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Repetitive Transcranial Magnetic Stimulation (rTMS) is an evidence-based treatment for depression. However, 
the patterns of response to this treatment modality are inconsistent. Whilst many people see a significant 
reduction in the severity of their depression following rTMS treatment, some patients do not. To support and 
improve patient outcomes, recent work is exploring the possibility of using Machine Learning to predict rTMS 
treatment outcomes. Our proposed model is the first to combine functional magnetic resonance imaging (fMRI) 
connectivity with deep learning techniques to predict treatment outcomes before treatment starts. Furthermore, 
with the use of Explainable AI (XAI) techniques, we identify potential biomarkers that may discriminate between 
rTMS responders and non-responders. Our experiments utilize 200 runs of repeated bootstrap sampling on two 
rTMS datasets. We compare performances between our proposed feedforward deep neural network against 
existing methods, and compare the average accuracy, balanced accuracy and F1-score on a held-out test set. 
The results of these experiments show that our model outperforms existing methods with an average accuracy of 
0.9423, balanced accuracy of 0.9423, and F1-score of 0.9461 in a sample of 61 patients. We found that functional 
connectivity measures between the Subgenual Anterior Cingulate Cortex and Centeral Opercular Cortex are a 
key determinant of rTMS treatment response. This knowledge provides psychiatrists with further information 
to explore the potential mechanisms of responses to rTMS treatment. Our developed prototype is ready to be 
deployed across large datasets in multiple centres and different countries.
1. Introduction

Depression is a highly prevalent and debilitating mental illness [1]. 
As such, finding effective and efficient treatments for depression is a 
high priority. Repetitive Transcranial Magnetic Stimulation (rTMS) is 
an evidence-based treatment for depression [2–4]. rTMS involves elec-

tromagnetic stimulation of the brain that aims to alter its underlying 
structures to improve a patient’s symptoms [7]. However, the patterns 
of response to this treatment are inconsistent [5]. Evidence [6,9,5] sug-

gests that the distribution of response to rTMS is bimodal. For some 
patients, rTMS treatment will lead to a significant reduction in de-
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pression severity. However, others see minimal improvement in their 
depression rating scale scores post-treatment. Given this disparity, cur-

rent work is investigating the potential of using artificial intelligence 
(AI) to predict treatment outcomes and personalize mental healthcare.

To date, existing research has sought to predict response to rTMS 
treatment using machine learning (ML) algorithms. These systems aim 
to delineate between responders and non-responders in rTMS treatment. 
Thus, the problem can be defined as a supervised binary classification 
task. Existing works [21,22,11–13,15–17,10,9,18] have applied a vari-

ety of algorithms to predict the response to rTMS treatment. Methods in-

clude linear support vector machines [22,11,12], linear regression [13]
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and k-nearest neighbours [15]. These surveyed methods vary from those 
that rely on features collected after treatment has begun, to emerging 
methods that utilize pre-treatment measures only.

Predicting the treatment outcome before it begins is the goal of 
personalized mental healthcare. However, such examples are in the mi-

nority. For example, only Hopman et al. [11] and Hasanzadeh et al. 
[15] predicted treatment outcomes before starting treatment. In their 
work, Hasanzadeh et al. [15] utilized pre-treatment EEG features to 
accurately predict rTMS treatment outcomes in roughly 90% of cases. 
Hopman et al. [11] instead used pre-treatment functional magnetic res-

onance imaging (fMRI) to predict treatment outcomes. These results 
suggest that there is scope for the use of more advanced techniques, 
such as deep neural networks (DNN), to predict the outcome of rTMS in 
patients [7]. This observation is echoed by [12], who assert that future 
work could explore the efficacy of deep learning (DL) algorithms for 
predicting the treatment response. For example, the linear support vec-

tor machine (SVM) used by Hopman et al. [11] performed excellently 
during cross-validation, however, Hopman et al. [11] reported sharp 
declines in predictive performance on a held-out test set. Therefore, 
an opportunity exists to explore more sophisticated algorithms, such as 
DNNs, which are known - under the right settings - to generalize well on 
unseen data. As such, our work seeks to address the following research 
questions:

1. Can a deep neural network improve upon existing methods for pre-

dicting treatment response on a held-out test set?

2. Which features most predict treatment response?

3. In what circumstances is the proposed network vulnerable to mis-

classification?

4. Are there any commonalities in misclassification errors that can be 
communicated to the end user to improve clinical utility?

To address these research questions, we compare empirically exist-

ing shallow ML methods against our proposed DNN. Furthermore, with 
the aim of increasing the value of work for end users and in collabora-

tion with domain experts, we utilize explainable artificial intelligence 
(XAI) techniques to identify the features that are most predictive of 
treatment response. In addressing this research question, we aim to 
identify candidate biomarkers indicative of treatment response. Ad-

ditionally, to support the potential implementation of our model, we 
present model knowledge, which is an extension of the ‘model facts la-

bels’ presented by [20]. Model knowledge is our process of rigorously 
evaluating model performance, including potential limitations. By gath-

ering model knowledge, we can enhance the clinical utility by explicitly 
declaring circumstances such as when the model performs well or is vul-

nerable to prediction errors, which in turn promotes trust in end users. 
Lack of trust in AI models is seen as a key barrier to its implementa-

tion in healthcare [19]. Through addressing these research questions, 
our work makes the following contributions:

• A robustly validated regularised deep feedforward neural network 
that predicts the treatment outcome of rTMS before treatment com-

mences.

