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Abstract 10 

This research reports the first time the sensitivity, properties and response of a smartphone image 11 

sensor that has been used to characterize the photobiologically important direct UVB solar 12 

irradiances at 305 nm in clear sky conditions at high air masses. Solar images taken from Autumn 13 

to Spring were analysed using a custom Python script, written to develop and apply an adaptive 14 

threshold to mitigate the effects of both noise and hot-pixel aberrations in the images.  15 

The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° 16 

(air mass = 9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the 17 

calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness 18 

throughout all observations was 281 ± 18 DU (to 2 standard deviations). A Langley Plot was used 19 

to confirm that there were constant atmospheric conditions throughout the observations. 20 

The quadratic calibration model developed has a strong correlation between the red colour channel 21 

from the smartphone with the Microtops measurements of the direct sun 305 nm UV, with a 22 

coefficient of determination of 0.998 and very low standard errors. Validation of the model verified 23 

the robustness of the method and the model, with an average discrepancy of only 5% between 24 

smartphone derived and Microtops observed direct solar irradiances at 305 nm. The results 25 

demonstrate the effectiveness of using the smartphone image sensor as a means to measure 26 

photobiologically important solar UVB radiation. 27 

The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform 28 

data collection and analysis of solar UVB observations is an example of how scientific 29 

investigations can be performed by citizen science based individuals and groups, communities and 30 

schools. 31 
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Introduction 35 

Research into the damaging influences (Longstreth et al. 1998) and beneficial influences (Piri et 36 

al. 2011; Grant, 2008) of solar UV radiation requires the measurement of personal solar UV 37 

exposures during normal daily activities. The established measurement techniques range from 38 

spectroradiometry, radiometry and dosimetry techniques (Parisi et al. 2004; Cancillo et al. 2005). 39 

Recent research has investigated the novel approach of the measurement of narrowband and 40 

broadband UV exposures with the CMOS camera sensor in a smartphone (Fung and Wong, 2016; 41 

Turner et al., 2016; Igoe and Parisi, 2015; Igoe et al., 2014b).  42 

The use of ubiquitous portable technology, such as smartphones to collect irradiance data and 43 

freely available programming tools, such as Python on the equally available laptops and tablets to 44 

analyse data provide avenues for participatory Citizen Science involvement in atmospheric UVB 45 

observations, with connections to the related public health topics, such as skin cancer mitigation. 46 

Previous research concluded that smartphone image sensors, fitted with narrow passband filters, 47 

can detect quantifiable irradiances deep in the UVA waveband (specifically 340 nm to 320 nm) 48 

and into the UVB (310 nm) with a modified smartphone image sensor from laboratory 49 

monochromatic and solar sources (Wilkes et al. 2016; Igoe and Parisi, 2015). The signal is 50 

characterised by very low dark noise signals that is largely unaffected by changes in temperature 51 

(Igoe et al. 2014a). Total noise increased with decreasing wavelength and increasing solar zenith 52 

angle when observing the direct solar UVA (Igoe and Parisi, 2015). Considering that dark noise in 53 

modern smartphone image sensors is negligible (Wilkes et al. 2016; Igoe et al. 2014b; Riutort-54 

Mayol et al. 2012), the likely source is due to temporal noise sources such as pixel photo response 55 

and spatial non-uniformity noise across the images (Riutort-Mayol et al. 2012).  56 
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Despite significant attenuation of the incident solar UV irradiances due to the outer lens, 57 

narrowband signals at 320 nm were found to be quantifiable to be used in smartphone based 58 

evaluation of the UVA (Igoe and Parisi, 2015) and quantifiable at 310 nm (Wilkes et al. 2016). 59 

