
1 
 

Structural Deterioration Detection Using Enhanced Autoregressive 
Residuals 

 
Benyamin Monavari1, Tommy H.T. Chan2, Andy Nguyen3, David P. Thambiratnam4. 

1 Ph.D. Candidate, Queensland University of Technology, Queensland, Australia, Email: b.monavari@qut.edu.au 
2 Professor, Queensland University of Technology, Queensland, Australia 

3 Lecturer, University of Southern Queensland, Queensland, Australia 
4 Professor, Queensland University of Technology, Queensland, Australia. 

 
 

This paper presents a study on detecting structural deterioration in existing buildings using ambient vibration 
measurements. Deterioration is a slow and progressive process which reduces the structural performance, 
including load-bearing capacity. Each building has unique vibration characteristics which change in time due 
to deterioration and damage. However, the changes due to deterioration are generally subtler than changes due 
to damage. Examples of deterioration include subtle loss of steel-concrete bond strength, slight corrosion of 
reinforcement and onset of internal cracks in structural members. Whereas damage can be defined as major 
sudden structural changes, such as major external cracks of concrete covers. Herein, a deterioration detection 
method which uses structural health monitoring (SHM) data is proposed to address the deterioration assessment 
problem. The proposed novel vibration-based deterioration identification method is a parametric-based 
approach, incorporated with a nonparametric statistical test, to capture changes in the dynamic characteristics 
of structures. First, autoregressive (AR) time-series models are fitted to the vibration response time histories at 
different sensor locations. A sensitive deterioration feature is proposed for detecting deterioration by applying 
statistical hypotheses of two-sample f-test on the model residuals, based on which a function of the resulting 
P-values is calculated. A novel AR model order estimation procedure is proposed to enhance the sensitivity of 
the method. The performance of the proposed method is demonstrated through comprehensive simulations of 
deterioration at single and multiple locations in finite element models (FEM) of 3 and 20-storey reinforced 
concrete (RC) frames. The method shows a promising sensitivity to detect small levels of structural 
deterioration prior to damage, even in the presence of noise.  

Keywords: Deterioration detection; autoregressive residual; structural health monitoring; Vibration-based 
method. 

 

1. Introduction 

Buildings play a vital role in supplying essential infrastructures needed for societies; however, 

many of these structures are deteriorating at an alarming rate due to a variety of adverse factors, 

such as ageing, environmental effects, and varying service loads. The changing characteristics of 

buildings due to deterioration along with inappropriate maintenance programs reduce their 

intended structural performance. Hence, it is crucial to evaluate the deterioration condition of 

structures to maintain their safety, to increase their life expectancy and to reduce their costs of 

maintenance and repairs. Numerous existing buildings are and will be in great need of repair and 

maintenance. A preventive maintenance plan usually cost less than repairing damage, but the 

current structural assessment methods often fail to identify deterioration prior to damage. Visual 

observations were the very first effort for evaluating and monitoring structures and infrastructures. 

The implementation of these methods were conducted before the 1960s but only limited to visible 
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damaged parts. Structural health monitoring (SHM) is a useful process to identify changes in the 

dynamic characteristics of structures.  This study aims to develop a useful method which provides 

useful information for engineers to plan proper preventive maintenance actions. The method will 

help to prevent major damage from happening and will assist with often inefficient and costly 

visual inspections.  

Here, deterioration is defined as a slow and progressive changes to the material and the 

geometric properties of infrastructures. Each structure has a unique set of vibration characteristics 

which changes due to accumulated deterioration. Farrar et al.1 asserted that the dynamic properties 

of a structure alter due to changes in the structure’s mass, stiffness or energy dissipative 

characteristics. It is worth noting that the changes owing to damage are generally more significant 

than changes due to deterioration. Du et al.2 concluded that the undamaged surface of a concrete 

structure does not confirm its healthy condition. As a result, deterioration is much more difficult 

to detect. It needs a more accurate and sensitive method than damage detection procedures. 

