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B.Eng. (Hon.), Ho Chi Minh City University of Technology, 1982

M.Eng., Haut Alsace University, France, 1995

For the award of

Doctor of Philosophy

December 2003 (Emended July 2004)



To my family



Certification of Dissertation

I certify that the idea, experimental work, results and analyses, software and

conclusions reported in this dissertation are entirely my own effort, except where

otherwise acknowledged. I also certify that the work is original and has not been

previously submitted for any other award.

Dung Tran-Canh, Candidate Date

ENDORSEMENT

Prof. Thanh Tran-Cong, Principle supervisor Date

Dr. Ruth Mossad, Associate supervisor Date



Acknowledgments

I would like to express my deepest appreciation to Professor Thanh Tran-Cong

for his effective guidance. Without his continuing support and encouragement

this thesis would not have been possible.

In addition, I would like to thank Dr. Ruth Mossad for acting her role as

associate supervisor, Ms. Ruth Hilton and Ms. Christine Bartlett (Office of

Research and Higher Degrees) for helping to surmount difficult obstacles, Prof.

Graham Baker (Dean of the Faculty of Engineering and Surveying, USQ), Dr.

David Buttsworth (Postgraduate Studies Coordinator) and Prof. Harry Har-

ris (former Associate Dean, Research and Higher Degrees) for their invaluable

support.

I am grateful to Prof. Hans Christian Öttinger (SFIT, Zürich) for his commu-
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Abstract

The thesis reports a contribution to the development of neural-like network-

based element-free methods for the numerical simulation of some non-Newtonian

fluid flow problems. The numerical approximation of functions and solution of

the governing partial differential equations are mainly based on radial basis

function networks. The resultant micro-macroscopic approaches do not require

any element-based discretisation and only rely on a set of unstructured colloca-

tion points and hence are truly meshless or element-free.

The development of the present methods begins with the use of the multi-layer

perceptron networks (MLPNs) and radial basis function networks (RBFNs) to

effectively eliminate the volume integrals in the integral formulation of fluid

flow problems. An adaptive velocity gradient domain decomposition (AVGDD)

scheme is incorporated into the computational algorithm. As a result, an im-

proved feed forward neural network boundary-element-only method (FFNN-

BEM) is created and verified. The present FFNN-BEM successfully simulates

the flow of several Generalised Newtonian Fluids (GNFs), including the Car-

reau, Power-law and Cross models. To the best of the author’s knowledge, the

present FFNN-BEM is the first to achieve convergence for difficult flow situ-

ations when the power-law indices are very small (as small as 0.2). Although

some elements are still used to discretise the governing equations, but only on

the boundary of the analysis domain, the experience gained in the development

of element-free approximation in the domain provides valuable skills for the
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progress towards an element-free approach.

A least squares collocation RBFN-based mesh-free method is then developed

for solving the governing PDEs. This method is coupled with the stochas-

tic simulation technique (SST), forming the mesoscopic approach for analyzing

viscoelastic fluid flows. The velocity field is computed from the RBFN-based

mesh-free method (macroscopic component) and the stress is determined by

the SST (microscopic component). Thus the SST removes a limitation in tradi-

tional macroscopic approaches since closed form constitutive equations are not

necessary in the SST. In this mesh-free method, each of the unknowns in the

conservation equations is represented by a linear combination of weighted radial

basis functions and hence the unknowns are converted from physical variables

(e.g. velocity, stresses, etc) into network weights through the application of

the general linear least squares principle and point collocation procedure. De-

pending on the type of RBFs used, a number of parameters will influence the

performance of the method. These parameters include the centres in the case

of thin plate spline RBFNs (TPS-RBFNs), and the centres and the widths in

the case of multi-quadric RBFNs (MQ-RBFNs).

A further improvement of the approach is achieved when the Eulerian SST is

formulated via Brownian configuration fields (BCF) in place of the Lagrangian

SST.

