1	Total document: 10429
2	Main text: 5309
3	Abstract: 204
4	Number of Figures: 6
5	Number of Tables: 7
6	Supplemental Material: 1
7	Number of references: 68
8	
9	Changes in the Leukocyte Methylome and its Effect on Cardiovascular Related Genes
10	after Exercise
11	
12	Running head: Exercise Changes the DNA Methylome
13	
14	Joshua Denham ¹ , Brendan J O'Brien ² , Francine Z Marques ¹ , Fadi J Charchar ¹ *
15	
16	¹ Faculty of Science and Technology, Federation University Australia, Ballarat, Victoria,
17	Australia
18	² Faculty of Health, Federation University Australia, Ballarat, Victoria, Australia
19	*Corresponding author: Fadi Charchar, University Drive, Ballarat, Victoria.
20	f.charchar@federation.edu.au, Ph: +613 5327 6098, Fax: +613 5327 9242.
21	
22	J.D was involved in the study design, recruited, tested and trained subjects, performed
23	laboratory experiments, analysed and interpreted data, and wrote the manuscript. B.J.O was
24	involved in the study design, data interpretation and the writing of the manuscript. F.Z.M
25	contributed to the study design, data interpretation and writing of the manuscript. F.J.C
26	contributed to the study concept and design, interpreted data, revised the manuscript,
27	funded and supervised the study.
28	

29 Abstract

30

31 Physical exercise has proven cardiovascular benefits yet there is no clear understanding of 32 the related molecular mechanisms leading to this. Here we determined the beneficial 33 epigenetic effects of exercise after sprint interval training, a form of exercise known to 34 improve cardio-metabolic health. 35 We quantified genome-wide leukocyte DNA methylation of 12 healthy young (18-24 y) men 36 before and after four weeks (thrice weekly) of sprint interval training using the 450K 37 BeadChip (Illumina) and validated gene expression changes in an extra seven subjects. 38 Exercise increased subjects' cardio-respiratory fitness, maximal running performance and 39 decreased low-density lipoprotein (LDL)-cholesterol concentration in conjunction with 40 genome-wide DNA methylation changes. Notably, many CpG island and gene promoter 41 regions were demethylated after exercise, indicating increased genome-wide transcriptional 42 changes. Amongst genes with DNA methylation changes, epidermal growth factor (EGF), a 43 ligand of the epidermal growth factor receptor known to be involved in cardiovascular 44 disease, was demethylated and showed decreased mRNA expression. Additionally, we 45 found that microRNAs, miR-21 and miR-210 gene DNA methylation were altered by exercise 46 causing a cascade effect on the expression of the mature microRNA involved in 47 cardiovascular function. 48 Our findings demonstrate that exercise alters DNA methylation in circulating blood cells in 49 microRNA and protein coding genes associated with cardiovascular physiology. 50 51 52 Keywords: Epigenetics, sprint interval training, DNA methylation, cholesterol, miRNA 53 54 55 56

57 Introduction

Exercise training can prevent and attenuate symptoms of cardio-metabolic diseases, such as insulin resistance, elevated blood pressure (BP), excess adiposity and vascular impairment (18). The exact molecular mechanisms underpinning the health benefits gained from regular exercise training, however, are not known. DNA methylation affected by environmental factors modulates gene expression and may therefore mediate the health benefits gained from exercise training (19).

64

65 Recently, individuals involved in a six month moderate intensity exercise training program 66 displayed genome-wide skeletal myocyte and adipocyte DNA methylation changes in genes 67 associated with type 2 diabetes (49, 55). Additionally, older adult leukocyte DNA methylation 68 increased in the pro-inflammatory PYCARD gene after six months of aerobic exercise 69 training, to levels observed in their middle-aged peers (47). Although six months of moderate 70 intensity aerobic exercise modulates the DNA methylome, it is unknown whether shorter 71 training regimes impact DNA methylation. Moreover, while leukocytes are known to 72 contribute to vascular disease (58), it is not known whether exercise is an environmental 73 factor that regulates the leukocyte methylome and, in turn, contributes to improved vascular 74 health.

75

76 Given the effects of acute exercise on DNA methylation are intensity-dependent (5), we 77 aimed to determine whether leukocyte DNA methylation changes occur after short-term (four 78 weeks) yet intense exercise training. We used sprint interval training as a form of exercise 79 training because it rapidly improves vascular functioning (53, 54), insulin sensitivity (3), 80 cardio-respiratory function and physical performance (reviewed in (25, 57)). We aimed to: 1) 81 identify the effects of four weeks of thrice weekly exercise on genome-wide leukocyte DNA 82 methylation in healthy young men; 2) establish whether specific DNA methylation changes 83 occurred reciprocally with altered gene expression and; 3) identify the acute effect of 84 maximal exercise on genes and microRNAs (miRNAs) related to cardiovascular disease. We

85	hypothesised that four weeks of exercise training would cause significant changes in DNA
86	methylation in genes and miRNAs related to pathways involved in cardiovascular health.
87	
88	Materials and Methods
89	
90	Participants
91	
92	Twenty-six healthy young men not already engaged in intense exercise training were
93	recruited for this study. Participants were initially screened for any chronic diseases by
94	health and physical activity readiness questionnaires. During the initial assessment,
95	participants' height, weight and body-mass-index (BMI) were recorded. Resting BP was
96	measured with the subjects seated using an electronic BP monitor (Microlife BP 3AQ1).
97	Subjects' BP was measured after a 10 minute rest and was the average of two
98	measurements broken up by a one minute rest period. Body fat percentage was estimated
99	by summing seven skinfolds as described previously (31).
100	
101	All subjects gave written informed consent and this study was approved by Federation
102	University Australia's Human Research Ethics Committee.
103	
104	Cardiopulmonary exercise testing and training
105	
106	In order to assess cardiorespiratory fitness, participants completed one maximal oxygen
107	consumption ($\dot{V}O_{2max}$) test, on the same day of the initial assessment and 48-96 hours
108	following their final exercise session. Participants began training three days but no longer
109	than one week after their $\dot{V}O_{2max}$ test and completed twelve training sessions (three per
110	week) over four weeks. Participants completed two maximal treadmill exercise ($\dot{V}O_{2max}$) tests
111	before and after exercise training. Before the $\dot{V}O_{2max}$ test participants were fitted with a two-

112	way breathing valve (Hans Rudolph, USA) and expired air was collected into an online
113	metabolic system (Moxus, USA) for gas (O_2 and CO_2) analysis. The metabolic system was
114	calibrated before each test using ambient air and gas of known composition. After a
115	standardised five minute warm-up, the treadmill speed was increased one kilometre per hour
116	every minute until the participant reached volitional exhaustion. Subject' $\dot{V}O_{2max}$ were
117	determined as the highest oxygen consumption over one minute and was expressed as a
118	relative value in ml kg min ⁻¹ by dividing the $\dot{V}O_{2max}$ by body weight.
119	
120	So as to restrict any potential DNA methylation changes to the exercise program,
121	participants were requested not to deviate from their normal physical activity and
122	recreational exercise training habits, as physical activity and exercise training habits
123	influence leukocyte DNA methylation (19). Participants were also requested not to make
124	changes to their normal diet, as dietary changes have been associated with DNA
125	methylation alterations (46, 66). Participants had 48-72 hours recovery before the
126	subsequent training session, to allow adequate recovery.
127	
128	Before each exercise session, participants were instructed to perform a warm-up involving a
129	brief low-intensity run (5 min), dynamic stretches and some short (20 m) high-intensity runs.
130	Table 1 outlines the training schedule performed. Briefly, participants were required to
131	complete three sprints at maximal intensity. To prevent overtraining, a two-up one-back

132 training model was used. For example, during week one of training, participants completed

133 three sprints on the first session, four sprints on the second session and five on the third and

134 final session of week one. Participants then completed four sprints on the first session of

135 week two (Table 1). The training was progressively overloaded until participants performed

- 136 $\,$ eight sprints on the final exercise session. Exercise sessions were monitored and
- 137 supervised by an Accredited Exercise Physiologists (with Exercise and Sports Science
- 138 Australia) to ensure the safety of participants. Training was performed on a university

139 athletics oval. Participants were requested to run at maximal intensity for each 30 sec effort. 140 To ensure participants were running at maximal intensity, participants received constant 141 verbal motivation. Participants began each effort at one end of the oval and individually ran 142 around the oval until a whistle was blown to indicate the 30 sec had been completed. 143 Participants were then given a 4 min rest, which involved a slow walk back to where they 144 had started the test, followed by passive rest. 145 146 147 Blood processing 148 149 Participants donated a resting blood sample before and after their initial and final (after four 150 weeks of exercise training) treadmill tests. Participants were asked to refrain from 151 consuming alcohol or caffeinated beverages 24 hours before blood draw and were seated 152 for approximately 30 minutes prior to their donations before and after the exercise 153 intervention. Circulating blood was drawn from the antecubital vein into a serum separating 154 tube and an EDTA tube with participant seated. All resting blood samples were collected 155 from participants in the morning following an overnight fast. The final blood collection was 156 obtained 48-96 hours after the final exercise session. Blood was temporarily stored on ice 157 before further processing. The serum separating tube was left to clot at room temperature 158 before centrifugation (3500 RPM) and was subsequently used to guantify blood lipid 159 concentration using the CHOL2, TRIGL and HDLC3 reagents that were run on the Roche 160 c701 instrument at Melbourne Pathology (Melbourne, Australia). All DNA and RNA were 161 extracted on the same day, within three hours of blood draw to prevent possible de nova 162 influences on DNA methylation and gene expression. DNA and RNA were extracted from 163 whole blood stored in EDTA tubes using the PureLink Genomic DNA Mini Kit (Life 164 Technologies) and miRNeasy Mini Kit (Qiagen), respectively, following the manufacturers' 165 recommendations. The whole blood leukocytes were washed twice with the erythrocyte lysis 166 wash buffer (included in the miRNeasy Mini Kit) to isolate leukocytes from plasma, serum,

platelets and lysed erythrocytes. Therefore, only whole blood leukocyte miRNA and geneexpression were analysed in our study.