Therefore, a novel and accurate procedure for deterioration assessment of buildings is necessary. 

Monavari et al.3, 4 attempted to develop time-series based deterioration detection methods. They 

estimated the optimal model order as a preliminary study of the current proposed method, but they 

did not verify their methods on a deteriorated structure. On the other hand, some researchers 

studied deterioration based on redundancy of structures5-7, the vulnerability of structures under 

sudden and progressive damage8, the vulnerability, robustness, and redundancy of structures9, 10. 

Finite element analysis approaches were used in these studies. Frangopol et al.11 reviewed the 

common probabilistic models for deterioration assessment of structures. They concluded that no 

generally applicable approach has been proven. 

One of the primary roles of using SHM data so far is identifying the exiting damage in 

structures12, but not detecting deterioration. Doebling et al.13, Carden and Fanning14 and Chan and 

Thambiratnam15 reviewed a large number of vibration-based SHM methods, and their works show 

that not much research has been done on deterioration assessment using vibration response data. 

Deterioration has, however, been evaluated in other approaches such as reliability-based 

methods16, 17. Therefore, there is a real need to develop a vibration-based deterioration assessment. 

The following sections are dedicated to review the existing vibration based assessment approach 

and most relevant methods as well as influential factors that could affect deterioration assessment.  
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The vibration structure of buildings changes due to accumulated deterioration and damage 

because of the correlation of the dynamic characteristics (natural frequencies, mode shapes, and 

damping properties) with the material and the geometric properties of structures. Consequently, 

damage and deterioration can be detected by capturing these changes in the vibration 

characteristics. However, as the changes because of deterioration are difficult to detect in 

comparison with those of damage, deterioration detection procedures need to be more accurate and 

sensitive to these changes.  

In the vibration-based SHM techniques, ideal features in real structures are the ones that are 

sensitive to deterioration but not to the E&O variations. Vibration-based damage detection 

(VBDD) methods have been investigated in the past three decades18, 19. A summary review of 

VBDD can be found in Doebling et al.13, Carden and Fanning14, and Chan and Thambiratnam15. 

Besides, Farrar and Jauregui20, 21 studied the sensitivity of some of the vibration based damage 

features to various levels of damage. These reviews reveal that the time-series analysis methods 

seem to be more sensitive and reliable to be used as deterioration feature among the existing VBDD 

methods22. Besides, some researchers, such as Pardoen 198323 and Kadakal and Yuzugullu 199624, 

discussed some advantages of using the time-series analysis modelling for ambient vibration over 

the usual frequency domain methods. The time-series analysis estimates mathematical models 

using statistical tools to describe and analyse data such as signals.  

Wang et al.25 used the enhanced AR coefficients to detect small levels of structural damage 

in the presence of measurement noise. Zheng and Mita26-28 used the ARMA models to detect and 

locate damage, and the performance enhanced due to using pre-whitening filters. Wang and Ong29 

used the AR models and formulated three statistical hypotheses to detect damage. They used P-

values of the tests to define the damage indicator. Tang et al.30 experimentally verified that the 

time-series methods can be used for damage detection. Although time-series models, such as the 

AR models, have been used extensively among VBDD methods to detect and locate damage in 

structures31-37, they have not been used for deterioration detection. The statistical time-series 

methods compare two main different conditions of a considered structure called baseline and 

assessment phases. The former is defined as the reference or healthy state of the structure, and the 

latter is defined as the current state. In each phase, the statistical time-series methods use random 

response signals from the structure to describe and to characterize its health state.  
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The time-series analysis may be classified into parametric and non-parametric methods. In 

the non-parametric methods, the statistic is formulated through non-parametric time-series models, 

such as frequency response function (FRF) and binned power spectral density (PSD)38. In other 

words, the changes in the dynamic characteristics of structures change the statistics. On the other 

hand, in the parametric methods, the statistic is formed via the parametric time-series models (e.g., 

AR models)39, which means that the changes in time-series parameters identify a fault in structures. 