The SST is made more efficient with the inclusion of the control variate variance

reduction scheme, which allows for a reduction of the number of dumbbells

used to model the fluid. A highly parallelised algorithm, at both macro and

micro levels, incorporating a domain decomposition technique, is implemented

to handle larger problems. The approach is verified and used to simulate the

flow of several model dilute polymeric fluids (the Hookean, FENE and FENE-

P models) in simple as well as non-trivial geometries, including shear flows

(transient Couette, Poiseuille flows), elongational flows (4:1 and 10:1 abrupt

contraction flows) and lid-driven cavity flows.
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Chapter 1

Introduction

This chapter establishes a motivation for the present research. The chapter

provides an overview of the issues and methods associated with the simulation

of non-Newtonian flows. Elements of continuum mechanics for macroscopic flow

simulations and the kinetic theory in macro-microscopic flow simulations are

outlined. A brief review of mesh-free numerical methods, including neural-like

networks based numerical methods, is given in contrast with other element-

based numerical methods. And finally, the plan of this research is outlined.

1.1 Motivation

In computational rheology, the governing equations can be classified into two

different categories. The first group is derived from the fundamental equations

which are valid for all materials and describe the universal laws of physics such

as the conservation of mass, momentum and energy. The second one focuses

on the behavior of materials and is often referred to as either the constitutive

equations in the macroscopic approach or microstructure equations using the

kinetic theory.
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In the conventional macroscopic approach, the requirement of a closed-form

constitutive equation is an inherent limitation for complex models that cannot

be cast into closed forms in continuum mechanics. The micro-macroscopic ap-

proach, which is based on the kinetic theory, has been introduced to bypass

this difficulty. In this technique, instead of a closed form constitutive equation,

the configuration of a large ensemble of microscopic entities acts as a stress

calculator using the Brownian dynamics and kinetic models.

Except for few trivial problems, most engineering problems can only be solved in

an approximate manner due to their complexity. Numerical solutions of the gov-

erning partial differential equations (PDE) for engineering or scientific problems

are based on a wide spectrum of numerical algorithms such as the finite differ-

ence method (FDM) (Roache, 1998), the finite element method (FEM) (Reddy

and Gartling, 1994; Zienkiewicz and Taylor, 2000a, 2000b), the boundary el-

ement method (BEM) (Banerjee and Butterfield, 1981; Bebbria et al., 1984),

the finite volume method (FVM) (Patankar, 1980; Versteeg and Malalasek-

era, 1995), the spectral methods (SM) (Fletcher, 1984). Although the above

element-based methods have achieved enormous progress and been efficient nu-

merical methods for various problems in sciences and engineering, they involve

extra efforts associated with the discretisation of the analysis domain into a

number of finite elements, specially for moving boundary, free surface or three

dimensional problems. These disadvantages can be overcome via the mesh-free

methods (Atluri and Shen, 2002; Liu, 2003 and Griebel and Schweitzer, 2003)

where unknowns are approximated by global functions rather than element-

based shape functions.

Recently, neural networks (NNs) have been rapidly applied in many domains

of engineering and science (Haykin, 1999) where the feed forward neural net-

works (FFNNs) consisting of multi-layer perceptron networks (MLPNs) and

radial basis function networks (RBFNs) can be considered as accurate approx-

imation schemes (Hornik et al., 1989; Girosi and Poggio, 1990; Park and Sand-
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berg, 1991,1993 and Girosi et al., 1995). These schemes which do not require

any element-type discretisation (i.e. fixed connectivity to satisfy a predeter-

mined topology) and rely on a simple set of unstructured discrete collocation

nodes in the analysis domain (Kansa, 1990a,b; Zerroukat et al., 1998, 2000;

Nguyen-Thien, 1999; He et al., 2000; Tran-Canh et al., 2000a), have proved to

be promising.

The motivation for this work is the possibility of an effective and accurate

numerical simulation method for non-Newtonian flows that (i) is mesh-free, (ii)

does not rely on a closed form constitutive relation, and (iii) is flexible in terms

of complex geometry and parallelization.