The prior research and preliminary observations with a laboratory UV source (Turner et al., 2016) 60 

suggest that the attenuated solar irradiances in the UVB waveband ought to be measurable and 61 

quantifiable. No previous research has evaluated the direct sun UVB irradiances at 305 nm 62 

quantified by a smartphone image sensor. The purpose of this research is to determine the 63 

sensitivity, properties and response of a smartphone image sensor in the field to narrowband direct 64 

solar UVB irradiation at 305 nm at a range of solar zenith angles, with a focus on high solar zenith 65 

angles greater than 60° (air mass = 2).  66 

The wavelength of 305 nm was selected due to the relatively high response at this wavelength for 67 

the erythemal action spectrum (CIE, 1998) and the previtamin D3 action spectrum (CIE, 2006). 68 

The 24 hour MED (minimum erythemal dose) measured at 305 nm has been reported as a sensitive 69 

indicator of skin type (Kollias et al., 1996). Furthermore, this wavelength is often cited in UVB 70 

aerosol studies and is a wavelength used in measurement equipment, such as the Microtops II 71 

sunphotometer (Morys et al. 2001) and the ultraviolet multi-filter rotating shadow band radiometer 72 

(Wenny et al. 2001) and is a wavelength used in measuring the total ozone column in the Dobson 73 

spectrophotometer and other instruments (World Meteorological Organisation, 2012; Wenny et al., 74 

2001). This wavelength is also the focus of measurements of the Quasi-Biennial Oscillation (QBO) 75 

in the UVB (Zerefos et al. 2001). 76 

 77 

Methodology 78 
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Equipment 79 

The smartphone used for direct sun observations at 305 nm was the Sony Xperia Z1 (Sony 80 

Corporation, Tokyo, Japan).  This phone has a more advanced camera sensor than the one used in 81 

the previous research (Igoe and Parisi, 2015). The dark response of all colour channels of the 82 

smartphone image sensor at several different ambient temperatures was determined by taking 83 

images with the lens completely obscured with black electrical tape (Igoe et al. 2014a). The Xperia 84 

Z1 has a 21-megapixel camera using Sony’s Exmor RS backside-illuminated mosaic image sensor 85 

(IMX 230). The image sensor has a diagonal length of 7.487 mm, consisting of square pixels, 1.12 86 

µm across (Sony Corporation, 2015). The image sensor was unmodified and no external sensors 87 

were used in the collection of UVB irradiances. 88 

Measurements made by the smartphone were calibrated against a Microtops II sunphotometer 89 

(Model E540, Solar Light Inc., USA). The Microtops measures direct sun irradiances at a stated 90 

value of 305 nm. The narrowband filter (Solar Light Inc.) used to calibrate the smartphone was the 91 

same as that used in the Microtops, and was centred at 305.5 nm with a FWHM (full width at half 92 

maximum) of 2 nm. The diameter of the filter was approximately 13 mm and was sufficient to 93 

fully cover the smartphone camera lens. For the purposes of this research, this centre wavelength 94 

will be referred to as being 305 nm. The outer lens of the smartphone was kept in place and the 95 

image sensor responses were made without using any external hardware as has been done with 96 

similar studies (Wilkes et al. 2016). 97 

Time and Location 98 

All measurements were performed within one kilometre of the University of Southern Queensland, 99 

Toowoomba (elevation 693 m; latitude 27°36’S longitude 151°55’E), Queensland, Australia. A 100 
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set of five measurements were taken every 20 minutes between local dawn and solar maximum, 101 

from April to October 2016. Data was collected over 2 days for the calibration of the smartphone 102 

camera and over 5 days for the validation. The solar zenith angles (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆) over the measurement 103 

period were 84° to 23°.  104 

 105 

Field measurements  106 

The measurement focus was on angles corresponding to high solar zenith angles (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆), extending 107 

beyond an air mass of 2 (𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 > 60°), thus exceeding the limit demonstrated by earlier research 108 

(Igoe and Parisi, 2015). Images were taken from the earliest time that Microtops readings could be 109 

taken to ensure the visibility of the solar image on the smartphone image sensor. All observations 110 

were performed on days when the sun was not obscured by clouds. 111 

The Microtops was used to measure the direct solar irradiance at 305 nm, the ozone layer thickness 112 

in Dobson Units (DU) and the aerosol optical thickness (AOT) at 340 nm. The latter was included 113 

as a proxy to the aerosol conditions, as a direct measurement at 305 nm was not available with the 114 

current device. A Langley Plot is used to confirm constant conditions with the overall atmospheric 115 

optical depth and image sensor sensitivity across the observations (Parisi et al. 2004). 116 