• A robust analysis of rTMS treatment response patterns through the 
use of two datasets, namely, the differences in the predictive power 
of self-reported psychometric data against fMRI connectivity mea-

sures.

• The use of XAI techniques, including SHAPLEY values, to identify 
candidate biomarkers indicative of response to rTMS treatment.

These findings help to provide confidence to clinicians in our model 
while also uncovering new knowledge for depression researchers.

The current work proposes a DNN model for predicting treatment 
response to rTMS. We use multi-modal data to predict treatment out-

comes and explore XAI techniques to add support and robustness to 
2

our model. As such, our work aims to produce the first DNN model to 
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model rTMS treatment outcomes that includes explainability. The paper 
is structured as follows. The following section reviews existing strate-

gies for treatment response prediction used to evaluate rTMS. Given 
the dearth of literature exploring DL architectures in rTMS, we include 
an exploration of DL systems applied in other medical contexts. Ad-

ditionally, we survey some methods used to produce interpretable AI 
systems. In Section 2, we present the research problem, a summary of 
the dataset, formally define the research problem and introduce the 
notation. Section 2 also introduces our proposed model, the baseline 
models, and model hyperparameters. Details on the experiment design, 
performance measuring schemes and experiment results are included in 
Section 3. Finally, comments about our findings and proposed future 
directions from this research topic are included in Section 4.

1.1. Related work

Previous studies [21,22,11–13,15–17,10,9,18] have applied a va-

riety of techniques to predict treatment outcomes to rTMS. To date, 
ML algorithms have performed well on this binary classification task. 
A summary of the current literature is shown in Table 1.

This Table shows that several feature modalities, including elec-

troencephalogram (EEG), fMRI, psychological, and demographic fea-

tures, have been used to predict treatment response to rTMS. Existing 
work has relied on shallow machine learning methods like linear SVM 
(LSVM) and k-nearest neighbours algorithms (KNN). Recently, Shad-

abi et al. [22] became the first to apply DL methods to rTMS response 
prediction when they explored the ability of a convolutional neural net-

work (CNN) to predict treatment response to rTMS using EEG features. 
CNNs are well suited to the temporal data collected by EEG, with the 
authors reporting a 97.1% average accuracy after 10 fold cross valida-

tion.

Previously, existing research has relied on shallow ML methods. For 
example, Hopman et al. [11] deployed a LSVM using features collected 
via fMRI. They used connectivity features between the subgenual an-

terior cingulate cortex and lateral occipital cortex, superior parietal 
lobule, frontal pole and central opercular cortex. During five-fold cross 
validation, the authors presented a training accuracy of ≈ 97% how-

ever, on a unseen test set, model performance dropped to an average of 
≈ 87%, with a 95% confidence interval from 100% to roughly 70% ac-

curacy. Further implementations of a LSVM include Bailey et al. [12], 
who built a LSVM classifier composed of 54 features. These features 
consisted of a combination of mood and EEG measurements collected 
at baseline and after one week of treatment. In addition to measure-

ments collected at these two-time points, features were extracted for 
the change between week 1 and baseline. Each feature was standard-

ized, which is a common technique in ML. Testing of the final classifier 
was validated against 5000 runs of five-fold validation. For this LSVM, 
Bailey et al. [12] reported a mean balanced accuracy of 86.60%. As part 
of their conclusions, they felt that the efficacy of existing algorithms for 
the prediction of treatment response could be improved [12].

DL algorithms are capable of modelling complex relationships and 
yield high classification performances. Moving from ML to DL to predict 
rTMS treatment outcomes is the potential next step in mental health-

care. The strength of DL architectures is the ability to model complex 
multi-variable relationships with improved accuracy [26]. Hence, the 
opportunity exists for DL methods to be applied to rTMS modelling us-

ing fMRI connectivity features. However, the challenge in applying DL 
methods to critical domains such as mental health care is the distrust 
toward DL methods due to their lack of interpretability [19]. XAI is 
a field of AI research that focuses on the inner workings of complex 
DL models. DL models are more powerful for identifying relationships 
than more interpretable shallow methods. However, there is a trade-

off between performance and interpretability. XAI techniques aim to 
eliminate that trade-off by increasing the interpretability of DL models. 
Furthermore, Hopman et al. [11] observed that their LSVM failed to 

generalise well to unseen data. By contrast, DNNs are known to gener-
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Table 1

rTMS depression treatment response prediction.

