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Abstract

Mapping is a significant issue in mobile robot
applications. Mobile robots can build a map or
a model of the environment using different sen-
sors. An orchard is a suitable agricultural envi-
ronment for mobile robot applications since it is
a semi-structured environment, where trees are
planted in nominally straight rows. This pa-
per presents a new method to extract features
from the orchard environment using a camera
and laser range scanner to create a map of the
orchard. The map of the orchard is based on
the detection of tree trunks. In this study, im-
age segmentation and data fusion methods are
used for feature extraction, tree detection and
orchard map construction. Integration of both
machine vision and laser sensor provides more
robust information for tree trunk detection and
orchard mapping. The resulting map composes
of the coordinates of individual trees in each
row as well as the coordinates of other non-tree
objects detected by the sensors.

1 Introduction

In recent years, mobile robots have been introduced in
different agricultural applications. The rapid develop-
ment in sensors, communication and software techniques
has encouraged many researchers and companies to de-
velop automated agricultural robots to save labour and
enhance safety. Navigation of mobile robot in agricul-
tural environments consists of sensing the environment,
mapping, localisation and obstacle avoidance.

Precise orchard maps are necessary for agricultural
mobile robots localisation, path planning and navi-
gation. Many researchers have developed automated
or semi-automated agricultural mobile robots that can
sense their environment and build a map of the environ-
ment. The integration of different sensors for mapping
increases the robustness of the map. Accurate environ-
ment maps assist the mobile robot to easily estimate its

position and orientation at each time instant.
Orchards must be considered as semi-structured en-

vironments because, although trees from the same kind
are planted in nominally straight rows and the distances
between the rows are almost equal (Figure 1), there re-
mains significant spatial irregularity. The major problem
in orchard mapping process is finding suitable features
that are stable under different environmental conditions.
In addition, orchards are frequently less tidy than illus-
trated in Figure 1 with fallen debris (e.g. due to storm
damage) and other obstacles, and local-scale mapping
is often not constant over time. Whilst major features
such as trees do not move, features change as trees grow,
branches fall and other movable obstacles (e.g. animals)
may also be present.

Figure 1: Example of tree rows in the orchard [Dream-
stime, 2013]

The use of spatial sensors with agricultural vehicles
has been increased rapidly in the recent years as their
costs diminish. Vision systems are becoming more com-
mon in outdoor agricultural applications such as local-
isation, map construction and autonomous navigation
because of their cost effectiveness and their capability
to provide instantaneous information that can be used
to detect unexpected objects and construct an up-to-
date map of the local environment. A laser scanner is
considered as one of the most popular sensors used in
outdoor applications since it provides robust range and
angle measurements for object detection, mapping and
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localisation.
There are differences between the data acquired from

the laser scanner and the camera image. The 2D laser
scanner generates a single horizontal scan of the envi-
ronment, whereas the camera generates an image. Laser
scanner provides range and bearing data, while the cam-
era primarily provides intensity and colour information.
On the other hand, there are some common features in
both types of data. For example, many corners and edges
correspond to a sudden change in the range along the
laser scan data and a sudden variation in the image in-
tensity [Peynot and Kassir, 2010].

This work presents a new method for local-scale or-
chard mapping based on tree trunk detection and util-
ising modest-cost colour vision and laser-scanning tech-
nologies. Fusion of data from the simultaneous use of
these sensors improves object detection because the laser
scanner can provide accurate ranges and angles of the
objects, while the vision system can distinguish between
tree trunks and other non-tree objects. The method
seeks to achieve local-scale mapping appropriate as a
component of robot navigation. Consideration of robot
positioning is not the focus of this paper. The map ob-
tained consists of the 2D location of the trees in the
orchard which will be used later as a priori map with
the measurements from the sensors to implement locali-
sation, path planning, and navigation in the orchard.

This paper is organised as follows. Section 2 presents
the recent studies published in the field related to this
work. Section 3 describes the system architecture imple-
mented in this study. Section 4 explains the proposed
method for tree trunk detection using vision and laser
sensors. Map construction method is described in Sec-
tion 5. Section 6 presents the experimental results and
discussion. Finally, a summary of the significant conclu-
sions and future work is presented.

