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Abstract 26 

Model-based irrigation control strategies applied to irrigation make decisions (on 27 

water application and/or timing) using a crop and/or soil production model.  Decisions 28 

are made with respect to an optimisation objective which, for irrigation, can be either 29 

short-term (e.g. achieving/maintaining a set soil-water deficit) or predicted end-of-30 

season (e.g. maximising final yield) by predicting how the crop will respond at the 31 

end of the season.  In contrast, sensor-based irrigation strategies rely on achieving a 32 

performance that is measurable during the crop season to provide the feedback 33 

control, and may not necessarily optimise overall crop performance. Model-based 34 

control potentially avoids this limitation. 35 

 36 

This paper describes the application of Model Predictive Control (MPC) methodology 37 

to the feedback control of irrigation via a model-based irrigation strategy implemented 38 

in the irrigation control simulation framework ‘VARIwise’.  The requirement to also 39 

accommodate spatial and temporal differences in crop water requirement across a 40 

heterogeneous field is met by defining management ‘zones’ according to differing soil 41 

and crop properties across the field and separately applying the control algorithm for 42 

each of these zones.   43 

 44 

Case studies were conducted to evaluate MPC for a centre pivot irrigation machine-45 

irrigated cotton crop (under typical Australian growing conditions) with: (i) different 46 

in-season performance objectives (maintaining soil-water deficit; maximising square 47 

count); (ii) different predicted end-of-season performance objectives (maximising 48 

yield; maximising water use efficiency); and (iii) maximising yield with different field 49 

data inputs for model calibration.  The model predictive control strategy produced 50 
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significantly higher simulated yields and water use efficiency than an industry-51 

standard irrigation management strategy; and (in most but not all situations) direct 52 

sensor-based adaptive control strategies.   53 

 54 

Research Highlights 55 

• Model Predictive Control was simulated for site-specific irrigation in 'VARIwise' 56 

• MPC accommodated both short-term (in-season) and long-term performance 57 

objectives 58 

• MPC delivered the best performance when optimising crop yield 59 

• MPC resulted in higher (simulated) yield than sensor-based strategies 60 

• MPC required extensive data to accurately calibrate crop model 61 

 62 

Keywords 63 

Variable-rate irrigation, centre pivot, lateral move, scheduling, irrigation automation, 64 

Model Predictive Control 65 

 66 

1. INTRODUCTION 67 

The development of the control simulation framework ‘VARIwise’ has enabled the 68 

evaluation of site-specific, spatially-variable irrigation control strategies on field crops 69 

(McCarthy et al. 2010a).  VARIwise permits spatially and temporally varied 70 

simulation and accommodates sub-field scale variations in all input parameters down 71 

to metre-scale zone size.  Simulations of ‘sensor-based’ strategies showed potential 72 

improvements in yield and water use efficiency (McCarthy et al. 2013).  These 73 

strategies compared the field measurements with a desired response (e.g. soil-water 74 

deficit) and adjusted the irrigation volume applied according to the difference.   75 



 

4 
 

 76 

1.1 Model Predictive Control (MPC) applied to irrigation 77 

In contrast, an alternative ‘advanced process control’ approach to irrigation uses crop 78 

production models to aid the irrigation decision making process.  These ‘model-79 

based’ control strategies use the available field measurements to calibrate the crop 80 

model.  The model is then repeatedly executed to determine the optimal irrigation 81 

volume and timing that will achieve the desired performance objective (e.g. predicted 82 

end-of-season yield). 83 

 84 

The methodology of Model Predictive Control (MPC) involves using a model to 85 

predict the optimal input signal at the current time considering future events over a 86 

finite time period (Kwon and Han 2005).  This is referred to as a ‘control horizon 87 

length’.  Only the first optimal control action is implemented after each time step.  88 

MPC is applicable to irrigation since a soil-plant-atmosphere model may be used to 89 

evaluate the application of various irrigation volumes on a fixed number of 90 

consecutive days; for example, the model may be used to, firstly, determine the best 91 

irrigation volume to apply on each zone for each of the next three days; and, secondly, 92 

determine which day resulted in the best overall performance.  The future process 93 

outputs used to evaluate the irrigation scheme may be predicted daily with 94 

measurements of crop response (e.g. for cotton, square/boll count, leaf area index) or 95 

soil-water.  Alternatively, the simulated final crop yield or water use efficiency may 96 

be used to evaluate the various irrigation schemes. 97 

 98 

From the control perspective, the ‘process model’ evolves during the growth of the 99 

crop such that the control must be adaptive.  This requirement means that the model 100 
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used by the MPC strategy must be continuously re-calibrated using the currently 101 

available field data.  The plant growth and soil-water dynamics in the cotton model 102 

OZCOT (Wells and Hearn 1992) implemented within VARIwise, can be accurately 103 

calibrated (McCarthy et al. 2011.  The calibrated OZCOT model has also been found 104 

to accurately simulate yield (Richards et al. 2001).  Using one season’s field 105 

experiment data McCarthy et al. (2011) found that OZCOT  was  most  effectively  106 

calibrated  (and therefore able to predict the soil and crop response to irrigation 107 

application) using full data input,  whilst  for  situations  where  only  two  data  inputs  108 

were  available,  the  simulations suggested that either weather-and-plant or soil-and-109 

plant inputs were preferable.   110 

 111 

Park et al. (2009) developed two MPC systems for centre pivot irrigation which both 112 

used measured soil and weather inputs to calibrate a soil-water model. Their first 113 

implementation used the calibrated model to determine the irrigation volumes which 114 

would fill the soil profile for irrigation events on fixed days; whereas their second 115 

implementation used the calibrated model to determine the irrigation timing for a 116 

fixed irrigation volume application which would fill the soil profile.  Neither 117 

implementation incorporated the crop growth response.   118 

 119 

1.2 MPC and crop production models 120 

The performance objectives set for MPC applied to irrigation can range from a short-121 

term objective such as achieving a preset soil-water deficit following each irrigation 122 

to a ‘whole season’ objective such as maximising predicted end-of-season yield.  123 

 124 
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In addition, crop production models (such as OZCOT for cotton, discussed below) 125 

have sophisticated prediction capabilities which may be utilised in the implementation 126 

of MPC.  For example, a performance objective to maximise the number of plant 127 

fruiting sites during growth should maximise potential predicted end-of-season yield.  128 

