
1

A Flexible Job Shop Scheduling Approach with Operators
for Coal Export Terminals

Robert L. Burdett1, Paul Corry2, Prasad K.D.V. Yarlagada3,Colin Eustace4, Simon Smith5

1,2 School of Mathematical Sciences, Queensland University of Technology,
3School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology

4,5AURECON Australasia, Level 14, 32 Turbot Street, Brisbane, Qld, 4000

Abstract: Operating a coal export terminal (CET) is a challenging task. The throughput of the terminal
and the delays incurred by ships and trains is greatly affected by where material is stacked and
reclaimed, and which machinery is used to perform those tasks. To improve the operation of these
terminals, and to make the aforementioned decisions, a novel optimisation approach has been
developed. In that approach the CET is modelled as a flexible job shop with operators (FJSOP). The
optimization problem is then solved using an advanced meta-heuristic algorithm that incorporates a
variety of sophisticated perturbation techniques, local improvement algorithms and pre-emption
handling procedures. That level of intricacy is rarely required for more traditional scheduling
problems but is a necessity for this one. A key component used in the optimisation process is a
priority ordering of the activities. The priority ordering is used to create the required activity
sequences, for each piece of machinery. This list dictates the order in which activities are scheduled
and can be perturbed quickly and in many different ways, leading to the identification of improved
solutions. The optimization approach is applied to an Australian coal terminal to demonstrate its
viability and effectiveness. Numerical testing shows that problems of the size encountered by
existing terminals can be handled and high quality solutions can be obtained with reasonable
computing effort.

Keywords: Bulk material handling systems, coal export terminals, scheduling, flexible job shop with
operators, meta-heuristics, priority ordering

1. Introduction

1.1 Background

Bulk material handling terminals are used throughout the world to facilitate the import and export
of various types of dry bulk material, such as iron ore and coal. They provide a place to store large
amounts of material, and a way to quickly reclaim that material when ships and other forms of
transportation arrive to collect it. They provide loading and unloading facilities and a stockyard to
assemble parcels of bulk material for export or to receive import cargo. Export material is reclaimed
from stockpiles and loaded onto ships and transported to other locations where it is further
processed.

This articles focus is upon coal export terminals (CET) however, iron ore terminals have similar
infrastructure and are also highly relevant to this focus. Presently there are over 100 CET operating
globally. In Australia ten CET are currently operating and these are positioned on the coast of
Queensland and New South Wales within reach of inland mining sites. The ten CET jointly handle
approximately 500 million tonnes of coal with a value of over 50 billion dollars per year.

Coal export terminals operate a variety of different equipment and machinery. These will be
referred to as resources, in the remainder of this article. A schematic layout for a typical export CET
is shown in Figure 1. The CET includes a stockyard with a rectangular array for stockpiles. Each
stockpile is separate and has a different size, geometry and product that must be kept separate from
other products. A typical CET also includes train unloading facilities, often referred to as dump-
stations for trains to deposit material, and a number of berths for ships to dock. Yard machines are

2

used to stack and reclaim material from stockpiles. These can be separate machines (i.e. stackers,
reclaimers) or machines capable of performing both functions, namely stacker-reclaimers (SR). The
type of yard machines considered here are long travelling, slewing and luffing SRs. They move
adjacent to stockpiles and conveyers. They are installed on rails and can only be moved between
specific stockpiles accessible in adjacent rows (a.k.a. pads) either side of the bund. Conveyers take
material to and from stacker-reclaimers. Ship loaders (SL) are similar to stackers; they are used to fill
ships and can be moved along the wharf between hatches on a ship and between the different
berths. High volume CET will typically receive material from trains. A train will deliver material into
a dump station, with the material then transferred through a series of conveyors to a stacker.
Transfer towers act as switches to route material between connecting conveyors. Surge bins are
used as a buffer between reclaiming and ship-loading. They minimise delays to reclaiming during
hatch changes and to allow ship loaders to operate at a higher rate than reclaimers, while there is
sufficient product in the bin.

Figure 1. Layout of a typical CET

When operating a CET a number of important decision problems arise. In this article, an
integrated sequencing and scheduling problem is considered. In that problem, there is a set of
arriving ships (𝑆𝐻) and trains (𝑇𝑅); the trains bring material to the terminal and the ships collect it
for export. The arrival time of the trains and ships is predictable in some circumstances, and
uncertain in others. In this article we will consider two scenarios. In the first scenario (Variant 1),
trains and ships will arrive at prescribed times. In the second scenario (Variant 2), trains and ships
can arrive at any time. In other words, the arrival times are decisions. A third scenario (Variant 3)
occurs when train and ship arrivals are random variables with a planned arrival time. That variant
will not be considered in this article, but in future ones.

Regardless of the variant, the primary consideration is to determine when loading, unloading,
stacking and reclaiming activities are to be performed and how those activities should be resourced
from the available terminal equipment. In other words, it is necessary to choose where material is
stacked after it is unloaded from trains, and which dump station and stacker-reclaimer to use. When
loading ships, it is necessary to choose where material is reclaimed and which stacker-reclaimer to
use. This is a sequencing problem, because the activities’ start and end time is inherently linked to
their position within the sequence of activities designated to each piece of equipment (i.e. the
resource sequences). The activities present in each resource sequence is evidently governed by the
aforementioned resource allocations. It is worth pointing out that the berth used by each ship is also
a potential decision. This position is important because it affects the type of ship loaders that may be

P1 P2 P3 P4 P5

P6 P7 P8 P10 P9

P11 P12 P13 P14 P15

Railway

track

SH1 SH2

SL2

Row 1

Row 2

Row 3

SH3

SR1 SR2

SR3

DS

BE1 BE2

BE3

SL1

Bund 1

Bund 2

Ship loaders
Dump

Station

Ships

Berths

Transfer

tower

Stockpile Conveyor Stacker-

reclaimer

3

used to load a ship. Some ship loaders can only be used at one berth, while others can service
several different berths. Other relevant information for sequencing and scheduling is as follows:

• Each ship has a number of holds, each potentially holding a different product. The ship
requirements can be met over the scheduling period. The order in which products are to be
loaded can be important and will be specified if so.

• A ship may require product from multiple stockpiles as one stockpile may not have enough
material.

• Products are to be placed in specific stockpiles; each stockpile is for a product of a given type. It
is common to have two stockpiles of a given product type, sometimes more depending on the
terminal.

• Each train has a number of wagons and each wagon may contain a different product. We will
consider trains that hold one type as this is the typical situation encountered in Australian CETs.

• In some scenarios the arrival time of trains and ships is known in advance. In other scenarios
those times are decision variables and need to be identified.

• Time to stack and reclaim is a function of the tonnage. A constant stack and reclaim rate will
initially be assumed. The ship loaders will operate at a constant rate, higher than the reclaim
rate, but with interruptions for hatch changes.

• The maximum number of concurrent stacking activities is limited by the number of dump-
stations.

The CET scheduling problem is challenging for the following reasons:

• Multiple pieces of equipment (i.e. resources) are required for each activity and they must be
acquired at the same time.

• Some required resources are static while others are mobile. Mobile resources must be
repositioned continuously, and the repositioning time must be taken into account

• It is permissible to pre-empt the stacking and/or reclaiming activities in some CET. This means
that they can be paused and resumed at later times with the same or different terminal
equipment. How best to partition an activity into pieces and when to schedule those pieces is a
significant dilemma.

• Stockpile sizes vary after each stack and reclaim activity. Stockpiles must never be in deficit, nor
can they be overloaded. Ensuring that the correct stockpile is assigned to each stack and reclaim
activity is tricky.

• Some piles may be “resumed” during the scheduling period and replacement piles of a different
product may be introduced.

1.2. Research Aims

It is important to operate CET effectively and to maximise their potential throughput. By more
efficiently utilising their existing equipment, it may be possible, to reduce idle time and the delays to
trains and ships. To achieve improved performance, advanced automated scheduling systems are
likely to be of benefit, particularly as terminal throughput approaches capacity. As CETs contain
unique features that make planning and scheduling difficult, existing planning and scheduling
approaches have not been automated. Traditionally they have been performed manually based on
experience and mental reckoning, supported by Excel spreadsheets or commercial software, like
QUINTIQ (2017), that facilitates manual planning and the visualisation of data. Schedule
optimisation has great potential given the challenges of manually scheduling multiple concurrent
activities competing for multiple shared resources with complex consequences for future
operations.

The purpose of this article is to test the premise that a generic abstraction of the terminal
scheduling problem based upon a flexible job shop scheduling approach with operators (i.e. FJSOP)
may be helpful and could provide schedules that lead to improved efficiency. Evidently the job-shop

4

scheduling approach is robust and highly generic and elegantly describes the predominant features
of many real world scheduling problems. In recent years, however it has also been successively
adapted for a diverse range of applications with bespoke characteristics, for instance train
scheduling (Burdett and Kozan, 2010) and hospital scheduling (Burdett and Kozan, 2018).

This article investigates the technical details behind the FJSOP approach in the context of
CETs. The intention is to provide an approach that can be embedded within an integrated rolling
horizon planning and rescheduling framework within an intelligent information management system
(IIMS). To our knowledge no other paper has explicitly addressed this problem in a comparable level
of detail or provided a similar generic approach. A traditional analytical approach based around the
formulation and solution of an integer programming model could have been applied, however this
problem is highly combinatorial, and as such, is better suited to machine scheduling and resource
constrained project scheduling style approaches. It is unlikely that this problem can be solved to
optimality with an analytical approach, as the search space is so large and complex.

The FJSOP is a new framework (Agnetis et al., 2014) and has only been applied to a small
number of environments. It has significant potential and general applicability. The scheduling
environment we are considering is fundamental and our approach, excluding features specific to
CET, is applicable to problems in other domains like hospital scheduling (Burdett and Kozan, 2018).
In hospital scheduling, patients are assigned bed spaces and other medical and surgical resources
from a set of candidates. The patients are treated in various locations within the hospital and each
surgical or medical activity requires multiple resources to be present simultaneously. That
requirement is also paramount in CETs.

1.3. Past Research

Recent developments and trends in scheduling are now discussed. Many of these papers have
motivated our current approach. Integrated scheduling of activities within CETs is a relatively new
topic. To our knowledge it has not received much direct attention. Hu and Yao (2012), Babu et al.
(2015), Kalinowski et al. (2017) are recent articles on CET scheduling. Babu et al. (2015) studied an
integrated port and stockyard operations problem and proposed two greedy constructive
algorithms. Their model consists of ship berthing, stockyard planning and train scheduling. They did
not consider multiple berth and capacity constraints of SR and SL. Hu and Yao (2012) considered the
scheduling of stacker reclaimers so that the maximum completion time of tasks is minimised. A
mixed integer programming model was developed and solved using Genetic Algorithms. No pre-
emption was included in their approach and stockpile sizes are not updated over time. In contrast
our FJSOP approach does. Boland et al. (2012) developed a stockyard planning approach for cargo
assembly terminals. A mathematical programming formulation was developed and solved using
constructive heuristics. The objective of their model is minimization of the mean ship delay.
Kalinowski et al. (2017) focused upon the scheduling of reclaiming activities as reclaiming capacity
for the application of interest was lower than stacking capacity. They formulated a mixed integer
programming model. The movement of reclaimers between stockpiles was not considered, but it is
in this article.

Coal export terminals can be modelled as a type of flexible job shop. The flexible job shop
scheduling problem (FJSP) is an extension of the classical job shop (JSP) that permits activities to be
processed by a variety of candidate resources. In the FJSP, the goal is to assign each activity to a
single resource, and to sequence those activities, so that a given scheduling criterion is optimized.
The FJSP is a notoriously difficult combinatorial optimization problem. It is known to be NP-hard, yet
is far simpler than our situation which involves multiple resource types for each activity and pre-
emptions. In recent years the FJSP has been addressed in Xia and Wu (2005), Pezella et al. (2008),
Junwattanakit et al. (2009), Zhang et al. (2009), Yazdani et al. (2010), Groflin et al. (2011), Chen et al.
(2012), Doh et al. (2013), Gao et al. (2014, 2015). In those articles multiple objectives have been
included and advanced meta-heuristics have been developed. Gao et al. (2015) also considers job re-

5

insertions. A more complex variant with multiple process plans is considered by Doh et al. (2013).
They propose a priority scheduling approach that utilizes two priority rules. Although quite practical,
their approach is just a heuristic and does not target optimal solutions, nor can it be used to refine
an existing schedule. In retrospection, past research highlights the need to separate the machine
allocation decisions from the operations scheduling decisions, and to solve one sub problem before
another. It is interesting to note that FJSP with pre-emptions is rarely considered (Zhang and Yang
2016). Hence our article, which does, is somewhat atypical.

It is important to mention that the requirement for each activity to be assisted by a single
human operator has resulted in the creation of a variant problem, namely the job shop scheduling
problem with operators (JSOP). It is also known to be NP-hard. In the JSOP there are a finite number
of human operators that can be assigned. The JSOP has been addressed in only a few articles,
namely Agnetis et al. (2011, 2014), Escamilla et al. (2012), Mencia et al. (2015). Agnetis et al. (2011)
introduced this problem originally. Escamilla et al. (2012) introduced a three stage process to
provide robust solutions to the JSOP. Human operators are ignored initially and the underlying JSP
problem is solved. Operators are then introduced and buffers are placed in the operators sequences.
Buffers are placed among the operations not involved in a critical path. Agnetis et al. (2014) later
modelled operators with different experience levels and applied heuristics to solve the problem.
Mencia et al. (2015) developed Memetic algorithms to solve the JSOP and introduced a new
neighbourhood structure. To the best of our knowledge, no more than two operator types have
ever been considered. In this article we consider four.

Our problem is an extension of the FJSP and JSOP and is evidently NP-hard. We denote this
extension as FJSOP. The FJSOP however does not capture fully the complexities of CET scheduling.
The incorporation of many additional advanced scheduling constraints is a necessity in this research.
In recent years advanced scheduling constraints have successfully been added to many traditional
job shop and flow shops. Noteworthy examples include Burdett and Kozan (2009a, 2009b, 2009c,
2010a, 2010b, 2018), Corry and Kozan (2004)), Groflin et al. (2011), Zeng et al. (2014), Zeng et al.
(2014), Sauvey and Trabelsi (2015). Burdett and Kozan (2018) established a generic FJSP scheduling
framework that can be used for a wide range of realistic scheduling environments. In their approach
activity and machine setup times, transfer times between activities, blocking limitations and no wait
conditions, timing and occupancy restrictions, buffering for robustness, fixed activities and
sequences, release times and strict deadlines have all been included. The approach taken in this
article has been motivated by the work of Burdett and Kozan (2018). Our approach however is an
improvement, as we include additional technical conditions specific to CET, for instance, resourcing
restrictions, pile sizing and collision detection. We also include pre-emptions and operators; these
were not considered previously.