The parametric methods can be classified into model parameter-based: residual-based, and 

functional model-based methods38. 

This study aims to develop a novel deterioration detection procedure using the AR time-series 

models which have not been used in deterioration assessment. The study utilizes both the 

parametric-based approach and the nonparametric statistical test to capture the changes in dynamic 

characteristics of structures. Acceleration response data are first normalised through a 3-step 

process and then fed through an AR time series models assisted by a novel model order estimation 

scheme. Finally, the statistical hypotheses of a two-sample f-test are applied on the AR model 

residuals to derive deterioration-representative feature.  

The layout of the remaining of the paper is as follows. First, the novel deterioration detection 

framework is discussed. Then, the details of the simulation investigation of the proposed method 

are next summarized, and the deterioration detection method is verified using two case studies. 

Finally, deterioration detection results are presented before the conclusion is made. 

 

2. Methodology 

The use of AR model is often associated with an assumption that the structural responses are 

stationary. However, this is not often the case for the data recorded under ambient excitation 

conditions. Therefore, the following data normalization procedure is designed. First, data is 

collected from the structure using each sensor (here acceleration response data is used) and 

standardized as follows: 

 ˆ i
i

x xx
σ
−

=   (1) 

where ix  denotes amplitude of the measured acceleration response  (see later sections for other 

details such as sample length); x , σ  and ˆix  are the mean, standard deviation (STD) and the 
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standardized signal of ix , respectively. Second, the data is filtered with a low-pass Chebyshev 

filter, which removes high-frequency content. This filter was chosen due to its speed. More 

information can be obtained from Smith41. Third, the following batch approach pre-whitening 

filter40 is applied. This filter is capable of minimizing the cross-correlation among multiple 

excitations since most of the input excitations are mutually correlated. In this process, the l-

dimension sensor signals x are pre-processed by using the following whitening transformation: 

 y W x=   (2) 

where l is the number of sensors, W  is the l l×  whitening matrix, and y  indicates the whitened 

signals. The matrix W  is chosen so that the covariance matrix { }y yTE  becomes the unit matrix

Il . Hence, the components of the whitened signals y  are mutually uncorrelated and they have 

unit variance, i.e., 

 { } { }R y y W x x W W R W IT T T T
yy xx lE E= = = =   (3) 

In general, the recorded signals x  are mutually correlated, which means that the covariance 

matrix xxR is a full (not diagonal) matrix. It should be noted that the matrix W is not unique, and 

by multiplying an arbitrary orthogonal matrix to W from the left, a new W is generated and the 

equality (3) is still preserved.  

 1/2

1 2

1 1 1{ , ,..., }W Λ V VT T
x x x

l

diag
λ λ λ

−= =   (4) 

or 

 1/2W U Λ V T
x x
−=   (5) 

where 1 2{ , ,..., }Λx ldiag λ λ λ=  is a diagonal matrix with positive eigenvalues 1 2 ... 0lλ λ λ≥ ≥ ≥ > , xV  

is an orthogonal matrix, andU is an arbitrary orthogonal matrix.  

Fourth, assuming the structural response as stationary, the AR models are fitted to the data: 

 
1

p x x
k i k i ki

x x e−=
= Φ +∑  (6) 

where kx  is the measured signal at discrete time index k ; x
ke  is residual error at the kth  signal 

value; p  is the model order; k ix −  represents the ( )thk i−  previous response; x
iΦ is the thi  AR 
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coefficient. Figure 1, as an example, shows a dataset and the corresponding AR model, in which 

the model estimates the dataset well. 