1.2 Continuummechanics and macroscopic flow

simulations

The macroscopic approach of continuum mechanics makes use of a closed form

constitutive equation, connecting the stress and velocity fields, to supplement

the mass and momentum conservation laws (Bird et al., 1987a; Barnes et al.,

1989; Macosko 1994; Plawsky 2001). This combination yields a set of partial dif-

ferential (or integro-differential) equations that usually can be solved by means

of a suitable numerical method. In this section, the fundamental equations

(conservation laws) and constitutive equations are presented.

1.2.1 Fundamental equations

Consider a single-phase continuous medium in a Cartesian coordinate system

xi, i = 1, 2, 3. Let ui be velocity vector; ρ be the density of the material; qi be

the heat flux vector; φ be the gravitational potential per unit mass; e be the

specific internal energy; σij be the Cauchy stress tensor and bi be the body force
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per unit mass. The basic physical laws can be expressed as follows

Equation of continuity

Dρ

Dt
+ ρ

∂ui

∂xi

= 0, (1.1)

where D
Dt
(¦) is the material or substantial derivative which gives the time deriva-

tive of (¦) associated with a specific fluid element (particle)

D

Dt
(¦) =

∂

∂t
(¦) + ui

∂

∂xi

(¦). (1.2)

Equation of motion

The balance of linear momentum yields

ρ
Dui

Dt
= ρbi +

∂σji

∂xj

. (1.3)

For a steady state and creeping flow, Eq (1.3) reduces to

ρbi +
∂σji

∂xj

= 0. (1.4)

The balance of moment of momentum yields

σij = σji. (1.5)

For all materials considered here the stress tensor is assumed symmetric.

Equation of energy

ρ
De

Dt
+ ρ

Dφ

Dt
= − ∂qi

∂xi

+ σijDij, (1.6)

where Dij are components of the rate of strain tensor D and given by

Dij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

. (1.7)
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1.2.2 Constitutive equations

The constitutive equation which is derived from experimental observations or

theoretical principles (Bird and Wiest, 1995) describes the relation between

the stress tensor and the flow kinematics. The constitutive equation can be

differential or integral equations. In this work, we are only concerned with the

incompressible and isothermal flows. Several well-known constitutive equations

for fluids are summarized as follows.

Newtonian fluids

The characteristic of Newtonian fluids is that the stress tensor is linearly pro-

portional to the rate of strain tensor and its constitutive equation is given by

σ = −pI+ τ , (1.8)

τ = 2ηND,

where p is the hydrostatic pressure that arises due to the incompressibility

constraint; I is the unit tensor; τ is the extra stress tensor; ηN is the viscosity

and D is the rate of strain tensor.

A fluid is classified as non-Newtonian when its behavior does not obey the

above simple linear relation linking the stress tensor and the rate of strain

tensor. Following are constitutive equations for some non-Newtonian fluids.

Generalized Newtonian fluids (GNF)

This is the simplest class of non-Newtonian fluids and so called inelastic fluids.

The extra stress tensor is given by

τ = 2η(γ̇)D, (1.9)
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where γ̇ =
√

2tr(D2) is the generalised shear rate with ‘tr’ is the trace operation.

The viscosity η is dependent on the shear-rate. A well-known model for shear-

rate-dependent viscosity is the Power-law model whose viscosity is given by

η = mγ̇n−1, (1.10)

where n (dimensionless) is the Power-law index and m (with units of Pa.s) is

a parameter of the model.

Viscoelastic fluids

Among the non-Newtonian fluids, viscoelastic polymeric fluids are the most

interesting fluids which have both viscous and elastic characteristics. The be-

haviour of material, which depends on not only the present stress state but

also the deformation history of the material, can be described by the following

constitutive equation in general

σ = −pI+ τ = −pI+ 2ηND+ τ
p, (1.11)

where the extra stress tensor τ can be split into the Newtonian-solvent stress

2ηND (which may or may not exist) and the polymer contributed stress τ
p.