Author Modality Features Algorithm Performance Validation

Ebrahimzadeh et al. [21] EEG EEG beta power, Correlation Dimension 
(CD), Permutation entropy (PE), Fractal 
dimension (FD), Lempel-Ziv Complexity 
(LZC), Power spectral density, Frontal 
and prefrontal cordance

SVM* 94.31% average 
accuracy after cross 
validation

10 fold cross 
validation

Shahabi et al. [22] EEG Continuous Wavelet Transform CNN 97.1% average 
accuracy after cross 
validation

ten-fold cross 
validation

Hopman et al. [11] fMRI Connectivity features: subgenual 
anterior cingulate cortex, lateral 
occipital cortex, superior parietal 
lobule, frontal pole and central 
opercular cortex

LSVM 87% accuracy on a 
held out test set

five-fold cross 
validation

Bailey et al. [12] EEG and 
Mood

Alpha power, theta power, alpha 
connectivity, theta connectivity, theta 
cordance, individualised alpha peak 
frequency (iAPF) and MADRS

LSVM Mean balanced 
accuracy of 86.60%

5000 runs of 
five-fold cross 
validation

Fan et al. [13] fMRI Network Segregation of the Salience 
Network*

Regression Coefficient of 
determination of 
0.27

NA

Hasanzadeh et al. [15] EEG Power of beta* K-NN Accuracy of 91.3% Leave-one-out cross 
validation

Bailey et al. [17] Mood, 
Behaviour 
and EEG

Alpha power, theta power, gamma 
power, alpha connectivity, theta 
connectivity, gamma connectivity, theta 
gamma coupling, MADRS, working 
memory and reaction time

LSVM F1 score = 0.93 200000 runs of five 
fold cross 
validation

Drysdale et al. [9] fMRI Connectivity features Hierarchical 
Clustering and 
SVM

Balanced accuracy 
of 90.39%

Leave-one-out cross 
validation

* Best performing model.
alise well to unseen data, which potentially addresses the performance 
decline found in studies such as [11]. Additionally, the inclusion of ex-

plainability can improve trust in end users and take advantage of DNN’s 
improved performance over existing methods.

At present, there is a dearth of literature exploring XAI and rTMS 
treatment. A recent review by [19] argued for the importance of includ-

ing XAI through methodologies like SHAP values to enhance trust in DL 
methods. Thus, our work is motivated to enhance trust in DL meth-

ods from psychiatrists through both improving performance in rTMS 
response prediction, and including XAI in our approach.

2. Materials and methods

This section outlines the problem statement, the datasets used and 
defines the research problem to be explored. Here, we provide some 
background information on DNNs and their development, before we 
present our model, which uses quantitative data to evaluate the treat-

ment effects of rTMS. Additionally, this section includes details about 
our strategies for reducing overfitting and internally validating our 
model.

2.1. Problem statement

The effectiveness of rTMS for the treatment of depression is now 
well-established [27]. Significant evidence shows rTMS to be a safe and 
effective intervention for treatment-resistant depression [2–4]. Despite 
this effectiveness, some patients will see no significant improvement 
in their depression severity following rTMS treatment [5]. To address 
these inconsistent response patterns, we are exploring ways to better 
target rTMS treatment toward patients who are likely to see the most 
3

benefit. In order to personalize care, AI can be deployed to support 
psychiatrists [28]. The aim of our work is to explore the potential of 
a DNN architecture to predict response to rTMS treatment and identify 
any potential biomarkers indicative of treatment response.

2.2. Research design

The current work aims to test the efficacy of a DNN to predict the 
treatment outcome of rTMS. Utilising empirical experiments, we seek 
to investigate whether DL offers any improvement over existing meth-

ods. As part of this work, we identify the features that provide the most 
information for treatment response in the hope of identifying the key 
biomarkers. Additionally, our experiments compare self reported mea-

sures or fMRI connectivity features for predicting treatment response. 
By utilising XAI techniques, we present new knowledge that can aid 
clinicians in prescribing treatments.

2.3. Datasets

To address whether a DNN can provide robust predictions compared 
to existing methods, we utilise two datasets. The first dataset was used 
in published work by Hopman et al. [11] and made publicly available 
in [29]. The data includes several fMRI features, along with a patient’s 
treatment outcomes. A summary of the mean connectivity measures 
across response type can be seen in Table 2. Further detailed summary 
statistics of this dataset, including associated ethics approval, can be 
found in [29].

The second dataset is new data collected from a large private hospi-

tal in Australia that specializes in the delivery of rTMS care. A summary 
of the relevant psychological variables collected in this data is shown 
in Table 3. This Table shows the mean survey scores between groups. 

The psychological health information in this Table was collected using 
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Table 2

Mean connectivity measurements by group in Dataset 1: Hopman [29].

Responders Non-responders

N (n = 61) 33 28

Frontal Pole Connectivity 0.0252 −0.1026
Occipital Cortex Connectivity 0.0667 −0.0467
Superior Parietal Lobule Connectivity 0.0802 −0.0450
Centeral Opercular Cortex Connectivity 0.1142 0.0266

Left Lateral Occipital Cortex Connectivity 0.0607 −0.0440
Right Lateral Occipital Cortex Connectivity 0.0386 −0.0476

Table 3

Mean DASS measurements by groups in Dataset 2: data collected from Belmont 
hospital.