This additional crop response capability typically requires measurements of the plant 129 

to calibrate the crop production model according to the measured plant growth 130 

parameters (e.g. fruiting), which in turn requires infield plant sensors to provide 131 

calibration data.  To maximise uptake of the site-specific irrigation control system by 132 

growers it is desirable to minimise the sensor requirements.  A reduction in 133 

measurements could be achieved by using only the data types that are more influential 134 

in the model calibration or by reducing the spatial or temporal resolution of data.  135 

However, the data used to calibrate the model should still enable sufficient accuracy 136 

of the model.  An insufficient range of measurements to calibrate the model used by 137 

MPC will influence the accuracy of the model and the model’s ability to predict 138 

irrigation and crop performance.   139 

 140 

Hence, this paper aims to: 141 

• identify the optimal combination of performance objective and data input 142 

combination amenable to practical MPC strategies; and also 143 

• explore the impact of different control horizon lengths (period of time for 144 

forecasting future events) on the performance of MPC. 145 

   146 

The strategies simulated in this paper explore the viability of the use of MPC in the 147 

simulation of a ‘realistic’ irrigation situation with spatial and temporal variation 148 

across a heterogeneous field.  Accordingly, this paper details the implementation of 149 
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the MPC methodology in VARIwise and, for the example of cotton grown in 150 

Australia, presents results for a range of simulations having different performance 151 

objectives.  The results are presented as three case studies, A, B and C, which, in 152 

order, evaluate the potential of MPC to optimise: 153 

A. short-term responses of square count or soil-water; 154 

B. predicted end-of-season crop yield or water use efficiency with (i) low and high 155 

soil nitrogen content, and (ii) crop seasons with and without rainfall; and 156 

C. predicted end-of-season crop yield with different combinations of sensory input 157 

data to calibrate the model. 158 

A comparison is then made between the MPC strategies and simulations of ‘sensor-159 

based’ strategies for adaptive irrigation control (McCarthy et al. 2013).   160 

 161 

2. IMPLEMENTATION 162 

The simulation framework ‘VARIwise’ (McCarthy et al. 2010a) was created to 163 

develop, simulate and evaluate site-specific irrigation control strategies for centre 164 

pivot and lateral move irrigation machines on non-uniform (spatially and temporally 165 

varied) fields.  The framework enables evaluation of strategies with different sensor 166 

data availability (both spatial and temporal); for example, the performance of the 167 

control strategies with spatial gaps in measured response is explored in McCarthy et 168 

al. (2010b).  In addition, the framework can provide evaluation of different irrigation 169 

system capacity constraints and when supplied with real-time weather and/or other 170 

field data, the framework will provide direct machine actuation. 171 

 172 

For the simulation (and management) of cotton irrigation, the cotton production 173 

model OZCOT (Wells and Hearn 1992) was used by VARIwise and was 174 
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automatically and continuously calibrated according to the currently available 175 

weather, soil and plant data. Details are set out in McCarthy et al. (2011).  To 176 

illustrate the VARIwise configuration used to evaluate MPC a general schematic is 177 

presented in Figure 1, in which the central blocks and data flows are explained in the 178 

following sections.     179 

 180 

Insert Figure 1 here 181 

 182 

The MPC algorithm predicts how much each output (e.g. soil-water, fruit load) will 183 

deviate from a time series trajectory within the prediction horizon.  A MPC cost 184 

function J(k) is calculated for each possible set of input actions in the current time 185 

step k using a least squares algorithm of the following form (Maciejowski 2002): 186 

 187 

 (1) 188 

 189 

where: 190 

J(k) = cost function at instant k 

C = length of prediction/control horizon 

N = number of system outputs 

 = weighting coefficient for output j 

 = predicted value of jth output at future instant  

 = target value of jth output at future instant  

 191 

The control action that minimises the cost function (i.e. that produces the smallest 192 

deviation in performance from the desired trajectory) is implemented.  This 193 
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optimisation is repeated at each sample time step to update the optimal input 194 

trajectory after a feedback update.  Hence, this MPC algorithm calculates the 195 

sequence of control action adjustments over a specified future time interval. 196 

 197 

In an irrigation context, the system outputs used to calculate the cost function will 198 

typically have different units and magnitudes, and the same percentage change in 199 

variables of different units and magnitudes may cause unintentional bias toward 200 

variables that are generally larger in magnitude.  For example, a particular percentage 201 

difference in soil-water will produce a larger cost function than the same percentage 202 

difference in leaf area index.  Hence, the MPC algorithm was modified (equation 2) to 203 

calculate a performance index that represents a percentage difference in the predicted 204 

outputs rather than a least squares objective function (equation 1).  The control action 205 

that maximises the performance index PI(k) is then implemented in each time step, 206 

and is calculated using the equation: 207 

 208 

 (2) 209 

 210 

The MPC methodology was implemented to determine irrigation timing and site-211 

specific irrigation volumes on a daily basis by means of the following four-step 212 

procedure: 213 

1. Update measured and forecast weather data 214 

2. Calibrate crop model 215 

3. Optimise irrigation volume for each zone 216 

4. Optimise day of next irrigation 217 

 218 
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The details of each step in relation to the following case studies are set out below.  219 

This procedure is independently applied to each ‘management zone’, where each zone 220 

in the field is defined according to differing soil and crop properties across the 221 

heterogeneous field. 222 

 223 

2.1 Step 1: updating measured and forecast weather data 224 

For each day of the crop season, the meteorological data input file for the integrated 225 

crop model was updated to include the previous day’s weather and the updated 226 

weather forecast for the farm’s location.  In a field implementation of MPC, the 227 

‘previous day’s weather’ could be obtained from an on-site weather station and the 228 

‘updated weather forecast’ could be obtained from the Bureau of Meteorology.  229 

However, to simulate the performance of MPC for a whole season (where there was 230 

no field implementation) both ‘previous day’s weather’ and ‘updated weather 231 

forecast’ had to be obtained from historical data.   232 

 233 

Because of the high variability of Australian climate and the difficulty in picking a 234 