2 Related Work

Mapping agricultural environments using mobile robots
is a challenging subject. Several methods exist in the
literature for feature extraction of the environment that
construct a map of the environment to be used later for
localisation and navigation of mobile robot. Another ap-
proach is implementing Simultaneous Localization and
Mapping (SLAM) algorithm which is used to build up a
map within an unknown environment, while at the same
time using this map to localise the mobile robot current
location.

There are different methods to detect trees available in
the literature. Several studies have been reported on the
use of laser sensors for tree row detection in orchards
and groves. Laser scanner data can be used to detect
different components of the tree rows (e.g. trunk, stem,
and canopy). Hansen et al. [2011] and Libby and Kan-

tor [2011] used the laser scanner to detect the dense
canopy of the tree rows. However, Libby and Kantor
[2011] found that the use of reflective tapes to detect the
ends of the rows reduced processing time and enhanced
row detection. Hamner et al. [2010] suggested a method
to detect trunk and/or canopy of the trees for tree row
recognition then Hough transform was implemented to
extract point and line features to navigate the agricul-
tural vehicle between the rows. In the study reported by
Guivant et al. [2002], laser scanner was used to perform
SLAM algorithm using the trunks of the trees as point
features. Alternatively, techniques such as LIDAR can
provide more-comprehensive canopy geometrical infor-
mation and Rosell Polo et al. [2009] have demonstrated
its use for the measurement of tree-row structure in or-
chards, but not specifically for local mapping.

Researchers have also investigated the potential use of
vision sensors for tree row detection in orchards. The
use of vision sensors allows the extraction of different
features from the environment such as colour, texture,
shapes, and edges of the trees. A number of vision-based
autonomous navigation systems have been developed for
tree row following [Ayala et al., 2008; Gao et al., 2010;
Torres-Sospedra and Nebot, 2011]. These systems used
different image segmentation and classification methods
to extract the useful information for navigation and fo-
cused on optimising the classification methods.

In some orchards, both vision camera and laser range
scanner are used for mapping, localisation and au-
tonomous navigation. Integration of both machine vision
and laser scanner increases object detection capability.
The work of Subramanian et al. [2006] presents an au-
tonomous guidance system based on machine vision and
laser radar. A combination of laser and vision sensors
has been also used to develop SLAM algorithm [Cheein
et al., 2011]. The SLAM algorithm is based on stems de-
tection for the creation of agricultural maps using both
laser range sensor and a monocular vision system.

Most of the SLAM algorithms have been focused in
solving outdoor mapping for unknown and unstructured
environments. SLAM has disadvantages of its processing
time and computational requirements. The complexity
of SLAM increases with the number of the landmarks
and features in the map [Cheein et al., 2011]. However
recent studies are seeking to address these issues.

In this study, we present an original algorithm for de-
tecting tree trunks and achieving local mapping for an
orchard environment using camera and laser informa-
tion. This map will be used as a priori map for future
work on localisation and navigation in orchard. A laser
scanner is used to detect the candidate tree trunks and
determine the position of tree trunks with respect to the
mobile robot location. A colour camera is used to dis-
tinguish between tree trunks and other non-tree objects
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based on tree trunk expected colour and the detected
edges.

3 System Architecture

3.1 Robot Platform and Sensors

The platform used in the development of the tree trunk
detection algorithm and orchard mapping is a CoroWare
Explorer (CoroWare Inc., USA) which is designed to op-
erate in outdoor conditions. It has a rugged articulated
4 wheel drive chassis with skid steering. It is equipped
with an onboard computer running Ubuntu Linux op-
erating system. Whilst this robot was used principally
as a convenient sensor platform, a robot of this size, op-
erating autonomously, could meet a major requirement
in orchard management, namely simple inspection, e.g.
to observe state of flowering, crop development, or dam-
age following a storm event and carry little more that a
camera and communications systems. Currently this is
labour intensive task, especially in large orchards.

A camera-laser scanner combination is mounted on the
robot platform. The camera used is a Logitech webcam
Pro 9000 with 75◦ view angle and 320×240 pixels image
resolution. The laser range scanner used is a Hokuyo
URG-04LX-UG01 scanning laser range finder with scan
angle equal to 240◦ and angular resolution equal to 0.36◦.
The laser scanner is mounted on top of the camera and
the camera-laser scanner combination is positioned at
the front of the robot. Figure 2 shows a photo of the
CoroWare Explorer platform with the onboard sensors.