The remainder of the paper is organized as follows. In Section 2 the main technical
developments and details of the FJSOP approach are introduced. For instance we discuss how to
schedule activities using a disjunctive graph, we discuss restrictions that affect resourcing, we
discuss how pile sizes are computed and how violations are identified and penalised, how activities
are pre-empted and the effect of fixed sequences that may not be altered. An advanced meta-
heuristic technique is discussed in Section 3. Therein a description of different perturbation and
refinement operators is provided and the solution representation used. A case study and numerical
investigations are then reported in Section 4. Concluding remarks are finally made in Section 5.

2. The CET Scheduling Framework

This section introduces a generic scheduling framework for CET. As a starting point it is first
necessary to formally define the different components of a CET. A CET is described by the following
tuple: (𝑃, 𝑅𝑂𝑊,𝐵𝑈𝑁𝐷, 𝑆𝑅, 𝑆𝐿, 𝐵, 𝐷𝑆). Each stockpile 𝑝 ∈ 𝑃 has an id, size, maximum size, location

and row, i.e. 𝑝 = (𝑖𝑑, 𝑙𝑣, 𝑙�̅�, (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡), 𝑟𝑜𝑤). Stacker-reclaimers 𝑠𝑟 ∈ 𝑆𝑅 have an id, stack rate,

reclaim rate, speed and are positioned on a particular bund, i.e. 𝑠𝑟 = (𝑖𝑑, 𝜆+, 𝜆−, 𝑠𝑝𝑑, 𝑏𝑢𝑛𝑑). Ship-

6

loaders 𝑠𝑙 ∈ 𝑆𝐿 have an id, loading rate and a speed, i.e. 𝑠𝑙 = (𝑖𝑑, 𝜆+, 𝑠𝑝𝑑) ∈ 𝑆𝐿. Each bund
𝑏𝑢𝑛𝑑 ∈ 𝐵𝑈𝑁𝐷 has an id and a list of the rows that are immediately accessible, i.e. 𝑏𝑢𝑛𝑑 =
(𝑖𝑑, 𝑟𝑜𝑤𝑠). Each berth 𝑏 ∈ 𝐵 has an id and a location, i.e. 𝑏 = (𝑖𝑑, (𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡)). Each of the
aforementioned sets describes a particular type of resource. These can be grouped as static, or
mobile, i.e. 𝑅s = 𝑃 ∪ 𝐵 ∪ 𝐷𝑆 ∪ 𝐵𝑈𝑁𝐷 ∪ 𝑅𝑂𝑊 and 𝑅m = 𝑆𝑅 ∪ 𝑆𝐿.

The CET can be modelled as a flexible job shop with operators (FJSOP). The FJSOP is formally
defined as follows. A given set of jobs 𝐽 = {𝐽1, 𝐽2, … } must be processed. Each job 𝐽𝑖 ∈ 𝐽 has a list of
activities and an activity precedence network. We denote these respectively as 𝐽𝑖 = (𝑖𝑑, 𝐴𝑖 , 𝑃𝑅𝐸𝑖)
where 𝑃𝑅𝐸𝑖 = {(𝑎, 𝑎′)|𝑎, 𝑎′ ∈ 𝐴𝑖}. The details present in 𝑃𝑅𝐸𝑖 define specific precedence relations
of the form 𝑎 ≺ 𝑎′. These precedence relations describe which activities should be performed
serially or concurrently. Each activity 𝑎 ∈ 𝐴𝑖 has an id, type, list of required resources (i.e. requisites)
and a size, i.e. 𝑎 = (𝑖𝑑, 𝜓, 𝐶, 𝑠𝑧, 𝑝). The type and size are problem specific and will be discussed in
due course. Each activity 𝑎 ∈ 𝐴𝑖 has a processing time 𝑝𝑎 measured in minutes. That processing time
depends on the resources assigned or else is defined upfront as static. An activity may require a
number of different resource types. For each resource type there may be multiple options. The
complete set of feasible resource selections for each activity can be quite extensive. We
denote 𝐶𝑎[𝑧] as the zth set of candidate resources for an activity 𝑎. It is worth pointing out that
𝐶𝑎[𝑧] ⊂ 𝑅 and 𝐶𝑎 = (𝐶𝑎[1], 𝐶𝑎[2], …).

For this problem we need to identify three things: a set of sequences, a set of resource
assignments and a set of activity timings. The activity timings are denoted by 𝑠𝑡𝑎𝑟𝑡𝑎 and 𝑒𝑛𝑑𝑎. The
set of resources assigned to each activity is denoted as 𝑅𝑎 = (𝑅𝑎[1], 𝑅𝑎[2], …). Evidently, 𝑅𝑎 ⊂ 𝑅
and 𝑅𝑎[𝑧] ∈ 𝐶𝑎[𝑧]. For instance if 𝐶𝑎[1] = {𝑆𝑅1, 𝑆𝑅2}, 𝐶𝑎[2] = {𝑃1, 𝑃2, 𝑃3} then 𝑅𝑎 = (𝑆𝑅1, 𝑃2)
is a valid resource selection because 𝑆𝑅1 ∈ 𝐶𝑎[1] and 𝑃2 ∈ 𝐶𝑎[2]. The sequence of activities
assigned to resource r is denoted by 𝜎𝑟. The kth activity is hence 𝜎𝑟[𝑘]. It is important to point out
that an activity can occur in multiple sequences when multiple resources are needed to perform it.
For instance if 𝑅𝑎 = (𝑟1, 𝑟2, 𝑟3) then ∃𝑘1, 𝑘2, 𝑘3|𝜎𝑟1[𝑘1] = 𝜎𝑟2[𝑘2] = 𝜎𝑟3[𝑘3] = 𝑎.

Specific details about CET are now explained. The first thing to point out is that trains and
ships are deemed jobs with one or more independent stacking and reclaiming activities. The type
and quantity of material present on trains and required by ships is known. It is sufficient to define a
single activity for each product held by trains and ships. Each activity requires a set of resources in
order to be performed. Evidently some of the resources are mobile, and some are static. Stockpiles
for instance are static resources where stacking and reclaiming activities occur. Stacker-reclaimers
and ship loaders are mobile resources and are regarded as “operators”. They can be repositioned to
various locations, depending upon the structure of the CET. The trains and ships are not modelled as
resources per se, but could be. They are assumed to be present whenever an activity of a particular
type is performed. Different activities may be modelled and we suggest the following:

• STACK: This activity describes train unloading and the subsequent movement of material to a
stockpile. It requires a stacker-reclaimer, a stockpile, and a dump station requisite.

• RECLAIM: This activity describes the retrieval of material from a stockpile and its subsequent
movement to a berth. It requires a stacker-reclaimer, a stockpile, and a berth requisite. The
berth requisite ensures that reclaiming activities do not begin until a ship has berthed and is
ready to load. It may be unnecessary to explicitly model berths in scenarios where ship loaders
do not switch between berths.

• LOAD: This activity describes the movement of material into a ship and requires a berth, ship
loader and a stockpile requisite. Load activities are tightly coupled to reclaim activities.
Consequently a combined “RECLAIM_LOAD” activity is defined.

• RECLAIM_LOAD: This activity combines RECLAIM and LOAD activities into one and makes the
former activities superfluous. This combined activity avoids a number of problems, the first and
foremost being the need to have overlapping synchronised activities of a job. It also bypasses
the issue of simultaneously having to pre-empt a LOAD activity if the RECLAIM activity is pre-

7

empted or vice versa. This activity requires four resources, namely two mobile resources (i.e. a
SR and a SL) and two static locations (i.e. a berth and a stockpile).

These activities are denoted by the following sets: (𝑆𝑇𝐾, 𝑅𝐸𝐶, 𝐿𝐷, 𝑅𝐸𝐶𝐿𝐷). Other activities may be
necessary and can easily be incorporated.

Every activity 𝑎 ∈ 𝐴 must have at least one static resource. This resource is described as the
location of the activity, namely 𝑙𝑎. If 𝑎 ∈ 𝑆𝑇𝐾 or 𝑎 ∈ 𝑅𝐸𝐶 then 𝑙𝑎 ∈ 𝑃. If 𝑎 ∈ 𝐿𝑂𝐴𝐷 then 𝑙𝑎 ∈ 𝐵. For
𝑅𝐸𝐶𝐿𝐷 activities however, there are two locations. When referring to the reclaiming location, 𝑙𝑎 ∈
𝑃. If referring to the load location, 𝑙𝑎 ∈ 𝐵.

If the processing time of CET activities is not fixed, then it is computed dynamically as 𝑝𝑎 =
60(𝑠𝑧𝑎/𝑟𝑎𝑡𝑒𝑎). The rate measured in tonnes per hour, is governed by the resources assigned, i.e.
𝑟𝑎𝑡𝑒𝑎 = 𝐅(𝑅𝑎). As there are different types of activities, this function has a number of clauses:

𝐅(𝑅𝑎) =

{

 𝜆𝑟

−|𝑎 ∈ 𝑅𝐸𝐶, 𝑟 ∈ 𝑅𝑎 ∩ 𝑆𝑅

𝜆𝑟
+|𝑎 ∈ 𝑆𝑇𝐾, 𝑟 ∈ 𝑅𝑎 ∩ 𝑆𝑅

𝜆𝑟
+|𝑎 ∈ 𝐿𝐷, 𝑟 ∈ 𝑅𝑎 ∩ 𝑆𝐿

min(𝜆𝑟
−, 𝜆𝑟′

+) |𝑎 ∈ 𝑅𝐸𝐶𝐿𝐷, 𝑟 ∈ 𝑅𝑎 ∩ 𝑆𝑅, 𝑟′ ∈ 𝑅𝑎 ∩ 𝑆𝐿

 (1)

As mentioned earlier, it is necessary to determine the activity timings, resources sequences and
resource assignments that optimize the performance. The performance however may be judged in
many different ways. A sensible scheduling objective is to process the arriving trains and ships as
quickly as possible and to minimise activities weighted flow-time. This is calculated in the following
way:

𝐹𝑙𝑜𝑤𝑇𝑖𝑚𝑒 = 𝜔1 ∑ 𝑓𝑙𝑜𝑤𝑖𝐽𝑖∈𝑇𝑅 +𝜔2 ∑ 𝑓𝑙𝑜𝑤𝑖𝐽𝑖∈𝑆𝐻 (2)

𝑓𝑙𝑜𝑤𝑖 = max
∀𝑎∈𝐴𝑖

(𝑒𝑛𝑑𝑎) − 𝑟𝑙𝑡𝑖 ∀𝐽𝑖 ∈ 𝐽 (3)

The following parameters are reflective of practical considerations (𝜔1, 𝜔2) = (10,1) and prioritize
the processing of arriving trains. A variant decision problem relaxes the train and ship arrival times.
The problem is to process all of the trains and ships as quickly as possible and to minimise the
schedule duration computed as max

𝑎∈𝐴
(𝑒𝑛𝑑𝑎). The necessary arrival times of trains and ships is

provided as a by-product.

2.1. Scheduling Activities

A disjunctive graph is used to efficiently schedule the different activities in the CET. The disjunctive
graph is initialised with conjunctive arcs. Disjunctive arcs are later added and removed as needed.
Correct activity timings can only be obtained by evaluating the graph via a suitable longest path
algorithm. A mathematical description of the required activity on node graph can be found in
Appendix A. In summary each activity 𝑎 ∈ 𝐴 has a single node in the graph. Those nodes are
assigned a weight equal to the current processing time of the activity, namely 𝑝𝑎. In contrast, each
resource 𝑟 ∈ 𝑅 must have two nodes, i.e. a source 𝑠𝑜𝑟 and a sink 𝑠𝑖𝑟. There is an arc from the source
node of the disjunctive graph (i.e. 𝑠𝑜) to the source node of each resource. Similarly there is an arc
from the sink node of each resource to the sink node of the disjunctive graph (i.e. 𝑠𝑖). Other arcs are
added to enforce the fixed conjunctive relationships between activities of a job and the variable
disjunctive precedence prescribed by the current sequencing decisions (i.e. the resource sequences).
As each resource has a chosen sequence of activities, there is an arc from the source node of the
resource to the first activity in the sequence and an arc from the last activity in the sequence to the
sink node of the resource. Other arcs are required for each pairs of activities within the resource
sequence. The ready time of a resource is introduced as an arc weight. It is placed on the arc from

8

the source node to the resource’s source node. Additional arcs (𝑠𝑜, 𝑎) may be added that link the
source node to each activity node. Release times can then be added as arc weights. Deadlines may
be imposed for different activities. Deadlines are enforced by adding reverse (i.e. backward) arcs
(Burdett and Kozan, 2018). These reverse arcs have a weight of −𝑑𝑙𝑛𝑎, originate at the activity and
end at the source node of the DJG. The presence of reverse arcs causes cycles with length less than
or equal to zero. Violation of the deadline however results in a positive length cycle. Provided that
positive length cycles are not present, a feasible schedule is obtainable using the Bellman Ford
algorithm.

It is necessary to point out that processing times must be computed for specific resource
assignments and when those resource assignments change, new processing times must be
computed. The nodes and arc weights in the disjunctive graph must then be updated.

2.2. Resourcing Restrictions

The CET activities require multiple resources and different pairings of resources may be assigned.
Some pairings however are invalid and must be restricted. Stacking and reclaiming activities for
instance cannot be assigned particular SR and stockpile pairings. Stacker-reclaimers can only service
certain stockpiles within a stockyard. In Figure 1 for instance, SR1 and SR2 cannot be assigned to
stockpile P11 – P15 however SR1 and SR2 can be assigned to stockpile P1–P10.

It is necessary to record both valid and invalid pairings. A resource pairing graph (RPG) and a
resource pairing conflict graph (RPCG) are introduced. These graphs contain a node for each
resource and contain arcs linking resources that can or cannot be paired. For instance in Figure 1’s
CET the RPG and RPCG arcs respectively are as follows:

 𝑎𝑟𝑐𝑅𝑃𝐺 = {{𝑆𝑅1, 𝑆𝑅2} × {𝑃1,𝑃2,… , 𝑃10}}⋃{{𝑆𝑅3} × {𝑃6, 𝑃7,… , 𝑃15}} (4)

 𝑎𝑟𝑐𝑅𝑃𝐶𝐺 = {{𝑆𝑅1, 𝑆𝑅2} × {𝑃11, 𝑃12,… , 𝑃15}⋃{𝑆𝑅3} × {𝑃1,𝑃2,… , 𝑃5}} (5)

The pairings can be input explicitly but automatic generation is evidently preferable via equation (6)
and (7).

