max (%)

Islamabad 21.83 7.286 8.3 33.5 107.2 130.7 0.01 743.30 33.258 12.090 16 71
Multan 25.58 8.001 11 49.4 21.27 30.16 0.1 217.3 40.411 11.212 15 69
D. I. Khan 24.28 7.594 10.4 35.6 29.46 38.59 0.30 376.00 42.973 10.862 5 70

Fig. 4. Schematic of the proposed multi-stage, Comm-ELM mode (blue)l vs. Comm-PSO-ANFIS (green) and Comm-MLR (green) models. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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III. Willmott’s Index (WI) is expressed as:
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IV. Nash-Sutcliffe coefficient (ENS) is expressed as:
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V. Root mean square error (RMSE) is expressed as:
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VI. Mean absolute error (MAE) is expressed as:

∑= −
=

MAE
N

SPI SPI1 |( )|
i

N

FOR i OBS i
1

, ,
(23)

VII. Legates-McCabe’s (LM) is expressed as:
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where SPIOBS i, and SPIFOR i, are the observed and forecasted ith value of
multi-scale SPI. SPIOBS i, and SPIFOR i, are the observed and forecasted
mean of SPI in the (test) set and N is the number of tested data points.
The MSE indicates how close a regression line is to a set of points by
calculating the distance from the points to the regression line and then
squaring. The correlation coefficient (r) lies in [0, 1], and demonstrates
the proportion of variance in observed data that can be explained by the
data intelligent model (Dawson et al., 2007). Due to the standardization
of the observed and forecasted means and variance, the robustness of r
can be limited (Chai and Draxler, 2014). The ‘goodness-of-fit’ relevant
to high values are measured by RMSE, while MAE evaluates all devia-
tions from observed and forecasted data regardless of sign (Chai and
Draxler, 2014). Moreover, RMSE is useful when model errors follow the
normal distribution whereas MAE is better for uniform model error
distribution (Chai and Draxler, 2014). The performance of a model can
be reduced to partial peaks and higher magnitudes that can exhibit
larger error and obtuse to small magnitudes (Dawson et al., 2007).
Willmott’s Index (WI) was introduced to counter this issue by con-
sidering the ratio of MSE instead of their differences (Mohammadi
et al., 2015; Willmott, 1981, 1982, 1984; Willmott et al., 2012). Nash-
Sutcliffe efficiency (ENS) is another normalized metric that determines
the relative magnitude of residual variance of forecasted data in com-
parison to the measured variance (Nash and Sutcliffe, 1970). Legates-
McCabe’s (LM) is a more advanced and powerful metric than both WI
and ENS which utilizes the adjustment of comparison in the evaluation
of WI and ENS. LM can be quite robust in evaluating the results by ad-
dressing the weaknesses of r and using WI and ENS as baseline-adjusted
indices together with an evaluation of RMSE and MAE (Legates and
McCabe, 1999).

4. Results

A scatterplot diagram (i.e., Fig. 5) was constructed using the fore-
casted and observed SPI data in the testing phase to compare the per-
formance of the Comm-ELM vs. the Comm-PSO-ANFIS and Comm-MLR

model with periodicity factors included for all three study sites. Fur-
ther, to analyse the model performance more closely, a scatterplot
showing the goodness-of-fit and its correlation coefficient (r) is shown
to depict the extent of agreement between forecasted and observed
monthly SPI. The Comm-ELM model convincingly outperforms the
Comm-PSO-ANFIS and Comm-MLR model with periodicity in the
testing months for all tested stations. Overall, the Comm-ELM model
has a better ability to simulate with periodicity forecast monthly SPI, as
confirmed by the larger r-value.

The empirical cumulative distribution function (ECDF) was plotted
at each station for different forecasting abilities in Fig. 6(a–c). Ac-
cording to this figure, the Comm-ELM method was better than Comm-
MLR and Comm-PSO-ANFIS for Islamabad, Multan and D. I. Khan sta-
tions to forecast SPI. Based on the percentage of errors in the error
bracket (0 to±2) for all stations, Fig. 6(a–c) clearly confirms that the
Comm-ELM method was the most responsive model in forecasting
monthly SPI. Thus, the performance of Comm-ELM with periodicity is
more accurate in drought forecasting for the selected regions of study.

In Table 3 we show the accuracy of Comm-ELM vs. Comm-PSO-
ANFIS and the Comm-MLR model in the testing phase constructed by
adding the historical temperature, rainfall, humidity, SOI and periodi-
city one by one as an input predictor to model current and future
drought. Each table presents models M1 to M5 of Comm-ELM, Comm-
PSO-ANFIS and Comm-MLR with periodicity. The model M5 with per-
iodicity was considered the final (blue boldfaced) model.

By analysing the results of Islamabad, the Comm-ELM model per-
formed better in terms of forecasting accuracy as compared to Comm-
PSO-ANFIS and Comm-MLR models. By incorporating the periodicity
with other predictor variables together, the Comm-ELM, Comm-PSO-
ANFIS and Comm-MLR models yielded values of RMSE (0.307, 0. 0.674,
0.469) and MAE (0.237, 0.541, 0.369) while the magnitudes of stan-
dard normalized metrics are r (0.976, 0.946, 0.961) respectively.
According to the results for Multan station, the Comm-ELM model re-
turns the values of RMSE (0.441), MAE (0.296) and r (0.960). The
Comm-PSO-ANFIS and Comm-MLR models generate the following re-
sults with periodicity, RMSE (Comm-PSO-ANFIS= 0.595, Comm-
MLR=0.391), MAE (Comm-PSO-ANFIS=0.370, Comm-
MLR=0.319), r (Comm-PSO-ANFIS=0.906, Comm-MLR=0.967).
The magnitude of performance metrics for the study region D. I. Khan
for the Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models
yielded values of RMSE (0.372, 0.516, 0.415), MAE (0.279, 0.402,
0.324), r (0.973, 0.962, 0.972). The results of combination of other
predictor variables are presented in Table 3. Overall, the Comm-ELM
forecasts monthly SPI better for all study regions compared to Comm-
PSO-ANFIS and Comm-MLR models.

Fig. 7 is a Taylor diagram, providing a more concrete and conclusive
argument about the statistical summary of how well the forecasted SPI
matched with the observed SPI in terms of their correlation. The si-
milarity between forecasted and observed SPI is quantified in terms of
their correlation and standard deviations. For Islamabad station, the
correlation of the Comm-ELM model with observation was about 0.98,
followed by Comm-MLR≈ 0.96 and Comm-PSO-ANFIS≈0.94. The
Comm-ELM model was closer to the observed SPI as its correlation is
about 0.96 as compared to Comm-PSO-ANFIS (0.94) and Comm-MLR
(0.95) for Multan station. Similarly the Comm-ELM again appeared to
be the best model for D. I. Khan station because its correlation lies
within close neighbourhood of the observed SPI data. Overall, the
correlation of the Comm-ELM model is closer to the observed SPI
compared to Comm-PSO-ANFIS and Comm-MLR models for Islamabad,
Multan and D. I. Khan stations.

Table 4 shows the accuracy of Comm-ELM vs. Comm-PSO-ANFIS
and the Comm-MLR model in the testing period on the basis of LM in
terms of forecasting accuracy. By incorporating the periodicity with
other predictor variables together, the LM values for Islamabad are
Comm-ELM (0.799), Comm-PSO-ANFIS (0.668) and Comm-MLR
(0.748). The Comm-ELM, Comm-PSO-ANFIS and Comm-MLR models
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yielded values of WI (0.981, 0.952, 0.968) and ENS (0.950, 0.868,
0.923) respectively. Again, the Comm-ELM model was superior for Is-
lamabad compared to Comm-PSO-ANFIS and Comm-MLR models.

According to the results for Multan station, the Comm-ELM model
returns the highest values of WI (0.963), ENS (0.910), and LM (0.766).
The Comm-PSO-ANFIS and Comm-MLR models generate the following
results with periodicity, WI (Comm-PSO-ANFIS=0.925, Comm-
MLR=0.965), ENS (Comm-PSO-ANFIS= 0.821, Comm-MLR=0.924)
and LM (Comm-PSO-ANFIS= 0.692, Comm-MLR=0.742). The per-
formance of all three models is reasonably good but Comm-ELM gen-
erates better accuracy for this station.

The magnitude of performance metrics for the study region D. I.

Khan for the Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models
yielded values of WI (0.975, 0.965, 0.977), ENS (0.943, 0906, 0.944)
and LM (0.791, 0.724, 0.786). The Comm-ELM again appeared to be the
best model with both periodicity on the basis of LM followed by Comm-
MLR and Comm-PSO-ANFIS.

In Fig. 8(a–c), we illustrate a boxplot of the Comm-ELM vs. Comm-
PSO-ANFIS and Comm-MLR model’s forecasting error for monthly SPI
of all the study sites. The outliers specified by + in every boxplot re-
present the extreme magnitudes of the forecasting error within the
testing months along with their upper quartile, median and lower
quartile values. The distributed forecasting errors are justified by these
boxplots showing a much lesser spread was achieved by Comm-ELM in

(a)

(b) 

(c) 

Fig. 5. Scatterplot of the forecasted (SPIFOR) and observed (SPIOBS) data in the testing phase using the multi-stage, Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR
models with periodicity (i.e. month) as an input parameter with the coefficient of determination (r2) inserted in each panel for study zones (a) Islamabad, (b) Multan
and (c) Dera Ismail Khan.
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both periodicity and non-periodicity followed by Comm-MLR and
Comm-PSO-ANFIS. Accordingly, the Comm-ELM model with both per-
iodicity and non-periodicity remains the superior and highly optimized
model compared to other two counterparts for all stations to forecast
monthly SPI data.

Table 5 shows a geographical comparison of the proposed Comm-
ELM vs. Comm-PSO-ANFIS and Comm-MLR models using relative root
mean squared error (RRMSE) and relative mean absolute error (RMAE)
for the different locations (Islamabad, Multan and D. I. Khan). Isla-
mabad appears to be the most accurate station in forecasting Comm-
ELM (RRMSE ≈32.14%) on the basis of RRMSE. On the other hand, D.
I. Khan is the most accurate station by considering RRMAE (30.35%). In
terms of site-averaged performance, the Comm-ELM model was found
to yield the lowest relative percentage errors (RRMSE, RMAE).

Fig. 9 shows the magnitude of the average values of absolute

forecasting errors |FE| accumulated over the monthly timescale for the
proposed Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models in
the testing period. Although the forecasting skills generated by the
Comm-ELM were slightly different than the Comm-PSO-ANFIS and
Comm-MLR for all three stations. This performance was confirmed by
the low magnitude of relative forecasted errors. For example, the re-
lative error in January-February, May and July to December were sig-
nificantly smaller for the Comm-ELM model as compared to Comm-
PSO-ANFIS and Comm-MLR models in Islamabad station. The perfor-
mance of Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR for Multan
and D. I. Khan stations can be seen (Fig. 9, site 2 & 3). Overall, the
Comm-ELM model provided better performance, including lower error
statistics (Figs. 8 and 9) and higher correlation coefficients (Fig. 7)
when it was coupled with periodicity.

Fig. 6. Empirical cumulative distribution function (ECDF) of the forecast error, |FE| in the testing period using Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR
models for the stations (a) Islamabad, (b) Multan and (c) Dera Ismail Khan.

Table 3
Influence of the model input combinations applied for forecasting of monthly SPI using the Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models measured by
root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (r). Note that the best model is boldfaced.

Model Testing period Islamabad

Comm-ELM Comm-PSO-ANFIS Comm-MLR

Input Combination RMSE MAE r RMSE MAE r RMSE MAE r

M1 T 1.276 0.630 -0.092 1.239 1.018 0.071 1.085 0.914 0.059
M2 T+PCN 0.807 0.525 0.892 0.336 0.253 0.980 0.389 0.305 0.974
M3 T+PCN+H 0.763 0.644 0.847 0.702 0.535 0.921 0.599 0.511 0.937
M4 T+PCN+H+SOI 0.883 0.710 0.649 1.905 1.502 0.446 1.336 1.047 0.627
M5 T+PCN+H+SOI+MP 0.307 0.237 0.976 0.674 0.541 0.946 0.469 0.369 0.961

Multan
M1 T 0.218 0.137 0.266 0.936 0.663 -0.052 0.971 0.701 -0.157
M2 T+PCN 0.329 0.240 0.942 0.973 0.374 0.768 0.902 0.326 0.832
M3 T+PCN+H 1.050 0.792 0.715 1.235 1.017 0.506 1.287 1.109 0.446
M4 T+PCN+H+SOI 0.958 0.744 0.638 1.829 1.408 0.178 1.262 1.065 0.538
M5 T+PCN+H+SOI+MP 0.441 0.296 0.960 0.595 0.370 0.906 0.391 0.319 0.967

D. I. Khan
M1 T 1.155 1.035 -0.095 0.234 0.189 0.990 0.234 0.185 0.993
M2 T+PCN 0.919 0.698 0.649 1.512 1.188 0.574 1.692 1.416 0.396
M3 T+PCN+H 0.732 0.500 0.842 1.181 0.927 0.723 1.232 1.054 0.726
M4 T+PCN+H+SOI 1.013 0.612 0.471 1.389 1.123 0.665 1.777 1.341 0.376
M5 T+PCN+H+SOI+MP 0.372 0.279 0.973 0.516 0.402 0.962 0.415 0.324 0.972
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5. Further discussion

Data-driven models are likely to become important decision-support
tools in major decision-making for hydrology, agriculture and water
science, aiming to address drought-related issues arising from the im-
minent global warming. The increasing risk of water scarcity remains a
problem in first world nations as well as developing nations such as
Pakistan. This work has developed the most accurate drought fore-
casting models to date for three locations in Pakistan utilizing Comm-
ELM against the Comm-PSO-ANFIS and Comm-MLR models to forecast

monthly SPI with consolidating environmental parameters as input
predictors. The results reveal that Comm-ELM yields a substantial
measurable accuracy between observed and forecasted SPI in light of
the Legates-McCabe's Index (Table 4). The execution of the Comm-ELM
showed a large value of LM, contrasted with the Comm-PSO-ANFIS and
Comm-MLR models as far as the accomplished measurable precision.
Along these lines, with periodicity (as also revealed in earlier studies
elsewhere e.g., (Deo et al., 2017a), the Comm-ELM proved to be an
important prescient apparatus for forecasting drought in the present
work.

Fig. 7. Taylor diagram showing the correlation coefficient between observed and forecasted SPI and standard deviation of the proposed Comm-ELM vs. Comm-PSO-
ANFIS and Comm-MLR models for the stations (a) Islamabad, (b) Multan and (c) Dera Ismail Khan.
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In order to address existing difficulties, scientists must plan the fu-
ture using adaptable decision-support models for accurate drought
forecasting, especially in countries that are affected by recent en-
vironmental changes (2016; Ahmad et al., 2004; Amir, 2012; Pakistan,
1950-2015; Zaidi, 2016). The 1998 dry season in Pakistan was the most

severe in the last 50 years, and it was an essential factor leading to poor
economic development (Haider, 2016). The Baluchistan region, parti-
cularly the western and central parts were more often on drought
throughout the year in Pakistan (Haider, 2016). Enhanced forecast of
SPI is likely to help such locales in getting ready for expected changes in

Table 4
Evaluation of the Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models using Willmott’s index (WI), Nash-Sutcliffe (ENS) and Legates-McCabe’s (LM) agreement,
for (a) Islamabad, (b) Multan; and (c) Dera Ismail Khan. Note that the best model is boldfaced.

Model Testing period Islamabad

Comm-ELM Comm-PSO-ANFIS Comm-MLR

Input Combination WI ENS LM WI ENS LM WI ENS LM

M1 T 0.062 −1.904 −0.444 0.028 −0.288 −0.152 0.299 −0.157 −0.058
M2 T+PCN 0.733 0.698 0.491 0.981 0.954 0.815 0.977 0.947 0.792
M3 T+PCN+H 0.822 0.647 0.403 0.927 0.843 0.668 0.946 0.875 0.652
M4 T+PCN+H+SOI 0.640 0.375 0.262 0.545 −0.146 0.039 0.469 0.378 0.286
M5 T+PCN+H+SOI+MP 0.981 0.950 0.799 0.952 0.868 0.668 0.968 0.923 0.748

Multan
M1 T 0.176 0.032 −0.135 0.139 −0.050 −0.027 −0.009 −0.287 −0.150
M2 T+PCN 0.907 0.884 0.690 0.780 0.498 0.690 0.857 0.595 0.736
M3 T+PCN+H 0.591 0.447 0.360 0.521 0.237 0.171 0.478 0.175 0.103
M4 T+PCN+H+SOI 0.204 0.355 0.256 0.431 −0.681 −0.167 0.584 0.207 0.138
M5 T+PCN+H+SOI+MP 0.963 0.910 0.766 0.925 0.821 0.692 0.965 0.924 0.742

D. I. Khan
M1 T 0.215 −0.086 −0.073 0.991 0.979 0.866 0.993 0.982 0.878
M2 T+PCN 0.340 0.415 0.239 0.629 0.196 0.184 0.461 0.065 0.065
M3 T+PCN+H 0.799 0.694 0.560 0.751 0.510 0.363 0.726 0.504 0.305
M4 T+PCN+H+SOI 0.272 0.126 0.294 0.701 0.321 0.228 0.444 −0.031 0.115
M5 T+PCN+H+SOI+MP 0.975 0.943 0.791 0.965 0.906 0.724 0.977 0.944 0.786

Fig. 8. Box-plots of forecasted error |FE| of Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models forecasted monthly SPI index with periodicity (left) in
comparison with non-periodicity (right) for Islamabad, Multan and Dera Ismail Khan.
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precipitation. In prior studies, data-driven models based on climatic
parameters found the variability of models over large, sparsely dis-
tributed regions (Abbot and Marohasy, 2012, 2014; Deo and Şahin,
2015; Deo and Sahin, 2016; Deo et al., 2016b; Xie et al., 2013). The
development of models to target specific localities in this study is
clearly beneficial and major contribution in improving drought pre-
diction in Pakistan. The proposed Comm-ELM modelling approach
concurs with earlier research performed by Barzegar et al. (2018);
Prasad et al. (2018) in a sense where the authors used ELM, SVR, M5
Tree and MARS algorithms as a based models to design the committee
based ANN model for groundwater contamination risk of multiple
aquifers.

Regardless of the high precision found in predicting SPI using the
models developed in this research, a few caveats require further dis-
cussion. In this paper, Comm-ELM was utilized through a periodicity
procedure; however, the model advancement through hybridization of
various data-intelligent models with ELM may improve the accuracy
(Behmanesh et al., 2014; Liang et al., 2015; Vairappan et al., 2009;
XingXing et al., 2008; Zhou et al., 2011). Some of the other advanced
optimisation methods that enable more robust feature extraction could
include: Particle Swarm Optimization (PSO) (Chen and Yu, 2005),
Quantum-Behaved Particle Swarm Optimization (Q-PSO) (Zhisheng,
2010), Genetic Algorithm (GA) (Reeves, 1995) and Firefly Algorithms
(FA) (Yang, 2010). These techniques have been tested in different cli-
mate applications and have been shown to be an improvement to the
ELM model (Ghorbani et al., 2017; Raheli et al., 2017; Yaseen et al.,
2017). These models could be implemented as hybrids with ELM in
follow up work.

While the above-mentioned approaches are well-established, a new,
more generalized framework for hybridizing the ANN with in-
tuitionistic fuzzy (Takeuti and Titani, 1984) and neutrosophic logic
(Smarandache, 2001) may be achieved by integrating with ELM. The
latter is known to deal with vulnerability, indeterminacy, deficiency
and irregularity in predictor target information since the standard sta-
tistical approaches tend to avoid the hurdle of model uncertainty.
Bayesian Model Averaging (BMA) (Foresee and Hagan, 1997) is another
data-intelligent tool to model uncertainties which can be used in
ranking model performance. Multi-resolution analysis (e.g., empirical
wavelet transform (Gilles, 2013), empirical mode composition (Huang
et al., 1998), maximum overlap wavelet (Kormylo and Mendel, 1982)
and singular value decomposition (Golub and Reinsch, 1970) could

broaden the accuracy and scope of this study. Moreover, the more re-
cent techniques in rainfall and precipitation index forecasting tested for
Pakistan (Ali et al., 2018a, 2018b) using multi-stage hybridized online
sequential extreme learning machine integrated with Markov Chain
Monte Carlo copula-Bat algorithm and ensemble ANFIS uncertainity
model could also be adopted in SPI forecasting, particularly to check
the ability of these data-driven techniques in context of the present
problem.

6. Conclusion

Due to serious impacts of drought peril, the SPI based drought
forecasting can be considered as a promising tool to deal with future
hazards implicated on horticulture, water administration, water de-
mand, pricing and policy. In this study, Comm-ELM model was
benchmarked with two alternative techniques: the Comm-PSO-ANFIS
and Comm-MLR based models where the monthly SPI forecasting
model was constructed and evaluated for three agricultural regions in
Pakistan where farming activity is a critical part of the country's
economy. The developed models utilized the historical monthly atmo-
spheric inputs (temperature, rainfall, humidity, SOI) at (t− 1) with
respective periodicity as an improvement factor to forecast monthly
SPI.

The results showed that utilizing the periodicity to forecast SPI led
to an improvement in the exactness of the data-intelligent model.
Comparison of the three models revealed that the Comm-ELM can be
successfully applied for SPI forecasting, although there was a significant
variation (in terms of the model forecasting accuracy) among the per-
formance of these models with and without periodicity. That is, the
Comm-ELM model attained the highest accuracy for Islamabad, Multan
and D. I. Khan stations which was confirmed for both the training
(Table 2) and the testing phase of the model (Tables 3–5).

While this study presented only a case study for Pakistan, the de-
veloped modelling framework can be extended to any location in the
world where drought poses a catastrophic impact on national economy.
For example, to increase the practicality of the Comm-ELM model for
future drought forecasting, Comm-ELM model can be applied to several
agricultural and water reservoir zones where water scarcity conditions
are likely to threaten the long term sustainability of this resource. Due
to the aforementioned potential and abilities of the Comm-ELM model,
it is possible to also apply such a model to the forecasting of streamflow

Table 5
Geographic comparison of the study regions using Comm-ELM vs. Comm-PSO-ANFIS and Comm-MLR models using relative root mean squared error (RRMSE, %) and
the relative mean absolute error (RMAE, %) computed within the test sites. Note that the best model is boldfaced.

Model Testing period Islamabad

Comm-ELM Comm-PSO-ANFIS Comm-MLR

Input Combination RRMSE (%) RMAE (%) RRMSE (%) RMAE (%) RRMSE (%) RMAE (%)

M1 T −237.68 2362.15 549.69 198.30 776.91 146.96
M2 T+PCN −46.27 36.61 83.15 74.11 102.68 26.79
M3 T+PCN+H −192.70 279.23 377.43 58.73 157.92 53.49
M4 T+PCN+H+SOI −366.82 144.04 353.35 152.33 352.42 96.65
M5 T+PCN+H+SOI+MP 32.14 33.16 151.06 58.79 123.68 37.43

Multan
M1 T 14.52 8.30 1256.02 131.06 −1254.30 224.63
M2 T+PCN −261.47 75.28 7221.28 62.48 314.58 29.81
M3 T+PCN+H −499.34 79.37 323.75 105.91 449.11 90.49
M4 T+PCN+H+SOI −266.33 75.51 477.80 192.61 440.22 87.58
M5 T+PCN+H+SOI+MP 58.04 72.60 155.60 60.46 136.36 26.32

D. I. Khan
M1 T 76.78 311.59 58.06 22.62 47.59 16.57
M2 T+PCN −110.74 55.79 285.83 259.95 344.62 139.79
M3 T+PCN+H −149.00 159.44 223.27 229.69 250.96 133.07
M4 T+PCN+H+SOI 166.12 905.65 361.89 133.76 361.89 133.76
M5 T+PCN+H+SOI+MP 47.82 30.35 84.47 80.94 84.48 80.94
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and river systems, including soil moisture and crop yield for agri-
culturally-dependent nations like Pakistan. Being a preliminary study in
this drought-prone, agricultural region of Pakistan, this research has set
a clear foundation for the potential of using more extensive predictor
data products (e.g., satellite data with reanalysis and ground-based
products) for forecasting future drought events in Pakistan and else-
where, where the Comm-ELM model may be a preferable tool over the
other comparative models.‘
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Chapter 6 

Improving SPI-derived drought forecasts incorporating synoptic-

scale climate indices in multi-phase multivariate empirical mode 

decomposition model hybridized with simulated annealing and 

kernel ridge regression algorithms 

Foreword 

This chapter is an exact copy of the published article in the Journal of Hydrology (Volume 

576, Pages 164-184).

To address the limitations in ensemble-ANFIS (Chapter 4) and Comm-ELM (chapter 5), there is 

a desire to develop an artificial intelligence model that can forecast drought at a shorter, medium 

and longer forecast horizon.  Therefore, new multivariate empirical mode decomposition 

(MEMD) integrated with simulated annealing (SA) and Kernel ridge regression (KRR) models to 

devise a hybrid MEMD-SA-KRR. The MEMD modeling approach allows the utilization of 

multiple predictor inputs to decompose into signals (i.e. IMFs). The SA algorithm selects best 

IMFs that are later used in KRR model to forecast 1-, 3-, 6- and 12-month drought at three 

diverse geographic location in Pakistan. The MEMD based models address the non-stationarity 

and non-linearity issues within the multiple predictor inputs.The MEMD and SA hybridization 

with RF models leads to MEMD-SA-RF. The forecasting accuracy of MEMD-SA-KRR is better 

over MEMD-SA-RF, Standalone KRR and Standalone RF models. 
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A B S T R A C T

New and improved drought models based on the World Meteorological Organization approved Standardized
Precipitation Index, principally at multiple timescale horizons, are providing significant benefits to the hydro-
logical community, by its widespread acceptance in the sub-field of water resources management, sustainable
water use and precision agriculture. In this research paper, the existing challenges faced by a drought forecasting
model trained at multiple time-scales are resolved where a new multi-phase, multivariate empirical mode de-
composition model integrated with simulated annealing and Kernel ridge regression algorithms (i.e., MEMD-SA-
KRR) is designed to attain significantly accurate drought forecasts for 3 agricultural sites (i.e., Faisalabad,
Islamabad and Jhelum, located in Pakistan). Utilizing the multi-scalar Standardized Precipitation Index (SPI)
time series as a target variable for characterization of drought, twelve multivariate datasets (derived from sta-
tistically significant lagged combinations of precipitation, temperature & humidity), that are enriched with eight
synoptic-scale climate mode indices and periodicity, are utilized in designing a new drought model. The study
constructs a hybrid MEMD-SA-KRR model, where firstly, the data are partitioned into their respective training
and testing subsets after creating historically lagged SPI at timescale (t – 1). Secondly, the MEMD algorithm is
conditioned to demarcate multivariate climate indices from their training and testing sets, separately, into their
decomposed intrinsic mode functions (IMFs) and residues. Thirdly, the SA method is employed to decide the
most suitable IMFs. Finally, the KRR algorithm is applied to the selected IMFs to forecast multi-scaler SPI, at 1-,
3-, 6- and 12-monthly forecast horizon. The results are benchmarked with Random Forest, integrated with
MEMD and SA to develop the MEMD-SA-RF equivalent model. The multi-phase MEMD-SA-KRR model is tested
geographically in Pakistan, revealing that the MEMD-SA-KRR hybrid model generates reliable performance in
forecasting multi-scaler SPI series, relative to the comparative models based on error analysis metrics. The
hybrid drought model incorporating the most pertinent synoptic-scale climate drivers, as the model inputs has
significant implications for hydrological applications and water resources management including its potential
use in drought policy and drought recovery plans.

1. Introduction

Drought is characterized as a climatological menace that can occur
in arid, semi-arid, or tropical rainforest zones (Keyantash and Dracup,
2002; Vicente-Serrano, 2016; Wilhite et al., 2000). Drought events can
last from short to long period ranging from one month to four years as
recent climate change significantly affects rainfall patterns (Vicente-

Serrano, 2016). Drought severely disturbs water resources, agriculture
crops, energy supply and industrial sectors, and it is a growing concern
(Deo et al., 2009; IPCC, 2012; McAlpine et al., 2007; Yaseen et al.,
2018b). Long term drought significantly poses challenges to ground-
water reservoirs and also cause significant water scarcity (Cai and
Cowan, 2008) and the related socio-economic costs (Dijk et al., 2013;
Wittwer et al., 2002). Hydrologists and government and non-
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government based policy makers planning to develop new strategies to
manage drought risks for water management (Bates et al., 2008; Deo
et al., 2017c; Mishra and Singh, 2011; Mouatadid et al., 2018).

Hydrological decision support systems are considerably as im-
portant standards in characterizing different watersheds and their sce-
narios (Chen et al., 2013; Gebremariam et al., 2014; Romagnoli et al.,
2017; Sommerlot et al., 2016), but this model’s accuracy can rest on the
physics, initial conditions, and calibrations based on conceptual (i.e.,
regional-scale) sub-models and the spatio-temporal aspects of the input
and output variables (He et al., 2014; Sun et al., 2012). Recently, ar-
tificial intelligence models, that do not require any details about the
physics of the watershed or any associated hydrological behaviors, are
seen to have a good ability to forecast precipitation, run-off, streamflow
and drought events (Ali et al., 2018b; Deo et al., 2017a; Deo and Şahin,
2016; Deo et al., 2017a; Deo et al., 2019; Mouatadid et al., 2018; Prasad
et al., 2017; Yaseen et al., 2018a). Such models that can rely purely on
how climate variables and related large-scale indices change over time
can provide great insights into a drought forecasting and forewarning
system.

