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Abstract

Model-based irrigation control strategies appliedirrigation make decisions (on
water application and/or timing) using a crop andfl production model. Decisions
are made with respect to an optimisation objectech, for irrigation, can be either
short-term (e.g. achieving/maintaining a set satev deficit) or predicted end-of-
season (e.g. maximising final yield) by predictimgw the crop will respond at the
end of the season. In contrast, sensor-basedtioigstrategies rely on achieving a
performance that is measurable during the cropose#&s provide the feedback
control, and may not necessarily optimise overatipcperformance. Model-based

control potentially avoids this limitation.

This paper describes the application of Model Rited Control (MPC) methodology
to the feedback control of irrigation via a modakbkd irrigation strategy implemented
in the irrigation control simulation framework ‘VARise’. The requirement to also
accommodate spatial and temporal differences ip evater requirement across a
heterogeneous field is met by defining managenmmmtes’ according to differing soil
and crop properties across the field and separafglying the control algorithm for

each of these zones.

Case studies were conducted to evaluate MPC fentaecpivot irrigation machine-
irrigated cotton crop (under typical Australian wmg conditions) with: (i) different
in-season performance objectives (maintaining watler deficit; maximising square
count); (ii) different predicted end-of-season parfance objectives (maximising
yield; maximising water use efficiency); and (finaximising yield with different field

data inputs for model calibration. The model pcaéde control strategy produced
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significantly higher simulated yields and water usiiciency than an industry-

standard irrigation management strategy; and (istrbat not all situations) direct

sensor-based adaptive control strategies.

Research Highlights

Model Predictive Control was simulated for site<pe irrigation in 'VARIwise'
MPC accommodated both short-term (in-season) argtierm performance
objectives

MPC delivered the best performance when optimishog yield

MPC resulted in higher (simulated) yield than se+ssed strategies

MPC required extensive data to accurately calibcedp model

Keywords

Variable-rate irrigation, centre pivot, lateral nepwcheduling, irrigation automation,

Model Predictive Control

1. INTRODUCTION

The development of the control simulation framewdKRIwise’ has enabled the

evaluation of site-specific, spatially-variablagation control strategies on field crops

(McCarthy et al. 2010a). VARIwise permits spatiahd temporally varied

simulation and accommodates sub-field scale vanatin all input parameters down

to metre-scale zone size. Simulations of ‘senssel’ strategies showed potential

improvements in yield and water use efficiency (Md@y et al. 2013). These

strategies compared the field measurements witdsgietl response (e.g. soil-water

deficit) and adjusted the irrigation volume applaxtording to the difference.
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1.1 Model Predictive Control (MPC) applied to irrgion

In contrast, an alternative ‘advanced process obrpproach to irrigation uses crop
production models to aid the irrigation decisiorking process. These ‘model-
based’ control strategies use the available fieddsnrements to calibrate the crop
model. The model is then repeatedly executed teeraiéne the optimal irrigation
volume and timing that will achieve the desiredfpenance objective (e.g. predicted

end-of-season yield).

The methodology of Model Predictive Control (MPQ@yoalves using a model to
predict the optimal input signal at the currentdiconsidering future events over a
finite time period (Kwon and Han 2005). This idereed to as a ‘control horizon
length’. Only the first optimal control action isiplemented after each time step.
MPC is applicable to irrigation since a soil-platthosphere model may be used to
evaluate the application of various irrigation voks on a fixed number of
consecutive days; for example, the model may bd tefirstly, determine the best
irrigation volume to apply on each zone for eackthefnext three days; and, secondly,
determine which day resulted in the best overatfgpmance. The future process
outputs used to evaluate the irrigation scheme rbay predicted daily with
measurements of crop response (e.qg. for cottoraretholl count, leaf area index) or
soil-water. Alternatively, the simulated final prgield or water use efficiency may

be used to evaluate the various irrigation schemes.

From the control perspective, the ‘process modadhees during the growth of the

crop such that the control must be adaptive. fiégsirement means that the model
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used by the MPC strategy must be continuously libreéed using the currently
available field data. The plant growth and soikevalynamics in the cotton model
OZCOT (Wells and Hearn 1992) implemented within MARe, can be accurately
calibrated (McCarthy et al. 201The calibrated OZCOT model has also been found
to accurately simulate yield (Richards et al. 200d¥ing one season’s field
experiment data McCarthy et al. (2011) found thACOT was most effectively
calibrated (and therefore able to predict theaad crop response to irrigation
application) using full data input, whilst fortumtions where only two data inputs
were available, the simulations suggested titta¢reweather-and-plant or soil-and-

plant inputs were preferable.

Park et al. (2009) developed two MPC systems fatreepivot irrigation which both
used measured soil and weather inputs to calilaaseil-water model. Their first
implementation used the calibrated model to deteentine irrigation volumes which
would fill the soil profile for irrigation eventsnofixed days; whereas their second
implementation used the calibrated model to detsenthe irrigation timing for a
fixed irrigation volume application which would Ifithe soil profile. Neither

implementation incorporated the crop growth respons

1.2 MPC and crop productiomodels
The performance objectives set for MPC appliedrigation can range from a short-
term objective such as achieving a preset soil+w@dadécit following each irrigation

to a ‘whole season’ objective such as maximisireglijated end-of-season yield.
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In addition, crop production models (such as OZCOIT cotton, discussed below)
have sophisticated prediction capabilities whiclyina utilised in the implementation
of MPC. For example, a performance objective tximee the number of plant
fruiting sites during growth should maximise potehpredicted end-of-season vyield.
This additional crop response capability typicakyguires measurements of the plant
to calibrate the crop production model accordingthe measured plant growth
parameters (e.g. fruiting), which in turn requinedield plant sensors to provide
calibration data. To maximise uptake of the sgee#fic irrigation control system by
growers it is desirable to minimise the sensor irequents. A reduction in
measurements could be achieved by using only ttzetgaes that are more influential
in the model calibration or by reducing the spatieltemporal resolution of data.
However, the data used to calibrate the model shstill enable sufficient accuracy
of the model. An insufficient range of measurersédntcalibrate the model used by
MPC will influence the accuracy of the model ané tmodel’'s ability to predict

irrigation and crop performance.