The extra stress τ is modelled by several models, from the upper-convected-

Maxwell (UCM), Oldroyd-B models to more realistic ones such as the Phan-

Thien–Tanner (PTT), Giesekus and Pom-Pom models (Bird et al., 1987a,b;

Tanner, 2002). In spite of the difference in complexity as well as in predic-

tive ability, in general, these models can be mathematically represented by an

integro-differential equation of the following form

τ =

∫ t

−∞
m(t− s)St(s)ds, (1.12)

where St(s) is the deformation-dependant tensor; m is the memory function, or

by a differential equation of the form

λH
∆τ

∆t
+ f(τ ,D) = 2ηD, (1.13)
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where ∆
∆t
(¦) = ∂

∂t
(¦)+u·∇(¦)−κ(¦)−(¦)κT is the upper-convected time derivative;

κ is the velocity gradient; η is a viscosity of the fluid; f is the model-dependent

function; λH is a relaxation time. The form of f and possibly the variation of

λH and η leads to a variety of models as follows.

• If f = τ , and λH and η are constants, we have the case of the upper-convected

Maxwell model. The additional contribution of a Newtonian solvent (2ηND) to

the stress leads to the Oldroyd-B model.

• If f is a function of tr(τ ) and λH and η are constants, we have various special

PTT models (Phan-Thien and Tanner 1977; Phan-Thien 1978, 1984; Tanner

2002). As a further modification, a slip coefficient ξ may be used in PTT

models in which a term ξ(Dτ + τD) is added to the left hand side of (1.13),

we have

1. If f = 1 + λε
η
tr(τ ), we have the linear PTT model.

2. If f = exp λε
η
tr(τ ), we have the exponential PTT model.

1.3 Kinetic theory and micro-macroscopic flow

simulations

Although a very large percentage of the research in computational flow sim-

ulation has been based on the macroscopic approach, there appears to be an

alternative. In fact, the main concern in the macroscopic approach is to find ap-

propriate constitutive equations that can be applied to the increasing numbers

of complex fluids and to estimate the impact of a closure hypothesis made to

build suitable constitutive equations on the quality of the final result. The diffi-

culty of making a closure hypothesis can be overcome by the micro-macroscopic

(or mesoscopic) approach. This approach is developed on the basis of kinetic
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theory and consists of finding a formula of the macroscopic stress tensor in term

of the microscopic dynamics of the polymer chains and treating explicitly both

scales in the simulation.

Hence, when using the macroscopic approach, the strain-history-dependent

stresses are traditionally obtained from constitutive equations (1.13) or (1.12),

whereas in the micro-macroscopic approach, the equation system (1.1) and (1.3)

has to be treated together with

• The Fokker-Planck equation (FPE), which is given by (in the absence of

external forces) (Öttinger, 1996)

∂

∂t
ψ(Q, t) = − ∂

∂Q
· [A(Q, t)ψ(Q, t)] +

1

2

∂

∂Q
· [ ∂
∂Q

· {L(Q, t)ψ(Q, t)}],
(1.14)

where ψ(Q, t) denotes the probability density function of the configuration

vector Q (polymer configuration) at the time t; A(Q, t) is a d-component

column vector; L(Q, t) is a positive semi-definite d × d matrix; A and L

define the deterministic and statistical components of the model, respec-

tively; and

• An expression for the stress tensor involving the polymer configuration Q

whose distribution is given by ψ.

1.3.1 Numerical analysis of micro-macroscopic flow sim-

ulations

Although the micro-macroscopic approach uses the full information of the stresses

which is contained in the configuration of the molecules, it is not used to sim-

ulate the largest system possible but only to combine a macroscopic discretiza-

tion with the microscopic simulation of as few polymer molecules as necessary

to achieve a given statistical accuracy (Van de Brule and Hoogerbrugge, 1995;
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Öttinger, 1996; Lielens, et al., 1999; Binous and Phillips, 1999). The simula-

tions based on the coupling of the macroscopic equations and the microstruc-

tural equations are considered as hybrid simulations. Depending on the kind of

the microstructural equation used, there are various numerical schemes in the

mesoscopic approach. In this section, the hybrid simulation using direct solu-

tion of the FPE and the hybrid simulation using stochastic simulation technique

(SST) are presented.

Mesoscopic simulation using direct solution of the FPE

As the name suggests, this scheme is based on a direct solution of the FPE and

the FEM for computing complex flows that can be modelled with a small num-

ber of degrees of freedom. The direct simulations using FPE are usually based

on weighted residual methods in which a set of basis functions is employed.