𝑎𝑟𝑐𝑅𝑃𝐺 = ⋃ {(𝑠𝑟, 𝑝)|𝑠𝑟 ∈ 𝑆𝑅, 𝑏𝑢𝑛𝑑𝑠𝑟 = 𝑏, 𝑝 ∈ 𝑃𝑏}𝑏∈𝐵𝑈𝑁𝐷 (6)
𝑎𝑟𝑐𝑅𝑃𝐶𝐺 = ⋃ {(𝑠𝑟, 𝑝)|𝑠𝑟 ∈ 𝑆𝑅, 𝑏𝑢𝑛𝑑𝑏 = 𝑏, 𝑝 ∈ 𝑃\𝑃𝑏}𝑏∈𝐵𝑈𝑁𝐷 (7)

On bund b the piles accessible to stacker reclaimers is 𝑃𝑏. This set is determined automatically by
aggregating piles from adjacent rows. Given 𝑃𝑤 is the set of stockpiles in row 𝑤, and 𝑟𝑜𝑤𝑏 is the set
of accessible rows for each bund 𝑏 ∈ 𝐵𝑈𝑁𝐷, the stockpiles accessible to bund 𝑏 is 𝑃𝑏 =
⋃ 𝑃𝑤𝑤∈𝑟𝑜𝑤𝑏 . The stockpiles inaccessible to bund b is 𝑃\𝑃𝑏 and the rows inaccessible to bund b is

𝑅𝑂𝑊\𝑟𝑜𝑤𝑏.
Some pairings identified in (6) however must be removed when there are multiple SRs on a

bund. For instance, in Figure 2 it is evident that SR2 cannot be at P1, because SR1 is positioned to the
left of it. Similarly SR1 cannot be at P5, because SR2 is positioned to the right of it. These invalid
assignments must be removed and lead to a reduced decision space. In Figure 2 the feasible and
infeasible positions for SR is shown in Table 1. If an additional SR is added to the right of SR2, then
the feasible positions are given in Table 2.

Figure 2. Two stacker-reclaimers servicing five stockpiles

P1 P2 P3 P4 P5

SR1 SR2

9

Table 1. Valid positions for 2 SRs

 P1 P2 P3 P4 P5

SR1

SR2

Table 2. Valid positions for three SRs

 P1 P2 P3 P4 P5

SR1

SR2

SR3

The above logic can be generalised for any number of SR and stockpiles. It can also be applied to SL
and berths. Given an ordered list of stacker reclaimer, namely 𝑠𝑟, and an ordered list of piles 𝑝, the
valid and invalid positions respectively are as follows:

 {(𝑠𝑟[𝑖], 𝑝[𝑘])|𝑖 ∈ [1, 𝑁], 𝑘 ∈ [𝑖,𝑀 − 𝑁 + 𝑖]} (8)
 {(𝑠𝑟[𝑖], 𝑝[𝑘])|𝑖 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑖 − 1], [𝑀 − 𝑁 + 𝑖,𝑀]} (9)

Where 𝑁 = |𝑠𝑟| and 𝑀 = |𝑝|. Equation (8) and (9) are implemented as sub routines for
automatically determining valid and invalid pairings and updating the RPG and RPCG.

Within the FJSOP approach it is necessary to check the validity of the resource assignments

that are made. A complete list of valid assignments �̃�𝑎 may be precomputed upfront by performing
a Cartesian product of the resource candidates and then subtracting invalid assignments:

�̃�𝑎 ⊆ ∏ 𝐶𝑎𝑧∈[1,|𝐶𝑎|] [𝑧] = {(𝑟1, 𝑟2, … ,)|𝑟𝑧 ∈ 𝐶𝑎[𝑧] ∀𝑧 ∈ [1, |𝐶𝑎|]} (10)

For example, if 𝐶𝑎 = ({𝑃1,𝑃2, 𝑃11, 𝑃12}, {𝑆𝑅1, 𝑆𝑅2, 𝑆𝑅3}) then �̃�𝑎 ⊆ 𝐶𝑎[1] × 𝐶𝑎[2]. According to
Figure 1, the invalid assignments are: (𝑃1, 𝑆𝑅2), (𝑃1, 𝑆𝑅3), (𝑃2, 𝑆𝑅3), (𝑃11, 𝑆𝑅1), (𝑃11, 𝑆𝑅2),
(𝑃12, 𝑆𝑅1), (𝑃12, 𝑆𝑅2). Hence, �̃�𝑎 = {(𝑃1, 𝑆𝑅1), (𝑃2, 𝑆𝑅1), (𝑃2, 𝑆𝑅2), (𝑃11, 𝑆𝑅3), (𝑃12, 𝑆𝑅3)}.

 The maximum number of assignment solutions for activity a is |�̃�𝑎| ≤ ∏ |𝐶𝑎[𝑧]|𝑧∈[1,|𝐶𝑎|] . The

search space therefore contains ∏ |�̃�𝑎|𝑎∈𝐴 resourcing options. For 𝑎 ∈ 𝑆𝑇𝐾, there are three

requisites. If we assume that there are usually two or three piles, two to four SRs, and two DS

candidates, then |�̃�𝑎| ∈ [8,24]. For 𝑎 ∈ 𝑅𝐸𝐶𝐿𝐷, there are four requisites. If we assume that usually

there are two to three piles, two to four SR, two SL and two BE candidates, then |�̃�𝑎| ∈ [16,48]. A

typical CET scenario might have about 50 trains and 4 ships, i.e. 54 activities. This leads to a vast

number of resourcing alternatives: 850164 = 9.35 × 1049 ≤ ∏ |�̃�𝑎|𝑎∈𝐴 ≤ 2450484 = 5.44 × 1075.

2.3. Stockpile Profiles

Stockpiles sizes must be updated after stacking and reclaiming activities. By introducing node
functions, stockpile size updating may be performed when evaluating the disjunctive graph.
Alternatively, it may be performed after, and that is the approach taken in this paper. In retrospect,
the main reason to apply node functions (Corry and Kozan, 2004) would be if the activity duration is
dependent on both the current size of the stockpile and the amount of material transferred. An
update of the activity duration could also be performed by the node function before the remainder
of the graph is evaluated.

A mathematical description of how pile profiles, deficits and overloads are determined in our
approach can be found in Appendix B. Stockpile profiles denoted by Ω𝑝 are needed in order to

identity the presence or absence of stockpile sizing errors. Each profile contains an ordered list of
tuples describing the size of the pile at discrete time points, i.e. Ω𝑝 = {(𝑡, 𝑠𝑧)}. Events are added to

the profile whenever a stacking and reclaiming activity begins or ends. Further events are added
whenever the pile reaches its lower or upper bound. The lower bound is zero by default. The profile
shown in Figure 3 has 20 events and demonstrates the different scenarios that may occur. The
shaded areas are periods of infeasibility.

10

Figure 3. Stockpile profile and infeasibilities

The overall level of infeasibility is computed as follows:

𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = ∑ (∑ 𝐆𝟏(Ω𝑝[𝑧 − 1], Ω𝑝[𝑧]) + 𝐆
𝟐

𝑧=2,…,|Ω𝑝|
(Ω𝑝[𝑧 − 1], Ω𝑝[𝑧]))𝑝∈𝑃 (11)

𝐆𝟏((𝛼𝑡 , 𝛼𝑠𝑧), (𝛽𝑡 , 𝛽𝑠𝑧)) = −(𝛽𝑡 − 𝛼𝑡). (𝛼𝑠𝑧 + 𝛽𝑠𝑧 − 2𝐿𝐵)/2 for 𝛼𝑠𝑧, 𝛽𝑠𝑧 ≤ 𝐿𝐵 (12)

𝐆𝟐((𝛼𝑡 , 𝛼𝑠𝑧), (𝛽𝑡 , 𝛽𝑠𝑧)) = (𝛽𝑡 − 𝛼𝑡). (𝛼𝑠𝑧 + 𝛽𝑠𝑧 − 2𝑈𝐵)/2 for 𝛼𝑠𝑧, 𝛽𝑠𝑧 ≥ 𝑈𝐵 (13)

The violations are otherwise zero if 𝐿𝐵 < 𝛼𝑠𝑧, 𝛽𝑠𝑧 < 𝑈𝐵. Stockpile errors cannot be allowed in
practice. One option is to restrict them from occurring; another is to permit them, and to penalise
any occurrences in the objective function. It is worthwhile recording deficits and overloads as shown
in Appendix B, because this information can be used to perform corrections. A deficit can be avoided
by swapping an “offending” reclaim activity with a stacking activity. Similarly, an offending stack
activity that causes an overload can be swapped with a reclaim activity. An offending reclaim activity
that causes a deficit could be divided into two parts. The offending part can be postponed and the
non-offending part can be left as is.

2.4. Pre-emptions

In this section, we consider pre-emptions and describe our approach to include them. Pre-emptions
are important as they allow resources to be better utilised. Pre-emptions can be used to reduce
delays incurred by trains and ships in CET. All stacking and reclaiming activities can in theory be pre-
empted. As train operations are so critical in Australian CET, stacking activities are rarely pre-
empted. Hence, we only consider the pre-emption of reclaiming activities here. The set of pre-
emptible (i.e. dividable) activities is hence 𝐴÷ = 𝑅𝐸𝐶𝐿𝐷.

When undertaking the pre-emption of an activity 𝑎 ∈ 𝐴÷, we have chosen to create an
additional (i.e. child) activity within the associated job, say 𝐽𝑖. The child activity is a “bona-fide”
activity with all the characteristics and attributes of previously described activities. Every time a pre-
emption is instigated, the set of activities, namely 𝐴, is enlarged. Child activities are assigned the
same resources as the parent activity initially. A set of completely different resources may be
assigned later. Child activities must also be added to the activity precedence network of the job,
namely 𝑃𝑅𝐸𝑖. The following statement describes the pre-emption of activity 𝑎 by an amount Δ:

 𝐏𝐫𝐞(𝑎, ∆) ⇒ (𝑎, 𝑎′) s.t. 𝑠𝑧𝑎 = 𝑠𝑧𝑎 − ∆, 𝑠𝑧𝑎′ = Δ where Δ ∈ [𝜏, 𝑠𝑧𝑎 − 𝜏] (14)

The amount that is assigned to the child is restricted. In practice it is not desirable to partition the
activity below a given tonnage 𝜏. This minimum tonnage is used as the basis of a discretisation of
pre-emption sizing, such that the number of ways to pre-empt an activity is ⌊𝑠𝑧𝑎/𝜏⌋. Any remainder
below 𝜏 can be arbitrarily assigned to any of the ⌊𝑠𝑧𝑎/𝜏⌋ pieces. For instance, if 𝑠𝑧𝑎 = 11.25 tonnes
and 𝜏 = 0.5 tonnes there are potentially 22 pieces. The remainder of 0.25 is less than 𝜏 and can be
redistributed to any of those pieces.

Time

Size

Infeasibility

UB

LB

Start or end of activity Intersection

Overloaded

In deficit

11

At the point of creation, the child activity 𝑎′ should be labelled appropriately and “linkages”
between the parent and child should be established:

𝑝𝑎𝑟𝑒𝑛𝑡𝑎′ = 𝑎; 𝑖𝑓(𝑐ℎ𝑖𝑙𝑑𝑎 ≠ 𝑁𝑈𝐿𝐿) then 𝑐ℎ𝑖𝑙𝑑𝑎′ = 𝑐ℎ𝑖𝑙𝑑𝑎 and 𝑝𝑎𝑟𝑒𝑛𝑡𝑐ℎ𝑖𝑙𝑑𝑎 = 𝑎′;

𝑐ℎ𝑖𝑙𝑑𝑎 = 𝑎′; (15)

These linkages are important when adding new pre-emptions, or removing existing ones, and to
ensure correct updating of the disjunctive graph and resource sequences. The labelling of child
activities is a practical consideration, but is important for understanding solutions. The selection of a
poor naming convention can lead to a number of implementation issues.

Every 𝑎 ∈ 𝐴𝑖 has a list of successor activities. Those lists must be revised when activities are
pre-empted. The parent’s successor list is assigned to the child, and the parent’s successor list is
updated to contain only the child, i.e. 𝑠𝑢𝑐𝑐𝑐 = 𝑠𝑢𝑐𝑐𝑎 and 𝑠𝑢𝑐𝑐𝑎 = 𝑐.

When activity 𝑎 is pre-empted and a child activity 𝑎′ is created, the conjunctive arcs within the
disjunctive graph must be revised as follows:

𝐸C = 𝐸C ∪ {(𝑎, 𝑎′)} ∪ {(𝑎′, 𝑎∗)|∀(𝑎, 𝑎∗) ∈ 𝑃𝑅𝐸𝑖}\{(𝑎, 𝑎
∗)|(𝑎, 𝑎∗) ∈ 𝑃𝑅𝐸𝑖} (16)

For every successor of a, namely 𝑎∗, the existing arc (𝑎, 𝑎∗) must be removed, and replaced with
(𝑎′, 𝑎∗). Every time an activity is pre-empted, the disjunctive arcs must also be revised:

𝐸D = 𝐸D ∪⋃ {(𝑎′, 𝜎𝑟[𝑘 + 1]) ∪ (𝑎, 𝑎′)}𝑟∈𝑅𝑎 \⋃ {(𝑎, 𝜎𝑟[𝑘 + 1])}𝑟∈𝑅𝑎 (17)

It is noteworthy to mention that k is the position of activity a in sequence 𝜎𝑟, i.e. 𝜎𝑟[𝑘] = 𝑎.

To undo a pre-emption (i.e. to reset a pre-empted activity) the reverse of the operations

described in (16) and (17) are made. The resources assigned to the child activity are discarded when
the pre-emption is undone, i.e. the resources assigned to the parent are retained. The other
processes described also need to be reversed when a child activity is merged with its parent.
Successor lists are returned to the parent and parent-child linkages are revised.

2.5. Advanced Features

The key features of our FJSOP approach for CET scheduling have been detailed in previous sections.
There are a number of other practical considerations that need to be incorporated, like double width
stockpiles, changing stockpile layouts over time, collisions between mobile resources like stacker-
reclaimers and ship-loaders. These additional complexities however may not be present in every
instance. Further details are provided in Appendix C, D and E for interested readers.

Fixed resource assignments are a possibility that should also be considered. A typical example
is the assignment of ships upfront to specific berths or the assignment of SRs to specific stockpiles.
The set of fixed resource assignments should be defined upfront as follows: 𝐹𝐼𝑋𝐸𝐷 = {(𝑎, 𝑟)|𝑎 ∈
𝐴, 𝑟 ∈ 𝑅}. The assignments declared in this set are made and a fixed assignment status is recorded
for the requisite record involved.

