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A B S T R A C T   

Context: Agronomic data such as applied inputs, management practices, and crop yields are needed for assessing 
productivity, nutrient balances, resource use efficiency, as well as other aspects of environmental and economic 
performance of cropping systems. In many instances, however, these data are only available at a coarse level of 
aggregation or simply do not exist. 
Objectives: Here we developed an approach that identifies sites for agronomic data collection for a given crop and 
country, seeking a balance between minimizing data collection efforts and proper representation of the main 
crop producing areas. 
Methods: The developed approach followed a stratified sampling method based on a spatial framework that 
delineates major climate zones and crop area distribution maps, which guides selection of sampling areas (SA) 
until half of the national harvested area is covered. We provided proof of concept about the robustness of the 
approach using three rich databases including data on fertilizer application rates for maize, wheat, and soybean 
in Argentina, soybean in the USA, and maize in Kenya, which were collected via local experts (Argentina) and 
field surveys (USA and Kenya). For validation purposes, fertilizer rates per crop and nutrient derived at (sub-) 
national level following our approach were compared against those derived using all data collected from the 
whole country. 
Results: Application of the approach in Argentina, USA, and Kenya resulted in selection of 12, 28, and 10 SAs, 
respectively. For each SA, three experts or 20 fields were sufficient to give a robust estimate of average fertilizer 
rates applied by farmers. Average rates at national level derived from our approach compared well with those 
derived using the whole database ( ± 10 kg N, ± 2 kg P, ± 1 kg S, and ± 5 kg K per ha) requiring less than one 
third of the observations. 
Conclusions: The developed minimum crop data collection approach can fill the agronomic data gaps in a cost- 
effective way for major crop systems both in large- and small-scale systems. 
Significance: The proposed approach is generic enough to be applied to any crop-country combination to guide 
collection of key agricultural data at national and subnational levels with modest investment especially for 
countries that do not currently collect data.  
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1. Introduction 

Assessing productivity, environmental, and economic performance 
of cropping systems is constrained by a lack of key agronomic data at 
adequate spatial resolution and attainable level of disaggregation (e.g., 
crop yields, nutrient inputs from fertilizer or organic sources, tillage, 
irrigation, pesticide use, crop residue management, etc.) (Saito et al., 
2021). For example, despite the importance of fertilizer data to estimate 
production costs, nutrient balances and use efficiency, and environ-
mental impact, current global agricultural statistics databases only 
provide estimates of fertilizer consumption at country level, without 
distinguishing nutrient inputs among crops (FAOSTAT, http://www.fao. 
org/faostat/en/#data/ESB). Greater sub-national as well as 
crop-specific disaggregation is required for research as well as policy 
applications. The former includes estimates of nutrient budgets, sur-
pluses, and trends in nutrient use efficiency at sub-national to global 
scales, which, due to the lack of consistent data, are associated with 
numerous uncertainties (Zhang et al., 2020, 2021). Likewise, proper 
targeting of nutrient policies across the whole food chain (Kanter et al., 
2020a; Yang et al., 2022), specific regulations and tradeoffs (Kanter 
et al., 2020b; Mandrini et al., 2022), and sustainable development 
roadmaps to meet environmental as well as food security goals, require 
accurate assessment of the status of nutrient use. Unfortunately, only 
few countries regularly collect such information at the farm level and in 
a consistent manner. Noticeable examples include the British Survey of 
Fertiliser Practice, which has been conducted annually since 1992 (htt 
ps://www.gov.uk/government/collections/fertiliser-usage) or the 
Agricultural Chemical Use surveys conducted occasionally in the USA 
(https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Che 
mical_Use/index.php). In most countries, however, researchers and 
policy makers have relied on far less detailed statistical information 
because farm surveys are expensive or suitable institutions for imple-
menting them on a regular basis do not exist. Often, surveys only cover 
specific project areas or broader data categories, such as in the Rural 
Household Multi-Indicator Survey (RHoMIS) (van Wijk et al., 2020). 
There is also very little usage of non-traditional data sources, such as 
data that could be obtained from networks of agronomists (crop advi-
sors) or commercial retail, or through crowdsourcing farmers directly. 

In the case of data on fertilizer use by crops, the only globally 
available data source are estimates made for each country, which are 
obtained through surveys of local experts and published every 3–4 years 
since 1992 for some countries (Ludemann et al., 2022). The situation is 
similar for other agronomically, politically, and commercially important 
crop data. Except for episodic efforts to fill in these data gaps for specific 
variables and crop-country combinations, we are not aware of any co-
ordinated initiative that has explicitly sought to overcome the lack of 
key agronomic data at larger scales. Specifically, we are not aware of any 
explicit effort to develop an approach that can guide efficient collection 
of relevant agricultural crop management data at a global scale. Thus, 
developing a cost-effective approach to collect key agronomic data 
would significantly improve research on many national and global is-
sues, inform investments, and support the development and imple-
mentation of better agricultural and environmental policies. To be 
cost-effective, such an approach should find a balance between 
achieving an acceptable coverage of the crop producing area while 
minimizing data collection efforts. Likewise, such approach should seek 
to derive not only a national average value for a given variable, but also 
provide estimates at sub-national level as spatial variation in climate 
and soil within countries typically leads to differences in yield, man-
agement practices, and applied inputs. To do so, data collection should 
be based on a spatial framework that delineates regions based on those 
factors influencing yield and management practices (e.g., climate, soil). 
However, current data collection efforts at sub-national level are based 
on administrative units (e.g., USDA-NASS), which are not helpful at 
distinguishing regions with different environmental backgrounds (e.g., 
climate). Finally, an approach to collect agricultural data should be 