‘typical’ year, an artificial daily meteorological dataset was created by averaging the 235 

day-on-day data of the five years (1999 to 2004 inclusive) appropriate to the location 236 

of Dalby (Latitude -28.18°N E, Longitude 151.26°), a major cotton-growing region of 237 

south-east Queensland, Australia, and this dataset was used for all simulations.  Daily 238 

data comprised maximum and minimum temperature, solar radiation and rainfall, and 239 

was sourced from Australian Bureau of Meteorology SILO patched point 240 

environmental dataset (QNRM 2009).  SILO is an enhanced climate database 241 

containing Australian climate data from 1889. 242 

 243 
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Forecast weather data, to be used predictively during the simulations, was created by 244 

imposing a Gaussian distribution of variability on the daily values of the five-year-245 

averaged dataset using standard deviations of ±5°C, ±5°C, ±5 W.hr/m2 and ±50% for 246 

maximum temperature, minimum temperature, daily solar radiation and rainfall,  247 

respectively; i.e. for any given day, the forecast one, two and three days ahead, then 248 

values for each variable randomly generated within each distribution by taking that 249 

day’s values as the mean.  For each day, only three days of the forecast weather data 250 

were used.  This is because the two Australian short-term numerical weather 251 

prediction models forecast three and seven days ahead and are combined to improve 252 

the prediction accuracy (Ebert 2001).  The three-day forecast would be more accurate 253 

than one model on its own because both models could predict weather to three days.  254 

A three-day forecast would ensure short-term prediction accuracy in the predictions, 255 

particularly as regards rainfall in south-east Queensland, Australia, where the summer 256 

rainfall is dominated by frontal bands of isolated cumulo-nimbus storms.   257 

 258 

2.2 Step 2: calibrating the crop model – ‘actual’ and ‘reference’ models 259 

The crop model OZCOT is utilised by VARIwise and can be automatically and 260 

continuously calibrated according to the ‘currently’ available weather, plus soil and 261 

plant data, using the procedure set out in McCarthy et al. (2011).  The procedure for 262 

calibrating the production/growth model OZCOT in a real-time implementation, i.e. 263 

for actual irrigation machine control, involves automatically and iteratively adjusting 264 

the parameters used to predict soil water status and plant growth until the difference 265 

between the predicted and sensed variables reached a minimum.  For the cotton model 266 

OZCOT, the plant variables (leaf area index, boll count, square count), soil variables 267 

(soil moisture content and plant available water capacity) and weather variables (daily 268 
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minimum and maximum temperature, rainfall and solar radiation in weather input 269 

file) are interdependent.  The plant behaviour can be calibrated by adjusting 270 

parameters in a crop properties file, whilst the soil moisture behaviour was calibrated 271 

by adjusting parameters in a soil properties file.  These parameters were adjusted 272 

between the minimum and maximum values of the corresponding parameters in the 273 

predefined soil properties and crop variety parameter profiles. The parameters 274 

adjusted in the crop properties file included squaring rate (the rate of new flower buds 275 

being produced), growth rate of leaf area and plant population constant; whilst the 276 

parameters adjusted in the soil properties file were the initial soil moisture content and 277 

drained upper limit in each soil layer.   278 

 279 

A ‘reference’ model, labelled ‘RefModel’, is used to provide the crop growth 280 

prediction scenario for MPC.  However, for the present case studies there was no 281 

measured field data input to calibrate the model.  To overcome this, a second OZCOT 282 

model of the cotton crop was used in place of ‘actual’ field conditions.  This model is 283 

referred to as the ‘actual crop’ model, labelled ‘AcModel’ and the parameters were 284 

different to those in RefModel to emulate RefModel not exactly following the field 285 

conditions.  In a field implementation the AcModel is not required as field 286 

measurements would be used.  AcModel was then used to calibrate RefModel (Figure 287 

1).  288 

 289 

The crop and soil properties of AcModel were obtained from the user-specified soil 290 

and plant measurements (and these varied between simulations, as set out below).  291 

Within RefModel the crop variety was specified by the user at commencement.  292 

Likewise the soil properties of RefModel were user-specified, with the addition of 293 



 

13 
 

areal variation in available soil-water imposed via a Gaussian distribution of 294 

variability having a standard deviation of ±25 mm (water depth equivalent). 295 

 296 

2.3 Step 3: optimising irrigation volumes for each zone 297 

Optimal irrigation volumes were determined by iteratively simulating the daily 298 

application of sixteen different irrigation volumes at 1 mm increments between 0 and 299 

15 mm on each zone in the field.  For each irrigation volume applied (for management 300 

zone k), a performance index PI(k) was calculated using equation (2).  For variables 301 

that are maximised to achieve the optimal irrigation strategy (e.g. square count, yield, 302 

crop water use efficiency), the target value is taken to be the maximum realistic 303 

commercially attainable value (e.g. 15 bales/ha for cotton yield, 3 bales/ML for crop 304 

water use efficiency).   305 

 306 

The predicted process outputs used to calculate the PI were taken one day after the 307 

irrigation application.  The optimal irrigation volume for each zone was the irrigation 308 

volume with the highest PI; however, if more than one irrigation volume had the same 309 

PI then a water-efficient approach was taken and the optimal irrigation volume was 310 

the lowest quantitative volume that achieved the maximum PI.  The irrigation volume 311 

was then calculated for each zone in the order in which the irrigation machine was to 312 

pass over the field. 313 

 314 

2.4 Step 4: optimising the timing (day) of the next irrigation 315 

The optimal day for the next irrigation event was determined using the calibrated 316 

RefModel.  This involved performing the irrigation volume optimisation of the 317 

previous step for an arbitrary number of days (i.e. to a fixed horizon) and contained 318 
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the assumption that the irrigation event could occur on only one of the days.  The 319 

maximum horizon length was set to three days since three days of predictive weather 320 

were used. 321 

 322 

The sixteen irrigation volumes tested on each zone depend on the irrigation day being 323 

tested.  This is because, unless rainfall occurs, it was assumed that the crop water 324 

requirement (and hence irrigation application volume) increases for each day the 325 

irrigation event is delayed.  For the first day irrigation volumes of 0 to 15 mm were 326 

tested with increments of 1 mm; for the second day 0 to 31 mm were tested with 327 

increments of 2 mm; and for the third day 0 to 47 mm were tested with increments of 328 

