
A Commit Scheduler for XML Databases

Stijn Dekeyser and Jan Hidders

University of Antwerp

Abstract. The hierarchical and semistructured nature of XML data
may cause complicated update-behavior. Updates should not be limited
to entire document trees, but should ideally involve subtrees and even
individual elements. Providing a suitable scheduling algorithm for semi-
structured data can significantly improve collaboration systems that store
their data — e.g. word processing documents or vector graphics — as
XML documents. In this paper we improve upon earlier work (see [5])
which presented two equivalent concurrency control mechanisms based
on Path Locks. In contrast to the earlier work, we now provide details
regarding the workings of a commit scheduler for XML databases which
uses the path lock conflict rules. We also give a comprehensive proof
of serializability which enhances and clarifies the ideas in our previous
work.

1 Introduction

Semistructured data [1] is an important topic in Information Systems re-
search that has been studied extensively — especially regarding query
languages — in the past and which has regained importance due to the
popularity of XML. Even though XML is not meant to replace traditional
database systems, lately an interest in native XML databases has sur-
faced. Consequently, all features present in relational and object-oriented
databases will be revisited in the context of semistructured data. One
such feature is the necessity of a concurrency control mechanism in any
type of database.

Concurrency control [8] has been extensively studied in the context
of traditional database management systems [2, 6, 7]. It is possible to
re-use these results for providing concurrency control in semistructured
databases. However, as we have shown in earlier work [5], the traditional
solutions we mentioned — while guaranteeing serializability — do not
allow a sufficient degree of concurrency; i.e., they are too restrictive.

As a consequence, the problem statement is “what kind of conflict
rules and scheduling algorithm for semistructured databases can guaran-
tee both serializability and a high degree of concurrency?”

In previous work, we have investigated the use of path locks to solve
the research problem mentioned in the introduction. We introduced two

equivalent locking protocols: path locks satisfiability and path locks prop-
agation. For both systems, we introduced conflict rules and analyzed their
complexity. We showed that the conflict rules were sufficient to ensure two
actions from different transactions can be swapped if no conflict occurs.

In this paper, however, we introduce the scheduler that makes use
of the path locks and the conflict rules. The second contribution of this
paper is the inclusion of a comprehensive proof of serializability, which
was lacking in earlier work. The proof also enhances and clarifies the ideas
presented earlier.

2 Data Model and DML

The data model we assume for XML documents is a simplification of
the standard XPath data model [3] and essentially node-labeled trees.
However, for the purpose of locking we allow also acyclic graphs. We
label nodes with a set of transaction identifiers to indicate that the node
has been deleted by these transactions.

Definition 1 (Instance graph, actual instance). The instance graph
(N,B, r, ν, δ) is a rooted acyclic graph with vertices N , edges B ⊆ N×N ,
the root r, nodes labeled with element names by ν : N → E and with sets
of transaction identifiers by δ : N → 2T . The subgraph defined exactly
by the nodes that are labeled by δ with the empty set is called the actual
instance and is presumed to be always a tree with root r.

The query language is based on a subset of XPath expressions as defined
by the following grammar.

P ::= F | P/F | P//F
F ::= E | ∗

where E is the universal set of strings representing the names of elements.

The following definition enumerates the operations offered by the data
manipulation language that can be used to alter a document.

Definition 2 (Operations on the instance graph). The following
four operations are defined on an instance graph.

A(n, a) This update operation adds a new edge starting from n and ending
in a new node with label a. The new node is returned as the result of

the operation. If in the new instance graph the actual instance is not
a tree with root r then the operation fails1.

D(n) This update operation adds the transaction identifier of the trans-
action that requests the operation to δ(n). This operation returns no
result. If in the new instance graph the actual instance is not a tree
with root r then the operation fails.

Q(n, p) This query operation returns as its result all nodes in the instance
graph such that there is in the actual instance a path from n to this
node that satisfies the path p.