Hence, this paper aims to:
e identify the optimal combination of performance eiijve and data input
combination amenable to practical MPC strategied;aso
» explore the impact of different control horizon déims (period of time for

forecasting future events) on the performance oCMP

The strategies simulated in this paper explorevtability of the use of MPC in the
simulation of a ‘realistic’ irrigation situation i spatial and temporal variation

across a heterogeneous field. Accordingly, thisepaletails the implementation of
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the MPC methodology in VARIwise and, for the exaengmf cotton grown in

Australia, presents results for a range of simohetihaving different performance

objectives. The results are presented as three stagies, A, B and C, which, in

order, evaluate the potential of MPC to optimise:

A. short-term responses of square count or soil-water;

B. predicted end-of-season crop yield or water useieficy with (i) low and high
soil nitrogen content, and (ii) crop seasons wittl @ithout rainfall; and

C. predicted end-of-season crop yield with differeatnbinations of sensory input
data to calibrate the model.

A comparison is then made between the MPC strateand simulations of ‘sensor-

based’ strategies for adaptive irrigation conthdtCarthy et al. 2013).

2. IMPLEMENTATION

The simulation framework ‘VARIwise’ (McCarthy et.aRP010a) was created to
develop, simulate and evaluate site-specific itioga control strategies for centre
pivot and lateral move irrigation machines on naoifarm (spatially and temporally

varied) fields. The framework enables evaluatibrstoategies with different sensor
data availability (both spatial and temporal); #xample, the performance of the
control strategies with spatial gaps in measuregaese is explored in McCarthy et
al. (2010b). In addition, the framework can pre@velaluation of different irrigation

system capacity constraints and when supplied vea#htime weather and/or other

field data, the framework will provide direct maatiactuation.

For the simulation (and management) of cotton ati@n, the cotton production

model OZCOT (Wells and Hearn 1992) was used by WA84 and was
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automatically and continuously calibrated accordittg the currently available
weather, soil and plant data. Details are set nuMcCarthy et al. (2011). To
illustrate the VARIwise configuration used to ekt MPC a general schematic is
presented in Figure 1, in which the central bloakd data flows are explained in the

following sections.

Insert Figure 1 here
The MPC algorithm predicts how much each outpud. (soil-water, fruit load) will
deviate from a time series trajectory within thedction horizon. A MPC cost

function J(k) is calculated for each possible set of inputaadiin the current time

stepk using a least squares algorithm of the followioigrf (Maciejowski 2002):

J(k) = 25, TV, fw; [k + 1) = x;(k + 0] (1)

where:
Jk) = costfunction at instart
C = length of prediction/control horizon
N = number of system outputs
w, = weighting coefficient for outpyt
r(k+i) = predicted value gith output at future instak: + i
x,(k+i) = targetvalue ofth output at future instak: + i

The control action that minimises the cost funct{oe. that produces the smallest

deviation in performance from the desired trajegtors implemented. This
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optimisation is repeated at each sample time steupdate the optimal input
trajectory after a feedback update. Hence, thisCM#tgorithm calculates the

sequence of control action adjustments over a Bpéduture time interval.

In an irrigation context, the system outputs usedalculate the cost function will
typically have different units and magnitudes, dhd same percentage change in
variables of different units and magnitudes mayseaunintentional bias toward
variables that are generally larger in magnituBler example, a particular percentage
difference in soil-water will produce a larger céstction than the same percentage
difference in leaf area index. Hence, the MPC rilgm was modified (equation 2) to
calculate a performance index that represents@ptage difference in the predicted
outputs rather than a least squares objective iim@equation 1). The control action
that maximises the performance indeiXk) is then implemented in each time step,

and is calculated using the equation:

PI(k) = Zf-1 X}, w [ZH.‘_*] (2)

x:Lk+i)

The MPC methodology was implemented to determingation timing and site-
specific irrigation volumes on a daily basis by meaf the following four-step
procedure:

1. Update measured and forecast weather data

2. Calibrate crop model

w

. Optimise irrigation volume for each zone

B

Optimise day of next irrigation
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The details of each step in relation to the follogvicase studies are set out below.
This procedure is independently applied to eachhagament zone’, where each zone
in the field is defined according to differing s@hd crop properties across the

heterogeneous field.

2.1 Step 1: updating measured and forecast weatiea

For each day of the crop season, the meteorolodatal input file for the integrated

crop model was updated to include the previous Jayéather and the updated
weather forecast for the farm’s location. In adi@mplementation of MPC, the

‘previous day’s weather’ could be obtained fromamsite weather station and the
‘updated weather forecast’ could be obtained frdra Bureau of Meteorology.

However, to simulate the performance of MPC forlele season (where there was
no field implementation) both ‘previous day’s weathand ‘updated weather

forecast’ had to be obtained from historical data.

Because of the high variability of Australian climaand the difficulty in picking a
‘typical’ year, an artificial daily meteorologicdlataset was created by averaging the
day-on-day data of the five years (1999 to 2004usiee) appropriate to the location
of Dalby (Latitude -28.18°N E, Longitude 151.268)major cotton-growing region of
south-east Queensland, Australia, and this dates®used for all simulations. Daily
data comprised maximum and minimum temperaturey satliation and rainfall, and
was sourced from Australian Bureau of Meteorologit(5 patched point
environmental dataset (QNRM 2009). SILO is an ecbkd climate database

containing Australian climate data from 1889.

10
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Forecast weather data, to be used predictivelynduhe simulations, was created by
imposing a Gaussian distribution of variability thre daily values of the five-year-
averaged dataset using standard deviations of HBGS, +5 W.hr/mi and +50% for
maximum temperature, minimum temperature, dailyarsghdiation and rainfall,
respectively; i.e. for any given day, the forecas¢, two and three days ahead, then
values for each variable randomly generated widanh distribution by taking that
day’s values as the mean. For each day, only thage of the forecast weather data
were used. This is because the two Australian t4bon numerical weather
prediction models forecast three and seven dayadahed are combined to improve
the prediction accuracy (Ebert 2001). The thregfdeecast would be more accurate
than one model on its own because both models queldict weather to three days.
A three-day forecast would ensure short-term ptegticaccuracy in the predictions,
particularly as regards rainfall in south-east Qusésnd, Australia, where the summer

rainfall is dominated by frontal bands of isolateanulo-nimbus storms.