3 mm. 329 

 330 

A PI is calculated for each irrigation day by summing the individual PI values for 331 

each zone.  The day with the highest total PI is taken to be the optimal day for the 332 

next irrigation event.  The irrigation event is scheduled if the first day in the horizon 333 

had the highest PI and there are a minimum number of zones requiring irrigation 334 

greater than 0 mm.  This ensures that the irrigation application is practical and 335 

irrigations are not initiated for only a small number of zones in the field.  The 336 

threshold, i.e. the minimum proportion of zones requiring irrigation, was arbitrarily 337 

selected to be 15% for the case studies presented.   338 

 339 

2.5 Subsequent iteration 340 

After the optimal irrigation action – which may, of course, be a ‘nil irrigation’ action 341 

– was determined for the user-specified first day, the procedure described in the four 342 
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subsections above was repeated every day throughout the crop season, with the 343 

irrigation events ending on a day specified by the user.   344 

 345 

3. MPC CASE STUDY A: optimisation of short-term responses using different 346 

combinations of daily input data  347 

The MPC strategy was evaluated with daily input data to predict and control irrigation 348 

applications to achieve either a short-term soil (e.g. deficit) or plant growth (e.g. leaf 349 

area index) target.  A range of combinations of input variables for control were used 350 

to determine which input data stream was most useful for MPC. 351 

 352 

3.1 Methodology for Case Study A 353 

The field was automatically divided into 44 zones, each of area approximately 0.3 ha, 354 

and the irrigations occurred daily.  This number of zones enabled the simulations to be 355 

executed in a timely manner with spatially variable soil properties across the field.  356 

The MPC strategy was evaluated for ten combinations of data input (Table 1).  The 357 

input data combinations represent the data used both as input variables to calibrate 358 

RefModel and the variables used for control.  For the simulations using both soil and 359 

plant data, the weighting on each variable was set to be 0.5.  The strategies with soil 360 

data input aimed for soil-water deficit equal to 10% of the plant available water 361 

capacity in each zone.   362 

 363 

Insert Table 1 here 364 

 365 

In each simulation, the RefModel (to be calibrated) used the Siokra V16RR cotton 366 

variety with the underlying variability in plant available water capacity (PAWC) and 367 
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starting soil-water deficit as set out in Figure 2.  The starting soil-water deficit map 368 

was generated by assigning a starting soil-water deficit value of 30 mm across the 369 

field and imposing a Gaussian distribution of variability with standard deviation ±10 370 

mm on each zone.  The PAWC map was generating by assigning PAWC values of 60, 371 

150 and 200 mm on three zones of the fields, spatially interpolating the PAWC using 372 

ordinary kriging and by similarly imposing a Gaussian distribution of variability with 373 

standard deviation ±10 mm on each zone.  The PAWC ranges from 60 to 200 mm in 374 

the simulated field to ensure the control strategies could deal with the different soil 375 

types that often exist within fields.   376 

 377 

Insert Figure 2 here 378 

 379 

The measured crop response (AcModel) used the Sicot 73 cotton variety and soil 380 

variability map of Figure 2.  Siokra V16RR is a “Roundup Ready” late-maturing 381 

cotton variety, whilst Sicot 73 is a full season cotton variety with high yield potential 382 

(CSD 2009). The prediction horizon was one day and it was practical for irrigation 383 

events to occur daily. 384 

 385 

3.2 Case Study A – Results and discussion 386 

Table 2 sets out the numerical results of the MPC Case Study A, whilst Figure 3 387 

illustrates the spatial variability of the yield for each simulation of the case study.  The 388 

performance of the control strategies are compared based on the average and 389 

variability of the yield, irrigation applied, Irrigation Water Use Index (IWUI) and 390 

Crop Water Use Index (CWUI) across the zones in the field.  The variability reflects 391 

differences in yield response according to spatially variable irrigation application.  392 
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The strategies that use weather-soil-and-plant data to calibrate and target a fixed soil-393 

water (simulation #19) and maximise square/boll count (simulation #20), are also 394 

compared using the simulated soil-water deficit (Figure 4) and simulated square count 395 

(Figure 5) throughout the crop season. 396 

 397 

Insert Table 2 here 398 

Insert Figure 3 here 399 

Insert Figure 4 here 400 

Insert Figure 5 here 401 

 402 

The simulated yield and water use efficiency increased as more data streams were 403 

included in the input data combination.  This is shown in Table 2 as the single-input 404 

simulations produced the lowest yields and water use efficiencies (simulations #11 405 

and #12) while the three simulations having three data inputs (simulations #18, #19 406 

and #20) performed better than all of the five simulations having two data inputs 407 

(simulations #13 to #17 inclusive). 408 

 409 

The data combinations with soil data and no plant data (simulations #11 and #13) 410 

resulted in higher yields than those with plant data and no soil data (simulations #12 411 

and #14).  This result suggests that if only one data input is available then soil data 412 

input is most effective for calibrating RefModel and for irrigation control.  The 413 

simulations using combinations of soil and plant data input to determine the irrigation 414 

volumes (simulations #15 and #18) generally produced lower yields and water use 415 

efficiencies than those using only plant data input to determine the irrigation volumes 416 

(simulations #17 and #20) with the same data available for RefModel calibration.  For 417 
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example, for the strategies with soil and plant data available to calibrate RefModel, a 418 

higher yield was simulated when the strategy maximised the square/boll count 419 

(simulation #17) than when the strategy attempted to both maintain soil-water and 420 

maximise square count (simulation #15).  Hence, in this case there was no obvious 421 

benefit in the using multiple variables to determine the application volumes. 422 

 423 

The MPC strategy accurately maintained the soil-water deficit threshold during low 424 

rainfall periods of the crop season for simulation #19 (63 to 85 days after sowing, 425 

Figure 4(a)).  For the MPC strategy that maximised square/boll count (simulation 426 

#20), the soil-water deficit was always higher than the soil-water deficit threshold that 427 

was approximately maintained in simulation #19 throughout the crop season (Figure 428 

4(b)).  The soil-water deficit was also lowest in the sand zone (with the lowest plant 429 

available water capacity) and highest in the clay zone (with the highest plant available 430 

water capacity) throughout the crop season for the strategy optimising square count.  431 

