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Abstract
The flowering time (FTi) plays a critical role in the reproductive success and yield of

various crop species by directly impacting both the quality and quantity of grain yield.

Achieving optimal FTi is crucial for maximizing reproductive success and ensuring
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overall agricultural productivity. While genetic factors undoubtedly influence FTi,

photoperiodism and vernalization are recognized as key contributors to the com-

plex physiological processes governing flowering in plants. Identifying candidate

genes and pathways associated with FTi is essential for developing genomic interven-

tions and plant breeding to enhance adaptability to diverse environmental conditions.

This review highlights the intricate nature of the regulatory mechanisms of flower-

ing and emphasizes the vital importance of precisely regulating FTi to ensure plant

adaptability and reproductive success. Special attention is given to essential genes,

pathways, and genomic interventions geared toward promoting early flowering, par-

ticularly under challenging environmental conditions such as drought, heat, and cold

stress as well as other abiotic stresses that occur during the critical flowering stage of

major field crops. Moreover, this review explores the significant progress achieved

in omics technologies, offering valuable insights and tools for deciphering and regu-

lating FTi. In summary, this review aims to provide a comprehensive understanding

of the mechanisms governing FTi, with a particular focus on their crucial role in

bolstering yields under adverse environmental conditions to safeguard food security.

Plain Language Summary
Flowering is crucial in agricultural crops because it produces seeds that grow into

new plants or are used for human consumption. The timing of flowering is also

important, particularly in the context of climate change. Extreme weather conditions

can adversely affect flowering and reduce crop productivity. Early-flowering vari-

eties complete their life cycle prior to the onset of extreme environmental conditions,

allowing them to escape the detrimental effects of heat and drought stress. Recent

advances in DNA sequencing have led to the identification of key genes directly

involved in flowering, such as FT (FLOWERING LOCUS T), FLC (FLOWERING
LOCUS C), and VRN (Vernalization). Additionally, various genomic approaches

such as QTL-seq, genome editing, trait mapping, and speed breeding have been

used to better understand the complexity of flowering time. This integrated approach

provides a promising solution for regulating flowering time and improving crop

adaptability to adverse conditions.

1 INTRODUCTION

Crop production and climate change are intricately linked,
with climate change serving as a prominent instigator of both
biotic and abiotic stresses that adversely impact crop yields
(Abbass et al., 2022). Climate change manifests through ele-
vated carbon dioxide (CO2) levels, temperature fluctuations,
intensified rainfall, and an increased frequency of extreme
weather events (Parmesan & Hanley, 2015). The anticipa-
tion of more frequent and widespread occurrences of extreme
heat, prolonged droughts, and heavy rainfall underscores the
urgency to address these challenges. Projections indicate a
potential doubling of maize (Zea mays L.) yield reduction

due to heat stress during anthesis by 2080, emphasizing the
gravity of the situation (Deryng et al., 2014). Severe mois-
ture stress has similarly led to significant yield reductions in
maize and soybean (Glycine max; H. Nguyen et al., 2023).
Grain legume crops like chickpea (Cicer arietinum), lentil
(Lens culinaris), faba bean (Vicia faba), and pea (Pisum
sativum) face heightened vulnerability to terminal heat and
drought stresses, necessitating the development of crop vari-
eties resilient to diverse stresses for global food security (V.
V. Kumari et al., 2021).

To address these challenges, plant breeders are leverag-
ing the genetic diversity within crops to develop improved
varieties with desirable traits. These traits, including canopy
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temperature, stay green, leaf chlorophyll, leaf area, stomatal
conductance, relative water content, root length and flow-
ering time (FTi), have been identified as crucial features
for improving stress tolerance (Fahad et al., 2017). FTi is
the duration for a plant to produce fully developed flowers,
which emerges as a key trait in mitigating the impacts of
terminal heat and drought stresses on crop yield (Shavrukov
et al., 2017). The initiation of flowering marks a fundamen-
tal transition in the life cycle of annual plants, playing a
vital role in their fitness and reproductive success (Rubin
et al., 2019). The regulation of FTi is a complex process that
integrates multiple internal genetic components and external
signals (day length, temperature and adverse environmental
conditions) to ensure optimal reproductive success (Amasino,
2010). Epigenetic factors such as histone modifications, DNA
methylation, and microRNAs further contribute to this reg-
ulatory complexity (Yaish et al., 2011). Arabidopsis serves
as a model plant for understanding flowering regulation,
with vernalization triggering flowering by controlling key
genes such as FLOWERING LOCUS C (FLC) and FLOW-
ERING LOCUS T (FT) (Chavez-Hernández et al., 2022).
Legumes, responding to cold for flowering, use their versions
of the FTi gene (FTa, FTb, and FTc) (Surkova & Samsonova,
2022), while cereals predominantly rely on vernalization
genes (VRN1, VRN2, and VRN3) such as Vrn-1 and Ppd-1 in
wheat (Triticum aestivum; Kennedy & Geuten, 2020; Mizuno
et al., 2023).

While the physiological and molecular basis of flowering
is not entirely understood, recent advances in next-generation
sequencing (NGS) and functional genomics have provided
valuable insights into the molecular pathways involved
(Chavez-Hernández et al., 2022; D. Ma et al., 2021; Osnato
et al., 2022). Whole-genome sequencing aids in identifying
single nucleotide polymorphisms, facilitating the identifica-
tion of genomic regions or candidate genes associated with
important traits. Numerous studies have explored the FTi trait
in various plant species, including model plants and major
crops such as maize, rice (Oryza sativa L.), soybean, and
chickpea. In the face of climate change, the timing of flower-
ing becomes crucial for many field crops. Initiating flowering
early in the growing season can help mitigate the adverse
effects of climate change, but careful consideration is needed
to avoid limiting seed production (Kehrberger & Holzschuh,
2019). Early maturing legume and oilseed crops offer poten-
tial solutions for cultivation in specific areas, utilizing fallow
land through short-duration cultivation. Conversely, delay-
ing flowering is essential for crops harvested for plant parts
such as tubers or roots, emphasizing the need for precise con-
trol over FTi to achieve successful breeding outcomes and
expedite genetic enhancement.

This review explores recent advancements in understand-
ing the molecular and physiological basis of flowering in
crop plants, focusing on the use of the FTi trait as a tool for

Core Ideas
∙ Flowering time (FTi) is regulated by intricate

molecular processes involving gene expression,
hormones, and other internal/external signals.

∙ FTi is crucial for crops adapting to extreme condi-
tions, affecting seed production and survival.

∙ Identifying genes and pathways for FTi is vital
for genomic interventions and breeding, enhancing
adaptability to diverse environments.

∙ Modern genetic and genomic tools offer sustain-
able solutions for expediting breeding programs to
regulate FTi.

adaptation to abiotic and biotic stresses at terminal growth
stages. Key genes, pathways, and genomic interventions
promoting early-flowering strategies for enhanced crop pro-
ductivity are discussed. Additionally, the importance of early
maturing varieties and the potential of genomic interven-
tions in improving crop productivity and stress tolerance are
highlighted.

2 IMPACT OF CLIMATE CHANGE ON
FLOWERING TIME

In response to dynamic environmental shifts, plants have
developed adaptive mechanisms over time. Two crucial ele-
ments of climate change, specifically rising temperatures and
elevated carbon dioxide (CO2) levels, can impact plant fitness
and various processes related to flowering (Jagadish et al.,
2016; Tun et al., 2021) and yield formation (Prasad et al.,
2002). Temperature plays a pivotal role in the regulation of
FTi, directly influencing both development and vernalization
processes. Regions experiencing faster increases in winter
temperatures (ranging from 0.4 to 2.4˚C) observe a notable
reduction in flower numbers and seed production (Jagadish
et al., 2016). Intriguingly, plant species with multiple inflo-
rescences are more affected by elevated winter temperatures
than those with single inflorescences (Y. Liu et al., 2012).
In different species of rice, exposure to higher temperatures
(+5˚C above ambient) decreased duration from sowing to
50% flowering and decreased pollen production, pollen via-
bility, spikelet fertility, number of filled grains, grain weights,
and harvest index (Prasad et al., 2006). Enhanced CO2 levels
are known to stimulate increased accumulation of photosyn-
thate, such as trehalose-6-phosphate (T6P) in plants (Jagadish
et al., 2016; Springer & Ward, 2007). Disrupting T6P pro-
duction also disturbs the activation of the FT gene (Wahl
et al., 2013). For example, soybean experiments conducted
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in controlled chambers with elevated temperature and CO2
levels demonstrate the induction of early flowering, accom-
panied by molecular-level changes involving the upregulation
of flowering activators and the downregulation of repressors
in response to high temperatures (No et al., 2021).