2.2 Step 2: calibrating the crop model — ‘actualhd ‘reference’ models

The crop model OZCOT is utilised by VARIwise anchdee automatically and
continuously calibrated according to the ‘currerdlyailable weather, plus soil and
plant data, using the procedure set out in McCaathgt. (2011). The procedure for
calibrating the production/growth model OZCOT ireal-time implementation, i.e.
for actual irrigation machine control, involves @miatically and iteratively adjusting
the parameters used to predict soil water statdgkmt growth until the difference
between the predicted and sensed variables reacimeimum. For the cotton model
OZCOT, the plant variables (leaf area index, bolirtt, square count), soil variables

(soil moisture content and plant available watgracity) and weather variables (daily

11
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minimum and maximum temperature, rainfall and sddration in weather input

file) are interdependent. The plant behaviourlmawcalibrated by adjusting
parameters in a crop properties file, whilst thé moisture behaviour was calibrated
by adjusting parameters in a soil properties filbhese parameters were adjusted
between the minimum and maximum values of the spoeding parameters in the
predefined soil properties and crop variety paramgitofiles. The parameters
adjusted in the crop properties file included soprate (the rate of new flower buds
being produced), growth rate of leaf area and glapulation constant; whilst the
parameters adjusted in the soil properties fileavibe initial soil moisture content and

drained upper limit in each soil layer.

A ‘reference’ model, labelled ‘RefModel’, is used to provide the crop growth
prediction scenario for MPC. However, for the préscase studies there was no
measured field data input to calibrate the model.overcome thisa second OZCOT
model of the cotton crop was used in place of ‘actual’ field conditions. This modsl
referred to as th&ctual crop’ model, labelled ‘AcModel’ and the parameters were
different to those in RefModel to emulate RefModel exactly following the field
conditions. In a field implementation the AcMods not required as field
measurements would be used. AcModel was thentosealibrate RefModel (Figure

1).

The crop and soil properties of AcModel were oladirirom the user-specified soil
and plant measurements (and these varied betwemrasions, as set out below).
Within RefModel the crop variety was specified by tuser at commencement.

Likewise the soil properties of RefModel were uspecified, with the addition of

12
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areal variation in available soil-water imposed \aa Gaussian distribution of

variability having a standard deviation of £25 mwafer depth equivalent).

2.3 Step 3: optimising irrigation volumes for eadone

Optimal irrigation volumes were determined by itetaly simulating the daily
application of sixteen different irrigation volumas1l mm increments between 0 and
15 mm on each zone in the field. For each irraratiolume applied (for management
zonek), a performance indeRI(k) was calculated using equation (2). For variables
that are maximised to achieve the optimal irrigastrategy (e.g. square count, yield,
crop water use efficiency), the target value isetakto be the maximum realistic
commercially attainable value (e.g. 15 bales/hactiton yield, 3 bales/ML for crop

water use efficiency).

The predicted process outputs used to calculatétheere taken one day after the
irrigation application. The optimal irrigation wohe for each zone was the irrigation
volume with the highest PI; however, if more thawe darrigation volume had the same
Pl then a water-efficient approach was taken aedotbtimal irrigation volume was
the lowest quantitative volume that achieved th&imam PIl. The irrigation volume
was then calculated for each zone in the orderhichvthe irrigation machine was to

pass over the field.

2.4 Step 4: optimising the timing (day) of the nexigation
The optimal day for the next irrigation event wastedmined using the calibrated
RefModel. This involved performing the irrigatiovolume optimisation of the

previous step for an arbitrary number of days (oea fixed horizon) and contained

13
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the assumption that the irrigation event could ocmu only one of the days. The
maximum horizon length was set to three days dinee days of predictive weather

were used.

The sixteen irrigation volumes tested on each zimpeend on the irrigation day being
tested. This is because, unless rainfall occtirgjas assumed that the crop water
requirement (and hence irrigation application vatinmcreases for each day the
irrigation event is delayed. For the first daygation volumes of 0 to 15 mm were
tested with increments of 1 mm; for the second @ap 31 mm were tested with
increments of 2 mm; and for the third day O to 4 mere tested with increments of

3 mm.

A Pl is calculated for each irrigation day by sumgithe individual Pl values for
each zone. The day with the highest total Pl kernao be the optimal day for the
next irrigation event. The irrigation event is edbled if the first day in the horizon
had the highest Pl and there are a minimum numbewowes requiring irrigation

greater than O mm. This ensures that the irrigaapplication is practical and
irrigations are not initiated for only a small nuembof zones in the field. The
threshold, i.e. the minimum proportion of zonesuigqgg irrigation, was arbitrarily

selected to be 15% for the case studies presented.

2.5 Subsequent iteration

After the optimal irrigation action — which may, cburse, be a ‘nil irrigation’ action

— was determined for the user-specified first dag, procedure described in the four

14
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subsections above was repeated every day througheutrop season, with the

irrigation events ending on a day specified byuker.

3. MPC CASE STUDY A: optimisation of short-term regponses using different
combinations of daily input data

The MPC strategy was evaluated with daily inputdatpredict and control irrigation
applications to achieve either a short-term sod.(deficit) or plant growth (e.g. leaf
area index) target. A range of combinations olutryariables for control were used

to determine which input data stream was most ugafiPC.

3.1 Methodology for Case Study A

The field was automatically divided into 44 zoneach of area approximately 0.3 ha,
and the irrigations occurred daily. This numbezahes enabled the simulations to be
executed in a timely manner with spatially variabt®l properties across the field.
The MPC strategy was evaluated for ten combinatadndata input (Table 1). The
input data combinations represent the data used d®tnput variables to calibrate
RefModel and the variables used for control. Fer simulations using both soil and
plant data, the weighting on each variable wassee 0.5. The strategies with soil
data input aimed for soil-water deficit equal to%d®f the plant available water

capacity in each zone.

Insert Table 1 here

In each simulation, the RefModel (to be calibratad@d the Siokra V16RR cotton

variety with the underlying variability in plant aNable water capacity (PAWC) and

15
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starting soil-water deficit as set out in Figure 2he starting soil-water deficit map
was generated by assigning a starting soil-watécidealue of 30 mm across the
field and imposing a Gaussian distribution of vaility with standard deviation £10
mm on each zone. The PAWC map was generatingdigrasg PAWC values of 60,
150 and 200 mm on three zones of the fields, dpaterpolating the PAWC using
ordinary kriging and by similarly imposing a Gawssdistribution of variability with

standard deviation £10 mm on each zone. The PA®W/@as from 60 to 200 mm in
the simulated field to ensure the control strategieuld deal with the different soil

types that often exist within fields.