169

170 Genome-wide DNA methylation and EpiTYPER assay

171

172 While 19 participants completed the exercise intervention, whole-genome DNA methylation 173 analysis was performed in 12 subjects at rest before and after the four week exercise 174 intervention. The 450k BeadChip uses two types of Illumina chemistry to provide a 175 comprehensive DNA methylation status of over 480,000 CpG sites spanning 99.9% of 176 refseq genes. DNA methylation is represented as a β -value which corresponds to the 177 percentage of methylation at a given CpG site. All samples quantified on the BeadChip 178 passed the GenomeStudio Methylation Module's quality control procedure. To identify 179 technical variation and increase the chances of detecting DNA methylation changes caused 180 by exercise, raw β -values underwent Subset-quantile Within Array Normalization (SWAN) 181 (44). Data was subsequently imported into and analysed using the bioinformatics software, 182 Partek (Genomic Suite, version 6.6, Singapore). All β-values were log-transformed into Mvalues using the logit function ($\log^2(\beta/(1-\beta))$). M-values are a more valid alternative for 183 184 detecting DNA methylation changes, as they eliminate the heteroscedasticity of higher- and 185 lower-end β -values (22). Whereas M-values are more appropriate for analysing DNA 186 methylation, β -values are more suitable for displaying biological relevance, as they 187 correspond to the DNA methylation percentage of an individual CpG site. For this reason, M-188 values were converted back to β-values for all graphs and tables. Hierarchical clustering and 189 pathway analysis was analysed using the software, Partek (Genomic Suite, version 6.6, 190 Singapore). Due to the uneven CpG distributions between the two chemistries used on the 191 Infinium HumanMethylation450 BeadChip (Illumina) – Infinium I (135,501) and Infinium II 192 (350,076), we analysed these separately. Whole-genome DNA methylation was quantified using an Infinium HumanMethylation450 BeadChip (Illumina) according to the 193

194 manufacturer's guidelines and with the assistance of the Australian Genome Research

195 Facility (Melbourne, Australia).

- 196 The EpiTYPER (Sequenom) was used to validate the DNA methylation change of the
- 197 epidermal growth factor (*EGF*, cg12093976) and uracil-DNA glycosylase (*UNG*,
- 198 cg20982606) genes, and these assays were performed by GeneWorks (Melbourne,
- Australia). Experiments were conducted according to the manufacturer's procedures. Briefly,
- 200 1µg of DNA was bisulfite converted and PCR amplified using the following primer sets:
- 201 cg12093976: sense, aggaagagagAGTTATAATTTTTGGATTGGGGTTG and antisense,
- 202 cagtaatacgactcactatagggagaaggctTAATTTAATTTTATCTCCATCCTTCCAA; cg20982606:
- 203 sense, aggaagagGATTATTTTGGAGTTGAGGAGGTAG and antisense,
- 204 cagtaatacgactcactatagggagaaggctCCTTAAAAACCTATCCAAAAAACAA. Base-specific (C
- 205 and T) cleavage and *in vitro* transcription was performed, followed by mass spectrometry
- 206 (MALDI-TOF). Data was analysed using the EpiTYPER 1.2 software (Sequenom).
- 207
- 208 Gene and miRNA expression
- 209

210 The gene and miRNA expression of blood collected before and after initial and final treadmill 211 exercise testing was assessed by qPCR using TaqMan assays (Life Technologies). RNA 212 samples were reverse transcribed using the High Capacity Reverse Transcription Kit and the 213 TagMan MicroRNA Reverse Transcription Kit for gene and miRNAs, respectively, following 214 the manufacturer's procedures (Life Technologies, Australia). Experiments on 384-well 215 plates comprised of samples, endogenous positive and negative controls, all in duplicate 216 were run on the ViiA 7 Real-Time PCR System (Life Technologies, Australia). Standard 217 TaqMan assay procedures were followed and TaqMan assays used in the experiments are 218 outlined in Table 2. The cycle threshold (Ct) of genes and miRNAs were compared to 219 glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and the small-nucleolar RNA, *RNU44*, respectively. The relative expression was calculated using the $2^{-\Delta\Delta Ct}$ method (40) 220 221 and the results were graphically represented as fold change. The cycling conditions were as

follows: a hold at 50° for 2 min and at 95° for 20 sec, followed by 40 cycles at 95° for 1 sec and 60° for 20 sec. As a quality control, duplicate samples greater than one Ct apart we rerun before being included in the analysis. All qPCR experiments were performed by the same researcher.

226

227 Statistical analyses

228

229 Participant phenotypes were assessed for normality using Kolmogorov-Smirnov and 230 Shapiro-Wilks tests. Parametric data are expressed as mean ± standard deviation (SD) and 231 non-parametric data are expressed by median (interquartile range). Non-parametric data 232 was log-transformed before further analyses. While paired t-test was used to identify 233 statistically significant changes to phenotypes, repeated measures ANOVA were used to 234 show gene expression changes after four weeks of exercise training using the statistical 235 software, IBM SPSS Statistics (version 21.0). Genome-wide DNA methylation changes in 236 relation to CpG islands and gene regions were assessed using Chi² and Wilcoxon matched-237 pair signed ranked tests. DNA methylation changes caused by exercise training were 238 determined using two-way ANOVA after β -values were log-transformed. In order to control 239 for the discovery of false-positives, a false discovery rate (FDR) correction was applied to 240 the whole-genome DNA methylation *P*-values by converting *P*-values to *q*-values. Whole 241 genome data was analysed using the software, Partek Genomic Suite (version 6.6). Gene 242 and miRNA expression were analysed using a two-way repeated measures ANOVA. The 243 miRNA-mRNA targets were predicted using the miRWalk website (23), which includes 244 predictions from the most commonly used prediction databases, and pathway analysis was 245 conducted using Database for Annotation, Visualization and Integrated Discovery (DAVID, 246 version 6.7) (29, 30). Statistical significance was determined as P<0.05.

- 247
- 248 **Results**
- 249

250	Exercise adherence
251	
252	Of the 26 participants recruited into the intervention, 19 successfully completed the 12
253	exercise sessions. One participant withdrew due to a quadriceps musculoskeletal injury
254	during training, one had a previous injury that was exacerbated by the exercise, another
255	experienced an unrelated health concern and three stopped training for undisclosed
256	reasons. The exercise adherence was approximately 73%.
257	
258	
259	Exercise improves cardiorespiratory health and fitness
260	
261	Participants' phenotypes before and after exercise training are shown in Table 3. Exercise
262	training increased cardiorespiratory fitness ($\dot{V}O_{2max}$) by 2.1ml kg min ⁻¹ (4.7%, <i>P</i> =0.03).
263	Maximal running speed during $\dot{V}O_{2max}$ testing improved by 1km hr ⁻¹ (4%, <i>P</i> =0.001) and LDL
264	cholesterol was decreased after the intervention (-3.9%, P=0.047). Resting heart rate (-4%,
265	P=0.05), diastolic BP (-4.3%, P=0.06) and total cholesterol (-3.3%, P=0.06) were reduced,
266	while pulse pressure was increased (7.6%, P=0.07), all with borderline statistical
267	significance.
268	
269	Whole-genome leukocyte DNA methylation changes after exercise training
270	
271	We analysed whole-genome DNA methylation using the 450 BeadChip (Illumina) to
272	determine whether exercise altered the leukocyte methylome. The principle component
273	analysis demonstrated separation between paired subject DNA methylation from samples
274	taken before and after exercise training, indicating large changes to genome-wide DNA
275	methylation (data not shown). DNA methylation changes occurred across the leukocyte
276	genome in relation to gene regions and CpG islands (Figure 1). To gather an overview of

277 where these DNA methylation changes had occurred, we determined the average DNA 278 methylation before and after exercise in relation to CpG islands and location in relation to the 279 nearest gene. DNA methylation in relation to the nearest gene decreased in the promoter 280 and intron regions for Infinium I and II assays, but increased in the 3' untranslated regions 281 (UTR) for Inifinium I assay (Figure 2A, P<0.0001). There was a decrease in 5'UTR and exon 282 DNA methylation in Infinium II assay (Figure 2A, P<0.0001). CpG island DNA methylation 283 decreased in both Infinium I and II assays (Figure 2B, P<0.0001). Whereas Infinium II-284 assessed northern shore (N shore) DNA methylation deceased, southern shore (S shore) 285 and northern shelf (N shelf) DNA methylation increased (P<0.0001, Figure 2B). Although the 286 impact of specific regional DNA methylation changes are not completely understood, the 287 CpG island and promoter region demethylation indicate an increase in transcriptional activity 288 or gene un-silencing. Therefore, DNA methylation changes occurred across the leukocyte 289 methylome after exercise training.

290

291 CpG methylation after exercise training

292

Out of the 485,577 CpG sites quantified for DNA methylation status on the Infinium HumanMethylation450 BeadChip (Illumina), exercise induced DNA methylation changes, ranging from 0.1–62.8%, at 205,987 sites relating to 32,445 transcripts after FDR (q<0.05). While 81,576 CpG sites relating to 16,256 transcripts became more methylated (Figure 2C, q<0.05), 124,411 CpG sites corresponding to 27,263 transcripts were de-methylated after exercise (Figure 2D, q<0.05).

299

In the search for biologically relevant changes to CpG site methylation, we identified CpG sites with a change of \geq 5% after exercise ($q \leq 0.05$) (Figure 3). Due to the large number of CpG sites (n=2,909) with a difference of \geq 5%, we narrowed our focus to CpG sites (n=81) with a change of \geq 10% (q < 0.005, Table 4) and \geq 20% after exercise (q < 0.005, Table 5). Of the CpG sites that had large changes (\geq 20%) in DNA methylation after exercise, eight had

305	increased methylation and 11 had less methylation after exercise. Next, after applying a
306	stringent FDR (q <0.001) we used gene ontology to identify DNA methylation changes in
307	genes enriched for numerous cellular and molecular processes, including those involved in
308	metabolic activity, biological adhesion and antioxidant activity (Figure 4). Using pathway
309	analysis, we found that CpG sites altered by exercise (q <0.005) were those of genes related
310	to pathways important for cardiovascular physiology, including focal adhesion, calcium
311	signalling and MAPK signalling (q <0.05, Table 6). Therefore, differentially methylated CpG
312	sites after exercise are enriched for pathways crucial for cardiovascular health.
313	
314	DNA methylation validation
315	
316	DNA methylation within a gene promoter region is typically associated with decreased gene
317	expression, thus we focused on CpG sites with the largest and most statistically significant
318	DNA methylation changes within gene promoter regions ($\geq 10\%$ and $P < 1.0 \times 10^{-5}$). To that
319	end, we analysed CpG sites within the EGF (cg12093976) and uracil-DNA glycosylase
320	(UNG) (cg20982606) promoter regions using the EpiTYPER (Sequenom). We were unable
321	to obtain meaningful data, due to the acquisition of peaks from additional fragments other
322	than the fragment of interest.
323	
324	Exercise-induced gene and miRNA expression
325	
326	We then aimed to identify whether a change in DNA methylation caused by exercise would
327	alter gene mRNA expression. We quantified the expression of genes that had a DNA
328	methylation change (>10%) that were most statistically significant (q <0.001) within the
329	promoter region or gene body (Figure 5A–F). We also quantified mature miR-21 and miR-

330 210 as their genes had a modest (1.3–4.2%) change in DNA methylation at multiple regions

- across the gene (q<0.05, Table 7). These miRNAs are inversely correlated to
- 332 cardiorespiratory fitness and implicated in cardiovascular disease (11).