In Arabidopsis, drought stress induces early flowering
under long daylight but delays flowering under shorter day-
light. The photoperiodic gene GI, encoding the GIGANTEA
protein, plays a crucial role in this process (Riboni et al.,
2013). GI is present in many plant species, contributing
to critical functions such as regulating circadian rhythm,
responding to light signals, tolerating cold, signaling hor-
mones, and controlling flowering in a day length-dependent
manner (Brandoli et al., 2020). However, it is important to
note that while early flowering is a critical adaptation for
surviving severe terminal stress, it may adversely impact
plant yield under milder chronic stress conditions (Franks,
2011). Another study involving barley (Hordeum vulgare)
genotypes exposed to nitrogen deficiency, drought, and salin-
ity demonstrated that increased yield is accompanied by
pleiotropic effects arising from FTi-associated genes, result-
ing in a shorter life cycle, an extended grain-filling period, and
an increase in grain size in barley (Wiegmann et al., 2019).
Salinity significantly delays flowering in Arabidopsis, involv-
ing several regulatory factors. The flowering delay under salt
stress is influenced by DELLA proteins, which act as nega-
tive regulators of GA signaling, and by ethylene (Kazan &
Lyons, 2015). Additionally, salt stress reduces the expres-
sion of CO (CONSTANS) and FT, further contributing to the
delayed flowering response (Kazan & Lyons, 2015). Inter-
estingly, high salt stress has been reported to reduce plant
biomass while inducing an early-flowering phenotype and
smaller flowers in tomato (F. Sun et al., 2024).

3 PHYSIOLOGICAL BASIS OF
FLOWERING TIME

3.1 Photoperiodic flowering in plants

Field crops can have either a facultative or obligate response
to photoperiod, and depending on the crop species, these
responses could be accelerated either by short days or long
days. A long photoperiod is defined as having at least 16 h of
light and not more than 8 h of darkness in a 24-h cycle. On
the other hand, a short photoperiod is defined as having no
more than 10 h of light and at least 14 h of darkness in a 24-
h cycle (Hamner, 1944). Short-day plants will flower earlier,
exclusively during short days (long nights), while long-day
plants will flower earlier during long days (short nights)
(Allard & Garner, 1940) (Figure 1). Plants detect light through
specialized structures called photoreceptors, which enable

them to sense a broad range of wavelengths. Phytochromes
serve as the primary photoreceptors in plants, detecting red
and far-red light and transmitting light signals (Qiu et al.,
2023). These photoreceptors in plants are crucial for trigger-
ing genome-wide changes in the expression of nuclear and
organelle genes, facilitating photomorphogenesis (Griffin &
Toledo-Ortiz, 2022). In Arabidopsis, the CO gene is a cen-
tral hub for integrating various internal and external signals to
induce photoperiodic flowering. In contrast, the CO ortholog
in rice, Heading date 1 (Hd1), plays a dual role by promoting
flowering under short-day conditions and inhibiting it under
long-day conditions (C. Sun et al., 2022).

3.2 Vernalization and flowering time

Temperature plays a crucial role in controlling flowering
in many plants, often depending on the plant’s develop-
mental stage. Some plants require a prolonged cold period
(vernalization) to trigger flowering. They perceive these tem-
perature changes through alterations in cellular processes.
For instance, plant cell membranes change their fluidity in
response to temperature variations, which can influence vari-
ous signaling pathways and affect the activity of proteins in
the flowering process (Ding & Yang, 2022). Vernalization
leads to molecular changes, including epigenetic modifi-
cations of the floral repressor gene FLC in Arabidopsis
(P. K. Huang et al., 2024). Before vernalization occurs in
Arabidopsis, elevated levels of FLC prevent the transition
to flowering. Notably, this repression is accompanied by
increased trimethylation of lysine 27 (K27me3) on histone
H3, which serves as an epigenetic mark associated with gene
silencing. In monocots, such as cereal crops like wheat and
barley, VRN2 serves as a repressor of flowering, and its
expression is suppressed by vernalization to induce flowering
(Trevaskis et al., 2007; L. Yan et al., 2006). Consequently, the
activation of VRN1 plays an important role in triggering flow-
ering in wheat and barley (Deng et al., 2015; L. Yan et al.,
2006). Wild emmer wheat, which served as the progenitor
of modern bread wheat, displays substantial variation in the
VRN1 gene (Samineni et al., 2015). Interestingly, utilizing an
expedited vernalization technique through an extended pho-
toperiod of 22 h of daylight and 2 h of night time exposure
at a temperature of 10˚C substantially reduces the generation
time for winter wheat and barley, enabling up to five gen-
erations per year compared to the standard two generations
(Cha et al., 2022). The vernalization process and its epige-
netic regulation provide valuable insights for manipulating
FTi in crop plants and enhancing agricultural productiv-
ity. However, further research in this field is essential to
unravel the complexities of vernalization and its molecular
mechanisms.
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F I G U R E 1 Molecular and physiological aspects of flowering. Summary of different environmental cues for flowering response, including
photoperiod and vernalization. Understanding these aspects of flowering has led to the development of the speed breeding approach, which
minimizes the period required to reach maturity. The figure also illustrates genomic approaches such as QTL mapping, association mapping, and
genome editing. It emphasizes the integration of multi-omics approaches for a comprehensive understanding of the molecular basis of flowering. The
yellow box below highlights the molecular or genetic control of flowering in short-day plants (rice), long-day plants (Arabidopsis), and vernalization.
The pathways illustrating how auxin and gibberellin regulate or activate other genes, such as FUL, LFY, SOC1, and AP1, are also presented. AP1,
APETALA1; ARF4, AUXIN RESPONSE FACTOR4; CO, CONSTANS; Ehd2, Early heading date2; FLC, FLOWERING LOCUS C; FT,
FLOWERING LOCUS T, FUL, FRUITFULL; G1, GIGANTEA; Hd, Heading date; LFY, LEAFY; OsG1, OsGIGANTEA; SEP3, SEPALLATA 3;
SOC1, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1; TOE1, TARGET OF EAT 1; VRN, VERNALIZATION.

3.3 Plant hormones and flowering time

Plant hormones act as messengers that help plants respond
to environmental cues (Campos-Rivero et al., 2017). How-

ever, when it comes to the complex process of flower bud
formation, a single plant hormone alone is not enough to exert
a strong influence (Domagalska et al., 2010). Interactions
among various plant hormones, including auxin, gibberellin,
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ethylene, indole-3-acetic acid, cytokinins, and abscisic acid,
have been demonstrated to play key roles in triggering flower
induction across plant species (Matsoukas, 2014; B. Yan et al.,
2019). During plant reproduction, auxin plays a vital role
in several aspects. It helps to identify where flowers will
form and continues to control the growth and arrangement
of flower parts. Additionally, auxin influences later stages of
reproduction, determining reproductive success (Krizek,
2011). In rice, increasing the expression of the OsFPFL4
(FPF1-like protein 4 of rice) gene raises auxin levels while
reducing its activity, which lowers auxin levels and influ-
ences the FTi (Guo et al., 2020). In wheat (T. aestivum
L.), the gene TaIAA15-1A (Indole-3-Acetic Acid 15-1A) reg-
ulates FTi by interacting with the auxin response factor
(P. Su et al., 2023). In cultivated strawberry plants, auxin
response factor 4 (FaARF4) gene is documented to be more
active during flowering, and the introgression of this gene in
Arabidopsis and woodland strawberries (Fragaria ananassa)
led to early-flowering phenotypes (Dong et al., 2021).