Insert Figure 2 here

The measured crop response (AcModel) used the 3Ratotton variety and soil
variability map of Figure 2. Siokra V16RR is a ‘Raup Ready” late-maturing
cotton variety, whilst Sicot 73 is a full seasorttao variety with high yield potential
(CSD 2009). The prediction horizon was one day iawadas practical for irrigation

events to occur daily.

3.2 Case Study A — Results and discussion

Table 2 sets out the numerical results of the MRGSeCStudy A, whilst Figure 3
illustrates the spatial variability of the yieldrfeach simulation of the case study. The
performance of the control strategies are compdrased on the average and
variability of the yield, irrigation applied, Irragion Water Use Index (IWUI) and
Crop Water Use Index (CWUI) across the zones infitld. The variability reflects

differences in yield response according to spatigfiriable irrigation application.

16
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The strategies that use weather-soil-and-plant atalibrate and target a fixed soil-
water (simulation #19) and maximise square/bollnto{simulation #20), are also
compared using the simulated soil-water deficig@ifé 4) and simulated square count

(Figure 5) throughout the crop season.

Insert Table 2 here
Insert Figure 3 here
Insert Figure 4 here

Insert Figure 5 here

The simulated yield and water use efficiency inseghas more data streams were
included in the input data combination. This iswh in Table 2 as the single-input
simulations produced the lowest yields and water efficiencies (simulations #11
and #12) while the three simulations having thra&dnputs (simulations #18, #19
and #20) performed better than all of the five datians having two data inputs

(simulations #13 to #17 inclusive).

The data combinations with soil data and no plata dsimulations #11 and #13)
resulted in higher yields than those with plantadatd no soil data (simulations #12
and #14). This result suggests that if only oni digput is available then soil data
input is most effective for calibrating RefModel darfor irrigation control. The

simulations using combinations of soil and plartadaput to determine the irrigation
volumes (simulations #15 and #18) generally produosver yields and water use
efficiencies than those using only plant data irtputietermine the irrigation volumes

(simulations #17 and #20) with the same data adaileor RefModel calibration. For

17
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example, for the strategies with soil and plantdatailable to calibrate RefModel, a
higher yield was simulated when the strategy maseahi the square/boll count
(simulation #17) than when the strategy attemptethdth maintain soil-water and
maximise square count (simulation #15). Hencehis case there was no obvious

benefit in the using multiple variables to deterenthe application volumes.

The MPC strategy accurately maintained the soikewdeficit threshold during low
rainfall periods of the crop season for simulat#i® (63 to 85 days after sowing,
Figure 4(a)). For the MPC strategy that maximisgdare/boll count (simulation
#20), the soil-water deficit was always higher thiaa soil-water deficit threshold that
was approximately maintained in simulation #19 tiglwout the crop season (Figure
4(b)). The soil-water deficit was also lowest lre tsand zone (with the lowest plant
available water capacity) and highest in the claryez(with the highest plant available
water capacity) throughout the crop season forstretegy optimising square count.
This indicates that to maximise the square courd, doil-water deficit should be

reduced in proportion with the plant available wai@pacity of the soil.

The highest yield was achieved using weather-swhHalant input and maximising
square count (simulation #20). The square courd kwgher throughout the crop
season for this simulation compared with that fd?@/Imaintaining soil-water deficit
(simulation #19) (Figure 5). Hence, the implemdnMPC strategy successfully
increased the simulated square count and improvisneryield (by 14%) and crop
water use efficiency (by 30%) were observed by méing square count instead of

targeting soil-water.
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4. MPC CASE STUDY B: optimisation using a predictedend-of-season yield or
water use efficiency target

The MPC strategy uses RefModel to forecast theorespof cotton crop with specific
environmental conditions and soil and crop propsrtihence, the irrigation
volume/timing may be adjusted to achieve a degoredicted end-of-season output,
in this case a final yield or water use efficienghis is in contrast to Case Study A in
which the MPC strategy used daily input data (sggiare count, soil-water) to predict

the best short-term response to a range of iragatolumes.

4.1 Methodology for Case Study B

The field was automatically divided into 44 zonespar the previous case study and
the irrigations could occur daily. The MPC strategas evaluated for crop seasons
with and without rainfall and with two levels ofitial nitrogen content (120 kg/ha
and 250 kg/ha). The same weather dataset was fasetioth these sets of
simulations; however the daily rainfall was setz&ro for the simulations without
rainfall. In the simulations with rainfall thereaw high rainfall during days 63 to 85

after sowing.

The MPC strategy was used to optimise the predittéghtion Water Use Index
(IWuUl), Crop Water Use Index (CWUI) and yield assoghthe machine capacity
enabled the machine to traverse the field onceyeday. An algorithm maximising
IWUI or CWUI may decide to apply no irrigation toimmmise the irrigation volume
but would also produce low yield. Hence, to enstivat the IWUI and CWUI
optimisation would irrigate the crop, the minimugteaptable yield was arbitrarily set

at 5 bales/ha in all optimisations.
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4.2 Case Study B — Results and discussion
The simulation results are displayed in Table 3 Bigadire 6 and the spatially varied
irrigation volumes applied are compared with déf@rin-season rainfall and starting

nitrogen content at commencement (Figure 7 andr&i§urespectively).

Insert Table 3 here
Insert Figure 6 here
Insert Figure 7 here

Insert Figure 8 here

For each set of field conditions (i.e. startingagen content and in-season rainfall),
the simulated yield was highest for the MPC strnatbat optimised yield (simulations
#21, #23, #25 and #28). Similarly, the strategipBmising IWUI (simulations #27
and #30) and CWUI (simulations #26 and #29) prodube highest respective IWUI
and CWUI of the simulations with the same field dibions. This indicates that MPC
strategy could adjust the irrigation applicationitgprove either yield or water use

efficiency.

Increasing the starting nitrogen content signifttaimproved the simulated yield and
water use efficiency. This is shown in Table 3ths yield for the no-rainfall
simulation with the higher nitrogen content of 2&§ N/ha (e.g. 17.9 bales/ha for
simulation #23) was nearly double that of the satiah with the lower nitrogen
content of 120 kg N/ha (e.g. 9.0 bales/ha for satoih #21). Since the irrigation

volumes applied were similar for these two simolasi (Figure 8), the CWUI and
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IWUI of the higher nitrogen content simulations welso nearly double that of the
lower nitrogen content simulations. Hence, nitroggplication had a significant
effect on the final yield without greatly affectinige irrigation volume required to be

applied.