Drought can be quantified by large-scale climate indices in different
geographic zones, which is adopted to monitor drought intensity
(Mishra and Singh, 2010; Mishra and Singh, 2011). Traditionally, the
Palmer Drought Severity Index (PDSI) was developed to monitor
drought (Palmer, 1965). The PDSI is beneficial in handling lengthy
drought period but is not recommended for of high run-off region
(Mishra and Singh, 2010; Mishra and Singh, 2011). Crop Moisture
Index (CMI) is developed to handle the complexities in PDSI especially
to quantify agronomic droughts (Palmer, 1968). CMI uses the rainfall
record rankings to determine the positive and negative precipitation
anomalies which are useful for the short-term offset. Byun and Wilhite
(1999) designed the Effective Drought Index (EDI) for meteorological
and agricultural drought events which only based on precipitation. The
SPI is designed to overcome these hurdles and is a worldwide accep-
table standard metric to monitor and investigate drought scenarios.

Modelling SPI, as advocated in this research study, is beneficial for
future drought assessment, as follows: (1): This index can monitor
water deficiency scenarios that based on statistical rainfall distribution
ranging from monthly to seasonal and annual. (2): It is considered to be
a globally acceptable, standardized metric dependent on normalized
rainfall deficits (Hayes et al., 1999; McKee et al., 1993; Yuan and Zhou,
2004), that models the drought behavior in a climatological diverse
regions (Almedeij, 2016; Choubin et al., 2016; Svoboda et al., 2012).
(3) Handling multiple timescales of drought probabilistically, the SPI is
an instrument to inspect soil moisture condition (Svoboda et al., 2012).

Artificial intelligence models have been adopted to develop drought
forecasting strategies based on SPI utilizing several environmental
parameters: (1) Santos et al. (2009) and Jalalkamali et al. (2015) de-
signed a multilayer perceptron artificial neural network to forecast the
SPI in US and Iran, respectively; and (2) Wavelet based adaptive neuro
fuzzy inference system were developed to estimate SPI by
Shirmohammadi et al. (2013) in Azerbaijan. For the details of SPI based
drought forecasting, please refer to (e.g., (Adamowski et al., 2012; Ali
et al., 2018b; Bonaccorso et al., 2003; Cancelliere et al., 2006; Choubin
et al., 2016; Deo et al., 2017c; Guttman, 1999; Hayes et al., 1999;
Jalalkamali et al., 2015; Moreira et al., 2015; Moreira et al., 2008;
Paulo and Pereira, 2007; Sönmez et al., 2005)).

In this research work, we develop an SPI based hybrid artificial
intelligence model for a drought-prone region in Pakistan where his-
torical drought events have severely hindered socio-economic and
agricultural production (Report, 1950–2015). To address some of the
challenges faced due to drought events, Khan and Gadiwala (2013) has
analyzed drought patterns using SPI, while Xie et al. (2013) has fore-
casted SPI at several spatio-temporal scales in Pakistan. Recently,
Ahmed et al. (2016) has characterized seasonal drought using SPI in
Balochistan, Pakistan and Ali et al. (2018a) modelled drought events
based on lagged data of SPI using adaptive neuro-fuzzy inference

system based ensemble (ANFIS-ensemble) approach. Similarly, Ali et al.
(2018b) has utilized some of the primary climate-based datasets to
forecast the SPI series. However, studies on future drought models
utilizing different synoptic-scale climate mode indices are still very
limited, particularly in the agricultural region of Pakistan.

Owing to the variability in climate-based for a drought model, a
suite of multi-resolution analytical tools can be useful to extract em-
bedded features in a non-static time series signal that are related to a
drought variable, and thus, they may help to improve an existing
drought model. To resolve this challenge, the empirical mode decom-
position (EMD) method formalized by Huang et al. (1998), can provide
a useful alterative tool to improve existing drought models, as it is able
to isolate the largely fluctuating signals into their respective smaller,
and more clearly resolved frequency components to improve a drought
model. Since its inception, the EMD method has gained attention due to
its self-adaptability (Alvanitopoulos et al., 2014). The EMD is com-
pletely data dependent; thus making it greatly useful to extract relevant
features without any loss of information. Further, the decomposed
prominent features preserve the physical structure of the input tem-
porally (Wu et al., 2011). Due to its capability to improve the fore-
casting accuracy of artificial intelligence models, the EMD algorithm
has been integrated with artificial neural network (ANN) model,
proving it to be a successful tool to forecast environmental variables
such as solar radiation (Alvanitopoulos et al., 2014). For instance, Wang
et al. (2018) trialed EMD and local mean decomposition integrated with
least squares support vector machine to forecast solar radiation.

In spite of its recent applicability, a key issue with EMD and its
variant algorithm(s) is that it can only applicable to decompose a uni-
variate data (Colominas et al., 2014; Torres et al., 2011; Wu and Huang,
2009)), for example, only the significant antecedent lagged dataset of
SPI can be used to forecast the future drought series. This is a major
limitation of the EMD algorithm since the variation in drought events is
immensely reliant on dynamically-driven climatological factors such as
atmospheric circulation, so the incorporation of the relevant synoptic-
scale climate indices (e.g., SOI) that modulate drought events is ex-
tremely important. Therefore, these input variables need to be in-
telligently used into the artificial intelligence model, in addition to the
antecedent drought index series. The recent work of Ali et al. (2018a),
which appears to be the only study that has attempted to forecasted the
medium and long period droughts, has used the significant lags of SPI to
forecast the future SPI series. Further, Ali et al. (2018b) has employed
climate dataset to forecast SPI only over a short term (one month)
period.

Following earlier studies (Ali et al., 2018a; Ali et al., 2018b) on
short, medium and long term drought forecasting, this study aims to
operate large-scale climate indices and climate predictors to subse-
quently extract most, if not all, pertinent features where an MEMD
(Rehman and Mandic, 2009a) based hybridized modelling approach is
developed to forecast multi-scaler SPI index. The MEMD is an advance
generalized form of EMD and CEEMD which demarcates multivariate
inputs to performs accurate investigation of composite and nonlinear
procedures (Rehman and Mandic, 2009a). Additionally the MEMD fixes
the mode alignment problems arise in the joint analysis within a multi-
dimensional data (Looney and Mandic, 2009). The applicability of
MEMD can be seen clearly in forecasting of evapotranspiration (Adarsh
et al., 2017), soil water (Hu and Si, 2013), crude oil price (He et al.,
2016), solar radiation (Prasad et al., 2019) and iceberg drift (Andersson
et al., 2017), yet this the present research is a pilot application of this
novel technique in drought forecasting particularly for the agricultural
region of Pakistan. Further, this paper follows earlier methodology
(Quilty and Adamowski, 2018), aiming to partitioned data prior de-
veloping hybrid MEMD-SA-KRR model. This approach is used to cir-
cumvent the issues associated with other kinds of decomposition-based
models that were raised in earlier studies (Quilty and Adamowski,
2018).

The novelty of this research study lies in the enhanced capability of
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the MEMD algorithm to address the non-stationarity issues encountered
in the model design process, by using concurrent transformation of
model inputs into their decomposed components that are likely to im-
prove an existing drought forecasting model (as revealed later in results
section). The primary issues related to the selection of best IMFs (i.e.,
patterns in drought model input series), which are not known a priori,
are determined by the proposed approach, by an implementation of a
robust feature selection process: Simulated Annealing (SA) algorithm.
Hence, a careful integration of MEMD and SA algorithm with Kernel
Ridge Regression (KRR) is made to generate a much improved hybrid
forecast model, denoted as the MEMD-SA-KRR. The model is also
benchmarked against MEMD-SA-RF and a standalone (i.e., KRR and RF)
model to forecast multi-scaler SPI at 1-, 3-, 6 and 12-months tested at 3
drought-rich locations.

2. Theoretical framework

A summary of the artificial intelligence model based on KRR, MEMD
and SA approaches with its comparative models is now presented.

2.1. Kernel ridge regression (KRR) model

KRR model is a machine learning model based on kernels and a
ridge regression approach (Zhang et al., 2013), which is used to deal
with over-fitting in the regression using regularization and the kernel
technique to capture non-linear relationships (You et al., 2018).
Mathematically, KRR can be formulated as;

+
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f y farg min 1
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o o H
1

2 2
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1 (2)

where . H is the Hilbert normed space in Eq. (1) (Zhang et al., 2013).
For a given m by m kernel matrix, K is constructed by

=K x x( , )p o p o, from selected input data where y is the input q-by-1
regressand vector, and α is the q-by-1 unknown solution vector.
Equation (2) reduces to the following.
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The KRR method in the model training stage is approximated by
solving Eq. (3) whereas this is used in the testing phase to predict the
regression of unknown sample x in Eq. (4). Further, the KRR algorithm
searches for optimum and from the parameter set. In KRR, linear,
polynomial and Gaussian kernels are used to get the optimum accuracy
(Alaoui and Mahoney, 2015; Vovk, 2013; Welling, 2013; You et al.,
2018). Mathematically, linear, polynomial and Gaussian kernel are
defined as:

=x x x x( , ) .p o p
T

o (5)

= +x x x x r( , ) ( . )p o p
T

o
d (6)

=x x x x( , ) exp( (2 ))p o p o
2 2 (7)

where T represents the transpose and d is the dimension of the vector.

2.2. Multivariate empirical mode decomposition (MEMD) method

The MEMD technique is able to fix the issues of mode mixing which
handle the drawback of exhaustiveness and time consuming. To un-
derstand the mathematical structure of MEMD, we need to study the
EMD theory. The EMD is described as:

= +
=

s C s R s( ) ( ) ( )
k

l

k l
1 (8)

where s( ), C s( )k and R s( )l are representing input data, the kth IMF and
remainder (residue) respectively. The MEMD formulated by Rehman
and Mandic (2009b) uses multivariate data to decompose into multiple
dimensions of IMFs to avoid the issues of mode mixing incorporating
White Gaussian noise (Ur Rehman and Mandic, 2011). The mean sM( )is
derived as following:
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where e s( )q is referred to envelop curves with length of the vectorss.

=R s s s( ) ( ) M( ) (10)

The term R s( ) is called a multi-dimensional IMF satisfying the
stopping criterion. The MEMD algorithm has been utilized in analyzing
signal processing (Huang et al., 2013; Mandic et al., 2013), and hy-
drology (Hu and Si, 2013; She et al., 2015).

The MEMD is a self-adaptive algorithm which makes no assump-
tions a priori about the composition of the signal (Hu and Si, 2013; She
et al., 2015). The MEMD uses spline interpolation between maxima and
minima to successively trace out IMFs where each IMF is a single per-
iodic oscillator (Huang et al., 2013; Mandic et al., 2013). The IMFs
cannot be predicted prior it is empirically observed from the signal.
Since the IMFs can change over time, MEMD makes no assumptions
about the stationarity of the signal (or the signal components) and is
therefore better suited to non-linear signals when analyzing signals
from complex systems (Huang et al., 2013; Mandic et al., 2013).

2.3. Simulated annealing (SA) model

The SA is a bio-inspired feature selection algorithm to find a suitable
solution to an optimization technique (Elleithy and Fattah, 2012). The
SA is an adaptive non-deterministic algorithm which has been ex-
tensively used as optimization technique such as traveling salesman
(Peng et al., 1996), computer generated holograms (Taniguchi et al.,
1997), power efficiency (Wilson, 1997) and heat exchangers (Athier
et al., 1997). The basic algorithm of SA involves the following steps.

1. Create a randomly appropriate solution.
2. Determine the cost of solution using some cost function.
3. Create another random neighbouring solution.
4. Compute again cost of the above new solution.
5. If the new solution cost is less than the old solution cost, then move

to the new solution otherwise go to the following step 6.
6. Follow again stages 3–5 until an optimum solution is determined.

2.4. Random forest (RF)

Bootstraping and bagging is basically ensemble learning techinques
which creates classfiers and sums the final outcomes in terms of deci-
sion trees (Breiman, 1996; Schapire et al., 1998). The RF model is
fundamentally a decision tree model which adopts randomly a bagging
approach in the forecasting scenarios (Breiman, 1996). Each node is
separated randomly by chosing preeminent possible predictors to im-
prove accuracy that are robust to avoid overfitting (Breiman, 2001).
The steps followed in the designing of RF can be given as:

1. Generate bootstrapping of ntrees by incorporating the predictors
variables with n denotes the number of trees.

2. The randomly input predictors sample mtry is created to choose
maximum predictors splitting by growing an unpruned regression
tree.

3. Cumulate the aggregative predictions of ntrees to forecast multi-
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scaler SPI.

The applicabilty of RF model can be seen in soil attribute prediction
(Moore et al., 1993), hydrology (Moore et al., 1991), environmental
management (Ascough Ii et al., 2008), drought forecasting (Chen et al.,
2012), solar index estimation (Deo et al., 2017b), rainfall forecasting
(Ali et al., 2018c) and most recently, forecasting soil moisture (Prasad
et al., 2018).

For more comprehensive studies on RF model, readers are referred
to (Breiman, 2001; Liaw and Wiener, 2002; Prasad et al., 2018; Robert
et al., 1998; Segal, 2004).

2.5. Multi-scale Standardized precipitation index (SPI)

The SPI quantifies the wet and dry scenarios based on statistical
probability theory. Prior to design the proposed multi-phase MEMD-SA-
KRR model, the multi-scaler SPI index was computed by incorporating
precipitation (PTCN) data (McKee et al., 1993) in the following Equa-
tion (8).

=g PTCN PTCN e( ) ( ) x1
( )

1
(11)

where g(PTCN) indicates the probability density function, α and β are
the parameters determined by the maximum likelihood solution
whereas shows the gamma function. Further, the cumulative prob-
ability is defined as:
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By substituting n= PTCN/β in Eq. (13):
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The cumulative probability reduces to the following form when
PTCN=0:

H(PTCN)= p + (1- p) G (PTCN), (14)with p represents the prob-
ability of zero which determines the SPI index, viz:
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where , , ,0 1 2 3, ,1 2and 3 are arbitrary constants with magnitudes:
= 2.5155170 , = 0.8028531 , = 0.0103283 , = 1.4327881 , = 0.1892692

and = 0.0013083 (McKee et al., 1993). Drought is characterized into
three categories as moderate = (−1.5 < SPI≤ 1.0), severe =
(−2.0 < SPI≤ −1.5), and extreme = (SPI≤ −2.0).

3. Materials and method

3.1. Data

Twelve meteorological data series, precipitation (PTCN), tempera-
ture (T), humidity (H), southern oscillation index (SOI), sea surface
temperatures (Nino3SST, Nino3.4SST, Nino4SST), pacific decadal os-
cillation (PDO), Indian ocean dipole (IOD), El-Nino southern oscillation
Modoki index (EMI), southern annular mode (SAM) and periodicity at a
monthly (t) lag of t – 1 are acquired from Pakistan Meteorological
Department (PMD, 2016), National Climate Prediction Centre (Nicholls,
2004; SST, 2018), Joint Institute of the Study of the Atmosphere and
Ocean (JISAO, 2018), Bureau of Meteorology, Australia (BMA, 2018),
Japan Agency for Marine-Earth Science (JAMSTEC, 2018) and from the
British Antarctic Survey (BAS, 2018). Any precipitation less than
0.1 mm was replaced with the corresponding averaged value for the
climatological period. The multi-scaler SPI index was computed in R-
programing software using the rainfall time series data from 1981 to

2015.
Despite inherent complexities associated with accurate forewarning

of drought, synoptic-scale climate mode indices, that are strongly cor-
related with drought occurrence (Mishra and Singh, 2010; Morid et al.,
2007; Özger et al., 2012), can provide a consensus on the overall be-
haviour of drought events,as these indices can have a significant in-
fluence on rainfall and streamflow patterns (Ali et al., 2018c; Andreoli
and Kayano, 2005; Chiew et al., 1998; Deo and Şahin, 2016; McBride
and Nicholls, 1983; McGregor et al., 2014; Nicholls, 1983; Prasad et al.,
2017; Yaseen et al., 2018a; Yaseen et al., 2018b). For example, the well-
known association of the Inter-decadal Pacific Oscillation over the Pa-
cific Ocean is seen to influence the El-Nino Southern Oscillation (ENSO)
phenomena that governs the intensity of drought events (Dai, 2013;
Salinger et al., 2001). The negative period of SOI brings El-Nino epi-
sodes whereas the positive values of SOI launches La-Nina events
(Adnan et al., 2017; Philander, 1983). The Northern Atlantic Oscillation
(NAO) also has a significant influence from seasonal to inter-decadal
variability on atmosphere and environmental variables (Dickson et al.,
2000; Hurrell, 1995; Souriau and Yiou, 2001). The IOD across the
eastern Indian Ocean carries hefty showers over east Africa while
drought and forest fires across the Indonesian zone (Adnan et al., 2017;
Ashok et al., 2001). Furthermore, Sea Surface Temperatures (Nino3SST,
Nino3.4SST, Nino4SST) over the southeast Indian Ocean may also lead
to heavy precipitation (Priya et al., 2015; Terray et al., 2007). The
ENSO Modoki index (EMI) based on strong anomalous warming in the
central tropical Pacific and cooling in the eastern and western tropical
Pacific, potentially impacts the temperature and rainfall patterns
around the globe due to ocean atmosphere and the unique tri-polar sea
level pressure pattern (Ashok et al., 2007). Similarly, the SAM sig-
nificantly influences the monsoon rainfall anomaly (Pal et al., 2017).

3.2. Study locations

The study locations utilized in this work are: Faisalabad, Islamabad
and Jhelum displayed in Fig. 1. The geographical, climatological and
drought statistics of these locations is described in Table 1. Further, it
also presents the multi-scaler SPI index

Faisalabad, is categorized as desert with average yearly rainfall of
375mm and temperature 24.2 °C, and it is located in the grasslands of
northeast Punjab (Table 1) (Servey, 2016). Major crops growing in
Faisalabad are wheat, rice, cotton, sugarcane, maize, different vege-
tables and fruits.

Islamabad is the capital city of Pakistan. It experiences a subtropical
climate with four seasons: winter, spring, summer and autumn, with
average monsoon and annual precipitations of 790.8mm and
1142.1mm, respectively. The heaviest precipitation in Islamabad was
620mm/month recorded in July 2002.

Jhelum is situated in the Pothohar region of the Punjab province,
Pakistan. Agriculture highly depends on precipitation in Punjab. The
average annual rainfall is about 1000mm in the rainy season of mon-
soon (Department, 2010; PMD, 2016).

3.3. Development of multi-phase MEMD-SA-KRR model

The multi-phase MEMD-SA-KRR model is developed in MATLAB
R2016b programming environment (The Math Works Inc. USA). All the
simulations were obtained operating Pentium 4, 2.93 GHz dual-core
Central Processing Unit. The data are partitioned straightly 60% and
40% prior into training and testing subsets respectively following by
(Quilty and Adamowski, 2018) as it is the most common approach for
data partitioning (Cannas et al., 2006). The first 21 years from 1981 to
2001 data were used to train the MEMD-SA-KRR model while the re-
maining 14 years data (2002–20015) were utilized for testing. More-
over, the cross-validation or any data randomized approach cannot be
adopted as time-series data by definition occur in a temporal order/
sequence and this order or sequence must be preserved in order to keep
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the structure of the series intact (Bergmeir and Benítez, 2012). Ante-
cedent time time lagged inputs (i.e., PTCN, T, H, SOI, Nino3SST, Ni-
no3.4SST, Nino4SST, PDO, IOD, EMI, SAM, and periodicity) at (t – 1)
are used to develop the hybrid model to enable SPI1 (1-month), SPI3(3-
month), SPI6 (6-month) and SPI12 (12-month) forecasts as elicudated in
the following steps.

3.3.1. Phase 1: MEMD process
The MEMD method is applie to demarcates the input time-series

variables into IMFs and residuals. The input variables were incoporated
in (PTCN+T+H+SOI+Nino3SST+Nino3.4SST+Nino4SST+
PDO+ IOD+EMI+ SAM+periodicity) for decompostion by the
MEMD algorithm. Additionally, the predefined parameters include the
ensemble number (N=500) and the amplitude of the added white
noise (ε =0.2) (Ouyang et al., 2016; Ren et al., 2015; Wang et al.,
2013; Wu and Huang, 2009). To acquire the same number of IMFs in
training and testing period, the MEMD method is controlled using total
projection, a stop vector (i.e. tolerance and threshold values) and
stopping criterion (see Table 2). Total one hundred-twenty IMFs with
residuals (Table 3) for multi-scaler SPI in Faisalabad sites is extracted
with each input has (IMFs= 9, residual= 1) whereas for Islamabad,
this number is ninety-six with each input has (IMFs= 7, residual= 1).
For Jhelum, the MEMD algorithm disolved the input predictors into
(IMFs=8, residual= 1, No. of total IMFs=108) in case of SPI1, SPI6,
SPI12 while (IMFs= 7, residual= 1, No. of total IMFs= 96) for SPI3.

The cross correlation is a linear method which determine the linear
relationship between input predictor and target data. We avoided this
method and used SA method instead to select from a pool of variables as
the multiple climate input predictors have significant non-linearity.
Moreover, we have 12 input predictors, and decomposed by MEMD into
several sub-components, the resulting number of inputs is very large
(i.e. approx. 120). This means if we use a manual method (e.g. cross
correlation), there is a large amount of work but it uses linear method,
and so, will not generate smart way of selecting the best inputs. Instead,
we have used SA (which is a non-linear approach, so this method is

more suitable than correlation analysis). We have identified this issue
and revised the paper.

3.3.2. Phase 2: SA algorithm
The SA approach is adopted to choose the most appropriate IMFs for

only the training period using a feature selection strategy for model
development. Further, some parameters were defined prior that in-
cludes the number of maximum iterations (=20) and the parameter
initial temperature (=10). The number of selected best IMFs (feature)
is kept 25 which were defined prior to run the SA model. The selected
IMFs for each training period are described in Table 3. For testing
periods, those IMFs are used for model validation, based on selected
IMFs of the training dataset.

3.3.3. Phase 3: Normalization process
The data are normalized between [0, 1] using Eq. (13) and due

invertible nature of the normalization, the results will not be affected
(Hsu et al., 2003). The normalization is carried out following Eq. (16) to
handle large variation in the data (Hsu et al., 2003):

= ( )
( )norm

min

max min (16)

In Eq. (16), represents the input/output, minis the minimum
value, maxis the maximum value of the data and normis the corre-
sponding normalized numeric value.

3.3.4. Phase 4: Kernal ridge regression (KRR) method
In the final phase of the modeling, the KRR model is then applied to

forecast multi-scaler SPI series over the 1-, 3-, 6- and 12-monthly
forecasting horizons to investigate its cability to predict drought events
over multiple timescales. After incorporating the selected IMFs (for
training perod) with lagged at (t – 1) in the KRR model, different types
of kernals (i.e., linear, polynomial and gaussian) are tried. It is re-
markable that in this study, the gaussian and polynomial kernals are the
appropriate kernals to acquire the optimum MEMD-SA-KRR and

Fig. 1. Map of the selected study locations in Pakistan.
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standalone KRR model accuracy. For validating the performance of the
hybrid MEMD-SA-KRR model, the same IMFs are picked in the testing
period following the IMFs of the training period. For comparison pur-
poses, the RF model is also hybridized with the MEMD-SA to design
MEMD-SA-RF model. The number of trees (1000) and predictors (5) are
defined prior to develop the MEMD-SA-RF model. Further, the stan-
dalone KRR and Standalone RF (number of trees (1000) and predictors
(3)) models are also evaluated (Table 4).

Fig. 2 illustrates the schematic understanding of the multi-phase
MEMD-SA-KRR hybrid model.

The r and MSE metrics were adopted to assess the MEMD-SA-KRR
accuracy in training against MEMD-SA-RF, standalone KRR and RF
models.

The values of r and RMSE generated by MEMD-SA-KRR model for
multi-scaler SPI forecasting at Faisalabad are seen to be: SPI1
(r=0.970, MSE=0.045), SPI3 (r=0.993, MSE=0.009), SPI6
(r=0.994, MSE=0.007) and SPI12 (r=0.997, MSE=0.003). These
metrics for comparison models are MEMD-SA-RF (r=0.968 (SPI1),
0.985(SPI3), 0.994 (SPI6), 0.996 (SPI12) , MSE=0.076 (SPI1), 0.024
(SPI3), 0.007 (SPI6), 0.003 (SPI12)), standalone KRR (r=0.829 (SPI1),
0.906 (SPI3), 0.917 (SPI6), 0.923 (SPI12) , MSE=0.328 (SPI1), 0.184

(SPI3), 0.150 (SPI6), 0.140 (SPI12)) and standalone RF (r=0.965
(SPI1), 0.973 (SPI3), 0.973 (SPI6), 0.976 (SPI12) , MSE=0.111 (SPI1),
0.052 (SPI3), 0.047 (SPI6), 0.044 (SPI12)).

Equivalent metrics of the MEMD-SA-KRR model for Islamabad (site
2) are found to be: ((r=0.931, MSE=0.144) SPI1, (r=0.974,
MSE=0.049) SPI3, (r=0.982, MSE=0.031) SPI6, (r=0.993,
MSE=0.010) SPI12). The values of r and MSE generated by compara-
tive models can be seen in Table 4. Similarly, the proposed multi-phase
MEMD-SA-KRR model reasonably performs better for site 3 Jhelum as
compared to other models. Consequently, it is evident that the multi-
phase MEMD-SA-KRR model accuracy in the testing phase, as shown
later, is relatively high for the multi-scaler SPI forecasts at all tested
locations.

3.4. The performance assessing criterion

The newly designed hybrid MEMD-SA-KRR vs. MEMD-SA-RF, stan-
dalone KRR and RF models were assessed using several distinct eva-
luation criterions during multi-scaler SPI forecasting. The well-known
statistical metrics based on earlier approaches (ASCE, 1993; ASCE,
2000; Yen, 1995) are employed in this work (Dawson et al., 2007; Deo
et al., 2016; Legates and McCabe, 1999; Willmott, 1981; Willmott,
1982; Willmott, 1984).

I. Correlation coefficient (r) is defined as:
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II. Willmott’s Index (EWI) is formulated as:
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III. Nash-Sutcliffe efficiency (ENS) value is described as:
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IV. Root mean square error (RMSE) is mathematically derived as:

Table 2
Design parameters involved to decomposed IMFs and residuals for training and testing period in each study site using multivariate empirical mode decomposition
(MEMD) method.

Multi-scaler
SPI

Training period Testing period

No. of total
projections

Stop vector No. of total sub-series in
each input (IMFs & Res.)

No. of total
projections

Stop vector No. of total sub-series of
each input (IMFs & Res.)tolerance

values
threshold tolerance

values
threshold

Site 1: Faisalabad
SPI1 100 [0.05 0.05] 0.5 10 100 [0.05 0.05] 0.5 10
SPI3 100 [0.05 0.05] 0.5 10 100 [0.05 0.05] 0.5 10
SPI6 100 [0.05 0.05] 0.5 10 100 [0.05 0.05] 0.5 10
SPI12 100 [0.05 0.05] 0.5 10 140 [0.05 0.05] 0.5 10
Site 2: Islamabad
SPI1 26 [0.05 0.05] 0.5 8 26 [0.05 0.05] 0.5 8
SPI3 100 [0.05 0.05] 0.5 8 100 [0.05 0.05] 0.5 8
SPI6 26 [0.05 0.05] 0.5 8 26 [0.05 0.05] 0.5 8
SPI12 140 [0.05 0.05] 0.5 8 140 [0.05 0.05] 0.5 8
Site 3: Jhelum
SPI1 100 [0.05 0.05] 0.5 9 70 [0.05 0.05] 0.5 9
SPI3 49 [0.05 0.05] 0.5 8 45 [0.05 0.05] 0.5 8
SPI6 100 [0.05 0.05] 0.5 9 100 [0.05 0.05] 0.5 9
SPI12 140 [0.05 0.05] 0.5 9 140 [0.05 0.05] 0.5 9

Table 3
Design parameters involving in the selected IMFs for training period for each
study site using simulate annealing (SA) algorithm. The number of total IMFs is
also given.

Multi-scaler
SPI

Max.
Iteration

Initial
Temperature

Training period

No. of
total IMFs

No. of selected
IMFs

Site 1: Faisalabad
SPI1 20 10 120 25
SPI3 20 10 120 25
SPI6 20 10 120 25
SPI12 20 10 120 25
Site 2: Islamabad
SPI1 20 10 96 25
SPI3 20 10 96 25
SPI6 20 10 96 25
SPI12 20 10 96 25
Site 3: Jhelum
SPI1 20 10 108 25
SPI3 20 10 96 25
SPI6 20 10 108 25
SPI12 20 10 108 25
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Table 4
Performance of training period using multivariate empirical mode decomposition model hybridized with simulated annealing and Kernel ridge regression (i.e.
MEMD-SA-KRR) model vs. MEMD-SA-RF, Standalone KRR and Standalone RF models in terms of r andMSE. The choice of Kernel types were: polynomial, linear and
Gaussian.