The Microtops was securely mounted on a sturdy camera tripod (Figure 1) in a yard that had no 117 

obstructions to prevent any direct observation of the sun for all measurements. 118 

 119 
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 120 

Figure 1: The Microtops II Sunphotometer securely mounted on a camera tripod in an area 121 

with an unobstructed view of the direct sun at various zenith angles. 122 

 123 

The 305 nm filter was secured over the camera lens of the Sony Xperia Z1, using Blutak to hold 124 

the filter in place (Figure 2 left), then having black felt surround the filter to prevent light leakage 125 

from contaminating the images. The felt and filter were further secured using black electrical tape 126 

to eliminate light leakage (Figure 2 right).  127 

 128 
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 129 

Figure 2: Emplacement of the 305 nm filter on the Sony Xperia Z1, secured using Blutak 130 

(left), then surrounded by black felt to prevent light leakage and held firm using black 131 

electrical tape (right). 132 

 133 

The direct sun images were taken by aligning the smartphone with the Microtops for each 134 

observation. Care was taken to ensure that the Microtops input optics and the camera sensor and 135 

filter on the smartphone were in direct alignment (Figure 3) with the direct sun. Smartphone 136 

measurements entail taking data from the area covered by the image of the solar disk. These pixels 137 

are mostly the result of direct solar irradiance, but do have the influence of a small amount of 138 

diffuse. As it is impractical to separate the amounts using a smartphone, for simplicity these 139 

measurements are referred to as ‘direct solar irradiance’. For experimental simplicity, each photo 140 

was saved in the default JPEG format for smartphones, with all settings set to automatic. 141 

Measurements from the Microtops were taken at the same time. 142 

 143 
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 144 

Figure 3: Alignment of the smartphone filtered camera to the same direction as the input 145 

optics of the Microtops II sunphotometer. Confirmation of the correct targeting can be seen 146 

with the white dot in the centre of the Sun target on the sunphotometer. 147 

 148 

The smartphone images were downloaded to a computer and were initially analysed using the 149 

freely accessible ImageJ software (imagej.nih.gov) to visually ascertain the distribution of pixel 150 

values of each colour channel and to observe a cross sectional profile of pixel values through the 151 

solar image. This step helps select which of the colour channels will be focused on. Due to the 152 
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precision in aligning the smartphone with the Microtops, the solar disk was at the same position in 153 

each photo.  154 

 155 

Langley Plot 156 

To ensure consistency in atmospheric optical conditions despite variations in ozone and aerosol 157 

optical depths, a Langley Plot was derived from all calibration and validation 305 nm irradiance 158 

data collected from the Microtops plotted against the air mass of when they were measured. The 159 

Langley Plot was determined by the Beer-Lambert Law (Bigelow et al., 1998): 160 

 161 

ln 𝐼𝐼305 = ln 𝐼𝐼0,305 − 𝑚𝑚𝑚𝑚     [1] 162 

 163 

where ln 𝐼𝐼305 is the natural log of the solar irradiance measured from the Microtops at 305 nm; 164 

ln 𝐼𝐼0,305 is the natural log of the extraterrestrial irradiance (air mass = 0); m is the air mass and 𝑚𝑚 is 165 

the optical depth, which is the gradient when ln 𝐼𝐼305 is plotted against m (Bigelow et al. 1998).  166 

 167 

Image analysis 168 

Pixel values (or ‘digital numbers’) cannot be negative values and their distributions tend to be log-169 

normal (Igoe et al. 2014a). This necessitates the use of geometric mean and standard deviations in 170 

all analyses (Limpert et al. 2001). These statistics form the basis of an adaptive threshold 171 

developed using the Python programming language for use in image analysis. This adaptive 172 

threshold was employed to statistically analyse pixel data of the imaged solar disk that had pixel 173 

values that were well above the background noise levels. 174 
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Analysis and retrieval of important statistical information was performed using a custom written 175 