334 Gene expression changes after the initial VO_{2max} test, at rest after exercise training and after 335 the second \dot{VO}_{2max} test (after exercise training) are displayed in Figure 5. We were unable to 336 successfully amplify insulin-like family member 3 (IGFL3) mRNA, suggesting that this gene 337 is lowly expressed in leukocytes. Genes fitted into one of five categories: specifically. 1) 338 genes that were responsive after acute exercise at the beginning of exercise training only 339 (cell division cycle 20, CDC20); 2) genes that responded to acute exercise before and after 340 exercise training (isthmin 1, ISM1); 3) genes that responded to acute exercise before and 341 after exercise training and that had altered gene expression at rest after exercise training 342 (EGF, UNG and miR-210); 4) those that were only altered at rest after exercise training 343 (miR-21); and finally, 5) those that were unchanged by acute or chronic exercise 344 (chromobox homolog 7, CBX7 and synuclein α interacting protein, SNCAIP, data not 345 shown). Interestingly, the demethylated (11.6% and 12.9%, respectively) EGF and UNG 346 promoter was accompanied by a significant decrease and increase in mRNA expression, 347 respectively (relative expression ± SEM, 10.75±1.68 to 8.25±0.95, P<0.05 and 1.72±0.14 to 348 2.12±0.15, P=0.05). These data suggest exercise training-induced DNA methylation 349 changes within genes (including miRNA genes) cause changes to mRNA and mature 350 miRNA levels (Figure 6).

351

352 *miRNA-mRNA targets*

Finally, we used miRWalk,(23) to predict mRNA targets of miR-21 and miR-210. We then used DAVID (29, 30) to identify pathways and diseases associated with mRNA molecules targeted by miR-21 and miR-210. Notably, miR-21 mRNA targets were enriched for pathways including MAPK signalling, Toll-like receptor signalling, apoptosis and fatty acid metabolism. Moreover, mRNA targets of miR-210 were enriched for genes relating to calcium signalling, B-cell receptor signalling and TGF-beta signalling pathways. While the mRNA targets of miR-21 were from genes associated with diseases, such as ischemic heart

disease (n=6), nephropathy (n=5) and coronary atherosclerosis (n=11), miR-210 mRNA

targets were from genes associated with focal dystonia (n=2). Collectively, these data

362 suggest a role for miR-21 and miR-210 in the positive cardiovascular adaptations associated

363 with short-term intense exercise training.

364

365 **Discussion**

366

367 Our study is the first, to our knowledge, to show genome-wide leukocyte DNA methylation 368 changes caused by short-term exercise in healthy young men. We found global and specific 369 leukocyte DNA methylation changes with concomitant changes to mRNA and miRNA 370 expression, in addition to favourable cardiovascular health adaptations after four weeks of 371 exercise training. Specifically, we observed DNA methylation changes to CpG islands and 372 gene promoter and gene bodies. We showed exercise training-induced demethylation of 373 cg12093976 and cg20982606, which decreased and increased the mRNA expression of the 374 EGF and UNG genes, respectively. Furthermore, exercise training-induced leukocyte DNA 375 methylation changes across miRNA genes (MIR21 and MIR210) known to influence 376 cardiovascular physiology (20, 60), subsequently influencing their mature miRNA 377 expression.

378

379 Sprint interval training causes cardiopulmonary and metabolic adaptations similar to that of 380 traditional long duration aerobic training, but demands dramatically less time commitment 381 (10). Given a common barrier to engagement in exercise is lack of time, sprint interval 382 training may be an attractive alternative exercise training regime that improves health and 383 fitness. We demonstrated that four weeks of sprint interval training increased $\dot{V}O_{2max}$ and 384 reduced total and LDL cholesterol in healthy young men, thereby improving cardiorespiratory 385 fitness and blood lipid profile. We are, to our knowledge, the first to demonstrate that four 386 weeks of sprint interval training can significantly decrease LDL cholesterol in young men. 387 Although some have demonstrated eight weeks of sprint interval training, in the form of

running, is effective at reducing LDL and total cholesterol (56), other shorter (six week) sprint
interval training interventions have not reduced LDL cholesterol (27). Considering the role of
LDL cholesterol in blood vessel health (13, 15), sprint interval training may be a cheap and
effective short-term strategy to promote a favourable blood lipid profile.

392

393 Global leukocyte DNA methylation changes seem to be influenced by physical activity and 394 exercise training but data is equivocal. Although global leukocyte DNA methylation is 395 increased in middle-aged individuals performing moderate (65) or high amounts (63) of 396 physical activity in some studies, in others, global methylation is inversely (9, 41) related to 397 physical activity or unrelated (67). The DNA methylation of exon 1 of the PYCARD gene was 398 increased in older adults who engaged in six months of moderate intensity exercise, to 399 levels comparable to that of their younger peers (47). We are the first to analyse the 400 exercise training-induced changes to genome-wide leukocyte DNA methylation in healthy 401 subjects. Notably, we found a subtle decrease in leukocyte global methylation, consistent 402 with previous findings (9, 41). These data may indicate wide-spread transcriptional changes 403 to leukocytes. In particular, we found CpG island and gene body and promoter regions were, 404 on average, demethylated after exercise training, indicating the modulation of transcriptional 405 activity.

406

407 The exercise-induced changes to skeletal myocyte (49) and adipocyte (55) genome-wide 408 DNA methylation have been analysed previously. Strikingly, the exercise training-induced 409 changes to DNA methylation found in our study included CpG sites in genes involved in 410 pathways similar to that previously shown to be affected in skeletal myocytes after six months of exercise training (49). For example, six months of moderate intensity exercise 411 412 altered skeletal muscle DNA methylation in genes related to MAPK signalling, progesterone-413 mediated oocyte maturation, Wnt signalling, Melanogenesis, hedgehog signalling and 414 calcium signalling pathway (49) – pathways also modulated in leukocytes of individuals from 415 our study (Table 6). Furthermore, some of the mentioned pathways regulated by DNA

416 methylation changes caused by exercise may also be governed by miRNA-mediated mRNA
417 regulation, as indicated by our miRNA pathway analysis.

418

419 Whereas skeletal myocytes and adipocyte DNA methylation changes are predominantly 420 indicative of metabolic transcriptional changes caused by exercise, leukocytes changes 421 could be used as biomarkers of systemic changes to health and fitness. Leukocytes circulate 422 through the body and their gene expression mimics that of their internal and external 423 environments, making them useful biomarkers (37). Likewise, the epigenetic landscapes are 424 malleable to the internal (biological) and external environments (such as physical exercise) 425 (7, 28). Therefore, leukocyte changes to epigenetic modifications could be relevant 426 biomarkers of phenotype changes and in this case, biomarkers of the changes in 427 cardiorespiratory fitness and accompanying health and performance adaptations (total and 428 LDL cholesterol, and maximal running speed). Leukocytes are also implicated in the 429 pathogenesis of atherosclerosis (58) and the DNA methylation changes observed in our 430 study provide mechanistic insights into how exercise attenuates the risk of atherosclerosis. 431

432 Interestingly, exercise training caused DNA methylation changes with paralleled miRNA 433 changes. DNA methylation can down-regulate gene expression by working in concert with 434 other epigenetic modifications (e.g. Histone protein methylation and acetylation) and DNA 435 binding proteins to compact chromatin and, in turn, inhibit transcription factor binding (17, 436 32, 33, 68). We identified that DNA methylation changes to *MIR21* and *MIR210* genes 437 influenced the mature miR-21 and miR-210 expression. The microRNAs miR-21 and miR-438 210 are ubiquitously expressed hypoxamirs involved in cardiovascular diseases, 439 inflammation and angiogenesis (14, 61). Indeed, miR-21 is up-regulated in atherosclerotic 440 plaques (52) and acute coronary syndromes (64). The increased miR-21 expression, 441 however, may be a protective response to the disease and acute coronary damage. For 442 example, up-regulated miR-21 was protective against ischemia-induced cell apoptosis by 443 down-regulating programmed cell death 4 (PDCD4) mRNA after myocardial infarction in rats

444 (21). Previous in vitro experiments showed miR-21 attenuates vascular smooth muscle cell 445 apoptosis caused by reactive oxygen species (hydrogen peroxide, H₂O₂) through down-446 regulation of programmed cell death 4 (PDCD4) (38). Additionally, human endothelial cell 447 miR-21 was augmented by shear stress and lead to decreased phosphatase and tensin 448 homolog (*PTEN*)-mediated apoptosis, facilitated endothelial nitric oxide synthase (eNOS) 449 phosphorylation and nitric oxide (NO) production (62); an effect exerted by exercise training 450 (26, 36). miR-21 is particularly responsive to exercise training as it is up-regulated after 451 chronic exercise training in serum (4), spinal cord (39), cardiac (42) and skeletal myocytes 452 (2) in mammals. Thus, exercise may maintain vascular integrity and prevent vascular 453 disease through up-regulating miR-21 expression. This, in turn, contributes to modulation of 454 miR-21 downstream mRNA targets involved in the eNOS pathway, oxidative stress and 455 apoptosis.

456

457 miR-210 is induced by hypoxia and is up-regulated in numerous cardiovascular diseases, 458 especially those associated with ischemia (20). Similar to miR-21, miR-210 is up-regulated 459 in atherosclerotic plaques (52) and myocardial infarction (8), possibly by oxidative damage 460 and cellular senescence. Reactive oxygen species (ROS) up-regulates miR-210 through 461 phosphorylation of AKT, ERK1/2 and platelet-derived growth factor receptor β (34). miR-210 462 is also known to facilitate ROS production and to induce double-stranded DNA breaks in 463 human cells undergoing replicative senescent (24). Interestingly, serum miR-21 and -210 were shown to be inversely correlated to $\dot{V}O_{2max}$ in a cohort of 100 healthy subjects (11). Our 464 465 data also suggests miR-210 may be indicative of VO_{2max}, as our participants exhibited 466 elevated VO_{2max} with decreased leukocyte miR-210 expression after exercise training. We 467 showed predicted targets of miR-21 are particularly enriched for mRNA from genes 468 associated with cardiovascular pathology (ischemic heart disease and coronary 469 atherosclerosis) that supports the concept but warrants further study. The impact of these 470 exercise-induced miRNA changes on genes and biological implications is also left for future

471 research. Collectively, it is likely that miRNAs, miR-21 and miR-210, are exercise-responsive
472 miRNAs that underpin the salubrious adaptations associated with exercise training.