Responders Non-responders

N (n = 133) 83 50

Depression Baseline 29.4819 27.4000

Anxiety Baseline 17.0843 16.3600

Stress Baseline 25.4578 23.4800

Depression after 10 sessions 17.1566 25.9800

Anxiety after 10 sessions 11.4698 13.7200

Stress after 10 sessions 15.3253 20.4400

the Depression, Anxiety and Stress Subscale [DASS 30]. DASS is a self-

report survey measuring three dimensions of mental health: depression, 
anxiety and stress. Patients are required to complete a baseline survey 
prior to treatment, then in the rTMS program, they complete the DASS 
survey 3 times during treatment. An additional survey is completed 
after 10 sessions of rTMS, and a final measurement about patients is 
collected following treatment.

In the current work, the DASS-21 was used, a short form of the 
42 item DASS. Each dimension of mental health in the DASS-21 has a 
maximum score of 42. For the depression dimension, a score of greater 
than 21 is deemed severe depression [23]. Participants in this study 
consented to DASS data being used for the study of rTMS treatment. 
Ethics approval was obtained from the University’s Human Research 
Ethics Committee to use and analyse collected data.

2.4. Problem definition

The current work seeks a function that optimizes the classification 
of patients as responders or non-responders to rTMS treatment. In ad-

dition, this function provides a model of the treatment effect of rTMS 
dependent on either psychological or neuroimaging based variables.

Formally, let X be a dataset containing Patients P and class label Y, 
where:

𝑋 = {(𝑝1, 𝑦1), (𝑝2, 𝑦2), (𝑝3, 𝑦3)…(𝑝𝑛, 𝑦𝑛)} (1)

Each patient p has a set of connectivity measures C such that

𝐶 = {FP,OC,SPL,COC, lOCL, lOCR}

𝑦𝑖 =

{
1 if Δ𝑑

𝑑0
≤ −0.5

0 otherwise
(2)

Patients are assigned a class label according to the function in Equa-

tion (2). Any patient who experiences a greater than 50% reduction in 
depression severity, Δ𝑑 ≤ −0.5, is classified as a responder and assigned 
the class label 𝑦𝑖 = 0. Conversely, patients who see a less than 50% re-

duction, Δ𝑑 > −0.5, are classed as non responders and receive the label 
𝑦𝑖 = 0. The target variable for this binary classification task is 𝑦. As such, 
we seek a classifier

ℎ[𝑝] = 𝑦
4

which minimizes the prediction error between classes. See Table 4.
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Table 4

Symbol descriptions.

Symbol Description

X Dataset

Y,y Set of class labels and a patient’s class label

p A patient

𝑑0, Δ𝑑 Depression severity at baseline, change in depression 
severity following treatment

FP Functional connectivity measure between Subgenual 
Anterior Cingulate Cortex and Frontal Pole

OC Functional connectivity measure between Subgenual 
Anterior Cingulate Cortex and Occipital Cortex

SPL Functional connectivity measure between Subgenual 
Anterior Cingulate Cortex and Superior Parietal Lobule

COC Functional connectivity measure between Subgenual 
Anterior Cingulate Cortex and Centeral Opercular Cortex

lOCL Functional connectivity measure between Subgenual 
Anterior Cingulate Cortex and Left Lateral Occipital Cortex

lOCR Functional connectivity measure between Subgenual 
Anterior Cingulate Cortex and Right Lateral Occipital Cortex

2.5. Deep neural networks

DL is a subfield of ML that builds upon existing neural network ar-

chitectures by increasing the number of hidden layers of a network 
[24]. This increased depth allows for modelling of increasingly complex 
nonlinear functions [25]. The complexity makes it possible for models 
to learn complex representations of existing data, which may not be 
observable using traditional inferential statistics or standard ML tech-

niques.

The basis for the artificial neural network (ANN) is found in the 
seminal work of Rosenblatt et al. [31]. Where initially a single percep-

tron defined a linear decision boundary between a binary set of classes, 
the multilayer perceptron (MLP) adds the concept of a hidden layer. 
The hidden layer involves multiple perceptrons, with each perceptron 
sharing an edge with each node in the hidden layer. This increase in 
model complexity increases the model’s predictive power beyond linear 
functions to learning complex nonlinear decision boundaries between 
classes [33]. The MLP is a feedforward neural network applied to clas-

sification and regression [32]. An MLP with several hidden layers is 
referred to as a DNN [8]

A crucial aspect of the performance of the MLP is the training of 
the network. Training refers to the model weights being tuned so that 
predicted outputs match the expected outputs or ground truth values of 
the data [33]. The process of tuning these weights or parameters can 
be referred to as learning. Rarely can a model match all examples with 
their ground truth labels, therefore, we need a function to monitor the 
performance of the model during training. Training aims to minimize a 
loss function to obtain the weights so that the difference between the 
expected and predicted outcomes is minimized [32].

2.6. Regularisation

Modern solutions have enabled the fitting of increasingly complex 
functions to data. However, the added complexity of networks with 
several hidden layers increases the risk of overfitting. That is, where 
functions simply memorise datasets. Regularisation encompasses a class 
of tools used to reduce the risk of model overfitting. Common strategies 
for reducing the risk of overfitting include: early stopping, weight reg-

ularisation and dropout [24].

Early stopping involves monitoring a metric during training and 
ending training when the selected value stops improving [34]. In ad-

dition to an unseen test dataset, we use a validation set during model 
training in our project. Validation loss is monitored throughout train-

ing, and for each trained model as part of our bootstrap resampling, 
patience was set to 100. We set a minimum improvement in validation 

loss of 0.05 as being required to continue model training.
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Table 5

Model hyperparameters.