generic and flexible enough so that it can be applied to any crop-country 
case in the world, incorporate other variables that may influence farmer 
practices as needed (e.g., water regime, crop sequence, and farmer ty-
pology), and allow for regular updates of these data, so that time series 
can be developed, which, in turn, would help assess trajectories in input 
use and efficiency and impact of specific policies. Operational feasibility 
is therefore another important consideration. 

Here we present a minimum data collection approach for estimating 
representative averages of crop inputs and other agronomic attributes 
for a given country-crop combination. The approach seeks a compromise 
between deriving robust estimates at national and sub-national levels 
while reducing data collection efforts. As a proof of concept, we used 
fertilizer input rates in large-scale (Argentina and USA) and small-scale 
systems (Kenya) to validate the approach. The goal is to show that a 
modest investment on data collection efforts can help countries that do 
not collect data at present to estimate values for key agronomic variables 
at national and subnational levels. We discuss strengths and limitations 
of the proposed approach and implications for collection of agricultural 
data at global scale. 

2. Materials and methods 

2.1. Minimum data collection approach development 

Our approach builds on the protocol developed by the Global Yield 
Gap Atlas (GYGA, www.yieldgap.org) for selecting weather stations to 
estimate yield potential and yield gaps (van Bussel et al., 2015). Our goal 
was to identify geographic areas, hereafter referred to as ‘sampling 
areas’ (SA), where agronomic data should be collected for a specific crop 
in a given country (Fig. 1, supplementary Fig. S1). These SAs (i.e., 
quasi-circle with 100-km radius) are selected based upon (i) the spatial 
framework delineating climate zones (CZ3) developed by GYGA (Van 
Wart et al., 2013a) and (ii) crop-specific harvested area distribution 
from SPAM (https://www.mapspam.info/data/). We note that for re-
gions with steep climate gradients (i.e., each CZ that covers a small crop 
area and cannot accommodate one 100-km radius quasi-circle), a 
smaller radius (50-km) might be used as we did for Kenya (Fig. 2 f). 

The approach followed six major steps, and each step has specific 
rules and thresholds that were defined by iteration, looking for a 
compromise between reducing data collection efforts while achieving a 
good representation of the main crop producing areas within the 
country:  

1. Crop disaggregation: if the harvested area distribution differs 
drastically among target crop types, a separate set of SAs should be 
selected for each crop. If there is substantial overlapping in the 
harvested area distribution of two or more crop types, then, the same 
set of SAs can be used to collect data for them. As a generic rule, the 
same set of SAs are used when overlap in harvested areas between 
two crops is greater than 66%.  

2. Selection of climate zones (CZ): the approach identifies CZs that 
account for > 3% of national crop area (hereafter referred to as 
‘selected CZ’). A default value of > 3% reflects the goal of accounting 
for the area where most of the national production comes from. This 
value can be adjusted based on crop area coverage target and/or 
resource availability. For example, if greater coverage is required, 
this value can be reduced, which would lead to inclusion of CZs that 
contribute proportionally less to national crop production. In 
contrast, the value can be increased when less resources are available 

3 A CZ corresponds to a unique combination of growing degree days (which 
determines the length of the growing season), aridity index (which is a proxy to 
water availability), and temperature seasonality (which distinguishes regions 
with different seasonal variation in temperature). Generally, a CZ refers to a 
geographic area with homogeneous climate conditions. 
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to collect data, which will lead to greater focus on those CZs that 
account for the largest share of national crop production.  

3. Delineation of candidate sampling areas: in each selected CZ, 
buffers of 100-km radius are created and clipped by the border of the 
CZs where buffers are located, which helps to minimize climate 
variation within buffers. As a result, one would expect climate 
variation within SA to be smaller than variation among SAs. Buffers 
containing less than 1% of national harvested area are excluded. 
Remaining buffers (i.e., buffers accounting for at least 1% of national 
harvested areas) are then referred to as “candidate SAs”. A 100-km 
radius was used to ensure that there are representative number of 
fields within a selected SA. We note that selecting buffers smaller 
than 100-km radius will result in a large number of SAs to achieve 
the same degree of crop harvested area coverage, ultimately leading 
to increased data collection efforts. However, in cases where each CZ 
in a country cannot accommodate one 100-km radius SA, a smaller 
radius should be used (e.g., 50-km for Kenya).  

4. Selection of sampling areas: candidate SAs are ranked based on 
their harvested crop area. The candidate SA with the largest area is 
selected and overlapping SAs are eliminated. From the remaining 
SAs, the one with the largest crop harvested area is selected. This 
process is repeated until selected SAs cover 50% of the total national 
harvested crop area. At that point, if no SAs have been selected for 
any of the selected CZs in step (2), the SA with the largest crop 
harvested area within each of those CZs is selected. If the crop har-
vested area is less than 50% after SA selection, other candidate SAs 
located in CZs with < 3% of national crop area are selected until 
reaching 50% coverage. We note that selecting a variable number of 
SAs per CZ, instead of a fixed number, ensures that CZs accounting 
for the largest share of national harvested area are more intensively 
sampled.  