Trehalose 6-phosphate (T6P) has been found to stimu-
late the expression of an auxin biosynthesis gene, tryptophan
aminotransferase related 2 (TAR2), affecting auxin levels and
activating storage processes (Meitzel et al., 2020). During the
transition to the flowering stage, increased tissue sucrose lev-
els lead to higher T6P levels, which influence FTi. Indeed,
lower T6P levels have been linked to delayed flowering,
while higher T6P promotes earlier flowering in plants (Wahl
et al., 2013). It has also been reported that GA suppresses the
expression of the flowering induction gene LFY, while IAA
(indole-3-acetic acid) treatment enhances its expression (D.
Singh et al., 2023). Hormonal signaling pathways are also
involved in the regulation of key flowering genes, such as
FLC, CO, and FT (Conti, 2017). For example, GA promotes
flowering by activating specific genes such as SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS 1 (SOC1), LEAFY
(LFY), and FT (Bao et al., 2020; Mutasa-Göttgens & Hedden,
2009). In another study on barley, GA inhibitors, particu-
larly trinexapac-ethyl applied via exogenous spray, showed
the greatest potential for delaying flowering (Kupke et al.,
2022). Additionally, DELLA proteins and GA homeostasis
are essential regulatory elements within the GA pathway (Bao
et al., 2020). DELLA proteins are key regulators in the GA
signaling pathway, while they control the expression of genes
such as SOC1 and FT, which are keys for plant growth and
flowering (M. Li, An, et al., 2016). It is also reported that
the gibberellin-insensitive mutant causes dwarfing and ear-
lier flowering in Arabidopsis, while it delays flowering in
maize (Lawit et al., 2010). In Arabidopsis, BRAHMA (BRM)
is involved in GA-signaling-mediated flowering through the
assembly of the DELLA-BRM-NF-YC module (C. Zhang,
Jian, et al., 2023). Florigen is a protein hormone encoded by
the FT gene, produced in the leaves, and subsequently trans-
ported to the shoot apical meristem (Corbesier et al., 2007). It

has a dual role in flowering plants: (i) triggering flowering by
promoting the transition to floral development and (ii) growth
attenuation in other vegetative meristems (Shalit-Kaneh et al.,
2019). All the studies highlight the role of phytohormones in
flower development and emphasize their overlapping roles in
various developmental processes.

4 MOLECULAR BASIS OF
FLOWERING TIME

4.1 Genes involved in flowering time were
identified in crop plants

The availability of genomic resources and synteny in crops has
further advanced the identification of flowering-associated
genes. Extensive research in field crops has revealed key
insights into the genetic regulation of flowering and identify-
ing various candidate genes (Table 1). Different crop species
have unique genetic regulators that control flowering and
respond to environmental signals. Many flowering-related
genes found in Arabidopsis and rice are conserved in legumes
(Weller & Ortega, 2015). The FT gene belongs to a family
found in all angiosperms. FT gene is crucial in regulat-
ing FTi by integrating environmental signals. They transmit
this information from the photoperiod detection site in the
leaves to the flower formation site at the shoot apex (N.
Lee, Ozaki, et al., 2023). In addition to their role in flower-
ing, FT homologs influence various seasonal developmental
changes, such as germination, tuber/nodule formation, dor-
mancy onset, and side branching control. This gene family
includes FT orthologs and paralogs, some of which inhibit
flowering (N. Lee, Ozaki, et al., 2023). Another key protein
in flowering is the CO protein, consisting of an N-terminal B-
box domain, a C-terminal CCT domain, and a central region
rich in glutamine sequences. It is recognized as AtCO in Ara-
bidopsis, which facilitates flowering in long days and involves
stress response (B. Zhang, Feng, et al., 2023). Researchers
later identified its rice counterpart, HD1, which shares sig-
nificant amino acid sequence similarities with AtCO. Studies
have shown that HD1 functions similarly to CO in the flow-
ering pathway, confirming HD1 as a ortholog of AtCO in rice
(Nemoto et al., 2016).

4.2 Transcription factors and their role in
flowering time

Transcription factors are essential in regulating early or late
flowering in plants. These proteins interact with specific DNA
sequences to control gene regulation. The MADS-box tran-
scription factor is a well-known and crucial regulator that
plays a central role in floral development. FLC gene encodes
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T A B L E 1 Summary of the important essential genes in major field crops involved in flowering time.

Crop Gene Key role Reference
Maize (Zea mays) ZEA CENTRORADIALIS 8

(ZCN8)
Functions as a floral activator and is
involved in photoperiod sensitivity

Meng et al. (2011)

ZmCCT Regulates photoperiod-dependent
flowering and also response to abiotic
stresses

Hung et al. (2012); Su
et al. (2021)

ZmMADS69 Functions as a flowering activator
through the ZmRap2.7-ZCN8
regulatory module

Y. Liang, Liu, et al. (2018)

ZmCCT9 Enhances maize adaptation to higher
latitudes

C. Huang et al. (2017)

Rice (Oryza sativa) Heading-date 1 (Hd1) and Early
heading date 1 (Ehd1)

Involved in regulation of flowering and
reduces the number of primary
branches in a panicle

Endo-Higashi and Izawa
(2011)

RICE FLOWERING LOCUS T1
(RFT1)

Contributes to flowering time
divergence

Ogiso-Tanaka et al. (2013)

Heading date 3a (Hd3a), Heading
date 1 (Hd1), and Early heading
date 1 (Ehd1)

Expression of these genes is highly
correlated with flowering time

Takahashi et al. (2009)

Flowering-Related RING Protein
1 (FRRP1)

FRRP1 probably regulates flowering
time by affecting histone H2B
monoubiquitination

Du et al. (2016)

Wheat (Triticum
aestivum)

TaFT3 Mutant alleles confer delayed flowering Halliwell et al. (2016)

MiR172-APETALA2-like genes miR172 promotes flowering Debernardi et al. (2022)

O-linked N-acetylglucosamine
transferase (OGT)

Involved in fine regulation of flowering
time

Fan et al. (2021)

EARLY FLOWERING 3 Contributes to the regulation of
heading date

Wittern et al. (2023)

Sorghum (Sorghum
bicolor)

Pseudoresponse regulator protein
37 (PRR37)

Controls photoperiodic flowering Murphy et al. (2011)

Maturity2 (Ma2) Delayed flowering in long days by
selectively enhancing the expression of
SbPRR37 (Ma1) and SbCO

Casto et al. (2019)

Ghd7 (Ma6) Increases photoperiod sensitivity and
delays flowering by inhibiting
expression of the floral activator
SbEhd1 and genes encoding FT

Murphy et al. (2014)

Barley (Hordeum vulgare) FLOWERING LOCUS T4 Specifically delayed spikelet initiation
and reduced the number of spikelet
primordia and grains per spike

Pieper et al. (2021)

FLOWERING TIME LOCUS T 1
(FT1) and CONSTANS-LIKE
PROTEIN 1 (CO1)

Involved in regulating flowering time Qian et al. (2020)

VERNALIZATION-H2
(VRN-H2)

Strong repressor of flowering under
long days before vernalization

Mulki and von
Korff (2016)

HvCEN, HvELF3, and HvFT1 Responsible for early flowering Casas et al. (2021)

Ppd-H1 The major determinant of photoperiod
response

Cosenza et al. (2024);
Maurer et al. (2015)

(Continues)
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T A B L E 1 (Continued)

Crop Gene Key role Reference
Soybean (Glycine max) GmMDEs Regulated flowering time and stem

growth habit by affecting the
expression levels of other genes

Zhai et al. (2022)

GmEID1 Modulates light signaling through the
evening complex to control flowering
time and yield

Qin et al. (2023)

GmFT3a Promotes flowering by regulating the
expression of downstream
flowering-related genes and also affects
the expression of other GmFTs

S. Yuan et al. (2022)

Chickpea (Cicer
arietinum)

Chickpea Early Flowering 1
(Efl1)

Ortholog of Arabidopsis EARLY
FLOWERING 3 (ELF3) that confers
early flowering in chickpea

Ridge et al. (2017)

Lentil (Lens culinaris) LcFTa1, LcFTb1, and LcFTb2 Involved in flowering time in response
to light quality.