C() This update operation removes all nodes n from the instance graph
with δ(n) containing the identifier of the executing transaction. The
operation returns no result. The operation fails if in the resulting in-
stance graph the actual instance is not a tree1 with root r.

Now that we have defined the operations of the data manipulation
language, we turn to some traditional definitions from transaction man-
agement theory.

Definition 3 (Action, Transaction, and Schedule). An action is a
pair (t, o) where t is a transaction identifier and o is one of the operations
given in Def. 2. A transaction is a finite list of actions having the same
transaction identifier and in which there is exactly one commit operation
(the last pair). A schedule is an interleaving of several transactions. A
schedule is said to be node-correct if for every operation that uses a certain
node there is an earlier action (containing an addition or a query) of the
same transaction that had this node in its result.

Following tradition, two schedules are equivalent if (1) one is a permu-
tation of the other, (2) the resulting instance graph is in both cases the
same, and (3) all the queries in one schedule return the same result as
the corresponding queries in the other schedule. A schedule is said to be
serializable if it is equivalent with a serial schedule.

3 Path Locks

We now turn to the locking scheme that is used by the scheduler to ensure
serializability.

We start with the definition of the read locks. A read lock is defined as a
tuple rl(t, n, p) where t is a transaction identifier, n is the node identifier
1 Failure means here that the scheduler does not execute the operation and reports

this to the transaction that requested it.

in the instance graph for which the lock holds and p is a path expression
in P. The informal meaning of such a lock is that the transaction has
issued a query p starting from node n.

The initial read lock that must be obtained for a given query operation
Q(n, p) that is issued by transaction t is simply rl(t, n, p). From the initial
read lock we derive other read locks that must also be obtained by a
process called read-lock propagation. The process of read-lock propagation
causes read locks on a node to be propagated to nodes just below this
node in the instance graph. This is done with the rules shown in the next
table. The process of read-lock propagation is applied until no more new
read locks are added. For more information on the Path Lock Propagation
mechanism, we refer the reader to [5].

1. rl(t, n, a/p)→rl(t, n′, p) if (n, n′) ∈ B and name(n′) = a.
2. rl(t, n, ∗/p)→rl(t, n′, p) if (n, n′) ∈ B.
3. rl(t, n, a//p)→rl(t, n′, p) if (n, n′) ∈ B and name(n′) = a.
4. rl(t, n, a//p)→rl(t, n′, ∗//p) if (n, n′) ∈ B and name(n′) = a.
5. rl(t, n, ∗//p)→rl(t, n′, p) if (n, n′) ∈ B.
6. rl(t, n, ∗//p)→rl(t, n′, ∗//p) if (n, n′) ∈ B.

Fig. 1. Read lock propagation rules.

We proceed with the definition of the write locks. A write lock is defined
as a tuple wl(t, n, f) where t is a transaction identifier, n is the node
identifier for which the lock holds and f is an expression over F .

The following defines which write locks must be obtained for which update
operator:

A(n, a): A write lock wl(t, n, a) on node n for transaction t.
D(n): Write locks wl(t, n, ∗) and wl(t, n′, a) where n′ is the parent of n

in the instance graph and a is the label of n. If n or n′ does not exist,
then the corresponding write lock does not need to be obtained.

To end this section, we need to define when locks conflict. A read lock
rl(t, n, a) or rl(t, n, ∗) conflicts with a write lock wl(t′, n, a) and a write
lock wl(t′, n, ∗) if t 6= t′. All other locks do not conflict. Two write locks
do not conflict due to the node-correctness property of transactions. This
property implies that consecutive additions and deletions always com-
mute.

4 The Commit Scheduler

In this section we detail the working of the commit scheduler. The term
is based on the theoretical notion of commit serializability [8]. Thus, a
commit scheduler guarantees that the schedules it accepts are serializable.