This indicates that to maximise the square count, the soil-water deficit should be 432 

reduced in proportion with the plant available water capacity of the soil. 433 

 434 

The highest yield was achieved using weather-soil-and-plant input and maximising 435 

square count (simulation #20).  The square count was higher throughout the crop 436 

season for this simulation compared with that for MPC maintaining soil-water deficit 437 

(simulation #19) (Figure 5).  Hence, the implemented MPC strategy successfully 438 

increased the simulated square count and improvements in yield (by 14%) and crop 439 

water use efficiency (by 30%) were observed by maximising square count instead of 440 

targeting soil-water. 441 

 442 
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4. MPC CASE STUDY B: optimisation using a predicted end-of-season yield or 443 

water use efficiency target 444 

The MPC strategy uses RefModel to forecast the response of cotton crop with specific 445 

environmental conditions and soil and crop properties; hence, the irrigation 446 

volume/timing may be adjusted to achieve a desired predicted end-of-season output, 447 

in this case a final yield or water use efficiency.  This is in contrast to Case Study A in 448 

which the MPC strategy used daily input data (e.g. square count, soil-water) to predict 449 

the best short-term response to a range of irrigation volumes. 450 

 451 

4.1 Methodology for Case Study B 452 

The field was automatically divided into 44 zones as per the previous case study and 453 

the irrigations could occur daily.  The MPC strategy was evaluated for crop seasons 454 

with and without rainfall and with two levels of initial nitrogen content (120 kg/ha 455 

and 250 kg/ha).  The same weather dataset was used for both these sets of 456 

simulations; however the daily rainfall was set to zero for the simulations without 457 

rainfall.  In the simulations with rainfall there was high rainfall during days 63 to 85 458 

after sowing. 459 

 460 

The MPC strategy was used to optimise the predicted Irrigation Water Use Index 461 

(IWUI), Crop Water Use Index (CWUI) and yield assuming the machine capacity 462 

enabled the machine to traverse the field once every day.  An algorithm maximising 463 

IWUI or CWUI may decide to apply no irrigation to minimise the irrigation volume 464 

but would also produce low yield.  Hence, to ensure that the IWUI and CWUI 465 

optimisation would irrigate the crop, the minimum acceptable yield was arbitrarily set 466 

at 5 bales/ha in all optimisations.   467 
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 468 

4.2 Case Study B – Results and discussion 469 

The simulation results are displayed in Table 3 and Figure 6 and the spatially varied 470 

irrigation volumes applied are compared with different in-season rainfall and starting 471 

nitrogen content at commencement (Figure 7 and Figure 8, respectively). 472 

 473 

Insert Table 3 here 474 

Insert Figure 6 here 475 

Insert Figure 7 here 476 

Insert Figure 8 here 477 

 478 

For each set of field conditions (i.e. starting nitrogen content and in-season rainfall), 479 

the simulated yield was highest for the MPC strategy that optimised yield (simulations 480 

#21, #23, #25 and #28).  Similarly, the strategies optimising IWUI (simulations #27 481 

and #30) and CWUI (simulations #26 and #29) produced the highest respective IWUI 482 

and CWUI of the simulations with the same field conditions.  This indicates that MPC 483 

strategy could adjust the irrigation application to improve either yield or water use 484 

efficiency. 485 

 486 

Increasing the starting nitrogen content significantly improved the simulated yield and 487 

water use efficiency.  This is shown in Table 3 as the yield for the no-rainfall 488 

simulation with the higher nitrogen content of 250 kg N/ha (e.g. 17.9 bales/ha for 489 

simulation #23) was nearly double that of the simulation with the lower nitrogen 490 

content of 120 kg N/ha (e.g. 9.0 bales/ha for simulation #21).  Since the irrigation 491 

volumes applied were similar for these two simulations (Figure 8), the CWUI and 492 
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IWUI of the higher nitrogen content simulations were also nearly double that of the 493 

lower nitrogen content simulations.  Hence, nitrogen application had a significant 494 

effect on the final yield without greatly affecting the irrigation volume required to be 495 

applied. 496 

 497 

Rainfall significantly affected the simulated yield and CWUI (Table 3).  Table 3 498 

shows that the yields, irrigation applications and CWUI of simulations #21-#24 499 

(without rainfall) are higher than those of simulations #25-#30 (with rainfall).  This 500 

suggests that the crop is easier to control with less rainfall in the season.  The 501 

difference in yield and CWUI is most noticeable for simulations with high nitrogen 502 

content (e.g. simulation #28 with rainfall and simulation #23 without rainfall) because 503 

the simulated yields are higher and the differences between the yields are more 504 

apparent.  It follows that during the period of the crop season with high rainfall (63 to 505 

86 days after sowing), lower irrigation volumes were applied compared to the periods 506 

of no rainfall (87 to 105 days after sowing) (Figure 7). 507 

 508 

The rainfall did not generally affect the IWUI for the simulated set of field conditions 509 

(e.g. simulation #21 with no rainfall versus simulation #25 with rainfall). This is 510 

because more rainfall caused both the yield and irrigation application (which are used 511 

to calculate the IWUI) to decrease by approximately the same proportion. 512 

 513 

5. MPC CASE STUDY C: optimisation using a predicted end-of-season target, 514 

with limited calibration data 515 

The MPC simulations of the Case Study B assumed that the full data input of weather, 516 

soil and plant information was available for RefModel calibration.  However, all three 517 
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data streams may not be available in a field implementation.  Case Study C evaluates 518 

the usefulness of different data streams to calibrate RefModel in a MPC strategy with 519 

a predicted end-of-season target. 520 

 521 

5.1 Methodology for Case Study C 522 

The seven possible input data combinations (Table 2) were separately evaluated as 523 

input for RefModel calibration. The datasets were obtained daily from the cotton 524 

model Sicot 71B and used to calibrate the Siokra V16RR cotton model.  The field and 525 

weather conditions were as used in the earlier case studies, the MPC strategy 526 

optimised yield and the irrigations occurred daily. 527 

 528 

5.2 Case Study C – Results and discussion 529 

Table 4 and Figure 9 set out a comparison of an MPC strategy that maximises yield 530 

with different combinations of input data to calibrate RefModel.  The use of more 531 

information in the input data combination generally increased the average yield and 532 

water use efficiency (Table 4).  Table 4 shows that MPC performance with all three 533 

input variables (simulation #37/#28) was superior to that with any two variables 534 