H. Y. Yuan et al. (2021)

Early flowering 3 (elf3) Associated with photoperiod
insensitive flowering and fast absolute
growth rate

Roy et al. (2023)

DTF6a and DTF6b (FTa1 gene) Confer early flowering under extremely
short photoperiods alone

Rajandran et al. (2022)

Brassica rapa FLOWERING LOCUS C
(BrFLC)

Key gene for vernalization Takada et al. (2019)

FT and FLC Key role in the timing of the initiation
of flowering

Scheben et al. (2020)

PSEUDO RESPONSE
REGULATOR 7 (PRR7) and FY

Key roles in the circadian clock
pathway and upregulated in both leaf
and shoot tissues

Jian et al. (2019)

BnaFT.A2 Key role in flowering time regulation Cai et al. (2021)

Cotton (Gossypium
herbaceum)

Early flowering 4 (ELF4) Participate in the plant biological
clock’s regulation process,
photoperiod, hypocotyl elongation, and
flowering time

Tian et al. (2021)

GhAAI66 Triggers a phase transition to induce
early flowering

Qanmber et al. (2019)

FRUITFULL-like (FUL-like) Promotes the
vegetative-to-reproductive transition
and represses inflorescence branching
by inducing floral meristem maturation

Jiang et al. (2022)

a MADS-box protein that acts as a repressor of flowering
and is essential for the process of vernalization (Sheldon
et al., 2000). FLC inhibits the expression of two flowering-
promoting genes, FT and SOC1 (Deng et al., 2011). Further,
it is also reported that FLC binds to many other genes and
is involved in vegetative development by interacting with the
gene SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
15 (SPL15), which delays the transition from juvenile to adult
phase (Deng et al., 2011). HD-ZIP I-class transcription fac-
tor (GhHB12) exhibits specific expression in axillary buds
in cotton (Gossypium herbaceum). Furthermore, in cotton,
RNA sequencing analysis revealed that GhSPL4, a member

of the SBP transcription factor family targeted by GhmiR156,
was significantly upregulated in early-flowering cultivars (Y.
Zhou et al., 2022). Regulatory interaction leads to bushy
plant architecture and delayed flowering, specifically under
long-day conditions (X. He et al., 2018). In rice, Hd1 Bind-
ing Protein 1 (HBP1), two basic helix-loop-helix (bHLH)
transcription factors, and POH1 were identified as transcrip-
tional regulators of Hd1 (Yin et al., 2023). Additionally,
B-box transcription factors are pivotal regulators in flower-
ing, photomorphogenesis, shade-avoidance, stress responses,
and hormonal pathways (Y. Liu et al., 2020). Recent research
has also identified their significance in the flowering of crops
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such as tomato (Solanum lycopersicum) (Wu et al., 2023; D.
Xu et al., 2023). These findings highlight the diverse roles of
transcription factors in controlling FTi and their significance
in plant adaptation to biotic and abiotic stresses. Additionally,
a recent study suggests that the transcription factor AtERF19
plays a dual role in regulating the number and size of flower
organs (P. F. Lee, Zhan, et al., 2023). It achieves this by modu-
lating genes associated with CLV–WUS signaling for flower
production and influencing auxin signaling for flower organ
size.

Flowering regulation involves FLD and FLC genes con-
trolled by epigenetic mechanisms such as ubiquitination,
acetylation, methylation, and hormone signaling (P. Kumari
et al., 2022). In Arabidopsis and rice, proteins such as
TRITHORAX (TRX) and SET DOMAIN GROUP (SDG)
control histone methylations. For instance, SDG2 mainly han-
dles H3K4me3, with a small role played by ARABIDOPSIS
HOMOLOG OF TRITHORAX1 (AXT1) and ATX2. SDG8
and SDG4/26 are responsible for H3K36me3, and ATXR5/6
focuses on H3K27me1 (see S. Liu et al., 2023). SDG725,
the initial H3K36-methyltransferase identified in rice, is cru-
cial for depositing H3K36me2/3 on Hd3a chromatin, thereby
hastening the flowering process (Sui et al., 2013).

4.3 The regulatory elements associated
with flowering time

Gene promoters play a critical role in expressing FTi-related
genes by controlling when and where these genes are acti-
vated. They serve as regulatory regions upstream of the target
genes, providing binding sites for transcription factors and
other regulatory molecules. In Brassica napus, the discov-
ery of two flower-specific promoters, FSP046 and FSP061,
highlights the potential of these promoters for agricultural
use due to their tissue specificity and consistent expression in
petals (Y. Li, Dong, et al., 2019). Similarly, AGL24, a gene
in Arabidopsis, functions as a positive flowering promoter.
Vernalization enhances its expression and activity (Michaels
et al., 2003). Differences in DNA methylation within the
ZmCCT10 promoter in maize influenced ZmCCT10 gene
expression, subsequently affecting FTi (Z. Zhou et al., 2023).
Salvi et al. (2007) narrowed down the major FTi QTL (vege-
tative to generative transition 1; Vgt1) in maize and identified
an ∼2-kb noncoding region located 70 kb upstream of an
AP2-like transcription factor. Castelletti et al. (2014) iden-
tified a miniature transposon (MITE) insertion within this
conserved noncoding sequence at Vgt1, strongly associated
with early flowering across independent analyses. Addition-
ally, it was reported that this region at Vgt1 was minimally
methylated; however, the region near the MITE insertion
in the early-flowering maize allele was heavily methylated
(Castelletti et al., 2014). A precise understanding of the

structural composition of these noncoding regions and their
functional influence on gene expression patterns contributes
to our knowledge of FTi control and offers potential targets
for crop improvement.

5 FLOWERING TIME IS A KEY TRAIT
IN ADDRESSING ABIOTIC STRESSES

Crops face various challenges and have evolved with differ-
ent strategies to counteract such constraints on productivity.
These strategies involve allocating additional resources to
enhance their immune responses and adjusting their repro-
ductive processes to ensure successful reproduction (Lyons
et al., 2015). Early-flowering/maturing varieties of crop plants
have emerged as a promising strategy to adapt to the impact
of abiotic stresses. These varieties exhibit accelerated plant
development, allowing the life cycle of the plant to be com-
pleted before the onset of adverse environmental conditions,
such as terminal drought or terminal heat stress (Mondal
et al., 2015; Shavrukov et al., 2017). This adaptive mechanism
(stress escape) is widely observed in native plant populations
and can be applied to major crops. Additionally, cultivat-
ing early maturing legumes into fallow land, particularly in
fallow rice land, could provide numerous benefits, such as
restoring soil fertility, nitrogen fixation, suppressing weed
growth, and utilizing fallow land (Kebede, 2021). Using the
concept of early maturation and adopting stress escape mech-
anisms, plant breeders can enhance resilience and improve
agricultural productivity in the face of abiotic stresses, thereby
contributing to sustainable farming systems. Early flowering
in wheat serves as a survival strategy, even though it can
reduce grain yield under long photoperiod conditions, primar-
ily by impacting floral growth and development (Y. Zhang,
Guo, et al., 2023). Early flowering may be vital in wheat
production under terminal drought, as it reduces the risk of
dehydration during the critical flowering and post-anthesis
grain filling stages.

In numerous botanical investigations, the intricate interplay
between FTi and environmental variables, including complex
ecological conditions and abiotic stressors, has been subject
to scholarly scrutiny across a spectrum of species. Under
conditions of water scarcity, the temporal regulation of FTi
undergoes discernible alterations at the molecular level. For
instance, K. Song et al. (2017) observed significant alter-
ations in the expression profiles of key genes associated with
FTi in response to drought stress in maize. Notably, genes
such as PRR37, the transcription factor HY5, and CO were
identified as being particularly susceptible to modulation,
leading to a hastened onset of anthesis. Similarly, investi-
gations in the model plant Arabidopsis thaliana unveiled
perturbations in the expression patterns of pivotal flowering-
related genes, including FT, SCO1, and LEAFY, consequent to
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drought imposition. Such genetic disregulation was associated
with observable floral anomalies, including aberrant anther
development and diminished pollen viability (Z. Su et al.,
2013). Further elucidating these molecular intricacies, RNA
sequencing analyses uncovered noteworthy alterations in the
expression levels of flowering-time regulators such as Hd3a,
CONZ1, and ZCN8 in maize, genes conventionally associated
with the promotion of flowering under short-day conditions.
Notably, under the influence of drought stress, these genes
exhibited downregulation, implicating their role in mitigating
the floral response under adverse environmental conditions
(Kim et al., 2021).