Python script (developed by D. Igoe). The script performed the analysis with the following steps: 176 

1. The user is prompted to open an image file, where on clicking the button, the open-file 177 

dialog box is opened and the image can be manually selected from where it has been saved. 178 

2. The script then selects the most visible colour channel array (confirmed from earlier 179 

ImageJ based observations). 180 

3. A 5 x 5 median filter is applied to remove the presence of hot pixels. A hot pixel represents 181 

a pixel with a value far above the mean pixel value (Pain et al. 2005). This is an important 182 

consideration for any imaging device with very small pixel sizes (Chapman et al. 2016). 183 

4. Necessary image statistics are calculated, the geometric mean (µ*), used as a baseline; the 184 

geometric standard deviation (s*) and the maximum pixel value (max). 185 

5. The adaptive threshold is determined to allow selection of the pixels corresponding to the 186 

image of the sun. For simplicity, the adaptive threshold is calculated as being the upper 187 

bound of the 4th standard deviation from the mean, for geometric statistics, this is calculated 188 

using equation 2 (Limpert et al. 2001): 189 

 190 

𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  𝜇𝜇∗ ×  (𝑟𝑟∗)4    [2] 191 

  192 

The 4th standard deviation was selected based on initial observations that the solar disk 193 

occupied less than 0.003% of the total image, corresponding to the amount of the pixels 194 

expected to be distributed above the upper bound of the threshold. 195 
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6. An algorithmic ‘mask’ is applied, which excludes all pixel values below the calculated 196 

adaptive threshold from any further analysis, so only pixel values above the threshold are 197 

considered.  198 

• A data validation step is included, declaring any image where max < threshold as 199 

invalid, as these are considered for this research to be comparatively underexposed 200 

images. This data validation is crucial to prevent the script from crashing. 201 

7. The mean and standard deviation of the pixel values retained above the mask for each 202 

image are recorded and provided for calibration in Excel. 203 

The development of the simple Python algorithm allowed quick and efficient data collection to be 204 

used for final calibration modelling in Excel.  This calibration modelling is a crucial step if 205 

different smartphone model is used, as previous similar research found that each device responds 206 

differently to solar UV irradiation (Igoe et al. 2014b). 207 

 208 

Smartphone calibration 209 

When viewing the sun ‘off axis’ from zenith, with an air mass greater than 1, the irradiances are 210 

analogous to the trigonometric transformations that occur with field darkening, reducing it by a 211 

factor of cos4 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆  (Hauftecker, 2000). The cos4 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆  reduction at increased air masses was 212 

applied to the average grayscale, red, green and blue pixel values (Y, R, G and B respectively) for 213 

each smartphone image (Igoe et al. 2014b). Multiplying by this value provides a corrected image 214 

sensor response value for each image, reduced in response to increased air mass (Igoe et al. 2013). 215 

A further correction to account for the variations in the Earth-Sun distance (D2), based on the 216 
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observation day of the year (doy) is multiplied to the corrected image sensor pixel values, as shown 217 

in equation 3 (Porter et al. 2001). 218 

 219 

𝐷𝐷2 = {1 − 0.01673 cos[0.017201(𝑜𝑜𝑜𝑜𝑑𝑑 − 4)]}2    [3] 220 

  221 

The natural log of direct solar irradiances at 305 nm measured using the Microtops II 222 

sunphotometer (ln 𝐼𝐼305) was used to calibrate the corresponding corrected average of the image 223 

sensor pixel values for each image. The resulting proportionality relationship, based on earlier 224 

research (Igoe et al. 2014b) and adapted as represented in equation 4 was applied.  225 

 226 

ln 𝐼𝐼305 ∝ 𝑓𝑓[ln({𝑌𝑌,𝑅𝑅,𝐺𝐺,𝐵𝐵}𝐷𝐷2 cos4 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆)]    [4]  227 