Figure 2: CoroWare Explorer platform with the onboard
sensors.

3.2 Camera-Laser Calibration

Camera calibration was performed to determine the in-
trinsic parameters of the camera which include the focal
length fc, the principal point coordinates cc, skew coeffi-
cient alpha c, and the distortion coefficients kc. Camera
calibration process was achieved using the Matlab cam-
era calibration toolbox developed by Bouguet [2009].

The camera image is a projection of a 3D plane into
2D image plane and the laser signal is a 2D scan from
the 3D world. It is critical to estimate the precise homo-
geneous transformation between the coordinate systems

of the camera and the laser scanner to fuse the data ac-
quired from these two sensors. Therefore, camera-laser
calibration is implemented to determine the position and
orientation of the camera relative to the laser scanner
[Meng et al., 2010]. The camera-laser calibration was
performed using the automatic camera-laser calibration
toolbox developed by Kassir and Peynot [2010].

The results of camera-laser calibration toolbox are:

• The translation offset ∆ = [δx, δy, δz] , which is the
coordinates of the vector extending from the camera
origin to the laser origin in the camera’s coordinate
frame.

• The rotation matrix R = [φx, φy, φz], which repre-
sents the rotation between the camera and the laser
frames about the axis x, y, and z respectively.

The secure mounting of the camera and laser scan-
ner ensured that their relative positions were maintained
during and after the camera-laser calibration.

3.3 Projection of Laser Points on the
Camera Image

The critical part of laser and camera data fusion is the
projection of laser points onto the image plane of the
camera. This projection required a prior camera-laser
calibration to estimate the parameters of the transforma-
tion between the the laser frame and the camera frame
[Peynot and Kassir, 2010].

Projection of any laser point on the camera image is
achieved in two steps:

• Transformation of the Cartesian coordinates of a
point in a 3D space from laser frame to camera
frame (laser-camera transformation).

• Projection from camera frame to the image plane.

Laser-Camera Transformation

Consider a point obtained by the 2D laser, defined by a
range and a bearing angle, in a frame associated to the
laser. This point can also be represented as a vector of
3D Cartesian coordinates in the laser frame Pl, and a
vector of 3D Cartesian coordinates in the camera frame
Pc. These two vectors are related as follows [Peynot and
Kassir, 2010]:

Pl = Φ(Pc −∆) (1)

where ∆ = [δx, δy, δz] is the translation offset vector
and Φ is the rotation matrix defined by a set of three
Euler angles R = [φx, φy, φz]. The rotation matrix Φ is
determined using the following equation:

Φ =

 cycz cxsz + sxczsy sxsz − cxsycz
−cysz cxcz − sxsysz sxcz + cxsysz
sy −sxcy cxcy

 (2)
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where si and ci stand for sin(φi) and cos(φi) respec-
tively [Peynot and Kassir, 2010].

To achieve the laser-camera transformation, the 3D
coordinates of any point with respect to laser frame is
first calculated from the range r and bearing angle β
of the point. Then the transformation from laser frame
Pl = [Xl;Yl;Zl] to the camera frame Pc = [Xc;Yc;Zc] is
performed using Equation 1.

Projection to Image Plane

Consider a point P in space of coordinate vector Pc =
[Xc;Yc;Zc] in the camera reference frame. This point is
projected to the image plane according to the method
implemented in the Matlab camera calibration toolbox
by Bouguet [2009] as described in Equation 3 to Equa-
tion 7 below. The normalized pinhole image projection
is given by:

xn =

[
Xc/Zc

Yc/Zc

]
=

[
x
y

]
(3)

Let r2 = x2 + y2. The new normalized point after
including lens distortion kc is xd and is defined as follows:

xd =

[
xd(1)
xd(2)

]
= (1 +kc(1)r2 +kc(2)r4 +kc(5)r6)xn +dx

(4)
where dx is the tangential distortion vector:

dx =

[
2kc(3)xy + kc(4)(r2 + 2x2)
kc(3)(r2 + 2y2) + 2kc(4)xy

]
(5)

Once the distortion is applied, the final pixel coordi-
nates xpixel = [xp; yp] of the projection of the point P
on the image plane is determined as follows:

{
xp = fc(1)(xd(1) + alpha c ∗ xd(2)) + cc(1)

yp = fc(2)xd(2) + cc(2)
(6)

Therefore, the pixel coordinate vector xpixel and the
normalized distorted coordinate vector xd are related to
each other by: xpyp

1

 = K

xd(1)
xd(2)

1

 (7)

where K is the camera matrix.