Multi-scaler
SPI

MEMD-SA-KRR MEMD-SA-RF Standalone KRR Standalone RF

Kernel type Training period No. tress No. split
predictor

Training period Kernel type Training period No. tress No. split
predictor

Training period

MSE r MSE r MSE r MSE r

Site 1: Faisalabad
SP11 Polynomial 0.045 0.970 1000 5 0.076 0.968 Gaussian 0.328 0.829 1000 3 0.111 0.965
SPI3 Polynomial 0.009 0.993 1000 5 0.024 0.985 Gaussian 0.184 0.906 1000 3 0.052 0.973
SPI6 Polynomial 0.007 0.994 1000 5 0.007 0.994 Gaussian 0.150 0.917 1000 3 0.047 0.973
SPI12 Polynomial 0.003 0.997 1000 5 0.003 0.996 Gaussian 0.140 0.923 1000 3 0.044 0.976

Site 2: Islamabad
SP11 Polynomial 0.144 0.931 1000 5 0.152 0.977 Gaussian 0.496 0.812 1000 3 0.173 0.973
SPI3 Polynomial 0.049 0.974 1000 5 0.089 0.981 Gaussian 0.372 0.850 1000 3 0.120 0.970
SPI6 Polynomial 0.031 0.982 1000 5 0.036 0.986 Gaussian 0.291 0.894 1000 3 0.090 0.978
SPI12 Polynomial 0.010 0.993 1000 5 0.011 0.994 Gaussian 0.299 0.885 1000 3 0.091 0.978

Site 3: Jhelum
SP11 Polynomial 0.127 0.910 1000 5 0.131 0.918 Gaussian 0.330 0.831 1000 3 0.116 0.969
SPI3 Polynomial 0.017 0.987 1000 5 0.026 0.983 Gaussian 0.252 0.863 1000 3 0.078 0.970
SPI6 Polynomial 0.010 0.992 1000 5 0.011 0.991 Gaussian 0.201 0.888 1000 3 0.059 0.972
SPI12 Polynomial 0.002 0.998 1000 5 0.003 0.998 Gaussian 0.183 0.895 1000 3 0.054 0.975

Fig. 2. Schematic structure of the proposed multi-phase (MEMD-SA-KRR) model integrating multivariate empirical mode decomposition (MEMD) at phase 1 and
simulated annealing (SA) at phase 2 with kernel ridge regression (KRR) model at phase 4.
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V. Mean absolute error (MAE) is expressed as:
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VI. Legates and McCabe’s (ELM) is expressed as:
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VII. Relative percentage error (RPE; %), is stated as
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In Eq. (23), SPIObs i, and SPIFor i, shows the observed and forecasted ith

magnitudes of the SPI index, SPI¯ obs i, and SPI¯ For i, are the observed and

Table 5
Multi-scale analysis of testing period using the MEMD-SA-KRR vs. MEMD-SA-RF, Standalone KRR, and Standalone RF models measured by RMSE, MAE and r. The
optimum model is blue bold faced.

Multi-scaler SPI SP11 SPI3 SPI6 SPI12

Models RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r

Site 1: Faisalabad
Standalone RF 0.332 0.254 0.959 0.263 0.199 0.976 0.273 0.208 0.976 0.292 0.224 0.974
Standalone KRR 0.580 0.440 0.819 0.512 0.392 0.901 0.540 0.435 0.899 0.573 0.481 0.896
MEMD-SA-RF 0.252 0.188 0.971 0.149 0.118 0.993 0.092 0.068 0.997 0.055 0.041 0.999
MEMD-SA-KRR 0.180 0.133 0.980 0.078 0.059 0.997 0.066 0.050 0.998 0.034 0.025 0.999
Site 2: Islamabad
Standalone RF 0.445 0.353 0.978 0.404 0.315 0.972 0.393 0.303 0.976 0.415 0.338 0.977
Standalone KRR 0.733 0.584 0.841 0.702 0.556 0.847 0.712 0.565 0.874 0.771 0.617 0.882
MEMD-SA-RF 0.367 0.295 0.975 0.291 0.232 0.982 0.192 0.142 0.990 0.133 0.095 0.994
MEMD-SA-KRR 0.314 0.246 0.953 0.119 0.087 0.994 0.146 0.106 0.992 0.111 0.077 0.995
Site 3: Jhelum
Standalone RF 0.357 0.282 0.963 0.362 0.297 0.964 0.364 0.303 0.966 0.382 0.321 0.964
Standalone KRR 0.606 0.473 0.800 0.636 0.515 0.836 0.642 0.541 0.854 0.668 0.588 0.858
MEMD-SA-RF 0.309 0.229 0.944 0.142 0.116 0.991 0.122 0.080 0.994 0.052 0.039 0.999
MEMD-SA-KRR 0.313 0.215 0.938 0.098 0.073 0.995 0.092 0.067 0.996 0.047 0.034 0.999

Table 6
Multi-scale analysis in testing period of MEMD-SA-KRR vs. MEMD-SA-RF, Standalone KRR and Standalone RF models using EWI, ENS and ELM . Note that the best
model is boldfaced (blue).

Multi-scaler SP11 SPI3 SPI6 SPI12

Models EWI ENS ELM EWI ENS ELM EWI ENS ELM EWI ENS ELM

Site 1: Faisalabad
Standalone RF 0.885 0.861 0.653 0.953 0.933 0.771 0.954 0.933 0.782 0.952 0.928 0.782
Standalone KRR 0.634 0.576 0.399 0.798 0.745 0.550 0.794 0.740 0.544 0.782 0.725 0.531
MEMD-SA-RF 0.938 0.920 0.743 0.986 0.978 0.864 0.995 0.992 0.929 0.998 0.997 0.960
MEMD-SA-KRR 0.971 0.959 0.818 0.996 0.994 0.932 0.998 0.996 0.948 0.999 0.999 0.976
Site 2: Islamabad
Standalone RF 0.850 0.798 0.559 0.898 0.851 0.624 0.926 0.875 0.666 0.913 0.867 0.629
Standalone KRR 0.545 0.452 0.270 0.646 0.549 0.337 0.712 0.590 0.379 0.649 0.542 0.325
MEMD-SA-RF 0.905 0.862 0.630 0.953 0.922 0.723 0.985 0.970 0.843 0.993 0.986 0.896
MEMD-SA-KRR 0.940 0.900 0.693 0.993 0.987 0.896 0.992 0.983 0.884 0.995 0.991 0.915
Site 3: Jhelum
Standalone RF 0.861 0.839 0.615 0.903 0.873 0.658 0.912 0.882 0.682 0.911 0.877 0.687
Standalone KRR 0.596 0.536 0.354 0.676 0.606 0.408 0.695 0.632 0.433 0.688 0.626 0.427
MEMD-SA-RF 0.907 0.879 0.687 0.988 0.980 0.867 0.992 0.987 0.916 0.999 0.998 0.962
MEMD-SA-KRR 0.911 0.877 0.707 0.994 0.991 0.916 0.995 0.992 0.930 0.999 0.998 0.967

Table 7
Geographic evaluation of the MEMD-SA-KRR vs. MEMD-SA-RF, Standalone
KRR and Standalone RF models using relative percentage error (RPE, %). Note
that the best model is boldfaced (blue).

Multi-scaler SPI SP11 SPI3 SPI6 SPI12

RPE (%) RPE (%) RPE (%) RPE (%)

Site 1: Faisalabad
Standalone RF 60.13 51.52 26.65 23.07
Standalone KRR 84.99 79.86 47.07 48.10
MEMD-SA-RF 49.15 31.28 8.79 4.29
MEMD-SA-KRR 34.86 18.75 6.51 2.91
Site 2: Islamabad
Standalone RF 71.71 130.57 48.89 64.66
Standalone KRR 121.88 282.69 153.95 97.39
MEMD-SA-RF 104.26 342.50 75.89 30.58
MEMD-SA-KRR 126.31 81.35 84.67 29.22
Site 3: Jhelum
Standalone RF 54.90 70.59 34.29 32.56
Standalone KRR 87.31 102.30 57.21 58.94
MEMD-SA-RF 64.39 38.51 9.56 4.06
MEMD-SA-KRR 63.48 26.31 8.63 3.66
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forecasted average of SPI and N is the total number of tested data
points.

4. Results

Based on the above developed artificial intelligence models, drought

forecasting has been performed for both short-term (1∼3months) and
long term (6∼12months) horizons by modeling SPI as a drought in-
dicator and utilizing synoptic-scale climate mode indices and relevant
climate datasets. The MEMD algorithm applied in combination with SA
and KRR methods in this study, aimed to design a multi-phase drought
forecast model, denoted as MEMD-SA-KRR. The MEMD-SA-KRR model

Fig. 3. Empirical cumulative distribution function (ECDF) of forecasted error |FE| 1-month (SP1), 3-month (SPI3), 6-month (SPI6) and 12-month (SPI12) generated by
the proposed multi-phase MEMD-SA-KRR vs. MEMD-SA-RF, Standalone KRR and Standalone RF models for (a): Faisalabad, (b): Islamabad, and (c): Jhelum.
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is seen to be a well-established model in terms with ability to extract
features from multivariate data comprised of meteorological variables
and climate indices; hence, selecting the best features out of extracted
oscillatory modes to forecast the multi-scaler SPI series. The perfor-
mance is assessed with the help of some well-known statistical mea-
sures, visual and graphical plots with error distributions strategies in
testing period.

4.1. Assessment of MEMD-SA-KRR model using statistical measures

In this paper, the well-designed multi-phase forecasting model
MEMD-SA-KRR vs. MEMD-SA-RF, Standalone KRR and Standalone RF
models is numerically evaluated using several acceptable performance
metrics.

The performance of MEMD-SA-KRR model is appraised with MEMD-
SA-RF, standalone KRR and standalone RF models utilizing r, RMSE and
MAE metrics in Table 5. The hybrid MEMD-SA-KRR model developed

Fig. 4. Box-plots of forecasted error |FE| of 1-month (SP1), 3-month (SPI3), 6-month (SPI6) and 12-month (SPI12) in testing period generated by multi-phase MEMD-
SA-RF vs. MEMD-SA-RF, Standalone KRR and Standalone RF models for (a): Faisalabad, (b): Islamabad, and (c): Jhelum.
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for Faisalabad attain the highest magnitudes of r and lowest RMSE and
MAE values in SPI1 (r≈ 0.980, RMSE≈ 0.180, MAE≈ 0.133) in com-
parison with MEMD-SA-RF (r≈ 0.971, RMSE≈ 0.252, MAE≈ 0.188),
standalone KRR (r≈ 0.819, RMSE≈ 0.580, MAE≈ 0.440), and the
standalone RF (r≈ 0.959, RMSE≈ 0.332, MAE≈ 0.254) model. Ana-
logously, the multi-phase MEMD-SA-KRR model attains highest accu-
racy to forecast SPI3, SPI6 and SPI12 in response to the comparison
models. Likewise, the performance of MEMD-SA-KRR model is sig-
nificantly better for Islamabad and Jhelum (Table 5) to forecast multi-
scaler SPI. This confirms that MEMD-SA-KRR model can be adopted as a
well-established data-driven technique to forecast drought against
MEMD-SA-RF, standalone KRR and standalone RF models.

Table 6 uses multi-scale EWI, ENS and ELM criterion to analyse the
performance of MEMD-SA-KRR model vs. MEMD-SA-RF, standalone
KRR, and standalone RF models. The score of these metrics generated
by MEMD-SA-KRR model for Faisalabad in SPI1 are (EWI≈ 0.971, ENS≈
0.959 and ELM≈ 0.818), followed by MEMD-SA-RF (EWI ≈ 0.938, ENS≈
0.920 and ELM≈ 0.743), standalone RF (EWI≈ 0.885, ENS≈ 0.861 and
ELM ≈ 0.653) and standalone KRR (EWI ≈ 0.634, ENS≈ 0.576, ELM≈
0.399) models. The multi-phase MEMD-SA-KRR models also outper-
form the counterpart models in forecasting medium-scale (i.e., SPI3)
and long term drought scenarios (i.e., SPI6, SPI12).

For site 2: Islamabad, again the proposed multi-phase MEMD-SA-
KRR model appears to be the best model, SPI1 (EWI ≈ 0.940, ENS≈

Fig. 5. Cumulative frequency of 1-month (SP1), 3-month (SPI3), 6-month (SPI6) and 12-month (SPI12) generated by MEMD-SA-KRR vs.MEMD-SA-RF, standalone KRR
and standalone RF models of |FE| error for (a): Faisalabad, (b): Islamabad, and (c): Jhelum.
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0.900 and ELM ≈ 0.693), SPI3 (EWI ≈ 0.993, ENS≈ 0.987 and ELM ≈
0.896), SPI6 (EWI≈ 0.992, ENS≈0.983 and ELM≈ 0.884) and SPI12 (EWI

≈ 0.995, ENS≈ 0.991 and ELM≈ 0.915). The results of comparative
models (Table 6) support the dominance of the multi-phase MEMD-SA-
KRR over the comparative approaches.

The MEMD-SA-KRR hybrid model is also assessed for forecasting
short, medium and long term drought for site 3: Jhelum. The acquired
metrics, evident from the present results, are: for SPI1 (EWI≈ 0.911, ENS
≈ 0.877 and ELM ≈ 0.707), for SPI3 (EWI ≈ 0.994, ENS≈ 0.991 and ELM
≈ 0.916), for SPI6 (EWI ≈ 0.995, ENS≈ 0.992 and ELM ≈ 0.930) and for
SPI12 (EWI ≈ 0.999, ENS≈ 0.998 and ELM ≈ 0.967). The results of the
comparative models can be tabulated in Table 6 that also ascertain the
superiority of MEMD-SA-KRR model for the selected study locations.

Table 7 demonstrates the magnitudes of RPE in terms of percentage
produced in selected study regions. Based on the achieved precision,
Site 1: Faisalabad generates the maximum accurateness in forecasting
multi-scaler SPI index where MEMD-SA-KRR (RPE ≈ 2.91%) for SPI12,
(RPE ≈ 6.51%) for SPI6, (RPE ≈ 18.75%) for SPI3 and (RPE ≈
34.86%) for SPI1. Jhelum is the second most responsive site in fore-
casting multiple drought indexes using a multi-phase MEMD-SA-KRR
model followed by Islamabad respectively. The proposed multi-phase
MEMD-SA-KRR model was seen to exhibit lower percentage errors
(RPE, %) in all study locations for long term drought forecasting within
the range of 10% recommended threshold for an excellent model
classification.

4.2. Assessment of MEMD-SA-KRR using visual and error distributions plots

The empirical cumulative distribution function (ECDF, Fig. 3) ana-
lyses different forecasting abilities plots for each study sites. The hybrid
MEMD-SA-KRR model was seen reasonably well against MEMD-SA-RF,
Standalone KRR and Standalone RF models. The generated error (0
to ± 1.5) for Faisalabad and Jhelum while (0 to ± 2) for Islamabad in
forecasting multi-scaler SPI, Fig. 3 clearly proves that MEMD-SA-KRR
model was the most precise and responsive model.

Fig. 4 compares the MEMD-SA-KRR vs. the MEMD-SA-RF, Standa-
lone KRR and Standalone RF models in the form of a boxplot.
The+ sign demonstrates the larger forecasting error |FE| as an outliers
of the testing period. The distributed error |FE| is confirmed with a
much smaller quartile and was attained by MEMD-SA-KRR method in

each study location to forecast multi-scaler SPI followed by MEMD-SA-
RF, the Standalone RF and Standalone KRR. By analyzing Fig. 4, the
preciseness of the hybrid MEMD-SA-KRR method appeared to be heal-
thier than the comparative counterparts.

To present accurate accounts on the forecasting ability of the pre-
scribed data-driven models, Fig. 5 demonstrates a detailed interpreta-
tion by plotting the frequency distribution of datasets using MEMD-SA-
KRR method’s forecasting error |FE|, together with the relevant com-
parison models. The acquired |FE| error of the MEMD-SA-KRR ap-
proach was within the smallest error range ±( 2) to forecast SPI1, ±( 1)for
SPI3, SPI6 and SPI12 for Faisalabad, Islamabad and Jhelum. Fig. 5 de-
picts the overall performance of the well-designed MEMD-SA-KRR
method was better as compared to other models.

Fig. 6 describe a more tangible and conclusive information by
plotting Taylor diagram in terms of a statistical demonstration of how
accurate the forecasted and observed multi-scaler SPI coincides using
their correlation coefficient (r). For site 1: Faisalabad, the r of the
MEMD-SA-KRR model with actual was around 0.98 (SPI1), trailed by
MEMD-SA-RF≈0.97 (SPI1), Standalone RF≈0.95 (SPI1) and Standa-
lone KRR≈0.80 (SPI1) respectively. Again, the multi-phase MEMD-SA-
KRR approach was found nearer to the actual SPI6 with r (MEMD-SA-
KRR≈0.999, MEMD-SA-RF≈0.99, Standalone RF≈0.96, and Standa-
lone KRR≈0.90). Similarly, the multi-phase MEMD-SA-KRR was nearer
in case of SPI6 and SPI12 in relation to other comparative models. This
argument is also established in site 2 and 3 where the proposed multi-
phase MEMD-SA-KRR is closely matched with observed SPI1, SPI3, SPI6
and SPI12 as compared to the counterpart models.

Fig. 7 displays a scatterplot with goodness-of-fit and r2 between
forecasted and observed multi-scaler SPI index. The proposed multi-
phase MEMD-SA-KRR model is clearly better than comparative methods
in terms of r2 (MEMD-SA-KRR ≈0.960 (SPI1), 0.994 (SPI3),
0.996(SPI6), 0.999(SPI12), MEMD-SA-RF≈0.945 (SPI1), 0.985 (SPI3),
0.993(SPI6), 0.997(SPI12), Standalone KRR≈0.695 (SPI1), 0.811(SPI3),
0.808(SPI6), 0.804(SPI12), Standalone RF≈0.923(SPI1), 0.952(SPI3),
0.952(SPI6), 0.948 (SPI12)) for Faisalabad. The proposed multi-phase
MEMD-SA-KRR model for other sites Islamabad and Jhelum is reason-
ably good compared to counterpart models (Fig. 7). On the basis of
attaining the larger r2-value, the well-established MEMD-SA-KRR ap-
proach shows higher accuracy against other comparison models.

As it is always the case, long-term drought indicators are much

Fig. 5. (continued)

M. Ali, et al. Journal of Hydrology 576 (2019) 164–184

176



smoother than short-term. For example, if a drought index is analyzed
over 6 or 12 monthly period, the changes in the behavior of drought has
a lesser fluctuation. Hence, there are no large fluctuation/spikes in the
long term SPI time-series, and this is the reason why we have a better
forecasting result for these horizons. That is, the 6- and 12month based
SPI index become more stationary. Due to this reason, the proposed
model accuracy is high in long term SPI index forecasting. We have
checked the entire results and it appears there is no issue with our
current results.

5. Discussion: Limitations and future remarks

In this research work, the appropriateness of the hybrid MEMD-SA-
KRR model (compared against the MEMD-SA-RF, standalone KRR and
standalone RF models) for multiple scale droughts forecasting has been
investigated. In comparison with the other models, the hybrid MEMD-

SA-RF outperformed the alternatives for all study locations, thus en-
lightening that the MEMD-SA-KRR method was well-organized and ef-
fective in extracting features from climatological variables in a tangible
way. The performance of MEMD-SA-KRR has revealed that SA algo-
rithm was beneficial in choosing the relevant features to assist the KRR
in better emulating the future multi-scaler SPI.

In addition to the overall superiority of the hybrid MEMD-SA-KRR
over the comparative counterpart models, the results also confirmed the
appropriateness of Simulated Annealing (SA) in sorting out relevant
feature with the assessment criterions for MEMD-SA-KRR method (i.e.,
Tables 4–6) were remarkably improved than the hybrid MEMD-SA-RF
and standalone counterpart models. Since the artificial intelligence
models exclusively depend on past data that may significantly affect the
‘learning’ and forecasting process, the outcomes here establish that an
appropriate feature collection should be performed carefully before to
implement data-driven models. This is in accordance with the strategies

Fig. 6. Taylor plots depicting the predictive skill of MEMD-SA-RF vs. MEMD-SA-RF, Standalone KRR and Standalone RF models for (a): Faisalabad, (b): Islamabad,
and (c): Jhelum in the testing period of 1-month (SP1), 3-month (SPI3), 6-month (SPI6) and 12-month (SPI12).
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followed in (Badr and Fahmy, 2004; Cordón García et al., 2002; Mullen
et al., 2009; Singh et al., 2012; Sweetlin et al., 2017). Other key per-
ception is that less number of predictors input needs minimum output
associations that results a parsimonious and computationally good KRR
model. Another key outcome is the unique input IMFs combinations are
compulsory in periodically determining future multi-scaler SPI
(Table 2).

In addition to hybridizing the KRR and RF models with the robust
SA approach, an extra improvement in model preciseness was accom-
plished via integration of MEMD model to demarcate the inputs that
results into hybrid MEMD-SA-KRR (and MEMD-SA-RF) models. The
MEMD is successfully classified and segregate the relevant features
inside the climatological inputs to establish a more consistent physical
foundation for a particular artificial intelligence method. The usefulness
of empirical mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD), complete ensemble empirical mode decom-
position (CEEMDAN), and improved complete ensemble empirical

mode decomposition (ICEEMDAN) has been revealed in numerous
studies (Alvanitopoulos et al., 2014; Hong et al., 2013; Wang et al.,
2018; Wu et al., 2011), yet in the current research MEMD algorithm is
employed for concurrent data pre-processing of numerous climatolo-
gical predictors. The MEMD is able to identify concurrently the signal’s
main frequency to capture the respective features.

It should be noted that the feasibility of the MEMD algorithm
(Huang et al., 2013; Mandic et al., 2013) for multi-scaler drought
forecasting is a major advancement, performed in this research study,
to improve the predicting ability of the standalone KRR model. The
performance confirmed that the MEMD-SA-KRR can provide better
forecasts of multi-scale SPI for the selected study locations in contrast to
the corresponding KRR and RF and hybrid MEMD-SA-RF model. It was
undoubtedly apparent that better understandings of the physical pro-
cedure were given to the hybrid model, mainly by the MEMD method,
further enabling the artificial intelligence model to effectively capture
the information in the meteorological variables and large-scale climate

Fig. 6. (continued)
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indices in relation to modelling the SPI series. One plausible reason for
better performance of MEMD-SA-KRR compared to the standalone
models, is perhaps attributable to the more effective translation of in-
formation on deterministic processes in meteorological variables and
climate model indices, resolved into various frequency levels, conse-
quently, resulting in lower model errors and improved performance for
multiscale SPI forecasting.

In addition, a primal advantage of the MEMD as utilized in this
study is its self-adaptive nature (Huang et al., 2013; Mandic et al.,
2013) which completely based on the input predictors and involves
minor human effort while decomposing the inputs. Furthermore, the
MEMD accurately performs data-driven-based time–frequency analysis
of the complex multivariate predictors, while considering the nonlinear
behaviours by means of a multi-channelled dynamical process (Rehman
and Mandic, 2009a). Another significant merit of the proposed MEMD
algorithm is that it is able to overcome the mode alignment issues,
which is remained unresolved in the EMD and CEEMD (Looney and

Mandic, 2009). Further, MEMD has the ability of decompose multi-
variate input data while EMD and CEEMD are applicable to decompose
a univariate data. Therefore, the hybrid MEMD-SA-KRR approach has
the potential for drought management systems. With historically si-
mulated multi-scaler SPI, this improved forecasting tool (such as
MEMD-SA-KRR) can amicably be used in an environmental modelling
system that can better forecast future drought events and utilize quickly
to those requirements reducing the downtimes with growing efficiency.

6. Conclusions

In this research paper, a significant contribution towards drought
modelling was made by developing a reliable drought forecast model
incorporating most suitable input features derived from a suite of IMFs
utilizing the Simulated Annealing (SA) approach. Here, the decomposed
datasets were based on the antecedent values of the meteorological
variables (i.e., precipitation, temperature, humidity) including the most

Fig. 6. (continued)
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Fig. 7. The 1-month, 3-month, 6-month and 12-month observed vs. forecasted SPI in the testing period generated by all four models for (a): Faisalabad, (b):
Islamabad, and (c): Jhelum. Least square regression line with the coefficient of determination (r2) is shown.
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relevant climate mode indices (i.e., SOI, Nino3SST, Nino3.4SST,
Nino4SST, PDO, IOD, EMI, SAM) and the periodicity factor (i.e., the
monthly cycle) in the model’s training procedure to forecast the multi-
scaler SPI series for 3 agricultural regions in Pakistan: i.e., Faisalabad,
Islamabad, and Jhelum.

Long-term monthly datasets over the period 1981–2015 were de-
composed for the candidate study sites in their corresponding IMFs and
residual factors using multivariate empirical mode decomposition al-
gorithm in which SA was employed to screen the most suitable IMFs in
respect to the actual SPI index. The selected IMFs were incorporated
into the Kernel Ridge Regression (KRR) algorithm to design the multi-
phase hybrid MEMD-SA-KRR model, and the subsequent model’s per-
formance was compared against the hybrid MEMD-SA-RF, KRR, and RF
model. Several evaluation criterions (r, RMSE, MAE, EWI, ENS, ELM &
RPE) were utilized to assess the multi-phase MEMD-SA-KRR model in
modelling drought index at multiple time-scales of 1-, 3-, 6- and
12month period.

Based on the relatively small forecast errors according to RMSE and
MAE, and the high-performance metrics utilizing correlations, r, EWI,
ENS and ELM, the accuracy of the multi-phase hybrid MEMD-SA-KRR
model was demonstrated to be a highly potent tool in comparison to its
counterpart models (e.g., Tables 4 and 5). The RPE were found to reg-
ister values of approximately 34.86%, 18.75%, 6.51%, 2.91% for the
hybrid MEMD-SA-KRR model compared with 49.15%, 31.28%, 8.79%,
4.29% for the hybrid MEMD-SA-RF model, that contrasted a value of
60.13%, 51.52%, 26.65%, 23.07% for standalone RF and 84.99%,
79.86%, 47.07%, 48.10% for standalone KRR model for the Faisalabad
site for forecasting SPI1, SPI3, SPI6 and SPI12 respectively. A remarkable
amount of geographic variability in drought model performance was
also evident for the multi-phase MEMD-SA-KRR hybrid model using
RPE, where a primal performance was attained for Faisalabad (based on

RPE) as compared to Islamabad and Jhelum.
This research study was of the first kind in Pakistan, particularly in

introducing the newly designed MEMD approach to resolve meteor-
ological input datasets into their relevant decomposed input signals to
select the best candidate features based on SA and to forecast multi-
scaler SPI employing KRR model. Expanding the scope of the proposed
methodology, future studies can adopt the multi-phase hybrid MEMD-
SA-KRR model in other areas such as the prediction of rainfall,
streamflow, flood events, solar radiation and energy demand, to enable
policymakers in the management of the climate change and energy
crises issues.

Finally, drought forecast model attained in this research study can
also amicably enable Governments and other relevant stakeholders in
water resources and crop management, including decisions on infra-
structural areas (e.g., dam or irrigation operation) and other hydro-
physical applications in the current phase of a changing climate where
models can be used to make informed decisions.

CRediT authorship contribution statement

Mumtaz Ali: Writing - original draft, Conceptualization,
Methodology, Software. Ravinesh C. Deo: Visualization,
Conceptualization, Writing - review & editing, Investigation,
Supervision. Tek Maraseni: Writing - review & editing. Nathan J.
Downs: Writing - review & editing.

Acknowledgement

This paper has utilized wheat yield acquired from Bureau of
Statistics, Government of Pakistan that is duly acknowledged. We ac-
knowledge that this research project was sponsored by University of

Fig. 7. (continued)

M. Ali, et al. Journal of Hydrology 576 (2019) 164–184

181



Southern Queensland’s Postgraduate Research Scholarship
(2017–2019) awarded to the first author, managed by USQ Graduate
Research School.

References

Adamowski, J., Fung Chan, H., Prasher, S.O., Ozga-Zielinski, B., Sliusarieva, A., 2012.
Comparison of multiple linear and nonlinear regression, autoregressive integrated
moving average, artificial neural network, and wavelet artificial neural network
methods for urban water demand forecasting in Montreal, Canada. Water Resour.
Res. 48 (1).

Adarsh, S., Sanah, S., Murshida, K.K., Nooramol, P., 2017. Scale dependent prediction of
reference evapotranspiration based on Multi-Variate Empirical mode decomposition.
Ain Shams Eng. J.

Adnan, M., Rehman, N., Khan, A.A., Mir, K.A., Khan, M.A., 2017. Influence of natural
forcing phenomena on precipitation of Pakistan. Pakistan J. Meteorol. 12 (24).

Ahmed, K., Shahid, S., bin Harun, S., Wang, X.-J., 2016. Characterization of seasonal
droughts in Balochistan Province, Pakistan. Stoch. Env. Res. Risk Assess. 30 (2),
747–762.

Alaoui, A., Mahoney, M.W., 2015. Fast randomized kernel ridge regression with statistical
guarantees. Adv. Neural Information Processing Syst. 775–783.

Ali, M., Deo, R.C., Downs, N.J., Maraseni, T., 2018a. An ensemble-ANFIS based un-
certainty assessment model for forecasting multi-scalar standardized precipitation
index. Atmos. Res. 207, 155–180.

Ali, M., Deo, R.C., Downs, N.J., Maraseni, T., 2018b. Multi-stage committee based ex-
treme learning machine model incorporating the influence of climate parameters and
seasonality on drought forecasting. Comput. Electron. Agric. 152, 149–165.

Ali, M., Deo, R.C., Downs, N.J., Maraseni, T., 2018c. Multi-stage hybridized online se-
quential extreme learning machine integrated with Markov Chain Monte Carlo co-
pula-Bat algorithm for rainfall forecasting. Atmos. Res. 213, 450–464.

Almedeij, J., 2016. Long-term periodic drought modeling. Stoch. Env. Res. Risk Assess. 30
(3), 901–910.