5. Collection of agricultural data: Within each selected SA, good 
quality data on the variables of interest are collected (e.g., via surveys 
or expert opinion). If relevant, these data can be collected separately 
by water regime (rainfed and irrigated), crop sequences, and, if 
needed, considering also socio-economic variables (e.g., farmer 
typology).  

6. Upscaling: Local estimates within selected SAs are upscaled to sub- 
national (i.e., CZ) and national level by weighting them based on 

SA’s harvested area. At the end, the approach provides estimates at 
CZ and country level for the variable of interest. 

Thresholds used for each step of the approach were justified in pre-
vious studies and adjusted here as needed. For instance, Van Wart et al. 
(2013b) and van Bussel et al. (2015) showed that selection of SAs of 
100-km radius around weather stations (referred to as ‘buffer’ areas) 
accounting for > 1% of national harvested area, until covering ca. 50% 
of national harvested area, was sufficient to estimate yield potential and 
yield gaps at sub-national and national level with a relatively small 
number of SAs. Hochman et al. (2016) showed that results derived from 
this approach were remarkably similar to those derived from an inten-
sive data-rich method that used a larger number of SAs. In the case of the 
threshold used for CZ selection, we reduced the original threshold pro-
posed by van Bussel et al. (2015) from 5% to 3% because the former 
tends to exclude CZs in less favorable environments for crop production, 
leading to an overestimation in national-level averages. A smaller 
threshold (3%) allows selecting CZs that account for largest share of 
national crop harvested area and obtaining a more accurate averages at 
national level, without a substantial increase in the number of SAs. 

2.2. Case studies 

We tested the approach using crop nutrient inputs (fertilizer rates) in 
large scale systems in Argentina and the USA and small-scale system in 
Kenya as case studies. We used three rich databases with information on: 
(i) nitrogen (N), phosphorus (P), and sulfur (S) in rainfed wheat, maize, 
and soybean in Argentina, (ii) P and potassium (K) in rainfed and irri-
gated soybean in the USA, and (iii) N and P in rainfed maize in Kenya. 
These country-crop combinations provide an appropriate case study 
because Argentina includes 5, 6, and 18 million hectares (M ha) sown 
annually with wheat, maize, and soybean, respectively, while USA in-
cludes ca. 34 M ha sown with soybean (FAOSTAT, 2021). Likewise, 
Kenya has ca. 2.2 M ha yearly sown with maize. The collected data 
portrayed well the harvested area in three countries, spreading across 
many CZs (Fig. 2). 

Data from Argentina were collected by ReTAA (or AATS, Applied 
Agricultural Technology Survey, https://www.bolsadecereales.com/t 
ecnologia-informes) (Fig. 2a, d). ReTAA is a major project from the 

Fig. 1. Protocol for a minimum agronomic data collection approach at national level.  
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Department of Technological Prospective and Research of the Buenos 
Aires Grain Exchange (https://www.bolsadecereales.com/), collecting 
crop management data for the most important crops in Argentina every 
year. Data are collected via phone call interviews with local experts, who 
are agronomists, ag retailers, and extension educators spread across the 
country. Each expert reports average yield, inputs, and management 
practices for their ‘area of influence’, which means that data from one 
expert is an average from several fields. In the case of fertilizers, data on 
\N, P, and S fertilizer application were collected for each crop. Data 
were disaggregated by early and late seasons in the case of soybean and 
maize. No data on K fertilizer rate were collected for any crop as this 
nutrient is rarely applied to maize, soybean, and wheat in Argentina and 
the same occurred in the case of N in soybean. All data were collected 
from rainfed crops as the irrigated area sown with maize, soybean, and 
wheat in Argentina is negligible. Details about the ReTAA approach to 
collect data is provided elsewhere (https://www.bolsadecereales.com/t 
ecnologia-informes). For this study, we used data provided by ca. 300 
experts annually during three crop seasons (2016/2017 - 2018/2019). 

In the case of the USA, soybean producers provided field-level data 
via returned surveys distributed by local crop consultants, extension 
educators, soybean grower boards, and Natural Resources Districts 
(Fig. 2b, e). Each soybean producer reported yield, applied fertilizer 
rates, and other management practices for fields sown with soybean in 

each year. Details on survey and database are available elsewhere 
(Rattalino Edreira et al., 2017, 2020; Mourtzinis et al., 2018; https://c 
oolbean.info/wp-content/uploads/sites/3/2019/02/2019_Soybean 
_Benchmarking_ReviewFinal.pdf). On average, the database contained 
ca. 2000 fields per year over four crop years (2014–2017). For our 
analysis, we used data on P and K fertilizer rates as these are the two 
most common nutrients applied in soybean in the USA. 