Rainfall significantly affected the simulated yietthd CWUI (Table 3). Table 3
shows that the yields, irrigation applications a@WUI of simulations #21-#24
(without rainfall) are higher than those of simidats #25-#30 (with rainfall). This
suggests that the crop is easier to control wis leinfall in the season. The
difference in yield and CWUI is most noticeable samulations with high nitrogen
content (e.g. simulation #28 with rainfall and slation #23 without rainfall) because
the simulated yields are higher and the differenisesveen the yields are more
apparent. It follows that during the period of ttiep season with high rainfall (63 to
86 days after sowing), lower irrigation volumes &applied compared to the periods

of no rainfall (87 to 105 days after sowing) (Figun).

The rainfall did not generally affect the IWUI fre simulated set of field conditions
(e.g. simulation #21 with no rainfall versus simida #25 with rainfall). This is
because more rainfall caused both the yield amghiron application (which are used

to calculate the IWUI) to decrease by approximatieé/same proportion.

5. MPC CASE STUDY C: optimisation using a predictedend-of-season target,
with limited calibration data
The MPC simulations of the Case Study B assumddhbdull data input of weather,

soil and plant information was available for RefMbdalibration. However, all three
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data streams may not be available in a field impletation. Case Study C evaluates
the usefulness of different data streams to cabbRefModel in a MPC strategy with

a predicted end-of-season target.

5.1 Methodology for Case Study C

The seven possible input data combinations (Tapleréte separately evaluated as
input for RefModel calibration. The datasets wel#amed daily from the cotton

model Sicot 71B and used to calibrate the SiokrGRA cotton model. The field and
weather conditions were as used in the earlier clsdies, the MPC strategy

optimised yield and the irrigations occurred daily.

5.2 Case Study C — Results and discussion

Table 4 and Figure 9 set out a comparison of an MdP&egy that maximises yield

with different combinations of input data to caite RefModel. The use of more
information in the input data combination generatigreased the average yield and
water use efficiency (Table 4). Table 4 shows MBRC performance with all three

input variables (simulation #37/#28) was superiortitat with any two variables

(simulations #34-#36); and similarly performancethwiwo input variables was

superior to that with any single input variablersdpexcept plant input (simulation

#33) versus soil-and-plant input (simulation #36)Yhis suggests that the MPC

calibration performs better with soil data inpuaritplant data input.

Insert Table 4 here

Insert Figure 9 here
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The lowest yields and water use efficiencies waraukated with only weather data
input (e.g. simulations #31). This is becausevikather data (without field-specific
soil or crop data) provides no information to adegly parameterise the crop model
used by the MPC strategy. This could lead to iinsaht model calibration and sub-
optimal irrigation volumes being determined. Thegation water use efficiency was
higher using the weather and plant combination (&atron #35) than using the full
data input (simulation #37/#28): this is becauseiield was maximised rather than

the water use efficiency in this case study.

6. GENERAL DISCUSSION

A Model Predictive Control strategy was succesgfuthplemented in VARIwise.
The controller uses currently available field d&vacalibrate the OZCOT cotton
production model and then evaluates a range gaiion volumes and timings in each
zone. The controller then implements the site4§ipacrigation volumes on the day
that achieves the highest water use efficiencyi@dyaveraged over the field, as user

specified.

Three alternative optimisation possibilities wedentified and explored, and the
conclusions for each, and their comparison, arseaut below. In each case the
MPC strategy performed successfully in the (simagdattask of controlling an
automatic irrigation machine applying spatiallydedr irrigation amounts. For
convenience, Table 5 gathers together the partisitaulation outputs referred to in
this section. Table 5 also compares results of M®G two sensor-based control
strategies, namely Iterative Learning ControlldrtQ) and lIterative Hill Climbing

Controller (IHCC), simulated on fields with PAWCryang between 60 and 200 mm
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with 1266 zones, and the same weather profile aog wariety (as detailed in

McCarthy et al. 2013). These sensor-based stestegifine the estimate of each

successive irrigation volume applied by:

[ILC] — iteratively adjusting the irrigation volumapplied in each zone of the field
using the incremental response, i.e. the OZCOTrated plant growth arising
from the change iparticular field sensor information which has resulted from the
previous water application, in each zone; or

[[HCC] - similarly adjusting the irrigation volumesut based omultiple sensor
increment information, using a range of irrigation volumes applied withi group

of homogenous zones.

Insert Table 5 here

The performance of the MPC strategy was also coedpaitith an industry-standard
irrigation strategy (first line of Table 5). Thsdrategy applied a uniform irrigation
treatment (25 mm) across the field and initiatedation events when the soil-water
deficit reached a set amount (30 mm) in one pairthe field (in the cell with sandy
soil). The soil-water deficit was taken in thel @ath the lowest plant available water
capacity, as this is the most limiting soil. Tosere validity of the comparison this
simulation was executed using the same weatheritcmmsl and spatially variable
plant available water capacity and starting soitewaand crop variety as the reference

model. The nitrogen content was set to 250 kg/ha.

The MPC strategy was evaluated with different corabons of input data (section 3

above). The predicted yield and water use effmyenere highest when the strategy
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maximised the square count and calibrated the maglag all three streams of data
input (weather, soil and plant, simulation #20)heTyield and water use efficiency
were also higher than those of the industry-stahdaigation management strategy
(McCarthy et al. 2013), and also ILC (simulation) #hd IHCC (simulation #9) with

either weather-soil-and-plant, weather-and-soil weather-and-plant data input
available (likewise refer McCarthy et al. 2013)owever, the MPC (optimising daily
input data) performed worse than the ILC and IHCO@re there was only either soil

input (simulation #11) or weather-and-plant (siniola#14) input data available.

The controller successfully adjusted the irrigationimprove the yield, CWUI or
IWUI, as appropriate (Section 4). The yield waghler with high nitrogen content
(e.g. simulation #28) than with low nitrogen cortésimulation #25) and with no
rainfall during the crop season (simulation #23)mpared with high rainfall
(simulation #28). This is because the controltsgy could better control the water
applied in response to the other environmentabfact The simulated average yields
and water use efficiencies were significantly higlean the industry-standard
irrigation management strategy, ILC strategy (satiah #1) and IHCC strategy

(simulation #9) (McCarthy et al. 2013).