(simulations #34-#36); and similarly performance with two input variables was 535 

superior to that with any single input variable alone, except plant input (simulation 536 

#33) versus soil-and-plant input (simulation #36).  This suggests that the MPC 537 

calibration performs better with soil data input than plant data input. 538 

 539 

Insert Table 4 here 540 

Insert Figure 9 here 541 

 542 
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The lowest yields and water use efficiencies were simulated with only weather data 543 

input (e.g. simulations #31).  This is because the weather data (without field-specific 544 

soil or crop data) provides no information to adequately parameterise the crop model 545 

used by the MPC strategy.  This could lead to insufficient model calibration and sub-546 

optimal irrigation volumes being determined.  The irrigation water use efficiency was 547 

higher using the weather and plant combination (simulation #35) than using the full 548 

data input (simulation #37/#28): this is because the yield was maximised rather than 549 

the water use efficiency in this case study. 550 

 551 

6. GENERAL DISCUSSION 552 

A Model Predictive Control strategy was successfully implemented in VARIwise.  553 

The controller uses currently available field data to calibrate the OZCOT cotton 554 

production model and then evaluates a range of irrigation volumes and timings in each 555 

zone.  The controller then implements the site-specific irrigation volumes on the day 556 

that achieves the highest water use efficiency or yield averaged over the field, as user 557 

specified.   558 

 559 

Three alternative optimisation possibilities were identified and explored, and the 560 

conclusions for each, and their comparison, are as set out below.  In each case the 561 

MPC strategy performed successfully in the (simulated) task of controlling an 562 

automatic irrigation machine applying spatially-varied irrigation amounts.  For 563 

convenience, Table 5 gathers together the particular simulation outputs referred to in 564 

this section.  Table 5 also compares results of MPC with two sensor-based control 565 

strategies, namely Iterative Learning Controller (ILC) and Iterative Hill Climbing 566 

Controller (IHCC), simulated on fields with PAWC varying between 60 and 200 mm 567 
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with 1266 zones, and the same weather profile and crop variety (as detailed in 568 

McCarthy et al. 2013).  These sensor-based strategies refine the estimate of each 569 

successive irrigation volume applied by: 570 

[ILC] – iteratively adjusting the irrigation volume applied in each zone of the field 571 

using the incremental response, i.e. the OZCOT-determined plant growth arising 572 

from the change in particular field sensor information which has resulted from the 573 

previous water application, in each zone; or 574 

[IHCC] – similarly adjusting the irrigation volumes, but based on multiple sensor 575 

increment information, using a range of irrigation volumes applied within a group 576 

of homogenous zones. 577 

 578 

Insert Table 5 here 579 

 580 

The performance of the MPC strategy was also compared with an industry-standard 581 

irrigation strategy (first line of Table 5).  This strategy applied a uniform irrigation 582 

treatment (25 mm) across the field and initiated irrigation events when the soil-water 583 

deficit reached a set amount (30 mm) in one point in the field (in the cell with sandy 584 

soil).  The soil-water deficit was taken in the cell with the lowest plant available water 585 

capacity, as this is the most limiting soil.  To ensure validity of the comparison this 586 

simulation was executed using the same weather conditions and spatially variable 587 

plant available water capacity and starting soil-water, and crop variety as the reference 588 

model.  The nitrogen content was set to 250 kg/ha. 589 

 590 

The MPC strategy was evaluated with different combinations of input data (section 3 591 

above).  The predicted yield and water use efficiency were highest when the strategy 592 
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maximised the square count and calibrated the model using all three streams of data 593 

input (weather, soil and plant, simulation #20).  The yield and water use efficiency 594 

were also higher than those of the industry-standard irrigation management strategy 595 

(McCarthy et al. 2013), and also ILC (simulation #1) and IHCC (simulation #9) with 596 

either weather-soil-and-plant, weather-and-soil or weather-and-plant data input 597 

available (likewise refer McCarthy et al. 2013).  However, the MPC (optimising daily 598 

input data) performed worse than the ILC and IHCC where there was only either soil 599 

input (simulation #11) or weather-and-plant (simulation #14) input data available. 600 

 601 

The controller successfully adjusted the irrigation to improve the yield, CWUI or 602 

IWUI, as appropriate (Section 4).  The yield was higher with high nitrogen content 603 

(e.g. simulation #28) than with low nitrogen content (simulation #25) and with no 604 

rainfall during the crop season (simulation #23) compared with high rainfall 605 

(simulation #28).  This is because the control strategy could better control the water 606 

applied in response to the other environmental factors.  The simulated average yields 607 

and water use efficiencies were significantly higher than the industry-standard 608 

irrigation management strategy, ILC strategy (simulation #1) and IHCC strategy 609 

(simulation #9) (McCarthy et al. 2013). 610 

 611 

MPC was evaluated with different combinations of input data available to calibrate 612 

the model (Section 5).  The controller performed best with input of weather-soil-and-613 

plant data (simulation #28), but still produced higher yields and water use efficiencies 614 

with weather-and-soil (simulation #34) or weather-and-plant (simulation #35) input 615 

than the irrigation-standard irrigation management strategy, and ILC (simulation #1) 616 

and IHCC (simulation #9) case studies (McCarthy et al. 2013). 617 
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 618 

Higher yields and water use efficiencies were produced for MPC optimising predicted 619 

end-of-season data (simulation #28) than for MPC using daily input data to maximise 620 

square count (simulation #20).  However, both of these control strategies required 621 

either the full data input, weather-and-soil or weather-and-plant data input to obtain 622 

yields higher than the ILC or IHCC strategies. 623 

 624 

7. CONCLUSION 625 

The Model Predictive Control strategy implemented in the control simulation 626 

software VARIwise performed successfully in the task of controlling an automatic 627 

irrigation machine applying water to a simulated cotton crop grown in typical 628 

conditions for south-east Queensland, Australia.  In all simulations the MPC strategy 629 

specified ‘sensible’ irrigation amounts typical of irrigation practice in this region.  630 