Elevated temperatures exert a pronounced effect on the
modulation of FTi under both short-day and long-day con-
ditions in A. thaliana (Balasubramanian et al., 2006). This
regulatory mechanism involves the upregulation of key
MADS-box transcription factors, including SHORT VEGE-
TATIVE PHASE (SVP), FLOWERING LOCUS M (FLM),
and FT. These genes play pivotal roles in the promotion of
floral transition, thereby facilitating the acceleration of flow-
ering onset in response to thermal stimuli (Pose et al., 2013).
Similarly, in rice, high temperatures elicit an early-flowering
response, characterized by the enhanced expression of genes
such as Ghd7. The transcriptional activation of Ghd7 serves
as a critical molecular determinant in the regulation of FTi
under temperature-induced conditions (Luan et al., 2009; V.
Song et al., 2012). Furthermore, extending this paradigm, X.
Chen et al. (2019) have contributed novel insights into the
molecular mechanisms underlying the temperature-mediated
regulation of floral development. Specifically, their research
highlights the downregulation of HSP70-16, a heat shock pro-
tein, at higher temperatures (27˚C), which correlates with
the manifestation of floral abnormalities characterized by the
overlapping tips of two lateral sepals and eventual failure of
flower opening. Conversely, empirical evidence from diverse
studies consistently underscores the phenomenon of delayed
flowering in response to lower temperatures. Noteworthy
among these investigations are those delineating the downreg-
ulation of key flowering-time regulators such as FCA and FVE
in A. thaliana under cooler climatic conditions (Ausin et al.,
2004; Y. He et al., 2003). Similarly, investigations by Luan
et al. (2009) and V. Song et al. (2012) corroborate these find-
ings, revealing a concomitant decrease in transcript levels of
Ehd1, Hd3a, and RFT1 in rice plants exposed to reduced tem-
peratures. Moreover, insights from the literature shed light on
the intricate regulatory dynamics governing FTi in response
to temperature cues. Yoo et al. (2007) illuminate the regu-
latory influence of LOV1 on CO expression, a pivotal floral
promoter, suggesting a mechanism wherein LOV1 exerts neg-
ative modulation over CO transcript levels, thereby impacting
FTi regulation. Furthermore, the intricate interplay between
photoperiod and cold temperature signals in seasonal flower-
ing regulation is elucidated by J. H. Lee and Park (2015), who

delineate an elaborate feedforward-feedback loop involving
key regulatory nodes such as INDUCER OF CBF EXPRES-
SION 1 (ICE1), FLC, and SOC1 in Arabidopsis. Collectively,
these scholarly endeavors underscore the intricate molecular
networks orchestrating the temporal dynamics of flowering
in response to temperature fluctuations, thereby enriching our
understanding of the adaptive strategies employed by plants
to navigate environmental variability.

6 BIOTIC STRESSES AND THEIR
RELATIONSHIP WITH FLOWERING TIME

Biotic factors can exert control over the transition to flower-
ing, with potentially harmful effects on plants. Additionally,
different crops exhibit varying photoperiod sensitivities due
to adaptation to different growth environments or breed-
ing targets (Gómez-Ariza et al., 2015). Herbivory and
pathogen infections can profoundly affect plant development.
These effects include early flowering (Elzinga et al., 2007;
Lyons et al., 2015) and delayed flowering (Schiestl et al.,
2014). Plants use altered flowering timing to escape herbi-
vores (Parachnowitsch & Caruso, 2008). Some plants adjust
by increasing flower production during early flowering in
response to herbivory, possibly due to the production of
defense compounds like glucosinolates (Schiestl et al., 2014).

Mechanical damage or wounding also accelerates flow-
ering (Hanley & Fegan, 2007), suggesting that herbivory-
induced effects on flowering may be attributed, at least
in part, to wounding. Genetic mechanisms that underlie
the crosstalk between stress responses and FTi are crucial.
MicroRNAs play a significant role in regulating gene expres-
sion in response to both biotic and abiotic stress conditions
(Ruiz-Ferrer & Voinnet, 2009), often leading to the reorga-
nization of gene expression associated with flower initiation
and development (see Table 2). The interrelationship between
biotic stresses and FTi in plants is complex and influenced by
various factors, including genetic mechanisms, microRNAs,
tolerance levels, and the strategies employed by both plants
and stressors to adapt to their environments.

In green gram (Vigna radiata) cultivation, insect pests
remain a persistent challenge, resulting in yield losses.
Notably, it has been observed that early-maturing varieties of
green gram experienced decreased pest infestations (Mulwa
et al., 2023). In the case of pigeonpea (Cajanus cajan), early-
flowering genotypes exhibit characteristics such as reduced
canopy size, fewer branches, and fewer pods per plant (Saxena
et al., 2019). Conversely, late flowering enhances insect pol-
lination in oil crops such as turnip rape (Brassica campestris;
Toivonen et al., 2019). The intricate relationship between
FTi regulation and biotic stressors has received compara-
tively scant attention in botanical research, with the majority
of investigations concentrated within the Arabidopsis genus.
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Of note, studies examining the impact of Fusarium oxyspo-
rum infection have revealed accelerated FTi alongside the
modulation of key floral integrator genes, notably including
FLC, FT, and GI. These findings underscore the multifaceted
nature of plant–pathogen interactions, wherein the pathogenic
infection elicits systemic responses influencing not only
defense mechanisms but also developmental pathways, such
as FTi regulation (Lyons et al., 2015). Similarly, investiga-
tions into the nematode Meloidogyne incognita infection have
unveiled intriguing insights into the modulation of FTi in
response to biotic stress. Specifically, the infection triggers
enhanced expression of the 8D05 effector protein, thereby
promoting a hastened flowering response (Xue et al., 2013).
Moreover, a novel allele of the flowering regulatory gene
FLK, which encodes a triple KH-repeat protein, has also been
discovered. Mutants lacking FLK exhibited late flowering and
reduced resistance to Pseudomonas syringae but enhanced
resistance to Botrytis cinerea (Fabian et al., 2023). These
findings suggest that regulatory genes such as FLK could play
a key role in regulating plant flowering and immune response.

7 CONVENTIONAL METHODS TO
INDUCE EARLY FLOWERING

Conventional breeding techniques, such as intra-/inter-
specific hybridization, have been the primary methods to
enhance agronomical traits like early flowering and high
yield. Another commonly used method for inducing early
flowering is the manipulation of photoperiod, where the dura-
tion of light exposure is controlled to mimic shorter days,
triggering the flowering response (Paradiso & Proietti, 2022).
This can be achieved by using light-blocking covers or adjust-
ing the duration of artificial light in controlled environments.
The quantity and quality of light plants receive directly impact
processes such as photosynthesis, photomorphogenesis, flow-
ering, and fruiting (Ouzounis et al., 2015). Additionally,
different wavelengths of light have specific effects on plant
development and physiology. Red and blue light is highly
efficient for photosynthesis, and blue light impacts stom-
atal opening and chlorophyll biosynthesis (Paradiso et al.,
2011). Another approach is the application of plant hormones,
such as GA, which can stimulate flowering and promote
early maturity (Coelho et al., 2018). Additionally, tempera-
ture manipulation, such as cold or heat stress exposure, can
accelerate flowering in some plant species (Khodorova &
Boitel-Conti, 2013). These methods are often employed in
breeding programs and agricultural practices to induce early
flowering, allowing for shorter growth cycles and adaptation
to specific environmental conditions. It is important to note
that the effectiveness of these methods may vary depending
on the plant species and specific environmental factors. These
traditional methods of flowering induction in plants have cer-

tain limitations that make them less desirable as long-term
solutions. These methods often rely on labor-intensive prac-
tices, requiring manual intervention such as pruning, light
manipulation, or treatments such as vernalization. Such induc-
tion requires time and adds to the cost due to the need for
a significant workforce and resources. To overcome these
limitations, there is a growing need to explore alternative
approaches, such as genomics or multi-omics approaches, that
offer more efficient and cost-effective means of controlling
flowering in plants.

8 MULTI-OMICS INTERVENTIONS
FOR REGULATING FLOWERING TIME

Multi-omics interventions have emerged as powerful
approaches for unravelling and manipulating the complex
regulatory networks involved in flowering control in plants
(N. Liang, Cheng, et al., 2018; Tian et al., 2021; L. Wang,
Fang, et al., 2020). By integrating multiple high-throughput
omics techniques, such as genomics, transcriptomics,
proteomics, and metabolomics, researchers can gain compre-
hensive insights into the molecular mechanisms underlying
flowering and identify potential targets for intervention
(Figure 1). Genomics studies have enabled the identification
and characterizing of genes and genetic variants associated
with FTi regulation. Quantitative trait loci (QTL) mapping,
genome-wide association studies (GWAS), and genome
editing have been extensively utilized for the manipulation
and modification of various traits associated with yield,
insect pests, and disease resistance in plants (Gangurde et al.,
2022; Jha et al., 2023; Thudi et al., 2023). Similarly, for
early-flowering traits, researchers have discovered numerous
flowering-related genes and genetic markers in various crop
species. This genomic information provides a foundation for
understanding the genetic basis of FTi and facilitates targeted
genetic modifications for manipulating this trait.