Data from Kenya was collected by One Acre Fund (One Acre Fund, 
2021), which is a non-governmental organization that provides small-
holder farmers access to agricultural training, credit, crop insurance 
services, and farming supplies, which allows them to improve their 
technology adoption. One Acre Fund collected data on yield and man-
agement practices like fertilizer inputs, fertilization method, planting 
dates, seed type, incidence of pest and diseases, and field size. Input 
rates were calculated as the ratio of the self-reported total input amount 
and field size. Here, we used data on N and P fertilizer rates annually 
reported by ca. 770 farmers across five crop seasons (2016–2020) 
(Fig. 2c, f). We note that while One Acre Fund data included both 
farmers who subscribed to the “One Acre Fund Program” and 
non-subscribed farmers from neighboring farms, for our analysis, we 
only included the latter group to avoid biases in inputs use. We focused 
on western Kenya, which represents 60% of maize area in the country, 
since One Acre Fund database was concentrated in this region. 

Fig. 2. (a, b, c) Location of experts in Argentina (a) and surveyed fields in the USA (b) and Kenya (c) from which data on fertilizer rates were retrieved. The green 
color shows the combined harvested area for maize, soybean, and wheat in Argentina, soybean in the USA (SPAMv10), and maize in Kenya (SPAMv17, https://www. 
mapspam.info/data/). (d, e, f) Climate zones in each country, with each color representing a unique climate zone, which, in turn, corresponds to a given combination 
of growing-degree days, aridity index, and temperature seasonality (Van Wart et al., 2013). Only selected climate zones used in the analysis are shown. Black lines 
within each country show provinces (Argentina), states (USA), or counties (Kenya) boundaries. Note the different scale for Kenya (c, f). 
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Fertilizer rates are reported in all cases as kilograms of elemental 
nutrient per hectare per crop. We made our best effort to evaluate the 
quality of our databases by comparing the average national fertilizer 
rates against independent estimates in Argentina (Fertilizar; https:// 
fertilizar.org.ar/), in the USA (USDA-NASS; https://www.nass.usda. 
gov/), and in Kenya (FAOSTAT, https://www.fao. 
org/faostat/en/#data/ESB, https://www.fertilizer.org/) for each crop 
by nutrient combination (Table 1). However, a one-to-one match of the 
data was impossible given differences in years and aggregation. In 
Argentina, average (2016/2017 - 2018/2019) national fertilizer rates 
from the database were compared against estimates from Fertilizar, 
which were only available for the 2014/2015 crop season. In the case of 
USA, we used the averages from the most recent (2015 and 2017) 
USDA-NASS data on fertilizer rates (https://www.ers.usda.gov/data 
-products/fertilizer-use-and-price/) for the comparison. For Kenya, av-
erages of national fertilizer rates between 2016 and 2020 were 
compared against estimates from FAOSTAT for the same year, however 
FAOSTAT only reported applied fertilizer rates per cropland. 

2.3. Application and evaluation of the minimum data collection approach 

The approach described in Section 2.1 was applied to select SAs in 
Argentina, USA and Kenya. For the selection, we considered the har-
vested crop area around year 2010 for Argentina and USA and year 2017 
for Kenya (https://www.mapspam.info/data/). Rainfed wheat, maize, 
and soybean harvested areas in Argentina largely overlap (67%). Hence, 
we used the combined harvested area for the three crops in Argentina. In 
the case of soybean in the USA, we used the combined rainfed and 
irrigated area, with the latter accounting for ca. 10% of the national 
soybean area. Average fertilizer rates were estimated for each SA in each 
year using all available experts (Argentina) or fields (USA and Kenya) 
within each SA. In the case of Argentina, fertilizer rates reported for 
early- and late-sown maize and soybean were weighted by their 
respective area within each SA to calculate an average rate for each crop. 
Likewise, for those SAs in the USA where both irrigated and rainfed 
soybean production exist, an average fertilizer rate was estimated by 
weighting for the harvested area under each water regime. Because 
fertilizer application rates can fluctuate over time due to changes in 
grain and fertilizer prices, our comparisons are based on the average 
fertilizer rate per SA calculated based on three (Argentina), four (USA), 
or five (Kenya) crop seasons. 

We evaluated our approach for data collection by estimating average 

fertilizer rates at national and subnational levels. To do so, we compared 
estimates of fertilizer rates at CZ and country level as derived from the 
selected SAs versus those estimated using all available observations from 
the three databases for all country-crop-nutrient combinations (Fig. 5, 
S3). For the latter, we first weighted each numerator (Argentina) or field 
(USA) by the relative share of national crop area as determined from the 
crop area within a 25-km buffer (large-scale) or 1-km (small-scale) 
centered at each expert or field and then calculated the average value for 
each CZ. Subsequently, to upscale from CZ to national level, we aver-
aged CZ estimates, weighting the CZ estimates by their respective crop 
harvested area, separately for each crop. In the case of the USA and 
Kenya, only CZs with at least 10 fields per CZ per year were considered 
for the evaluation of our approach. We used root mean square error 
(RMSE), relative RMSE (rRMSE, i.e., RMSE as a percentage of the na-
tional average using all available observations), and mean absolute error 
(MAE) to evaluate the degree of agreement between fertilizer rates 
estimated via our approach versus those estimated using all available 
observations in the database. Finally, to evaluate capacity of the 
approach to collect other agronomically relevant data besides nutrient 
fertilizer inputs, we replicated our analysis using yield data available in 
the databases from the three countries, following the same methodology 
described for nutrient inputs (Fig. S4). 