3.4 Simulated Environment

Simulated environment has been constructed for pre-
liminary data collection and testing of the algorithm.
This simulated environment can be considered as a small
scale model of the real orchard and consists of simulated
tree trunks constructed from mailing tubes with 900mm

height and 90mm diameter. The simulated tree trunks
are placed in two rows with semi-equal distances between
the simulated trees in the row and semi-equal distances
between the rows as would be expected in an orchard
as shown in Figure 3. In this simulated environment,
we are assuming that no tall grass and 500mm of each
simulated tree trunk is exposed above ground level.

Figure 3: The simulated environment.

4 Tree Trunk Detection Algorithm

The tree trunk detection algorithm developed in this
study calculates the ‘rate of confidence’ for each object
in the scene and determines whether it is a tree or non-
tree. The rate of confidence is a value between 0 and
1 that is assigned to each tree trunk. The final rate of
confidence ROCtree is calculated from laser scan data
and tree trunk colour and edges as shown in Figure 4.

The tree trunk detection algorithm developed in this
paper consists of two stages. In the first stage, laser
scanner distinguishes between the candidate tree trunk
and the non-tree objects. The candidate tree trunk then
will further tested by the vision to decide if it is tree
trunk or non-tree object.

4.1 Laser-Based Tree Trunk Detection

The algorithm first reads the scan data acquired from the
laser scanner. Figure 5 shows a laser scan data in polar
coordinates for the scene depicted in Figure 3, where the
scan data starts from −120◦ to 120◦ in step of 0.36◦, the
angular resolution of the laser scanner. Figure 6(a) con-
tains the laser scan data as in Figure 5 but with the range
data plotted on y-axis against the scan steps plotted on
x-axis. The algorithm then detects the objects from the
laser scan and determines their width d. This is achieved
by detecting the start and the end points (Pstart, Pend) of
each object using the derivative data d(ranges)/d(steps)
based on the concept that points corresponding to sud-
den change caused by object presence along the scan
generates a positive or negative spikes in the derivative
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Figure 4: Tree detection algorithm using camera and
laser scanner.

data as shown in Figure 6(b). Each object is represented
by a peak in Figure 6(a) and d is the number of steps be-
tween the positive and negative spikes in the derivative
data.

Figure 5: Laser scan data in polar coordinates.

The width d of the object can be calculated from the
polar representation of a single object in Figure 7 and it
is described in the following equation

(a)

(b)

Figure 6: (a) Laser scan data (b) Derivative data.

d = r21 + r22 − 2r1r2 cos(∆β) (8)

where r1 and r2 are the laser ranges at Pstart and Pend

of the object respectively, ∆β represents the difference
between the start angle β1 and the end angle β2 of the
object as shown in Figure 7.

Figure 7: Object width determination from laser scan
data.

To initialise the algorithm, the width of 20 trees in
the orchard are measured from the laser scan data us-
ing Equation 8 to be used for calculating the mean (µ)
and the standard deviation (σ) of the width of the trees.
These values would vary from one orchard to another
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depending on the type of the trees. The actual width of
the tree trunk is less than the diameter of the tree trunk
because the laser scanner does not have orthogonal view
of the tree trunk and also due to the laser scanner mea-
surement errors. The calculated µ and σ are used to
determine the probability density function for the stan-
dard normal distribution of the mean (pdf(µ)). For each
scan, the algorithm determines the width of each object
in the laser scan and calculates its probability density
function pdf(d) and compares it with pdf(µ) to deter-
mine the rate of confidence of the object ROClaser from
the laser scan. The pdf(d) and ROClaser are calculated
using Equation 9 and Equation 10 respectively:

pdf(d) =
1

σ
√

2π
e−

(d−µ)2

2σ2 (9)

ROClaser =
pdf(d)

pdf(µ)
(10)

The ROClaser is used to determine whether the object
is a candidate tree trunk or non-tree object from the laser
scan depending on its value. A threshold value (ROCth)
for the ROClaser that distinguishes candidate tree trunk
from non-tree objects is determined empirically. The
ROClaser of each object in the laser scan is compared
with the ROCth. If ROClaser of the object is greater
or equal to ROCth, then the algorithm considers this
object as a candidate tree trunk and projects its Pstart

and Pend from the laser scan to the image, otherwise the
object is considered as a non-tree object and saved in
the final map.