473

474 Demethylation of EGF and UNG gene promoter regions attenuated and augmented the 475 mRNA levels, respectively. Promoter demethylation is generally associated with gene 476 activation (32), but not exclusively, as promoter demethylation does not always increase 477 gene expression (12, 35, 45). Alternatively, the observed decrease to EGF mRNA 478 expression could be due to other means of transcriptional regulation such as histone 479 modifications, small non-coding RNA molecules or transcription factor activity. Importantly, 480 EGF is a ligand for the epidermal growth factor-receptor (EGFR), which is hyperactive in 481 atherosclerosis (43). The increased EGFR activity by elevated EGF may facilitate increased 482 inflammation and blood vessel damage, leading to atherosclerosis (43). Acute exercise 483 training increases peripheral but not central artery distensibility (53), which is an effect 484 established after chronic exercise training (54). Moreover, exercise training increases and 485 decreases muscle microvascular density and arterial stiffness, respectively (16). Therefore, 486 the present study indicates that the attenuation of the EGFR-ligand, EGF, expression by 487 promoter DNA methylation changes caused by exercise training could benefit vascular 488 health. Similarly, the observed DNA methylation and gene expression change of UNG could 489 serve as a mechanism for the demethylation of most genes analysed in the present study. 490 Active DNA demethylation occurs via the hydroxylation of 5-methylcytosine to 5-491 hydroxymethylcytosine by ten-eleven translocation (TET) proteins (1-3), followed by the 492 active base-excision repair initiated by UNG (51, 59). Together, these data demonstrate the 493 complex regulation of gene expression; where DNA methylation can directly regulate mRNA 494 levels or, indirectly modulate gene expression through the modulation of miRNA expression subsequently influencing gene expression and cardiovascular phenotypes. 495 496

Although not measured, the numerous changes to DNA methylation observed in the present
study could be a result of the altered DNA methyltransferase enzymes (DNMT1, 3A and 3B).

499 While DNMT1 is responsible for maintaining DNA methylation during mitosis, DNMT3A and -500 3B are responsible for de novo methylation changes (6). It is possible that exercise training-501 induced changes to activity of DNMT enzymes could have impacted the leukocyte 502 methylome as there expression was altered in the hippocampi of mice after seven days of 503 voluntary wheel running (1). Passive loss of DNA methylation during cell division is an 504 alternate explanation for the DNA methylation changes observed in our study. This is, 505 however, unlikely because of the short duration of study intervention period. The DNA 506 methylation changes (up to 62.8%) caused by exercise training in our study could be 507 explained by the intensity of exercise training. Previous work (5) revealed skeletal myocyte 508 global and metabolic gene (PPARGC1A, TFAM, PPARD, MEF2A) DNA demethylation is 509 intensity dependent, where higher intensity exercise elicited greater DNA demethylation. 510 Moreover, the acute increase in reactive oxygen species and other metabolites may 511 influence TET proteins and histone acetyltransferase and deacetylase activity to alter DNA 512 methylation (50), but this remains to experimentally demonstrated.

513

514 Our study has some limitations. Blood leukocyte counts were not quantified before and after 515 exercise training and it is possible that shifts in leukocyte subsets could be responsible for 516 the change in leukocyte DNA methylation observed in our study. This is, however, unlikely 517 as we quantified leukocyte DNA methylation from resting blood samples unaffected by the 518 leukocytosis associated with acute exercise. Furthermore, there is no evidence to suggest 519 leukocyte subsets change with chronic exercise training and a similar high-intensity exercise 520 training study did not alter leukocyte subsets (48). Whist we did not include any experimental 521 controls (who did not participate in any exercise for four weeks), data from our laboratory 522 indicates that genome-wide leukocyte DNA methylation is stable over the course of eight 523 weeks, as no changes were observed in a cohort of eight young men not engaging in any 524 high-intensity aerobic exercise (unpublished data). We could not successfully validate the 525 450K DNA methylation results using EpiTYPER due to issues with the genomic regions 526 being analysed. Exercise training was not performed in a laboratory setting and participants

527	exercise intensity was not directly monitored during the course of the intervention. Lastly, we
528	cannot rule-out potential changes to participants' diet caused DNA methylation changes.
529	
530	In conclusion, we have demonstrated that four weeks (249 min) of exercise training
531	significantly alters the leukocyte methylome. These DNA methylation changes influenced
532	miRNA and mRNA levels, improved cardiorespiratory fitness and enhanced the blood lipid
533	profile of healthy, young men. These DNA methylation changes could be relevant
534	biomarkers for monitoring adherence to exercise interventions and demonstrates a dynamic
535	role for epigenetic regulation in the change to cardiovascular health and fitness caused by
536	short-term exercise training.
537	
538	Acknowledgements
539	We wish to express our gratitude to Dr Jack Harvey for his consultation on the statistical
540	analyses used in the manuscript.
541	
542	Grants
543	This work was supported by the Federation University Australia 'Self-sustaining Regions
544	Research and Innovation Initiative', an Australian Government Collaborative Research
545	Network (CRN). Joshua Denham is supported by an Australian Post-graduate Award
546	scholarship. Dr Marques is supported by NHMRC (APP1052659) and National Heart
547	Foundation (PF12M6785) co-shared Early Career Fellowships. Professor Charchar is
548	supported by the Lew Carty Charitable fund and NHRMC.
549	
550	Disclosures
551	None.

552 **References**

- 553
- 554 1. Abel JL, and Rissman EF. Running-induced epigenetic and gene 555 expression changes in the adolescent brain. Int J Dev Neurosci 31: 382-390, 2013. 556 2. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, and 557 Yoshikawa T. The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal 558 muscle in response to physical activity. Am J Physiol Endocrinol Metab 298: E799-559 806, 2010. 560 Babraj JA, Vollaard NB, Keast C, Guppy FM, Cottrell G, and Timmons 3. 561 **JA**. Extremely short duration high intensity interval training substantially improves 562 insulin action in young healthy males. BMC Endocr Disord 9: 3, 2009. 563 4. Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang 564 TJ, and Chan SY. Dynamic regulation of circulating microRNA during acute 565 exhaustive exercise and sustained aerobic exercise training. J Physiol 589: 3983-566 3994, 2011. Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, 567 5. 568 Krook A, O'Gorman DJ, and Zierath JR. Acute exercise remodels promoter 569 methylation in human skeletal muscle. Cell Metab 15: 405-411, 2012. 570 6. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet 9: 571 2395-2402, 2000. 572 7. Bollati V, and Baccarelli A. Environmental epigenetics. Heredity (Edinb) 573 105: 105-112, 2010. 574 8. Bostjancic E, Zidar N, and Glavac D. MicroRNA microarray expression 575 profiling in human myocardial infarction. Dis Markers 27: 255-268, 2009. 576 9. Bryan AD, Magnan RE, Hooper AE, Harlaar N, and Hutchison KE. 577 Physical activity and differential methylation of breast cancer genes assayed from 578 saliva: a preliminary investigation. Ann Behav Med 45: 89-98, 2013.

579 10. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald

580 MJ, McGee SL, and Gibala MJ. Similar metabolic adaptations during exercise after

581 low volume sprint interval and traditional endurance training in humans. *J Physiol*

582 586: 151-160, 2008.

- 583 11. Bye A, Rosjo H, Aspenes ST, Condorelli G, Omland T, and Wisloff U.
- 584 Circulating microRNAs and aerobic fitness--the HUNT-Study. *PLoS One* 8: e57496,
- 585 2013.
- 586 12. Calvanese V, Fernandez AF, Urdinguio RG, Suarez-Alvarez B, Mangas C,
- 587 Perez-Garcia V, Bueno C, Montes R, Ramos-Mejia V, Martinez-Camblor P,

588 Ferrero C, Assenov Y, Bock C, Menendez P, Carrera AC, Lopez-Larrea C, and

- 589 Fraga MF. A promoter DNA demethylation landscape of human hematopoietic
- 590 differentiation. *Nucleic Acids Res* 40: 116-131, 2012.
- 591 13. Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Boren J,
- 592 Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P,
- 593 Masana L, Nordestgaard BG, Ray KK, Reiner Z, Taskinen MR, Tokgozoglu L,

594 Tybjaerg-Hansen A, Watts GF, and European Atherosclerosis Society

- 595 **Consensus P**. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol
- 596 in patients at high risk of cardiovascular disease: evidence and guidance for
- 597 management. *Eur Heart J* 32: 1345-1361, 2011.
- 598 14. Chen KC, and Juo SH. MicroRNAs in atherosclerosis. *Kaohsiung J Med Sci*
- 59928: 631-640, 2012.
- 600 15. **Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, Blackwell**
- 601 L, Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, and Baigent C.
- 602 The effects of lowering LDL cholesterol with statin therapy in people at low risk of
- vascular disease: meta-analysis of individual data from 27 randomised trials. *Lancet*380: 581-590, 2012.
- 605 16. Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker
- 606 **TA, Tipton KD, and Wagenmakers AJ**. Sprint interval and endurance training are

- 607 equally effective in increasing muscle microvascular density and eNOS content in
- 608 sedentary males. *J Physiol* 591: 641-656, 2013.
- 609 17. Comb M, and Goodman HM. CpG methylation inhibits proenkephalin gene
- 610 expression and binding of the transcription factor AP-2. *Nucleic Acids Res* 18: 3975-
- 611 3982, 1990.
- 612 18. Dangardt FJ, McKenna WJ, Luscher TF, and Deanfield JE. Exercise:
- 613 friend or foe? *Nat Rev Cardiol* 10: 495-507, 2013.
- 614 19. **Denham J, Marques FZ, O'Brien BJ, and Charchar FJ**. Exercise: putting
- action into our epigenome. *Sports Med* 44: 189-209, 2014.
- 616 20. Devlin C, Greco S, Martelli F, and Ivan M. miR-210: More than a silent
- 617 player in hypoxia. *IUBMB Life* 63: 94-100, 2011.
- 618 21. Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin
- 619 **ES, and Zhang C**. MicroRNA expression signature and the role of microRNA-21 in
- 620 the early phase of acute myocardial infarction. *J Biol Chem* 284: 29514-29525, 2009.

621 22. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, and Lin SM.

- 622 Comparison of Beta-value and M-value methods for quantifying methylation levels by
- 623 microarray analysis. *BMC Bioinformatics* 11: 587, 2010.
- 624 23. Dweep H, Sticht C, Pandey P, and Gretz N. miRWalk--database: prediction
- of possible miRNA binding sites by "walking" the genes of three genomes. *J Biomed Inform* 44: 839-847, 2011.
- 627 24. Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, Nappi TC,

628 Comegna M, Romano S, Salvatore G, Santoro M, and Cimino F. A set of miRNAs

- 629 participates in the cellular senescence program in human diploid fibroblasts. Cell
- 630 Death Differ 19: 713-721, 2012.
- 631 25. Gist NH, Fedewa MV, Dishman RK, and Cureton KJ. Sprint interval training
 632 effects on aerobic capacity: a systematic review and meta-analysis. *Sports Med* 44:
- 633 269-279, 2014.