Fixed sequences may also be specified for specific resources. The set of fixed sequences is

defined upfront as follows: 𝐹𝐼𝑋𝐸𝐷_𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐸 = {(𝑟, 𝜎𝑟
F)|𝑟 ∈ 𝑅, 𝜎𝑟

F ⊂ 𝐴} where 𝜎𝑟
F is an ordered

set of activities. A resource with a fixed sequence is recorded as such via a Boolean parameter and

the sequence is assigned, i.e. 𝜎𝑟 = 𝜎𝑟
F. The declaration of a fixed sequence also implies fixed

resource assignments. For instance ∀𝑎 ∈ 𝜎𝑟
F the assignment of resource r to a is made.

It is assumed that the sequence is complete. In other words, the sequence is not a partial
sequence and it cannot be altered, except by pre-empting current activities. Ignoring peculiarities
induced by pre-emption, fixed sequences result in the presence of fixed disjunctive arcs. The pre-

12

emption of an activity within a fixed sequence results in the need to remove the current disjunctive
arcs and to add different ones.

3. Meta Heuristic Approach

The FJSOP is an inherently complex and challenging decision problem and unique features present in
CET make it even more challenging. Many different solution approaches can be taken to solve this
problem. Traditional mixed integer programming (MIP) methods may be formulated however they
are unlikely to be effective on full sized instances. Pre-emption is particularly challenging to handle
in a MIP setting, greatly increasing the number of variables and constraints. Since commercial
applications are time-critical in terms of solution time, constructive algorithms and meta-heuristics
are the preferred method (Gao et al., 2014).

The choice of meta-heuristic is important but the consideration of how to effectively perturb a
solution is more so. Within a feasible solution, the perturbation of a single resource assignment is
highly problematic, as resource pairing infeasibilities can be created easily. Consider the resource
selection (SR1, P1, DMP1) and the stockyard shown in Figure 1. If SR1 is replaced with SR3, the
resulting assignment (SR3, P1, DMP1) is invalid as SR3 cannot ever reach P1. Many other types of
infeasible pairings can also be created. If an attempt is made to perturb an activity from its current
position within a resource sequence, positive length cycles are easily created within the disjunctive
graph and a feasible schedule is not forthcoming. As each activity is present in multiple resource
sequences, some type of compound move is definitely needed. To the best of our knowledge,
compound moves have only been applied successfully in train scheduling applications (Burdett and
Kozan, 2010a) and are somewhat rare.

In response a very different approach has been developed. We propose a new hybrid Simulated
Annealing (HSA) meta-heuristic using a suite of perturbation and improvement operators. A
standout feature is the use of a priority ordering chromosome and a constructive algorithm to
decode it. The constructive algorithm operates in a deterministic way and is also used to perform
resource assignments. It does a good job of assigning resources to activities but does not guarantee
an optimal resource assignment. For that a dedicated resourcing chromosome is needed. More will
be said about the constructive algorithm in due course. A Simulated Annealing inspired approach has
been developed, because the need for computational speed is important. Of all the meta-heuristics
available, it is arguably the fastest. This solution technique has very robust performance, and is well
tested on “hard” optimization problems, for instance in Burdett and Kozan (2009c, 2010a, 2014,
2018), and many others. Meta-heuristics that manipulate a population of solutions are quite
applicable and provide high quality solutions. Unfortunately they are significantly slower in
comparison (Burdett and Kozan, 2014).

 The priority ordering is simply an ordered list of activities. It is used in the optimisation process
but is discarded upon completion. Perturbations of the priority ordering are used as a way to obtain
high quality schedules. Our choice of this solution chromosome significantly simplifies the solution
process and foreseeable complications with compound moves are avoided. Without the priority
ordering chromosome and the constructive algorithm that evaluates it, it is necessary to explicitly
manipulate the activities within each resource sequence. The primary solution chromosome would
otherwise be a very large number of separate sequences. In a typical scenario like the one shown in
Figure 1, there at least 25 resources and each one of those has a sequence of activities. In contrast,
the priority ordering is a single sequence, albeit of much greater size. All of the CETs activities are
present in this sequence, and consequently there are |𝐴|! solutions to choose from without
consideration of pre-empted activities. In a typical scenario with 50 trains and 4 ships there are at
least 54! = 2.31 × 1071 orderings to choose from. Pre-empted activities will cause the priority
ordering to grow and contract. The number of priority orderings could be as many as (|𝐴| +
∑ ⌊𝑠𝑧𝑎/𝜏⌋𝑎∈𝑅𝐸𝐶𝐿𝐷)! but this value depends greatly on the size of each activity.

13

Constructive Algorithm: The main details of the constructive algorithm are provided in Appendix F.
The constructive algorithm handles pre-emptions, fixed sequences, resource tokens and stockpile
sizes. Its purpose is to create the resource sequences from a priority ordering of the stacking and
reclaiming activities. The position of each activity within the priority ordering, dictates when it is
granted permission to acquire the resources that it needs. The algorithm is iterative. At each step an
activity is scheduled as soon as its resources are deemed available. That activity is simply appended
to the partial sequences of the acquired resources. Consequently no complex insertions into
resource sequences, is required. After an activity is scheduled, the availability of the associated
resources is updated, i.e. as the activities planned completion time. If a prior resource assignment is
not provided, the algorithm chooses which resources to assign based upon their earliest availability.

When choosing resources for a particular activity a, the set of valid resource selections �̃�𝑎 is
considered. The resource selection with the best score is chosen. The score has two parts; the
primary part is the earliest availability:

 𝐸𝑆𝑣 = max
𝑟∈𝑅𝑣

(𝑓𝑟𝑒𝑒𝑟, 𝑓𝑟𝑒𝑒𝜏) ∀𝑣 ∈ [1, |�̃�𝑎|] where 𝜏 = 𝑡𝑜𝑘𝑒𝑛𝑟 (18)

Tokens are additional resources that are required. These special resources are introduced to restrict
multiple access and will be discussed in detail later. If a token 𝜏 is required by resource 𝑟 then it is
also included in the calculations. If the resource is a stockpile (i.e. 𝑟 ∈ 𝑃), then the level of the
stockpile is checked with the size of the activity. If a deficit or overload is identified, the extent of the
violation is penalised by 𝜆. Hence the final score is as follows:

 𝑠𝑐𝑜𝑟𝑒𝑣 = 𝐸𝑆𝑣 + 𝜆 × 𝑣𝑖𝑜𝑙𝑣 ∀𝑣 ∈ [1, |�̃�𝑎|] (19)

Initial Priority Ordering: To obtain an initial priority ordering, a topological sort of the disjunctive
graph is performed. At this point in time there are no disjunctive arcs except those implied by fixed
sequences. The topological sort ensures that precedence constraints between the activities within
each job are not violated, and by definition provides a list of activities.

Control Structure: The HSA is an extended version of Simulated Annealing. There is an outer loop
and an inner loop. The outer loop starts at temperature 𝑡 = 𝑡𝐼 and is terminated when the
temperature reaches 𝑡 = 𝑡𝐹. At the end of each temperature step the temperature is updated as
follows: 𝑡 = 𝑡 × 𝑡𝑅𝑒𝑑 where 𝑡𝑅𝑒𝑑 ∈ (0,1). The inner loop is terminated after a given number of
state changes (i.e. 𝑖𝑡𝑒𝑟) at the given temperature. State changes are accepted using the standard
metropolis function (Van Laarhoven et al., 1992).

Perturbations and Refinements: We have introduced several perturbation strategies and several
local improvement operations to the HSA. These are applied to the current priority ordering and are
performed sequentially within the inner loop. They are required in order to make quicker progress in
this difficult multifaceted decision space. A precedent for such an approach can be found in Burdett
and Kozan (2014). These strategies make feasible moves. The only infeasibilities allowed are pile
level violations and SR collisions. They are resolved explicitly or else sifted out during the search.
Infeasibilities are penalised and added to the objective. The penalty is variable and is increased as

the search proceeds in the following way: 𝜆(𝑡) = 𝑒𝛼.𝑛 where 𝛼 = 2 ln(𝜆𝑚𝑖𝑑) /𝑇 and 𝑡 is the

temperature step (i.e. counter). The number of temperature steps is 𝑇 = ⌈ln (
𝑡𝐹

𝑡𝐼
)/ ln(𝑡𝑅𝑒𝑑)⌉ and

the penalty midway is 𝜆𝑚𝑖𝑑.
As the priority ordering is a sequence, shifts and reversions are particularly useful. At the start of

every temperature step, one of these is chosen with equal probability. Perturbations are accepted in
the traditional way, according to the extent of the improvement or deterioration and the current
temperature of the HSA. The shift procedure moves an arbitrarily chosen activity in position 𝑢 to

14

position 𝑣. The position to which it may be moved, is bounded by the position of predecessor and
successor activities of the associated job. A chosen shift may not occur if precedence constraints
defined by fixed sequences are violated. Infeasibilities are identified by checking for an activities
membership in a fixed sequence. For instance if the result of (20) and (21) is true then the chosen
shift is rejected. If the chosen shift is infeasible the HSA does not evaluate another at the current
iteration; the algorithm moves on.

⋀ ⋀ (𝑜𝑟𝑑𝑒𝑟[𝑘] ∈ 𝜎𝑟)𝑘∈[𝑢+1,𝑣]∀𝑟∈𝐹𝐼𝑋𝐸𝐷_𝑆𝐸𝑄𝐸𝑈𝑁𝐶𝐸 for 𝑢 < 𝑣; (20)

⋀ ⋀ (𝑜𝑟𝑑𝑒𝑟[𝑘] ∈ 𝜎𝑟)𝑘∈[𝑣,𝑢−1]∀𝑟∈𝐹𝐼𝑋𝐸𝐷_𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐸 for 𝑢 > 𝑣; (21)

A reversion takes an arbitrarily chosen sub sequence of the activities and reverses it. The size of the
sub sequence is selectable. Numerical testing indicates a size of 2 to 5 activities is best. Reversions
can easily violate the conjunctive precedence constraints designated within jobs. These infeasibilities
frequently occur as reclaiming activities are broken into smaller and smaller pieces. Our reversion
method therefore performs an auto correction. The auto correction is facilitated by first storing the

activity sequence of each job within the current priority ordering. Let 𝜙𝑘
𝑖 be a tuple that describes

the kth activity of job 𝐽𝑖 that has occurred and its’ position within the priority ordering before the

reversal. Hence 𝜙𝑘
𝑖 = (𝜙𝑘

𝑖 [1], 𝜙𝑘
𝑖 [2]) and 𝜙𝑘

𝑖 [1] ∈ 𝐴𝑖 and 𝜙𝑘
𝑖 [2] ∈ ℤ. After the reversal is

performed the new activity sequence of each job is recorded. Let 𝜓𝑘
𝑖 be a tuple that describes the

kth activity seen of job 𝐽𝑖 and its’ position after the reversal. Hence 𝜓𝑘
𝑖 = (𝜓𝑘

𝑖 [1], 𝜓𝑘
𝑖 [2]), 𝜓𝑘

𝑖 [1] ∈

𝐴𝑗 and 𝜓𝑘
𝑖 [2] ∈ ℤ. The original activity sequence of each job is corrected (i.e. reinstated) in the

following way:

 𝑜𝑟𝑑𝑒𝑟[𝜓𝑘
𝑖 [2]] = 𝜙𝑘

𝑖 [1] ∀𝐽𝑖 ∈ 𝐽;∀𝑘 ∈ 𝐾𝑖 (22)

For example: Consider a sub sequence of activities: [5(3), 6(1), 2(2), 3(2), 7(1),]. The associated job is
written as a superscript. Therefore: 𝜙1 = [(6,2), (7,5)], 𝜙2 = [(2,3), (3,4)] and 𝜙3 = [(5,1)]. After

a reversion, the sub sequence is [7(1), 3(2), 2(2) , 6(1), 5(3)] and 𝜓1 = [(7,1), (6,4)], 𝜓2 =

[(3,2), (2,3)] and 𝜓3 = [(5,5)]. Four changes are necessary to reinstate the original conjunctive
relations, namely: 𝑜𝑟𝑑𝑒𝑟[1] = 6, 𝑜𝑟𝑑𝑒𝑟[4] = 7, 𝑜𝑟𝑑𝑒𝑟[2] = 2, 𝑜𝑟𝑑𝑒𝑟[3] = 3. The final sequence is

[6(1), 2(2), 3(2) , 7(1), 5(3)].

 Just like shifts, reversions may also violate fixed sequences. A reversion between u and v is
infeasible and must be rejected if (23) is true:

⋀ ⋀ (𝑜𝑟𝑑𝑒𝑟[𝑘] ∈ 𝜎𝑟)𝑘∈[𝑢,𝑣]∀𝑟∈𝐹𝐼𝑋𝐸𝐷_𝑆𝐸𝑄𝐸𝑁𝐶𝐸 (23)

The aforementioned perturbations are valuable but their application is unguided and unpredictable,
and may result in slow convergence in more complex integrated decision spaces. Two local
refinement procedures are hence suggested. These are applied next within the inner loop. As more
computational effort is required to apply these, they applied less frequently, and with equal
probability. The first refinement iteratively tests the value of all pairwise exchanges (i.e. shifts of one
position). The algorithm starts at the first pair of activities and then proceeds on to other pairs. At
any point in time, if an exchange provides an improvement it is automatically accepted, otherwise it
is rejected. This algorithm sifts activities within the priority ordering, from right to left, and is
particularly useful when jobs have release times. This algorithm is geared towards moving activities
with earlier release times. An exchange that violates fixed sequences is rejected according to
equation (24).

 ⋀ (𝑜𝑟𝑑𝑒𝑟[𝑘] ∈ 𝜎𝑟) ∧ (𝑜𝑟𝑑𝑒𝑟[𝑘 + 1] ∈ 𝜎𝑟) ∀𝑟∈𝐹𝑋𝐷 (24)

15

The second refinement involves the re-insertion of a single arbitrarily selected activity. All positions
are evaluated and the best is accepted if an improvement occurs. Otherwise no shift is made. The re-
insertion position is restricted by predecessor and successor activities of the associated job. The
validity of the re-insertion is also checked by (20) and (21).

HSA Modes: The HSA can be run in one of two modes. Mode 1 (aka “NO_PREEMPT”) does not
facilitate and handle pre-emptions. It runs faster but may provide inferior solutions if pre-emptions
are strictly necessary to achieve the optimal solution. Mode 2 (aka “PREEMPT”) has full pre-emption
handling. Numerical testing indicates that the application of mode 1 first can sometimes make it
easier for mode 2 to obtain a higher quality solution. Mode 3 is defined as the application of mode 1
first, followed by the application of mode 2.

Making Pre-emptions: Pre-emptions lead to significant improvements in solution quality and can be
handled in several ways. The development of perturbation operators that arbitrarily partition “pre-
emptible” activities into smaller pieces is one possibility. A complementary approach that undoes
prior pre-emptions is also possible. An alternative approach is to automatically make pre-emptions
when beneficial. The advantage of that approach is evident. It can be used to directly “polish” the
current solution and can be applied each iteration (i.e. temperature step) to great effect. This is the
approach we have developed. The “polish pre-empt” procedure is applied directly after the
aforementioned perturbation and refinement procedures.