 
Figure 1. A dataset and the corresponding AR model 

 

In order to enhance the sensitivity of the time-series analysis, the BMO technique is proposed 

in this study. It estimates the best-fit time-series model to the data considering its complexity to be 

generalized to other datasets. As the time-series models are well fitted to the data, the residual 

against baseline become very small and close to zero. The best-fit model order is the one with the 

least residual and suitable complexity, as a too simple fit will increase the residual while an overly-

fitted model may not be generalized to the other datasets42. The proposed BMO technique satisfies 

both the minimum residual and the simplicity of the model. 

This technique enhances the sensitivity of the time-series based features to detect even slight 

changes in the vibration characteristics of buildings. It is worth noting that most of the current 

structural health monitoring procedures are suitable for detecting damage but not deterioration. 

The changes in the response of structures due to deterioration are much smaller than those caused 

by damage. Hence, although the current techniques for estimating the model orders are widely 

used in damage detection, they cannot be used in deterioration detection. As a result, estimating 

the best model order is essential for obtaining a sensitive feature to identify deterioration. 

The BMO technique is specifically developed to enhance the sensitivity of the proposed 

deterioration detection method. It requires some datasets in the baseline state. For a reasonable 

estimation, different datasets should be selected from different operational states, time as well as 

temperature. Undoubtedly, the more datasets in the baseline, the more accurate the result. 

Step 1: Obtain AR models using different model orders ( p  is limited to a high enough model 

order) for the first dataset. 

Step 2: Feed another dataset and predict it using the obtained AR models in step 1. 
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Step 3: Calculate the residuals of time-series models in step 2.  

Step 4: Calculate STD of the residuals in step 3. 

 ( , ) ( , )( )i j i jFR eσ=   (7) 

where 𝑖𝑖 = 1,2, … ,𝑛𝑛; 𝑛𝑛 is the number of datasets in the baseline state; 1, 2,...,j m= ; and m  is a 

high enough limitation for the model order. 

Step 5: Calculate C  parameter using the following equation to obtain the changes ratio in the 

residuals of different models and datasets. 

 ( , ) ( ,1)
( , )

( ,1)

i j i
i j

i

FR FR
C

FR
−

=   (8) 

Step 6: Repeat steps 2-6 for the number of datasets in the baseline state (m). 𝑪𝑪 is the n m×  

matrix. 

Step 7: Calculate root mean square (RMS) of the residuals in step 3 as follows: 

 2
( , ) ( , )

1

1 ( )
k

i j i j
l

RMS e
k =

= ∑   (9) 

Step 8: Obtain α criterion which is the mean value of the vectors RMSi  and estimate the 

minimum required model order42, 43 to ensure the AR models capture the dynamic characteristics 

of structures. 

 ( )RMSi iα µ=   (10) 

Step 9: Use the following equation and calculate β  criterion. The minimum value of this 

criterion corresponds to the model order with a higher sensitivity to the changes in data, including 

the changes in data due to deterioration. This equation shifts the mean line to the left by two 

standard deviations indicating that about 95% of data values are within two standard deviations of 

the mean. It makes the β  criterion sensitive to the changes in either the mean or the standard 

deviation. The minimum value of β  criterion is corresponding to the model order which is not 

sensitive to the E&O variations but the structural changes. 

 2β M S= + ×   (11) 

where S and M are the matrices of STD and mean of the vectors C j  ( 1,2,...,j m= ), respectively. 

C j  is the 1n×  vector of the C  parameters for the thj  model order with n  different datasets. 
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Step 10: The best model order is equal to the model order corresponding to the minimum value 

of β criterion higher than the estimated model order in step 8. The minimum model order obtained 

in step 8 ensure the minimal of residuals and the minimum β criterion ensures that the model could 

be generalized to the other datasets.  