Alvanitopoulos, P.-F., Andreadis, I., Georgoulas, N., Zervakis, M. and Nikolaidis, N., 2014.
Solar Radiation Time-Series Prediction Based on Empirical Mode Decomposition and
Artificial Neural Networks. In: 10th IFIP International Conference on Artificial
Intelligence Applications and Innovations (AIAI). IFIP Advances in Information and
Communication Technology, AICT-436. Springer, Rhodes, Greece, pp. 447-455.

Andersson, L.E., Aftab, M.F., Scibilia, F., Imsland, L., 2017. Forecasting using multivariate
empirical mode decomposition-Applied to iceberg drift forecast, IEEE Conference on
Control Technology and Applications (CCTA), Kohala Coast. Hawai'i, USA.

Andreoli, R.V., Kayano, M.T., 2005. ENSO-related rainfall anomalies in South America
and associated circulation features during warm and cold Pacific decadal oscillation
regimes. Int. J. Climatol. 25 (15), 2017–2030.

ASCE, 1993. Criteria for Evaluation of Watershed Models. J. Irrig. Drain. Eng. 119 (3),
429–442.

ASCE, 2000. Artificial neural networks in hydrology. II: Hydrologic applications. J.
Hydrologic Eng.‘ 5 (2), 124–137.

Ascough Ii, J., Maier, H., Ravalico, J., Strudley, M., 2008. Future research challenges for
incorporation of uncertainty in environmental and ecological decision-making. Ecol.
Model. 219 (3–4), 383–399.

Ashok, K., Behera, S.K., Rao, S.A., Weng, H., Yamagata, T., 2007. El Niño Modoki and its
possible teleconnection. J. Geophys. Res. Oceans 112 (C11).

Ashok, K., Guan, Z., Yamagata, T., 2001. Impact of the Indian Ocean dipole on the re-
lationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. 28
(23), 4499–4502.

Athier, G., Floquet, P., Pibouleau, L., Domenech, S., 1997. Synthesis of heat-exchanger
network by simulated annealing and NLP procedures. AIChE J. 43 (11), 3007–3020.

Badr, A., Fahmy, A., 2004. A proof of convergence for ant algorithms. Inf. Sci. 160 (1–4),
267–279.

BAS, 2018. British Antarctic Survey.
Bates, B., Kundzewicz, Z.W., Wu, S., Palutikof, J., 2008. Climate change and water:

Technical paper vi. Intergovernmental Panel on Climate Change (IPCC).
Bergmeir, C., Benítez, J.M., 2012. On the use of cross-validation for time series predictor

evaluation. Inf. Sci. 191, 192–213.
BMA, 2018. Bureau of Meteorology, Australia.
Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., Sutera, A., 2003. Spatial variability of

drought: an analysis of the SPI in Sicily. Water Resour. Manage. 17 (4), 273–296.
Breiman, L., 1996. Bagging predictors. Machine learning 24 (2), 123–140.
Breiman, L., 2001. Random forests. Machine learning 45 (1), 5–32.
Byun, H.-R., Wilhite, D.A., 1999. Objective quantification of drought severity and dura-

tion. J. Climatol. 12 (9), 2747–2756.
Cai, W., Cowan, T., 2008. Dynamics of late autumn rainfall reduction over southeastern

Australia. Geophys. Res. Lett. 35 (9).
Cancelliere, A., Bonaccorso, B., Mauro, G., 2006. A non-parametric approach for drought

forecasting through the standardized precipitation index. Metodi statisticie mate-
matici per l Analisi delle serie idrologiche 1 (1), 1–8.

Cannas, B., Fanni, A., See, L., Sias, G., 2006. Data preprocessing for river flow forecasting
using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth,
Parts A/B/C 31 (18), 1164–1171.

Chen, H., Yang, D., Hong, Y., Gourley, J.J., Zhang, Y., 2013. Hydrological data assim-
ilation with the Ensemble Square-Root-Filter: Use of streamflow observations to
update model states for real-time flash flood forecasting. Adv. Water Resour. 59,
209–220.

Chen, J., Li, M. and Wang, W., 2012. Statistical uncertainty estimation using random

forests and its application to drought forecast. Mathematical Problems in
Engineering, 2012.

Chiew, F.H., Piechota, T.C., Dracup, J.A., McMahon, T.A., 1998. El Nino/Southern
Oscillation and Australian rainfall, streamflow and drought: links and potential for
forecasting. J. Hydrol. 204 (1), 138–149.

Choubin, B., Malekian, A., Golshan, M., 2016. Application of several data-driven tech-
niques to predict a standardized precipitation index. Atmósfera 29 (2), 121–128.

Colominas, M.A., Schlotthauer, G., Torres, M.E., 2014. Improved complete ensemble
EMD: a suitable tool for biomedical signal processing. Biomed. Signal Process.
Control 14, 19–29.

Cordón García, O., Herrera Triguero, F. and Stützle, T., 2002. A review on the ant colony
optimization metaheuristic: Basis, models and new trends. Mathware & Soft
Computing. 2002 Vol. 9 Núm. 2 [-3].

Dai, A., 2013. The influence of the inter-decadal Pacific oscillation on US precipitation
during 1923–2010. Clim. Dyn. 41 (3–4), 633–646.

Dawson, C.W., Abrahart, R.J., See, L.M., 2007. HydroTest: a web-based toolbox of eva-
luation metrics for the standardised assessment of hydrological forecasts. Environ.
Modell. Software 22 (7), 1034–1052.

Deo, R.C., Kisi, O., Singh, V.P., 2017a. Drought forecasting in eastern Australia using
multivariate adaptive regression spline, least square support vector machine and
M5Tree model. Atmos. Res. 184, 149–175.

Deo, R., C and Şahin, M.,, 2016. An extreme learning machine model for the simulation of
monthly mean streamflow water level in eastern Queensland. Environ. Monit. Assess.
https://doi.org/10.1007/s10661-016-5094-9.

Deo, R.C., Downs, N., Parisi, A., Adamowski, J., Quilty, J., 2017b. Very short-term re-
active forecasting of the solar ultraviolet index using an extreme learning machine
integrated with the solar zenith angle. Environ. Res. 155, 141–166.

Deo, R.C., et al., 2009. Impact of historical land cover change on daily indices of climate
extremes including droughts in eastern Australia. Geophys. Res. Lett. 36 (8).

Deo, R.C., Tiwari, M.K., Adamowski, J.F., Quilty, J.M., 2017c. Forecasting effective
drought index using a wavelet extreme learning machine (W-ELM) model. Stoch. Env.
Res. Risk Assess. 31 (5), 1211–1240.

Deo, R.C., Wen, X., Qi, F., 2016. A wavelet-coupled support vector machine model for
forecasting global incident solar radiation using limited meteorological dataset. Appl.
Energy 168, 568–593.

Deo, R.C. et al., 2019. Two-phase extreme learning machines integrated with complete
ensemble empirical mode decomposition with adaptive noise for multi-scale runoff
prediction. J. Hydrol., In Press (03-Jan-2019).

Department, P.M., 2010. Dry weather predicted in the country during Friday/Monday.
Dickson, R., et al., 2000. The Arctic ocean response to the North Atlantic oscillation. J.

Clim. 13 (15), 2671–2696.
Dijk, A.I., et al., 2013. The Millennium Drought in southeast Australia (2001–2009):

natural and human causes and implications for water resources, ecosystems,
economy, and society. Water Resour. Res. 49 (2), 1040–1057.

Elleithy, K.M., Fattah, E., 2012. A Simulated Annealing Algorithm for Register Allocation.
College of Engineering & Islamic Architecture, Umm al-Qura University.

Gebremariam, S.Y., et al., 2014. A comprehensive approach to evaluating watershed
models for predicting river flow regimes critical to downstream ecosystem services.
Environ. Modell. Software 61, 121–134.

Guttman, N.B., 1999. Accepting the standardized precipitation index: a calculation al-
gorithm. JAWRA J. Am. Water Resour. Assoc. 35 (2), 311–322.

Hayes, M.J., Svoboda, M.D., Wilhite, D.A., Vanyarkho, O.V., 1999. Monitoring the 1996
drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 80 (3),
429–438.

He, K., Zha, R., Wu, J., Lai, K., 2016. Multivariate EMD-Based Modeling and Forecasting
of Crude Oil Price. Sustainability 8 (4), 387.

He, Z., Wen, X., Liu, H., Du, J., 2014. A comparative study of artificial neural network,
adaptive neuro fuzzy inference system and support vector machine for forecasting
river flow in the semiarid mountain region. J. Hydrol. 509, 379–386.

Hong, Y.-Y., Yu, T.-H., Liu, C.-Y., 2013. Hour-Ahead Wind Speed and Power Forecasting
Using Empirical Mode Decomposition. Energies 6 (12), 6137–6152.

Hsu, C.-W., Chang, C.-C. and Lin, C.-J., 2003. A practical guide to support vector classi-
fication.

Hu, W., Si, B.C., 2013. Soil water prediction based on its scale-specific control using
multivariate empirical mode decomposition. Geoderma 193, 180–188.

Huang, J.-R., et al., 2013. Application of multivariate empirical mode decomposition and
sample entropy in EEG signals via artificial neural networks for interpreting depth of
anesthesia. Entropy 15 (9), 3325–3339.

Huang, N.E., et al., 1998. The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis. Proc. R. Soc. A 454, 903–995.

Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional tempera-
tures and precipitation. Science 269 (5224), 676–679.

IPCC, 2012. Summary for Policymakers: A Special Report of Working Groups I and II of
the Intergovernmental Panel on Climate Change. In: Field, C.B. (Ed.), Managing the
Risks of Extreme Events and Disasters to Advance Climate Change Adaptation.
Cambridge University Press, Cambridge, UK.

Jalalkamali, A., Moradi, M., Moradi, N., 2015. Application of several artificial intelligence
models and ARIMAX model for forecasting drought using the Standardized
Precipitation Index. Int. J. Environ. Sci. Technol. 12 (4), 1201–1210.

JAMSTEC, 2018. Japan Agency for Marine-Earth Science.
JISAO, 2018. Joint Institute of the Study of the Atmosphere and Ocean.
Keyantash, J., Dracup, J.A., 2002. The quantification of drought: an evaluation of drought

indices. Bull. Am. Meteorol. Soc. 83 (8), 1167–1180.
Khan, M., Gadiwala, M., 2013. A Study of Drought over Sindh (Pakistan) Using

Standardized Precipitation Index (SPI) 1951 to 2010. Pakistan J. Meteorol. 9 (18).
Legates, D.R., McCabe, G.J., 1999. Evaluating the use of “goodness-of-fit” measures in

M. Ali, et al. Journal of Hydrology 576 (2019) 164–184

182

http://refhub.elsevier.com/S0022-1694(19)30579-7/h0005
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0005
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0005
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0005
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0005
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0010
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0010
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0010
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0015
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0015
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0020
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0020
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0020
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0025
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0025
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0030
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0030
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0030
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0035
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0035
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0035
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0040
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0040
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0040
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0045
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0045
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0055
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0055
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0055
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0060
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0060
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0060
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0065
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0065
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0070
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0070
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0075
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0075
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0075
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0080
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0080
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0085
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0085
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0085
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0090
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0090
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0095
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0095
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0100
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0105
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0105
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0110
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0110
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0120
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0120
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0125
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0130
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0135
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0135
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0140
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0140
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0145
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0145
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0145
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0150
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0150
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0150
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0155
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0155
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0155
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0155
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0165
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0165
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0165
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0170
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0170
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0175
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0175
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0175
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0185
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0185
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0190
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0190
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0190
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0195
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0195
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0195
https://doi.org/10.1007/s10661-016-5094-9
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0205
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0205
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0205
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0210
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0210
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0215
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0215
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0215
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0220
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0220
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0220
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0230
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0235
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0235
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0240
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0240
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0240
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0245
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0245
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0250
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0250
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0250
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0255
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0255
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0260
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0260
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0260
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0265
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0265
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0270
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0270
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0270
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0275
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0275
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0285
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0285
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0290
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0290
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0290
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0295
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0295
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0300
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0300
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0305
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0305
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0305
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0305
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0310
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0310
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0310
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0325
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0325
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0330
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0330
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0335


hydrologic and hydroclimatic model validation. Water Resour. Res. 35 (1), 233–241.
Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R news 2 (3),

18–22.
Looney, D., Mandic, D.P., 2009. Multiscale Image Fusion Using Complex Extensions of

EMD. IEEE Trans. Signal Process. 57 (4), 1626–1630.
Mandic, D.P., ur Rehman, N., Wu, Z., Huang, N.E., 2013. Empirical mode decomposition-

based time-frequency analysis of multivariate signals: the power of adaptive data
analysis. IEEE Signal Process Mag. 30 (6), 74–86.

McAlpine, C., et al., 2007. Modeling the impact of historical land cover change on
Australia's regional climate. Geophys. Res. Lett. 34 (22).

McBride, J.L., Nicholls, N., 1983. Seasonal relationships between Australian rainfall and
the Southern Oscillation. Mon. Weather Rev. 111 (10), 1998–2004.

McGregor, S., et al., 2014. Recent Walker circulation strengthening and Pacific cooling
amplified by Atlantic warming. Nat. Clim. Change 4 (10), 888.

McKee, T.B., Doesken, N.J., Kleist, J., 1993. In: The relationship of drought frequency and
duration to time scales. American Meteorological Society, Boston, MA, pp. 179–183.

Mishra, A.K., Singh, V.P., 2010. A review of drought concepts. J. Hydrol. 391 (1–2),
202–216.

Mishra, A.K., Singh, V.P., 2011. Drought modeling–A review. J. Hydrol. 403 (1),
157–175.

Moore, I.D., Gessler, P., Nielsen, G., Peterson, G., 1993. Soil attribute prediction using
terrain analysis. Soil Sci. Soc. Am. J. 57 (2), 443–452.

Moore, I.D., Grayson, R., Ladson, A., 1991. Digital terrain modelling: a review of hy-
drological, geomorphological, and biological applications. Hydrol. Process. 5 (1),
3–30.

Moreira, E., Martins, D., Pereira, L., 2015. Assessing drought cycles in SPI time series
using a Fourier analysis. Nat. Hazards Earth Syst. Sci. 15 (3), 571–585.

Moreira, E.E., Coelho, C.A., Paulo, A.A., Pereira, L.S., Mexia, J.T., 2008. SPI-based
drought category prediction using loglinear models. J. Hydrol. 354 (1), 116–130.

Morid, S., Smakhtin, V., Bagherzadeh, K., 2007. Drought forecasting using artificial
neural networks and time series of drought indices. Int. J. Climatol. 27 (15),
2103–2111.

Mouatadid, S., Raj, N., Deo, R.C., Adamowski, J.F., 2018. Input selection and data-driven
model performance optimization for predicting Standardized Precipitation and
Evaporation Index in a drought-prone region. Atmos. Res.

Mullen, R.J., Monekosso, D., Barman, S., Remagnino, P., 2009. A review of ant algo-
rithms. Expert Syst. Appl. 36 (6), 9608–9617.

Nicholls, N., 1983. Predicting Indian monsoon rainfall from sea-surface temperature in
the Indonesia–north Australia area. Nature 306 (5943), 576.

Nicholls, N., 2004. The changing nature of Australian droughts. Clim. Change 63 (3),
323–336.

Ouyang, Q., et al., 2016. Monthly Rainfall Forecasting Using EEMD-SVR Based on Phase-
Space Reconstruction. Water Resour. Manage. 30 (7), 2311–2325.

Özger, M., Mishra, A.K., Singh, V.P., 2012. Long lead time drought forecasting using a
wavelet and fuzzy logic combination model: a case study in Texas. J. Hydrometeorol.
13 (1), 284–297.

Pal, J., Chaudhuri, S., Roychowdhury, A., Basu, D., 2017. An investigation of the influ-
ence of the southern annular mode on I ndian summer monsoon rainfall. Meteorol.
Appl. 24 (2), 172–179.

Palmer, W.C., 1965. Meteorological drought, 30. US Department of Commerce, Weather
Bureau Washington, DC.

Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: the new crop
moisture index.

Paulo, A.A., Pereira, L.S., 2007. Prediction of SPI drought class transitions using Markov
chains. Water Resour. Manage. 21 (10), 1813.

Peng, M., Gupta, N.K., Armitage, A.F., 1996. An investigation into the improvement of
local minima of the Hopfield network. Neural networks 9 (7), 1241–1253.

Philander, S.G.H., 1983. El Nino southern oscillation phenomena. Nature 302 (5906),
295.

PMD, 2016. Pakistan Meteorological Department, Pakistan.
Prasad, R., Ali, M., Kwan, P., Khan, H., 2019. Designing a multi-stage multivariate em-

pirical mode decomposition coupled with ant colony optimization and random forest
model to forecast monthly solar radiation. Appl. Energy 236, 778–792.

Prasad, R., Deo, R.C., Li, Y., Maraseni, T., 2017. Input selection and performance opti-
mization of ANN-based streamflow forecasts in a drought-prone Murray Darling
Basin using IIS and MODWT algorithm. Atmos. Res. 197, 42–63.

Prasad, R., Deo, R.C., Li, Y., Maraseni, T., 2018. Soil moisture forecasting by a hybrid
machine learning technique: ELM integrated with ensemble empirical mode de-
composition. Geoderma 330, 136–161.

Priya, P., Mujumdar, M., Sabin, T., Terray, P., Krishnan, R., 2015. Impacts of Indo-Pacific
sea surface temperature anomalies on the summer monsoon circulation and heavy
precipitation over northwest India-Pakistan region during 2010. J. Clim. 28 (9),
3714–3730.

Quilty, J., Adamowski, J., 2018. Addressing the incorrect usage of wavelet-based hy-
drological and water resources forecasting models for real-world applications with
best practices and a new forecasting framework. J. Hydrol.

Rehman, N., Mandic, D.P., 2009. Multivariate empirical mode decomposition.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
466 (2117), 1291–1302.

Rehman, N., Mandic, D.P., 2009b. Multivariate empirical mode decomposition,
Proceedings of The Royal Society of London A: Mathematical, Physical and
Engineering Sciences. The Royal Society, pp. rspa20090502.

Ren, Y., Suganthan, P.N., Srikanth, N., 2015. A comparative study of empirical mode
decomposition-based short-term wind speed forecasting methods. IEEE Trans.

Sustainable Energy 6 (1), 236–244.
Report, 1950-2015. List of natral disaster.
Robert, B., Yoav, F., Peter, B., Sun, L.W., 1998. Boosting the margin: a new explanation

for the effectiveness of voting methods. The annals of statistics 26 (5), 1651–1686.
Romagnoli, M., et al., 2017. Assessment of the SWAT model to simulate a watershed with

limited available data in the Pampas region, Argentina. Sci. Total Environ. 596,
437–450.

Salinger, M., Renwick, J., Mullan, A., 2001. Interdecadal Pacific oscillation and south
Pacific climate. Int. J. Climatol. 21 (14), 1705–1721.

Santos, C.A.G., Morais, B.S., Silva, G.B., 2009. Drought forecast using an artificial neural
network for three hydrological zones in San Francisco River basin, Brazil. IAHS
publication 333, 302.

Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S., 1998. Boosting the margin: a new ex-
planation for the effectiveness of voting methods. Ann. Stat. 1651–1686.

Segal, M.R., 2004. Machine learning benchmarks and random forest regression.
Servey, B., 2016. Asian Urban Information of Kobe.
She, D., Zheng, J., Shao, M.a., Timm, L.C. and Xia, Y.,, 2015. Multivariate empirical mode

decomposition derived multi-scale spatial relationships between saturated hydraulic
conductivity and basic soil properties. CLEAN–Soil, Air. Water 43 (6), 910–918.

Shirmohammadi, B., Moradi, H., Moosavi, V., Semiromi, M.T., Zeinali, A., 2013.
Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for dif-
ferent time steps (case study: southeastern part of east Azerbaijan province, Iran).
Nat. Hazards 69 (1), 389–402.

Singh, G., Kumar, N., Verma, A.K., 2012. Ant colony algorithms in MANETs: a review. J.
Network Comput. Appl. 35 (6), 1964–1972.

Sommerlot, A.R., Wagena, M.B., Fuka, D.R., Easton, Z.M., 2016. Coupling the short-term
global forecast system weather data with a variable source area hydrologic model.
Environ. Modell. Software 86, 68–80.

Sönmez, F.K., KÖmÜscÜ, A.U., Erkan, A., Turgu, E., 2005. An analysis of spatial and
temporal dimension of drought vulnerability in Turkey using the standardized pre-
cipitation index. Nat. Hazards 35 (2), 243–264.

Souriau, A., Yiou, P., 2001. Grape harvest dates for checking NAO paleoreconstructions.
Geophys. Res. Lett. 28 (20), 3895–3898.

SST, 2018. National Climate Prediction Centre.
Sun, S., et al., 2012. Past and future changes of streamflow in Poyang Lake Basin.

Southeastern China.
Svoboda, M., Hayes, M., Wood, D., 2012. Standardized precipitation index user guide.

World Meteorological Organization Geneva, Switzerland.
Sweetlin, J.D., Nehemiah, H.K., Kannan, A., 2017. Feature selection using ant colony

optimization with tandem-run recruitment to diagnose bronchitis from CT scan
images. Comput. Methods Programs Biomed. 145, 115–125.

Taniguchi, M., Kurokawa, K., Itoh, K., Matsuoka, K., Ichioka, Y., 1997. Sidelobeless
multiple-object discriminant filters recorded as discrete-type computer-generated
holograms. Appl. Opt. 36 (35), 9138–9145.

Terray, P., Chauvin, F., Douville, H., 2007. Impact of southeast Indian Ocean sea surface
temperature anomalies on monsoon-ENSO-dipole variability in a coupled ocea-
n–atmosphere model. Clim. Dyn. 28 (6), 553–580.

Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P., 2011. A complete ensemble
empirical mode decomposition with adaptive noise. In: 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4144–4147.

Ur Rehman, N., Mandic, D.P., 2011. Filter bank property of multivariate empirical mode
decomposition. IEEE Trans. Signal Process. 59 (5), 2421–2426.

Vicente-Serrano, S., 2016. Foreword: Drought complexity and assessment under climate
change conditions. Cuadernos de Investigación Geográfica 42 (1), 7–11.

Vovk, V., 2013. Kernel ridge regression. Empirical inference. Springer 105–116.
Wang, W.-C., Xu, D.-M., Chau, K.-W., Chen, S., 2013. Improved annual rainfall-runoff

forecasting using PSO–SVM model based on EEMD. J. Hydroinf. 15 (4), 1377–1390.
Wang, Z., Tian, C., Zhu, Q., Huang, M., 2018. Hourly Solar Radiation Forecasting Using a

Volterra-Least Squares Support Vector Machine Model Combined with Signal
Decomposition. Energies 11 (1), 68.

Welling, M., 2013. Kernel ridge regression. Max Welling's Classnotes in Machine
Learning 1–3.

Wilhite, D.A., Hayes, M.J., Knutson, C., Smith, K.H., 2000. Planning for drought: Moving
from crisis to risk management1. Wiley Online Library.

Willmott, C.J., 1981. On the validation of models. Phys. Geogr. 2 (2), 184–194.
Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bull. Am.

Meteorol. Soc. 63 (11), 1309–1313.
Willmott, C.J., 1984. On the evaluation of model performance in physical geography.

Spatial statistics and models. Springer 443–460.
Wilson, J.D., 1997. A simulated annealing algorithm for optimizing RF power efficiency

in coupled-cavity traveling-wave tubes. IEEE Trans. Electron Devices 44 (12),
2295–2299.

Wittwer, G., Adams, P.D., Horridge, M., Madden, J.R., 2002. Drought, regions and the
Australian economy between 2001–02 and 2004–05. Australian Bulletin of Labour 28
(4), 231.

Wu, Z., Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise-assisted
data analysis method. Adv. Adaptive Data Analysis 1 (1), 1–41.

Wu, Z., Huang, N.E., Wallace, J.M., Smoliak, B.V., Chen, X., 2011. On the time-varying
trend in global-mean surface temperature. Clim. Dyn. 37 (3–4), 759–773.

Xie, H., Ringler, C., Zhu, T., Waqas, A., 2013. Droughts in Pakistan: a spatiotemporal
variability analysis using the Standardized Precipitation Index. Water Int. 38 (5),
620–631.

Yaseen, Z.M., et al., 2018a. Application of the Hybrid Artificial Neural Network Coupled
with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over

M. Ali, et al. Journal of Hydrology 576 (2019) 164–184

183

http://refhub.elsevier.com/S0022-1694(19)30579-7/h0335
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0340
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0340
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0345
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0345
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0350
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0350
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0350
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0355
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0355
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0360
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0360
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0365
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0365
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0370
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0370
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0375
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0375
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0380
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0380
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0385
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0385
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0390
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0390
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0390
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0395
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0395
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0400
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0400
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0405
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0405
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0405
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0410
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0410
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0410
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0415
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0415
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0420
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0420
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0425
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0425
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0430
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0430
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0435
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0435
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0435
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0440
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0440
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0440
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0445
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0445
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0455
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0455
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0460
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0460
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0465
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0465
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0475
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0475
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0475
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0480
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0480
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0480
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0485
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0485
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0485
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0490
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0490
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0490
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0490
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0495
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0495
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0495
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0500
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0500
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0500
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0510
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0510
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0510
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0520
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0520
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0525
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0525
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0525
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0530
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0530
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0535
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0535
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0535
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0540
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0540
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0555
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0555
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0555
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0560
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0560
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0560
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0560
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0565
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0565
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0570
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0570
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0570
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0575
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0575
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0575
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0580
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0580
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0590
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0590
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0595
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0595
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0600
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0600
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0600
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0605
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0605
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0605
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0610
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0610
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0610
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0615
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0615
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0615
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0620
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0620
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0625
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0625
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0630
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0635
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0635
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0640
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0640
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0640
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0645
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0645
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0650
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0650
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0655
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0660
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0660
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0665
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0665
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0670
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0670
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0670
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0675
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0675
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0675
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0680
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0680
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0685
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0685
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0690
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0690
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0690
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0695
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0695


Multiple Time Horizons. Water. Resour. Manag. 1–17.
Yaseen, Z.M., Sulaiman, S.O., Deo, R.C., Chau, K.-W., 2018b. An enhanced extreme

learning machine model for river flow forecasting: state-of-the-art, practical appli-
cations in water resource engineering area and future research direction. J. Hydrol.

Yen, B.C., 1995. Discussion and Closure: Criteria for Evaluation of Watershed Models. J.
Irrig. Drain. Eng. 121 (1), 130–132.

You, Y., Demmel, J., Hsieh, C.-J. and Vuduc, R., 2018. Accurate, Fast and Scalable Kernel

Ridge Regression on Parallel and Distributed Systems. arXiv preprint arXiv:1805.
00569.

Yuan, W.-P., Zhou, G.-S., 2004. Comparison between standardized precipitation index
and Z-index in China. Acta Phytoecologica Sinica 4.

Zhang, Y., Duchi, J., Wainwright, M., 2013. Divide and conquer kernel ridge regression.
Conference on Learning Theory 592–617.

M. Ali, et al. Journal of Hydrology 576 (2019) 164–184

184

http://refhub.elsevier.com/S0022-1694(19)30579-7/h0695
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0700
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0700
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0700
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0705
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0705
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0715
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0715
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0720
http://refhub.elsevier.com/S0022-1694(19)30579-7/h0720


113

Chapter 7 

Cotton yield prediction with Markov Chain Monte Carlo-based 

simulation model integrated with genetic programing algorithm: A 

new hybrid copula driven approach 

Foreword 

This chapter is an exact copy of the published article in Agricultural and Forest Meteorology 

journal (Vol. 263, Pages 428-448). 

The agricultural crop yields have been severely impacted under the recent climate change and 

global warming.  Thus, a cotton yield prediction with Markov Chain Monte Carlo-based 

simulation model integrated with genetic programing algorithm using multiple meteorological 

data of rainfall, temperature and humidity. Several different types of GP-MCMC-copula models 

were developed, each with the well-known copula families (i.e., Gaussian, student t, and 

Clayton, Gumble Frank and Fischer-Hinzmann functions) to screen and utilize an optimal cotton 

yield forecast model for the present study region. 

The results of hybrid GP-MCMC-copula models were compared against different MCMC based 

copula models as well as GP model. The performances of GP-MCMC-copula models are better 

than comparative counterparts. The developed GP-MCMC-Copula modelling framework can be 

adopted by farmers, agricultural system modelling experts and agricultural policy-makers in 

strategic decision-making processes. 
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Cotton yield prediction with Markov Chain Monte Carlo-based simulation
model integrated with genetic programing algorithm: A new hybrid copula-
driven approach
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A R T I C L E I N F O
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A B S T R A C T

Reliable data-driven models designed to accurately estimate cotton yield, an important agricultural commodity,
can be adopted by farmers, agricultural system modelling experts and agricultural policy-makers in strategic
decision-making processes. In this paper a hybrid genetic programing model integrated with the Markov Chain
Monte Carlo (MCMC) based Copula technique is developed to incorporate climate-based inputs as the predictors
of cotton yield, for selected study regions: Faisalabad (31.4504 °N, 73.1350 °E), Multan (30.1984 °N, 71.4687 °E)
and Nawabshah (26.2442 °N, 68.4100 °E), as important cotton growing hubs in the developing nation of
Pakistan. Several different types of GP-MCMC-copula models were developed, each with the well-known copula
families (i.e., Gaussian, student t, Clayton, Gumble Frank and Fischer-Hinzmann functions) to screen and utilize
an optimal cotton yield forecast model for the present study region. The results of the GP-MCMC based hybrid
copula model were evaluated with a standalone GP and the MCMC based copula model in accordance with
statistical analysis of the predicted yield based on correlation coefficient (r), Willmott’s index (WI), Nash-
Sutcliffe coefficient (NSE), root mean squared error (RMSE) and mean absolute error (MAE) in the independent
test phase. Further performance preciseness was evaluated by the Akiake Information Criterion (AIC), the
Bayesian Information Criterion (BIC) and the Maximum Likelihood (MaxL) for the GP-MCMC based copula as
well as the MCMC based copula model. GP-MCMC-Clayton copula model generated the most accurate result for
the Multan station. For the optimal GP-MCMC-Clayton copula model, the acquired model evaluation metrics for
Multan were: (LM≈0.952; RRMSE≈2.107%; RRMAE≈1.771%) followed by the MCMC based Gaussian copula
model (LM≈0.895; RRMSE≈4.541%; RRMAE≈0.3.214%) and the standalone GP model (LM≈0.132;
RRMSE≈23.638%; RRMAE≈22.652%), indicating the superiority of the GP-MCMC-Clayton copula model in
respect to the other benchmark models. The performance of GP-MCMC based copula model was also found to be
superior in the case of Faisalabad and Nawabshah station as confirmed by AIC, BIC, MaxL metrics, including a
larger value of the Legates-McCabe’s (LM) index, utilized in conjunction with the relative percentage RRMSE and
the relative mean absolute error (RMAE). Accordingly, it is averred that the developed GP-MCMC copula model
can be considered as a pertinent data-intelligent tool used for accurate prediction of cotton yield, utilizing the
readily available climate datasets in agricultural regions and is of relevance to agricultural yield simulation and
sectoral decision-making.