Hidden Layers 4

Layer Width 10

Activation Function reLU

Loss Function Binary Crossentopy

Regularisation Layers 4

Test set size 20%

Epochs 2000 or until early stopping criteria met

Dropout involves turning a proportion of parameter weights down 
to zero. Conceptually, we can perceive this as ‘dropping’ edges between 
nodes. Srivastava et al. [35] first proposed dropout as a regularisation 
strategy to add noise to a neural network. The introduction of noise 
through ‘dropping’ connections between neurons forces the network be-

ing trained on the data to identify the true nature of the signal within 
the data. In turn, this reduces an overparametrised network’s ability to 
memorize the dataset. The benefit in identifying the true signal from 
the data means a greater potential for identifying meaningful patterns 
within the data. As such, each layer of our trained model includes a 
dropout probability of 0.3.

The final hyperparameters of our model are shown in Table 5. 
These final hyperparameters were selected after an iterative model 
building process. Through several cycles of experiments, we monitored 
how changes in model hyperparameters impacted model performance. 
Through continual refinement and the aim of creating a model robust 
to overfitting, we settled on the final model hyperparameters. These se-

lected values achieve the goal of a model that generalizes well to unseen 
data when compared against existing methods.

2.7. Experimental design

This section provides an overview of the empirical experiments 
used to explore the research questions outlined in Section 1. The cur-

rent work presents two experiment arms. In the first arm, we test our 
proposed DNN on data collected by [11]. This data includes fMRI con-

nectivity features from 61 patients suffering from depression treated by 
rTMS. In this experiment arm, we assess the ability of our model to 
discriminate rTMS responders from non-responders neuroimaging fea-

tures.

Our second set of experiments utilises a privately collected dataset 
from Belmont Private Hospital, Brisbane, Australia. This data includes 
the records of 133 patients who undertook rTMS treatment. However, in 
contrast to the first experiment, the features of the second experiment 
arm include only features collected through a self-reported question-

naire.

Rigorous validation of ML and DL algorithms is essential to en-

sure the robustness of reported results. The validation of AI systems 
for healthcare is an important step in the transition to clinical practice 
[36]. Harrel [37] asserts that the strongest form of internal validation 
is repeated bootstrap resamples, with analysis of the target variable 
repeated for each resample. This process ensures that a relationship be-

tween input variables and target variables exists, thus increasing the 
robustness of the results.

These experiments are designed to compare the performance of self 
reported psychometric measures of depression severity against quantita-

tive fMRI measures, in predicting treatment outcomes to rTMS. Through 
these experiments, we aim to identify candidate biomarkers that explain 
the patterns of response to rTMS treatment.

2.8. Baseline models

Our baseline models include a LSVM, as proposed by [21,11,12], 
and a KNN classifier [21]. Additionally, we include XGBoost and ran-

dom forests as baseline models, which are widely used in healthcare 
5

with explainability [19]. The hyperparameters of all baseline models 
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Fig. 1. Box plot showing the accuracies obtained using various algorithms.

were optimized using grid search. In our final experiments, we used the 
best hyperparameter set found during grid search to compare against 
our proposed DNN. Full baseline model hyperparameters are listed in 
Appendix A, Table A.11.

For our second dataset, we explore the potential of DNNs to model 
changes in depression severity from psychometric questionnaires. For 
this experiment, we utilize the only model that includes the same fea-

tures. This baseline model is provided by Feffer et al. [6].

As outlined in Section 1.1, Feffer et al. used early symptom im-

provement to predict treatment response to rTMS. In their study, they 
proposed that patients with < 20% reduction in depression severity 
after 2 weeks of treatment (10 sessions) are unlikely to respond to treat-

ment. As such, inline with the model proposed by Feffer et al., patients 
with ≤ 20% improvement in symptoms after 10 sessions are classed as 
non-responders, and the remaining cases are defined as responders. The 
Feffer et al. [6] model reported high sensitivity but low specificity.

2.9. Performance measuring schemes

Performance metrics are required to evaluate models and make com-

parisons between them. These metrics differ slightly depending on the 
nature of the outcome variable. Common metrics used for the evalua-

tion of classification models in psychiatry include F1 score and accu-

racy, as used in Chang et al. [38]. Additionally, in line with Bailey et 
al. [12], we have included balanced accuracy to assess performance in 
both the positive and negative cases.

3. Results

We present the results of our two experiment arms (Experiments 1 
and 2) in the two sub-sections below.

3.1. Experiment 1: fMRI connectivity measures to predict rTMS treatment 
outcomes

Recent work by Hopman et al. [11] proposed a LSVM for the early 
prediction of treatment response to rTMS. Their works combined fMRI 
features with a Linear SVM to predict treatment outcomes. Our experi-

ments compare the performance of several baseline models against our 
proposed DNN architecture over 200 repeated bootstrap samples. The 
distribution of test set accuracy for each algorithm is shown in Fig. 1.