As the data were normalized, it could be assumed that the residuals come from normal 

distributions. When structures deteriorate, their vibration characteristics change. The changes in 

the vibration characteristics alter the structural response data. As a result, the residual error 

increases and the variances changes. The statistical hypothesis of two-sample f-test, which is a 

procedure to distinguish the differences in the variances of two datasets, was conducted on the 

residuals of the baseline and the assessment states of structures. Therefore, this hypothesis is able 

to detect deterioration through the changes in the variances between two populations with normal 

distributions. A function of the resulting P-values was then used to define the deterioration feature. 

The P-values of the test is a scalar of the probability that how an observing value is similar to the 

observed value under the null hypothesis. Small P-values reject the null hypothesis. The relevant 

details can be found in statistics literature such as the one by Gibbons and Chakraborti44. The 

following equation defines the deterioration indicator (DI) feature: 

 A B

B

P PDI
P
−

=   (12) 

where P is the P-values of the two-sample f-test; A  is the assessment condition and B  is the 

baseline condition of structures. As P-values illustrate the small changes in data, the defined DI 

well represents the changes in dynamic characteristics of structures in time. 

  

3. Case studies 

3.1. Case study 1: the 3-storey RC frame 

In this study, a finite element model (FEM) of a three-storey reinforced concrete (RC) frame was 

designed and used to demonstrate the performance of the proposed deterioration detection method. 

Figure 2 shows the 3-storey RC frame building designed and then modelled by computer program 

IDARC45. Dimensions of all the columns and beams were 2350 350mm×  and 2300 300mm× , 

respectively. Table 1 shows the natural frequencies ef . 
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Table 1. Natural Frequency in Hz 
Mode 

ef  (Hz) 
1st 2.16 
2nd 7.68 
3rd 15.75 

 

 

Figure 2. The designed 3-storey RC frame 
 

Sanchez et al.46 defined four cases representing the health cases related to deterioration of 

the reinforcement and the concrete cover: 1) a structure in its baseline state with full concrete cover 

and reinforcement area (FCFR), 2) a deteriorated structure with full cover but deteriorated 

reinforcement (FCDR), 3) a deteriorated structure with deteriorated cover but full reinforcement 

(DCFR), and 4) a deteriorated structure with both deteriorated cover and deteriorated 

reinforcement (DCDR). Some researchers defined deterioration as a continuous loss of cross-

sectional area in time6. Barone et al.47 considered annual deterioration rate (ADR) for a cross-

sectional area to be equal to 2×10-3 in a single component subjected to an increasing axial force. 

In this case study, the health case of FCDR was considered for the 50-year period. During this 

period, the cross-sectional area of the left columns’ bars was gradually reduced to simulate 

deterioration. The simulation was conducted for the three deterioration cases which are shown in 

Table 2. The annual deterioration rate (ADR) for the cross-sectional area was also considered equal 

to 32 10−× . The deterioration rate (DR) of each year can be obtained by multiplying the ADR to 

the duration of deterioration (DOD) process (in year).  

Fifty hours of the response data of a real structure under ambient vibrations48 with a sampling 

frequency of 2000Hz and sample size of 120000 data points (sample length was 12000 2000 60=

seconds) were used as input ambient excitations to simulate the 50 years of deterioration 

simulation. For each year, the FEM frame structure was analysed using 60 different datasets of 60 

seconds. The real structure is the recently constructed building (P-block building) at the Gardens 

Point campus of Queensland University of Technology (QUT), Australia. It has achieved 5-star 

Green Star rating from the Green Building Council of Australia, costing around AU$230M. As the 

input data was recorded from a real-world structure, it contains the E&O variations and a high 

level of noise.  
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 ADR 1
year

Reduced cross sectional area
Referencecross sectional area

 
= − 
 

  (13) 

 DR ADR DOD= ×   (14) 

Table 2. Deterioration cases 
Case Storey 1 Storey 2 Storey 3 

1 deteriorated non non 
2 non deteriorated non 
3 non non deteriorated 

 