634 26. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y,

635 Gielen S, Thiele H, Gummert JF, Mohr FW, and Schuler G. Regular physical

- 636 activity improves endothelial function in patients with coronary artery disease by
- 637 increasing phosphorylation of endothelial nitric oxide synthase. *Circulation* 107:
- 638 **3152-3158**, 2003.
- 639 27. Hazell TJ, Hamilton CD, Olver TD, and Lemon PW. Run sprint interval
- training induces fat loss in women. *Applied Physiology, Nutrition, and Metabolism*2014.
- 642 28. **Heyn H, and Esteller M**. DNA methylation profiling in the clinic: applications
- 643 and challenges. *Nat Rev Genet* 13: 679-692, 2012.
- 644 29. Huang da W, Sherman BT, and Lempicki RA. Bioinformatics enrichment
- tools: paths toward the comprehensive functional analysis of large gene lists. *Nucleic*
- 646 *Acids Res* 37: 1-13, 2009.
- 647 30. Huang da W, Sherman BT, and Lempicki RA. Systematic and integrative
 648 analysis of large gene lists using DAVID bioinformatics resources. *Nat Protoc* 4: 44649 57, 2009.
- density of men. *Br J Nutr* 40: 497-504, 1978.
- 652 32. **Jones PA**. Functions of DNA methylation: islands, start sites, gene bodies
- 653 and beyond. *Nat Rev Genet* 13: 484-492, 2012.
- 654 33. Kass SU, Landsberger N, and Wolffe AP. DNA methylation directs a time-
- dependent repression of transcription initiation. *Curr Biol* 7: 157-165, 1997.
- 656 34. Kim JH, Park SG, Song SY, Kim JK, and Sung JH. Reactive oxygen
- 657 species-responsive miR-210 regulates proliferation and migration of adipose-derived
- 658 stem cells via PTPN2. *Cell Death Dis* 4: e588, 2013.
- 659 35. Klug M, Heinz S, Gebhard C, Schwarzfischer L, Krause SW, Andreesen
- 660 **R, and Rehli M**. Active DNA demethylation in human postmitotic cells correlates with

- activating histone modifications, but not transcription levels. *Genome Biol* 11: R63,
- 662 2010.
- 663 36. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E,
- 664 Bohm M, and Nickenig G. Physical training increases endothelial progenitor cells,
- 665 inhibits neointima formation, and enhances angiogenesis. *Circulation* 109: 220-226,
- 666 2004.
- 667 37. Liew CC, Ma J, Tang HC, Zheng R, and Dempsey AA. The peripheral blood
 668 transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J
- 669 *Lab Clin Med* 147: 126-132, 2006.
- 670 38. Lin Y, Liu X, Cheng Y, Yang J, Huo Y, and Zhang C. Involvement of
- 671 MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury
- response in vascular smooth muscle cells. *J Biol Chem* 284: 7903-7913, 2009.
- 673 39. Liu G, Detloff MR, Miller KN, Santi L, and Houle JD. Exercise modulates
- 674 microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. *Exp*675 *Neurol* 233: 447-456, 2012.
- 40. Livak KJ, and Schmittgen TD. Analysis of relative gene expression data
 using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25:
 402-408, 2001.
- 41. Luttropp K, Nordfors L, Ekstrom TJ, and Lind L. Physical activity is
- 680 associated with decreased global DNA methylation in Swedish older individuals.
- 681 Scand J Clin Lab Invest 73: 184-185, 2013.
- 682 42. Ma Z, Qi J, Meng S, Wen B, and Zhang J. Swimming exercise training-
- 683 induced left ventricular hypertrophy involves microRNAs and synergistic regulation of
- the PI3K/AKT/mTOR signaling pathway. *Eur J Appl Physiol* 113: 2473-2486, 2013.
- Makki N, Thiel KW, and Miller FJ, Jr. The epidermal growth factor receptor
 and its ligands in cardiovascular disease. *Int J Mol Sci* 14: 20597-20613, 2013.

- 44. Maksimovic J, Gordon L, and Oshlack A. SWAN: Subset-quantile within
 array normalization for illumina infinium HumanMethylation450 BeadChips. *Genome Biol* 13: R44, 2012.
- 690 45. Martin-Subero JI, Kreuz M, Bibikova M, Bentink S, Ammerpohl O,
- 691 Wickham-Garcia E, Rosolowski M, Richter J, Lopez-Serra L, Ballestar E, Berger
- 692 H, Agirre X, Bernd HW, Calvanese V, Cogliatti SB, Drexler HG, Fan JB, Fraga
- 693 MF, Hansmann ML, Hummel M, Klapper W, Korn B, Kuppers R, Macleod RA,
- Moller P, Ott G, Pott C, Prosper F, Rosenwald A, Schwaenen C, Schubeler D,
- 695 Seifert M, Sturzenhofecker B, Weber M, Wessendorf S, Loeffler M, Trumper L,
- 696 Stein H, Spang R, Esteller M, Barker D, Hasenclever D, Siebert R, and
- 697 Molecular Mechanisms in Malignant Lymphomas Network Project of the
- 698 **Deutsche K**. New insights into the biology and origin of mature aggressive B-cell
- 699 lymphomas by combined epigenomic, genomic, and transcriptional profiling. *Blood*
- 700 113: 2488-2497, 2009.
- 701 46. Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM,
- 702 Abete I, Zulet MA, and Martinez JA. A dual epigenomic approach for the search of
- 703 obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB
- 704 *J* 25: 1378-1389, 2011.
- 705 47. Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H,
- Higuchi K, Itano N, Shiohara M, Oh T, and Taniguchi S. Exercise effects on
- methylation of ASC gene. Int J Sports Med 31: 671-675, 2010.
- 70848.Ndon JA, Snyder AC, Foster C, and Wehrenberg WB. Effects of chronic
- intense exercise training on the leukocyte response to acute exercise. *Int J Sports*
- 710 *Med* 13: 176-182, 1992.
- 711 49. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang
- 712 S, Parikh H, Wessman Y, Weishaupt H, Attema J, Abels M, Wierup N, Almgren
- 713 **P, Jansson PA, Ronn T, Hansson O, Eriksson KF, Groop L, and Ling C**. Impact

- of an exercise intervention on DNA methylation in skeletal muscle from first-degree
- relatives of patients with type 2 diabetes. *Diabetes* 61: 3322-3332, 2012.
- 716 50. Pareja-Galeano H, Sanchis-Gomar F, and Garcia-Gimenez JL. Physical
 717 exercise and epigenetic modulation: elucidating intricate mechanisms. *Sports Med*718 44: 429-436, 2014.
- 51. **Pastor WA, Aravind L, and Rao A**. TETonic shift: biological roles of TET
- proteins in DNA demethylation and transcription. *Nat Rev Mol Cell Biol* 14: 341-356,
 2013.
- 722 52. Raitoharju E, Lyytikainen LP, Levula M, Oksala N, Mennander A, Tarkka
- 723 M, Klopp N, Illig T, Kahonen M, Karhunen PJ, Laaksonen R, and Lehtimaki T.
- miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human
- atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219: 211-
- 726 217, 2011.
- 727 53. Rakobowchuk M, Stuckey MI, Millar PJ, Gurr L, and Macdonald MJ.
- 728 Effect of acute sprint interval exercise on central and peripheral artery distensibility in
- young healthy males. *Eur J Appl Physiol* 105: 787-795, 2009.
- 730 54. Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ,
- 731 and MacDonald MJ. Sprint interval and traditional endurance training induce similar
- improvements in peripheral arterial stiffness and flow-mediated dilation in healthy
- humans. *Am J Physiol Regul Integr Comp Physiol* 295: R236-242, 2008.
- 734 55. Ronn T, Volkov P, Davegardh C, Dayeh T, Hall E, Olsson AH, Nilsson E,
- 735 Tornberg A, Dekker Nitert M, Eriksson KF, Jones HA, Groop L, and Ling C. A six
- months exercise intervention influences the genome-wide DNA methylation pattern in
- human adipose tissue. *PLoS Genet* 9: e1003572, 2013.
- 56. Sandvei M, Jeppesen PB, Stoen L, Litleskare S, Johansen E, Stensrud T,
- 739 Enoksen E, Hautala A, Martinmaki K, Kinnunen H, Tulppo M, and Jensen J.
- 740 Sprint interval running increases insulin sensitivity in young healthy subjects. *Arch*
- 741 *Physiol Biochem* 118: 139-147, 2012.

- 57. Sloth M, Sloth D, Overgaard K, and Dalgas U. Effects of sprint interval
- training on VO2max and aerobic exercise performance: A systematic review and
- meta-analysis. *Scand J Med Sci Sports* 23: e341-352, 2013.
- 58. Swirski FK, and Nahrendorf M. Leukocyte behavior in atherosclerosis,
- myocardial infarction, and heart failure. *Science* 339: 161-166, 2013.
- 747 59. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y,
- 748 Agarwal S, Iyer LM, Liu DR, Aravind L, and Rao A. Conversion of 5-
- 749 methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner
- 750 TET1. Science 324: 930-935, 2009.
- 751 60. Urbich C, Kuehbacher A, and Dimmeler S. Role of microRNAs in vascular
- diseases, inflammation, and angiogenesis. *Cardiovasc Res* 79: 581-588, 2008.
- 753 61. Weber C, Schober A, and Zernecke A. MicroRNAs in arterial remodelling,
- inflammation and atherosclerosis. *Curr Drug Targets* 11: 950-956, 2010.
- 755 62. Weber M, Baker MB, Moore JP, and Searles CD. MiR-21 is induced in
- endothelial cells by shear stress and modulates apoptosis and eNOS activity.
- 757 Biochem Biophys Res Commun 393: 643-648, 2010.
- 758 63. White AJ, Sandler DP, Bolick SC, Xu Z, Taylor JA, and DeRoo LA.
- Recreational and household physical activity at different time points and DNA global
- 760 methylation. *Eur J Cancer* 49: 2199-2206, 2013.

761 64. Yao R, Ma Y, Du Y, Liao M, Li H, Liang W, Yuan J, Ma Z, Yu X, Xiao H,

- 762 and Liao Y. The altered expression of inflammation-related microRNAs with
- 763 microRNA-155 expression correlates with Th17 differentiation in patients with acute
- coronary syndrome. *Cell Mol Immunol* 8: 486-495, 2011.
- 765 65. Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K,
- 766 Vishwanatha JK, Morabia A, and Santella RM. Physical activity and global
- genomic DNA methylation in a cancer-free population. *Epigenetics* 6: 293-299, 2011.
- 768 66. Zhang FF, Morabia A, Carroll J, Gonzalez K, Fulda K, Kaur M,
- 769 Vishwanatha JK, Santella RM, and Cardarelli R. Dietary patterns are associated

770	with levels of global genomic DNA methylation in a cancer-free population. J Nutr
771	141: 1165-1171, 2011.
772	67. Zhang FF, Santella RM, Wolff M, Kappil MA, Markowitz SB, and Morabia
773	A. White blood cell global methylation and IL-6 promoter methylation in association
774	with diet and lifestyle risk factors in a cancer-free population. Epigenetics 7: 606-614,
775	2012.
776	68. Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis
777	DJ, Patel DJ, Allis CD, Cunningham JM, and Jane SM. PRMT5-mediated
778	methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA
779	methylation in gene silencing. Nat Struct Mol Biol 16: 304-311, 2009.
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	

798 Figure Captions

- Figure 1 DNA methylation changes in relation to CpG islands (A and B) and the
- 800 nearest gene (C and D), respectively. Data are from Chi² tests.