From this diagram we see while most algorithms have an upper limit 
of correctly predicting all cases in the test set. The DNN finds this opti-

mal solution more frequently across all trials. Followed by the logistic 
regression, and the LSVM. With the observed LSVM performance closely 

mirroring the performance that [11] obtained on the same dataset.
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Table 6

Summary of average model performance matrices obtained from 200 bootstrap resamples.

Model Accuracy F1 score Balanced 
accuracy

DNN 0.9423 (0.0605) 0.9461 (0.0561) 0.9423 (0.0618)

XGBoost 0.7813 (0.0823) 0.7916 (0.0794) 0.7804 (0.0830)

LSVM 0.9107 (0.0588) 0.9127 (0.0584) 0.9115 (0.0587)

KNN 0.8913 (0.06842) 0.8942 (0.06753) 0.8918 (0.0686)

Random 
Forests

0.8416 (0.0822) 0.8506 (0.0790) 0.8404 (0.0830)

Logistic 
Regression

0.9047 (0.0636) 0.9071 (0.0647) 0.9052 (0.0635)

Table 7

Summary of average model performance in Experiment 2.

Model type Feature Set F1-score Accuracy Balanced 
accuracy

Feffer et al. [6] Domain Knowledge 0.857 0.815 0.791

DNN DASS Scores 0.772 0.630 0.500
Fig. 2. A graph of training loss against validation loss.

Table 6 shows the summary of results obtained using our model 
compared against our baseline models. Reported results are the aver-

age of 200 bootstrap resamples with standard deviations included in 
parentheses. Again, our proposed DNN outperformed all baseline mod-

els across the reported metrics.

In addition to the described summary metrics obtained using 200 
samples, the LSVM identified the optimal solution for correctly classify-

ing the unseen test set 21 times compared to 64 times using the DNN. 
To demonstrate the robustness of the DNN model we have also included 
training curves. One way to ensure the robustness of DNN performance 
is to monitor training loss compared to validation loss. The significant 
divergence between training and validation loss, when validation loss 
deteriorates significantly compared to training loss, indicates that the 
model is overfitting. The training curve from 1 of the 200 trained net-

works is shown in Fig. 2. The figure shows no significant divergence 
between losses. During our testing when regularisation was removed, 
the model was prone to overfitting. This was demonstrated by a signif-

icant divergence between validation loss and training loss.

It may be noted from the performance of both the LSVM and DNN 
that a signal exists between variables and patterns of response. This 
motivated us to further explore which variables are most significant 
for correctly predicting treatment response. Based on the results of our 
experiments, a DNN with the hyperparameters described in Table 5 out-
6

performs the existing baseline models across all metrics.
3.2. Experiment 2: self-reported DASS scores to predict final rTMS 
treatment outcome

Extending our current work, we investigate the potential for self-

reported measures to predict rTMS treatment outcomes. Existing work 
has shown early changes in symptom severity to be a reasonable predic-

tor of rTMS treatment outcome. Extending upon this work, we explore 
whether a DNN can identify the relationship between self-reported de-

pression severity and treatment response.

The results shown in Table 7 highlight that when using DASS scores, 
the preferred method to predict treatment response is domain knowl-

edge as described in [6]. These results highlight that the fMRI connec-

tivity features are superior to self reported DASS scores. Surprisingly, 
the DNN was unable to pick up on the relationship between early symp-

tom improvement and final treatment outcome.

3.3. Explainable AI (XAI) approaches to identify potential biomarkers 
indicative of response to treatment

This paper has emphasized the importance of understanding model 
performance. This position is echoed by Tjoa and Guan [41], who as-

serted that when DNNs and AI models are applied to non-trivial tasks, 
improving model understanding is imperative. Methods for assessing 
feature importance vary from global to local explanations. Global meth-

ods explore feature importance from a global scope [42]. In contrast, 
local methods provide an explanation as to which variables are con-

tributing to the prediction of an individual case within the dataset.

We consider two methods for ranking feature importance: a global 
and a local method. A global post-hoc method that is commonly used 
to interpret AI methods is permutation feature importance (PFI) [25]. 
A PFI score involves the shuffling of one variable within the testing set 
before the data containing the shuffled feature is input into the trained 
model [25]. Similar to ablation, the more significant the decline in the 
model’s performance metrics, the greater the relative importance to the 
model. This process is then repeated throughout all variables in the 
dataset. One limitation of this approach is that any correlation between 
a shuffled feature and an unshuffled feature may lead to underestimat-

ing the importance of a feature [25]. This issue is similar to the issue of 
colinearity in simple linear regression.

Utilizing the PFI score, Table 8 shows the relative performance de-

clines in performances associated with each variable. This Table high-

lights that shuffling of COC leads to the most significant performance 
decline in model performance. This is measured by the change in test 
set accuracy by iteratively shuffling each variable. For clarity, the rela-

tive performance change attributed to each feature is shown visually in 

Fig. 3.
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Table 8

Summary of feature importance scores.

Feature Test set accuracy Percentage drop in accuracy

FP 92.3077 −7.6923
OC 76.9230 −23.0769
SPL 61.5384 −38.4616
COC 53.8462 −46.1538
LOCL 92.3077 −7.6923
LOCR 92.3077 −7.6923

Fig. 3. Relative change in the performance due to various features.