2.4. Data requirement per sampling area 

A key question is the minimum number of experts or fields per SA 
that is needed to retrieve a robust estimate of fertilizer rate at national 
level. To answer this question, we ran our data collection approach using 
different sample sizes per SA (n) (Fig. 6, S5). In the case of Argentina, we 
varied the number of experts per SA from one to 16. For the USA and 
Kenya, sample sizes ranged from one to 50 fields per SA. Because 
different subsets of experts or fields in the same SA can lead to different 
estimates, we repeated the analysis using independent samples for a 
given sampling size. To do this, we performed bootstrap analysis, which 
is a resampling technique used to estimate statistics on a population by 
sampling a dataset (Simpson and Mayer-Hasselwander, 1985). A boot-
strap sample is a random sample selected with replacement from the 
original statistical observations, which means that some of the original 
observations can be repeated more than once or omitted from an indi-
vidual bootstrap sample (Dixon, 2002). For each size sample size, 200 
bootstrap samples were used to compute different national fertilizer rate 
averages for a given crop and nutrient. These 200 averages derived via 
bootstrapping were used to compute 95% confidence intervals (CI) by 
removing the 2.5% lowest and highest values. The margin of error was 
then calculated as half of the CI width, which represents the uncertainty 
of national level fertilizer estimates due to variation in fertilizer rates 
across experts (Argentina) or fields (USA and Kenya) within the same 
SA. For comparison purposes, we considered that a given sample size 
was appropriate when the margin of error of national-level estimates 
were within ± 10 kg N ha− 1, ± 2 kg P ha− 1, ± 5 kg K ha− 1, and 
± 1 kg S ha− 1. We determined these thresholds based on what we 
believed are agronomically relevant differences. For example, 10 kg N 
ha− 1 is roughly equivalent to half a ton of cereal grain. Further, once the 
minimum number of experts (Argentina) or fields (USA and Kenya) per 
SA required for precise estimation of fertilizer rate was established, we 
compared the averages obtained with our minimum data collection 
approach against the national fertilizer rate retrieved from the whole 
database and the number of surveyed field or experts required to reach 
those numbers with a reasonable level of precision (Table 2). This 
analysis was performed separately for each crop-nutrient combination. 
Finally, to assess the degree of precision at sub-national level, we 
repeated the analysis for the climate zones accounting for largest maize, 
wheat, and soybean area in Argentina, for largest soybean area in USA, 
and for largest maize area in Kenya (Fig. S6). 

Table 1 
Comparison for average fertilizer rates at national level between the database 
used in our studies versus independent estimates reported by others (Fertilizar in 
Argentina, USDA-NASS in USA, and FAOSTAT in Kenya) for each country-crop- 
nutrient combination. Database estimates are averages over 2017–2019 
(Argentina, n = 1855), 2014–2017 (USA, n = 8015) and 2016–2020 (Kenya, 
n = 3849) while the independent estimates correspond to values in year 2014 
(Argentina), 2-y (2015 & 2017) averages (USA), and 5-y (2016–2020) averages 
(Kenya). Parenthetic values are the standard error of the mean, which are only 
shown for the database values as were not reported for the other estimates.  

Country Crop Nutrient† Database (kg 
ha− 1) 

Other estimates (kg 
ha− 1) 

Argentina Wheat N 55 ( ± 0.9)  63   
P 12 ( ± 0.2)  16  

Maize N 58 ( ± 0.8)  44   
P 12 ( ± 0.2)  11  

Soybean P 5 ( ± 0.1)  5 
USA Soybean P 8 ( ± 0.3)  10   

K 29 ( ± 0.8)  32 
Kenya Maize‡ N 25 ( ± 0.4)  24   

P 16 ( ± 0.2)  10 

† N: nitrogen; P: phosphorous; K: potassium (all expressed in kg of elemental 
nutrient). 
‡ FAOSTAT reported nutrients applied (kg ha− 1) per cropland in Kenya. 
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3. Results 

3.1. Database quality assessment 

Comparison of average fertilizer rates between our database and 

other available sources showed reasonable agreement between data-
bases at national level in Argentina and USA (Table 1). Across country- 
crop-nutrient combinations in the two large-scale system countries, 
differences between databases were within ± 14 kg N, 4 kg P, and 
3 kg K per ha, indicating that the databases used for our study portrayed 
well the variation in fertilizer rates across country-crop-nutrient com-
binations. In the case of smallholder fields in Kenya, our database had 
comparable N rate and a slightly higher (+6 kg ha− 1) P relative to 
FAOSTAT data. The discrepancy can be attributed to FAOSTAT report-
ing nutrient rates per ha of cropland and to the location of our study area 
(western Kenya) which has favorable conditions for crop condition, 
thus, nutrient rates are expected to be higher. 