- 802 Figure 2. Whole-genome DNA methylation changes caused by exercise. Genome
- 803 wide DNA methylation across all 485,577 CpG sites analysed on the Infinium
- 804 HumanMethylation450 BeadChip (Illumina, Australia) were compared before and
- after exercise in relation to A) nearest gene and B) CpG island. Data are from
- 806 Wilcoxon matched-pair signed ranked test and are expressed as mean ± SEM.
- 807 Number of CpG sites with C) increased methylation and D) decreased methylation,
- 808 with magnitude of DNA methylation change after exercise (q<0.05).
- Legend: ****P*<0.0001; N: northern; S: southern; 3'UTR: 3-prime un-translated region;
- 5'UTR: 5-prime un-translated region; Promoter: gene promoter region (1–1500 bases
- 811 upstream of the transcription start site).
- 812
- Figure 3. Hierarchical clustering of CpG methylation before and after exercisetraining.
- o14 training.
- 815 The CpG methylation status is indicated by green (low methylation) and red (high
- 816 methylation) in 12 subjects pre (grey bar) and post (blue bar) exercise training. Each
- branch of the array tree on the left of the grey and blue bars are subjects and are
- 818 separated before and after the exercise training. The array tree at the top of the
- 819 hierarchical cluster indicates clusters of CpG sites modified by exercise.
- B20 Data are from CpG sites with a fold-change of >5% (q<0.001).
- 821
- Figure 4. Gene ontology for genes with CpG DNA methylation changes after
- 823 exercise. Gene ontology is based on CpG sites with altered DNA methylation
- 824 (q<0.001) after exercise training. Gene ontology enrichment scores are given and

- organised by A) biological processes; B) cellular components; and C) molecular
- 826 functions.
- 827
- Figure 5. Gene and miRNA expression changes caused by exercise. Data are from
- 829 two-way repeated-measures ANOVA and are expressed as fold change of genes
- and mature miRNA expression (mean ± SEM). A significant difference between basal
- and other time-points is indicated by asterisks.
- 832 Legend: **P*<0.05; ***P*<0.01; ****P*<0.001 vs basal.
- 833
- Figure 6. Schematic of DNA methylation regulation on cardiovascular physiology.
- 835 Exercise training, in the form of sprint interval training (SIT), influences the leukocyte
- 836 DNA methylome. This, in turn, modulates the expression (mRNA levels) of protein-
- coding genes (EGF and UNG) and also microRNAs (miR-21 and -210). MicroRNAs,
- miR-21 and miR-210 would subsequently regulate other protein-coding genes to
- 839 inevitably influence cardiovascular physiology and enhance cardiovascular health
- and performance.
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852

Tables

Table 1. Description of the four week exercise program.

Week	Session #	Training load*	Training sprint time (min)	Total session time (min)
1	1	3 sprints	1.3	9.5
	2	4 sprints	2	14
	3	5 sprints	2.5	18.5
2	4	4 sprints	2	14
	5	5 sprints	2.5	18.5
	6	6 sprints	3	23
3	7	5 sprints	2.5	18.5
	8	6 sprints	3	23
	9	7 sprints	3.5	27.5
4	10	6 sprints	3	23
	11	7 sprints	3.5	27.5
	12	8 sprints	4	32
-	Total Time	66	33	249

⁸⁵⁶ Legend: # number; * all sprints were completed at maximum intensity and separated

⁸⁵⁷ by four minutes of passive recovery.

866 Table 2. TaqMan Assay information.

	Gene/microRNA	TaqMan ID
	CBX7	Hs00545603_m1
	CDC20	Hs00426680_mH
	EGF	Hs01099999_m1
	GAPDH (mRNA reference gene)	Hs02786624_g1
	IGFL3	Hs00419511_g1
	ISM1	Hs01382748_m1
	SNCAIP	Hs00917423_m1
	UNG	Hs01037093_m1
	hsa-miR-21	000397
	hsa-miR-210	000512
	RNU44 (miRNA reference gene)	001094
867		
868		
869		
870		
871		
872		
873		
874		
875		
876		
877		
878		
879		

882 Table 3. Participant phenotypes before and after exercise training.

	Before exercise	After exercise		
Phenotype	Mean±SD	Mean±SD	% Change	<i>P</i> -value
	n=1	9		
Age (years)	21.1	1±2.7		
Height (cm)	180.	6±7.4		
Anthropometric				
Weight (kg)	78.1±9.4	78.1±9.8	-0.03±2.3	0.99
BMI (kg/m ²)	23.9±2.3	23.9±2.4	-0.2±2.4	0.68
Waist (cm)	79.2±5.3	78.9±4.8	-0.4±2.5	0.50
Hip (cm)	82.8±6.0	82.4±5.4	-0.3±1.8	0.37
WHR	0.96±0.02	0.96±0.02	-0.1±2.3	0.94
\sum 7 skinfolds (cm)	98.1±38.3	91.3±30.7	-4.5±13.2	0.13
Body density	1.07±0.01	1.07±0.01	0.2±0.5	0.13
Fat %	13.0±4.9	12.2 ± 4.1	-4.2±12.7	0.11
Cardiovascular				
RHR (beats/min)	64.1±10.8	59.5±9.3	-4.0±18.2	0.055
SBP (mmHg)	124.0±12.1	124.8±7.8	1.1±10.5	0.77
DBP (mmHg)	72.0±6.7	69.5±7.0	-3.4±7.9	0.06
MAP (mmHg)	89.4±7.9	87.9±6.7	-1.3±8.8	0.42
PP (mmHg)	51.9±8.4	55.4±5.8	7.6±16.8	0.07
Total CHOL (mmol/L)	4.42±0.79	4.24±0.67	-3.3±9.3	0.06
Triglycerides (mmol/L)	0.97±0.35	0.95±0.48	-4.2±22.4	0.70
HDL-C (mmol/L)	1.34±0.24	1.31±0.20	-0.9±11.7	0.50
LDL-C (mmol/L)	2.64±0.78	2.48±0.61	-3.9±11.2	0.047
LDL-C/HDL-C (mmol/L)	2.06(1.5–2.8)	2.0(1.5–2.5)	-1.6±15.0	0.24

CHOL/HDL-C (mmol/L)	3.41(2.7–4.2)	3.31(2.7–4.2)	-2.0±9.1	0.35
Cardiorespiratory fitnes	S			
VO _{2max} (ml [·] kg [·] min ⁻¹)	49.5±4.7	51.6±3.9	4.7±10.1	0.03
Final treadmill Speed	19(18–21)	20(19–21)	4.0±5.1	0.001
(km [·] hr⁻¹)				
883 Data are expressed	as mean ± standard	deviation or as mean (interquartile ran	ge)

884 from paired t-tests or related samples Wilcoxon signed rank test, respectively.

- Legend: ∑, sum of; % change, percentage change; BMI, Body mass index; WHR,
- 886 waist to hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP,
- 887 mean arterial pressure; PP, pulse pressure; CHOL, cholesterol; HDL-C, high-density
- 888 lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

Table 4. DNA methylation changes after four weeks of exercise training ($\geq 10\%$, $q \leq 0.005$).

Location in relation to					DNA methylation (%)				
CpG	Closest gene	Gene region	CpG island	Chr	Before exercise	After exercise	Diff	<i>P</i> -value	<i>q</i> -value (≤0.005)
cg19933985			S shelf	5	53.8±4.4	70.8±4.1	17	1.93×10 ⁻⁷	1.49×10⁻⁵
cg10633981	C11orf58	3'UTR	Open sea	11	49.5±6.7	66.4±5.1	16.9	2.13×10 ⁻⁸	3.97×10 ⁻⁶
cg02732134	DNMBP	5'UTR	Open sea	10	42.3±2.8	57.9±3.6	15.6	4.79×10⁻ ⁸	6.26×10 ⁻⁶
cg01287788	SNORD94 PTCD3	TSS200 Body	Open sea	2	49.5±4.2	65.0±5.2	15.5	2.96×10 ⁻⁷	1.96×10 ⁻⁵
cg27379715			Open sea	2	55.1±3.3	70.0±3.3	14.8	8.39×10 ⁻⁹	2.39×10 ⁻⁶
cg17393016	C17orf55	TSS1500	N shore	17	54.2±13.2	68.7±15.9	14.5	0.002	0.005
cg02308712			Open sea	12	47.5±3.9	61.7±4.3	14.1	9.38×10⁻ ⁸	9.45×10⁻ ⁶
cg15897635			N shelf	1	30.7±6.6	44.4±5.3	13.8	0.0003	0.001
cg21937244	CDC42BPB	Body	Island	14	64.4±5.9	78.0±3.4	13.7	3.10×10⁻ ⁸	4.86×10⁻ ⁶

cg12578536			S Shelf	5	48.44.0	61.8±3.5	13.4	2.74×10 ⁻⁷	1.86×10 ⁻⁵
cg17931986	COL11A2	3'UTR	S shore	6	53.8±3.1	67.2±3.6	13.4	6.86×10 ⁻⁹	2.16×10 ⁻⁶
cg04205664	CLEC2L	Body	S shore	7	28.3±1.9	41.5±4.1	13.2	2.09×10 ⁻⁷	1.57×10⁻⁵
cg05239225	AKAP13	5'UTR	Open sea	15	46.6±7.3	59.5±4.3	12.9	0.0003	0.001
cg13810766	PRKAG2	Body	Open sea	7	33.6±1.9	45.9±3.1	12.3	2.72×10 ⁻⁹	1.39×10⁻ ⁶
cg12949141	PCBD2	Body	Open sea	5	35.1±5.6	47.1±4.9	12.1	8.56×10 ⁻⁵	0.0007
cg02771392	ZNF273	TSS1500	Open sea	7	59.3±3.1	71.3±2.0	12	1.58×10 ⁻⁸	3.35×10⁻ ⁶
cg04250181	SLCO1B3	5'UTR	Open sea	12	65.0±6.0	76.9±3.5	11.9	1.90×10 ⁻⁶	6.24×10 ⁻⁵
cg01775802	RGS6	Body	Open sea	14	27.6±5.1	39.3±5.2	11.7	9.61×10 ⁻⁵	0.0007
cg22870994			Open sea	11	44.3±2.3	55.9±2.4	11.6	1.06×10 ⁻⁷	1.02×10 ⁻⁵
cg14497545	MAML3	Body	Open sea	4	36.5±2.3	48.1±4.0	11.5	5.62×10 ⁻⁷	2.95×10⁻⁵
cg23817637	CLRN3	TSS1500	Open sea	10	60.3±6.2	71.8±2.6	11.5	0.0001	0.0009
cg18022036			Open sea	5	47.3±3.9	37.4±4.6	-10	0.0001	0.001
cg06611444			Open sea	4	70.1±5.5	60.2±5.4	-10	8.78×10⁻ ⁶	0.0002