1. Introduction

Timely information on the crop yield is important for agriculture-
dependent nations (e.g., Pakistan), as this can generate crucial ideas for
agricultural policy making, and forward planners and agricultural
markets. Agriculture in Pakistan is known to contribute to about 21% of
the county’s GDP (Sarwar, 2014), which include cotton as an important

cash crop. This is because cotton is an integral commodity for the
economic development of Pakistan as the nation is highly dependent on
the cotton industry and its related textile sector due to which the cotton
crop has been given a principal status in the country. Cotton crop is
grown from May-August as an industrial crop in 15% of the nation's
available land area producing 15 million bales during 2014-15
(Reporter, 2015). Pakistan is placed at fourth position among cotton
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growers, third largest exporter and fourth largest consumer (Banuri,
1998). In 2013, about 1.6 million farmers (out of a total of 5 million in
all sectors) engaged in cotton farming, growing more than 3 million
hectares (Banuri, 1998; Reporter, 2015).

Data-intelligent models, utilizing past data can offer an accurate
solutions to the problems related to the projection of future trends in
agriculture, crop yield, rainfall and drought that affects agricultural
productivity (Ali et al., 2018a, b; Bauer, 1975; Nguyen-Huy et al., 2017,
2018). Machine learning models, which are highly non-linear models,
utilize data that has input features valued for the prediction of crop
yield. In the work of Kern et al. (2018), multiple linear regression
models were constructed to simulate the yield of the four major crop
types in Hungary using environmental and remote sensing information.
Moreover, Bokusheva et al. (2016) developed copula models for crop
yields on VH indices and Craparo et al. (2015) built an ARIMA model to
forecast the decline of coffee yield in Tanzania. Debnath et al. (2013)
predicted area and cotton yield in India using an ARIMA model. Blanc
et al. (2008) utilized a multiple regression model of the main climatic
determinants of rain fed cotton yield in West Africa. Yang et al. (2014)
assessed cotton yield and water demand under climate change and fu-
ture adaptation measures using APSIM-OzCot model. Chen et al. (2011)
studied the impact of climate change on cotton production and water
consumption using COSIM model in China. Hearn (1994) design a si-
mulation model named OZCOT for cotton crop management in Aus-
tralia. Papageorgiou et al., (2011) predicted cotton yield using fuzzy
cognitive maps in 2011, Greece. Jin and Xu (2012) conducted a study
on the estimation of cotton yield using Carnegie Ames Stanford Ap-
proach model in China. The aforementioned models were developed to
study the climate change impacts on cotton yield prediction.

In summary, existing literature shows that there are few studies in
Pakistan that have developed methods for the prediction of cotton
yield, despite its relevance as a world leader in cotton production. Ali
et al. (2015) used a forecasting ARIMA model for the production of
sugarcane and cotton crops of Pakistan from 2013–2030. Hina Ali et al.
(2013) also analyzed production forecasting of cotton in Pakistan.
Ahmad et al. (2017) developed an ARIMA model to forecast area,
production and yield of major crops in Pakistan in 2017. Raza and
Ahmad (2015) studied the impact of climate change on cotton pro-
ductivity in Punjab and Sindh, Pakistan using fixed effect models. Ayaz
et al. (2015) studied weather effect on cotton crop in Sindh, Pakistan.
Carpio and Ramirez (2002) used yield and acreage models to forecast
cotton yield in India, Pakistan and Australia. Ahmad (1975) designed a
time series prediction for the supply response of cotton in Punjab, Pa-
kistan in 1975.

All the previous studies indicate that the prediction of cotton yields
have been based primarily on the effect of climate change with the
adoption of ARIMA model only. In addition to that, all these studies
have been conducted for a large area, either for a whole province, or
national region, but not for a small locality. Moreover, there is a lim-
itation of applying advanced data-intelligent algorithms for more ac-
curate prediction models at a micro scale which can provide help for
decision-making in precision agriculture and farming systems which
may be the way future farming trends are analyzed. To address these
mentioned issues, there is an apparent need for data intelligent models
to predict cotton yield more accurately and at a much finer scale than
attempted previously. In this study, for the first time, a hybrid genetic
programing integrated with a Markov Chain Monte Carlo (GP-MCMC)
based copula model has been developed for the prediction of cotton
yield in Faisalabad, Multan and Nawabshah in Pakistan. The novelty of
this study is to utilize as yet untested accurate GP-MCMC based copula
models for the prediction of cotton yield in Pakistan.

To advance the application of copula models, especially in agri-
culture where they have been relatively scarcely applied the present
study aims to address four primary objectives. (1) To apply GP and
MCMC based copula, MCMC based copula models and a standalone GP
model to determine which is of these models is the most accurate data-

intelligent tool for predicting cotton yield in the developing nation of
Pakistan. (2) To model influence of climate dataset (i.e., temperature,
rainfall and humidity) to predict effectively the cotton yield in the
proposed districts of Punjab and Sindh, the primary agricultural hubs in
Pakistan. (3) To develop and optimize the copula-based models by
tuning the GP and the MCMC techniques as well as to evaluate their
performances in comparison with MCMC based copula and standalone
GP model. (4) To validate the predictive ability of each model with
respect to cotton yield in Pakistan, making a major contribution to the
use of data-driven models for agricultural yield estimation.

2. Theoretical framework

In this section an overview of the proposed predictive GP-MCMC
based copula models with its comparative counterparts, MCMC based
copula models and GP are presented.

2.1. Genetic programming (GP) model

Genetic programming is a heuristic evolutionary algorithm which has
the potential to offer solutions of any form without the user specifying the
problem (Deo and Samui, 2017; Koza, 1992). Evolutionary principles are
utilized to acquire the persistent patterns in the structure of data without
requiring prior knowledge. According to McPhee et al. (2008), an orga-
nized domain-independent method is used to genetically breed a popula-
tion in genetic programming for getting computers to solve the problem
that is starting from a high-level statement of what needs to be done.
Fig. 1(a) demonstrates the basic structure of a GP model. More specifically,
a population is transformed iteratively to produce successive new gen-
erations of programs by using similar genetic operations that occur natu-
rally. These genetic operations are divided into five components: crossover
(sexual recombination), mutation; reproduction; gene duplication; and
gene deletion. Huang et al. (2006) showed that a GP model has the skill of
self-parameterizing to extract the features bypassing the user, tuning the
model, and due to this capability resembles to some extent the Extreme
Learning Machine model.

In a GP model, the input data goes through a number of routes where
(1) analyzation of attributes occurs; (2) selection of the best fitness func-
tions are made for the purpose of minimizing the mean-squared error; (3)
generation of functional and terminal sets; and (4) parameterization of
genetic operations (Sreekanth and Datta, 2011). The GP model is opti-
mized by the emulation of an evolutionary process to an adequate
agreement between the response and input variable. A functional node
performs the arithmetic operations (þ, −, ×, ÷), Boolean logic functions
(AND, OR, NOT), conditionals (IF, THEN, ELSE), or any other functions
(SIN, EXP) that may be used. A random tree structure is developed using
these functions (Deo and Samui, 2017; Mehr et al., 2013). GP is developed
in this paper by (1) randomly creating the initial population (i.e., com-
puter program); (2) performing the execution of the program with the best
fitness values; (3) based on reproduction, mutation, and crossover, gen-
eration of a new population of computer programs; (4) comparison and
evaluation of fitness; and (5) finally the selection of the best program by
the evolutionary process (Mehr et al., 2013). For this purpose, a randomly
equated population is being created and best fitness is determined where
“parents” are chosen individually and the “off-springs” are developed from
the parents through the process of reproduction, mutation, and crossover
(Deo and Samui, 2017).

2.2. Markov Chain Monte Carlo (MCMC) based copula models

In this study we hybridize the MCMC-copula models used previously
(e.g., (Ali et al., 2018b)) with the GP algorithm. Basically, a copula
model, which has recently found important applications in the agri-
cultural sector, is a powerful mathematical tool that has the ability to
connect two or more time-independent variables (Nelsen, 2003;
Nguyen-Huy et al., 2017, 2018). A copula function is basically a
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mathematical function that is defined from I F G( , )2 to I H( ) such that
F x G y H x y[ ( ), ( ), ( , )] is a point in I3 with I [0, 1] and X Y, are con-
tinuous random variables with distribution functions =F x P X x( ) ( )
and =G y P Y y( ) ( ), and =H x y P X x Y y( , ) ( , ) is a function that
describes their joint distribution.

In this paper we utilize those types of copulas that are available
widely in the literature such as Gaussian, student t, Clayton, Fischer-
Hinzmann, Frank and Gumble copulas that are shown in the following
Equations where,

I the Gaussian copula (Li et al., 2013) is expressed as:

xy x y dxdy1
2 1

exp 2
2(1 )

, [ 1, 1]
a b( ) ( )

2

2 2

2

1 1

(1)

II a student t-copula (Li et al., 2013) can be formulated as:

+ +
+ +( )

( )
x xy y dxdy

1
1 2 ,

[ 1, 1], (0, )

t a t b( ) ( ) ( 2)
2

2 2 1
2

2
1

2

2

( 2)
2

1

2

2
1

2
1

2

2

2

(2)

III a Clayton copula (Clayton, 1978) can be written as:

+a bmax ( 1, 0) , [ 1, )\01
2 (3)

IV a Frank copula (Li et al., 2013) has the following mathematical
formulation:

+ a b1 ln 1 ( exp( ) 1)( exp( ) 1)
exp( ) 1

, \0
(4)

V a Gumble copula (Li et al., 2013) can be expressed as:

+( )a bexp ((( ln ( )) ) ( ln ( )) ) , [1, )
1

(5)

VI a Fischer-Hinzmann copula (Fischer and Hinzmann, 2006) can be
given as:

+a b ab[ ( min ( , )) (1 )( ) ] , [0, 1],1 1
1

1 22 2 2 (6)

In all types of copula-based models an unknown process links
observation Y to parameters * in the modelling inference analysis
(Mojtaba Sadegh and AghaKou, 2017) and these can be given through
the following equation.

= +Y ( *) (7)

Where indicates a vector of measurement errors. The vector
=e Y Y is called the error residual and =e e e e{ , , , }n1 2 where n is

the number observations that include the effects of model structural
errors (Mojtaba Sadegh and AghaKou, 2017). Bayesian analysis is going
to be carried for model inference and uncertainty quantification pur-
poses because Bayesian analysis quantifies uncertainty with a prob-
ability distribution (Mojtaba Sadegh and AghaKou, 2017).

Bayes’ law attributes all modelling uncertainties to the parameters
and estimates the posterior distribution of model parameters by the

Fig. 1. Map of the selected study region in Pakistan.
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following equations (Mojtaba Sadegh and AghaKou, 2017):

=p Y p p Y
p Y

( ) ( ) ( )
( ) (8)

Where p ( ) and p Y( ) defines prior and posterior distribution of
parameters, respectively. Further, p Y L Y( ) ( ) denotes the like-
lihood given as,

= =L Y n y y
n

( )
2

ln
[ ( )]

.i
n

i i1
2

(9)

To solve Eq. (9) analytically and numerically, a Markov Chain
Monte Carlo (MCMC) simulation technique will be adopted to sample
from the posterior distribution. For more details, readers are referred to
(Ali et al., 2018b). Further literature on the Markov Chain Monte Carlo
(MCMC) algorithms can be found elsewhere (e.g., (Andrieu and Thoms,
2008; Duan et al., 1993; Gelman and Rubin, 1992; Gilks et al., 1994;
Haario et al., 1999, 2001; Roberts and Rosenthal, 2009; Roberts and
Sahu, 1997; Storn and Price, 1995, 1997; Ter Braak, 2006; ter Braak
and Vrugt, 2008)).

3. Materials and method

In this Section, the description of acquired climate and cotton yield
data, study regions, design of predictive models and performance cri-
teria have been provided.

3.1. Climate and cotton yield data

The climate data for three regions (Multan, Nawabshah and
Faisalabad) in Pakistan that includes rainfall (R), mean monthly tem-
perature (T) and mean monthly relative humidity (H) were obtained
from the Pakistan Meteorological Department, Pakistan for the year
1981 to 2013 (PMD, 2016). The meteorological data has recently been
used in earlier studies (e.g., (Ali et al., 2018a, b)). These three locations
are the major producers of cotton yield in Pakistan (Districts, 2008;
Service, 2012, 2014). The missing values of monthly rainfall were
substituted by average of the respective time-averaged value from the
climatological period because the rainfall for those months is not
available. The cotton yield data was sourced from the Federal Bureau of
Statistics (Economic wing), Islamabad, Pakistan and Agriculture Mar-
keting Information Service, Directorate of Agriculture (Economics &
Marketing) Punjab, Lahore Pakistan (Districts, 2008; Service, 2012,
2014). The source area and production data of cotton estimates were
supplied by the provincial Crop Reporting Services and compiled by the
Economic Wing of the devolved Ministry of Food and Agriculture and
later by the Federal Bureau of Statistics. Cotton yield in the year 2009
was not available in the acquired dataset. To overcome this situation,
the average value of all the cotton yield data from 1981 to 2013 was
substituted for the missing 2009 data.

3.2. Study region

The selected regions for this study are: Multan, Faisalabad districts
in Punjab and Nawabshah district of Sindh that can be seen on the map
in Fig. 2.

Multan (30.1984 °N, 71.4687 °E) is located in southern part of
Punjab province. The climate is arid with hot summers that bear some
of the most extreme temperatures in the country as well as cold winters.
The average temperature of Multan in summer is 42.3 °C while the
record breaking highest temperature was 50.0 °C in May 2010
(Department, 2010; PMD, 2016). The average annual rainfall is
186.8mm. Cotton and Mango are the major economic crops in Multan.

Faisalabad (31.4504 °N, 73.1350 °E) is situated in the rolling flat
plains of northeast Punjab. The climate of Faisalabad is classified as
dessert (Servey, 2016). Faisalabad is also a major producer of cotton.

The average annual rainfall is approximately 375mm (14.8 in. and the
average temperature in Faisalabad is 24.2 °C (Servey, 2016).

Nawabshah (26.2442 °N, 68.4100 °E) is a city of Sindh province,
located 50 km from the left bank of the River Indus. The climate is the
hottest of all study sites with summer temperatures reaching as high as
53 °C A record breaking severe heatwave hit Nawabshah in 2010
(Department, 2010). The average annual rainfall in Nawabshah is
114.1mm, making it also the driest of the selected study sites. Na-
wabshah is national hub of cotton production.

Table 1 describes the geographic characteristics as well as agri-
cultural crop yield and hydrological statistics of the designated regions
that have been utilized during the development of the forecasting
models presented in this research. The acquired cotton yield data
(Districts, 2008; Service, 2012, 2014) for the selected study regions
were in hectors (ha) and tones. First, the yield data were transformed
into kilograms (kg) from tones and then divided by hectors to get the
data in standardized units of kilogram per hector (kgha−1). The cotton
yield data of Multan and Faisalabad have negative skewness while the
temperatures of Multan and Nawabshah have negative skewness. The
data were log-transformed between 0 and 1 to avoid the differences in
skewness. The logarithmic transformation for the data is invertible, and
hence will not affect the fitting results (Cong and Brady, 2012; Kim and
Ahn, 2009). Following the approach of (Cong and Brady, 2012; Kim and
Ahn, 2009; Mojtaba Sadegh and AghaKou, 2017), the data were not
divided into training and testing.

3.3. Development of the proposed GP-MCMC based copula models

The proposed GP-MCMC based copula model (Ali et al., 2018b) was
developed under the MATLAB environment on a Pentium 4 2.93 GHz
dual core Central Processing Unit. In the proposed hybrid Genetic
Programming integrated with Markov Chain Monte Carlo (GP-MCMC)
based Copula model, the climate data (temperature, rainfall, humidity)
is incorporated as the input predictor in the GP model where these
input predictors are analyzed to assign a suitable fitness function.
Further, functional and terminal sets are constructed to parametrize the
genetic operation for predictor variables (Sreekanth and Datta, 2011).
An evolutionary process is established between the inputs and cotton
yield during optimization. A random initial population is created to
obtain the best fitness based on reproduction, mutation, and crossover
to evaluate and compare the fitness to calculate the forecasted cotton
yield. The GP model is optimized by the emulation of an evolutionary
process to get the optimum predicted cotton yield.

The GP based forecasting yield is then used as predictor in MCMC
based copula model for final prediction. After selecting the desired
copula, the next step is to adopt either local optimization or MCMC
(which used global optimization). Here only the MCMC algorithm is
used which starts from multiple runs in a single execution. This ap-
proach is capable of finding a global optimum approximation, estimates
the posterior distribution of parameters and searches multiple regions
of attraction. The MCMC simulation is employed within a Bayesian
framework to estimate copula parameters. Further, the MCMC algo-
rithm guarantees to find an estimate of the global optimum and char-
acterizes the underlying uncertainty. Further, the MCMC approach is
used to explore a wide range of copulas and evaluate them relative to
the fitting uncertainties. Fig. 2 shows the flow chart of the proposed
hybrid GP-MCMC based copula models.

Fig. 3(a–c) shows the modelling process in terms of marginal dis-
tribution based on Kendall’s tau of average climate data (temperature,
rainfall, humidity), and GP based simulated Cpred and observed Cobs for
each station whereas Fig. 4(a–c) represents the closeness between the
empirical cumulative probability distribution (ECP) of the data. The
ECP also supports the marginal distributions in Fig. 3(a–c).

Further, Fig. 5(a–c) establishes the joint distribution of average
climate data (temperature, rainfall, humidity), GP based simulated
Cpred and observed Cobs for each station. The data were log-transformed
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Fig. 2. A flow chart of the hybrid genetic programming algorithm integrated with a Markov Chain Monte Carlo based copula model.

Table 1
Descriptive statistics of the study sites’ geographic, crop and hydrologic characteristics.
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between 0 and 1 to avoid the differences in skewness. The logarithmic
transformation for the data is invertible, and hence will not affect the
fitting results (Cong and Brady, 2012; Kim and Ahn, 2009).

3.4. Model performance criteria

To evaluate the performance of GP-MCMC based copula, MCMC
based copula and GP models; we used different types of assessment
tools for model evaluation that comprises statistical and standardized
metrics. The mathematical formulations of all these assessment metrics
are given as follows:

I The Likelihood value (MaxL) (Thyer et al., 2009) is calculated as :

=
=

n n C Cmax
2

ln (2 )
2

ln 1
2

[ ] .L
i

n

obs i pred i
2 2

1
, ,

2

(10)

II The Akaike Information Criterion (AIC) (Akaike, 1974) is given by:

= + =AIC D n
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n
CS2 . ln

[ ]
2 .i

n
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2

(11)

III The Bayesian Information Criterion (BIC) (Schwarz, 1978) is given
by:

= + =BIC D n
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n
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n
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2

(12)

IV Confidence of Interval (CI) (Gardner and Altman, 1986) can be
calculated as:

= ±CI C z
N

* .obs (13)

V Correlation coefficient (r) (Dawson et al., 2007) is expressed as:
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VI Willmott’s Index (WI) Willmott (1981) is expressed as:
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VII Nash-Sutcliffe coefficient (NSE) Nash and Sutcliffe (1970) is ex-
pressed as:
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VIII Root mean square error (RMSE) (Dawson et al., 2007) is expressed
as:
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RMSE
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IX Mean absolute error (MAE) (Dawson et al., 2007) is expressed as:

=
=
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N
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X Legates-McCabe’s Index (LM) (Legates and McCabe, 1999) is ex-
pressed as:
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XI Relative root mean square error (RRMSE¸%) (Legates and McCabe,
1999) is expressed as:

= ×=
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Fig. 3. Marginal distribution of average climate (temperature, rainfall, humidity), GP based predicted cotton yield (Cpred) and observed cotton yield (Cobs) with
Kendall’s tau (red) for (a) Multan, (c) Nawabshah and (c) Faisalabad station. (For interpretation of the references to colour in the text, the reader is referred to the
web version of this article.)
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XII Relative mean absolute percentage error (RMAE; %) (Legates and
McCabe, 1999) is expressed as

= ×
=

RMAE
N

C C
C

1 ( )
100.

i

N
pred i obs i

obs i1

, ,

, (21)

where Cobs and Cpred are the observed and simulated ith value of
cotton yield CY, Cobs and Cpred are the observed and simulated mean of

CY, z* represents the appropriate z*-value from the standard normal
distribution and N is the number of tested data points.

The maximum likelihood (MaxL) minimizes the residuals between
model simulations and observations. AIC, in contrast to the ad hoc
likelihood value, takes into account both complexity of the model and
minimization of error residuals and provides a more robust measure of
quality of model predictions. A lower AIC value associates with a better
model fit. Similar to AIC, a lower BIC value is associated with a better
model fit. The correlation coefficient (r) lies in [0, 1], and demonstrates
the proportion of variance in observed yield explained by the data

Fig. 4. Empirical cumulative probability distribution (ECP) of average (temperature, rainfall, humidity), GP based predicted cotton yield (Cpred) and observed
cotton yield (Cobs) with Kendall’ tau (fit) for (a) Multan station, (b) Nawabshah station and (c) Faisalabad station.
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intelligent model (Dawson et al., 2007). Further, these metrics (AIC,
BIC, MaxL and CI) considers the number of the model parameters which
is crucial important modelling (parsimony rules). Due to standardiza-
tion of the observed and predicted means and variance, the robustness
of r is limited. The goodness-of-fit relevant to high values are measured
by RMSE while in contrast; MAE evaluates all deviations from observed
data both in the same manner regardless of sign. The performance can
reach to partial peaks and higher magnitudes that can exhibit larger
error (Dawson et al., 2007). Willmott Index (WI) was introduced to
counter this issue by considering the ratio of mean squared error in-
stead of the differences (Willmott, 1981, 1982; Willmott, 1984;
Willmott et al., 2012). Nash-Sutcliffe efficiency (NSE) is another

normalized statistical assessment metric used to determine the relative
magnitude of residual variance of predicted data in comparison to the
measured variance of observed data (Nash and Sutcliffe, 1970). Le-
gates-McCabe’s (LM) is a more advanced and powerful statistical as-
sessment metric than both WI and NSE which utilizes the adjustment of
comparison in the evaluation of WI and EV. LM was found to be the best
in evaluating the results by ignoring r and use WI and EV as baseline-
adjusted indices together with an evaluation of RMSE and MAE
(Legates and McCabe, 1999).

Due to the geographic differences among the regions of this study,
the relative mean squared error (RRMSE) and relative mean absolute
error (RMAE) are also calculated (Ali et al., 2018a, b; Dawson et al.,

Fig. 5. Joint and marginal distribution of uniformly distributed average (temperature, rainfall, humidity), GP based predicted cotton yield (Cpred) and observed
cotton yield (Cobs) for (a) Multan station, (b) Nawabshah station and (c) Faisalabad station.

M. Ali et al. Agricultural and Forest Meteorology 263 (2018) 428–448

435



Fig. 6. Dependence structure of the GP-MCMC-copula based prediction cotton yield, MCMC based copula with average temperature, rainfall, humidity climate
parameters versus the observed cotton yield for (a) Multan, (b) Nawabshah and (c) Faisalabad.
Note: Both the GP based predicted cotton yield, climate parameters (x-axis) and the cotton yield (y-axis) are presented in the probability space. Blue lines present the
copula isolines and green circles show the observed normalized cotton yield.
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2007; Mohammadi et al., 2015) to evaluate and compare the model
performance over geographically diverse study sites. If the (RRMSE,
RMAE)< 10%, the performance of the developed model is considered
outstanding while good if 10%< (RRMSE, RMAE)< 20%, fair if
20%< (RRMSE, RMAE)<30% and poor if the (RRMSE, RMAE)>
30% (Ertekin and Yaldiz, 2000).

4. Results and discussion

The results of the GP-MCMC based copula model have been com-
pared against MCMC based copula models and a standalone GP model

based on the evaluation criterion described above (Eqs. (10)–(21)).
Fig. 6(a–c) demonstrates the joint dependence structure between GP

based forecasted cotton yield and observed cotton yield anomalies
using MCMC-copula models for the 33-year seasonal dataset. The
asymmetric and skewed dependence structure of the observed data with
the probability isolines derived through GP-MCMC based Clayton co-
pula models in all stations can be seen to be more skewed than the other
developed models. This pattern, however, has not been followed by the
MCMC based Gaussian copula (in case of Multan), the Fischer-Hinz-
mann copula (in case of Nawabshah) or the t-copula (in case of Faisa-
labad). The uncertainty ranges of the GP-MCMC based Clayton copulas

Fig. 7. Posterior distribution of the GP copulas derived by MCMC simulation within a Bayesian framework for the stations (a) Multan, (b) Nawabshah and (c)
Faisalabad. Blue asterisks show the copula parameter derived by the local optimization while the green circles show the parameters derived by theoretical opti-
mization. The red bins are the MCMC-derived parameters and the aqua (×) crosses show the maximum likelihood parameter of the MCMC. (For interpretation of the
references to colour in the text, the reader is referred to the web version of this article.)
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Table 2
Local and Markov-Chain Monte Carlo (MCMC) copula parameters with 95% confidence interval (CI) for genetic programming (i.e., GP-
MCMC) based copula model and Markov-Chain Monte Carlo (MCMC) based copula model for predicting cotton yield. The parameters
(para) with respective the CI is boldfaced (blue) and all models inputs are: T= temperature, R= rainfall, H= humidity.
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are tightly constrained for GP based on simulated and observed cotton
yield (all stations) as compared to the uncertainty for wider ranges of
MCMC based Gaussian, Fischer-Hinzmann and t-copula models. This
means that the GP based predicted cotton yield has a stronger re-
lationship (close or lies on to the fitted probability lines) which shows
the GP-MCMC copula models are more accurate as compared to the

MCMC based copula models. Comparing contours in Fig. 6, it is clear
that the return period of the GP based yield is more close to the ob-
served cotton yield.

Fig. 7(a–c) plots the posterior parameter distributions (red bins) of
Clayton, Gaussian, Fischer-Hinzmann and student-t copula between GP
based forecasted and actual cotton yield as well as average climate

Fig. 8. Predicted (Cpred) and observed (Cobs) cotton yield generated by GP-MCMC copulas against MCMC copulas and GP models in the seasons of the testing period
for the stations (a) Multan, (b) Nawabshah and (c) Faisalabad. Note that the bars shows the absolute prediction errors, PE = |Cobs – Cpred|.
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parameters against actual cotton yield. The copula parameters derived
by MCMC algorithm using the global (local) optimization technique
(blue asterisks) coincide with maximum likelihood parameters (aqua
cross) of MCMC-derived posterior distributions (red bins). The inferred
parameter of Gaussian copula (for Multan), Clayton copula (Nawab-
shah) from the global (local) optimization algorithm diverge sig-
nificantly from their counterparts from the MCMC simulation. The

parameters of theoretical optimization (green circles) with the max-
imum likelihood value of the MCMC algorithm are also coincided. The
MCMC-derived posterior distributions (red bins) for the Clayton copula
between GP based forecasted and observed cotton yield are nicely
constrained for all stations, and their modes coincide with the para-
meter value inferred by the local optimization (blue asterisks) as
compared to their counterpart copulas.