Fig. 4. Average SHAP values on Training Set.

3.3.1. Shapley (SHAP) values

One local method used for assessing feature importance is the SHAP 
value [43]. Inspired by the seminal work of Shapley [44], Lundberg and 
Lee [43] introduced the SHAP value. The Shapley value is a game the-

oretic approach to measure a player’s contribution to an end goal in an 
n-player cooperative game. SHAP values then provide a local explana-

tion for the contribution of each feature to a final output.

Using the SHAP values calculated in Python’s SHAP package of-

fers support for computing PFI score results. Fig. 4 shows that COC 
contributes significantly to model predictions, followed by OC. These 
findings mirror the results of the PFI score except for SPL, which is 
ranked much lower by SHAP value when compared to the results in 
Fig. 3.

One strength of local approaches to XAI is the ability to investigate 
SHAP values for individual cases. We can use this to instill greater trust 
7

from clinicians in our model to support its use.
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Fig. 5. Plot of Principal Component 2 (PCA2) versus Principal Component 1 
(PCA1).

3.4. Model limitations

To the best of our knowledge, we are the first group to use a DNN 
with fMRI connectivity features for the classification of rTMS response. 
By using connectivity measures collected before treatment, our network 
reliably predicts the final treatment outcome. Motivated by Sendak et 
al. [20], we have included a detailed overview of our model, including 
potential limitations and the relative contribution of each feature to the 
model’s overall performance. These contributions are an essential step 
to support the transition from research to clinical use.

Given the high accuracy reported in Section 2.7, it is useful to give 
some attention to any misclassified examples. By aiming to understand 
their occurrences, this investigation provides end users - in our case, 
psychiatrists - with a complete understanding of the model’s behaviour.

Amershi et al. [39] present several guidelines for human-AI interac-

tion. These guidelines emphasise the importance of setting clear expec-

tations for the quality and capability of AI systems. Additionally, [39]

highlight the importance of making the user aware of situations when 
an AI system may make mistakes. Formalizing this process, Sendak et al. 
[20] present model facts, a systematic approach to documenting a ML 
model designed for clinicians, including advice on interpreting model 
outputs and warnings. As noted by Sendak et al. [20], warnings regard-

ing the use of an AI model are rarely discussed in the literature. Model 
limitations must be acknowledged if proposed models are to have an 
impact in clinical practice.

Exploring the performance of our model, we investigated similarities 
between commonly misclassified cases. Swayamdipta et al. [40] present 
a novel methodology for recognizing areas of uncertainty within a large 
corpus of text. Existing works focus on identifying mislabelled examples 
within the training data. In contrast, our work focuses on identifying 
portions of the data that are mislabelled in the test set. Using this novel 
adaptation, we identified a portion in the lower left-hand quadrant of 
Fig. 5 that is vulnerable to misclassification. The clustering of these 
misclassified examples motivated us to explore the hypothesis that these 
points may share commonalities.

3.4.1. Extreme values are vulnerable to being misclassified

Given the clustering of misclassified examples in Fig. 5, we hypoth-

esise that these values may share some similarities. Identifying these 
commonalities is an important step in communicating the potential 
limitations of our model to clinicians. Analysis of the proposed model 
indicated that after 200 runs, our model accurately predicts treatment 
response on a held-out test set ≈ 92% of the time. This leaves roughly 
8% of cases being misclassified. A variable-wise comparison of distribu-
tions by t-test is shown in Table 9. It can be noted from the Table that, 
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Table 9

Comparison of variable distributions in cor-

rectly labelled and mislabelled cases.

Variable t p-value

FP −0.8274 0.4113

OC 1.9119 0.0607

SPL −0.1517 0.8800

COC 0.5420 0.5899

lOCL 1.2261 0.2250

lOCR 1.2907 0.2018

Table 10

Exploring the differences in OC between examples correctly labelled and misla-

belled examples.

95% Confidence interval

Group Mean Lower bound Upper bound

Correct 0.0297 −0.0044 0.06372

Misclassified −0.0313 −0.0749 0.01220

although marginally short of the level of significance, there is some dif-

ference between groups in the OC variable.

Through further analysis of group differences as shown in Table 10, 
we can see the differences between values that were accurately clas-

sified and misclassified. Misclassified values had, on average, lower 
connectivity measures in the OC variable compared to the correctly 
classified values.

Rerunning an analysis of our model with the removal of the OC 
variable shows a drop in performance over 200 bootstrap resamples. 
Highlighting OC is valuable in discerning between classes, however, it 
does have some observed failure cases. These are important considera-

tions, given each rejected positive case is a patient who may be denied 
access to treatment when they may actually benefit from it, or con-

versely, a patient who commits time to receive treatment and sees no 
benefit. As such, we include the limitation or warning of misclassifica-

tions in our model between the 95% confidence interval of −0.0749 to 
0.0122. These model limitations can be communicated to end users.