The basis functions can be chosen from the eigenfunctions of the FPE. The

simulation based on this approach has been applied to the dilute, multi-bead-

rod model (Fan, 1989) and the liquid crystalline polymers using the Doi model

(Nayak, 1998). Fan (1989) employed the Galerkin method with spherical har-

monic basis functions to discretise the configuration space and the BEM for the

physical space. Nayak (1998) used the discontinuous Galerkin method in con-

junction with wavelet analysis to simulate the dynamics of the rigid dumbbell

and Doi models. A review on this area can be found in Suen et al. (2002).

Mesoscopic simulation using SST

The first mesoscopic simulation using SST, namely the CONNFFESSIT (Cal-

culation of Non-Newtonian Flow: Finite Element and Stochastic Simulation

Techniques), was proposed by Laso and Öttinger (1993) and developed for the

start-up problem of simple shear flows. This scheme has dominated micro-

macroscopic simulations.
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Instead of solving the FPE directly to get the stress tensor, the authors pro-

posed a simulation algorithm that couples stochastic simulation technique of a

kinetic model and the numerical solution of the fundamental equations of the

conservation laws. In the last ten years, many works concerning this approach

have appeared (Feigl et al., 1995; Hua and Schieber, 1998; Halin et al., 1998;

Bell et al., 1997; Hulsen et al., 1997; van den Brule et al., 1997; Öttinger et al.,

1997; Bonvin et al., 1999; Fan et al., 1999; Wapperom et al., 2000, Somasi et

Khomami, 2000; Jourdain et al., 2002; Tran-Canh and Tran-Cong, 2002b).

The works based on CONNFFESSIT have focused on either applying the CON-

NFFESSIT to solve typical viscoelastic problems (Laso et al., 1997; Cormen-

zana et al., 2001) or modifying the algorithm to improve the accuracy and

efficiency of the method (Öttinger et al., 1997; Hulsen et al., 1997; Halin et al.,

1998; Wapperom et al., 2000). While the majority of these works are based on

the coupling of FEM and SST, Bell et al. (1997) employed a spectral method

coupled with Brownian dynamics simulation, which provides the advantage of

a high convergence rate. Recently, Tran-Canh and Tran-Cong (2002b, 2003a)

coupled the RBFN-based meshless method with SST to solve several viscoelastic

flow problems using single dumbbell models. Since the introduction of CON-

NFFESSIT, this approach, and its variants such as the Brownian configuration

fields (BCF) method (Eulerian CONNFFESSIT) (Hulsen et al., 1997), prove to

be a powerful and efficient numerical method for simulating the flow of complex

fluids.

1.4 A brief review of the conventional numer-

ical methods

In order to obtain the solution of a problem, a set of governing equations, usually

PDEs, must be solved given certain boundary conditions. Exact solutions are
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often possible only for simple problems. However, most engineering problems

involve complex geometry and complex material and/or geometrical nonlinear-

ities. Such practical problems can only be solved by numerical methods. A

numerical solution requires the discretisation of the variable fields. The object

of the discretisation is to reduce the governing PDEs of the problem to a set of

discrete simultaneous equations in terms of a finite number of nodal variables,

most of which are unknowns to be found. This set of equations can be then

solved advantageously on a computer. Some principal numerical methods such

as FEM, BEM, FVM, FDM and SMs are presented briefly in this section. With

scarcely an exception, these techniques can be considered as variants of the

weighted residual methods (Brebbia et al., 1984).

Consider the following equations

L(uo) = y in Ω, (1.15)

with boundary conditions

S1(uo) = b1 in ∂Ω1,

S2(uo) = b2 in ∂Ω2, (1.16)

where Ω is the domain under consideration; ∂Ω = ∂Ω1∪∂Ω2 is the boundary of

Ω; L, S1, S2 are some differential operators; y is a given function; b1 and b2 are

the Dirichlet and Newmann conditions on ∂Ω1 and ∂Ω2, respectively and uo is

the exact solution of the problem. uo can be approximated by u as follows

uo ≈ u =
m
∑

i=1

wihi + wo, (1.17)

where {hi(x)}mi=1 is the set of linearly independent functions, so called nodal

functions, and chosen to satisfy certain given conditions; x is the spatial coor-

dinates of points in the domain Ω; {wi}mi=1 are unknowns coefficients and wo

is included to satisfy the nonhomogeneous part of the boundary conditions.