Fig. 8. (continued)
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Table 2(a–c) shows the values of Local and MCMC parameters with
95% confidence interval (CI) of GP-MCMC and MCMC based (Clayton,
Gaussian, t, Gumble, Frank and Fischer-Hinzmann) copulas to predict
cotton yield for the study regions. The results of GP-MCMC based co-
pulas are better than MCMC based copula models. The Clayton copula
(Model M3) appears to be best on the basis of the GP-MCMC optimi-
zation technique for all stations as compared to MCMC based copulas.
In Table 2(a), the values of Local and MCMC parameters with 95%
confidence of interval for Multan in terms of best copulas (on the basis

of LM) are Local(0.757(GP-MCMC-Clayton), -0.23(MCMC-Gaussian)),
MCMC(0.913 (GP-MCMC-Clayton), 0.021(MCMC-Gaussian)) and CI
([0.79 1.04] (GP-MCMC-Clayton), [−0.06 0.11](MCMC-Gaussian)).
For Nawabshah Table 2(b), these values are GP-MCMC-Clayton copula
(Local≈0.813, MCMC≈1.486, CI=[1.22 1.79]), MCMC-t-copula
(Local≈0, -3.071, MCMC≈-0.562, -34.796, CI=[0.00 0.77], [-34.61
-2.62]) and for Faisalabad Table 2(c), GP-MCMC-Clayton copula
(Local≈0.782, MCMC≈0.746, CI=[0.55 0.99]), MCMC-t-copula
(Local≈-0.415, 1.504, MCMC≈–0.275, 1.348, CI=[-0.39 -0.15], [0.84

Fig. 8. (continued)
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Table 3
Testing performance of the genetic programming-based Markov Chain Copula Model (GP-MCMC) vs. the MCMC
based copula and a standalone GP model in terms of the Root Mean Squared Error (RMSE, kg/ha), Mean Absolute
Error (MAE, kg/ha), Correlation Coefficient (r), Nash-Sutcliff (NSE), Willmott Index (WI), including Akiake
information criterion (AIC), Bayesian information criterion (BIC) and Maximum-likelihood (MaxL) for the
prediction of cotton yield. The optimal model is boldfaced (blue).
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34.57]). Thus, the hybrid GP-MCMC based Clayton copula performed
well in all study stations compared to the MCMC based copula and
standalone GP models.

Fig. 8(a–c) plots a comparison of the predicted and observed cotton
yield with prediction error (PE) as bar graphs, generated by the GP-
MCMC (Clayton) copula models together with the MCMC based
(Gaussian, Fischer-Hinzmann, t) copulas and standalone GP model. It is
to be noted that the best copula models only plotted for Multan, Na-
wabshah and Faisalabad. There is compelling evidence that the GP-
MCMC-Clayton copula models perform very accurately for all stations
in comparison with the MCMC copulas (Gaussian, Fischer-Hinzmann, t)
and standalone GP model. On a season-by-season basis analysis, the GP-
MCMC-Clayton copula models are seen to exhibit a reasonable accuracy
by predicting the yield that is almost the same as the observed cotton
yield from 1981 to 2013 followed by MCMC based copula models. This
can also be confirmed by the smaller bar graphs that revealed the
smaller the bar graph, the more accurate the model. The standalone GP
model on the other hand, predicted a large amount of prediction errors
in all stations from 1981 to 2013 while exhibit a significant difference
between the predicted and the observed cotton yield.

In Table 3(a–c), the preciseness of the proposed GP-MCMC based
copula model is evaluated in relation to MCMC based copula model and

standalone GP model in terms of RMSE, MAE, r, WI, EV, AIC, BIC and
MaxL. The GP-MCMC-Clayton copula applied to Multan station attained
the highest values of RMSE≈11.763 kg/ha, MAE≈8.910 kg/ha,
r≈0.999, NSE≈0.997, WI≈0.998, AIC≈ -284.194, BIC≈ -282.697,
MaxL≈ 143.097, as compared to the MCMC-Gaussian copula where
these metrics are RMSE≈21.713 kg/ha, MAE≈14.807 kg/ha, r≈0.993,
NSE≈0.984, WI≈0.990, AIC≈ -245.128, BIC≈ -243.631, MaxL≈
123.564, followed by standalone GP model where RMSE≈192.197 kg/
ha, MAE≈145.568 kg/ha, r≈0.404, NSE≈0.163, WI≈0.371. For Na-
wabshah, the best copula appeared to be Clayton on the basis of the GP-
MCMC algorithm that obtained RMSE≈33.468 kg/ha, MAE≈23.559
kg/ha, r≈0.997, NSE≈0.994, WI≈0.997, AIC≈ -262.244, BIC≈
-260.748, MaxL≈ 132.122, against MCMC based Fischer-Hinzmann
copula RMSE≈60.329 kg/ha, MAE≈43.563 kg/ha, r≈0.993,
NSE≈0.983, WI≈0.982, AIC≈ -220.373, BIC≈ -217.380, MaxL≈
112.187, and GP model RMSE≈271.105 kg/ha, MAE≈215.464 kg/ha,
r≈0.684, NSE≈0.468, WI≈ 0.501. Finally in Faisalabad station, the
GP-MCMC based Clayton copula again shows high performance accu-
racy as RMSE≈72.785 kg/ha, MAE≈55.591 kg/ha, r≈0.996,
NSE≈0.992, WI≈0.995, AIC≈ 250.641, BIC≈ -249.144, MaxL≈
126.320, and are reasonably better than the MCMC based t-copula
model having RMSE≈98.548 kg/ha, MAE≈69.865 kg/ha, r≈0.991,

Fig. 9. Scatterplot of predicted (Cpred) and observed (Cobs) cotton yield using the GP-MCMC-copula, MCMC-copula and standalone GP models, with the coefficient of
determination (r2) inserted in each panel of study zones. (a) Multan, (b) Nawabshah and (c) Faisalabad.
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NSE≈0.981, WI≈0.982, AIC≈ -229.631, BIC≈ -226.638,
MaxL≈116.815 and standalone GP as RMSE≈809.737 kg/ha,
MAE≈627.899 kg/ha, r≈0.415, NSE≈0.173, WI≈ 0.378.

Further, to analyze the model performance more closely, Fig. 9(a–c)
displays a scatterplot showing the goodness-of-fit and its correlation
coefficient r is shown to depict the extent of agreement between pre-
dicted and observed cotton yield. The GP-MCMC based Clayton copula
models for all stations convincingly outperform the MCMC based
Gaussian (Multan), Fischer-Hinzmann (Nawabshah), t (Faisalabad) co-
pulas and standalone GP model in all seasons from 1981 to 2013.
Therefore, it is clear that the GP-MCMC based Clayton copula model
has a better ability to simulate the cotton yield with good accuracy, as
confirmed by the larger r-value.

Table 4(a–c) demonstrates the comparison of the GP-MCMC based
copula models vs. the MCMC based copula models and standalone GP
model using relative root mean squared error (RRMSE), relative mean
absolute error (RMAE) and Legates & McCabe’s Index (LM) for the
stations Multan, Nawabshah, and Faisalabad. The best GP-MCMC based
Clayton copula for Multan attained the values of LM≈0.952,
RRMSE≈2.107% and RMAE≈1.771% followed by MCMC based
Gaussian copula LM≈0.895, RRMSE≈4.541%, RMAE≈3.214% and
GP model LM≈0.132, RRMSE≈23.638% and RMAE≈22.652% (See,
Table 4(a)). Similarly for Nawabshah, the GP-MCMC based Clayton
copula appeared to be the best giving values LM≈0.936,
RRMSE≈3.297% and RMAE≈2.873% as compared to the MCMC based
Fischer-Hinzmann copula LM≈0.879, RRMSE≈7.595% and
RMAE≈6.692%, GP model LM≈0.215, RRMSE≈32.257% and
RMAE≈29.204% (See, Table 4(a)). In Faisalabad, the best GP-MCMC-
Clayton copula obtained LM≈0.917, RRMSE≈4.807% and
RMAE≈3.548% benchmarked with MCMC-t-copula LM≈0.875,
RRMSE≈8.562% and RMAE≈6.947% and the standalone GP model
LM≈0.113, RRMSE≈40.316% and RMAE≈51.765%. Overall, the hy-
brid GP-MCMC based Clayton copula was better than the MCMC based
copula (Gaussian, t, Clayton, Gumble, Frank, Fischer-Hinzmann) and
GP models.

In Fig. 10(a–c), we illustrate a boxplot of the GP-MCMC based co-
pula vs. MCMC based copula and standalone GP model’s prediction
error for the seasonal cotton yield of all the study sites. The outliers
specified by + in every boxplot represent the extreme magnitudes of
the prediction error within the testing seasons along with their upper
quartile, median and lower quartile values. The distributed prediction
error is justified by these boxplots showing a much lesser spread was
achieved by GP-MCMC-copula models compared with MCMC-copula
models giving a relatively smaller magnitude of quartile statistics and
median values followed by GP models. Accordingly, the GP-MCMC
based Clayton copula models remain as highly optimized superior
models followed by MCMC based (Gaussian, Fischer-Hinzmann and t)
copula models and standalone GP models giving good results for all
stations applied to predict seasonal cotton yield in terms of the illu-
strated clustered error distribution tending towards smaller magnitude.
The red circle of each boxplot shows the mean prediction error while
the dashed lines (brown) connected the mean value of each boxplot.

Table 5 shows a geographical comparison of the GP-MCMC based
best copula model, MCMC based best copula model and standalone GP
predictive performance using relative root mean squared error
(RRMSE), relative mean absolute error (RMAE) and Legates & McCabe’s
Index (LM) for the different locations (Multan, Nawabshah, and Faisa-
labad). In terms of site-averaged performance, the GP-MCMC based
copula model was found to yield the highest Legates-McCabe’s agree-
ment and lowest relative percentage errors (RRMSE, RMAE). Multan
appears to be the most accurate station in predicted cotton yield
(LM≈0.952, RRMSE≈2.107%, RMAE ≈1.771%) followed by Nawab-
shah (LM≈0.936, RRMSE≈3.297%, RMAE≈2.873%) and Faisalabad
(LM≈0.917, RRMSE≈4.807%, RMAE≈3.548%) respectively. But
overall, the prediction produced by all three models was low in terms of
relative error being within the recommended 10% threshold for an

Table 4
Evaluation of the GP-MCMC vs. the MCMC and a standalone GP model using the
relative root mean squared error (RRMSE), relative mean absolute error
(RMAE) and Legates & McCabe’s Index (LM). The optimal model is boldfaced
(blue).
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excellent model Ertekin and Yaldiz (2000).
To address the accurate estimation for an increased demand of

cotton in Pakistan, there is a desire to develop strong predictive models
for cotton crop production. This paper is dedicated to modelling cotton
yield within the agriculture regions in Pakistan using climate and
cotton yield data from 1981 to 2013. Moreover, the proposed GP-
MCMC-copula models were significantly accurate in utilizing climate
and cotton yield data with there being less than 3.0% and 2.0% un-
certainty based on RRMSE and RMAE respectively with a reasonably
large statistical correlation of Legates-McCabe’s (LM≈0.952) for
Multan station and similarly for the other two stations (Table 5). Due to
the aforementioned qualities of the GP-MCMC copula models, it is
possible to apply the proposed model for the prediction of other crop
yields in Pakistan as no such studies have been conducted in the past.
Where such data is available, the developed techniques could also be

applied and tested to alternative micro-scale farming communities
globally.

Despite the mentioned merits of the GP-MCMC based Clayton co-
pula models, there are some shortcomings which can be addressed in
follow-up work. The cotton yield data of neighbouring stations may be
used to predict the cotton yield in a central station which shares a
common boundary to the predictor stations. Further, the impact of
fertilizer may also be coupled with meteorological data to explore in
later iterations of the developed copula models because this will also
likely have a strong effect on the production of crop yields. Drought is a
factor and a likely important predictor variable with meteorological
parameters that will influence the prediction of accurate cotton yield.
Irrigation statistics (water supply) can also be utilized in this regard to
improve the estimation of crop yield in follow-up work. Solar radiation
has a great effect on crop production which may also be focused on in

Fig. 10. Box-plots of absolute prediction error (APE, kg/ha) of GP-MCMC based copula models vs. MCMC based copula models and the standalone GP model in
predicted cotton yield for the stations for (a) Multan (b) Nawabshah, and (c) Faisalabad.
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follow up work. The use of more data (variables) however, means more
scarce resources are needed for their collection/collation. The inclusion
of additional data may ultimately impact upon the efficiency of the
developed models and as such these should be tested individually to
find the optimum number of inputs for each local environment.

In terms of model optimization for crop prediction, it is believed
that the hybridization of different models can generate better estima-
tion than standalone models. Therefore, the MCMC based copula
models could be optimized with ensemble methods (Dietterich, 2002;
Lei and Wan, 2012; Yun et al., 2008) to achieve more accurate results.
The ANFIS algorithms developed by Jang et al. (1997) which is very
powerful can be another optimization method to be considered in this
regard. Moreover, the more advanced models such as the Ensemble
method (Dietterich, 2002), Particle Swarm Optimization (Chen and Yu,
2005; Zhisheng, 2010), Genetic algorithms (Davis, 1991), chaos theory
(Briggs and Peat, 1989) etc. coupled with copula (Nelsen, 2003) may
generate good results. The regression analysis (Draper and Smith, 2014)
can be coupled with copula in a way to optimize the prediction ability
of possible hybrid copula model. A more generalized framework of
hybridizing copula techniques with generalized mixed models (Draper
and Smith, 2014) to develop MCMC-copula mixed models for crop yield
prediction is planned in upcoming work. Autoregressive fractionally
integrated moving average (Ling and Li, 1997) based copula (ARFIMA-
copula) and least square support vector machine (Yuan et al., 2017)
based copula (LSSVM-copula) models can be used to predict cotton
yield. Support vector machine designed by Cortes and Vapnik (1995),
Extreme learning machine studied by Huang et al. (2006) etc. may also
be very good options for the prediction of cotton yield and other crops
in Pakistan. As the standard statistical approaches avoid the hurdle of
model uncertainty that leads to over-fitting and riskier decisions,
Bayesian model averaging BMA techniques (Hoeting et al., 1998) have
the ability to model uncertainty for accurate predictions. Therefore,
BMA techniques provide yet another option to be used to model un-
certainty in crop yield that is produced due to several factors such as
missing climate data, extreme weather conditions and the likely influ-
ence of climate change.

Multi-resolution tools like frequency resolution can also be applied
in this area to broaden the scope of this study. In this regard, wavelet
transformation (maximum overlap discrete wavelet) (Holschneider,
1988; Khalighi et al., 2011), empirical mode decomposition (EMD)
(Rilling et al., 2003), and singular value decomposition (SVD) (De
Lathauwer et al., 1994) can be utilized for prediction purposes. This

study advocates the possibility of using reanalysis and satellite climate
data to predict cotton yield as well as to extend the scope to other crop
yields and global locations.

The proposed GP-MCMC based copula models can be applied to
other agricultural crop yield prediction scenarios that will assist agri-
cultural policy makers in Pakistan in the optimal management of crop
estimation. Moreover, accurate future wheat yield prediction can warn
the government and impacted stakeholders prior to significant food
security. Further, as processed based modelling requires extensive
number of resource for implementation. For example, modelling the
effects of systematic nutrient transfers requires additional attention and
very expansive (Snow et al., 2014). Thus developing countries like
Pakistan can’t afford, so therefore, the proposed GP-MCMC based co-
pula models could be used as a convenient option.

5. Conclusion

This paper has developed a suite of GP-MCMC based copula models
using climate data (temperature, rainfall, humidity) as predictor variables
and cotton yield data as an objective variable to predict cotton yield for
different geographical sites in Pakistan. To attain an accurate GP-MCMC-
copula model, the MCMC algorithm adopted a global optimization tech-
nique to find the best copula parameters. Evidently, the performance of
the GP-MCMC based copula was found to be much better than the MCMC
based copula and the standalone GP models, as evident by low relative
forecasting errors and high performance metrics.

By assessing the performance of the GP-MCMC-Clayton copula in
relation to the MCMC-Gaussian copula and the GP model for Multan
using the most advanced normalized metrics of Legates-McCabe’s
Index, the GP-MCMC-Clayton copula was again found to have the
highest agreement. The obtained LM agreement values between the
predicted and observed cotton yield for Multan station were LM≈0.952
(GP-MCMC-Clayton copula), 0.895 (MCMC-Gaussian copula) and 0.132
(GP) respectively whereas the relative percentage errors RRMSE and
RMAE were only 2.107%, 1.771% (GP-MCMC-Clayton copula) com-
pared with 4.541%, 3.214% (MCMC-Gaussian copula) and 23.638%,
22.652% (GP). The GP-MCMC based copula models also appeared to be
the best in Nawabshah and Faisalabad stations.

In summary, to improve the prediction accuracy, the GP-MCMC based
copula models can be optimized and tuned with other advanced techni-
ques including ensemble methods. Generalized mixed models that develop
MCMC-copula mixed models for crop yield prediction are planned in up-
coming work. Autoregressive fractionally integrated moving average
based copulas (ARFIMA-copula) and least square support vector machine
based copula (LSSVM-copula) models have future potential. This study can
be extended to other locations where cotton yield data is available to
provide an accurate estimation of cotton yield on a small scale, affecting
individual stations. Thus, we propose that suitably optimized GP-MCMC
based copula models may be used to predict cotton yield in the future
where the prediction of such a commodity will likely become even more
important due to increasing demand and for economic growth in terms of
exporting to international markets.
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Chapter 8 

Two-phase ant colony optimization algorithm integrated with 

online sequential extreme learning machine to predict wheat yield 

Foreword 

This chapter is an exact copy of the submitted (under 2nd review) manuscript to the Journal of

IEEE Access.

This chapter is based on the development of a universal wheat yield data intelligent model 

utilizing wheat yield data at district level. To develop a two-phase hybrid ACO-OSELM model 

using feature based input selection ant colony optimization (ACO) algorithm and OSELM model 

to predict wheat yield. The ACO algorithm is conditioned to search for the suitable, statistically 

relevant data sites for the model’s training, and the corresponding testing sites by virtue of a 

feature selection strategy utilizing a total of 27 agricultural counties’ datasets in the agro-

ecological zones in Punjab province in Pakistan. 

The ACO-OSELM model is compared against ACO-ELM and ACO-RF models, showing 

improved performance in response to the comparison models. The developed model can be 

explored as a decision-support tenet for crop yield estimation in regions where a statistically 

significant relationship with historical agricultural crop is well-established. 
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ABSTRACT Reliable artificial intelligence models designed to predict wheat yield over relatively large 

and spatially spread agricultural fields can be adopted as important decision support tools to develop 

strategic farming management practices. In this paper, an optimally trained two-phase machine-learning 

model is designed to predict the wheat yield (Wpred), utilizing 27 agricultural districts data in agro-

ecological zones in the Punjab province of Pakistan, a developing nation that relies on agricultural 

productivity for the survival of its citizens. The universally-trained model, denoted as the two-phase ACO-

OSELM is designed to utilize the online sequential extreme learning machine (OSELM) model coupled 

with the ant colony optimization (ACO) algorithm incorporating statistically significant annual yield lagged 

at (t – 1) as the model’s predictor to generate the future yield at 6 tested field sites. In the first phase, the 

ACO algorithm is conditioned to search for the suitable, statistically relevant data sites for the model’s 

training, and the corresponding testing sites by virtue of a feature selection strategy. An annual wheat yield 

time series input data are constructed utilizing data from each selected training sites and applied against 6 

test site cases to evaluate the hybrid ACO-OSELM model. The partial autocorrelation function is adopted to 

deduce statistically significantly lagged data, and OSELM is applied to generate wheat yield. The two-

phase hybrid ACO-OSELM model is tested within the 6 agricultural sites of Punjab province, and the 

results are benchmarked with extreme learning machine (ELM) and random forest (RF) integrated with 

ACO to design hybrid ACO-ELM and hybrid ACO-RF models, respectively. Testing performance of 

hybridized models, according to robust metrics, was satisfactory; however, the two-phase hybrid ACO-

OSELM model was proven to be a reliable wheat yield prediction tool with high performance in the present 

context, and the method can be replicated over some of the other regions globally where it may assist in 

better farming management applications. 

INDEX TERMS Agricultural precision; wheat yield model; ant colony optimization; OSELM

1.0:  INTRODUCTION 

Culminating knowledge about best approaches to farming, 

with strategic crop management systems, and learning from 

the best practices in neighborhood cropping zones, are 

considered as a useful approach for agronomists to help 

formulate timely information on crop yield to foster 

benefits to agriculture-reliant nations [1, 2]. In Pakistan, 

wheat, which is the subject of this paper, is cultivated in 

winter season largely in the agricultural lands of the 

province of Punjab, the largest producing jurisdiction [3]. 

Wheat accounts for 2.6% of Pakistan’s GDP and 12.5% to 

the GDP of the agronomy sector [4]. According to United 

Nations Food and Agriculture Organization, Pakistan was 

placed in the eighth position as a global wheat producer 

from 2007 to 2009 [5]. The modelling of wheat production 

with intelligent learning systems that also incorporate 

historical practices, and relevant knowledge from past 

mailto:ravinesh.deo@usq.edu.au
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yields to predict the future yield can provide new strategic 

frameworks for improving current and future agricultural 

productions, and support future food security issues in both 

developing and first world nations.  

Considering the vitality of wheat as a daily food grain 

supporting millions of human lives, accurately predicting 

the annual yield can assist governments and agricultural-

climate policy experts in making decisions on their national 

imports and exports, maintaining sufficient reservations of 

wheat as a proxy for national food security and setting the 

relevant prices for agriculture markets. In 2005, the actual 

yield in Pakistan was relatively low compared to the 

predicted yield, and as such, poor estimations have 

moderated the market price and prompted the government 

to export the grains from the international market [6, 7].  

In the past, Pakistan has faced significant crises of wheat 

supply, particularly in the period of 2012-2013, which 

occurred due to the failure of the province of Punjab, the 

present study region, to meet its target production value. A 

plausible reason for this deficit was attributed to the poor 

agricultural planning and inaccurate estimations to satisfy 

the national grain needs [8]. A report published in the 

Express Tribune [9] indicates that, similar to the past 

experience, Pakistan is likely to further face wheat 

shortages into the future. Due to such uncertainties that 

directly have a detrimental impact on income and food 

security for the already staggering economies of developing 

Pakistan, the government and policymakers require 

improved forecast models to facilitate them to estimate the 

potential reductions and associated food security risks due 

to a shortage of wheat yield. This justifies the pivotal role 

of data-intelligent models that encapsulate historical 

patterns in yield with a provision accounting for the surplus 

and shortfalls, to be embraced for the prediction of yield not 

only in Pakistan but also in other agricultural nations that 

may suffer from similar potential risks.  

Data-intelligent models have great adaptability for crop 

planning due to their user friendly implementation, 

competitive performance and the evolution of data analytic 

techniques that employ feature detection and subsequent 

implementation in predictive models [10]. Data-intelligent 

algorithms are also very attractive tools for policymakers 

that can enable them to utilize systematic ways for 

estimating future yield [11]. Nasser and Mehmoud 

developed accurate photovoltaic power forecasting models 

using deep LSTM-RNN [12]. Che et al. applied recurrent 

neural networks for multivariate time series with missing 

values [13]. There are several examples of data intelligent 

algorithms in agronomy. The study of Dempewolf et al. 

[14] aimed to predict wheat yield in Punjab using the 

vegetation index and measured crop statistics whereas 

Hamid [15] investigated the wheat economy and its likely 

future prospects while Muhammad [16] studied historical 

background of the wheat improvements in Balochistan 

region. Specifically, Iqbal et al.[17] applied an 

autoregressive moving average (ARIMA) model to project 

future wheat belt areas and productions up to the year 2022 

in Pakistan. Also, Saeed et al. [18] predicted wheat  in 

Pakistan using an ARIMA model while Sher and Ahmad 

[19] developed a study on the prediction of wheat through a 

Cobb-Douglas function and an ARIMA model for each 

input data and the respective province. However, these 

studies have applied simplistic regression models (e.g., 

ARIMA) that is often discredited due to their assumptions 

of linearity in the relationships between wheat yield and its 

predictor variables.  

Other than univariate statistical models, there have also 

been some studies based on rainfall, temperature, fertilizer 

and other related variables. One such example is the 

research of Azhar et al. [20, 21], that developed a model for 

the prediction of wheat yield with rainfall-based inputs for 

the month of November to January in the Punjab Province. 

Sabir and Tahir [22]  developed a model based on 

exponential smoothing for wheat yield in 2011-12. In spite 

of being used quite profusely, these types of models 

embraced general ideas, without incorporating expert 

information to capitalize on the attributes in historical data, 

and were largely restricted to linear methods without 

optimally extracted features. Notwithstanding this, the 

advent of data-intelligent models at an astonishing rate in 

the current era can be useful for decision-makers to develop 

automatic expert systems containing optimal rules based on 

historical knowledge in farming strategies and crop 

management [23-25].  

Although the literature on application of data-intelligent 

algorithms for wheat (and other crop) prediction is 

relatively sparse, some studies show that such a 

contemporary approach can be an effective way to model 

future yield. Pantazi et al. [26] predict what yield using 

self-organizing map and counter-propagation artificial 

neural networks (CP-ANN), XY-fused Networks (XY-Fs) 

and Supervised Kohonen Networks (SKNs) in UK. Kumar 

et al. [27] introduced a crop selection method (CSM) based 

on advance machine learning technique to improve yield 

rate. Sanchez et al. [28] applied MLR, M5tree, SVR, MLP 

and KNN methods for massive crop yield prediction. While 

Balakrishnan and Muthkumarasamy [29] developed 

ensemble based AdaSVM and AdaNaive crop yield 

prediction models in India. Rahman et al. [30] developed a 

machine learning model for rice prediction in Bangladesh, 

while a neural network integrated model was used [31] for 

rice crop yield monitoring. Monisha et al. [32] applied 

ANN to predict corn and soybean yield in Malaysia. In 

addition, these studies have been conducted for a large area, 

either for a province, or a national region, but not for a 

small locality (better in terms of accuracy; applicability 

etc.) such as the site used in this study. Crop prediction 

could be a difficult task as many variables are interrelated 

so the yield can be affected by human decisions or activities 

(e.g., irrigated water, land, fertilization and crop rotation) 

and uncontrollable, natural factors (e.g., weather) [2]. 
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Therefore, crop planners could potentially generate weather 

scenario and feed yield forecast models. Despite this, no 

study has utilized wheat yield of several locations for 

training purposes to predict the yield of other sites. This 

sort of strategic modelling can assist in decision-making 

about the efficiency of production and developing precise 

agricultural practices.  

Techniques utilizing data from several other study sites for 

training purposes to predict the objective sited data is 

practically useful since it can enable the modellers to 

extract similar features and patterns prevalent at the 

predictor site to be analyzed to estimate the objective site 

data. This approach can enable agricultural experts to 

develop farming protocols by comparing site-specific yield 

and make appropriate deductions in respect to the presence 

of favorable (or unfavorable) environmental or soil fertility 

conditions and also implement better management 

decisions necessary to reach optimal yield. Mehdizadeh 

[33] developed several data intelligent models (ANN, 

ANFIS, SVM and MARS) using temperature data from 

several stations for training to forecast in the objective 

station in Iran. Deo and Şahin [34] forecasted long-term 

solar radiation using an ANN model at two sites to develop 

a model to forecast solar radiation at another site. 

Considering the needs for accurate future wheat yield 

prediction, the modelling of crop yield using several sites’ 

yield data for model development can provide a 

comparative framework for different farmers in identifying 

more cost-effective and productive agricultural 

management practices.  

In this paper, for the first time, a two-phase hybrid OSELM 

model integrated with ACO algorithm is developed, 

denoted as the “ACO-OSELM model”. For the purpose of 

comparison, the standalone extreme learning machine 

(ELM) and random forest (RF) models are also developed 

as ELM and RF are considered to be good benchmark 

models. The two-phase hybrid ACO-OSELM model is 

tested for wheat yield prediction in agricultural sites: 

Rahimyar Khan, Dera Ghazi Khan (denoted as D. G. 

Khan), Kasur, Sialkot, Rawalpindi, and Jhang located in 

Punjab province, Pakistan where several sites (26 sites) in 

each case were used to develop the model. The selected 

study sites are spread throughout the whole Punjab 

province and are the major wheat producer (see, Figure 

1(c)).  

To test the applicability of the proposed two-phase hybrid 

ACO-OSELM model, this study aims to fulfil four 

objectives: (1) To develop a bio-inspired ACO algorithm to 

select the best possible sites located in Punjab province, 

Pakistan for training purposes using feature selection 

strategy; (2) To incorporate the significant lag at (t-1) of the 

selected training sites in the OSELM model to develop a 

two-phase hybrid ACO-OSELM hybrid prediction tool; (3) 

To incorporate the significant antecedent lag of wheat yield 

effectively to predict the current and future wheat yield; and 

(4) To validate the predictive ability of the proposed two-

phase hybrid ACO-OSELM model for wheat yield 

prediction universally in whole Punjab province, Pakistan. 

The novelty of this study is therefore, to design and apply 

the newly proposed two-phase hybrid ACO-OSELM wheat 

yield prediction model in Pakistan where out of the 27 sites, 

26 are used for training and the remainder 27th site is used 

for testing in 6 different combinations of the target yield 

site. 

 
2.0:  THEORETICAL FRAMEWORK 

 

Basic theory about the construction of two-phase hybrid 

ACO-OSELM model for wheat yield prediction is presented 

in this section. 

2.1: Ant colony optimization (ACO) algorithm 

 

ACO applied in this study for the selection of training sites 

to construct wheat yield time series, is a feature selection 

algorithm based on swarm optimization technique 

introduced by Dorigo and Di Caro [35]. ACO has been 

widely used in different applications [36-40], as a bio-

inspired algorithm follow the behavior of ant colonies. In 

this paper, the ACO algorithm is adopted to locate the 

minimum possible distance between wheat yield (W) of the 

training sites, and the testing sites, a feature that can be 

used to select the respective training site for yield 

prediction at the testing site. A constant amount of 

pheromone, a parameter of the ACO algorithm, is assigned 

to input sites, to classify them against the test site at the 

beginning of the search. The ant uses the pheromone trial to 

calculate the probability of the selecting site for training 

against the testing site where the pheromone values change 

by traversing the training sites, and consequently, the 

probability is increased for the new ants to select the best 

training site. In mathematical notations, the probability 

 js t of selecting the shortest distance between the target 

and the branch is given by:  

 
  

     
s js

js

s js s jl



 

 
 

   




  
            (1) 

where  1,2j is called a decision point with s  and 

l denote the short and long branch at an instant   of the 

total amount of pheromone  js  . The value of 2   

was computed by Deneubourg, et al. [41]. The probability 

of the longest path is also computed in this way 

where     1js jl     . The trail update on the two 

branches is described as follows:  

           1 1 1 1 1js js js j ks km m                      (2) 

            1 1 1jl jl jl j kl km r m r                      (3) 
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where  , 1,2,j k  and  jm   denotes the number of 

ants on the node j at the time   which is given by: 

         1 1j ks k kl km m r m r              (4) 

The ACO algorithm has successfully been applied to 

traveling salesman problems [42], group shop scheduling 

[43], vehicle routing [44] and telecommunication networks 

[45]. 