cg16859420			Open sea	8	31.6±5.4	21.6±3.9	-10	0.0002	0.001
cg20090957	MAPKAPK5 C12orf47	TSS1500 Body	Island	12	34.1±3.1	24.1±2.4	-10	2.10×10 ⁻⁶	6.63×10⁻⁵
cg17502267	BNIP2	Body	Island	15	39.4±2.5	29.4±4.0	-10	2.59×10⁻⁵	0.0003
cg22876894			*N shore	20	31.5±4.2	21.5±2.6	-10	1.25×10 ⁻⁷	1.13×10⁻⁵
cg18825597			N shelf	8	61.2±4.4	51.1±6.4	-10.1	0.001	0.004
cg16146432	C3orf50	TSS200	N shore	3	26.1±4.5	16.1±3.1	-10.1	1.52×10 ⁻⁶	5.43×10⁻⁵
cg17479131	LOC401431	Body	N shelf	7	54.2±2.3	44.1±4.4	-10.1	5.14×10 ⁻⁵	0.0005
cg06180061	C16orf91	Body	S shelf	16	62.2±3.5	52.0±4.6	10.1	1.98×10 ⁻⁸	3.84×10 ⁻⁶
cg08339189	GGTA1	Body	N shore	9	21.8±1.7	11.6±2.3	10.2	1.71×10 ⁻⁶	5.83×10⁻⁵
cg17932934	CALN1	5'UTR 1 st Exon	Open sea	7	72.9±2.1	62.7±5.7	10.2	3.92×10 ⁻⁵	0.0004
cg14366742			Open sea	4	43.4±4.0	33.2±4.6	10.2	5.62×10 ⁻⁸	6.85×10⁻ ⁶
cg11381792	TRAPPC10	Body	Island	21	31.9±1.3	21.7±1.8	10.2	1.64×10 ⁻⁹	1.12×10 ⁻⁶
cg04669668	BANP	Body	Island	16	57.2±3.7	46.9±4.8	10.3	0.0001	0.0008
cg09700085	SLC6A20	5'UTR	Island	3	26.0±2.2	15.7±1.9	10.3	2.08×10 ⁻⁸	3.93×10⁻ ⁶

1 st Exon

cg08206623	CDKN1C	TSS1500	Island	11	45.8±1.5	35.5±1.8	10.3	2.61×10 ⁻⁸	4.38×10 ⁻⁶
cg20144008			Island	2	45.3±2.1	35.0±2.4	10.4	1.11×10 ⁻⁸	9.05×10 ⁻⁷
cg07894334	SOCS5	TSS1500	†N shore	2	59.2±7.2	48.8±5.8	10.5	2.78×10 ⁻⁵	0.0003
cg27130012			S shore	6	74.6±2.7	64.1±4.6	10.5	1.02×10 ⁻⁵	0.0002
cg15386880			Island	16	50.5±4.8	40.0±7.5	10.5	0.0001	0.0009
cg00001793	ETV6	Body	Open sea	12	59.2±5.0	48.7±7.1	10.5	0.0001	0.0008
0001065549	NSDHL	5'UTR	+S abara	V	16 2 9 1	25 7 7 1	10.6	0.001	0.004
Cy21205546	CETN2	TSS1500	12 suore	^	40.3±0.1	35.7±7.1	10.6	0.001	0.004
cg05280527	NRXN3	3'UTR	S shore	14	47.7±3.0	37.1±3.5	10.6	9.17×10 ⁻⁸	9.35×10 ⁻⁶
cg02678768	EVPL	3'UTR	N shore	17	67.1±9.1	56.4±8.7	10.7	3.77×10 ⁻⁶	9.51×10 ⁻⁵
ca23017513	1 MY10	5'UTR	Open sea	1	66 1+4 1	55 1+5 5	10.7	3 02∨10 ⁻⁵	0.0004
Cg23917313	LINATA	Body	Open sea	I	00.1±4.1	55.4±5.5	10.7	3.92×10	0.0004
cg13985765	PCSK6	Body	Open sea	15	68.7±6.4	57.9±6.4	10.8	0.0005	0.002
ac25452240	NCAPH2	5'UTR	laland	22	47.0.04	20.2.4.0	10.0	E 00. 40 ⁻⁸	C CO. 10 ⁻⁶
Cy25152348		1 st Exon	isianu	22	41.Z±2.1	30.3±1.8	10.9	5.29×10	0.02×10°

	LMF2	TSS1500							
cg16500605	BAT3	TSS1500	Island	6	31.9±3.5	20.9±1.4	11	1.05×10 ⁻⁶	4.29×10⁻⁵
cg01558909	HBM	TSS200	Island	16	14.8±9.0	3.8±0.5	11	0.0006	0.002
cg15694789	STARD8	5'UTR	S shore	Х	38.3±4.6	27.3±3.3	11	2.69×10 ⁻⁶	7.71×10⁻⁵
cg05524038	CSF1R	TSS1500	Open sea	5	80.0±2.9	68.9±2.5	11.1	1.51×10 ⁻⁶	5.42×10 ⁻⁵
cg11123847	ACTR10	3'UTR	Open sea	14	80.9±3.1	69.8±4.3	11.2	1.14×10⁻⁵	0.0002
cg14506366	SLC6A3	Body	Open sea	5	66.5±7.0	55.3±6.6	11.2	0.001	0.003
cg06082548	NKX6-2	Body	*Island	12	32.3±2.1	21.0±1.9	11.3	3.50×10 ⁻¹⁰	5.28×10 ⁻⁷
cg26979339	RIC8B	TSS1500	Island	12	35.7±1.5	24.3±2.2	11.4	1.45×10 ⁻⁸	3.23×10⁻ ⁶
cg25474648	ZDHHC14	3'UTR	S shore	6	74.2±2.5	62.7±4.8	11.5	2.62×10 ⁻⁶	7.58×10⁻⁵
cc01004208	PLAG1	5'UTR	Nichoro	o	40.0+6.7	29 5+4 2	11 5	0.0005	0.002
Cg01994308	CHCHD7	TSS1500	IN SHOLE	0	40.0±0.7	20.3±4.2	11.5	0.0005	0.002
cg12093976	EGF	TSS200	Open sea	4	34.3±2.5	22.8±3.0	11.6	7.18×10 ⁻⁹	2.20×10 ⁻⁶
cg12861974	CXorf57	TSS200	Island	Х	33.4±4.8	21.8±2.9	11.6	3.04×10 ⁻⁶	8.32×10⁻⁵
cg20929922	C5orf28	TSS1500	S shore	5	37.7±3.1	26.0±3.4	11.7	3.23×10⁻⁵	0.0004

cg19349861	OPCML	5'UTR 1 st Exon	Open sea	11	34.7±3.0	22.9±2.3	11.7	1.62×10 ⁻⁸	3.41×10⁻ ⁶
cg03909902	PRDM4	5'UTR	Island	12	35.6±2.8	23.8±1.7	11.8	1.75×10 ⁻⁸	3.54×10 ⁻⁶
cg04981696	ABCC1	Body	S shore	16	41.5±4.3	29.5±4.0	12	3.30×10 ⁻⁶	8.76×10 ⁻⁵
cg05005382	CHTF18	Body	Island	16	68.5±3.3	56.4±5.0	12.1	0.0003	0.001
cg00556029	MARCKSL1	TSS200	Island	1	30.9±4.8	18.7±2.6	12.2	3.22×10 ⁻⁵	0.0004
cg03252499			Open sea	11	63.3±7.4	51.0±5.3	12.3	0.001	0.004
cg25501666			N shelf	2	65.8±4.5	53.1±4.8	12.7	3.68×10⁻ ⁶	9.35×10 ⁻⁵
cg20982606	UNG	TSS1500 TSS200	Island	12	29.1±3.0	16.2±2.4	12.9	9.23×10 ⁻⁹	2.52×10 ⁻⁶
cg16379462	SAMD4A	Body	Open sea	14	64.6±3.8	51.6±6.4	12.9	0.0004	0.002
cg14266237	KLF1	3'UTR	N shore	19	49.8±6.9	36.8±8.3	13	3.93×10 ⁻⁸	5.62×10⁻ ⁶
cg21393587			N shore	Х	74.4±2.4	61.4±4.0	13	5.53×10 ⁻⁸	6.76×10⁻ ⁶
cg06808467	LOC339290	TSS1500	Island	18	39.2±2.4	25.6±3.1	13.6	2.56×10⁻ ⁸	4.36×10 ⁻⁶
č	C18orf18	Body							
cg17092349	DALRD3	5'UTR	N shore	3	47.5±6.6	33.8±5.8	13.7	5.10×10⁻⁵	0.0005

	NDUFAF3	TSS1500							
	MIR425	TSS1500							
	MIR191	TSS200							
cg26081875			Open sea	6	36.2±7.9	22.3±5.3	13.9	0.001	0.004
cg01525244	CBX7	TSS200	N shore	22	30.3±1.2	16.3±1.9	14	4.20×10 ⁻¹⁰	5.96×10 ⁻⁷
cg09844907	MPV17L	5'UTR 1 st Exon	Island	16	34.0±1.5	19.4±2.6	14.6	1.87×10 ⁻⁸	3.70×10 ⁻⁶
cg27494111			N shore	19	67.6±5.1	52.5±10.4	15.1	3.25×10⁻ ⁶	8.68×10 ⁻⁵
cg26186549			S shore	6	68.7±11.4	53.3±11.9	15.4	2.77×10 ⁻⁵	0.0003
cg16524049	LMX1A	Body	Island	1	43.1±2.7	27.1±4.6	16	4.54×10 ⁻⁶	0.0001

B90 Data are expressed are beta values ± standard deviation.

Legend: Chr, chromosome number; Diff, difference; 3', three prime; 5', five prime; UTR, untranslated region; TSS1500, 1500 bases upstream of

transcription start site; TSS200, 200 bases upstream of transcription start site; *DMR, differentially methylated region; †CDMR, cancer

differentially methylated region; ‡RDMR, reprogrammed differentially methylated region.