To polish the solution it is necessary to analyse the pre-emptible activities (𝐴÷) within the
current priority ordering in the order that they appear. Our algorithm considers how big the child
activity should be and where it should be inserted within the current priority ordering. All feasible
insertion positions are analysed. Evidently there are fewer positions to consider when activities are
positioned later in the priority ordering. The child’s size is restricted to the range [𝜏, 𝑠𝑧𝑎 − 𝜏]. In
order to break up the parent activity it is necessary that 𝑠𝑧𝑎 ≥ 2𝜏. There are many ways to divide an
activity into smaller pieces. We evaluate all multiples of 𝛿 where 𝛿 = (𝑠𝑧𝑎 − 2𝜏)/𝑁 and choose the
best. Consequently the computational effort is 𝑂(𝑁|𝐴÷|). Evidently the CPU time and the solution
quality can vary considerably depending on how many bits 𝑁 are entertained.

Updating Fixed Sequences: After activity pre-emptions are performed it may be necessary to repair
fixed sequences. The order of those activities cannot be changed, however it is possible to partition
them into smaller pieces in many different ways. Consequently the fixed sequence can expand and
contract as the search progresses, and needs to be continually maintained to accurately reflect the
currently pre-empted activities. The correction is facilitated using a copy of the original fixed
sequences. To perform the correction it is necessary to discard the current fixed sequences as some
child activities may no longer exist and to add in the current activities.

Removing Redundant Pre-emptions: It is worthwhile to remove redundant pre-emptions from the
final solution. A pre-emption is regarded as redundant if the resources assigned to the child activities
are the same as those assigned to the parent and the start time of the child activity equals the
completion time of the parent. To remove redundant pre-emptions, the redundant child is merged
with the parent, and ceases to exist. The child of the child is then analysed if it exists. This process is
applied to all pre-empted activities, to reduce the length of the priority ordering, and the
computational effort required to manipulate it. A potential disadvantage is that there is more
chance of falling into local optima and there are fewer opportunities to move reclaiming activities
around. There needs to be a balance between keeping and removing redundant pre-emptions.
Numerical testing indicates that removing redundant pre-emptions 10% of the time generally leads
to better solutions. The removal of redundant pre-emptions is the last activity performed within the
inner loop of the HSA.

Solution Evaluation: The steps required to evaluate a solution are now discussed. Given a set of
resource allocations and a priority ordering, the aforementioned constructive algorithm is used to

16

construct the sequences. The disjunctive graph is then updated using the new sequences. Additional
temporary disjunctive arcs are added to enforce dynamic stockpile precedence. These continually
change as activities are reassigned to different piles and cannot be ascertained upfront. These arcs
are removed when no longer needed. The Bellman Ford algorithm is then applied to the disjunctive
graph to determine earliest start times for each activity. Afterwards the activities are scheduled and
key performance indicators are computed. Stockpile level profiles and infeasibilities are then
determined. The objective function is penalised if need be. Finally the presence of stacker-reclaimer
collisions are identified. If any are detected, the objective function is again penalised. Appendix E
provides full details of collision detection.

4. Numerical Investigations

This section tests the effectiveness of the proposed FJSOP framework and the HSA solution
approach. Our scheduling procedures have been coded in C++. All numerical experiments have been
run on a quad core Dell personal computer (PC) with a 2.6 Ghz processor and 16 GB memory under
Windows 7. Scheduling metrics are shown in minutes and CPU times in seconds. All values are
rounded up to the nearest integer.

A coal terminal in Australia is considered. The full details of the case study can be found in
Appendix G. The stockyard of this CET has thirty stockpiles P01 – P30 and these are positioned as
shown in Figure 4 (i.e. a top down view). The x-axis represents the chainage in that figure. The CET
has four bunds, BU01 - BU04, and five pads, R01 – R05. Each bund has a single SR, namely SR01 –
SR04. The stack and reclaim rate for SRs is respectively 6780 and 7360 tonnes/hr. They move at 2.4
km/h. As one SR occupies each row there is no possibility for collisions to occur. There are three
berths and two ship loaders. The SL move at 1.8 km/h. SL01 is not permitted to access BE03 and
SL02 is not permitted to access BE01. Hence there is no possibility for collisions to occur between SL.
Two dump stations exist for trains to unload coal, namely DS01 and DS02. Four ships SH01 – SH04
and 52 trains, TR01 – TR52, need to be scheduled. Every train has DS01 and DS02 as requisites. In
addition every stack and reclaim activity has SR01-SR04 as requisites and every reclaim has SL01 and
SL02 as requisites. The stockpile requisites for each stack and reclaim are shown in Appendix G. It is
not permitted to pre-empt stacking activities as trains have a tight time window for unloading. SH01
and SH03 require BE01 and SH02 and SH04 require BE02. For this study, ship berthing sequences are
given and an allocation of ships to berths has been established. The docking sequences for ships are
as follows: BE01: (SH01, SH03); BE02: (SH02, SH04).

Figure 4. Schematic of the CET including SR/SL starting positions and products in “[]”

SL01 SL02

SR03

SR04

SR01

SR02

17

4.1. Release Times – Fixed Train and Ship Arrivals

The arrival of trains and ships at specific times is considered here. A weighted flow time objective is
assigned and stockpile level violations are added as a penalty. The HSA was first applied using mode
1 which has no pre-emption handling. The application of the HSA with mode 2 and 3 (i.e. that uses
both modes sequentially) was then evaluated. Ten runs were performed and the summarised results
that contrast the application of the three different strategies are shown in Table 2. It is evident that
mode 1 (i.e. NO_PREEMPT) is most variable and produces the worst solutions. That approach
however is very fast. Without pre-emption handling all of the solutions obtained using that mode
had one or two pile sizing errors. It is noteworthy to mention that mode 1 and mode 3 produced
feasible solutions in all runs and that the CPU requirements and level of variability are less when
mode 1 is run first. When used as the starting point for mode 2, better solutions can often be
obtained than otherwise. The time spent evaluating the priority ordering is around 80% of the total
time spent running the HSA. Hence 20% of the time is spent perturbing a solution. Within the time
spent evaluating the priority ordering, around 37% is spent evaluating the disjunctive graph and the
remainder (i.e. 63%) is spent constructing the sequences.

Table 2. Aggregated HSA results [RLT + WFLOW objective / 𝑡𝐼 = 1000, 𝑖𝑡𝑒𝑟 = 300]
MODE WFLOW CMAX CPU (sec)

 min avg max stdev min avg max stdev min avg max stdev

1 78593 115115 151927 27092 9249 9699 10087 282 155 163 170 6

2 45163 47961 54380 2653 8798 8840 9020 80 1922 2148 2382 140

3 45044 48562 53132 2621 8798 8853 9033 92 1887 2003 2207 113

To investigate the full effect of the iteration number and starting temperature on the performance
of the HSA, more tests were performed and these are summarised in Table 3.

Table 3. Aggregated HSA results for mode 2 [RLT + WFLOW objective]

 WFLOW CMAX CPU (sec)

𝒕𝑰 𝑖𝑡𝑒𝑟 min avg max stdev min avg max stdev min avg max stdev Δ1 Δ2

1 100 56078 66397 97039 11964 8811 9023 9285 190 179 236 295 40 16 43

10 100 45097 53136 62602 4043 8798 8925 9158 269 347 398 443 68 16 28

100 100 48093 54647 65940 2829 8823 9083 9211 130 357 483 609 87 12 28

1000 100 47679 53766 64178 5820 8798 9072 9387 153 455 648 779 36 12 26

1 200 50134 55302 61520 5279 8798 9007 9548 219 379 522 595 72 10 19

10 200 46091 52542 59847 2305 8798 8992 9396 123 697 808 910 102 13 23

100 200 44948 50212 53823 6332 8798 8896 9173 131 935 1065 1190 96 11 17

1000 200 47204 51532 56779 2458 8798 8891 9079 146 1208 1381 1579 93 9 17

1 300 47035 51696 55749 1306 8798 8915 9196 153 710 851 956 155 10 16

10 300 46630 49874 53947 5387 8823 8877 9158 171 1022 1217 1370 101 7 14

100 300 46602 48443 50699 3643 8798 8907 9158 108 1467 1672 2022 115 4 9

1000 300 45163 47961 54380 2653 8798 8840 9020 80 1922 2148 2382 140 6 17

In those tests we chose to apply mode 2 as it is the primary mode of the HSA. The weighted flow
time and the makespan of the schedule are shown. All of the aforementioned are important
descriptors of the relative merit of a schedule. Table 3 demonstrates that increasing the number of
iterations from 100 to 200 doubles the CPU time, but a further increase to 300 is about 1.5 times the
time for 200 iterations. This reduction occurs because the solution converges faster with increased
iterations, and refinements that cause infeasibilities or large changes to the objective are restricted
sooner. If they are permitted, then more effort is required to refine the solution in later iterations. In
earlier iterations, there is great freedom of movement; there are more insertion positions to
evaluate and more pre-emptions to consider.

The level of improvement varies and depends whether best, average or worst case behaviour
of the HSA is considered. The increased number of iterations predominantly results in superior
solutions. In terms of the average and worst case it is always better to have a higher number of

18

iterations. The best solution however is not necessarily obtained with the highest starting
temperature. There is some evidence that a starting temperature of 100 is better than 1000. The
difference between the average solution and the best solution (i.e. column Δ1) ranges from 3.8 -
15.54 percent. On average the improvement is at least 9.96%. The different between the best and
worse solution (i.e. column Δ2) ranges from 8 - 42% but on average is 12.4%. The best solution
obtained is shown in Figure 5.

Figure 5. Gantt chart of the best solution [RLT case]

The vertical time lines are drawn every 6 hours and each row refers to a particular resource.
Each train and ship has a different colour for its activities. This solution exhibits features one would
expect in an efficient schedule. Most trains are processed straight away and the DS are running fairly
constantly. Each SR is highly utilised and the idle periods are relatively small.

The typical convergence of the HSA is shown in Figure 6 for the three different starting
temperatures. The second chart is a magnified portion. The best solution and the current solution at
each temperature step are shown. These charts show very rapid convergence over the first 20
temperature steps. They also clearly show that the higher temperature is very much needed, to
obtain the best possible solution. A low temperature also works particularly well. The current
solution at each temperature step fluctuates greatly, and this is in part due to the acceptance of
infeasible solutions whose occurrence must be penalised. It is important to remember that our
penalty is increased as the search progresses, and is largest towards the end.

4.2. No Release Times – Flexible Train and Ship Arrivals

The arrival of trains and ships at any time is considered here. Consequently the sequence and timing
of their arrivals are decision variables, rather than fixed as in previous examples. A weighted flow
objective was first considered. When there are no release times however it makes more sense to
minimise the duration of the schedule and not to prioritise trains over ships. Hence a makespan
objective was selected with (𝜔1 , 𝜔2) = (1,1). Stockpile level violations are again added as a
penalty. Ten runs were performed and the results are summarised in Table 4. In comparison to
Section 4.1 results, the makespan is almost one third. Mode 2 produced the best solution but on
average mode 3 is best; there is less variation in the solution quality when mode 1 is run first. To

(SR4,P28) first
(SR3, P16) second Pre-empted

three times

Pre-empted

four times

19

investigate the full effect of the iteration number and starting temperature, more tests were again
performed and these are summarised in Table 5. The best solution obtained is shown in Figure 7.

Figure 6. Convergence of the HSA [RLT CASE / iter = 100]

Table 4. Aggregated HSA results [No RLT + CMAX objective/ 𝑡𝐼 = 1000, 𝑖𝑡𝑒𝑟 = 300]
MODE WFLOW CMAX CPU (sec)

min avg max stdev min avg max stdev min avg max stdev

1 54150 59133 70055 4687 2687 3012 3407 246 153 157 161 3

2 53787 56143 58897 1815 1891 1932 1981 30 2897 3257 4168 476

3 53183 55928 58122 1751 1898 1932 1975 25 2604 3065 3609 295

Table 5. Aggregated HSA results for mode 2 [No RLT + CMAX objective]

WFLOW CMAX CPU (sec)

𝒕𝑰 𝑖𝑡𝑒𝑟 min avg max stdev min avg max stdev min avg max stdev Δ1 Δ2

1 100 54439 57669 60839 2175 1920 1977 2027 42 529 682 862 87 2.9 5.29

10 100 55270 58011 62637 2344 1913 1977 2031 43 843 1007 1185 111 2.74 4.11

100 100 55158 56924 57799 766 1904 1967 2054 47 1323 1496 1681 145 4.07 15.33

1000 100 54948 56995 60532 1850 1891 1955 2033 44 1469 1770 2041 177 3.25 5.79

1 200 53851 57215 61298 2184 1903 1957 1985 26 1272 1428 1620 122 2.92 4.4

10 200 52627 56112 58883 1609 1896 1953 1983 34 1804 2173 2706 306 3.42 6.22

100 200 54408 57023 60168 1929 1903 1950 1993 33 2344 2675 3004 197 3.17 7.31

1000 200 54970 57220 59866 1682 1909 1950 1982 28 2598 3252 3712 414 2.41 4.51

1 300 54466 57364 63312 2988 1931 2013 2281 101 1730 2001 2296 173 3.43 6.47

10 300 52946 55726 57862 1610 1881 1948 2006 43 2223 2598 3048 284 3.27 6.98

100 300 52281 55830 58819 1887 1869 1936 1999 43 2147 2804 3448 486 2.1 3.67

1000 300 53787 56143 58897 1815 1891 1932 1981 30 2897 3257 4168 476 2.1 4.56

45000

95000

145000

195000

245000

295000

345000

395000

445000

495000

545000

595000

645000

695000

745000

795000

845000

895000

945000

995000

0 10 20 30 40 50 60 70 80 90 100 110 120

W
e

ig
h

te
d

 F
lo

w

Temperature Step

tI=1 (Current)

tI=1 (Best)

tI=100 (current)

tI=100 (Best)

tI=1000 (Current)

tI=1000 (Best)

45000

55000

65000

75000

85000

95000

105000

115000

125000

135000

145000

155000

165000

175000

185000

195000

0 10 20 30 40 50 60 70 80 90 100 110 120

W
e

ig
h

te
d

 F
lo

w

Temperature Step

tI=1 (Current)

tI=1 (Best)

tI=100 (current)

tI=100 (Best)

tI=1000 (Current)

tI=1000 (Best)

20

The difference between the average solution and the best ranges from 2.1 – 4.1%, but is
around 2.98% on average. The difference between the best solution and the worst ranges from 3.67
– 15.33% but is about 6.22% on average. These ranges are much smaller than encountered when
there are release times. Evidently, the problem is easier to solve without release times. A higher
iteration number still tends to be best but a significant difference between 100, 200 or 300 iterations
is not easy to distinguish. Table 5 also shows little evidence that the starting temperature is that
significant here. Hence, lower starting temperatures and iteration counts seem to be sufficient.
Evidently the search space is more constrained and complex when release times are present, and
the HSA needs more freedom initially, and hence a higher starting temperature. The typical
convergence of the HSA is shown in Figure 8 for the three different starting temperatures. The best
solution and the current solution at each temperature step is again shown.