3.2. Application of the minimum data collection approach in Argentina, 
USA, and Kenya 

Our approach selected 9 CZs in Argentina,11 CZs in the USA, and 9 
CZs in Kenya, resulting in 12, 28, and 10 SAs, respectively (Fig. 3). The 
selected CZs represented 91% of the aggregated wheat, maize, and 
soybean harvested areas in Argentina, 76% of the soybean harvested 
area in the USA, and 74% of maize harvested area in western Kenya. 
While selected SAs represented ca. 50% of the combined national har-
vested area for the target crops in each country. Hence, our approach 
achieved a large coverage of the crop harvested area with a relatively 
small number of SAs, for countries that included 29 M ha (Argentina), 
34 M ha (USA), and 2.2 M ha (Kenya) sown with the target crops. 
Selected SAs in Argentina included 45% of the total number of experts in 
the database while 51% and 63% of the total number of fields available 
in USA and Kenya databases, respectively. In most cases, selected SAs 
had a radius smaller than 100 km, as originally delineated for SA se-
lection, because they were clipped by the borders of the CZs. On average, 
there were 25 experts (Argentina), 40 fields (USA), and 300 fields 
(Kenya) per SA. 

3.3. Validation of the approach at CZ and national level 

Our minimum data collection approach derived estimates of fertil-
izer rates that were comparable to those based on the entire database, 
both at sub-national (i.e. CZ) and national levels for N in wheat and 
maize in Argentina, P in soybean in Argentina and USA, and for N and P 
in maize in Kenya (Figs. 4, 5, S2). For example, overall RMSE for N 
fertilizer rates across selected CZs for wheat in Argentina was 8 kg N 
ha− 1, representing 14% of the national N fertilizer rate based on all 

Table 2 
National average fertilizer rates estimated using all experts (Argentina) or fields 
(USA and Kenya) available in the databases and confidence intervals (CI) for 
those estimated following our minimum data collection approach based on three 
experts or 20 fields in each of the 12, 28, and 10 selected sampling areas in 
Argentina, USA, and Kenya, respectively. Estimates are averages over 
2017–2019 (Argentina), 2014–2017 (USA), and 2016–2020 (Kenya). The 
number (n) of local experts (Argentina) or fields (USA and Kenya) used to 
compute each average or CI is shown.  

Country Crop Nutrient Whole database  Minimum data 
collection 
approach 

n Average 
(kg ha− 1)  

n CI (kg 
ha− 1)†

Argentina Wheat N 1855 55  36 52 – 
65.1   

P  12   11.3 – 
14.6   

S  1   0.6 – 
2.3  

Maize N  58   47.4 – 
63.9   

P  12   9.7 – 
15.1   

S  2   0.8 – 
3.1  

Soybean P  5   3.5 – 
6.4   

S  2   1.5 – 
3.6 

USA Soybean P 8015 8  560 7 – 10.3   
K  29   23.3 – 

34 
Kenya Maize N 3849 25  200 20 – 

29.5   
P  16   13 – 

17.6 

†95% confidence interval (CI) for a set of 100 estimates of national average 
fertilizer rates based on random samples of three experts or 20 fields per sam-
pling area. Rates are reported in kg elemental nutrient: nitrogen (N), phospho-
rous (P), potassium (K), and sulfur (S). 

Fig. 3. Selected sampling areas (SAs) following the minimum data collection approach for wheat, maize, and soybean in Argentina (left), soybean in USA (middle), 
and maize in Kenya (right). Quasi-circles represent selected SAs and those with same color belong to the same climate zone. Inset shows the location of the study 
region within each country. Note the different scale for Kenya. 
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experts. In the case of P fertilizer rate for soybean in the USA, the RMSE 
was 1 kg P ha− 1, representing 15% of the national average based on all 
surveyed fields. Similarly for N in Kenya, RMSE represents only 8% of 
the national N fertilizer across all fields. A strong agreement at national 
and CZ level was also found for other country-crop-nutrient combina-
tions, with RMSE representing 15% or less of national fertilizer rates 
based on whole database, except for S in Argentina due to lower rates 
(supplementary Fig. S3). Across all country-crop-nutrient combinations, 
there was no indication of consistent differences in RMSE, expressed as 
percentage of the overall averages, among crops, nutrients, or regions. 
Besides the strong agreement, our approach was able to reproduce well 
the variation in fertilizer rate across CZs, for example, from near zero up 
to 80 kg N ha− 1 for maize in Argentina. For all country-crop-nutrient 
combinations, the slope of the fitted linear regression did not deviate 
from one (p > 0.17), indicating no bias in the estimation of fertilizer 
rates across the selected CZs. Our approach also reproduced averages 
and variation in grain yield, with average RMSE representing 9% of 
national yield level based on the whole database (Supplementary 
Fig. S4). This was expected since nutrient inputs are typically correlated 
with yield. Overall, our analysis suggests that the approach can be used 
to collect a wider range of agronomically relevant variables. 

In relation to national averages, fertilizer rates estimated based on 
our approach were always ± 4 kg nutrient ha− 1 ( ± 10%) of those 
estimated using the entire databases. Except for N in maize in Argentina 
and P in maize in Kenya, national estimates based on experts or fields 
within selected SAs were slightly higher (range: 0.2–4 kg nutrient ha− 1) 
than those based on all experts or fields included in the databases. Our 

method tended to sample more intensively areas with greater crop 
harvested area and yield, which also tended to have higher fertilizer 
rates. Nevertheless, our approach resulted in similar estimates of fer-
tilizer rates by using only, on average, half of the experts or fields 
included in the databases. 