MPC was evaluated with different combinations gduhdata available to calibrate
the model (Section 5). The controller performedtheth input of weather-soil-and-
plant data (simulation #28), but still producedh@gyields and water use efficiencies
with weather-and-soil (simulation #34) or weathedglant (simulation #35) input
than the irrigation-standard irrigation managenstrdategy, and ILC (simulation #1)

and IHCC (simulation #9) case studies (McCarthgl e2013).
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Higher yields and water use efficiencies were poedufor MPC optimising predicted
end-of-season data (simulation #28) than for MPi@gudaily input data to maximise
square count (simulation #20). However, both @as#h control strategies required
either the full data input, weather-and-soil or theaand-plant data input to obtain

yields higher than the ILC or IHCC strategies.

7. CONCLUSION

The Model Predictive Control strategy implemented the control simulation

software VARIwise performed successfully in thekta$ controlling an automatic
irrigation machine applying water to a simulatedt@o crop grown in typical

conditions for south-east Queensland, Australraall simulations the MPC strategy
specified ‘sensible’ irrigation amounts typical ibfigation practice in this region.
Simulations using the MPC strategy indicated tha MPC strategy could be
successfully used to either maximise crop yield,caop and irrigation water use

efficiencies.

The MPC strategy produced significantly higher ¢iahd crop water use efficiency
than the sensor-based strategies for the samelé&ed) field conditions (similarly
simulated in VARIwise and reported in McCarthy ¢t 2013). However, MPC
required weather-soil-and-plant, weather-and-soweather-and-plant information to
accurately calibrate the crop model. This indisgfer cotton grown as stated) that
whilst the MPC-based strategies are potentiallyesop, sensor-based strategies may

be more appropriate for field implementations whtege is limited data availability.
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Finally, we note here that direct field evaluatisrparticularly challenging, because
direct comparison requires replicated plots havilmg same soil types and
distributions, and with simultaneous operation stitht each experiences the same
weather conditions. In principal at least, anraliéive to achieve such a comparison
would be to determine variability of soil propesti@nder an irrigation systera,
priori, and then define plots of the same soil type sbahthe irrigation application
could be adjusted according to different MPC sgia® and in comparison with

industry-standard control (e.g. calculated usingpeXranspiration or soil-water).

Field evaluations would enable the sensing andrabherdware requirements and
performance of autonomous, adaptive control stresegp be compared with industry-
standard irrigation. These control strategies walgtermine irrigation application
and timing using a black-box control system basedensed inputs and sends control
signals to irrigation actuation hardware. Thislpdtentially lead to the optimisation
of irrigation water use and yield under differeritmate scenarios and water

availability situations.
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Figures and Tables

Table 1: Simulations (identified by ID #) conducteccompare interactions between

control strategies and input variables for Modedietive Control. N/A indicates
non-applicable and SILO indicates use of historatiahate data. (Simulations #1 to

#10 not tabulated here are those undertaken f@osdrased control, McCarthy et al.

— =L

— =L

(2013).)
ID # Input Ziggg:es for Weather data input Irrigation calculations
Nil Weather N/A N/A
11 Sall Averaged SILO data Target soil-water défici
12 Plant Averaged SILO data Maximise square/balhtd
13 Weather AND soill SILO data Target soil-watericief
14 Weather AND plant SILO data Maximise square/bolint
15 Soil AND plant (A) | Averaged SILO dataTarg?t _son-water deficit an
maximise square/boll coun
16 Soil AND plant (B) | Averaged SILO data Targetl-seater deficit
17 Soil AND plant (C) | Averaged SILO data  Maximispiare/boll count
Weather AND soil Target soil-water deficit an
18 AND plant (A) SILO data maximise square/boll coun
Weather AND soil : -
19 AND plant (B) SILO data Target soil-water deficit
Weather AND soll -
20 AND plant (C) SILO data Maximise square/boll count
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720

Table 2: Performance of the model predictive cdrati@ategy with variable-rate
irrigation machine for different input data combioas (yield maps of simulations
#11-#20 are in Figure 3)

. Average Average _Ayergge Cwul IWUI
ID Input variable . water irrigation
yield . : (bales/ (bales/
# for control (bales/ha) applied applied ML o) | ML iicarea)
(ML totaI/ha-) (ML irriqated/ha-) total irrigated
11 Soil 52+24 9.4 6.4 0.5 0.8
12 Plant 29+2.1 4.6 1.5 0.6 1.9
13 Weat:;[ AND | 74.15 9.2 6.2 0.8 1.2
14 | Weather AND [ 64,10 5.3 22 1.2 2.9
plant
15 | Soil A('X')D plant | 78.1.9 8.8 5.7 0.9 1.4
16 | Soil A(NBI)D plant | 73,21 9.5 6.4 0.8 1.1
17 | Soil A('\(':')D plant | g5, 27 9.0 59 0.9 1.4
Weather AND
18 | soil AND plant | 10.8+ 1.6 8.8 5.7 1.2 1.9
(A)
Weather AND
19 soil AND plant 10.6+1.9 10.2 7.1 1.0 1.5
(B)
Weather AND
20 soil AND plant 12.1+ 0.7 9.4 6.3 1.3 1.9
©
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721 Table 3: Performance of the model predictive cdrdi@tegy with variable-rate
722 irrigation machine for different weather data irgudtarting nitrogen contents and
723 optimised variables (yield maps of simulations #3D-are in Figure 6)
724
Initial Average | Average Average
ID | Optimised | Rainfall | nitrogen yield water irrigation CWUI IWUI
: . ; (bales/ | (bales/
# variable (mm) | content | (bales/ applied applied ML ) | ML irigatea)
(kg/ha) ha.) (ML tota|/ha.) (ML irriqated /ha) total |rr|gated
21 Yield 0 120 9.0£04 6.8 6.8 1.3 13
22 | CWUIl/Yield 0 120 8.4+ 0.6 5.2 5.2 1.6 1.6
. 17.9+
23 Yield 0 250 0.9 6.6 6.6 2.7 2.7
. 17.3+
24 | IWUI/Yield 0 250 19 6.5 6.5 2.7 2.7
25 Yield 302 120 | 8.4+04 9.0 5.9 0.9 14
26 Cwul 302 120 | 8.4+0.6 8.1 5.0 1.0 1.7
27 IWUI 302 120 7.7+0.5 7.5 4.4 1.0 1.8
. 14.3+
28 Yield 302 250 05 9.3 6.2 15 2.3
13.3+
29 Cwul 302 250 10 7.8 4.7 1.7 2.8
30 IWUI 302 250 13'? 7.3 4.2 1.7 3.0
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725 Table 4: Performance of the model predictive cdrgii@tegy optimising yield for
726  crop season with rainfall and 250 kg/ha of avadatitrogen for different input data
727 combinations, where simulation #3% a duplication of simulation #28 for