Figure 7. Gantt chart of the best solution for the No RLT scenario

Figure 8. Convergence of the HSA [NO RLT CASE/ iter = 100]

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

0 10 20 30 40 50 60 70 80 90 100 110 120

W
e

ig
h

te
d

 F
lo

w

Temperature Step

tI=1 (Current)

tI=1 (Best)

tI=100 (current)

tI=100 (Best)

tI=1000 (Current)

tI=1000 (Best)

21

4.3. Double Width Stockpiles

The treatment of stockpiles on R2, R3 and R4 as double stockpiles is considered here. The division of
these stockpiles into two parts results in an additional 22 stockpiles and the requirement for 22
tokens. The HSA was applied ten times to this scenario and the results are summarised in Table 6
and 7. The best solutions for the two scenarios are shown in Figure 9 and 10. A close inspection of
the solutions shows that the single side access constraint has been enforced. In comparison to Table
2 and Table 4 results, the effect of the double stockpiles has been a slight increase across all metrics.
In retrospection this is to be expected as double width stockpiles amount to imposing additional
constraints to scheduling. The CPU time to apply the HSA is greater as there are more piles to assign
work to. There is an increase of roughly 16-20% on average for the RLT case. For the No RLT case the
CPU time is significantly greater at 33-69%.
Table 6. Results for Variant 1 [RLT + WFLOW objective]
MODE WFLOW CMAX CPU (sec)

 min avg max stdev min avg max stdev min avg max stdev

1 231815 447055 654219 121090 10048 10388 10765 254 185 189 191 3

2 50402 59277 77544 7435 8811 8981 9158 138 2381 2506 2720 132

3 48590 60462 79741 8763 8829 9127 9505 196 2075 2398 2747 232

Table 7. Results for Variant 2 [No RLT + CMAX objective]
MODE WFLOW CMAX CPU (sec)

 min avg max stdev min avg max stdev min avg max stdev

1 55212 65024 73275 6091 2689 3251 4379 523 278 323 357 36

2 56186 60180 62803 1929 2029 2091 2145 41 4125 5499 6090 555

3 55158 60596 63845 2904 2034 2108 2166 44 3789 4105 5157 383

Figure 9. Gantt chart of the best solution for the RLT - double width scenario

22

Figure 10. Gantt chart of the best solution for the No RLT - double width scenario

4.4. Dynamic Stockpiles

In this section our test instance is extended to include dynamic stockpiles. In this scenario the
release times for ships and trains have been removed and there are no fixed berthing sequences
assumed. In our scenario stockpile P09 and P13 are selected to be replaced. Figure 11 shows the
layout after the new stockpiles are added.

Figure 11. Schematic of the CET after P31 and P32 are added and (P09 and P13) are fully reclaimed

The replacement stockpiles are P31 (i.e. P9[REP]) and P32 (i.e. P13[REP]) with product 4 and 1
respectively. Two trains with 10000 tonnes each of product 1 and four trains with 10000 tonnes each
of product 4 are also added to bring material to the new stockpiles. Two additional ships are added
to remove the material in P09 and P13. The first has a requirement of 29480 of product 10 and the
second has a requirement of 60760 of product 13. The following stockpile precedence P09 ≺ P31
and P13 ≺ P32 are added. These are then converted into additional disjunctive arcs. They
continuously change depending on which activities have been assigned to P09, P31, P13 and P32.
The HSA was reapplied ten times and the results are summarised in Table 8. The best solution is

New

pile

New

pile

23

shown in Figure 12. The makespan of our solution is 3542.21. The weighted flow is 540195.98 and
the flow is 64613.1. The most important feature of this solution is that the activities performed on
P09 are all finished before the first activity is performed on P09[REP]. This is also true of P13. The
later activities performed on P13[REP] are all performed after the last activity on P13. The stockpile
precedence mechanism has enforced the relationship between the original stockpile P09 and P13
and their later replacements.

Table 8. Results for dynamic pile replacement scenario
MODE WFLOW CMAX CPU (sec)

 min avg max stdev min avg max stdev min avg max stdev

2 540196 585605 722361 50942 2984 3457 4163 445 1760 3009 4965 919

Figure 12. Gantt chart of the solution for the stockpile replacement scenario

5. Conclusions

In this article a new optimization approach has been developed for coal export terminals and other
bulk material handling terminals. Our integrated approach schedules the stacking and reclaiming
activities associated with the planned arrival of ships and trains. It also assigns resources to perform
the aforementioned activities.

To increase the system’s output and to reduce delays incurred by trains and ships, we treat
this integrated decision problem as a flexible job shop with operators (FJSOP) and apply a hybrid
meta-heuristic. The application of a FJSOP approach is a relatively new avenue. We believe this
article provides the first documented FJSOP approach for CET. In this scheduling problem, each
activity can have three or four requisite resources. To the best of our knowledge, no more than two
operator types have ever been considered in past papers. Our approach is also significant because it

Activities on replacement

piles

24

can be used without change, to solve a vast array of scheduling problems in other domains (i.e. for
instance health). It is a generic scheduling platform and incorporates a wide range of advanced
scheduling constraints.

The incorporation of many additional advanced scheduling constraints is a necessity in this
research. Our meta-heuristic is novel as a multitude of advanced features relevant to CET are
incorporated, namely accessibility and resourcing restrictions, multiple resource requirements per
activity, pre-emptions, stockpile size limitations, dynamic stockpiles, double width stockpiles,
proximity and collision detection. These features may occur in other problems, but have not been
addressed as comprehensively within one integrated approach before. The meta-heuristic also
employs several carefully selected perturbation strategies and several local improvement
algorithms. The solution chromosome in our meta-heuristic is a priority ordering of the different
activities. It describes the order in which activities are scheduled and is translated into the set of
resource sequences using a constructive algorithm. Our choice of solution chromosome greatly
simplifies scheduling and results in a significantly reduced search space. The use of a priority
ordering is a significant contribution of this article and to our knowledge is an approach rarely taken.
We anticipate that a priority ordering could be successfully used in many other multi-sequence
scheduling problems. Without our priority ordering chromosome it is necessary to take a more
traditional approach whereby resource sequences are explicitly perturbed. Our numerical
investigations demonstrate that this is quite difficult, particularly when there are many resource
requisites. In fact, the complexity increases as the number of resource requisites increases. In this
article we have four. A small change in any one sequence can easily cause positive length cycles to
be created. This means that it is very difficult to move from one feasible solution to another without
the application of special compound moves or cycle correction devices – both of which are
computationally demanding and complex to implement. The net effect is poor convergence and
solution quality. Our priority ordering chromosome however is very easy to refine and can easily be
translated to produce all the resource sequences. Our approach is also comparatively simpler to
implement.

Our solution approach was applied to a real life test problem and numerical investigations
demonstrate the advanced features present in CET can be handled. The best solutions can be
obtained within 30 minutes on average if a larger number of iterations (i.e. 300) are applied. Further
computing time however may be allowed to provide even better solution quality.

In formulating, implementing and testing our scheduling approach we have found that this
integrated scheduling problem is deceptively difficult. The pre-emption of ship loading activities is by
far the hardest feature as is the interplay between the train and ship jobs. It is quite difficult to
choose the correct number of pieces and to insert these pieces intelligently within the schedule.
Changing the resource assignment can easily disrupt the quality of the solution during the search –
either beneficially or detrimentally. The scheduling of train unloading activities is comparatively
easier, particularly when considered independently. To facilitate pre-emptions, the selection of a
poor labelling convention can lead to a number of implementation issues. Performing pre-emptions
and performing all the necessary accounting is also awkward to encode. At the end of the search the
best solution may contain activities which no longer exist plus a set of new activities. There are also a
few peculiarities induced by pre-emption and fixed sequences. Fixed sequences actually expand and
contract as the search progresses. This occurs when pre-emptions are done or undone.
 In future research we will consider how to reduce the computing time further. The
assignment of resources is currently handled by our constructive algorithm. Although effective, an
alternative strategy is to have a dedicated resource allocation chromosome. How best to manipulate
this chromosome in conjunction to the priority ordering chromosome should be further
investigated. Also to be determined is whether superior solutions can be obtained with less
computational effort. The incorporation of multiple performance metrics, and the development of a
multi-criteria optimization approach are also planned. Our optimization approach can test different
stockyard configurations and thus may be used to facilitate strategic planning of the stockyard over

25

time, i.e. the “Stockpile Placement Problem (SPP)”. The Variant 3 problem discussed in the
introduction, with uncertain ship and train arrivals was not considered in this article, and warrants
further attention in the future.

This articles approach was developed for CET and as such, it is necessary to comment upon
the implications to managers of CET. This articles approach is a new consideration for staff of CETs
and will require them to invest in the development of new IT systems. In our opinion, the FJSOP
approach has the potential to increase the overall efficiency and productivity of CET, but only if it is
integrated into an appropriate information management system (IMS). It will be necessary to inform
the IMS when every activity begins and ends within the terminal. This would enable the scheduling
model to identify problems in advance and suggest better ways to operate. The quality of the
solutions produced by our optimization approach is important, but how close they are to optimality
is predominantly of academic interest. It is debatable whether the determination of optimal
schedules is of interest to CET managers and planning staff. To our understanding, the most
important requirement for industry is the capability to quickly determine improved schedules, at
short notice, particularly in the event of breakdowns, delays and other events.

REFERENCES

Agnetis. A., Murgia, G., Sbrilli, S. (2014). A job shop scheduling problem with human operators in
handicraft production. International Journal of Production Research, 52(13), 3820-3831.

Agnetis. A., Flamini. M., Nicosia. G., Pacifici. A. (2011). A job-shop problem with one additional
resource type. Journal of Scheduling, 14(3):225–237, 2011.

Babu, S.A.K.I., Pratap, S., Lahoti, G., Fernande, K.J., Tiwari, M.K., Mount, M., Xiong, Yu. (2015).
Minimizing delay of ships in bulk terminals by simultaneous ship scheduling, stockyard
planning and train scheduling. Maritime Economics and Logistics, 17 (4), 464-492.

Boland, N., Gulczynski, D. and Savelsbergh, M. (2012) A stockyard planning problem. European
Journal of Transportation and Logistics, 1(3): 197–236.

Burdett, R.L. and Kozan E. (2009a). Scheduling trains on parallel lines with crossover points. Journal
of Intelligent Transportation Systems: Technology, Planning, and Operations, 13(5), 171-187

Burdett, R.L., Kozan E. (2009b). Techniques for restricting multiple overtaking conflicts and
performing compound moves when train scheduling. Mathematical and Computer Modelling,
50(1-2), 314-328.

Burdett R.L. and Kozan E. (2009c). Techniques for inserting additional trains into existing timetables.
Transportation Research B, 43(8), 821-836.

Burdett, R.L., Kozan E. (2010a). A sequencing approach for train timetabling. OR Spectrum, 32(1),
163-193.

Burdett, R.L., Kozan E. (2010b). Development of a disjunctive graph model and framework for
constructing new train schedules. European Journal of Operational Research, 200(1), 85-98.

Burdett R.L. and Kozan E. (2014). An integrated approach for earthwork allocation, sequencing and
routing. European Journal of Operational Research, 238, 741-759.

Burdett, R.L., Kozan, E. (2018). An integrated approach for scheduling health care activities in a
hospital. European Journal of Operational Research, 264(2), 756-773.

Corry, P., Kozan, E. (2004). Job scheduling with technical constraints. Journal of the Operational
Research Society. 55 (2), 160-169.

Chen, J.C., Wu, C.C., Chen. C.W., Chen, K.H. (2012). Flexible job shop scheduling with parallel
machines using genetic algorithm and grouping genetic algorithm. Expert Systems with
Applications, 39, 10016-10021.

Corry, P., Kozan, E. (2004). Job scheduling with technical constraints. Journal of the Operational
Research Society, 55, 160-169.

Doh, H.H., Yu, J.M., Kim, J.S., Lee, D.H., Nam, S.H. (2013). A priority scheduling approach for flexible
job shops with multiple process plans. International Journal of Production Research, 51(12),
3748-3764.

26

Escamilla, J., Rodriguez-Molins M., Salido, M.A., Sierra, M.R., Mencia, C., Barber, F. (2012). Robust
solutions to job-shop scheduling problems with operators. 2012 IEEE 24th International
Conference on Tools with Artificial Intelligence, 299 – 306.

Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Cai, T.X., Chong, C.S. (2014). Pareto-based
grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling.
Information Sciences, 289, 76-90.

Gao, K.Z., Suganthan, P.N., Tasgetiren, M.F., Pan, Q.K., Sun, Q.Q. (2015). Effective ensembles of
heuristics for scheduling flexible job shop problem with new job insertion. Computers and
Industrial Engineering, 90, 107-117.

Groflin, H., Pham, D.N., Burgy R. (2011). The flexible blocking job shop with transfer and set-up
times. J Comb Optim, 22, 121-144.

Hu, D., Yao, Z. (2012). Stacker-reclaimer scheduling in a dry bulk terminal. International Journal of
Computer Integrated Manufacturing, 25(11), 1047-1058.

Kalinowski, T., Kapoor, R., Savelsbergh, M.W.P. (2017). Scheduling reclaimers serving a stack pad at
a coal terminal. Journal of Scheduling, 20, 85-101.

Mencia R., Sierra, M.R., Mencia, C., Varela, R. (2015). Memetic algorithms for the job shop
scheduling problem with operators. Applied Soft Computing, 34, 94-105.

Luscombe, R., Kozan, E. (2016). Dynamic resource allocation to improve emergency department
efficiency in real time. European Journal of Operational Research, 255(1), 593-603.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., Werner, F. (2009). A comparison of
scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup
times, and dual criteria. Computers and Operations Research, 36, 358-378.

Pezella, F., Morganti, G., Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop
scheduling problem. Computers and Operations Research, 35, 3202-3212.

Quintiq (2017). Case Study: Port Kembla Coal Terminal improves performance in six months with
Quintiq. http://www.quintiq.com/industries/ports-and-terminals.html.

Sauvey C., Trabelsi, W. (2015). Hybrid job shop scheduling with mixed blocking constraints between
operations. Emerging Technologies & Factory Automation (ETFA), 2015 IEEE 20th Conference.
Date 8-11 Sept. 2015, page 1-8. DOI: 10.1109/ETFA.2015.7301538.