3.4. Influence of number of experts or fields per sampling area 

In Argentina, three experts per SA were sufficient to deliver national 
fertilizer rates with a margin of error lower than (or close to) 10 kg N 
ha− 1 and 2 kg P ha− 1, which are considered here to be reasonable levels 
of precision for agronomic applications (Fig. 6). In the case of soybean in 
the USA and maize in Kenya, we found that 20 fields per SA were 
adequate to derive average national fertilizer rates within ± 10 kg N 
ha− 1 and ± 2 kg P ha− 1 of estimates based on all available fields in the 
selected SAs. The same result was also found for other crop-nutrient 
combinations, with national fertilizer rate estimates within ± 2 kg P 
ha− 1, ± 1 kg S ha− 1, and ± 5 kg K ha− 1 (supplementary Fig. S5). The 
number of experts and fields per SA required for robust estimation of 
fertilizer rates as estimated here (3 and 20, respectively) was consider-
ably smaller than the average number of experts in Argentina and fields 
per SA in USA and Kenya included in the databases (25, 40, 300 
respectively). An assessment performed at CZ level for a subset of crop- 
country combination revealed that reaching the desired precision would 
be difficult, even when using large sample sizes, meaning that there will 
be higher uncertainty at sub-national level (supplementary Fig. S6). 

Combining the results on selected SAs (12, 28, and 10 in Argentina, 

Fig. 4. Examples of average fertilizer rate per climate zone estimated based on the minimum data collection approach for nitrogen (N) in wheat and maize in 
Argentina (left panels), and phosphorous (P) and potassium (K) for soybean in USA (middle panels), and N and P for maize in Kenya (right panels). 
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USA, and Kenya respectively) and required number of experts (3) or 
fields (20), one can estimate that a total of 36 experts (Argentina), 560 
fields (USA), and 200 fields (Kenya) would be needed to estimate 
average fertilizer application rates at national and subnational levels 
with a reasonable level of precision (Table 2). The required number of 
experts and fields represented ca. 12%, 28%, and 26% of those included 
in the entire databases for Argentina, USA, and Kenya, respectively. 
Average national fertilizer rates estimated following our approach (i.e., 
using 36 experts in Argentina, 560 fields in USA, and 200 fields in 
Kenya) were comparable to those derived using the entire databases, 
across all country-crop-nutrient combinations. In most cases, CIs of 
fertilizer rates estimated by our approach were within (or close to) 
± 10 kg N ha− 1, ± 2 kg P ha− 1, ± 1 kg S ha− 1, and ± 5 kg K ha− 1 of the 
average values derived from the whole databases. 

4. Discussion 

While new techniques such as remote sensing, crowdsourcing, block 
chain, and data mining may one day allow collection of agricultural data 
at little cost, our study shows that a modest investment on ‘smart’, 
geospatially-based data collection based on a stratified sampling strat-
egy, as routinely done in other disciplines (Goodbody et al., 2023), 
would allow retrieving average values for key agronomic variables at 
national and sub-national level within a relatively short timeframe. For 
example, in large producing countries like Argentina and the USA, ori-
enting data collection to 12 and 28 sampling areas, respectively, stra-
tegically selected based on agroclimatic conditions and crop harvest 

area distribution, delivered robust estimates of fertilizer rates at national 
levels (Figs. 3 and 5). Furthermore, we showed that a total of 36 experts 
(Argentina) or 560 fields (USA) were sufficient for estimating national 
average nutrient fertilizer rates with a reasonable level of precision 
(Table 2). These values are remarkable considering that each of these 
countries includes ca. 30 M ha sown with the target crops. Similarly, 
application of the approach in small scale systems like Kenya showed 
that data collection across 20 fields for each of the 10 SAs (i.e., 200 fields 
annually) showed comparable fertilizer rates to those estimated from 
770 surveyed fields per year. Overall, our study showed that it is 
possible to generate robust estimates of fertilizer rates with a relatively 
small number of experts or field surveys, which is particularly relevant 
for countries that have limited resources for data collection. 

We note that extending our validation approach to other parts of the 
world where current data availability is scarce may require modifica-
tions in the proposed methodology. For example, the spatial stratifica-
tion method used here could be modified further by including other 
criteria that may enable better representation of more diverse soils, 
cropping systems, and farms. In addition, while fertilizer and yield were 
used here for proof of concept, the approach can be used for collection of 
many other types of agronomic data, particularly crop inputs and 
agronomic practices that are needed to capture heterogeneity within CZ 
or SA as driven by other biophysical and/or socio-economic factors. 
Whereas specific thresholds for number of experts or survey can vary 
among variables, region, and specific goal, we do not see any reason why 
the overall framework cannot be used for collection of other agronom-
ically relevant data such as pesticide use, straw management, plant 