In each case study, only one column was deteriorated. In the first case, the left column at the 

first storey experienced deterioration for 50 years. Besides, at the age of 21 years old, this column 

experienced a slight damage. The slight damage was simulated as a sudden reduction in the cross-

sectional area equal to 5 years of deterioration. In the second case, the left column at the second 

storey was deteriorated for 50 years. In addition, at the age of 33 years old, a preventive 

maintenance was conducted on this column to simulate maintenance effect. The preventive 

maintenance was also simulated as a repair of the deteriorated columns equal to 5 years of 

deterioration. In order to simulate this preventive maintenance action, the cross-sectional area of 

the deteriorated columns increased equal to a reduction of cross-sectional area in five years of 

deterioration. In the last deterioration case, the left column at the third storey experienced 50 years 

of deterioration. It was assumed that the structure in this period experienced no damage and there 

were no maintenance actions. The effect of the deterioration on the dynamic characteristics and 

frequency content is depicted in Figure 3. Welch-based cross-spectral density (CSD) magnitude 

was computed for the structure with the healthy state and 50 years of deterioration. 

 
Figure 3. Welch-based cross-spectral density (CSD) magnitude 
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The response acceleration data of the simulated structure with the mentioned deterioration 

cases were utilized as input data for the AR models. First, a factor of ten was used to decimate the 

recorded data, which reduced the original sample frequency of 2000Hz down to 200Hz. A white 

Gaussian noise with the signal-to-noise ratio per sample of 10 (10% white Gaussian noise) was 

then added to the data. The added noise simulates the actual captured sensor data which is 

contaminated with noise.  Hence, it can be ensured that the considered case study tests the 

applicability of the proposed method in real-world condition.  In the developed method, a data 

normalization procedure including the following three steps was employed. First, data 

standardization was applied. Second, all data were filtered by employing a twelve-order 

Chebyshev type II low-pass filter with a cut-off frequency of 50. Third, the pre-whitening filter 

was applied. Then, the BMO technique was utilized to estimate the best model order. In the next 

step, the acceleration response data were modelled as AR time-series. Finally, the statistical 

hypothesis of two-sample f-test was conducted on the residuals of time-series models, and the P-

values of the hypothesis test were used to define the deterioration indicator. This deterioration 

detection method was carried out using MATLAB. The statistical time-series methods compare 

two main different conditions of a structure called the baseline and the assessment phases. It was 

assumed that the structure was not deteriorated in the first year. Hence, the first 60 datasets indicate 

the healthy state of the structure (For each year, the FEM frame structure was analysed using 60 

different datasets). The first 12 datasets were chosen as the baseline datasets and the other datasets 

were used as the assessment ones. The novel BMO technique was applied to these 12 datasets of 

each sensor to obtain the best model order for each sensor data in this case study. The best model 

order was chosen among a range of model orders from 1 to 40. Figure 4 (a) shows C parameter in 

the BMO technique which the horizontal axis indicates dataset number and the colours depict the 

C values corresponding to each of the 40 different model orders. This figure indicates that C 

parameter differs with different model orders. The best model order is the one which results similar 

C parameter for different datasets at the same health state. To achieve the best model order, β 

criterion is developed, in which the minimum value of β criterion is corresponding to the model 

order least sensitive to the E&O variations. Therefore, the minimum value of β criterion is 

corresponding to the optimal model order. However, the best model order must be high enough to 

address the minimum complexity of time-series models since a too simple fit will increase the 

residuals. 
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In order to find the minimum model order, the α criterion is plotted as a function of the model 

order. The minimum required of the AR order can be achieved by minimizing the α values 

(indicated as minimized α criterion in Figure 4 (b)). Figure 4 (b) shows the mean of α values for 

the AR models with different model orders (from 1 to 40) in all considered baseline datasets (12 

datasets). α criterion is minimized and almost constant with model orders higher than ten (see 

Figure 4 (b)), which satisfies the minimum complexity of time-series models. This suggests that 

AR models of orders higher than ten would fit the time history well. The best model order is 

corresponding to the minimum β criterion higher than the estimated the minimum model order 

using α criterion. For instance, in this case study, Figure 4 (c) shows the result of α and β criteria. 