Transcriptomics studies have revealed dynamic changes in
gene expression profiles during different flowering stages (V.
K. Singh et al., 2013). Using RNA sequencing (RNA-seq)
techniques, researchers could identify key regulatory genes
and unravel the intricate transcriptional networks involved
in flowering control (Z. Li, Zhang, et al., 2016). Compara-
tive transcriptomics studies between early and late flowering
genotypes or under different environmental conditions have
shed light on the regulatory mechanisms underlying this trait
(Kaashyap et al., 2022). Gene ontology analysis in a rice
transcriptomics study revealed that drought-responsive genes
impacted FTi by affecting flower development, reproduction,
and pollen–pistil interaction. Furthermore, drought condi-
tions significantly affected the expression levels of crucial
FTi genes, such as PRR37, CO, and transcription factor HY5
(K. Song et al., 2017). The study by K. Song et al. (2017)
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emphasizes the complex interplay between drought stress
and the regulation of FTi in rice. Another survey of gene
expression analysis revealed higher expression of Hd1, FT-1,
OsFKF1, OsELF3-2, and OsGI in the Yongyou-538 variety.
Os02g0771100 showed lower expression than the Ninggeng
4 variety in response to variations in temperature and light
resources (M. Yin et al., 2021). These differences in gene
expression may contribute to the distinct flowering responses
observed between the two varieties.

Proteomics and metabolomics approaches complement
genomics and transcriptomics studies by providing insights
into the functional consequences of gene expression-related
changes. The proteomic analysis allows for identifying
and quantifying proteins involved in flowering regulation,
providing an understanding of protein function and inter-
action networks. Similarly, metabolomic profiling enables
identifying and quantifying small biomolecules, such as
hormones and signaling compounds, which play critical
roles in FTi (Arkhimandritova et al., 2020; Chakraborty
et al., 2022).

9 GENOMIC INTERVENTIONS FOR
REGULATING FLOWERING TIME

Genomic interventions for regulating flowering involve apply-
ing genetic and molecular techniques to manipulate the genes
and pathways responsible for the FTi in plants. These inter-
ventions optimize flowering and enhance crop productivity
for specific agricultural needs. Genomic interventions reg-
ulating FTi have great potential in optimizing crop yields,
adapting plants to changing environments, and ensuring
sustainable agriculture (Varshney et al., 2018). However, care-
fully considering ecological and genetic impacts is necessary
for their successful implementation.

9.1 Targeting induced local lesions in
genomes by sequencing

The targeting induced local lesions in genomes (TILLING)
approach involves chemical-induced random mutagenesis and
high-throughput screening to detect point mutations in spe-
cific genomic regions. It is a versatile and practical reverse
genetic approach applicable to various types of genomes (L.
Chen et al., 2014). In the context of mutation discovery in
amplicons, NGS has become the preferred tool for mutation
detection due to its ability to quickly analyze many ampli-
cons (Fanelli et al., 2021). Ethyl methane sulfonate (EMS) as
a chemical mutagen offers distinct advantages over alterna-
tive mutagens. EMS treatment generates diverse mutations,
including missense and truncation mutations. This diversity
provides greater flexibility compared to insertional mutagen-
esis (McCallum et al., 2000). Moreover, EMS exhibits high

efficiency in inducing random point mutations, even in poly-
ploid plants, allowing for the acquisition of multiple alleles
of a specific gene within a small population (Greene et al.,
2003). Most TILLING populations have been established in
predominantly autogamous (self-pollinated) species, includ-
ing rice (Till et al., 2007), barley (Talame et al., 2008), and
peanut (Arachis hypogaea; Guo et al., 2015). This character-
istic simplifies the process of self-fertilization in M1 plants to
generate the M2 population (Fanelli et al., 2021). Interestingly,
the TILLING approach can identify mutants with early-
flowering characteristics. In sunflower (Helianthus annuus),
the TILLING by sequencing strategy was employed to iden-
tify multiple mutations in selected flowering-associated genes
(Fanelli et al., 2021). This application of TILLING provides
a powerful tool for uncovering genes involved in flower-
ing control, facilitating the development of crop varieties
with improved flowering traits and ultimately increasing
agricultural productivity.

9.2 QTL mapping

Genetic markers are integral components of modern plant
breeding strategies. These markers are specific DNA
sequences or variations in the genome that provide as genetic
signposts, enabling researchers and breeders to identify and
track desirable traits (Hasan et al., 2021). QTL mapping is
primarily based on identifying associations between genetic
markers and phenotypic traits in a population with genetic
segregation. Advancements in high-throughput genotyping
technologies, such as NGS and genotyping arrays, have sig-
nificantly accelerated the molecular mapping process (Naik
et al., 2024). These technologies enable the simultaneous
genotyping of millions of SNP markers across a population,
facilitating more precise and efficient identification of genetic
loci associated with traits of interest. However, QTL mapping
has emerged as a widely utilized method for studying various
traits related to yield and other vital characteristics (Jha et al.,
2021; S. B. Lee et al., 2018). In terms of FTi, numerous
studies have been conducted across various crop species
to investigate the genetic control, environmental factors,
and molecular mechanisms underlying FTi regulation (see
Table 3).

In soybean, various genomic regions were identified using
different mapping populations. A mapping population was
developed in soybean using well-known genotypes for early
flowering, including ZK193, Suinong 14 and Dongnong 50
(Kong et al., 2018; F. Sun et al., 2019). Using bi-parental
population, Kong et al. (2018) identified several QTLs specif-
ically controlling either FTi or the reproductive period. For
instance, the QTL qRP-B1 on chromosome 11 influences
reproductive period traits but does not affect FTi. Mean-
while, qR1-J on chromosome 16 and qR1-L on chromosome
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T A B L E 3 Summary genomic regions or genes responsible for flowering traits in major crops identified using quantitative trait loci (QTL)
mapping.

Crop Mapping population QTL/genes PVE (%) References
Maize (Zea mays) Huangzaosi × Mo17 (n = 121) 71 QTLs 7.9–21.3 Leng et al. (2022)

Ye 478 × Qi 319 25 QTLs 3.97–23.68 L. Wang et al. (2021)

Mutant F7p × Gaspe flint vgt1 and vgt2 – Chardon et al. (2005)

Rice (Oryza sativa) G23 × NG9108 (n = 251) qFOT6 – Hu et al. (2023)

Milyang23 × H143 OsPRR37/PRR37 – Koo et al. (2013)

CO39 × Moroberekan 15 QTLs 7–40 Maheswaran et al.
(2000)

Nipponbare × Kasalath Hd1 – Yano et al. (2000)

Wheat (Triticum
aestivum)

CDC Go × Attila, Cutler × AC Barrie and
Peace × CDC Stanley (n = 698)

Vrn-A1, Vrn-B1, Rht-A1
and Rht-B1

2.5–19.2 Semagn et al. (2021)

Weimai 8 × Luohan 2, Weimai 8 × Yannong
19 and Weimai 8 × Jimai 20 (n = 526)

25 QTLs 6.6–32 Zhao et al. (2019)

Japanese common wheat × synthetic
hexaploids

2 QTLs 16 and 73 A. T. Nguyen et al.
(2015)

Sorghum (Sorghum
bicolor)

TX. 100 M × 80 M Ma2 QTL – Casto et al. (2019)

SC lines and exotic progenitor lines Ma1 – Higgins et al. (2014)

Kikuchi Zairai × SC112 7 QTLs 3.4–9.4 El Mannai et al.
(2012)

Barley (Hordeum
vulgare)

Double round-robin population Ppd-H1 and 3 QTLs – Cosenza et al. (2024)

Beka × Logan 5 QTLs – Casas et al. (2021)

winter-type × spring-type qDHE.ak-1HS, Ppd-H1, and
Ppd-H2

6–39 Sameri et al. (2011)

Apex × Prisma (n = 94) 21 QTLs 33–71 X. Yin et al. (2005)

Soybean (Glycine max) Noir × Archer and Noir × M336-1 4 QTLs 5.6–40.4 L. Wang, Fang, et al.
(2020)