4.2 Vision-Based Tree Trunk Detection

Tree detection is considered as a segmentation problem
in image analysis. Both colour and edges detection meth-
ods have been used in this study for tree trunk detection
from images since colour only can not work well because
of the illumination problem. Edges alone also can not
provide enough information that can used for tree trunk
detection because there might be another vertical edges
in the image like posts and buildings.

The Pstart and Pend of the candidate tree trunks are
projected from the laser scanner data to the image plane
for tree trunk edge detection using the procedures ex-
plained in Section 3.3. The centre points of the candi-
date tree trunks are also projected to the image for tree
trunk colour detection. A rectangular region of interest
(ROI) window is selected around each projected point
as it is assumed the required features are located in the
ROI. The size of the ROI is inversely proportional to the
range of the tree trunk determined by the laser scanner.

The algorithm first implements tree trunk colour de-
tection for the selected ROI and compares the obtained
colour with the range of the tree trunk colour. If the
colour of the ROI is within the tree trunk colour range,

the algorithm will perform edge detection. Otherwise,
the algorithm will consider the candidate tree trunk as
a non-tree object.

Tree Trunk Colour Detection

Colour features are used in this study for identifying
the tree trunk in images because the tree trunks were
observed to have visually discernible colour from other
scene elements (e.g. grass, sky, foliage).

An off-line procedure has been performed for tree
trunk colour range estimation. The images of 20 tree
trunks in a natural setting are collected in different con-
ditions and a ROI window is selected around the cen-
tre point of each tree trunk for each image to estimate
the tree trunk colour range. This is achieved by con-
verting the ROI pixels from RGB space to HSV space.
According to HSV model, H (Hue) dimension represents
the color, S (Saturation) dimension represents the dom-
inance of that color and the V (Value) dimension rep-
resents the brightness. Therefore, the color detection
algorithm can search in terms of color position and color
purity, instead of using RGB in which the colour infor-
mation is spread across three channels R, G and B. The
H dimension is used in this study because it provides the
information about the colour, whilst S and V channels
focus on illumination conditions. The most dominant
value of H for each ROI is determined. The minimum
and maximum values of H (Hmin, Hmax) were estimated
and used as the lower and upper limits of H value for tree
trunk color detection. It is expected that this procedure
can be automated with further development.

Figure 8 illustrates the procedure for tree trunk colour
detection from images. The algorithm determines the
most dominant value of the H dimension in ROI selected
in the centre of the candidate tree trunk. This value is
compared with the H reference values (Hmin, Hmax) to
determine the rate of confidence of the tree trunk colour
(ROCcolour).

Tree Trunk Edge Detection

Tree trunk edges are the other features used in this study
to detect the tree trunk from images. The Pstart and
Pend of the candidate tree trunk detected by the laser
scan are projected into the RGB colour image and they
are expected to be located on the left and right edges
of the tree trunk. A ROI is constructed at these points
and is converted from RGB to gray-scale, where the gray-
scale value is calculated as the weighted sum of the R, G,
and B components. The gray-scale image is filtered to re-
move the noise prior to the edge detection using Median
filter because of its capability to simultaneously reduce
noise and preserve edges. Edge detection is then imple-
mented for each ROI window using the Canny method
[Canny, 1986]. The final ROI windows are binary matri-
ces consist of zeros and ones. The algorithm searches for
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Figure 8: Tree trunk colour detection.

possible straight edge in each window using least-squares
linear regression method. This is achieved by fitting a
linear model to the edge data in each ROI and calculate
the slope m, the angle θ and the measure of the goodness
of the fitted line R2. The rate of confidence from edge
detection for each tree trunk ROCedges is the summation
of the rate of confidence of the left and the right edges
and the degree of the two edges being parallel. Figure 9
explains the procedure for tree edge detection.