 228 

where ln 𝐼𝐼305 is the natural log of the solar irradiance at 305 nm measured by the Microtops and 229 

ln({𝑌𝑌,𝑅𝑅,𝐺𝐺,𝐵𝐵}𝐷𝐷2 cos4 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆)  represents the smartphone derived colour pixel values for the 230 

respective red (R), green (G) and blue (B) image sensor responses and grayscale (Y), calibrated 231 

with a function f.  232 

 233 

Validation 234 
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The validity of the model derived in the calibration stage (equation 4) was tested by applying the 235 

corrected colour channel and grayscale pixel values derived calibration equations to determine the 236 

magnitude of the corresponding irradiances at 305 nm for a set of data collected to validate the 237 

model. These values were confirmed by plotting a linear goodness-of-fit relationship with the 238 

corresponding Microtops measurements (Riutort-Mayol et al. 2012).  239 

 240 

Noise analysis 241 

Dark noise (response) was calculated using the average pixel values for each of the 3 colour 242 

channels (red, green and blue) and their respective standard deviations were determined by using 243 

a custom Python script that also evaluated the prevalence of ‘hot-pixel’ values. The number of hot-244 

pixels were consistent for all photos at a frequency of approximately 0.002% of the total pixels in 245 

each image. There was no pattern discernible in the spatial distribution of the hot pixels. 246 

Additionally, the average signal to noise ratio (SNR) was performed on all 3 colour channels and 247 

grayscale values for comparison to discern if there is a ‘trade-off’ in terms of SNR with sensitivity 248 

to lower wavelengths (Wilkes et al. 2016). The SNR was calculated using the ’20log’ rule 249 

(Nakamura, 2006). 250 

𝑆𝑆𝑆𝑆𝑅𝑅 = 20 log �𝜇𝜇
𝜎𝜎
�     [5] 251 

where µ is the mean pixel value and σ is the corresponding 2nd standard deviation. Positive values 252 

represent a higher signal as opposed to negative values, which represent noise. 253 

The standard deviation is described as an indicator of sensor noise (Riutort-Mayol et al. 2012).  As 254 

several different sets of measurements were taken over different days in different seasons, the 255 
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standard deviation of the mean, or standard error (Zalewski, 1995), is calculated as the noise 256 

indicator, based on the 2nd standard deviation or approximately the 95% confidence interval – for 257 

simplicity, this will be referred to as ‘standard error’ for the remainder of the paper.  258 

Therefore, a measure of the total noise will be performed across pixel values above the threshold 259 

for each image to a 95% confidence level; this will be compared to the subsequent irradiances to 260 

characterise the sensor noise (Riutort-Mayol et al. 2012). The standard error derived from 261 

smartphone observations will be compared to the ln(I305) derived from the Microtops, in an 262 

interaction plot (Riutort-Mayol et al. 2012). A test to determine if the increase in solar irradiance 263 

(measured by ln(I305)) results in an increase in sensor noise, approximated as the standard error 264 

(Riutort-Mayol et al. 2012; Kutner et al. 2004). The test will also determine if the increase in solar 265 

irradiance results in heteroscedasticity, or increased variability, on the sensor noise. 266 

 267 

Results and Discussion 268 

All Microtops observations taken at 305 nm using the Microtops (from the calibration and 269 

validation stages) are plotted against their corresponding air masses in the Langley Plot (Figure 4). 270 

 271 
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 272 

 273 

Figure 4: Langley Plot for all the Microtops irradiances compared to their corresponding 274 

air masses collected during the research (n = 449).  275 

 276 

 277 

The very high correlation (R2 = 0.99) confirms that a ‘constant sky’ prevailed throughout the 278 

calibration and validation observations, despite variations in the range of ozone optical depth (263-279 