Simulations using the MPC strategy indicated that the MPC strategy could be 631 

successfully used to either maximise crop yield, or crop and irrigation water use 632 

efficiencies.   633 

 634 

The MPC strategy produced significantly higher yield and crop water use efficiency 635 

than the sensor-based strategies for the same (simulated) field conditions (similarly 636 

simulated in VARIwise and reported in McCarthy et al. 2013).  However, MPC 637 

required weather-soil-and-plant, weather-and-soil or weather-and-plant information to 638 

accurately calibrate the crop model.  This indicates (for cotton grown as stated) that 639 

whilst the MPC-based strategies are potentially superior, sensor-based strategies may 640 

be more appropriate for field implementations where there is limited data availability.  641 

 642 
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Finally, we note here that direct field evaluation is particularly challenging, because 643 

direct comparison requires replicated plots having the same soil types and 644 

distributions, and with simultaneous operation such that each experiences the same 645 

weather conditions.  In principal at least, an alternative to achieve such a comparison 646 

would be to determine variability of soil properties under an irrigation system, a 647 

priori, and then define plots of the same soil type such that the irrigation application 648 

could be adjusted according to different MPC strategies, and in comparison with 649 

industry-standard control (e.g. calculated using evapotranspiration or soil-water).   650 

 651 

Field evaluations would enable the sensing and control hardware requirements and 652 

performance of autonomous, adaptive control strategies to be compared with industry-653 

standard irrigation.  These control strategies would determine irrigation application 654 

and timing using a black-box control system based on sensed inputs and sends control 655 

signals to irrigation actuation hardware.  This will potentially lead to the optimisation 656 

of irrigation water use and yield under different climate scenarios and water 657 

availability situations. 658 
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Figures and Tables 709 
 710 
Table 1: Simulations (identified by ID #) conducted to compare interactions between 711 
control strategies and input variables for Model Predictive Control.  N/A indicates 712 
non-applicable and SILO indicates use of historical climate data.  (Simulations #1 to 713 
#10 not tabulated here are those undertaken for sensor-based control, McCarthy et al. 714 
(2013).) 715 
 716 

ID # Input variables for 
control Weather data input Irrigation calculations 

Nil Weather N/A N/A 
11 Soil Averaged SILO data Target soil-water deficit 
12 Plant Averaged SILO data Maximise square/boll count 
13 Weather AND soil SILO data Target soil-water deficit 
14 Weather AND plant SILO data Maximise square/boll count 

15 Soil AND plant (A) Averaged SILO data 
Target soil-water deficit and 
maximise square/boll count 

16 Soil AND plant (B) Averaged SILO data Target soil-water deficit 
17 Soil AND plant (C) Averaged SILO data Maximise square/boll count 

18 
Weather AND soil 

AND plant (A) 
SILO data 

Target soil-water deficit and 
maximise square/boll count 

19 
Weather AND soil 

AND plant (B) 
SILO data Target soil-water deficit 

20 
Weather AND soil 

AND plant (C) 
SILO data Maximise square/boll count 
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Table 2: Performance of the model predictive control strategy with variable-rate 717 
irrigation machine for different input data combinations (yield maps of simulations 718 
#11-#20 are in Figure 3) 719 
 720 

ID 
# 

Input variable 
for control  

Average 
yield 

(bales/ha) 

Average 
water 

applied 
(ML total/ha) 

Average 
irrigation 
applied 

(ML irrigated /ha) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated ) 

11 Soil 5.2 ± 2.4 9.4 6.4 0.5 0.8 

12 Plant 2.9 ± 2.1 4.6 1.5 0.6 1.9 

13 
Weather AND 

soil 
7.4 ± 1.5 9.2 6.2 0.8 1.2 

14 
Weather AND 

plant 
6.4 ± 1.0 5.3 2.2 1.2 2.9 

15 
Soil AND plant 

(A) 
7.8 ± 1.9 8.8 5.7 0.9 1.4 

16 
Soil AND plant 

(B) 
7.3 ± 2.1 9.5 6.4 0.8 1.1 

17 
Soil AND plant 

(C) 
8.2 ± 2.7 9.0 5.9 0.9 1.4 

18 
Weather AND 
soil AND plant 

(A) 
10.8 ± 1.6 8.8 5.7 1.2 1.9 

19 
Weather AND 
soil AND plant 

(B) 
10.6 ±1.9 10.2 7.1 1.0 1.5 

20 
Weather AND 
soil AND plant 

(C) 
12.1 ± 0.7 9.4 6.3 1.3 1.9 
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Table 3: Performance of the model predictive control strategy with variable-rate 721 
irrigation machine for different weather data inputs, starting nitrogen contents and 722 
optimised variables (yield maps of simulations #21-#30 are in Figure 6) 723 
 724 

ID 
# 

Optimised 
variable 

Rainfall 
(mm) 

Initial 
nitrogen 
content 
(kg/ha) 

Average 
yield 

(bales/ 
ha) 

Average 
water 

applied 
(ML total/ha) 

Average 
irrigation 
applied 

(ML irrigated /ha) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated ) 

21 Yield 0 120 9.0 ± 0.4 6.8 6.8 1.3 1.3 

22 CWUI/Yield 0 120 8.4 ± 0.6 5.2 5.2 1.6 1.6 

23 Yield 0 250 
17.9 ± 

0.9 
6.6 6.6 2.7 2.7 

24 IWUI/Yield 0 250 
17.3 ± 

1.2 
6.5 6.5 2.7 2.7 

25 Yield 302 120 8.4 ± 0.4 9.0 5.9 0.9 1.4 

26 CWUI 302 120 8.4 ± 0.6 8.1 5.0 1.0 1.7 

27 IWUI 302 120 7.7 ± 0.5 7.5 4.4 1.0 1.8 

28 Yield 302 250 
14.3 ± 

0.5 
9.3 6.2 1.5 2.3 

29 CWUI 302 250 
13.3 ± 

1.0 
7.8 4.7 1.7 2.8 

30 IWUI 302 250 
12.5 ± 

0.3 
7.3 4.2 1.7 3.0 
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Table 4: Performance of the model predictive control strategy optimising yield for 725 
crop season with rainfall and 250 kg/ha of available nitrogen for different input data 726 
combinations, where simulation #371 is a duplication of simulation #28 for 727 
comparison (yield maps of simulations #31-#37 are in Figure 9) 728 
 729 