728 comparison (yield maps of simulations #31-#37 argigure 9)

729

Average Average
. Average 9 irrigation CWulI IWUI
Input variable ) water :
ID # for control yield applied applied (bales/ (bales/
(baIeS/ha-) (ML /ha (ML irrigated ML total) ML irrigated)
total ) /ha)
31 Weather 5.6+1.1 9.9 7.2 0.6 0.8
32 Soil 9.1+1.0 9.0 5.9 1.0 1.5
33 Plant 10.0+ 1.3 9.2 6.0 1.1 1.7
34 Weat:;[ AND | 122,17 8.3. 5.2 15 2.3
35 | Weather AND | 154,14 8.1 5.0 15 25
plant
36 Soil AND plant| 9.4+0.8 9.2 6.0 1.0 1.5
37 soil AND plant .3+ 0. 9.3 6.2 1.5 2.3
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730 Table 5: Control strategy simulation outputs whéeeinitial nitrogen content is 250

731 kg/ha and there is rainfall during the crop seasdass otherwise noted.
732
NPUL | \erage | AVErage | Average | oy |
Control variable . water irrigation
ID # yield . : (bales/ (bales/
strategy for (bales/ha) applied applied ML o) | ML iricatea)
control (ML 451a/h@) | (ML iprigatea/had) total imigated
N/an | Industry- NIl | 91:19 | 10.2 6.8 0.9 1.4
standard
14 ILC Soil 12.2+1.5 11.0 7.3 1.1 1.7
o mHec | SONAND | 124016 122 8.1 1.0 15
plant
11 | MPCaly | g | 52.24 9.4 6.4 0.5 0.8
input)
: Weather
14 | MPC(dally | “\yp ™ | 6.4:1.0 5.3 2.2 1.2 2.9
input)
plant
Weather
MPC (daily | AND soil
20 U AND | 12107 9.4 6.3 1.3 1.9
plant
Weather
o3 | MPC (end-of- ANDsoil | 179,09 | 46 6.6 2.7 2.7
season input)|  AND
plant
Weather
25 | MPC (end-of) AND soll | g 4,04 | gg 5.9 0.9 1.4
season inpuf)| AND
plant
Weather
28/ | MPC (end- of-| AND sall
37 | seasoninput)) AND #3.3405 9.3 6.2 1.5 2.3
plant
MPC (end- of-| Weather
34 season input)| AND soil 122=1.7 8.3 52 1.5 2.3
Weather
g5 | MPC(end-of “u\p™ | 124:14 | g1 5.0 15 2.5
season input)
plant
733 " From McCarthy et al. 2013
734 ! cCrop season has no rainfall
735  ZInitial nitrogen content is 250 kg/ha
736  Abbreviations: ILC is Iterative Learning ControHCC is Iterative Hill Climbing Control and MPC is
737  Model Predictive Control
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740
741
742
743
744
745

Weather data

Initialisation

|

Continuous
update

User-input databases:
Property; Field; Crop type; Machine;

Crop status . 5
(spatial database) Display

Sensors; Spatial division (cells)

kTimesteppecl Timestepped
update update

Crop model:
Reference model

Timestepped 49
update

Crop model:
“Actual crop” or
Actual model

Irrigation
application
amount

Figure 1: The simulation framework VARIwise configd to evaluate (in simulation
mode) the model-based adaptive control strategydiBcedictive Control (MPC). In
this mode, the block ‘AcModel’ (also an OZCOT foraion) has replaced the field
data measurements which would normally update ‘RefM. (This diagram is
adapted from the full VARIwise flowchart presentsl Figure 2 of McCarthy et al.
2010.)
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Figure 2: Soil variability as calibrated in modeégictive control implementation: (a)
plant available water capacity; and (b) soil-watersowing date
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754
755

V(_a) Simulation #11

/

Yield=5.2 = 2.4 bales/ha
Trrigation applied = 6.4 ML/ha
CWUI = 0.5 bales/MLiota
ITWUI=0.8 balesMLimgmd

(b) Simulation #12

/!

Plant 01ﬁy

Yield=2.9 = 2.1 bales/ha
Tirigation applied = 1.5 ML/ha
CWUI = 0.6 bales/MLiga
TWUI = 1.9 bales/MLirigarea

(c) Simulation #13

/'1/_'7 I
|l 1Y,
Kt
/ 1

Weather AND soil
Yield=7.4 £ 1.5 bales/ha
Trrigation applied = 6.2 ML/ha
CWUI = 0.8 bales/MLigtar
Wui=1.2 baIes;ML,-mgmd

_ ({i) Simulation #14

S—=——x

i ,ll\_ . . 4 1‘ =
T L

Yield = 6.4 £ 1.0 bales’ha
Trrigation applied =2.2 ML/ha
CWUI= 1.2 bales/MLiot
IWur=2.9 ba}.ESfMLiﬂ-,'@gBd

(e) Simulation #15

o

Soil AND plant (A)
Yield=7.8 1.9 bales/ha
Irtigation applied = 5.7 ML/ha
CWUI= 0.9 bales/MLiga1
ITWUI =1 4 bales'MLirigarea

(f) Smulation #16

Soil AND plant (B)
Yield= 7.3 £2.1 bales/ha
Trrigation applied = 6.4 ML/ha
CWUI= 0.8 bales/MLiom
IWUI = 1.1 bales/MLnigated

(g) Simulation #17

Soil AND plant (C)
Yield= 8.2 £ 2.7 bales’ha
Tirigation applied =5.9 ML/ha
CWUI= 0.9 bales/ MLyt
TWul=14 balesMLi,,@m

_(h_) Simulation #18

Weather AND soil AND plant
(A)

Yield=10.8 = 1.6 bales/ha
Irrigation applied = 5.7 ML/ha
CWUI = 1.2 bales/ML,ys;

TWUI = 1.9 balesMLiizaies

(1) Simulation #19

Weather AND soil AND plant
B)

Yield=10.6 = 1.9 bales/ha
Timigation applied = 7.1 ML/ha
CWUI=1.0 bales/MLi
TWUI = 1.5 bales/MLiyizuea

(j) Simulation #20

-
Weather AND soil AND plant
(©)