The red box shows the minimum required model order estimated using α criterion and the 

minimum β criterion in this range (the red bar) is corresponding to the best model order. The best 

model order in here was 14 (see Figure 4 (c)). It is important to note that the best model order 

should be separately estimated for each sensor. The best model orders for the simulated structure 

were 14, 10 and 9 for the first, second, and third stories, respectively.  

The result of the deterioration assessment is presented in Figure 5. This figure shows that 

the proposed method clearly detected the simulated deterioration, damage and maintenance actions 

in the frame. DI is zero when the frame was just built (time=0). By increasing the structural 

deterioration in the 50-year period, DI increases. In the first case, the structure started deterioration 

and experienced a slight damage at the age of 21, which the method detected both deterioration 

trend and the damage. Damage can be seen with a sudden increase in the DI at the age of 21 years. 

In the second case, the structure started deterioration, and a preventive maintenance action was 

performed at the age of 33 on the second storey. The method detected and depicted deterioration 

trend and the maintenance action. This can be seen as a sudden decrease in the DI. In the last case, 

the method showed a progressive and steady deterioration trend as was simulated. Besides, it was 

evident that deterioration in each storey affects the other stories DI’s results. However, in each 

case, the greater DI value was obtained from the corresponding deteriorated storey. 
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       (a) 

   
(b) 

 
          (c) 

Figure 4. BMO technique: (a) C parameter, (b) α criterion (c) β criterion 
 
 

 
    (a) 

 
    (b) 

 
    (c) 

Figure 5. Deterioration identification (a) Case #1; (b) Case #2; (c) Case #3 
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3.2. Case study 2: the 20-storey RC frame 

A FEM of a 20-storey RC frame was used to verify the performance of the proposed 

deterioration assessment method. Table 3 shows dimensions of the 20-storey RC frame building 

with 4 spans (Figure 6) designed and then modelled by the computer program IDARC45. For 

simplicity, all the columns, as well as the beams, have similar sections in each floor. Table 4 shows 

the first seven natural frequencies ef  . 

The health case of FCDR was considered for the 50 years of deterioration. The deterioration 

rate (ADR) for the cross-sectional area was also considered equal to 32 10−× . The cross-sectional 

area of the left columns’ bars at levels 3, 8, 14 and 20 was gradually reduced to simulate 

deterioration. At the age of 32 years, a slight preventive damage maintenance was simulated and 

thereafter deterioration continued for 50 years. 

Table 3. Dimensions of columns and beams 
 Beam Column 

Storey Dimensions 
(mm) 

Steel area 
(mm2) 

Dimensions 
(mm) 

Steel area 
)2mm( 

16-20 400*400 900 400*400 4560 
11-15 450*450 900 500*500 7385 
6-10 500*500 900 600*600 9646 
1-5 550*550 1000 700*700 9646 

 

Table 4. The first seven natural Frequencies in Hz 
Mode 1st 2nd 3rd 4th 5th 6th 7th 
(Hz) 0.54 1.5 2.5 3.8 5 6.45 8.04 

 

 
Figure 6. 20-storey RC frame 

 

Similar to the previous case study, the response data of the real structure (P-block building 

at QUT) under ambient vibration with the sampling frequency of 2000Hz and the sample size of 

120000 data points was used as input ambient excitation48. The response acceleration data of the 

simulated deteriorating structure was utilized as input data for the proposed method. Moreover, 

white Gaussian noise with the signal-to-noise ratio per sample of 10 was added. Then, the data 

normalization procedure was employed. The best model orders were estimated using the proposed 

BMO technique, and the acceleration response data was modelled as the AR time-series. Finally, 

the P-values of the statistical hypothesis of two-sample f-test were used to define the deterioration 

indicator. 
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The results of the assessment of the simulated deterioration are presented in Figure 7. It 

shows that the proposed method is able to detect deterioration at the multiple deterioration 

locations. DI is zero when the frame was just built (time=0). By the time the structure experienced 

deterioration, the DI increases over time. At the age of 32, slight preventive maintenance actions 

were performed, which the method clearly detected. 