ID # 
Input variable 

for control  

Average 
yield 

(bales/ha) 

Average 
water 

applied 
(ML total/ha) 

Average 
irrigation 
applied 

(ML irrigated

/ha) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated ) 

31 Weather 5.6 ± 1.1 9.9 7.2 0.6 0.8 

32 Soil 9.1 ± 1.0 9.0 5.9 1.0 1.5 

33 Plant 10.0 ± 1.3 9.2 6.0 1.1 1.7 

34 
Weather AND 

soil 
12.2 ± 1.7 8.3. 5.2 1.5 2.3 

35 
Weather AND 

plant 
12.4 ± 1.4 8.1 5.0 1.5 2.5 

36 Soil AND plant 9.4 ± 0.8 9.2 6.0 1.0 1.5 

371 
Weather AND 
soil AND plant 

14.3 ± 0.5 9.3 6.2 1.5 2.3 
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Table 5: Control strategy simulation outputs where the initial nitrogen content is 250 730 
kg/ha and there is rainfall during the crop season unless otherwise noted. 731 
 732 

ID # 
Control 
strategy 

Input 
variable 

for 
control 

Average 
yield 

(bales/ha) 

Average 
water 

applied 
(ML total/ha) 

Average 
irrigation 
applied 

(ML irrigated /ha) 

CWUI 
(bales/ 
ML total) 

IWUI 
(bales/ 

ML irrigated ) 

N/AA 
Industry-
standard 

Nil 9.1 ± 1.9 10.2 6.8 0.9 1.4 

1A ILC Soil 12.2 ± 1.5 11.0 7.3 1.1 1.7 

9A IHCC 
Soil AND 

plant 
12.4 ± 1.6 12.2 8.1 1.0 1.5 

11 
MPC (daily 

input) 
Soil 5.2 ± 2.4 9.4 6.4 0.5 0.8 

14 
MPC (daily 

input) 

Weather 
AND 
plant 

6.4 ± 1.0 5.3 2.2 1.2 2.9 

20 
MPC (daily 

input) 

Weather 
AND soil 

AND 
plant 

12.1 ± 0.7 9.4 6.3 1.3 1.9 

23 
MPC (end- of-
season input)1 

Weather 
AND soil 

AND 
plant 

17.9 ± 0.9 6.6 6.6 2.7 2.7 

25 
MPC (end- of-
season input) 2 

Weather 
AND soil 

AND 
plant 

8.4 ± 0.4 9.0 5.9 0.9 1.4 

28/ 
37 

MPC (end- of-
season input) 

Weather 
AND soil 

AND 
plant 

14.3 ± 0.5 9.3 6.2 1.5 2.3 

34 
MPC (end- of-
season input) 

Weather 
AND soil 

12.2 ± 1.7 8.3 5.2 1.5 2.3 

35 
MPC (end- of-
season input) 

Weather 
AND 
plant 

12.4 ± 1.4 8.1 5.0 1.5 2.5 

A From McCarthy et al. 2013 733 
1 Crop season has no rainfall 734 
2 Initial nitrogen content is 250 kg/ha 735 
Abbreviations: ILC is Iterative Learning Control, IHCC is Iterative Hill Climbing Control and MPC is 736 
Model Predictive Control 737 
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 738 
 739 
Figure 1: The simulation framework VARIwise configured to evaluate (in simulation 740 
mode) the model-based adaptive control strategy Model Predictive Control (MPC).  In 741 
this mode, the block ‘AcModel’ (also an OZCOT formulation) has replaced the field 742 
data measurements which would normally update ‘RefModel’.  (This diagram is 743 
adapted from the full VARIwise flowchart presented as Figure 2 of McCarthy et al. 744 
2010.)  745 
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 746 
(a) 747 
 748 

 749 
(b) 750 

 751 
Figure 2: Soil variability as calibrated in model predictive control implementation: (a) 752 
plant available water capacity; and (b) soil-water on sowing date 753 
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 754 
 755 
Figure 3: Yield maps and average yield and irrigation outputs of model predictive 756 
control strategy for different combinations of data input and legend for yield maps for 757 
simulations #11 to #20 (numerical data are set out in Table 2) 758 
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  759 
 (a)      (b) 760 

 761 
Figure 4: Simulated daily soil-water deficit in sand, clay loam and clay zones for 762 
strategies that use weather, soil and plant data for model calibration (RefModel).  Set 763 
(a): targeting fixed soil-water deficit (simulation #19); and set (b): maximising 764 
square/boll count (simulation #20) 765 
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 766 
(a)      (b) 767 

 768 
Figure 5: Simulated daily square count in sand, clay loam and clay zones for strategies 769 
that use weather, soil and plant data for model calibration (RefModel).  Set (a): 770 
targeting fixed soil-water deficit (simulation #19); and set (b): maximising square 771 
count (simulation #20) 772 
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 773 
 774 
Figure 6: Yield maps and average yield and irrigation outputs of model predictive 775 
control strategy with variable-rate irrigation machine and legend for yield maps for 776 
simulations #21 to #30 (numerical data for simulations are presented in Table 3) 777 
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 778 
(a) 779 

 780 
(b) 781 

Figure 7: Irrigation volumes applied to sand, clay loam and clay zones for simulations 782 
#24 and #27 to evaluate effect of rainfall during crop season.  The model predictive 783 
controller optimised IWUI with 250 kg/ha of available nitrogen and for crop season 784 
with: set (a) no rainfall; and set (b) 302 mm of rainfall  785 
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 786 
(a) 787 
 788 

 789 
(b) 790 

Figure 8: Irrigation volumes applied to sand, clay loam and clay zones for simulations 791 
#25 and #28 to evaluate effect of nitrogen content; the model predictive controller 792 
optimised yield for crop season with no rainfall and available nitrogen of: set (a) 120 793 
kg/ha; and set (b) 250 kg/ha 794 
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 795 
 796 

Figure 9: Yield maps and average yield and irrigation outputs of model predictive 797 
control strategy with variable-rate irrigation machine and legend for yield maps, 798 
where simulation #371 is a duplication of simulation #28 for comparison (numerical 799 
data for simulations #31-#37 are in Table 4) 800 