In some cases, wi can be associated with nodal values of the considered vari-

ables. Although the solution u is considered as a scalar, it could be a vector

ui, (i = 1, 2, 3).
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If the approximant u satisfies all the boundary conditions of the problem, the

substitution of the approximation for uo into Eq (1.15) produces a residual or

error function R as follows

R = L(u)− y 6= 0 in Ω. (1.18)

If u does not satisfy all boundary conditions, there are other types of residual

functions as follows

R1 = S1(u)− b1 6= 0 in ∂Ω1,

R2 = S2(u)− b2 6= 0 in ∂Ω2. (1.19)

The aim of the numerical methods is to make these errors as small as possible

over the domain and on the boundary. The way in which the errors R, R1 and

R2 are distributed over the domain and on the boundary produces different

types of approximate methods.

1.4.1 Terminology

In the following discussion, by ‘element’ we mean a predefined topology or con-

nectivity involving a number of nodes. For example, a linear triangular element

will involve three non-collinear nodes connected either in a clockwise or anti-

clockwise manner. An analysis domain can then be discretised by an appropriate

number of these elements. The collection of these elements, with proper relation

between them, is called a mesh. Meshing (and re-meshing) is used to denote

element-based discretisation. In contrast, element-free or mesh-free or mesh-less

dicretisation does not involve elements as defined above. Instead, element-free

discretisations normally rely on a set of unstructured discrete points.
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1.4.2 Finite difference method (FDM)

The method describes the unknowns of the problem by sampling appropriate

variables at the nodal points generated by a grid of co-ordinate lines. The differ-

ential governing equations are discretized into a system of algebraic equations

by means of local expansions of unknowns at grid points based on truncated

Taylor series expansion. The set of algebraic equations which denotes the rela-

tion between the nodal values and the neighboring nodal values can be solved

by an iterative method such as the Newton-Raphson scheme. FDM has been

widely employed in a large range of problems in continuum mechanics (Gatski

and Lumley, 1978; Adachi et al., 1978; Peyret and Taylor, 1883 and Crochet

et al., 1984). However, the large truncation error for non-linear problems and

the difficulties of handling arbitrary geometry limit the range of their applica-

tion. More details about the method can be found in Crochet et al. (1984) and

Smith (1978).

1.4.3 Finite element method (FEM)

In this method, the domain is subdivided into a number of non-overlapping

finite elements of predefined topology. A set of piecewise functions, usually

polynomials, is employed to describe the local variations of the unknowns. The

original differential equations are transformed into integral equations by ap-

plying an appropriate method such as the weighted residual technique or vari-

ational principle. As a result we obtain a set of algebraic equations for the

unknown coefficients of the approximating functions. The theory of FEM has

been developed initially for structural stress analysis. It has now become a pop-

ular method in computational rheology (Thomaset, 1981, Crochet et al., 1984).

Extensive works have applied to the area of viscoelastic flows (Kawahara and

Takeuchi, 1977; Crochet and Keunings, 1980; Beris et al., 1986). For strong con-

vection problems, a number of upwinding schemes have been developed such as
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the streamline upwinding (Marchal and Crochet, 1987) and the streamline up-

winding Petrov-Galerkin methods (Brooks and Hughes, 1982). Many different

advanced techniques have been proposed for an efficient solution of crucial prob-

lems in viscoelastic fluid flows such as the problem of high Weissenberg number:

the elastic viscous split stress (Perera and Walters, 1977), and the adaptive vis-

coelastic stress splitting scheme (Sun et al., 1996). Besides successes, FEM

still has some drawbacks. Among these is the problem of discretisation which

is required on the whole domain. This can be difficult and may also be time

consuming especially for moving boundary or three dimensional problems.