Fig. 5. Comparison of fertilizer rates retrieved from our minimum data collection approach and those estimated using all available data for nitrogen (N) in wheat and 
maize in Argentina, and maize in Kenya, while phosphorous (P) for soybean in Argentina and USA, and maize in Kenya. Circles represent average fertilizer rates for 
each selected climate zone while the red stars show national averages. In all cases, values are averages over three (Argentina), four (USA), or five crop seasons 
(Kenya). Root mean square error (RMSE), relative RMSE (rRMSE), mean absolute error (MAE), and the y = x line is shown. 
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densities, etc., as variation in these variables are typically related to the 
same biophysical factors that influence variation in yield and fertilizer 
inputs. In our study, we used fixed thresholds to determine the required 
sample size based on what we believe agronomically relevant differ-
ences are (i.e., ± 10 kg N, ± 2 kg P, ± 1 kg S, and ± 5 kg K per ha). 
Ultimately, the sample size can be modified depending upon the user- 
desired level of precision following the relationships shown Fig. 6. 
Likewise, increasing sample size and/or number of SAs per CZ may be 
desirable when the goal is to derive sub-national estimates with a pre-
cision comparable to that set as target in the present study (i.e., 
± 10 kg N, ± 2 kg P, ± 1 kg S, and ± 5 kg K per ha) (supplementary 
Fig. S6). Beyond these potential adjustments, our approach serves a first 
step to fulfill the current agronomic data gap for major crop systems 
around the world using a transparent, objective, and systematic 
approach that orients data collection to specific geographic areas in each 
country and, by doing so, minimizing the required resources needed to 
support these efforts. 

Average values at country level typically mask large spatial variation 
in agricultural practices within countries. For example, the national 
average N rate for wheat in Argentina was ca. 60 kg N ha− 1, varying 
from ca. 2 to 80 kg N ha− 1 across CZs (Figs. 4 and 5). Similar patterns 
were found for all country-crop-nutrient combinations (supplementary 
Fig. S3). Our approach overcomes the limitation of current global da-
tabases by providing estimates for the most important crop producing 
regions within a country and capturing the most influential 

environmental gradients that drive differences in management and 
yield. Such spatial granularity is useful for informing research and 
extension programs at sub-national level. For example, if data on 
nutrient inputs is complemented with yield data, one could identify 
areas where nutrient balances are excessive or deficient, pointing out 
opportunities to reduce the negative environmental impact or avoid soil 
degradation (Riccetto et al., 2020). To summarize, having access to 
agricultural data for major CZs within a country can help to better target 
investments on agricultural research and development programs and 
orient policy, which would not be possible when only aggregated data at 
national level are available. 

The proposed method is flexible to further disaggregate data 
collection in each SA based on other criteria (e.g., farmer typology, soil 
type, water regime, cropping system). In Argentina, for example, local 
experts collect data separately for different cropping systems such as late 
versus early maize and soybean. Our results indicated that average N 
fertilizer rates were higher in early-sown maize (60 kg N ha− 1) than in 
late-sown maize (54 kg N ha− 1). In the case of rainfed and irrigated 
soybean in USA, we did not find differences in national average P and K 
fertilizer between water regimes. Likewise, the proposed method can 
accommodate other socio-economic variables that influence farmers’ 
technologies and decision making. For example, in oil palm farming in 
Indonesia, average yield and applied inputs are different between 
smallholders and large plantations, regardless of the biophysical back-
ground (Monzon et al., 2021). In those cases, it would be relevant to 

Fig. 6. Margin of error of national averages of fertilizer rates estimated with different number of experts (1 to 16, Argentina) or fields (1 to 50, USA and Kenya) per 
selected sampling area (SA) for nitrogen (N) for wheat and maize in Argentina, phosphorous (P) for wheat, maize, and soybean in Argentina, N and P for maize in 
Kenya, and P soybean in USA. The margin of error of fertilizer rates for a given sample size (n) was estimated based on 200 randomly selected subsets of experts or 
fields of size n. Also shown are dashed lines indicating ± 10 kg N ha− 1 and ± 2 kg P ha− 1deviations, which are considered here to be reasonable levels of precision. 
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collect data separately for the two farmer typologies, which both may 
occur in the same CZ. It may also be desirable to bring other biophysical 
variables into our spatial framework if evidence exists that management 
practices and applied inputs would be influenced by them and associ-
ated spatial data are available. For example, soil properties could be 
incorporated into the spatial framework to account for possible changes 
in applied inputs and yield among soil types (e.g., Rezaei et al., 2015; 
Rattalino Edreira et al., 2018; Ojeda et al., 2021). We note, however, 
that addition of other variables needs to be carefully evaluated consid-
ering the expected added value and the extra data collection efforts 
involved. The capability of our approach to further disaggregate data 
collection based on both biophysical and socio-economic background 
provides enough flexibility to be applicable globally, but we also argue 
to keep it as simple and robust as possible. As a next step, we aim to 
expand our work to more countries, crops and agronomically important 
variables, giving priority to crop-regions combinations accounting for 
largest fraction of global crop production. 

5. Conclusions 

We developed a minimum crop data collection approach that seeks a 
balance between robust estimation of key agronomic attributes and 
reduced efforts in data collection both in large- and small-scale systems. 
The approach delivers national and sub-national estimates of agronomic 
variables using a reasonable number of SAs per country and a relatively 
small number of experts or fields per SA. In our case studies for fertilizer 
rates, the approach selected 12 (Argentina), 28 (USA), and 10 SAs 
(Kenya) that represented 50% of national production for a given crop. 
Only three experts or 20 fields per SA seemed sufficient for robust 
estimation of average national rates. The approach is generic and flex-
ible enough so that it can be applied in other crop-countries and data can 
be further disaggregated by water regime, crop cycle, and socio- 
economic parameters. 
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