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Abstract 
A new micromixing model to close probability density function (pdf) models is proposed.  The model is based on the proposition 

that each computational timestep, stochastic particles move within the scalar space (on average) by a distance equal to the turbulent 
diffusion length scale.  At each timestep, the model evaluates the distance in scalar space between all particles.  During the timestep, a 
discrete pdf is computed for the distance between unmixed particles and the cumulative integral for the mean calculated.  A filter is 
applied to retain the lower portion of the distance domain so that the cumulative integral is equal to the average diffusion length 
required to decrease the scalar variance.  A sample (a pair of particles) is chosen from this filtered part of the domain and the particles 
mixed using Modified Curl’s model.  The complete interparticle-distance pdf is re-evaluated for each pair to ensure that there is 
sufficient capacity to mix to meet the variance decay requirements.  Preliminary tests show that this model obeys several fundamental 
properties required of micromixing models, including conservation, correct decay of variance and relaxation to Gaussian pdf. 
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1. Introduction 
 
Numerous turbulent combustion models have been 

developed for the diffusion process (commonly modelled 
by scalar micromixing in probability density function 
[pdf] models [1,2,3]).  Some of the most commonly-used 
models are: Curl’s Model [4], Modified Curl’s Model 
[5,6], Interaction by Exchange with the Mean (IEM) 
[7,8], the Flamelet model [9], Conditional Moment 
Closure (CMC) [10], Euclidean Minimal Spanning Tree 
(EMST) [11] and Multiple Mapping Conditioning 
(MMC) [12]. 

A number of these models (Curl’s, EMST, 
stochastic MMC) use particle interaction to model the 
micromixing process and a major distinction between 
them is the selection process of which particle is chosen 
to share its values with the particle of interest.  In Curl’s 
model, the particles are chosen at random, so they can be 
separated by any distance, leading to potentially non-
physical effects because locality is violated.  EMST is 
founded on the principle that a particle should only 
interact with the particle that is closest to it.  This leads 
to an undesirable stranding effect where clusters of 
particles interact exclusively within that cluster, causing 
them to locally collapse towards the same value [11, 13].  
To alleviate this problem of over-localisation, an age 
parameter was introduced so that approximately half the 
particles are available for mixing in any given timestep 
[11].  Different perspectives have been utilised in the 
MMC framework.  One method for MMC-LES (Large 
Eddy Simulations) [14] is similar to that used in EMST, 
where a normalised distance is minimised; a distinction 
between this MMC-LES method and EMST is that a 
weighted average of physical and scalar distances is used 
in the former, while only scalar distances are used in the 

latter.  Note that EMST used at LES scale produces good 
results [13]. 

A fundamental principle used in another MMC 
method is that particles should only be able to interact if 
they have to travel no more than a diffusion length to 
reach a coincident location (previously alluded to [15] 
and explicitly stated [16]).  This can be considered a 
relaxation of the EMST and MMC-LES methods where 
the closest particles are forced to interact with each 
other.  Consider the Ito form of the MMC model [12]: 

 

 k k kl ld A dt b dwξ = +  (1) 

 
where ξk is the kth reference variable, Ak its drift 
coefficient, the diffusion coefficient is 2Bkl = bki bli and 
dwl a Wiener process.  Since the Wiener process is 
commonly modelled by 
 

 l ldw dtω= , (2) 

 
where ωl is a random variable with a standard Gaussian 
distribution, this scalar ξk varies by (on average) 

klb dt  

from the relaxation towards the mean imposed by the 
drift.  If there is a single scalar, this would commonly be 
represented by 

 2Bdt , (3) 
 
which is the definition of the (scalar) diffusion length 
scale.  Therefore, particles with similar values of A can 
only reach coincident values of ξk (i.e. meet) if they are 
separated by no more than (on average) 2 2Bdt .  
Because of the random nature of ωl, it is possible that 
any pair of particles could be separated by more or less 
than 2 2Bdt and still be coincident.  The definition in 
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(3) has similarly been used for the diffusion in physical 
space, for example using the molecular and Smagorinsky 
turbulent diffusivities (D and Dt respectively) [14]: 
 

 ( ) ( )1
2t td D D dt D D dρ

ρ
 = + + + + 
 

∇x u wɶ .(4) 

 
The drift coefficient is a function of the filtered velocity 
vector and mean density. 

The remainder of this paper will describe the model 
and present results from validation tests. 

2. The Stochastic Particle Diffusion Length 
(SPDL) Model  

 
The current model relies on the discussion following 

(3) that particles can be expected to meet, thereby be 
able to interact, if they are separated by approximately 
double the diffusion length scale.  Let dpq be the distance 
between particles p and q and Pd(d

pq) be the pdf of inter-
particle distance for all p and q that are deemed to be 
allowed to interact (in a finite volume description, all 
those particles in the same physical cell).  It is desirable 
to choose a maximum interaction distance dmax so that 

 

 ( ) ( )
max

0

2 2
d

pq pq pq
dd P d d d Ddt⋅ =∫  (5) 

 
i.e. the mean inter-particular distance is equal to twice 
the diffusion length, where D is the appropriate 
diffusivity corresponding to the variable dpq.  The pair of 
particles to be mixed (p,q) is randomly selected from 
those that satisfy 

 max
pqd d≤ . (6) 

 
Ostensibly, this pair of particles mix using Curl’s model; 
in practice, to remove the known difficulty with Curl’s 
model only producing discrete values from initial δ-
functions, a weak Modified Curl’s model is proposed.  
Let b be the extent of mixing (b = 0 for no mixing; b = 1 
is Curl’s model).  To allow a continuous distribution to 
form, b was set to be 

 

 
2 1

2 2

n i
b

n i

− +=
− +

, (7) 

 
where the total number of particles to be mixed together 
is n, and the ith pair is to be mixed. 