337 DU). Despite there being considerable variation in the range of observed aerosol optical 280 

thicknesses at 340 nm (0.12-0.38), this does not appear to greatly influence the observations made 281 

at 305 nm. 282 
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All 3 colour channels and grayscale pixel value or digital number data distributions were plotted 284 

to ascertain if their distributions were at least approximately normally distributed (Gaussian), as 285 

shown in figure 5 for an image for an SZA of 53°. 286 

 287 

 288 

 289 

Figure 5: Sample distribution for red (R), green (G), blue (B) and grayscale (Y) pixel values 290 

or digital numbers for an image with an SZA of 53°. 291 

 292 

The sample distribution shows that the blue channel and grayscale pixel values have a clear 293 

approximation to a normal distribution, red slightly less so and the green channel is truncated, 294 

indicating that much of that channel’s distribution is indistinguishable from the fixed pattern noise. 295 

These patterns were largely repeated for all measurements with little variation. As all colour 296 
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channels pixel values have a distribution that can be approximated to normal, the mean, standard 297 

deviations and standard errors can be determined (Yoo et al. 2007; Zalewski, 1995). 298 

In calculating the dark response (noise), the average mean and 2 standard deviations (representing 299 

approximately 95.5% of pixel values) for each colour channel pixel values were consistent across 300 

all observations and conditions (temperature range of 2°C to 24°C), consistent with the previously 301 

reported temperature invariance of dark noise (Igoe et al. 2014a). Table 1 summarises the statistics 302 

for each colour channel noise level. 303 

 304 

Table 1: Comparison of mean dark noise pixel values for each colour channel and respective 305 

standard deviations (n = 123). 306 

 307 

 Colour channel 

 Red Green Blue 

Mean pixel value 2.94 0.16 1.41 

2 standard 

deviations 

 

1.84 0.93 1.53 

 308 

 309 

Although the standard deviation is greater than the mean for the green and blue channels, the pixel 310 

values will never be in the impossible state of being negative owing to the geometric nature of 311 
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lognormal distributions (Limpert et al. 2001). The upper pixel dark noise values for the red, green 312 

and blue colour channels are approximately 9.92, 0.19 and 3.31 respectively.  313 

 314 

There is a very clear difference between the signal to noise ratio (SNR) of the green colour channel 315 

pixel values as compared to the red and blue channels. The SNR calculation demonstrates that the 316 

green channel is mostly indistinguishable from noise, resulting in the grayscale value being a false 317 

positive signal, as grayscale is calculated from mostly the green channel (Alala et al. 2014). The 318 

SNR distributions for the red, green and blue colour channels pixel values for 449 images are 319 

shown in Table 2. 320 

 321 

 322 

Table 2: Signal to Noise ratio (SNR), by the 20log rule, for all colour channels pixel values, n 323 

= 449. 324 

 325 

 Colour channel 

 Red Green Blue 

Mean SNR 16.3 -0.6 12.1 

Standard deviation 

(95% confidence 

level) 

3.6 5.2 3.5 

 326 

 327 
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To be able to develop a model that would include the low-light conditions that occur at high air 328 

masses (> 2), a colour channel with a signal distinguishable from background noise is required. 329 

Figures 6a and 6b display the pixel values of a cross section of the pixels through an image of the 330 

sun and surrounding areas taken at dawn and midday respectively.  331 

 332 

 333 

Figure 6a: The pixel values of a cross section of the pixels through the sun image and 334 

surrounding areas taken at dawn (red = R, green = G and blue = B) for an SZA of 81°. 335 
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 337 

Figure 6b: The pixel values of a cross section of the pixels through the sun image and 338 

surrounding areas taken at midday (red = R, green = G and blue = B) for an SZA of 27°. 339 

 340 

The cross sections in Figures 6a and 6b clearly demonstrate that the red channel for the smartphone 341 

used provides the clearest signal with the greatest count of measurable pixels at both dawn and 342 

midday. The blue channel possesses considerably lower pixel values at both times and has a 343 

measurably smaller cross-sectional diameter. The green channel is further shown to be 344 

indistinguishable from the background noise. Therefore, only the red channel will be considered 345 

for further analysis. 346 
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Smartphone Calibration 348 