Stack Overflow (2017). https://stackoverflow.com/questions/19085937/finding-intervals-of-a-set-
that-are-overlapping

Van Laarhoven P. J. M., Aarts E. H. L., Lenstra J. K. (1992). Job shop scheduling by simulated
annealing. Operations Research, 40(1), 113-125.

Xia, W., Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible job-
shop scheduling problems. Computers and Industrial Engineering, 48, 409-425.

Yazdani, M., Amiri, M., Zandieh, M. (2010). Flexible job-shop scheduling with parallel variable
neighbourhood search algorithm. Expert Systems with Applications, 37, 678-687.

Zeng, C., Tang, J., Yan, C. (2014). Scheduling of no buffer job shop cells with blocking constraints
and automated guided vehicles. Applied Soft Computing, 24, 1033-1046.

Zhang, G., Shao, X., Gao, P. L.L. (2009). An effective hybrid particle swarm optimization algorithm
for multi-objective flexible job shop scheduling problem. Computers and Industrial
Engineering. 56, 1309-1318.

Zhang, J., Yang, J. (2016). Flexible job-shop scheduling with flexible workdays, pre-emption,
overlapping in operations and satisfaction criteria: an industrial application. International
Journal of Production Research, 54(16), 4894-4918.

Appendix A. Disjunctive Graph Model

𝐷𝐽𝐺 = (𝑉, 𝐸 = 𝐸𝐶 ∪ 𝐸𝐷) (A1)
𝑉 = {𝑠𝑜, 𝑠𝑖} ∪ [⋃ {𝑠𝑜𝑟 , 𝑠𝑖𝑟}𝑟∈𝑅] ∪ [⋃ {𝑎}𝑎∈𝐴] (A2)

http://dx.doi.org/10.1109/ETFA.2015.7301538

27

𝐸C = [⋃ {(𝑠𝑜, 𝑠𝑜𝑟 , 𝑟𝑑𝑦𝑟)}𝑟∈𝑅] ∪ [⋃ {(𝑠𝑖𝑟, 𝑠𝑖, 0)}𝑟∈𝑅] ∪ [⋃ ⋃ {(𝑎, 𝑎′, 𝜔𝑎,𝑎′)}(𝑎,𝑎′)∈𝑃𝑅𝐸𝑖𝐽𝑖∈𝐽
]

 ∪ [⋃ {(𝑠𝑜, 𝑎, 𝑟𝑙𝑡𝑎)}𝑎∈𝐴|𝑟𝑙𝑡𝑎>0
] (A3)

𝐸D = [⋃ {(𝑠𝑜𝑟, 𝜎𝑟[1], 𝑠𝑒𝑡𝑢𝑝𝑟,𝑎)}𝑟∈𝑅] ∪ [⋃ ⋃ {𝐃𝐉𝐀(𝑟, 𝜎𝑟[𝑘], 𝜎𝑟[𝑘 + 1])}𝑘=1,..,|𝜎𝑟|−1𝑟∈𝑅]

∪ [⋃ {(𝜎𝑟,|𝜎𝑟|, 𝑠𝑖𝑟, 0)}𝑟∈𝑅] (A4)

 𝐃𝐉𝐀(𝑟, 𝑎, 𝑎′) = {
(𝑎, 𝑎′, 𝑠𝑒𝑡𝑢𝑝𝑟,𝑎,𝑎′) if 𝑎 ∈ 𝑖𝑑𝑒𝑎𝑙 ∪ 𝑛𝑜𝑤𝑎𝑖𝑡

(𝑎∗, 𝑎′, 𝑠𝑒𝑡𝑢𝑝𝑟,𝑎,𝑎′ − 𝑝𝑎∗ −𝜔𝑎,𝑎∗) 𝑖𝑓 𝑎 ∈ 𝑏𝑙𝑜𝑐𝑘; 𝑎
∗ = 𝐬𝐮𝐜𝐜(𝑎)

 (A5)

The conjunctive and disjunctive arcs of the graph are respectively denoted by 𝐸𝐶and 𝐸𝐷. Every
activity has a release time (𝑟𝑙𝑡𝑎) and every resource has a ready time (𝑟𝑑𝑦𝑟). By default these are
zero if none are provided. A finish start lag may be required between two activities of a job. This is
denoted by 𝜔𝑎,𝑎′ and needs to be included on conjunctive arcs. Every job has a set of activities; the

successor activity of any activity 𝑎 ∈ 𝐴𝑖 is given by the function 𝐬𝐮𝐜𝐜(𝑎). The disjunctive arcs are
generated by the function 𝐃𝐉𝐀(𝑟, 𝑎, 𝑎′). This function generates an appropriate disjunctive arc for
the precedence 𝑎 ≺ 𝑎′. The first arc is needed when activity 𝑎 is ideal or it is no-wait. If there is a no
intermediate storage (i.e. blocking) condition with its successor(s) then the second arc is needed.
Two types of setup need to be included. The setup incurred by resource 𝑟 between activity 𝑎 and 𝑎′
is denoted as 𝑠𝑒𝑡𝑢𝑝𝑟,𝑎,𝑎′. The setup incurred by resource 𝑟 before processing activity 𝑎 is denoted

𝑠𝑒𝑡𝑢𝑝𝑟,𝑎. Sequence dependent setups are calculated in the following way for mobile resources like

stacker reclaimer and ship loaders:

𝑠𝑒𝑡𝑢𝑝𝑟,𝑎,𝑎′ = 𝑓𝑖𝑥𝑒𝑑 + {
0 𝑖𝑓 𝑙𝑎 = 𝑙𝑎′

60.𝐃(𝑙𝑎,𝑙𝑎′)

𝑠𝑝𝑑𝑟
 𝑖𝑓 𝑙𝑎 ≠ 𝑙𝑎′

; 𝑠𝑒𝑡𝑢𝑝𝑟,𝑎 = {
0 if 𝑙𝑎 = 𝑜𝑟𝑖𝑔𝑟
60.𝐃(𝑜𝑟𝑖𝑔𝑟,𝑙𝑎)

𝑠𝑝𝑑𝑟

 (A6)

The location of the two activities is used to compute the distance travelled. The resources speed is
then used to compute the travel time. A fixed time component is also included. If there is no prior
activity, the second equation is used, which involves the resources original location (i.e. an input
parameter).

Appendix B. Computing pile profiles
∀𝑝 ∈ 𝑃: // For each pile
{

𝑠𝑧𝑝 = 𝑠𝑧𝑝
𝐼 ; // Assign initial pile size

 ∀𝑘 ∈ [1, |𝜎𝑝|]: // For each activity assigned to pile p

 {
 𝑎 = 𝜎𝑝[𝑘]; 𝜆 = 1 if 𝑎 ∈ 𝑆𝑇𝐾 else − 1 if 𝑎 ∈ 𝑅𝐸𝐶 ∪ 𝑅𝐸𝐶𝐿𝐷

 Ω𝑝 = Ω𝑝 + {(𝑠𝑡𝑎𝑟𝑡𝑎 , 𝑠𝑧𝑝)};

 If (𝑠𝑧𝑝 < 0) {

 𝛿 = 𝑠𝑧𝑎;
 If(𝑠𝑧𝑝 + 𝜆. 𝑠𝑧𝑎 > 0){ 𝑡 = 𝑠𝑡𝑎𝑟𝑡𝑎 − 𝑠𝑧𝑝/𝑟𝑎𝑡𝑒𝑎; Ω𝑝 = Ω𝑝 + {(𝑡, 0)}; 𝛿 = −𝑠𝑧𝑝;}

 RecordDeficit(𝑎, 𝑠𝑡𝑎𝑟𝑡𝑎 , 𝛿);
}

 If (𝑠𝑧𝑝 ≥ 0) {

 If(𝑠𝑧𝑝 + 𝜆. 𝑠𝑧𝑎 < 0) { 𝑡 = 𝑠𝑡𝑎𝑟𝑡𝑎 + 𝑠𝑧𝑝/𝑟𝑎𝑡𝑒𝑎; Ω𝑝 = Ω𝑝 + {(𝑡, 0)};

 RecordDeficit(𝑎, 𝑡, 𝑠𝑧𝑎 − 𝑠𝑧𝑝); }

}
 If (𝑠𝑧𝑝 ≤ 𝑈𝐵𝑝) {

 If(𝑠𝑧𝑝 + 𝜆. 𝑠𝑧𝑎 > 𝑈𝐵𝑝) {

 𝑡 = 𝑠𝑡𝑎𝑟𝑡𝑎 + (𝑈𝐵𝑝 − 𝑠𝑧𝑝)/𝑟𝑎𝑡𝑒𝑎; Ω𝑝 = Ω𝑝 + {(𝑡, 𝑈𝐵𝑝)};

 RecordOverload(𝑎, 𝑡, 𝑠𝑧𝑝 + 𝑠𝑧𝑎 −𝑈𝐵𝑝);}

28

}

 If (𝑠𝑧𝑝 > 𝑈𝐵𝑝) {

 𝛿 = 𝑠𝑧𝑎;

 If(𝑠𝑧𝑝 + 𝜆. 𝑠𝑧𝑎 < 𝑈𝐵𝑝) { 𝑡 = 𝑠𝑡𝑎𝑟𝑡𝑎 + (𝑠𝑧𝑝 −𝑈𝐵𝑝)/𝑟𝑎𝑡𝑒𝑎;

 Ω𝑝 = Ω𝑝 + {(𝑡, 𝑈𝐵𝑝)}; 𝛿 = 𝑠𝑧𝑝 −𝑈𝐵𝑝}

 RecordOverload(𝑎, 𝑠𝑡𝑎𝑟𝑡𝑎 , 𝛿);
}

 𝑠𝑧𝑝 = 𝑠𝑧𝑝 + 𝜆. 𝑠𝑧𝑎; Ω𝑝 = Ω𝑝 + {(𝑒𝑛𝑑𝑎 , 𝑠𝑧𝑝)};

}

Ω𝑝 = Ω𝑝 + {(𝑐𝑚𝑎𝑥, 𝑠𝑧𝑝)}; // Record level at schedule completion

}

Appendix C. Double width stockpiles

Stockpiles are generally accessible from both sides of a bund. When they are not, it is because the
pads are unusually deep. In those circumstances stockpiles are described as double width. One way
to approach this situation is to treat such piles as two piles of the same product, see Figure C1.

Figure C1. Traditional single width pile versus double width pile and division

It is then necessary to define a new row. It is important to note that every other double width pile
(i.e. along that row) should also be divided in the same way. Each row is then accessible by only one
bund and hence only by the SRs on that bund. A CET may contain both single and double width
stockpiles. In that situation, the pad is still treated as two separate rows. The single width piles are
maintained but any double width piles must be divided.

When double width stockpiles are present, an important consideration is whether two SRs can
access the two sides at the same time. Concurrent access is not allowed due to potential collisions
and problems with material slumping onto stacker-reclaimers. To ensure that only one side is used
at any time (i.e. single side access) a dummy resource, called a token, is introduced. The idea is that
this token must be acquired in order to use each side. Evidently, both sides cannot acquire this
resource simultaneously. Tokens are a subset of the resources (i.e. 𝑇𝑂𝐾 ⊂ 𝑅) and must be defined
upfront. It is important to note that these additional resources have their own sequence of activities.
In addition, it is necessary to point out that in the context of CET, the tokens are a requisite of the
stockpile and not the activity. Hence the token chosen depends only on which stockpile is chosen.

Appendix D. Dynamic creation and destruction of stockpiles

Over time existing stockpiles may be fully reclaimed and new stockpiles with different dimension
and product may be created in their place. For example, in Figure D1, there is a future requirement
for the creation of stockpile P6 and P7 in place of P2, P3 and P4. The new stockpiles are assumed
empty when created.

Bund 1

Bund 2

Bund 1

Bund 2

 Row A1 (Bund 1 only)

Row A2 (Bund 2 only)

Row A

29

Figure D1. Changing stockpile configurations

It is necessary to know the stockpiles and their locations upfront to handle these types of scenarios.
Stockpile precedence conditions are introduced to ensure that activities assigned to earlier piles are
completed before activities assigned to later piles. In the context of Figure D1, it is evident that any
activity assigned to stockpile P6 and P7 must occur after those activities assigned to P2, P3 and P4.
This is equivalent to the following conditions: P6 ≻ {P2, P3} and P7 ≻ {P3, P4}. These precedence
statements are translated into new precedence relations between the activities assigned to those

stockpiles. Without loss of generality it is necessary to generate set {(𝑎, 𝑎′)|𝑎 ∈ 𝜎𝑝, 𝑎′ ∈ 𝜎𝑝′} for any

stockpile precedence 𝑝 ≺ 𝑝′ and to add disjunctive arcs for each pair in that set. Here 𝜎𝜌 and 𝜎𝜌′ are

the current sequences for stockpile 𝑝 and 𝑝′. These disjunctive arcs are dynamic as the activities
assigned to those stockpiles are variable. They can only be identified after activities are assigned to
stockpiles. At that point in time they are added to the disjunctive graph. Once the disjunctive graph
evaluation is complete, they are removed. An example is shown below:

Example: Given 𝜎P2 = (𝑎1, 𝑎2); 𝜎P3 = (𝑎3); 𝜎P4 = (𝑎4, 𝑎5, 𝑎6); 𝜎P6 = (𝑎7, 𝑎8); 𝜎P7 = (𝑎9) and the
stockpile precedence {P2, P3} ≺ P6 and {P3, P4} ≺ P7, DJA are required for the following pairs:

(𝜎P2 ∪ 𝜎P3) × 𝜎𝑃6 = {𝑎1, 𝑎2, 𝑎3} × {𝑎7, 𝑎8} = {(𝑎1, 𝑎7), (𝑎1, 𝑎8), (𝑎2, 𝑎7), (𝑎2, 𝑎8), (𝑎3, 𝑎7), (𝑎3, 𝑎8)}
(𝜎P3 ∪ 𝜎P4) × 𝜎𝑃7 = {𝑎3, 𝑎4, 𝑎5, 𝑎6} × {𝑎9} = {(𝑎3, 𝑎9), (𝑎4, 𝑎9), (𝑎5, 𝑎9), (𝑎6, 𝑎9)}

It is worth pointing out that every reclaim and stack activity has a set of candidate stockpiles and
from those a single stockpile is allocated to the activity. In theory, those candidate stockpiles will
change over time when existing stockpiles vanish and others take their place. There is no need
however to change candidate stockpiles, but a complete list should be defined upfront however. For
example, if an activity is assigned to stockpile P6 and that activity is sequenced incorrectly, say
before activities assigned to P2 and P3, then a positive length cycle will occur. Hence that activity
must be reassigned to another stockpile if possible or else re-sequenced to a later time. If an activity
is sequenced correctly then an issue does not arise.