5 Map Construction

Map construction process is achieved by moving the mo-
bile robot with its onboard camera-laser combination
from a known starting position in the midway between
two tree rows in equal steps. The image-laser scan pair is
acquired at each step to implement tree trunk detection
and mapping algorithm.

The mapping algorithm determines the position of the
trees and the non-tree objects in the environment using
the ranges and bearing angles between the trees and the
mobile robot acquired by the laser scanner as shown in
Figure 10. The tree trunk coordinates (Xtree, Ytree) for
each tree at each image-scan are determined as follows:

Xtree = Xrobot + r sin(β) (11)

Ytree = Yrobot + r cos(β) (12)

Figure 9: Tree trunk edges detection.

Figure 10: Graphical representation of the trees in the
orchard environment.

where r and β are the range and the bearing an-
gle between the tree trunk and the mobile robot.
Xrobot and Yrobot represent the mobile robot coor-
dinates in the environment. The position of the
mobile robot in the simulated environment is deter-
mined manually with respect to a selected reference
point (Xenvironment, Yenvironment)=(0,0) as shown in
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Figure 11. To map a real orchard, the mobile robot po-
sitioning would involve other external and sensory input
(data from global positioning (GPS), inertial measure-
ment unit (IMU), odometry, etc.).

The final map consists of the coordinates of each tree
and non-tree object in the environment. The final po-
sition for each individual tree (Xmean, Ymean) is deter-
mined by calculating the mean of Xtree and Ytree for
all the scans of the same tree. Furthermore, the mean
of ROCtree for all the scans of each tree is calculated
(ROCtree mean) and added to the final map. The same
procedure is used to determine the position of the non-
tree objects.

6 Experimental Results and Discussion

Two experiments have been conducted. The first experi-
ment tested the tree trunk detection in a simulated envi-
ronment and implemented mapping of this environment.
The second experiment tested the tree trunk detection
in a natural setting comparable to an orchard.

6.1 Simulated Environment Test for Tree
Detection and Mapping

The camera-laser combination was moved in the simu-
lated environment from a known starting position in the
midway between two rows in equal steps with respect to
the starting position and the image-laser scan pair was
acquired at each step. For each image-laser scan pair,
the tree trunk detection and mapping algorithm was im-
plemented. Figure 3 shows the simulated trees with the
selected ROI around the edges.

Four objects were inserted in the simulated environ-
ment at different locations between the rows and outside
the rows to test the tree trunk detection algorithm. The
objects were additional mailing tubes that were modified
to be either different in geometry or different in colour.
Three of these objects (B1,B3, and B4) had width of
170mm. The fourth object (B2) had the same dimen-
sions of the simulated tree trunks but with a different
colour.

Figure 11 shows the final map of the simulated envi-
ronment which contains the simulated tree trunks (T1-
T12) and the non-tree objects (B1-B4). Each tree trunk
in this map is represented by green circle with its num-
ber, while each non-tree object is represented by red cir-
cle with its number.

The standard errors of the tree trunks coordinates
(SEx, SEy) were calculated using the following equa-
tion:

SE =
s√
N

(13)

where s is the data standard deviation and N is the
number of image-scan pair for each tree.

Figure 11: The map of the simulated environment.

Table 1 shows the results of each individual tree de-
picted in Figure 11. From the results, it can be seen
that the range of the ROCtree mean for the simulated
trees was between 0.786 to 0.903 which is acceptable for
identifying the tree trunks. There is small variation in
SEx and SEy results for the simulated trees in Table 1.
This variation is due to the range measurement errors
since the laser scanner used in this test has range accu-
racy of ±3% of measurement for the range from 20mm
to 4000mm [Hokuyo, 2009]. The angular resolution of
the laser scanner 0.36◦ also affects the standard error
because the number of laser point data decreases with
the range for the same object. This affects the bearing
angle measurements and errors in SEx and SEy.

Table 1: Simulated environment test results for the sim-
ulated trees.