In practice, to ensure that the set of particles mixes 
the correct amount specified by the decay of variance, 

 

 
2

2
d

D
dt

σ = − , (8) 

 
a numerical form of (5) is required.  For the ith particle 
pair (p,q) there is a target diffusion length Li which has 
the property 
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If i > 1, then for all j < i, the value of the target diffusion 
length is set to the actual inter-particle distance for pair i: 
 

 pq
j

j i
L d

<
∀ =  (10) 

 
and the value of the target diffusion length for all j ≥ i is 
set to: 
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This value is used in (5) to determine (dmax)i: 
 

 ( ) ( )
( )max

,

0

2
i

d

pq pq pq
d i id P d d d L⋅ =∫  (12) 

 
Note that Pd,i(d

pq) excludes all those distances dpq where 
either p or q had been selected for  j < i. 

It is necessary to ensure that once the ith pair has 
been selected, the remaining n–2i particles are able to 
dissipate sufficiently to satisfy (11).  The maximal 
change in variance that can be achieved by a pair of 
particles using Curl’s model is: 

 

 ( ) ( )2

2

max, 2

pq

i

d
σ∆ = −  (13) 

 
therefore the maximal amount by which the n–2i 
particles are able to reduce the variance is 
 

 ( ) ( )2
2 2

2

max,
1 1
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d
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−

= + =

 
 ∆ = −
 
 

∑ ∑ . (14) 

 
The summation on the rhs of (14) is non-repetitive, i.e. 
every q that is selected is not allowed to be considered p 
in the summation, so that the summation has only n/2–i 
terms.  If it is observed that 
 

 ( )
2

2 2

max,
1 1

2
n i

jk
k i j

Ddt Lσ
= + =

∆ < −∑ ∑ , (15) 

 
then the pair (p,q) needs to be reselected to provide the 
maximal dpq.  This process almost guarantees that the set 
of particles does not undershoot the decay of variance 
required: along with every other procedure of pairing, it 
fails if dt is too large for that realisation of particle 
values, and the computational timestep must be split. 

Finally, if the amount of mixing for pair (p,q) using 
Curl’s model overshoots the required total variance 
dissipation, then Modified Curl’s model is used to 
reduce the mixing amount so the total variance 
dissipation satisfies (8). 
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Figure 1: Cumulative distribution functions (cdf) from 
initial double δ-function pdf at x = 0 and 1.  Solid lines: 
sample data n = 100, ensemble average of 100; dashed 
lines: β-function cdf with same mean and variance as 
ensemble.  Lines of the same colour are from the same 

time. 
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Figure 2: Cumulative distribution functions from later 
times to Fig. 1.  Dashed lines: Gaussian cdf with same 

mean and variance as ensemble. 
 

3. Testing of SPDL Model 
Initial tests on the ability of SPDL to model cases 

accurately have been performed.  The first test was to 
validate that the procedure satisfied (8), which it did to 
the level of computational precision. 

Figures 1 and 2 show the results of the relaxation to 
Gaussian test for an ensemble average over 100 
realisations with 100 particles.  Curl’s model causes the 
cumulative distribution function (cdf) at early times to 
not be smooth in the vicinity of C = 0.5 (Fig. 1), but this 
eventually disappears.  [This cannot be remedied by 
using (7).]  This is likely to be the cause of the sample 
cdf to have decayed more than the β-function cdf for 
0.2 ≤ x ≤ 0.8; for the variance to be identical, the sample 
cdf lags the β-function cdf near the tails.  However, it is 
apparent that the sample data does relax to Gaussian 
(Fig. 2), with a much smaller over-decay in the centre of 
the cdf, so this is evidence that the scheme satisfies this 
fundamental property. 
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Figure 3: Cumulative distribution functions (cdf) from 
fourth sample in Fig. 1.  Dashed line: ensemble average; 

other lines: 5 individual realisations. 
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Figure 4: Cumulative distribution functions (cdf) from 

third sample in Fig. 2.  As per Fig. 3. 
 
Figures 3 and 4 show individual realisations 

compared to the ensemble average.  The (almost) Curl’s 
model (7) causes the occasional large deviation early on 
(Fig. 3), but otherwise the deviation from the ensemble 
average is relatively small. 

4. Conclusions 
 
A new turbulent combustion model, the Stochastic 

Particle Diffusion Length (SPDL) Model has been 
proposed.  This micromixing model aims to cause 
stochastic particles to interact so that, on average, pairs 
are separated by twice the (turbulent) diffusion length 
scale.  A Modified Curl’s model is proposed for the 
mixing of the particles.  Initial tests of the model for 
double δ-function initial conditions show that this model 
obeys the relaxation to Gaussian rule.  Further tests are 
to be undertaken for more complex cases. 
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