AGS292 × K3 (n = 75) qDTF-10, qDTF-16-1, and
qDTF-16-2

23.9–56.1 F. Sun et al. (2019)

Dongnong 50 × Williams 82 and Suinong
14 × Enrei (n = 126, 140)

17 QTLs 14.2–78.9 Kong et al. (2018)

Toyomusume × Suinong 10 5 QTLs 5.6–46 Yang et al. (2017)

AGS292 × K3 (n = 91) qFT-B2-1, qFT-C1-1, qFT-K,
qFT-D2, and qFT-F

18.1–50.5 S. Lu et al. (2015)

Pearl Millet
(Pennisetum glaucum)

ICMS 8511-S1-17-2-1-1-B-P03 × AIMP
92901-S1-183-2-2-B-08

Single QTL 9.4 Kumar et al. (2021)

ICMB 841-P3 × 863B-P2 6 QTLs 23–48 Kumar et al. (2017)

Chickpea (Cicer
arietinum)

NAM populations (Gokce, C. reticulatum
and C. echinospermum)

3 QTLs – Lakmes et al. (2022)

(ICCV 96029 × CDC Frontier, ICC 5810 ×
CDC Frontier, BGD 132 × CDC Frontier
and ICC 16641 × CDC Frontier)

efl-1, efl-3, and efl-4 5.66–88.14 Mallikarjuna et al.
(2017)

ICCV 96029 × CDC Frontier 7 QTLs 9–44 Daba et al. (2016)

ICC 3996 × ILWC 184 (n = 306) 2 QTLs 90.2 Aryamanesh et al.
(2009)

Lentil (Lens culinaris) ILL 2601 × ILL 5588 (n = 173) 9 QTLs – Rajandran et al.
(2022)

(Continues)
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T A B L E 3 (Continued)

Crop Mapping population QTL/genes PVE (%) References
Lens culinaris cv. Lupa × L.
orientalis accession BGE 016880

13 QTLs 1.7–62.9 H. Y. Yuan et al.
(2021)

Precoz × WA8649041 Single QTL 57 Kahriman et al.
(2015)

Lupa × BG16880 (n = 113) 3 QTLs – Fratini et al. (2007)

Pigeonpea (Cajanus
cajan)

UAS Dwarf × HDM04-1 13 QTLs 3.18–51.4 Kumawat et al.
(2012)

Pusa Dwarf × H2001-4. qFL5.1 and qMT5.1 15.3 and
11.6

Geddam et al. (2014)

Faba bean (Vicia faba) Vf6 × Vf27 (n = 124) 12 QTLs 5.3–17.9 Aguilar-Benitez
et al. (2021)

Icarus × Ascot 16 QTLs 7–38 Catt et al. (2017)

Peanut (Arachis
hypogaea)

Silihong × Jinonghei 3 19 QTLs 1.15–21.82 W. Liang et al.
(2020)

Silihong × Jinonghei 3 15 QTLs 4.6–12.4 L. Wang, Yang, et al.
(2020)

Rapeseed (Brassica
napus)

SGDH284 × 158A cqDTF-C02 and cqDTF-C06 32.04 and 16 L. Chen et al. (2022)

NO.2127 × ZY821 qFTA2.1a and qFTA2.1b 25.4 and
49.1

Cai et al. (2021)

Spring type × Winter type Single QTL 9 Scheben et al. (2020)

GW × DZ qFTYL16-16, qFTYL16-2,
qFTYL16-5, qFTYL17-6, and
qFTSY17-7

3.74–12.28 Y. Xu et al. (2020)

F1 (Regent×Lagoda) and
F1 (Lagoda×Regent)

DTF1 and DTF2 21.7 and 15 ArifUzZaman et al.
(2016)

Abbreviation: PVE, phenotypic variance explained.

19 are associated with FTi but not with reproductive period
(Kong et al., 2018). In an F2 mapping population in soybean,
the major QTL qFT12-1 for FTi was mapped to chromo-
some 12, with a phenotypic variance explained (PVE) of
20.5%. This QTL, initially located within a 567-kb region,
was refined to 56.4 kb through recombinant plant analysis,
identifying genes such as Glyma.12G073900 (Y. Li, Dong,
et al., 2019). These findings may indicate that FTi and repro-
ductive period operate through relatively independent genetic
mechanisms. In lentil, QTLs such as DTF6a and DTF6b were
identified, and DTF6a alone conferring early flowering under
short photoperiods (Rajandran et al., 2022). These QTL find-
ings guide breeding strategies, enhancing legume resilience to
environmental stress.

Many QTL studies have explored the genetic control of FTi
in maize. Salvi et al. (2009) conducted a meta-QTL analysis
from 29 independent across all chromosomes associated
with FTi. QTL analysis has revealed loci influencing FTi in
maize, with PVE from 7.9% to 21.3% across 71 QTLs in an
RIL population (Leng et al., 2022). Because of the limited
effect of individual QTLs, only a few QTLs for maize FTi
have been fine-mapped and cloned despite the large number

identified. Vegetative to generative transition 1 (Vgt1) is
the first FTi QTL cloned in maize. It has been narrowed
down to an ∼2 kb noncoding region, which functions as a
cis-regulatory element for ZmRap2.7, an AP2 transcription
factor located about 70 kb downstream (Salvi et al., 2007).
Fine mapping of qDTA3-2 QTL in maize led to the identifi-
cation of MADS-box transcription factor and ZmMADS69.
Functional studies revealed that mutants of ZmMADS69
with reduced expression exhibited delayed flowering, while
the overexpression of ZmMADS69 resulted in accelerated
flowering (Liang et al., 2018).

In rice, QTLs for early maturity and photoperiod insensitiv-
ity mitigate heat stress during anthesis. For instance, qFOT6
on chromosome 6, identified via QTLseq and GradedPool-
seq, has shown consistent results across multiple environ-
ments (Hu et al., 2023). Additionally, the EH7-2 gene, also
on chromosome 6, significantly affects heading date with a
PVE up to 23.68% (Koo et al., 2013). Wheat’s adaptabil-
ity relies on flowering-related loci like Vrn-A1, Rht-B1, and
QTLs on chromosomes 2DS and 5AL, contributing up to 73%
in PVE (A. T. Nguyen et al., 2015). In barley, new QTLs for
FTi have been identified, along with a novel functional allelic
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variant of the primary regulatory gene Ppd-H1 (Cosenza
et al., 2024). These findings support breeding strategies to
develop climate-resilient cereal varieties.

9.3 QTL-seq approach

The QTL-seq approach has emerged as a highly effective
strategy for rapidly identifying major QTLs that governs eco-
nomically important traits in crop plants. QTL-seq involves
whole-genome re-sequencing of two DNA bulks derived from
progeny displaying extreme phenotypes. This method offers
several advantages over traditional QTL mapping approaches.
First, it allows for more efficient and precise localization
of candidate genomic regions. Second, it avoids the neces-
sity of the entire population’s DNA marker development and
genotyping, resulting in a more efficient and cost-effective
procedure. This method has proven to be effective in unravel-
ing the genetic basis of FTi in various crop plants, including
pigeonpea (V. Singh et al., 2022), chickpea (Srivastava et al.,
2017), lentil (Shivaprasad et al., 2024), rapeseed (B. napus)
(Tang et al., 2023), cucumber (Cucumis sativus) (H. Lu
et al., 2014) and cabbage (Brassica oleracea) (Shu et al.,
2018). Using QTL-seq and gene expression profiling, a can-
didate QTL (BnaC08cqDTF) associated with early flowering
in rapeseed was characterized. This analysis identified Cryp-
tochrome 2 (CRY2), encoded by BnaC08G0010400ZS, within
an 86-kb genomic region on chromosome 08 (Tang et al.,
2023). This approach was also used to identify the candidate
gene (Ef1.1) from a major QTL on chromosome 1, associated
with early flowering in cucumber (H. Lu et al., 2014). In lentil,
this approach identified three important QTLs (LcqDTF3.1,
LcqDTF3.2 and LcqDTF3.3) for flowering time, along with
13 genes associated with the flowering pathway (Shivaprasad
et al., 2024). Overall, the utilization of QTL-seq has brought
about a revolution in exploring the genetic foundations of
intricate traits such as FTi in crop plants.