All solar images were analysed using the Python script and the adaptive threshold applied. The 349 
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(to 95% confidence level) were calibrated against corresponding Microtops irradiance 351 

observations using Microsoft Excel.     352 

Two models were considered, linear and quadratic. The coefficient of determination  (R2) was 353 

determined for each as a gauge for the model’s precision, the linear model had R2 = 0.971, 354 

compared to the quadratic model with R2= 0.998; therefore, the quadratic model will be considered 355 

for further analysis. Figure 7 shows the quadratic calibration model comparing the smartphone 356 

derived ln(I305) values for the red channel calibrated against the consequent values obtained from 357 

Microtops’ observations. 358 

 359 

 360 
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Figure 7: ln(I305) values derived from smartphone observations compared to those observed 363 

with the Microtops (n = 94). The error bars indicate the standard error. 364 

 365 

 366 

The red (R) colour channel pixel values calibrated model is: 367 

 368 

ln 𝐼𝐼305 = −0.1274𝑥𝑥𝑅𝑅2 + 1.2126𝑥𝑥𝑅𝑅 − 5.1764   [6] 369 

 370 

where 𝑥𝑥𝑅𝑅  represents ln({𝑅𝑅}𝐷𝐷2 cos4 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆)  from equation 4 and the subscript R indicates the 371 

average red colour channel pixel value/digital number for each image.  372 

 373 

Validation 374 

Further observations were made to validate the model in equation 6. Figure 8 compares the 375 

Microtops measured values of ln 𝐼𝐼305  to those derived using the quadratic model from the 376 

calibration of the smartphone. The error bars represent the standard error. The solid line is the 1:1 377 

relationship. 378 

 379 
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 380 

 381 

Figure 8: Comparison of smartphone derived values (y axis) for 𝐥𝐥𝐥𝐥 𝑰𝑰𝟑𝟑𝟑𝟑𝟑𝟑  to the Microtops 382 

measured values for the red channel quadratic model (n = 355). 383 
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Figure 8 demonstrates a close agreement between the values derived from the Microtops and those 385 

from the smartphone, with correlations of 0.98. Average discrepancies for data derived from the 386 

smartphone for the red channel were below +5% from those derived from the Microtops in a range 387 

consistent with conventional equipment (Cancillo et al. 2005; Zerefos et al. 2001).  The trends 388 

indicate an increase in standard error with an increase in irradiance and an increase in scattering 389 

as irradiance increases. 390 
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The standard error calculated for the illuminated images were mostly below 1, increasing from an 392 

average of approximately 0.2 at lower irradiances. The trend in standard error can be seen in Figure 393 

9. The increase in standard error indicates that the image sensor has become more susceptible to 394 

photon-induced noise at higher irradiances (Riutort-Mayol et al. 2012), a trend that is consistent 395 

with the error bars in the validation chart (Figure 8). 396 

 397 

 398 

Figure 9: Interaction plot of smartphone derived standard error vs. ln(I305) indicating a 399 

greater susceptibility to photon-induced noise as ln(I305) increases. 400 

 401 
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the noise induced on the smartphone image sensor (approximated by the standard error values) 403 
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values). This trend indicates that as the air mass decreased, the irradiance increased causing a 405 

noticeable increase in photon-induced pixel noise on the image sensor. 406 

 407 

Conclusion 408 

This research, for the first time, quantifies the smartphone image sensor response to direct solar 409 

clear sky irradiances at 305 nm to an air mass of 9.6, showing that an inexpensive portable 410 

smartphone camera sensor can be employed to detect short wavelength 305 nm direct UV at low 411 

irradiances. This was achieved by analyzing each colour channel’s response, determining that the 412 

red channel yielded the least amount of noise and the greatest quantifiable signal. Validation 413 

observations of the quadratic calibration model demonstrated the robustness of the model with an 414 

average discrepancy below 5% between smartphone derived direct sun irradiances and Microtops 415 

based measurements. The use of a relatively low cost and widely accessible smartphone camera 416 

sensor for direct sun UV irradiances measurements at 305 nm has the potential for use in UV 417 

measurements in photobiology and associated skin cancer public health research.  Further research 418 

and development would be to develop an app to automate the data collection and analysis process. 419 
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