1.4.4 Boundary element method (BEM)

The method is based on solving a set of integral equations on the boundary of

the domain in which the governing PDEs are converted into equivalent integral

equations via several mechanisms such as the reciprocal theorems combined

with the relevant Green function, or the method of weighted residual. The

dimensionality of the problem in BEM is reduced by one, which is considered

as an advantage of the BEM in comparison with other numerical methods for

certain large scale and three dimensional problems, where the demand in com-

puting resource is very high. The BEM has been developed and applied rapidly

in a wide range of complex engineering problems (Banerjee and Butterfield,

1979; Banerjee and Watson, 1986; Brebbia et al., 1984). In computational rhe-

ology, many complex fluid flow problems have been successfully solved by BEM

such as the squeeze-film flows (Phan-Thien et al., 1987), the extrusion prob-

lems (Tran-Cong and Phan-Thien, 1988). However while BEM works very well

for the linear and mildly nonlinear problems, it is less successful with highly

nonlinear viscoelastic problems (Tanner and Xue, 2002).
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1.4.5 Finite volume method (FVM)

The FVM method was originally developed as a special finite difference formu-

lation in which the analysis domain is partitioned into finite non-overlapping

control volumes. The weighted functions hi, (i = 1, 2, ..., n) are chosen so that

they become unity for certain control volume ∆Ω and zero for the rest of the

control volumes. The fundamental statement of FVM over a control volume

∆Ω is given by
∫

∆Ω

(Lu− y)dΩ = 0, (1.20)

where L is a differential operator and y is a given function. The conservation

laws are applied over a control volume by implementing integration instead of

using a truncated Taylor series expansions to the differential governing equations

as in FDM. Details of the method and its applications can be found in Patankar

(1980); Versteeg and Malalasekera (1995); and Tanner (2002).

1.4.6 Spectral methods (SM)

Spectral methods approximate the unknowns by means of truncated Fourier

series or series of Chebyshev polynomials. Unlike the finite difference or finite

element approaches, the approximation of spectral methods is valid on the whole

computation domain. Consider the heat diffusion problem which is governed

by the following equation
∂u

∂t
= Lu+ g(x, t), (1.21)

where L is a linear spatial differential operator and g is a given function. The

solution u can be approximated by um in the truncated series form as follows

um(x, t) =
m
∑

i=1

wi(t)hi(x), (1.22)

where hi’s are linearly independent functions which can be Fourier or Cheby-

shev polynomial series. With appropriate boundary and initial conditions, the
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application of the weighted residual method to Eq (1.21) leads to a system of

algebraic equations for the unknown coefficients wi of Fourier or Chebyshev

series. More detail on the method can be found in Gottlieb and Orszag (1977).

The method has been employed to solve successfully various problems in compu-

tational fluid mechanics (Beris et al., 1992; Talwar et al., 1994; Van Kemenade

and Deville, 1994). The advantages of spectral methods lie in their high de-

gree of convergence (Beris et al., 1987) and accuracy of solutions without using

any upwind scheme to ensure the stability (Talwar et al., 1994). However, the

method is sensitive to the geometry of problems.

1.5 Element-free numerical methods

Although the element-based numerical methods (FEM, BEM, FVM) are effi-

cient and well-established, they suffer from drawbacks such as tedious meshing,

re-meshing in problems involving complexity such as large deformation, crack

propagation, moving boundary, especially in three dimensions. Spectral meth-

ods are more accurate, but have severe restrictions on the geometry where

the domain must be regular to obtain the tensor product mesh (Kansa and

Hon, 2000). Due to these problems, element-free methods for boundary value

problems have recently attracted much attention (Atluri and Shen, 2002; Liu,

2003) from researchers. For the last several decades, many different element-free

methods have been proposed and developed: the smooth particle hydrodynam-

ics method (Gingold and Monaghan, 1977); the meshless collocation method

using multi-quadric radial basis function (Kansa, 1990a,b); the diffuse element

method (Nayroles et al., 1992); the element-free Galerkin method (Belytschko

et al., 1994); the reproducing kernel particle method (Liu et al., 1996); hp-cloud

method (Duarte and Oden, 1996); the partition of unity finite element method

(Babuska and Melenk, 1997); the meshless local Petrov-Galerkin method (Atluri

et al., 1999). Among these, the methods which use shadow elements for the in-

tegration of the weak-form are not truly meshless. The differences in these
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Figure 1.1: An example of domain discretisations using the element-based and
element-free methods: A) Element-based method; B) Element-free method.
The picture is taken from Chen et al. (2003).

schemes stem from the techniques used for interpolating the trial function. The

main advantage of the meshless methods is to alleviate or eliminate the extra

effort of meshing and re-meshing in the entire domain under consideration (Fig.