4. Discussions

The current work demonstrates that a feedforward DNN model can 
accurately predict the treatment outcome of rTMS before treatment. 
With rigorous internal validation, our work shows a DNN using fMRI 
connectivity features outperforms existing baseline methods. In our ex-

periments, the performance of prominent ML algorithms like XGBoost 
and random forests was disappointing. It may be noted that tree-based 
algorithms like XGBoost have under-performed when the number of 
samples is less than 500 [14]. Furthermore, the baseline LSVM repro-

duces the findings of Hopman et al. [11], offering additional support 
for the use of fMRI features and their ability to predict rTMS treat-

ment outcomes. These findings further emphasize the potential of fMRI 
connectivity measures as biomarkers for response to rTMS treatment. 
Furthermore, the current work reiterates that demographic and psycho-

metric variables alone are insufficient to identify patterns of response 
to rTMS treatment. Even when using sophisticated algorithms, psycho-

metric variables could not improve on the existing rule-based methods 
proposed by Feffer et al. [6]. Using these psychometric variables, a DL 
model was unable to identify the association between early change in 
depression severity and treatment outcome, similar to Feffer et al. [6].

Our work utilizes high levels of internal validation to ensure robust 
results in an important setting: the psychiatric care of those suffering 
from depression. Along with this validation, we demonstrated the signif-

icant impact of regularisation on model performance to reduce the risks 
of overfitting. These initial findings will become increasingly significant 
as larger rTMS datasets become available to further explore the poten-
8

tial of verifying these results against independent datasets. Our results 
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highlight the benefits of using DNNs with several hidden layers com-

pared against shallow ML methods in modelling complex relationships. 
The proposed architecture outperforms other shallow methods in terms 
of F1 score, balanced accuracy, and accuracy. This superior predictive 
performance may be due to the ability of DL algorithms to model com-

plex multi-variable relationships. Shallow methods, such as traditional 
linear algorithms, are unable to recognize these complicated relation-

ships. In practice, the interplay between treatment, psychiatrists and 
patient variables is more complex than can be modelled using linear 
models. The proposed model here consists of 1191 parameters, high-

lighting the complexity of the model compared to shallow methods.

One thing to note is that the current work has been developed using 
a limited number of complete records. In the future, we plan to impute 
the missing records to increase the size of the data. Furthermore, par-

ticipants for whom data is incomplete may have left the study due to 
a lack of improvement in their psychological health, leaving only pa-

tients who benefited. The risk, then, is that the remaining sample is not 
truly representative of the true population of patients receiving rTMS 
treatment. Also, there is a possibility that the model may be overfitting 
to the current distribution of patients. Further work involving data col-

lected from multiple centres could help to improve the robustness of this 
model. While the current work is completed using data where classes 
are relatively balanced, it is not known how the current method would 
perform if training data was imbalanced. Future work could attempt to 
incorporate methods that are robust to uneven class distributions of the 
target variable.

5. Conclusions

In this work, we have proposed a novel DL architecture to predict 
the outcome of rTMS treatment using fMRI connectivity features. To the 
best of our knowledge, we are the first to apply both a DNN and com-

bine a DNN with XAI to rTMS response prediction using fMRI connec-

tivity features. Through empirical experiments, we showed that a DNN 
using fMRI connectivity measures outperforms existing state-of-the-art 
algorithms. In our repeated bootstrap simulations, we demonstrate our 
model finds the optimal solution in an unseen test set more frequently 
than other methods. The demonstrated robustness of this model moves 
the field closer to clinical implementation over existing shallow meth-

ods. Furthermore, our work demonstrates neuroimaging variables are 
superior to psychometric variables in predicting treatment response to 
rTMS. Additionally, using XAI techniques, our work shows functional 
connectivity measures between the Subgenual Anterior Cingulate Cor-

tex and Centeral Opercular Cortex to be a key determinant for rTMS 
treatment response. These findings are validated using both SHAP val-

ues and relative feature importance. The current work improves upon 
existing methods by including XAI and predicting treatment outcomes 
before the start of treatment. However, the main limitation of this work 
is that only a small dataset has been used to develop and test the model. 
In the future, we plan to use larger datasets from various centres and 
ethnicities to improve the accuracy of our work.

Statement of ethical approval

Ethical approval for this project was granted by the Universities Hu-

man Research Ethics Committee (H21REA026).

Funding

This work is partially funded by The Cannan Institute, Belmont Pri-

vate Hospital, Brisbane. The authors declare no competing interests.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

the work reported in this paper.



M. Squires, X. Tao, S. Elangovan et al.

Acknowledgements

We gratefully acknowledge the support from Belmont Private Hos-

pital team members, especially, Ms Mary Williams (CEO), Rachel Stark 
(Area Manager), Dr Mark Spelman (Psychiatrist), Dr Sean Gills (Psychi-

atrist), and Dr Tom Moore (Psychiatrist). Without their kind support, 
this work wouldn’t be possible.

Appendix A

A.1. Baseline model hyperparameters

Table A.11

Baseline models and their hyperparameters.

Model Hyperparameter Value

Linear SVM C 100

Gamma 1

Kernel Linear

KNN Distance Metric Manhattan

𝑘 4

Weight Uniform

XGBoost colsample_bytree 0.7

learning_rate 0.01

max_depth 3

n_estimators 200

subsample 1

Random Forest bootstrap True

max_depth 10

max_features auto

min_samples_leaf 1

min_samples_split 2

n_estimators 50

Logistic Regression C 5.4287

Penalty L1
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