Yield=12.1 =0.7 bales’ha
Tivigation applied = 6.3 ML/ha
CWUI = 1.3 bales/MLiota
IwWui=1.9 balesMLim-,md

17

Yield (bales/ha)

756 Figure 3: Yield maps and average yield and irrgatutputs of model predictive
757  control strategy for different combinations of datput and legend for yield maps for
758 simulations #11 to #20 (numerical data are setrotitible 2)
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Figure 4: Simulated daily soil-water deficit in slaclay loam and clay zones for
strategies that use weather, soil and plant dataéalel calibration (RefModel). Set
(a): targeting fixed soil-water deficit (simulatiéi9); and set (b): maximising
square/boll count (simulation #20)
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Figure 5: Simulated daily square count in sand; ldam and clay zones for strategies
that use weather, soil and plant data for modébilon (RefModel). Set (a):
targeting fixed soil-water deficit (simulation #18@)nd set (b): maximising square
count (simulation #20)
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773
774

(a) Simulation 21

No rain, 120 ke N/ha
Optimising yield
Yield=9.0 = 0,4 bales’ha
Trrigation applied = 85 ML
CWUI= 1.3 bales/MLiom
TWUI = 1.3 bales/ML;icaied

(b) Simulation 22

Optimising CWUT / TWUI
Yield= 8.4 £ 0.6 bales/ha
Trrigation applied = 65 ML
CWUIL= 1.6 bales/MLiota
TWUI=1.6 ba]es;'ML,-mg,,ed

(c) Simulation 23

No rain, 250 kg N'ha
Optimising yield
Yield=17.9 = 0.9 bales’ha
Tirigation applied =83 ML
CWUI=2.7 bales/ML,y
TWUI = 2.7 bales/MLinigawed

(d) Simulation 24

No rain. 250 kg N/ha
Optimising CWUT/ TWUI
Yield=17.3 = 1.2 bales/ha
Trrigation applied = 84 ML
CWUIL= 2.6 bales/ML.sa
TWUI = 2.6 bales/MLinigaied

Yield (bales/ha)

17

(e) Simulation 25

Optimising vield

Yield = 8.4 %+ 0.4 bales/ha
Tirigation applied = 74 ML
CWUI= 0.9 bales/M L1
TWUI = 1.4 balesMLiyisaea

(f) Sumulation 26

With rain. 120 kg N/ha
Optimising CWUT

Yield = 8.4 = 0.6 bales/ha
Trrigation applied = 63 ML
CWUI= 1.0 bales/ML.
WuUIl=1.7 ba]es;‘l\d]_@m_-gﬂj

(g) Simulation 27
Sl

=

With rain. 120 kg N/ha
Optimising TWUT

Yield =7.7 £ 0.5 bales'ha
Irrigation applied = 55 ML
CWUI= 1.0 bales/ML;ya
IWUI = 1.8 balesMLiyisatea

(h) Simulation 28

With rain, 250 kg N/ha
Optinusing yield
Yield=14.3=0.5 bales’ha
Tirigation applied =78 ML
CWUT= 1.5 bales’ML i,
TWUI = 2.3 balesMLinigaed

(1) Simulation 29

With rain. 250 kg N/ha
Optimising CWUI
Yield=13.3 = 1.0 bales’ha
Trrigation applied = 73 ML
CWUI= 1.5 bales/ML
TWUI = 2.3 bales/MLinisated

() Simulation 30
=

With rain. 250 kg N/ha
Optunising TWUT

Yield =12.5+ 0.3 balesha
Irrigation applied = 53 ML
CWUI= 1.7 bales/ML,
TWUI = 3.0 balesMLisizated

775 Figure 6: Yield maps and average yield and irryatutputs of model predictive
776 control strategy with variable-rate irrigation mashand legend for yield maps for
777 simulations #21 to #30 (numerical data for simolagi are presented in Table 3)
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Figure 7: Irrigation volumes applied to sand, dlagm and clay zones for simulations
#24 and #27 to evaluate effect of rainfall duringpcseason. The model predictive
controller optimised IWUI with 250 kg/ha of availamitrogen and for crop season
with: set (a) no rainfall; and set (b) 302 mm ohfall
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791 Figure 8: Irrigation volumes applied to sand, dlzgm and clay zones for simulations
792 #25 and #28 to evaluate effect of nitrogen continat;model predictive controller

793 optimised yield for crop season with no rainfaldavailable nitrogen of: set (a) 120
794 kg/ha; and set (b) 250 kg/ha

42



795
796

797
798
799
800

(a) Simulation #31

T
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Weather only

Yield = 5.6 £ 1.1 bales/ha
Iirigation applied = 7.2 ML/ha
CWUI=0s6 baless'MT_mm
ITWUI = 0.8 bales/MLiigated

(b) Simulation #32

e

A g
pre !

Soil only

Yield=9.1 £ 1.0 bales/ha
Iirigation applied = 5.9 ML/ha
CWUI = 1.0 bales/ML; a1
IWUI = 1.5 bales/MLiyigated

(c) Simulation #33

oy —
= /

Plant only

Yield= 10.0 £+ 1.3 bales/ha
Trrigation applied = 6.0 ML/ha
CWUI= 1.1 bales/ML
IWUI = 1.7 bales/MLiyioue4

(d) Simulation #34

e

Weather AND soil
Yield=1224 1.7 bales/ha
Irrigation applied = 5.2 ML/'ha
CWUI= 1.5 bales™MLiom
IWUI=23 baleSaMLm- ted

Weather AND plant
Yield=124+1.4balesha
Iirigation applied = 5.0 ML/a
CWUI= 1.5 bales/MUTLigta
IWUI = 2.5 bales/MLiyisated

(f) Simulation #36

R

i

Soil AND plant
Yield=9.4 £ 0.8 bales/ha
Trrigation applied = 6.0 ML/ha

CWUI = 1.0 bales™MLioa

(g) Sinmlation #37

Weather AND soil AND plant
Yield= 143 £ 0.5 bales/ha
Irrigation applied = 6.2 ML/ha
CWUI= 1.5 baley 1
ITWUI = 2.3 bales/MLiyicated

Yield (bales/ha)

Figure 9: Yield maps and average yield and irratutputs of model predictive
control strategy with variable-rate irrigation mamhand legend for yield maps,

where simulation #37s a duplication of simulation #28 for comparigommerical
data for simulations #31-#37 are in Table 4)
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