The pseudo code of ACO algorithm is following: 

N = food source, tij = initial pheromone, p = pheromone 

deposited. 

Initialize pheromone tij; 

Repeat for all ants i: construct solution (i); 

For all ants i: global pheromone update (i); 

For all ants’ edges: evaporate pheromone; 

(ti-j := (1-p).ti-j) 

Construct solution (i): 

Initialize ant; 

While not yet solution: 

Expand the solution by one edge probabilistically according 

to the pheromone; 

(tpi-j) / (sumpi-j.tpi-j,;) 

Global pheromones update (i): 

For all edges in the solution; 

Increase the pheromone according to the quality; 

In this paper, the novelty of ACO algorithm is hybridization 

with OSELM model to develop a wheat yield prediction 

tool (ACO-OSELM). The ACO algorithm searches for 

relevant training sites for the development of ACO-OSELM 

model. The ACO-ELM model is tested in the agricultural 

rich districts in Punjab, Pakistan. 

2.2: Extreme Learning Machine (ELM) 

ELM is an advanced data intelligent model designed by 

Huang et al. [46] which used a Single Layer Feedforward 

Neural Network (SLFN). ELM is relatively faster, and thus 

more computationally efficient than existing data driven 

models [47]. The ELM can be mathematically formulated 

as:  

 
1

,; ,
M

i k i i pred

i

f W c w W


          (5) 

In Eq. (5) k ranges from 1 to M with ic    is the bias of 

ith  node assigned randomly whereas iw   is a random 

input weight vector. The function  ,; ,k i ig W c w  denotes

the predicted wheat yield Wpred corresponding to the ith

hidden node with respect to wheat yield kW  at a lag (t-1). 

Therefore Eq. (5) reduces to the following form: 

     Y       (6) 

Where 
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 . 

The linear system with solution provides the following 

output weight: 

Y      (7) 

Where 
  is the inverse of H. The SLFNs with random

input weight selection effectively acquire training with least 

chance of error [48, 49]. 

2.3: Online Sequential Extreme Learning Machine 
(OSELM) 

The standalone ELM uses all N-samples of data for training 

purposes but data may be used chunk-by-chunk in real 

world problems because the learning process is time 

consuming in ELM which requires new training data each 

time the model is run [50]. As a variant of the standalone 

ELM model, the OSELM operates in two learning stages 

i.e., initialization and a sequential learning stage. In

OSELM, the matrix H  in the initialization stage is packed 

which is later used in the learning stage. In the initialization 

stage, the random weights and biases are assigned to the 

small chunk of initial wheat yield (W) training data to 

compute the hidden layer output matrix. The sequential 

learning phase is then commenced either on a one-by-one 

or lump-by-lump basis and the used data is not allowed to 

be used again.  For more details on OS-ELM, the readers 

are referred to (e.g., [50-53]). 

2.4: Random Forest (RF) 

It is noteworthy that the ensemble learning strategies such 

as bootstraping and bagging generates classifiers and 

aggregates the results in the form of decision trees [54, 55]. 

Therefore, the random forest (RF) model is basically a 

baggging approach with an additional layer of randomness 

in the prediction process [55]. Every node is split with 

randomly chosen best subsets of predictors that perform 

very well and are robust against overfitting [56]. The 

strategy of RF can be presented as: 

Step 1: Construct ntrees of bootstrapping from the wheat 

yield W at lag (t-1) where n is the number of trees. 

Step 2: Grow an unpruned regression tree where the wheat 

yield (W) as a predictors sample mtry is randomly to select 

optimum split among the predictors. 
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Step 3: Aggregate the predictions of ntrees to predict the 

wheat yield (Wpred). 

Detailed analysis on RF can be seen in [56-60].  

3.0: DATA AND METHODS 

3.1: Study Region and Wheat Yield Data 

Wheat yield data has been sourced from Federal Bureau of 

Statistics (Economic Wing) in Pakistan and the Agriculture 

Marketing Information Services, Directorate of Agriculture 

(Economics & Marketing) [61-63].  The study sites 

included are the agriculture-intensive sites, situated in 

Punjab, Pakistan. Agricultural sectors in Punjab province 

play a vital role in the economy with contributions ranging 

from 56.1% to 61.5% [64]. Further, extensive irrigation 

systems make this region a rich agricultural locality. 

Considering the region as a major agricultural belt, the 

development of data-intelligent models for wheat yield 

prediction is an interesting research endeavor. To construct 

the time series wheat yield dataset, the site (district level) 

productions of wheat were acquired.  

Figure 1 illustrates the study sites of wheat farming. Figure 

1(a) shows the provinces in Pakistan whereas Figure 1(b) is 

the map of all sites in Punjab province (current study region). 

Figure 1(c) is representing total of 6 maps which represents 

the testing site (yellow colour), training sites (red colour), 

and the sites where wheat yield data is not available (green 

colour) and the sites which are not selected by ACO 

algorithm (blue colour). A total of 27 sites were considered 

with data from 1981-2013. To obtain the wheat yield time 

series, out of 27 sites, 26 sites were used for the selection of 

the best sites for training to develop the model in relation to 

the remaining (1) testing site. Each time, 26 sites were used 

to pick the best sites for training subsets against the 6 testing 

sites. Table 1 presents basic statistics (latitude, longitude, 

elevation, maximum, minimum, standard deviation, 

skewness and kurtosis) of the present study sites.  

3.2: Model Performance Evaluation 

To evaluate the performance of the proposed two-phase 

hybrid ACO-OSELM vs. ACO-ELM and the ACO-RF 

models applied for wheat yield prediction, statistical and 

standardized metrics [65] were used. The mathematical 

formulations of these assessment metrics are given as 

follows [66-71]. 

I. Correlation coefficient (r) is expressed as: 
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II. Willmott’s Index (WI) is expressed as:
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III. Nash-Sutcliffe coefficient (NSE) is expressed as:
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IV. Root mean square error (RMSE, kgha-1) is expressed as:
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      (11) 

V. Mean absolute error (MAE, kgha-1) is expressed as: 
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      (12) 

VI. Legates and McCabe’s (LM) is expressed as:
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VII. Relative root mean square error (RRMSE¸%) is

expressed as: 
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VIII. Relative mean absolute percentage error (RMAE; %),

is expressed as 

 , ,

1 ,

1
100

N
pred i obs i

i obs i

W W
RMAE

N W


       (15) 

where 
,obs iW  and 

,pred iW  are the observed and predicted ith 

value of the wheat yield W, 

_

,obs iW  and 

_

,pred iW  are the

observed and predicted average of W and N is the total 

number of tested data points. 
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FIGURE 1: Map of the study region. (a) Provinces of Pakistan. (b) Districts of Punjab where the present study was 

undertaken. (c) Selected training sites in red and the corresponding test site in yellow. Note that the sites shown in 

green have ‘no available wheat yield data’ and those in blue were not selected by the Ant Colony Optimisation 

algorithm. 
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3.3: Design of two-phase hybrid ACO-OSELM Model 

The two-phase hybrid ACO-OSELM model was developed 

using MATLAB R2016, (The Math Works Inc. USA) with 

Pentium 4 2.93 GHz dual core Central Processing Unit.  

 

Historical wheat yield time series data were used to develop 

the proposed two-phase universal ACO-OSELM model. The 

original wheat yield data with statistically significant lagged 

values at (t – 1) as the input predictor was employed in the 

first phase of model development. The development of the 

station Geographic characteristics Wheat yield statistics (kgha-1) 

Latitude 

(N) 

Longitude 

(E) 

Elevation 

(m) 
Mean Std. Min. Max. Skew. Kurt. 

Shekhupura 31.71o 73.98o 207 2297.46 519.54 1087.89 3062.99 -0.29 -0.65 

Okara 30.81o 73.45o 105 2901.89 528.93 1888.08 3588.10 -0.26 -1.16 

Sahiwal 30.66o 71.11o 152 2751.87 411.29 1955.17 3792.40 0.12 -0.10 

Vehari 30.04o 72.34o 140 2568.94 456.80 1846.00 3462.03 0.09 -0.87 

Multan 30.15o 71.52o 122 2307.97 377.77 1713.03 2952.97 0.16 -1.17 

Muzaffar Garh 30.07o 71.18o 122 2151.16 470.69 1157.47 2890.72 -0.21 -0.99 

Dera Ghazi Khan 30.03o 70.38o 129 2234.18 457.67 1050.86 2914.07 -0.66 0.32 

Bakar 45.300 14.53o 82 2049.52 601.05 1222.01 3440.61 0.79 0.18 

Layyah 30.96o 70.94o 143 2025.44 485.42 1160.59 2900.23 0.21 -0.88 

Khushab 32.32o 71.90o 195 1455.08 345.98 822.00 2103.04 0.09 -0.88 

Sargodha 32.08o 72.66o 189 2253.13 308.08 1637.40 2742.39 0.02 -1.06 

Faisalabad 31.45o 73.13o 184 2487.44 511.38 1565.83 3257.58 -0.07 -1.35 

Toba Tek Singh 30.97o 72.48o 149 2757.25 715.26 1814.86 3310.60 2.20 5.95 

Gujrat 32.57o 74.07o 233 1632.04 267.08 996.51 1985.37 -0.77 -0.03 

Rawalpindi 33.56o 73.01o 508 1374.83 372.15 624.01 1993.06 -0.26 -0.68 

Jhelum 32.74o 73.72o 234 1418.49 365.23 752.09 2110.03 -0.01 -0.64 

Mianwali 32.58o 71.53o 210 1618.80 332.99 1037.09 2510.39 0.63 0.28 

Lahore 31.52o 74.35o 217 2485.52 431.22 1385.93 3209.78 -0.97 1.08 

Khanewal 30.28o 71.93o 128 2613.95 436.54 1850.94 3600.46 0.24 -0.67 

Rajanpur 29.10o 70.32o 97 2138.37 512.46 1009.88 3012.48 -0.70 -0.10 

Bahawal Nagar 30.00o 73.24o 163 2298.80 544.52 1401.50 3773.33 0.57 0.08 

Attock 33.76o 72.36o 358 1271.96 326.45 685.73 2029.07 0.28 -0.36 

Gujranwala 32.15o 74.18o 229 2437.28 604.31 1055.69 3484.13 -0.29 -0.56 

Jhang 31.30o 72.32o 158 2353.19 431.16 1637.83 3089.02 0.03 -1.06 

Kasur 31.11o 74.44o 218 2495.00 407.78 1688.95 3099.40 -0.07 -0.93 

Rahimyar Khan 28.42o 70.29o 80 2308.74 522.80 1312.27 3369.46 0.29 -0.49 

Sialkot 32.49o 74.52o 256 2051.86 612.39 598.89 3018.60 -0.44 -0.47 

TABLE 1: Geographic properties and wheat yield statistics of the study sites for Punjab, Pakistan. 



VOLUME XX, 2017 9 

two-phase hybrid ACO-OSELM model involved the 

following phases: 

Phase 1: The ACO algorithm is used to determine the best 

sites for model development in the training period using a 

feature selection strategy. Further, some predefined 

parameters were defined at this phase. The number of ants in 

this phase were 10 with 20 iterations where the initial 

pheromone is 1 were used. For each site, the numbers of 

selected sites (features) were defined prior to running the 

model. For Rahimyar Khan, the number of these selected 

sites (feature) is 22, D. G. Khan (20), Kasur (19), Sialkot 

(17), Rawalpindi (12) and Jhang (14). The proposed two-

phase hybrid ACO-OSELM model was trained on a longer 

time series (Site Rahimyar Khan, 726 data points) and 

shorter time-series (396 data points) for the Rawalpindi site 

to assess the accuracy for the universal performance so it can 

applied anywhere in Pakistan in future. Moreover, 

pheromone exponential weight and heuristic exponential 

weight are also considered to be 1 here. The selected training 

sites with their correlation r against testing sites are described 

in Table 2 whereas Figure 2 plots the RMSE errors of the 

ACO algorithm between the cost and objective function 

during the selection of best sites. 

After the selections of training sites against testing sites 

using the ACO algorithm, their correlation r (of selected 

training sites) against testing sites were calculated to 

confirm the linear relationship among them. For study site 

Rahimyar Khan, the training site Khanewal has the highest 

value of r≈0.855, followed by Bahawal Nagar (r≈0.854). 

Similarly, Muzaffar Garh (r≈0.881) and Rajanpur (r≈0.861) 

have the largest values of correlation with site D. G. Khan. 

For study site Kasur, Gujranwala and Shekhupura attained 

the highest values of (r≈0.950, 0.947). For other sites 

Sialkot, Rawalpindi and Jhang, the readers are referred to 

Table 2.  On the other hand, Site Kasur has the smallest 

RMSE followed by Jhang site between the cost and 

objective function during feature selection (Figure 2). 

Table 3 presents the number of datum points for training 

and testing purposes in each site with ratio of selected sites 

against testing sites, skewness, kurtosis, standard Deviation 

and mean of training and testing data. . The data were 

normalized between 0 and 1 to avoid the differences in 

skewness in training and testing period. The normalization 

for the data is invertible, and hence will not affect the 

results [72]. Figure 3 presents the time series of the tested 

study sites constructed from the selected features using the 

ACO algorithm.  

Phase 2: The statistically significant lags of historical wheat 

yield were calculated from the constructed historical wheat 

yield time series data using the partial autocorrelation 

function (PACF) in Figure 4. 

After incorporating the significant lag at (t – 1) as the input 

predictor in the OSELM model, different activation 

functions (sigmoid, sine, hardlim, radial basis) were tested 

to determine the best activation function. The optimal radial 

base and sigmoid function (rbf and sig) were found with 

different numbers of hidden neurons ranging from 7-35 and 

block size set to 100 in the development of ACO-OSELM. 

The second significant lag (t-2) was also utized in the 

proposed two-phase hybrid ACO-OSELM model to check 

whether it increase the model purformance. But upon 

utlizing the lag (t-2), it reduces the accuracy of proposed 

two-phase hybrid ACO-OSELM model, so it was not 

considered in this paper. For comparison purposes, extreme 

learning machine (ELM) and random forest (RF) models 

were also evaluated (Figure 5).  

The normalization of the constructed wheat yield time 

series was accomplished following Eq. (16) to overcome 

data fluctuation caused by the features, patterns [72] using:  

In Equation (12), W  indicates input/output of the wheat 

yield data, minW is the smallest value, maxW is the largest 

value of wheat yield in the dataset and normW is the desired 

normalized value. To assess the training performance of the 

proposed two-phase hybrid ACO-OSELM, the correlation 

coefficient ‘r’, and the root mean squared error, RMSE was 

used with ACO-ELM and ACO-RF models (Table 4). 

The magnitudes of r and RMSE attained in the training 

period of the proposed two-phase hybrid ACO-OSELM 

model for wheat yield prediction at Rahimyar Khan and D. 

G. Khan were seen to be: (r = 0.812, 0.790, RMSE = 374.82, 

381.57 kgha-1).  Equivalent metrics for Kasur and Sialkot 

were found to be: (r = 0.804, 0.798, RMSE = 370.49, 386.18 

kgha-1) and finally for Rawalpindi and Jhang were: (r = 

0.832, 0.799, RMSE = 356.80, 353.55 kgha-1). For 

comparison, the ACO-ELM and ACO-RF models were also 

studied. The magnitudes of these assessment metrics for 

other sites can be seen in Table 4. The training accuracy of 

the proposed two-phase hybrid ACO-OSELM model was 

high. Therefore, it is foreseen that the ACO-OSELM model 

accuracy in the testing phase, as shown later, is relatively 

high for wheat yield prediction at these tested sites. 

Wnorm = (W – Wmin)/ (Wmax – Wmin)  (16) 
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Test Sites 

ACO 

Selected 

Training 

Sites 

Correlation 

(r) 
Test Sites 

ACO 

Selected 

Training 

Sites 

Correlatio

n (r) 
Test Sites 

ACO 

Selected 

Training 

Sites 

Correlation 

(r) 

Site 1- 

Rahimyar 

Khan 

Khanewal 0.855 

Site 2-  

D. G. Khan 

Rahimyar 

khan

0.781 

Site 3 - Kasur 

Sialkot 0.926 

Faisalabad 0.723 Attock 0.310 Gujranwala 0.950 

Bahawal 

Nagar

0.854 Sialkot 0.779 Jhelum 0.592 

Multan 0.432 Sargodha 0.810 Layyah 0.817 

Gujranwala 0.817 Rajanpur 0.861 Rajanpur 0.664 

D. G. Khan 0.708 Jhang 0.764 Bakkar 0.837 

Khushab 0.638 Layyah 0.816 Bahawal 

Nagar
0.911 

Okara 0.644 Khushab 0.720 Vehari 0.942 

Vehari 0.659 Mianwali 0.643 Jhang 0.930 

Toba Tek 

Singh

0.556 Lahore 0.644 Lahore 0.406 

Rawalpindi 0.595 Toba Tek 

Singh

0.685 khanewal 0.805 

Sialkot 0.782 Shekhupura 0.791 Muzaffar 

Garh

0.858 

Sahiwal 0.602 Kasur 0.780 Okara 0.890 

Layyah 0.568 Bahawal 

Nagar

0.727 D. G. Khan 0.780 

Muzaffar 

Garh

0.778 Faisalabad 0.812 Multan 0.905 

Attock 0.628 Khanewal 0.704 Shekhupura 0.947 

Jhang 0.848 Bakkar 0.828 Gujrat 0.649 

Bakkar 0.841 Rawalpindi 0.333 Rawalpindi 0.443 

Rajanpur 0.360 Gujrat 0.509 Khushab 0.819 

Mianwali 0.341 Muzaffar 

Garh

0.881 

Gujrat 0.480 

Jhelum 0.185 

Site 4 –

Sialkot 

Faisalabad 0.420 

Site 5 - 

Rawalpindi 

Muzaffar 

Garh

0.560 

Site 6 - Jhang 

Rawalpi

ndi

0.537 

D. G. Khan 0.425 Toba Tek 

Singh

0.801 D. G. 

Khan

0.764 

Sargodha 0.468 Mianwali 0.758 Multan 0.901 

Gujrat 0.183 Attock 0.876 Gujrat 0.722 

Khushab 0.382 Gujranwala 0.873 Jhelum 0.657 

Jhang 0.522 Multan 0.589 Khusha

b

0.873 

Vehari 0.479 Jhelum 0.944 Rahimy

ar khan

0.919 

Lahore 0.310 Sargodha 0.945 Attock 0.571 

Sahiwal 0.346 Khushab 0.907 Sargodh

a

0.906 

Gujranwala 0.530 Gujrat 0.781 Bakkar 0.842 

Jhelum 

Jhelum

0.649 Kasur 0.898 Muzaffa

r Garh

0.855 

khanewal 0.489 Rahimyar 

khan

0.899 Mianwa

li

0.485 

Bakkar 0.370 Faisalab

ad

0.818 

Rawalpindi 0.181 Shekhu

pura

0.939 

Toba Tek 

Singh

0.571 

Khanewal 0.782 

Kasur 0.463 

TABLE 2: Selected training stations using Ant Colony Optimization (ACO) algorithm with the correlation coefficient (r) for each 

training station against the testing station. 
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FIGURE 3: Time series of the annual wheat yield data for the training stations selected by the Ant 

Colony Optimisation algorithm for each testing study site. Site 1: Rahimyar Khan, Site 2: D. G. Khan, 

Site 3: Kasur, Site 4: Sialkot, Site 5: Rawalpindi, and Site 6: Jhang. 

FIGURE 2: Bar graphs of the root mean squared error (RMSE)  encountered by the Ant Colony 

Optimisation algorithm in the selection of training study sites for each testing study site: Site 1: Rahimyar 

Khan,  Site 2: D. G. Khan, Site 3: Kasur, Site 4: Sialkot, Site 5: Rawalpindi, and Site 6: Jhang. 



 

VOLUME XX, 2017 9 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Testing 

Sites 

No. 

selected 

sites 

No. of data 

points in 

each 

station 

No. of 

training 

data 

No. of 

testing 

data 

Skewness Kurtosis 
Standard Deviation Mean 

Training Testing 
Trainin

g 
Testing Training Testing 

Traini

ng 
Testing 

Rahimyar 

Khan 
22 33 22x33 = 726 33 0.026 0.290 -0.660 -0.491 

 

640.03 522.80 2126.59 

 

2308.74 

D. G. Khan 

 
20 33 20x33 = 660 33 -0.023 -0.661 -0.639 0.322 

604.39 457.67 
2100.48 2234.18 

Kasur 

 
19 33 19x33 = 627 33 0.134 -0.072 -0.532 -0.934 

623.22 407.78 
2101.54 2495.00 

Sialkot 

 
17 33 17x33 = 561 33 -0.124 -0.440 -0.647 -0.472 

620.67 612.39 
2193.14 2051.86 

Rawalpindi 12 33 12x33 = 396 33 0.638 -0.264 1.593 -0.680 
646.02 372.15 

2008.08 1374.83 

Jhang 

 
14 33 14x33 = 462 33 0.233 0.033 -0.537 -1.061 

588.81 431.16 
1918.63 2353.19 

TABLE 3: Training data points (in terms of selected training sites) and testing data point for each testing site using ACO 

algorithm with skewness and kurtosis of training and testing data. 

 

FIGURE 4: Partial autocorrelation function correlation coefficient (PACF) of the historical annual 

wheat yield time series for each testing study site: Site 1: Rahimyar Khan, Site 2: D. G. Khan, Site 3: 

Kasur, Site 4: Sialkot, Site 5: Rawalpindi, and Site 6: Jhang. 
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FIGURE 5: Flow chart of the proposed hybrid two-phase Ant Colony Optimization algorithm integrated 

with Online Sequential Extreme Learning Machine (OSELM) model. 
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4.0: RESULTS 

 

The proposed two-phase hybrid ACO-OSELM is appraised 

in comparison with ACO-ELM and ACO-RF models, using 

statistical metrics, diagnostic plots and error distributions 

(Eq. (8) - (15)) between the predicted and observed yield.  
 

Figure 6 displays a scatterplot with goodness-of-fit and 

correlation coefficient r between predicted and observed 

wheat yield. The proposed two-phase hybrid ACO-OSELM 

model is clearly better than ACO-ELM and ACO-RF in 

terms of r2 (ACO-OSELM≈0.995, ACO-ELM≈0.996, 

ACO-RF≈0.862) for Kasur.  

 

Again, the proposed two-phase hybrid ACO-OSELM 

model is more accurate for Sialkot, r2 (ACO-

OSELM≈0.974, ACO-ELM≈0.936, ACO-RF≈0.892), and 

Rawalpindi sites in terms of the achieved r2 (ACO-

OSELM≈0.945, ACO-ELM≈0.924, ACO-RF≈0.814). The  

proposed two-phase hybrid ACO-OSELM model for other 

sites Rahimyar Khan, D. G. Khan and Jhang is reasonably 

good compared to ACO-ELM and ACO-RF models (Figure 

6). On the basis of attaining the larger r2-value, the 

proposed two-phase hybrid ACO-OSELM model shows 

better accuracy against the comparison models for all the 

study regions, confirmed by attaining the larger r2-value. 

 

 

 

 

 

 

 

Figure 7 compares boxplots of the proposed two-phase 

hybrid ACO-OSELM model with ACO-ELM and ACO-RF 

models for each site. The + denotes the outliers of the 

extreme prediction error |PE| of the testing data together 

with their upper quartile, median and lower quartile. The 

distributed |PE| is confirmed with a much smaller quartile 

was acquired by the proposed two-phase hybrid ACO-

OSELM model for Rahimyar Khan and D. G. Khan 

followed by the ACO-ELM and ACO-RF models. The 

proposed two-phase hybrid ACO-OSELM model again 

achieved a good accuracy in terms of |PE| for Rawalpindi 

and Jhang sites in relation to the counterpart models. 

Similarly, the proposed two-phase hybrid ACO-OSELM 

model performed well for Sialkot and Kasur sites in 

predicting wheat yield followed by the ACO-ELM and 

ACO-RF models. By observing Figure 7, the accuracy of 

the proposed two-phase hybrid ACO-OSELM model for all 

sites appeared to be better than the comparative models. 

 

 

 Lags 

ACO-OSELM ACO-ELM ACO-RF 

No. 

Hidden 

Neuron 

Activation 

Function 

No. 

Blocks 

Training period No. 

Hidden 

Neuron 

Activation 

Function 

 

Training period No. 

tress 

 

No. 

predictor 

split 

Training period 

RMSE 

(kg/ha) 
r 

RMSE 

(kg/ha) 
r 

RMSE 

(kg/ha) 
r 

Rahimyar 

Khan 
Wt-1 35 rbf 100 374.82 0.812 15 sig 375.99 0.810 10000 2 205.88 0.949 

D. G. Khan Wt-1 11 rbf 100 381.57 0.790 15 sig 382.11 0.790 10000 2 212.60 0.942 

Kasur Wt-1 7 rbf 100 370.49 0.804 17 rbf 366.78 0.808 10000 2 201.27 0.948 

Sialkot Wt-1 15 rbf 100 386.18 0.798 9 rbf 386.57 0.797 10000 2 215.79 0.944 

Rawalpindi Wt-1 35 rbf 100 356.80 0.832 17 rbf 357.93 0.831 10000 2 213.64 0.946 

Jhang Wt-1 10 sig 100 353.55 0.799 15 sin 352.46 0.799 10000 2 214.46 0.933 

TABLE 4: Training performance of two-phase hybrid ACO-OSELM vs. ACO-ELM and ACO-RF models with correlation 

coefficient (r) and root mean squared error (RMSE, kgha-1). 

 



VOLUME XX, 2017 9 

 

 

 

FIGURE 6: Scatterplots of the predicted (Wpred) and observed wheat yield (Wobs) (kgha-1) in the 

testing phase of the ACO-OSELM vs. ACO-ELM and ACO-RF models including the coefficient of 

determination (r2) and a linear fit inserted in each panel for the tested study zones. 
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In Table 5, the preciseness of the proposed two-phase 

hybrid ACO-OSELM is evaluated in relation to the ACO-

ELM and ACO-RF models where the results for each tested 

site are shown on the basis of r, RMSE and MAE. The 

proposed two-phase hybrid ACO-OSELM model applied at 

Kasur site attained the highest correlation coefficient and 

smallest RMSE and MAE (r≈0.999, RMSE≈85.42kgha-1, 

MAE≈66.54 kgha-1) as compared to the ACO-ELM 

(r≈0.987, RMSE≈111.59 kgha-1, MAE≈78.15 kgha-1) and 

the ACO-RF (r≈0.926, RMSE≈154.36 kgha-1, MAE≈135.24

kgha-1) model. Moreover, for Sialkot site, these metrics 

were ACO-OSELM (r≈0.984, RMSE≈155.86 kgha-1, 

MAE≈76.95 kgha-1), followed ACO-ELM (r≈0.967, 

RMSE≈197.10 kgha-1, MAE≈83.21 kgha-1) and ACO-RF

(r≈0.942, RMSE≈209.89 kgha-1, MAE≈155.35 kgha-1). 

Similarly, the performance of the proposed two-phase 

hybrid ACO-OSELM model is better for Site Rawalpindi, 

Jhang, Rahimyar Khan and D. G. Khan in terms of 

achieving largest magnitudes of r and smallest magnitudes 

of RMSE and MAE. This is a clear indication that the 

proposed two-phase hybrid ACO-OSELM model can be  

 

 

considered to be a better data-intelligent tool for wheat 

yield prediction as compared to the ACO-ELM and ACO-

RF models. The empirical cumulative distribution function 

(ECDF, Figure 8) at each site depicts the different 

prediction skills. The proposed two-phase hybrid ACO-

OSELM method was reasonably better and superior to both 

the ACO-ELM and ACO-RF models. Based on the error (0 

to ±400 kgha-1) for the Rahimyar Khan, D. G. Khan and 

Kasur sites, (0 to ±600 kgha-1) for Rawalpindi and Jhang 

site while (0 to ±1000 kgha-1) for Sialkot site, Figure 9 

clearly proves that the proposed two-phase hybrid ACO-

OSELM method was the most accurate model in predicting 

wheat yield. 

Table 6 presents the preciseness of the proposed two-phase 

hybrid ACO-OSELM model in comparison with the ACO-

ELM and ACO-RF models, evaluated for all sites in terms of 

WI, NSE and LM. The proposed two-phase hybrid ACO-

OSELM model in Rahimyar Khan attained almost similar 

values of WI≈0.980, NSE≈0.966 and LM≈0.865 with ACO-

ELM (WI≈0.978, NSE≈0.963 and LM≈0.848) better than 

ACO-RF (WI≈0.876, NSE≈0.830 and LM≈0.579) models.  