 
Figure 7. Deterioration identification 

 

4. Results and Discussions 

As mentioned earlier, a data normalization procedure was proposed in this study, including 

data standardization, applying a low-pass Chebyshev filter as well as a pre-whitening filter. The 

effect of the proposed data normalization procedure on DI is shown in Figure 8. As can be seen in 

this figure, the proposed procedure cancels all the false peaks and gives a smooth curve which is 

closer to the deterioration simulation.  

  
Figure 8. Effect of normalization procedure on DI 
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In order to enhance the sensitivity of time-series analysis, the BMO technique was proposed in 

this study. It increases the sensitivity of the deterioration detection method to slight structural 

changes by minimizing the residuals and optimizing the simplicity of the model. The effect of 

different model order on DI is shown in Figure 9. This figure illustrates the importance of the best 

model order for a precise deterioration detection. In this example, the BMO technique estimated 

the best model order for these datasets equal to 14. This figure shows that a higher model order 

(e.g. 30) increases the residuals and results in false positive and negative values. For instance, the 

model order of 30 cannot detect deterioration for the first 35 years and DI is almost zero. From the 

year 35 to 50, DI increases in time, however, it fluctuates. This contradicts the simulation of 50 

years deterioration. On the other hand, a lower model order (e.g. 10) fails to identify deterioration. 

Therefore, having a suitable model order is crucial in this deterioration detection method. 

 
Figure 9. Effect of different model order on DI 

All the results of this study were based on the sample length of 60 seconds. To study the 

effects of sample length on the results of deterioration detection, different sample lengths were 

chosen to be used for time-series models.  As mentioned earlier, data with the sampling frequency 

of 200Hz and the sample size of 12000 data points (sample length of 1200 200 60=  seconds) were 

used. Herein, different sample lengths of 360, 180, 120, 60, 30 and 10 seconds with similar sample 

frequency were tested.  



17 
 

 
Figure 10. Deterioration identification with different sample lengths 

 

5. Conclusion 

This study developed a novel method to detect small adverse changes in structures known to 

be deterioration in an effort to address a significant research gap in the SHM research field. The 

method was applied to 3-storey and 20-storey RC frames under excitations recorded in a real 

structure. The responses of these frames during 50 years of deterioration simulation with the added 

Gaussian noise were fitted using the AR models. In order to assign the time series residuals to the 

deterioration trend, two-sample f-test was used. The enhanced time-series based method was able 

to detect multiple deterioration locations even in the presence of noise. In addition, the results 

proved that the proposed method is capable of detecting changes due to preventive maintenance 

actions and damage. Analyses also showed that it is crucial to select the best model order for 

vibration response data and the BMO developed in this research is an excellent tool to assist in this 

task.  

The proposed method does not require data from the deteriorated states beforehand, and is 

capable of dealing with noise content. These are the key features of the proposed method which 

make it practically efficient to be used in real structures. However, it might face some challenges 

(as follows) that are highly recommended to be addressed in future studies. Due to the high level 

of uncertainty and noise in highly complex real-world asymmetric in plan and in elevation 

structures, it might be necessary to develop the method further in order to estimate a cost-effective 

number and location of sensors for obtaining precise deterioration detection results. Moreover, 

although this method can detect deterioration, it cannot localize and quantify deterioration. Finally, 

while the results of this method can be used to plan proper preventive maintenance actions, this 
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study needs to be further developed to predict the occurrence of damage, which can make a 

considerable contribution to the industry to plan preventive maintenance actions. 
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