Tree N ROCtree mean SEx(mm) SEy(mm)
T1 5 0.903 6.40 8.33
T2 5 0.888 6.09 9.76
T3 6 0.867 3.32 7.54
T4 8 0.890 5.77 8.57
T5 6 0.883 8.20 9.91
T6 8 0.854 8.55 8.17
T7 7 0.885 5.03 7.09
T8 6 0.875 4.31 7.90
T9 6 0.860 3.72 3.75
T10 6 0.877 4.31 7.90
T11 5 0.786 8.18 5.08
T12 5 0.878 8.70 2.85

Table 2 shows the results of each non-tree object pre-
sented in Figure 11. The objects B1, B3, and B4 have
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low ROCtree mean because they have different width
than the simulated trees. The algorithm was capable
of distinguishing them from the laser scanner data by
determining their width and ROClaser. These objects
had ROClaser less than the ROCth and were considered
as non-tree objects. The ROCtree mean of B2 was higher
than the other objects since B2 had the same width as
the simulated trees but different colour. This object was
detected by the laser scanner as candidate tree trunk and
the colour of this object was compared with the range of
the simulated tree trunk colour. The algorithm detected
it as non-tree object because its colour is not within the
simulated tree trunk colour range.

Table 2: Simulated environment results for non-tree ob-
jects.

Non-tree N ROCtree mean SEx(mm) SEy(mm)
object
B1 5 0.0009 2.95 5.41
B2 5 0.461 3.40 5.66
B3 5 0.0012 5.63 4.21
B4 5 0.0008 5.51 5.91

6.2 Real Tree Test for Tree Detection

Outdoor tests were conducted to test the performance
of the vision-based tree trunk detection algorithm in dif-
ferent illumination conditions for 20 trees of the same
type. The mean of the width of the tree trunk for
the 20 trees was 230.15mm with standard deviation of
20.45mm. Three tests were performed that used colour
detection, edge detection, and both colour and edge de-
tection together.

Figure 12(a) demonstrates the projected point in the
centre of the tree trunk and the ROI selected around this
point, while Figure 12(b) shows the projected points and
the selected ROI around each tree trunk edge. Figure 13
shows the RGB colour image, gray scale image and the
edge detection image for a selected ROI around a tree
trunk edge.

For tree trunk colour detection test, the computed nor-
malised values of Hmin and Hmax were 0.049 and 0.124
respectively. The average of ROCcolour for all the 20
trees was 0.9, while the average of ROCedges for the 20
trees was 0.705. Therefore, the colour was given more
weight than the edges in determining the rate of confi-
dence from vision. The average of the rate of confidence
from both colour and edges detection for the same 20
trees was 0.822.

The tree trunk detection algorithm was also tested for
different non-tree objects that might be found in orchard
such as bushes and posts. The algorithm assigned a low
rate of confidence for them and considered them as ob-
jects. Some posts were considered as non-tree objects by
the laser scanner because they have different width com-

pared with tree trunk. Other posts were first detected
as candidate tree trunk from the laser data because their
width is within the range of tree trunk width, however
their colour was tested and were considered as non-tree
objects because they have different colour compared with
tree trunk colour. Furthermore, different types of bushes
with different widths were tested. The algorithm was ca-
pable of distinguishing some of these bushes as non-tree
objects because they have different width compared with
tree trunk, while other bushes were first detected as can-
didate tree trunk from the laser scanner and then con-
sidered as non-tree objects because they have different
colour compared with tree trunk colour range.

In this study, a simple heuristic setting of thresholds
was appropriate to conduct the preliminary sensor fusion
evaluation reported. It is expected that in general or-
chard application the thresholding may need to be both
variable (i.e. need initial calibration) and also adaptive
during operation.

(a) (b)

Figure 12: (a) ROI around tree trunk centre. (b) ROI
around tree trunk edges.

Figure 13: (a) RGB image of the ROI around an tree
trunk edge. (b) Gray-scale image of the ROI. (c) Edge
detection image of the ROI.

7 Conclusion and Future Work

This paper has presented a new method for tree trunk
detection and orchard mapping using a camera and laser
scanner. Preliminary experiments to test the algorithm
for tree trunk detection and environment mapping were
implemented in simulated environment with artificial
trees and outdoor environment. Experimental results
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show that the developed algorithm provides sufficient re-
sults for tree trunk detection, tree position and orchard
mapping. The proposed method of utilising both laser
scanner and camera data enhanced the tree trunk de-
tection. Projection from the laser scanner to the image
plane and selecting the ROI with the required features
was effective since it reduced the processing time and
minimised the effect of noise in other parts of the im-
age. Future work will include developing this method
for mapping a real orchard and using the map for local-
isation and navigation of mobile robot in the orchard.
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