FIGURE 7: Box-plots of the prediction error |PE| (kgha-1) of ACO-OSELM vs. ACO-ELM and ACO-RF models between 

the predicted and observed wheat yield for Site 1: Rahimyar Khan, Site 2: D. G. Khan, Site 3: Kasur, Site 4: Sialkot, Site 5: 

Rawalpindi, and Site 6: Jhang. 
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ACO-OSELM ACO-ELM ACO-RF 

Sites 
Input 
Lags 

RMSE 
(kgha

-1
) 

MAE 
(kgha

-1
) r 

RMSE 
(kgha

-1
) 

MAE 
(kgha

-1
) r 

RMSE 
(kgha

-1
) 

MAE 
(kgha

-1
) r 

Rahimyar Khan Wt-1 94.96 56.16 0.996 99.06 63.26 0.997 212.32 175.25 0.929 

D. G. Khan Wt-1 67.12 42.37 0.997 68.98 44.35 0.998 189.44 141.92 0.912 

Kasur Wt-1 85.42 66.54 0.999 111.59 78.15 0.987 154.36 135.24 0.926 

Sialkot Wt-1 155.86 76.95 0.984 197.10 83.21 0.967 209.89 155.35 0.942 

Rawalpindi Wt-1 191.89 129.86 0.967 204.59 134.39 0.955 203.53 165.47 0.898 

Jhang Wt-1 96.24 61.41 0.992 114.33 80.81 0.992 181.10 134.10 0.909 

FIGURE 8: Empirical cumulative distribution function (ECDF) of the prediction error, |PE| (kgha-1) for the 

testing stations using ACO-OSELM vs. ACO-ELM and ACO-RF models. 

TABLE 5: Testing performance of ACO-OSELM vs. ACO-ELM and ACO-RF models measured by root mean square 

error (RMSE), mean absolute error (MAE), coefficient of determination (r). 
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For D. G. Khan and Kasur sites, the proposed two-phase 

hybrid ACO-OSELM appeared to have almost similar results 

(WI≈0.989, 0.977, NSE≈0.978, 0.955, and LM≈0.884, 0.805), 

with ACO-ELM (WI≈0.988, 0.962, NSE≈0.977, 0.923 and 

LM≈0.879, 0.766) but better than ACO-RF (WI≈0.903, 

0.920, NSE≈0.823, 0.852 and LM≈0.612, 0.595). For other 

sites Sialkot, Rawalpindi and Jhang, the proposed two-phase 

hybrid ACO-OSELM model appeared to be the best (see; 

Table 6) as compared to the counterpart models. The 

proposed two-phase hybrid ACO-OSELM model shows high 

accuracy in comparison with the other two counterparts. 

Table 7 demonstrates the magnitudes of relative root mean 

squared error (RRMSE) and relative mean absolute error 

(RMAE) for the different locations (Rahimyar Khan, D. G. 

Khan, Kasur, Sialkot, Rawalpindi and Jhang). D. G. Khan 

appears to be the most accurate site in predicting wheat 

yield ACO-OSELM (RRMSE ≈3.00%) and (RMAE 

≈2.25%) on the basis of RRMSE and RMAE. The ACO-

OSELM model was seen to generate the lowest relative 

percentage errors (RRMSE, RMAE) for all tested sites 

except for Rawalpindi site. But overall, the predicted errors 

generated by the proposed two-phase hybrid ACO-OSELM 

model were low in terms of their relative error values, but 

more importantly, they were within the recommended range 

of 10% threshold except for Rawalpindi site for an 

excellent model classification [73].   

Figure 9 presents the |PE| yield in each year from 1981-

2013 of the proposed two-phase hybrid ACO-OSELM vs. 

ACO-ELM and ACO-RF models at the testing sites. The 

prediction errors generated by the proposed two-phase 

hybrid ACO-OSELM were very low compared to the ACO-

ELM and ACO-RF models for all sites. This was justified 

by the minimum values of relative prediction errors. The 

|PE| errors were significantly smaller in each year for the 

proposed two-phase hybrid ACO-OSELM model as 

compared to ACO-ELM and ACO-RF models in Rahimyar 

Khan, D. G. Khan, Kasur, Sialkot, Rawalpindi and Jhang 

sites. Overall, the proposed two-phase hybrid ACO-

OSELM model generated better significant accuracy with 

smaller error statistics (Figure 7 and 10) and higher WI 

(Figure 8). 

5.0: DISCUSSION: LIMITATION AND FUTURE WORK 

Develop strategies which address food scarcity issues, 

decision-making on national imports and exports and 

setting the prices in agriculture markets, accurate crop yield 

prediction can play an important role in policy-making, 

particularly in agricultural-based nations such as Pakistan. 

This study has aimed for the first time, to design a two-

phase hybrid ACO-OSELM model using significant lag at 

(t – 1) to predict future wheat yield. The approach is 

practically useful for crop management in terms of using 

the wheat yield data from several nearby sites in developing 

better agricultural practices with efficient crop precision 

technologies. For example, the methodology can be used in 

the remote areas where meteorological and other agriculture 

data is not available due to limited resources. The research 

framework in this study can be applied to any other study 

site where wheat yield data are available to provide an 

accurate prediction.  

The proposed two-phase hybrid ACO-OSELM model with 

its counterpart models (ACO-ELM and ACO-RF) was 

successfully appraised to generate smaller relative 

percentage errors in terms of RRMSE and RMAE 

respectively with a reasonably large statistical correlation of 

Legates-McCabe’s between predicted and observed yield 

for D. G. Khan and similarly for other tested sites (see 

Table 6 & 7). The performance was high, according to the 

achieved relative percentage errors which were less than 

10%. Thus, the proposed two-phase hybrid ACO-OSELM 

model can be used to predict wheat yield where the 

prediction of a crop commodity will likely become even 

more important due to an increase of population and for 

economic growth in terms of exporting to international 

markets.  

The proposed two-phase hybrid OSELM model 

can be applied on those areas where only wheat yield data 

is available which could be of interest to the government’s 

national policy-making and agricultural engineers to help 

minimize crop estimation uncertainties [7, 74]. Due to the 

aforementioned qualities of the proposed two-phase hybrid 

ACO-OSELM model, it is possible to apply such a model 

for the prediction of other crops such as Rice, Maize, 

Cotton, Sugarcane, Oilseeds and the other coarse grains and 

pulses that could also be utilized to generate similar 

predictions in a follow-up study. This may be of great 

interest to government policy makers and agricultural 

engineers to avoid the possibility of inaccurate estimation 

and predictions in the future [7, 74]. 

     It is noted that the current study utilized the historical 

wheat yield data to predict the future yield and therefore, 

carries some limitations. To enhance the scope of this 

study, meteorological data such as land-surface and air 

temperatures, rainfall, soil moisture, wind, solar radiation 

etc. could also be used to predict the crop yield as these 

parameters greatly impact the crop production amounts. 

Such predictor variables (which whose data could be 

remotely sensed through satellites or atmospheric 

simulation models) (e.g., [11, 14, 31, 75, 76]) are likely to 

be greatly valuable for modelling crop yield in remotely 

located agricultural areas. The incorporation of fertilizer 

(and the relevant soil properties) could also be coupled with 

meteorological data to explore their use in the proposed 

two-phase hybrid ACO-OSELM model. Irrigation statistics 

(e.g., water supply) could also be utilized to improve crop 

yield and photosynthetically active radiation that governs 

crop production could be the focus of an independent 

research study. Further, as processed based modelling are. 
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ACO-OSELM ACO-ELM ACO-RF 

Sites 

Input 

Lags 
WI NSE LM WI NSE LM WI NSE LM 

Rahimyar Khan Wt-1 0.980 0.966 0.865 0.978 0.963 0.848 0.876 0.830 0.579 

D. G. Khan Wt-1 0.989 0.978 0.884 0.988 0.977 0.879 0.903 0.823 0.612 

Kasur  Wt-1 0.977 0.955 0.805 0.962 0.923 0.766 0.920 0.852 0.595 

Sialkot Wt-1 0.960 0.933 0.845 0.931 0.89 0.833 0.941 0.879 0.687 

Rawalpindi Wt-1 0.712 0.726 0.570 0.647 0.688 0.555 0.772 0.692 0.453 

Jhang Wt-1 0.974 0.949 0.833 0.966 0.927 0.781 0.883 0.818 0.636 

Site and Model Data ACO-OSELM ACO-ELM ACO-RF 

Sites Input 

Lags 

RRMSE 

(%) 

RMAE 

(%) 

RRMSE 

(%) 

RMAE 

(%) 

RRMSE 

(%) 

RMAE 

(%) 

Rahimyar Khan Wt-1 4.11 2.27 4.29 2.57 9.20 8.20 

D. G. Khan Wt-1 3.00 2.25 3.09 2.39 8.48 7.33 

Kasur Wt-1 3.42 2.42 4.47 2.79 6.19 5.59 

Sialkot Wt-1 7.60 7.40 9.61 8.74 10.23 9.52 

Rawalpindi Wt-1 13.96 13.95 14.88 14.70 14.80 14.42 

Jhang Wt-1 4.09 2.26 4.86 3.06 7.70 6.09 

Table 6: The performance of ACO-OSELM vs. ACO-ELM and ACO-RF models using Willmott’s 

index (WI), Nash-Sutcliffe (NSE) and Legates-McCabe’s (LM) agreement, for Site 1: Rahimyar Khan, 

Site 2: D. G. Khan, Site 3: Kasur, Site 4: Sialkot, Site 5: Rawalpindi and Site 6: Jhang. Note that the 

best model is boldfaced (blue). 

Table 7: Geographic comparison of the accuracy of the ACO-OSELM vs. 

ACO-ELM and ACO-RF models in terms of relative root mean squared error 

(RRMSE, %) and the relative mean absolute error (RMAE, %) computed 

within the test sites. . Note that the best model is boldfaced (blue). 
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resource demanding and developing countries like Pakistan 

can’t afford, so therefore, the proposed two-phase hybrid 

ACO-OSELM model could be used as a convenient option. 

The two-phase hybrid ACO-OSELM model could be 

optimized by an ensemble modelling method (with 

confidence intervals of the yield simulations) to possibly 

achieves more accurate results. An ensemble of model 

simulations could lead to a more strategic decision-making 

model, with the provision of how accurate a simulated yield 

could be, in terms of the uncertainties between several 

forecasted data. Other advanced optimization methods 

applied could include: Quantum-Behaved PSO and the 

Firefly Algorithm to select training sites which have been 

tested to hybridize with the OSELM model (e.g., [77-85]). 

Further, empirical wavelet transform [86], empirical mode 

composition [87] and singular value decomposition [88] 

could be another venue of this work. Future work could 

apply copula functions [89] as statistical tools where joint 

behaviour of multivariate data (e.g., yield and 

corresponding predictors) can be modelled for any tested 

sites. Moreover, long-short term memory (LSTM) and 

recurrent neural network (RNN) can be used to further 

broaden the scope of this study in the follow up work [12, 

13]. Further, we have used wheat yield data from different 

sites to train the OSELM, ELM and RF models and 

predicted the wheat yield in another testing site. Therefore, 

it’s clear that the data isn’t complex and convoluted as the 

input data has the same nature with target. Moreover, we 

have not used different types of predictors that have 

 

 

complex and complicated nature. That’s why ELM and RF 

generated close results with OSELM (slightly better than 

ELM and RF). Thus, it is most likely that the performance 

of LSTM will be almost similar to ACO-OSELM. 

6.0: CONCLUSION 

This paper designed a two-phase hybrid ACO-OSELM 

model to predict wheat yield on district level. In the first 

phase, the ACO algorithm selects the best district/site of for 

training using the wheat yield from 26 sites.  The selected 

sites were used to construct a time series and PACF were 

utilized to determine the statistically significant lag at (t-1). 

The PACF lagged were used to train the OSEL model and 

validated in testing site to predict wheat yield to develop 

the proposed two-phase hybrid ACO-OSELM model in 

order to achieve a high level of accuracy. Further, several 

types of evaluation criterion were adopted to judge the 

accuracy of the proposed two-phase hybrid ACO-OSELM 

model.  

The proposed two-phase hybrid ACO-OSELM model was 

compared with ACO-ELM and ACO-RF. As evident by 

low relative prediction errors and high performance 

metrics, the performance of the proposed two-phase hybrid 

ACO-OSELM model is much better than that of 

counterpart models. The prediction errors for the best site 

Figure 9: Polar plots showing the prediction error |PE| in each year generated from the ACO-OSELM vs. ACO-

ELM and ACO-RF models in predicting wheat yield for Site 1:  Rahimyar Khan, Site 2: D. G. Khan, Site 3: 

Kasur, Site 4: Sialkot, Site 5: Rawalpindi and Site 6: Jhang. 
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D. G. Khan and for the proposed two-phase hybrid ACO-

OSELM were RMSE67.12 kgha-1 whereas the MAE was 

42.37 kg/ha. In terms of normalized performance metrics, 

the values of these metrics for the D. G. Khan site of 

proposed two-phase hybrid ACO-OSELM model were 

r0.997, WI0.989 and NSE0.978 (See; Table 5 & 6).  

 

To assess the performance of the proposed two-phase 

hybrid ACO-OSELM in relation to ACO-ELM and the 

ACO-RF models using Legates-McCabe’s. The obtained 

LM agreement values between the predicted and observed 

wheat yield for the D. G. Khan study site were LM0.884 

(ACO-OSELM), 0.879 (ACO-ELM) and 0.612 (ACO-RF) 

respectively whereas the relative percentage errors RRMSE 

and RMAE were only 3.00%, 2.25% (ACO-OSELM) 

compared with 3.09%, 2.39% (ACO-ELM) and 8.48%, 

7.33% (ACO-RF). A reasonable degree of geographic 

variability was evident on the basis of relative percentage 

errors RRMSE and RMAE with the optimal performance 

acquired for D. G. Khan site as compared to other sites 

being the accuracy of the proposed two-phase hybrid ACO-

OSELM model. 

 

This study provides a baseline in terms of using wheat yield 

data from several sites, being potentially utilized to predict 

wheat yield and other climatological parameters more 

accurately in future studies. The two-phase hybrid ACO-

OSELM model may be applied to other agricultural crop 

yield prediction scenarios that will assist agricultural policy 

makers in Pakistan in the optimal management of crop 

estimation. Moreover, accurate wheat yield prediction can 

be used to alert the government and impacted stakeholders 

prior to significant food security. 
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Chapter 9 

Conclusion 

9.1: Synthesis 

This thesis has advanced the science of hydrological and agricultural crop prediction by 

constructing accurate and highly precision hybrid probabilistic and artificial intelligence models 

using computational intelligence techniques. These have been focused on rainfall and drought 

forecasting studies, as well as crop yield predictions within the three important agricultural-

reliant provinces of Pakistan. Utilizing the new modelling approaches, rainfall was forecasted at 

a monthly forecast horizon whereas the crop yield was predicted at yearly (seasonal) forecast 

horizons. For drought forecasts, the models were evaluated at 12-, 6-, 3-month to 1-month 

forecast horizons to capture short and long-term drought prediction abilities of the developed 

models and also to realize near real-time forecasting especially for most agricultural activities 

that range from 1 to 12 monthly periods. In improving the hydrological forecasting tasks using 

rainfall, drought and crop yield objectives, the hybrid probabilistic and artificial intelligence 

models were designed with new methodological approaches. Given the complexity of drought 

phenomenon, a diverse range of data intelligence algorithms that were utilized to construct a set 

of hybrid models including the Markov Chain Monte Carlo based copula (MCMC-copula),   

online sequential extreme learning machine (OSELM), extreme learning machine (ELM), 

random forest (RF), Kernel ridge regression (KRR), ensemble based adaptive neuro fuzzy 

inference system (ensemble-ANFIS), mini-max probability machine regression (MPMR), M5 

Tree, particle swarm optimization based ANFIS (PSO-ANFIS), multiple linear regression (MLR) 

and genetic programming (GP). 
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The following three important issues were addressed in this research: 

1. The problem of full dependence structure between climatic inputs and crop yield can be

captured through probabilities. 

2. The problem of selection of non-redundant predictor inputs from sets of multivariate

input in hydrological and crop yield forecasting and 

3. The non-stationarity and non-linearity issue.

The Markov Chain Monte Carlo based copula modelling resolved the first issue. Input selection 

algorithms resolved the second issue of feature optimization, while the latter (third) issue was 

resolved by time-scale multi-resolution representation of the respective hydrological input time 

series. 

In the first objective (Chapter 3), the MCMC based copula models were used to overcome 

the inter-dependency (i.e. probabilistic behavior) between the inputs and target. Then the Bat 

algorithm based on feature selection strategy screened the salient and most suitable MCMC-

copula models. The selected MCMC-copula models were utilized in online sequential extreme 

learning machine (OSELM), extreme learning machine (ELM) and random forest (RF) models 

whilst designing the high precision rainfall forecasting model at monthly forecast horizons. 

Hybridization led to the formation of MCMC-Cop-Bat-OS-ELM model that outperformed the 

comparative MCMC-Cop-Bat-ELM and MCMC-Cop-Bat-RF models. 

 Further, an ensemble modelling approach which enables the uncertainty between multi-

models to be rationalized more efficiently, leading to a reduction in forecast error caused by 

stochasticity in drought behaviours, was developed and explored in Chapter 4 (Objective 2). 

Thus, an ensemble-ANFIS based uncertainty assessment modeling approach was developed and 
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explored for medium and long term (3-, 6-, 12-months) drought forecasting. The partial-auto 

correlation function (PACF) was utilized to determine the significant input lags for the 

development of the 10 member ensemble-ANFIS model. Applying 10-member simulations, the 

ensemble-ANFIS model was validated for its ability to forecast severity (S), duration (D) and 

intensity (I) of drought. The results are benchmarked with the M5 Model Tree (M5 tree) and 

Minimax Probability Machine Regression (MPMR) models. The ensemble-ANFIS model was 

found to have better performances in emulating the drought index (i.e. SPI) compared to the M5 

tree and MPMR models. 

          Additionally, in Objective 2 (Chapter 5), a committee of modelling approach based on 

ELM (Comm-ELM) was designed and explored to forecast short term (i.e. monthly) drought 

using multiple meteorological inputs. Committee of modeling is a model combination technique, 

which is uncommon in climatological studies. In this study, the ELM-based committee was 

investigated and bench marked as PSO-ANFIS-based committee and MLR-based committee 

models. The Comm-ELM model was found to outperform the Comm-PSO-ANFIS and Comm-

MLR model for short term drought forecasting. 

Moreover, two self-adaptive techniques that do not require any basis function or pre-

defined mother wavelet were utilized in Chapter 6 to further address the non-stationarity and 

non-linearity issues (Objective 2). The short, medium and long term drought forecasting was 

achieved by designing and employing a novel multivariate empirical mode decomposition 

(MEMD) approach. This technique was developed to permit the utilization of multiple predictor 

inputs in MEMD-based modelling approaches. A total of twelve predictor inputs were fed into 

MEMD to get signals (i.e. IMFs) followed by Simulated Annealing (SA) algorithm to select the 

best IMFs for KRR to develop the hybrid MEMD-SA-KRR model. The MEMD-SA-KRR 
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proved to be better in forecasting 1-, 2-, 6- and 12 month drought in comparison to the RF 

counterpart (MEMD-SA-RF) and the standalone KRR and RF models. 

 Devising new strategies to predict agricultural crop yield is important for agricultural and 

policy makers. Therefore in chapter 7 (Objective 3), cotton yield prediction with the Markov 

Chain Monte Carlo-based simulation model was integrated with the genetic programing 

algorithm using multiple meteorological data of rainfall, temperature and humidity. Several 

different types of GP-MCMC-copula models were developed, each with the well-known copula 

families (i.e., Gaussian, student t, and Clayton, Gumble Frank and Fischer-Hinzmann functions) 

to screen and utilize an optimal cotton yield forecast model for the present study region. 

Last but not least, universal two-phase hybrid ACO-OSELM, ACO-ELM and ACO-RF 

models using feature based input selection and colony optimization (ACO) algorithm to predict 

wheat yield was constructed in Chapter 8 (Objective 3). The ACO algorithm is conditioned to 

search for the suitable, statistically relevant data sites for the model’s training, and the 

corresponding testing sites by virtue of a feature selection strategy utilizing a total of 27 

agricultural counties’ datasets in the agro-ecological zones in Punjab province in Pakistan. The 

developed model can be explored as a decision-support tenet for crop yield estimation in regions 

where a statistically significant relationship with a historical agricultural crop is well-established. 

The outcomes of this PhD thesis clearly showed improved performances of hybrid 

probabilistic and machine learning models developed with respect to standalone (i.e., individual) 

counterpart models. A further illustration of the research outcomes are as follows: 
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1. Markov Chain Monte Carlo based Copula modelling

The MCMC based copula models served as an important tool to determine the underlying 

dependencies in forecasting rainfall and cotton yield prediction. Copulas are sets of 

powerful mathematical tools that have the ability to connect two or more time-

independent variables deployed in Bayesian analysis that quantifies uncertainty with a 

probability distribution whereas the Markov Chain Monte Carlo (MCMC) simulation 

technique was adopted as an optimization technique to determine the copulas’ 

parameters. Bayes’ law attributes all modeling uncertainties to the parameters and 

estimates the posterior distribution of model parameters. Several different types of 

copulas were developed, each with the well-known copula families (i.e., Gaussian, 

student t, and Clayton, Gumble Frank and Fischer-Hinzmann functions). 

2. Feature selection strategies

a. The Bat algorithm played an important role in determination and ranking of inputs

(i.e. best MCMC-copula models) for OSELM model enhanced performance in 

forecasting monthly rainfall. The key important feature of Bat algorithm is that 

the algorithm selects and determines the MCMC based copula models using the 

echolocation behavior of micro bats with velocity, frequency and location in the 

integration space. Further, the bats are then moved to update the rules in the 

search space to improve the best selecting model using random walks. Next, the 

best model is evaluated by conditional archiving to update the current model. 

b. The Simulate Annealing (SA) algorithm was a bio-inspired feature selection

optimization technique used to determine suitable inputs for drought forecasting. 

Due to its non-deterministic adaptive nature, the SA algorithm starts random 



166

selection of inputs to determine solution of cost function. Soon another random 

search for neighbouring inputs is started and if the cost value of this newly 

selected input is less than the previous one, then the search for other neighbouring 

inputs starts again until the optimum criteria is met. 

c. The ant colony optimization (ACO) algorithm was another bi-inspired feature

selection method based on swarm optimization. This algorithm was used to locate 

the minimum possible distance between the inputs (training sites) following the 

behavior of ant colonies. A parameter named “pheromone” is assigned to input 

sites to classify them against the test site at the beginning of the search. The ant 

uses the pheromone to calculate the probability of the selecting site for training 

against the testing site where the pheromone values change by traversing the 

training sites, and consequently, the probability is increased for the new ants to 

select the best training site. 

Feature selection or input determination has been a critical process in the development of 

artificial intelligence models. This research has shown that appropriate feature selection was 

necessary in order to develop parsimonious and best performing predictive models applied in the 

agricultural and the drought sector. 

3. Multivariate empirical mode decomposition (MEMD) method

The MEMD is a self-adaptive multi-resolution method; hence the number of IMFs and 

residual components (i.e., resolved frequencies) are contingent upon the embedded 

features within the data sets. The MEMD method improved the model performances with 

respect to the standalone models. The MEMD-SA-KRR outperformed the alternative 
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models at three sites applied for drought forecast and the performance was improved in 

medium and long-term drought forecasts. 

The main advantage of the self-adaptive MRA tool, MEMD, integrated with SA and KRR was 

that the hybrid MEMD-SA-KRR model requires only trivial human interventions. This has 

provided the prospect of being embedded into advanced forecasting apps for portable devices 

such as tablets and mobile phones and to provide hydrological forecasts at local farm levels. 

9.2: Novel contributions of the study 

This PhD thesis has made novel contributions to science, particularly in the development of 

probabilistic and machine learning predictive models for hydrological forecasting and crop yield 

prediction. In addition to the development of hybridized probabilistic and artificial intelligence 

models, further novel methodological improvements are as follows: 

1. Hybrid probabilistic and machine learning models

A major contribution of this study was the development of a new probabilistic based machine 

learning modelling approach. Generally, model combinations are lacking in hydrological, 

environmental and agricultural crop applications. The MCMC based copula models were 

integrated with Bat and OSELM, ELM and RF to construct MCMC-Cop-Bat-OS-ELM, MCMC-

Cop-Bat-ELM and MCMC-Cop-Bat-RF for rainfall forecasting and genetic programming, based 

on the MCMC copula (i.e. GP-MCMC-Cop) for cotton yield prediction. This approach is first 

study undertaken in Pakistan. MCMC based copula models overcome the inter-dependency 

within the data while the Bat algorithm, OSELM, ELM and RF (in the case of rainfall 

forecasting) and GP (for cotton yield prediction) extract relevant features to improve forecasting 

accuracy. 
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2. Ensemble based adaptive neuro-fuzzy inference system (ensemble-ANFIS)

A novel ensemble-ANFIS based uncertainty assessment modelling approach for drought 

forecasting was another key novel contribution. The developed 10-member ensemble-ANFIS 

model was validated for its ability to forecast severity (S), duration (D) and intensity (I) of 

drought. This enabled uncertainty between multi-models to be rationalized more efficiently, 

leading to a reduction in forecast error caused by stochasticity in drought behaviours. 

3. Committee-based modelling approach

A major contribution of this PhD research thesis is the design of a new committee-based 

modeling approach. Generally, model combinations are lacking in drought and other 

environmental applications. The ELM-based committee of models (Comm-ELM) was able to 

achieve a better performance as compared to the particle swarm optimization ANFIS based 

committee of models (Comm-PSO-ANFIS) and MLR-based committee of models (Comm-

MLR). The Comm-ELM was able to further optimize and stabilize the forecasts, since ELM 

created suitable weights, rather than simply averaging out the sizes, in forecasting drought. 

4. Multivariate empirical mode decomposition

Another novel contribution was the development of multivariate empirical mode decomposition 

(MEMD) modeling approach in this study. This approach is important since MEMD is able to be 

used as a multi-variable forecasting tool; previously, EMD, EEMD, CEEMD, ICEEMDAN etc. 

were only used as single-variable forecasting tools. The forecasting performance increased with 

the integration of the MEMD hybridization approach to forecast 1-, 3-, 6- and 12-month drought 

forecasting. 
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5. Feature selection based strategy using district level wheat yield

The development of a two-phase hybrid (AC-OSELM) model using feature based input selection 

ant colony optimization (ACO) algorithm and OSELM was undertaken to predict wheat yield. 

The ACO algorithm is conditioned to search for suitable, statistically relevant data sites and the 

corresponding testing sites for the model’s training, by virtue of a feature selection strategy 

utilizing a total of 27 agricultural counties’ datasets in the agro-ecological zones in Punjab 

province in Pakistan. The developed ACO-OSELM model can be explored as a decision-support 

tenet for crop yield estimation in regions where a statistically significant relationship with 

historical agricultural crop is well-established. Further, the modeling approach can be adopted in 

a region where meteorological data is unavailable. 

6. Further contributions

 With the notion of real-time forecasting, the forecast horizon has been shortened

gradually from yearly to seasonal (3-months) and monthly with evaluation of 

respective models at a shorter forecast horizon. 

 An important finding is that the predictive performances of probabilistic and artificial

intelligence models for hydrological and agricultural crops are highly data-sensitive 

and site dependent due to geographical influences. 

 Important contributions have been the application of various machine learning models

such as M5 Tree, RF, KRR, ANFIS, OSELM, ELM, MLR and GP for rainfall and 

drought forecasting, as well as crop yield prediction in the Pakistan agricultural hub. 
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The innovative approaches being explored showed promising outcomes and could provide the 

scientific tenets for integrated on-farm decision-support systems for hydrological and precision 

agricultural purposes. 

9.3: Limitations of the current study and recommendations for future research 

Despite the significant contributions to a PhD focused on research, this study had some 

limitations; suggestions for future research are as follows: 

 The short length of crop yield data tends to affect the parameter estimation of the model

and the evaluation of the forecast performance. To overcome this practical issue, a longer 

actual time series or simulated crop yield data from dynamic models would be preferred. 

 Studies with improved complete empirical ensemble mode decomposition with adaptive

noise (ICEEMDAN), empirical wavelet transform (EWT), variational mode 

decomposition (VMD) and advanced maximum overlap discrete wavelet transformation 

(MODWT) could also provide greater insight into the performance of these predictive 

models. 

 Integration of add-on optimizer algorithms (e.g., firefly optimizer algorithm (FFA), or

Quantum-Behaved Particle Swarm Optimization (Q-PSO)) could also be applied in these 

hydrological models. 

 Incorporation of satellite-based data such as those from Giovanni and reanalysis or

MODIS could also improve model performance. 

 Since the standard statistical approaches tend to avoid the hurdle of model uncertainty

that potentially leads to over-confident inferences and risky agricultural decisions, 
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Bayesian Model Averaging (BMA) is another data-intelligent tool to model uncertainties 

and can be used in ranking model performance. 

 Alternative feature selection algorithms, iterative input selection (IIS), Neighborhood

Component Analysis (NCA) based feature selection algorithm for regression (fsrnca), 

modified minimum redundancy maximum relevance (mMRMR) algorithm or joint 

mutual information maximization feature selection (JMIM) can be further explored. 

 Dimensionality reduction techniques such as singular valued decomposition (SVD),

linear discriminant analysis (LDA), principal component analysis (PCA) can be explored 

for inputs. 

In conclusion, this PhD thesis has made novel contributions towards the practical problem of 

hydrological forecasting and agricultural crop prediction using hybridized probabilistic and 

machine learning techniques. The easy-to-implement, hybridized probabilistic and machine 

learning data-intelligent forecasting models used in this study have high computational 

efficiency and low latency. This could revolutionize hydrological and agricultural crop 

modelling and forecasting, concurrently serving as an important instrument for water resource 

management and agricultural management applications. 
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