Definition 4 (Commit Scheduler). The commit scheduler is the au-
tomaton whose state consists of a schedule S of actions that it has pre-
viously accepted and processed, a set of locks L and an instance graph I.
Its transition function γ maps S, I and a newly requested action a(o, t)
to a schedule S′, a set of locks L′ and an instance graph I ′ as follows:

1. The new instance graph I ′ is obtained by applying operation o to in-
stance graph I. If the operation fails, then γ is not defined2.

2. For update and query operations, the set of locks L′ is obtained by
adding to L the locks required by the operation o. For the commit
operation, L′ is obtained by removing all locks from L which are owned
by the transaction that commits, plus those locks on the nodes that are
now deleted from the instance graph.
If L′ contains conflicting locks, then γ is not defined2.

3. The schedule S′ is S augmented with a(o, t) provided that γ did not
become undefined due to the previous points.

4. The sending process receives the result of o, if any.

The execution of the commit scheduler on a given instance graph I starts
with the empty schedule S, the empty set of locks L, and the instance
graph I. It receives the actions of S sequentially, and its result is either
(1) the output schedule S, the set of locks L, and the instance graph I
transformed according to each iteration of the commit scheduler, or (2)
undefined.

5 Serializability

In this section, we give a sketch of the serializability proof. The full proof
can be found in the Technical Report [4]. We will first give some prelim-
inary definitions.

Definition 5 (Legal and Fail-free Schedules). A schedule is said
to be fail-free if all its operations can be executed without any of them
2 If γ is undefined, the sending process is notified that its action is not accepted, and

the scheduler waits for a new action. Thus deadlocks cannot occur.

failing. A schedule is said to be a legal schedule if (1) it is node correct,
(2) fail-free and (3) all sets of locks in the scheduler’s state contain only
compatible locks.

It is easy to see that the output schedule of the scheduler is always a legal
schedule.

Theorem 1. Every legal schedule is serializable.

Sketch of the proof. We presume some ordering on the transaction
identifiers used in S such that ti < tj if the commit of ti preceeds the
commit of tj in S or there is a commit of ti but not a commit of tj in S.
We serialize the schedule by repeatedly swapping two consecutive actions
(ti, oi) and (ti+1, oi+1) if ti 6= tj and tj < ti. It is easy to see that if
there are no more such pairs then the schedule is serialized. It can also
be shown that after a swap of such a pair the result will be an equivalent
legal schedule if the schedule before the swap is a legal schedule. Assume
that S is a legal schedule and we swap two consecutive actions (ti, oi)
and (ti+1, oi+1) in S and ti 6= tj and oi is not a commit, then we prove
that the following holds: (1) the two swapped operations will not fail in
S′, (2) all locks in LS

′
i are compatible, (3) IS

′
i+1 = ISi+1, (4) if they exist

the results of oi and oi+1 remain the same, (5) LS
′

i+1 ⊆ LSi+1, and (6) S′

is node correct. It follows from these points that S′ is equivalent with S,
fail-free and in all sets LS

′
j there are no incompatible locks, i.e., S′ is legal.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan-Kaufmann, San Francisco, 1999.

2. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison Wesley, Reading, Mass., 1987.

3. J. Clark and S. DeRose. XML Path Language (XPath). W3C Recommendation,
November 1999.

4. S. Dekeyser and J. Hidders. A path-lock scheduler for XML databases.
Technical Report 02-13, University of Antwerp, 2002. ftp://win-
ftp.uia.ac.be/pub/dekeyser/scheduler.ps.

5. S. Dekeyser and J. Hidders. Path locks for XML document collaboration. In Pro-
ceedings of the Second WISE Conference, 2002.

6. J. Gray. Notes on database operating systems. In Operating Systems: an Advanced
Course. Springer-Verlag, New York, 1978.

7. C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science
Press, Rockville, MD, 1986.

8. G. Weikum and G. Vossen. Transactional Information Systems. Morgan Kaufmann,
2002. ISBN: 1-55860-508-8.