9.4 Genome-wide association studies

GWAS relies on linkage disequilibrium and has been widely
applied to investigate the genetic basis of crucial traits in
diverse plant species. This method explores the association
between genetic variations across the entire genome and phe-
notypic variations in traits within a natural population. By
analyzing numerous genetic markers distributed throughout
the genome, GWAS facilitates the identification of candidate
genes or genomic regions linked to quantitative traits (Gan-
gurde et al., 2022; Thudi et al., 2023). Several studies have
employed GWAS to investigate FTi. For instance, in soybean,
GWAS identified the association of the Dt1 gene with both
maturity and plant height, while candidate genes homolo-

gous to Arabidopsis flowering genes were linked to days to
flowering (J. Zhang et al., 2015). Another study with 278
soybean accessions identified 37 significant marker-trait asso-
ciations (MTAs) with FTi and pod development traits across
14 chromosomes (M. Li, Liu, et al., 2019). In lentil, two loci,
DTF6a and DTF6b, were identified, where dominant alle-
les led to early flowering (Rajandran et al., 2022). In wheat,
a study identified 32 significant MTAs for days to heading,
revealing important genes (Ppd-A and Ppd-B) for photope-
riod and vernalization-associated genes (Vrn-A1 and VrnA7)
(Gupta et al., 2020). Additionally, in canola, significant MTAs
were found with FT paralogs, indicating the regulatory role of
FTi paralogs in influencing productivity traits (Raman et al.,
2019). In B. napus, 10 main-effect associations were found
with flowering-time-related climatic indices using associ-
ation mapping. Five candidate genes, including BnaFLCs,
BnaFTs, BnaA02.VIN3 and BnaC09.PRR7, were validated
through haplotype, selective sweep and co-expression anal-
yses (X. Han et al., 2022). Additionally, GWAS identified 21
haplotypes with candidate genes linked to FTi in rapeseed,
with structural variation in BnVIN3-C03 on chromosome C03
showing a strong association with this trait (L. Huang et al.,
2021). This report suggests that GWAS analysis can enhance
our understanding of the genetic architecture of FTi, including
the number of genes involved and their interactions.

9.5 Gene editing

Gene editing technologies, such as CRISPR/Cas9, enable
precise alterations in the plant genome, including the targeted
alteration of specific FTi genes. By harnessing the knowledge
gained from identifying key genes, researchers can utilize
gene editing approaches to engineer plants with desired
traits, such as FTi. For instance, researchers employed
CRISPR/Cas9 in soybean to target the night light-inducible
and clock-regulated 2 (LNK2) gene and revealed that muta-
tions in LNK2 led to a shortened FTi (Z. Li et al., 2021),
which has important implications for soybean breeding,
particularly in high-latitude regions. CRISPR/Cas9 was also
used to modify the E1 gene in soybean, resulting in two types
of mutations that induced early flowering under extended
daylight conditions (J. Han et al., 2019). On the other hand,
scientists studied the BnaSVP (short vegetative phase) gene
in rapeseed, which shares homology with the Arabidopsis
SVP gene known to influence flowering. Mutation in four
copies of BnaSVP with CRISPR/Cas9 resulted in mutant
lines exhibiting early-flowering traits under both summer and
winter conditions (Ahmar et al., 2022). This demonstrates
potential benefits for fine-tuning FTi in oilseed crops to
maximize productivity and adaptability.

In sorghum, FT gene was targeted, and a frame-shift
mutation in the gene led to a significant delay of 10 days in
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FTi, confirming the involvement of this gene in regulating
the flowering process (Char et al., 2020). Similarly, it has
been documented that OsFLZ2 gene is a negative regulator
of FTi in rice (Y. Ma et al., 2022). Y. Ma et al. (2022)
showed that OsFLZ2 destabilizes OsMADS51, reducing
its activation of the downstream gene Ehd1 and shedding
light on rice flowering mechanisms. G. Wang, Wang, et al.
(2020) identified a late-flowering gene in rice (OsGhd7),
which delayed flowering when overexpressed. In contrast,
CRISPR/Cas9 knockouts of OsGhd7 accelerated flowering,
with timing influenced by the field location. In another study,
researchers edited rice’s uORFs of the Hd2 gene. These
edited lines exhibited delayed flowering, ranging from 4 to
11 days compared to the wild type. Similarly, overexpression
of TFL1 in Arabidopsis caused late flowering, as it prevented
the expression of LFY and AP1 genes (Ratcliffe et al., 1999),
while knockout of TFL1 expression through CRISPR/Cas9
caused changes such as reduced growth and continuous
flowering (Charrier et al., 2019). The delayed flowering
was supported by decreased expression of pivotal flowering-
related genes, specifically Ehd1, Hd3a and RFT1, compared
to the wild type (Y. Liu et al., 2021). These studies together
emphasize the versatility of CRISPR/Cas9 as a potent tool for
modifying the genetic elements that influence FTi in different
crop varieties. Such advancements hold immense promise
for agricultural practices, enabling the development of crops
with optimized flowering traits, improving adaptability to
diverse environments, and ultimately contributing to global
food security and sustainability.

10 CURRENT CHALLENGES AND
FUTURE PROSPECTS

In the context of climate change, unravelling the intricate
interplay between the photoperiod pathway and environmen-
tal variables, notably temperature, has assumed paramount
importance. Although plants demonstrate adaptability to
changing temperatures in their developmental processes,
there exists a notable gap in our understanding of how the
photoperiod pathway precisely interacts with temperature
cues (Jagadish et al., 2016). Equally crucial is the neces-
sity for a diverse array of crop varieties with favorable
agronomic traits to bolster the plasticity and resilience of
crops amid these challenges. This diversity not only pro-
vides options for adaptation but also serves to mitigate
potential losses in agricultural productivity. For instance,
the identification of early morning flowering in rice as a
potential trait to withstand heat stress highlights the sig-
nificance of integrating traits like early morning flowering
QTL (qEMF3) through introgression, thereby enhancing heat
resilience and augmenting grain yield under heat stress con-
ditions (Ishimaru et al., 2022). Moreover, deepening our

comprehension of the intricate connections between the pho-
toperiod pathway and environmental conditions is critical to
developing crop varieties that thrive under evolving climatic
scenarios.

The landscape of plant research has been revolutionized
by advancements in NGS and in vitro functional studies.
The accessibility of technologies for efficiently generating
large-scale population and functional genomic data facilitates
the application of research findings across diverse systems.
The utilization of gene-editing tools, notably CRISPR/Cas9,
represents a potent avenue for advancing our insight into
the pivotal roles played by photoreceptors and vernalization-
related genes in plant development and the regulation of FTi.
Through precise modifications using these tools, researchers
can delineate the specific functions and interactions of these
genes across various plant species. Furthermore, genome
editing tools hold substantial promise for confirming gene
functions across a broader taxonomic spectrum. Nevertheless,
deciphering the genes and their regulatory mechanisms that
determine FTi in conjunction with environmental factors such
as temperature, photoperiod, CO2, and various abiotic stresses
and their interactions continues to be a focal point of research.
Conversely, comparative studies on flowering pathways are
indispensable for understanding the evolution of unique life
histories, such as gregarious flowering or masting. Addition-
ally, delving into the role of epigenetic modifications in FTi
and their potential adaptive significance presents a promising
avenue in evolutionary epigenetics, where the exploration of
the occurrence and adaptive significance of natural epigenetic
variations in FTi is still unfolding.

11 CONCLUSION

The exploration of FTi in plants is an intricate and multi-
faceted domain, encompassing diverse environmental signals,
genetic elements and regulatory pathways. While signifi-
cant strides have been taken in identifying pivotal candidate
genes, unraveling the precise functions and regulations gov-
erning genes associated with photoperiod and vernalization
is crucial for a nuanced comprehension of FTi regulation.
Notably, the advent of gene editing technologies, particularly
CRISPR/Cas9, has ushered in novel avenues for elucidating
gene functions and manipulating genes related to flower-
ing. These technologies offer the potential to gain insights
into the specific roles and interactions within the flower-
ing modulation pathway. Furthermore, the progress in NGS
technologies, functional studies, and omics technologies has
broadened our molecular-level understanding of FTi. Nev-
ertheless, there remains much to explore and comprehend,
particularly concerning the intricate interplay between FTi
and various environmental factors. Future research endeav-
ors should employ diverse approaches, including comparative
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analyses and evolutionary studies, to comprehensively under-
stand FTi diversity and its adaptive significance.
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