894	Table 5. DNA	methylation	changes after	four weeks of	f exercise training	∣(≥20%,	<i>q</i> ≤0.005).
-----	--------------	-------------	---------------	---------------	---------------------	---------	-------------------

	Location in relation to					DNA methylation (%)				
СрG	Closest	Gene	СрG	Ch	Before	After	Diff	<i>P</i> -value	<i>q</i> -value	
	gene	region	island	r	exercise	exercise			(≤0.005)	
cg21036194	SNCAIP	Body	Open	5	24.1±23.	86.2±1.8	62.1	5.05×10 ⁻⁷	2.76×10 ⁻⁵	
			sea		1					
cg22588144	ISM1	TSS1500	Island	20	4.9±1.0	53.1±8.3	48.2	1.69×10 ⁻¹²	5.35×10 ⁻⁸	
cg01309395	HLA-DPB2	Body	Open	6	37.9±34.	82.1±4.1	44.2	0.0004	0.002	
			sea		7					
cg07658590	SLC19A1	TSS1500	S shore	21	15.6±18.	47.6±3.9	32.0	0.0004	0.002	
					2					
cg18531559	ULK4	TSS200	S shore	3	8.4±1.9	36.1±0.6	27.7	1.70×10 ⁻¹¹	1.56×10 ⁻⁷	
cg11950805	CDC20	TSS1500	Island	1	1.7±0.5	25.8±15.	24.1	5.47×10⁻⁵	0.0005	
						0				
cg26919805	PPPDE2	5'UTR	Island	22	1.9±0.5	25.2±18.	23.3	0.001	0.003	
		1 st Exon				2				
	XRCC6	TSS1500								
cg09459740			Open	11	74.1±1.2	96.2±5.2	22.1	9.12×10⁻ ⁸	9.34×10 ⁻⁶	
			sea							
cg07170824	ACVRL1	5'UTR	Island	12	52.7±3.1	32.7±5.3	-20.0	2.51×10 ⁻⁷	1.75×10 ⁻⁵	
		1 st Exon								
cg16700025	CMIP	Body	Open	16	62.2±15.	36.1±0.6	-26.0	0.0001	0.001	
			sea		4					
cg18684755	RYR1	Body	S shelf	19	86.9±1.6	56.7±25.	-30.2	0.002	0.005	
						4				
cg06390613	TMEM198	3'UTR	N shelf	2	76.2±2.0	43.9±18.	-32.3	0.0001	0.0009	

						0			
						Ζ			
cg03229033			Island	1	44.5±5.8	12.0±21.	-32.4	0.0001	0.0009
						6			
ca15224432	IGFL3	TSS1500	Open	19	73.8±1.8	36.1+0.6	-37.7	7.17×10 ⁻¹⁶	4.55×10 ⁻¹¹
•9••==••=							••••		
			sea						
cg04600795			Open	6	88.7±1.2	45.1±20.	-43.7	1.50×10⁻⁵	0.0002
			sea			9			
cg10580110	KRT6A	TSS1500	Open	12	88.5±1.7	44.8±29.	-43.7	1.40×10⁻⁵	0.0002
			sea			6			
cg08975528	ZBTB12	3'UTR	Island	6	74.6±2.9	19.8±34.	-54.7	0.0002	0.001
						1			
cg17415355	TOLLIP	Body	S shelf	11	86.5±1.5	24.9±35.	-61.6	8.60×10⁻⁵	0.0007
						8			
cg24810735	ANGPT1	Body	Open	8	79.3±3.5	16.5±32.	-62.8	1.95×10⁻⁵	0.0003
			sea			2			
895 Data a	re average be	ta-values ±	standard o	deviati	ion.				
006				:	· · · · · · · · · · · · · · · · · · ·				
896 Legend	a: Unr, chrom	osome num	ber; Diff, d	merer	ice; 3°, three	e prime; 5', f	ive prim	e; UIK,	

897 untranslated region; TSS1500, 1500 bases upstream of transcription start site; TSS200, 200

898 bases upstream of transcription start site.

908 Table 6. Pathways modulated by exercise training ($q \le 0.05$).

Bothway name	Enrichment	Enrichment	Enrichment	# of	Pothway ID
Falliway haine	score	<i>P</i> -value	<i>q</i> -value	Genes	Falliway ID
Endocytosis	16.44	7.23×10 ⁻⁸	1.22×10 ⁻⁵	115	kegg pathway 211
HTLV-I infection	13.52	1.35×10 ⁻⁶	0.0001	154	kegg pathway 251
Wnt signaling	11 93	6 61×10 ⁻⁶	0 0003	88	kega pathway 142
pathway	11.00	0.01/10	0.0000		hogg palmay 12
Proteoglycans in	11 71	8 21×10 ⁻⁶	0 0003	122	kega pathway 164
cancer	11.71	0.21×10	0.0005	122	Kegg patiway 104
Pathways in cancer	11.15	1.44×10 ⁻⁵	0.0005	171	kegg pathway 128
Axon guidance	10.8	2.04×10 ⁻⁵	0.0006	77	kegg pathway 176
Gap junction	10.44	2.92×10 ⁻⁵	0.0007	58	kegg pathway 127
Regulation of actin	0.07	4 66×10 ⁻⁵	0.001	120	koga pathway 170
cytoskeleton	9.97	4.00×10	0.001	120	Kegg pathway 179
Glutamatergic	9.05	0.0001	0 002	67	kega pathway 182
synapse	5.05	0.0001	0.002	07	kegg patiway 102
Calcium signaling	9.03	0 0001	0.001	101	kega pathway 263
pathway	5.00	0.0001	0.001	101	Kegg partway 200
Hippo signaling	9.02	0 0001	0 002	92	kega pathway 20
pathway	0.02	0.0001	0.002	02	Rogg parmay 20
MAPK signaling	8 93	0 0001	0 002	129	kega pathway 119
pathway	0.00	0.0001	0.002	125	kegg paliway 115
p53 signaling	86	0 0002	0 002	32	kega pathway 149
pathway	0.0	0.0002	0.002	02	Rogg parmay The
Melanogenesis	8.28	0.00025	0.003	64	kegg pathway 206
Cholinergic	7 94	0 00035	0 004	69	kega pathway 237
synapse	1.07	0.00000	0.007	00	Nogy pairway 201

Amphetamine	7 53	0 0005	0.006	37	kaga pathway 50
addiction	1.55	0.0003	0.000	51	kegg patiway 50
Focal adhesion	7.13	0.0008	0.008	103	kegg pathway 5
Circadian	7.07	0.0008	0.008	56	koga pathway 51
entrainment	7.07	0.0008	0.008	50	kegg palliway 51
Basal cell	7.02	0.0000	0.008	30	koga pathway 35
carcinoma	1.02	0.0009	0.008	39	kegg palliway 55
Dopaminergic	6 99	0 0009	0.008	68	kaga pathway 91
synapse	0.33	0.0009	0.000	00	kegg palitway 91
Dilated	6 34	0.002	0.01	53	kega nathway 134
cardiomyopathy	0.54	0.002	0.01	55	kegg palitway 134
Epstein-Barr virus	6.05	0.002	0.02	113	kaga pathway 252
infection	0.00	0.002	0.02	115	kegg palliway 232
Cocaine addiction	5.92	0.003	0.02	28	kegg pathway 107
Long-term	5 88	0.003	0.02	35	kaga pathway 208
potentiation	0.00	0.003	0.02	55	kegg palitway 200
Hedgehog	5 32	0.005	0.03	33	kaga pathway 167
signaling pathway	0.02	0.003	0.03	55	kegg palliway 107
Chronic myeloid	5 17	0.006	0.03	12	kaga pathway 240
leukemia	0.17	0.000	0.00	72	Kegg patiway 2+0
Melanoma	5.17	0.006	0.03	42	kegg pathway 249
Fc gamma R-					
mediated	5.16	0.006	0.03	45	kegg pathway 77
phagocytosis					
Glioma	4.95	0.007	0.04	38	kegg pathway 161
B cell receptor	4 95	0.007	0.04	38	kenn nathway 199
signaling pathway	ч. 	0.007	0.04	00	Nogy pairway 100

ECM-receptor	1 91	0.007	0.04	47	kegg pathway 41	
interaction	4.54	0.007	0.04	47		
Glycosaminoglycan						
biosynthesis -	4.02	0.007	0.04	17	kong pothwov 249	
chondroitin sulfate /	4.92	0.007	0.04	17	kegg pallway 240	
dermatan sulfate						
Other types of O-	4.02	0.007	0.04	17	koga pothway 20	
glycan biosynthesis	4.92	0.007	0.04	17	keyy pairiway so	
PI3K-Akt signaling	1 71	0.000	0.04	166	koga pothwov 45	
pathway	4.74	0.009	0.04	100	kegg palliway 45	
Oocyte meiosis	4.69	0.009	0.04	60	kegg pathway 22	
T cell receptor	4.6	0.01	0.046	54	kegg pathway 70	
signaling pathway	4.0	0.01	0.040	54		
Aminoacyl-tRNA	1 50	0.01	0.046	27	kega pathway 116	
biosynthesis	4.55	0.01	0.040	21	Kegg palitway 110	
Spliceosome	4.5	0.01	0.049	75	kegg pathway 131	
Small cell lung	1 18	0.01	0.049	42	koga pathway 114	
cancer	4.40	0.01	0.049	42	kegg pallway 114	
Progesterone-						
mediated oocyte	4.36	0.01	0.05	50	kegg pathway 254	
maturation						
Legend: #, number.						

	914	Table 7. MIR21 and	3 MIR210 DNA	methylation	after four w	veeks of e	exercise	training (q<0.05)
--	-----	--------------------	--------------	-------------	--------------	------------	----------	------------	--------	---

Location in relation to			_	DNA methylation (%)					
СрG	Closest gene	Gene region	CpG island	- Chr	Before Exercise	After exercise	Diff	<i>P</i> -value	<i>q</i> -value (≤0.005)
cg27023597	MIR21	TS1500	Open Sea	17	67.4±3.6	64.4±4.0	-3	0.007	0.01
cg04276626	MIR21	TSS200	Open Sea	17	79.3±3.4	76	-3.3	0.008	0.01
cg02515217	MIR21	TSS200	Open Sea	17	80.0±2.4	78.5±2.1	-1.5	0.009	0.01
cg07181702	MIR21	Body	Open Sea	17	78.4±3.0	74.6±3.9	-3.8	0.02	0.03
cg02471760	MIR210	TSS1500	S Shore	11	54.6±4.7	50.4±4.6	-4.2	0.002	0.004
cg08200293	MIR210	TSS1500	Island	11	13.2±1.2	11.8±2.1	-1.4	0.01	0.02
cg05858042	MIR210	TSS1500	Island	11	24.5±3.9	21.7±5.1	-2.7	0.005	0.009

cg07410811	<i>MIR210</i>	TSS1500	Island	11	8.1±1.2	6.7±1.5	-1.4	0.003	0.007
cg15482500	MIR210	TSS200	Island	11	11.6±0.7	9.3±0.7	-2.3	9.39×10⁻⁵	0.0007
cg01277369	MIR210	TSS200	Island	11	7.5±1.1	6.2±0.9	-1.3	0.007	0.01
cg03880841	MIR210	Body	Island	11	18.5±0.01	15.9±1.2	-2.6	6.2×10 ⁻⁵	0.0005

915 Data are average beta-values ± standard deviation.

916 Legend: Chr, chromosome number; Diff, difference; TSS1500, 1500 bases upstream of transcription start site; TSS200, 200 bases upstream of

917 transcription start site.

918

Figures

Figure 1. DNA methylation changes in relation to CpG islands (A and B) and the nearest gene (C and D), respectively.

Figure 2. Whole-genome DNA methylation changes caused by exercise.

Figure 3. Hierarchical clustering of CpG methylation before and after exercise training.

Figure 5. Gene and miRNA expression changes caused by exercise.

Figure 6. Schematic of DNA methylation regulation on cardiovascular physiology.