There is also the possibility that stockpiles are expanded or contracted at future times. In
Figure D2, pile P2 increases in dimension and P4 decreases. To avoid confusion P2 and P4 may be
defined as new stockpiles P6 and P7, and the aforementioned approach may be taken. At the point
of creation however, the amount of material in P6 will need to be equal to the current size of P4.

Figure D2. Inflating and contracting stockpiles

Appendix E. Proximity restrictions and maintaining separation

P1 P2 P3 P4 P5

P1 P6 P7 P5

State 1

State 2

Chainage

P1 P2 P3 P4 P5

P1 P2 P4 P5

State 1

State 2

Chainage

30

More than one SR may be located on each bund within the stockyard of a CET. This is problematic
for scheduling, as two SR cannot be in the same location at the same time, nor can they be
positioned within a given proximity of each other. In addition, SR cannot pass through each other.

To schedule SR correctly and to maintain a safe separation, a number of avenues are possible.
One approach is to compute in advance, the position of each SR over time. This position profile can
then be compared to other nearby SR. Conflicts can be identified and adjustments can be made.
Algorithms for doing this are well tested, for example in the train scheduling domain. To determine
the position of SRs it is necessary to divide the bund into smaller regions as demonstrated in Figure
E1, and to analyse the occupancy of those regions over time.

Figure E1. Demonstration of regions required

Creating Regions: It is necessary to create a list for each bund. For each stockpile in each row, it is
necessary to append the stockpiles left and right position to that list. After which it is necessary to
sort the list in ascending order of magnitude. A region should be created for each pair of adjacent
points, provided they have different values. As a last step it is necessary to add stockpile references
to each region and vice versa. The set of regions is defined for each 𝑏 ∈ 𝐵𝑈𝑁𝐷 as 𝑅𝐸𝐺𝑏 and the
occupancy of region 𝑟𝑒𝑔 ∈ 𝑅𝐸𝐺𝑏 as 𝑂𝐶𝐶𝑟𝑒𝑔 .

Single and Multiple Row Scenarios: Every region associated with a stockpile will have a valid
sequence of occupancy due to the presence of stockpile sequences. Regions between stockpiles (i.e.
gaps) however do not. In single row scenarios, to determine the presence or absence of collisions
and other proximity violations, it is sufficient to determine the occupancy of the gaps. When a bund
accesses two rows of stockpiles, the process is more involved. The determination of gap occupancy
is insufficient as one SR can be accessing a stockpile on one side and another SR can be accessing a
stockpile on the other side. In multiple row scenarios the occupancy of all regions must be
computed.

Determining Region Occupancy: The occupancy of each region is determined via Algorithm 1. The
first step is to build a path for each SR. The SR path is an ordered list of tuples. Each tuple contains a
time interval and a reference to the region occupied, i.e. 𝑝𝑎𝑡ℎ𝑟 = [(𝑖𝑡𝑙1, 𝑟𝑒𝑔1), (𝑖𝑡𝑙2, 𝑟𝑒𝑔2), … ,]
where 𝑟 ∈ 𝑆𝑅 and 𝑖𝑡𝑙 = [𝑡1, 𝑡2]. The time intervals of stacking and reclaiming are taken into
account as well as SR repositioning between stockpiles. After these paths are constructed, the
occupancy of each region is computed. To do this, the intervals within SR paths are grouped by
region. In other words, the time intervals of each SR are assigned to the appropriate region list. Each
region is then analysed for overlapping intervals. A count of the number of overlapping intervals is
made. Any overlapping interval implies the presence of multiple SR. A count of zero implies that no
collisions occur. To determine overlapping intervals an efficient O(N + N log (N)) algorithm is used.
Here N refers to the number of time intervals. This algorithm is shown in Algorithm 2 and is a variant
of one found at StackOverflow (2017). It first creates a list of time points. A time point occurs for the
start and end of each interval of occupancy. Each time point is assigned a 1 or -1 respectively
depending upon whether the time point is the start or end of the interval. This list is then sorted
chronologically, a process which breaks up the domain into unique non overlapping intervals. The
last step is to count the occupancy of each interval occurring between adjacent points. This is
achieved by traversing the list and incrementing a counter of the aforementioned 1 and -1 values
attached to each pt. The counter is decremented when an original interval ends and incremented

Row 1 1 2 3 4 5

Bund 1 Regions 1 2 3 4 5 6 7 8 9 1 0 1 2 1 3 1 4 1 6 1 7

Row 2 6 7 8 9 1 0

Bund 2 Regions 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 6 1 7

Row 3 1 1 1 2 1 3 1 4 1 5

31

when an original interval begins. The compare function considers the first value in the pairs and then
the second if need be.

The sequence of resources (and hence activities) occupying each region can be constructed by
attaching additional information with the time interval, i.e. a reference to the resource.

Algorithm 1: CheckViolation()
{

1. ∀𝑠𝑟 ∈ 𝑆𝑅: 𝑝𝑎𝑡ℎ𝑠𝑟 = MakePath(sr); UpdateRegion(𝑝𝑎𝑡ℎ𝑠𝑟);
2. 𝐵𝑈𝑁𝐷′ = {𝑏 ∈ 𝐵𝑈𝑁𝐷||𝑆𝑅𝑏| > 1}; // Note: 𝑆𝑅𝑏 = {𝑠𝑟|𝑠𝑟 ∈ 𝑆𝑅, 𝑏𝑢𝑛𝑑𝑠𝑟 = 𝑏}
3. ∀𝑏 ∈ 𝐵𝑈𝑁𝐷′:

3a. 𝑐𝑜𝑢𝑛𝑡𝑏 = 0;
3b. ∀𝑟𝑒𝑔 ∈ 𝑅𝐸𝐺𝑏: 𝑐𝑜𝑢𝑛𝑡𝑏+= CountOverlaps(𝑂𝐶𝐶𝑟𝑒𝑔 ,2);

}

Algorithm 2. CountOverlaps(𝑖𝑡𝑙, 𝛼)
{
 1. 𝑝𝑡𝑠 = ⋃ {(𝑡1, 1) + (𝑡2 , −1)}∀[𝑡1,𝑡2]∈𝑖𝑡𝑙 ; // Create a list of tuples

2. 𝑝𝑡𝑠. 𝑠𝑜𝑟𝑡(𝐜𝐨𝐦𝐩𝐚𝐫𝐞); // Sort the tuples. Prioritize by earliest time and interval start
3. 𝑖𝑡𝑙 = ∅; // Discard the original list
4. 𝑠𝑢𝑚 = 0; // Initialise counter for # of open intervals
5. 𝑛 = 0; // Initialise counter for number of intervals with occupancy greater than 1
6. for(𝑖 ∈ [1, |𝑝𝑡𝑠|]) // Iterate through the sorted list. Note: 𝑝𝑡𝑠 = [(𝑎1, 𝑏1), (𝑎2, 𝑏2),… ,]
 6a. 𝑠𝑢𝑚+= 𝑏𝑖; // Current occupancy
 6b. if(𝑎𝑖 ≠ 𝑎𝑖+1 𝑎𝑛𝑑 𝑠𝑢𝑚 > 𝛼) { 𝑖𝑡𝑙+= [𝑎𝑖 , 𝑎𝑖+1, 𝑠𝑢𝑚]; 𝑛 = 𝑛 + 1; } // Record interval
7. return 𝑛;

}

Algorithm 3: compare((𝑎, 𝑏), (𝑐, 𝑑)) { if(𝑎 = 𝑐) return (𝑏 > 𝑑); else return (𝑎 < 𝑐); }

Appendix F. Details of the constructive algorithm

Algorithm 4: ConstructByPriority(𝑜𝑟𝑑𝑒𝑟)
{
 1. 𝑙𝑒𝑣𝑒𝑙𝑝 = 𝑠𝑧𝑝 ∀𝑝 ∈ 𝑃; // Record initial stockpile level

 2. 𝑓𝑟𝑒𝑒𝑟 = 𝑟𝑑𝑦𝑟 ∀𝑟 ∈ 𝑅; // Record resource ready times
3. For 𝑘 = 1, . . , |𝑜𝑟𝑑𝑒𝑟| // Iterate through activities in the priority ordering
 3a. 𝑎 = 𝑜𝑟𝑑𝑒𝑟[𝑘]; // Next activity
 3b. 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡 = AcquireResourcesAsap(𝑎, 𝑓𝑟𝑒𝑒, 𝑙𝑒𝑣𝑒𝑙);

 3c. ∀𝑟 ∈ 𝑅𝑎 : // For each resource assigned
 If (𝑟 ∈ 𝑃) 𝑙𝑒𝑣𝑒𝑙𝑟+= 𝑠𝑧𝑎; // Resource is a stockpile. Update the amount.
 If (𝜎𝑟 ∉ 𝐹𝐼𝑋𝐸𝐷_𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐸) 𝜎𝑟 = 𝜎𝑟 + 𝑎; // Append to sequence
 𝑓𝑟𝑒𝑒𝑟 = 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡 + 𝑝𝑎; // Update the free time
 If there is a token associated with the resource:

𝑓𝑟𝑒𝑒𝑡𝑜𝑘 = 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡 + 𝑝𝑎; // Update the tokens ready time
}
Convert sequences to disjunctive arcs and evaluate the solution;

}

32

Appendix G. Case study details

Table G1. Stockpile Information
P LEFT

(metres)
RIGHT

(metres)
SIZE

(tonnes)
ROW PROD

01 342.5 620.8 8550 R1 11
02 628.3 1049.1 9230 R1 9
03 1056.6 1374.9 28070 R1 2
04 342.5 453.9 14680 R2 -
05 461.4 560.3 40944.2 R2 1
06 567.8 726.7 26320 R2 12
07 734.2 918.1 43200 R2 6
08 925.6 1099.5 78900 R2 7
09 1107 1255.9 22110 R2 10
10 1263.4 1374.8 3990 R2 2
11 292.5 429.5 7340 R3 -
12 437 535.5 17100 R3 11
13 550.5 686.5 43400 R3 13
14 694 865.4 70080 R3 5

15 880.4 1023.5 34560 R3 6
16 1031 1200.5 105489 R3 9
17 1208 1273.3 11970 R3 3
18 1288.3 1375 51300 R3 11
19 292.5 434.2 25650 R4 11
20 441.7 540.9 29800 R4 4
21 548.4 707.6 47340 R4 8
22 715.1 924.3 47340 R4 7
23 931.8 1076 32900 R4 12
24 1083.5 1254.9 96360 R4 5
25 1269.9 1375.2 0 R4 6
26 292.5 634.8 12030 R5 2
27 649.8 705.8 3990 R5 3
28 713.3 850.6 36920 R5 9
29 865.6 1089.1 18140 R5 -
30 1096.6 1374.9 0 R5 8

Table G2. Berth Information
BE LEFT

(metres)
RIGHT

(metres)

01 150 450
02 480 780
03 810 1110

Table G3. Ship Information
SH #ACT SIZE

(tonnes)
RLT PILE

REQ
PROD

01 2 (79310,2530) 5875 P02,P16,P28 9
02 2 (73230,2230) 6489.4 P02,P16,P28 9
03 2 (70950,2630) 7056.4 P14,P24 5
04 2 (138850,4460) 7609 P08,P22 7

Table G4. Train Information
TR SIZE

(ton)
TIME
(min)

RLT PILE
REQ

PROD

01 995.79 12.26 5760 P05 1
02 5270.99 49.32 5760 P02,P16,P28 9
03 8550 51.06 5780.7 P01,P12,P18,P19 11
04 6580 71.64 5815.2 P06,P23 12
05 8680 51.24 5840.16 P13,P30 13
06 4010 32.1 5916.66 P03,P26 2
07 8550 52.2 5956.98 P01,P12,P18,P19 11
08 7890 86.52 5950.92 P21 8
09 8760 51.78 5969.64 P14,P24 5
10 8550 52.26 6017.7 P01,P12,P18,P19 11
11 7890 50.16 6029.76 P08,P22 7
12 8640 51.78 6095.4 P07,P15,P25 6
13 9230 56.46 6131.64 P02,P16,P28 9
14 7890 79.86 6107.94 P08,P22 7
15 8640 52.08 6173.88 P07,P15,P25 6
16 7450 75.36 6217.86 P20 4
17 8760 53.82 6270.96 P14,P24 5
18 9230 56.82 6334.62 P02,P16,P28 9
19 8760 52.38 6351.96 P14,P24 5
20 6580 70.68 6393.84 P06,P23 12
21 9230 55.86 6448.8 P02,P16,P28 9
22 6990 43.56 6546.9 P05 1
23 8760 54.3 6581.4 P14,P24 5
24 9230 59.1 6652.14 P02,P16,P28 9
25 8760 80.7 6668.34 P14,P24 5
26 6580 70.86 6721.32 P06,P23 12
27 8550 88.92 6775.56 P01,P12,P18,P19 11

28 7370 215.94 6692.22 P09 10
29 7890 49.44 6804 P08,P22 7
30 7450 70.08 6757.98 P20 4
31 8680 53.76 6878.88 P13,P30 13
32 7890 48.66 6995.46 P08,P22 7
33 8760 51.96 6971.82 P14,P24 5
34 4010 26.1 7078.98 P03,P26 2
35 7890 47.34 7023.24 P08,P22 7
36 8640 51.78 7107.72 P07,P15,P25 6
37 9230 65.34 7126.02 P02,P16,P28 9
38 4010 27.54 7215.66 P03,P26 2
39 9230 56.34 7170.24 P02,P16,P28 9
40 6990 43.86 7252.26 P05 1
41 8760 52.2 7312.44 P14,P24 5
42 3990 24.36 7368.42 P10,P17,P27 3
43 8550 53.58 7356.96 P01,P12,P18,P19 11
44 7450 56.46 7381.44 P20 4
45 8760 51.6 7565.04 P14,P24 5
46 8760 54.06 7687.14 P14,P24 5
47 9230 56.04 7753.02 P02,P16,P28 9
48 7890 48.6 7782.48 P08,P22 7
49 8760 54.24 7812.6 P14,P24 5
50 9230 58.14 7855.14 P02,P16,P28 9
51 7890 100.08 7869 P08,P22 7
52 9230 55.26 7908.36 P02,P16,P28 9

Table G5. Product on hand: Row 1 – from piles, Row 2 – from ships; Row 3 – total amount;

Type 1 2 3 4 5 6 7 8 9 10 11 12 13

40944.2 40100 19950 29800 166440 77760 126240 65480 151639 22110 102600 59220 43400
14975.79 12030 3990 22350 87600 25920 55230 7890 88340.99 7370 42750 19740 17360
55919.99 52130 23940 52150 254040 103680 181470 73370 239979.99 29480 145350 78960 60760