1.1), and other drawbacks associated with the element-based methods, such as

element distortion, locking, etc. A very good survey of element-free methods can

be found in Belytschko et al. (1996); Atluri and Shen (2002) and Liu (2003). In

the present work, the truly meshless method based on neural-like networks, for

example RBFNs, is employed for function approximation and for the numerical

solution of PDEs. The method based on Kansa’s algorithm has attracted much

attention in both theory and application (Franke, 1982; Frank and Schaback,

1998; Zeroukat et al., 1998, 2000). The neural-like network-based element-free

methods employed in this study need more specific discussion and are deferred

to an appropriate location in subsequent chapters.

1.6 Outline of the present research

Neural-networks, especially RBFNs, for approximating functions and solving

PDEs will be presented. The present work aims to couple the MLPNs and
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RBFNs with other numerical methods for solving non-Newtonian fluid flow

problems: (i) use FFNNs in conjunction with the BEM to solve the general-

ized Newtonian fluid (GNF) flow problems and (ii) use RBFN-based mesh-free

methods in combination with the power and generality of Brownian dynamic

techniques from the Lagrangian and Eulerian point of view to solve the vis-

coelastic fluid flow problems, particularly, the flow of dilute polymer solutions.

The present thesis is organized as follows:

• Chapter 2 consists of two parts concerning the basic tools used in the present

work. The first one is to describe the deterministic and stochastic numerical

methods such as integral equation (IE), feed-forward neural-like networks and

stochastic differential equations (SDEs), which are employed as the basis of the

proposed procedures. The second is to review the Brownian dynamics technique

and the modelling of dilute polymer solution using single dumbbell models.

• Chapter 3 reports on the method of coupling FFNNs (which are consid-

ered as an efficient approximation of functions and their derivatives) and the

boundary element method. This chapter will not detail the approximation of

functions and their derivatives but uses FFNNs in conjunction with the bound-

ary element method for the numerical solution of GNF flows (Tran-Canh and

Tran-Cong, 2002a). Some comparisons between MLPNs and RBFNs are also

reviewed briefly (Tran-Canh et al., 2000a).

• Chapter 4 presents a new technique (the Computation of Viscoelastic Flow us-

ing Neural Network and Stochastic Simulation (CVFNNSS)) coupling the pow-

erful stochastic simulation technique with a RBFN-based element-free method.

The method is built up from the Lagrangian point of view and the implementa-

tion is carried out for the transient shear viscoelastic flow problems (Tran-Canh

and Tran-Cong, 2002b).

• Chapter 5 is to concentrate on developing CVFNNSS for the case of two di-
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mensional problems. Owing to the mesh-free feature, it is possible to advance

the concept of flexible effective stress averaging volume where overlapping vol-

umes can be used to ensure a statistically sufficient number of dumbbells around

a particular point to calculate the stress at that point (Tran-Canh and Tran-

Cong, 2003b). Some test and benchmark flow problems of dilute polymer so-

lutions (the steady planar Poisseuille and steady 4:1 axisymmetric contraction

flows) are simulated to verify the method.

• Chapter 6 is to develop further the present method in which the RBFN-based

mesh-free method is combined with the hybrid simulation approach from the

Eulerian point of view (also called the Brownian configuration fields) instead

of the Lagrangian point of view. The application of the Brownian configura-

tion fields in conjunction with the variance reduction technique allows for a

remarkable reduction of the noise associated with the stochastic process, statis-

tical errors and the computation time. The concept of Brownian configuration

fields also eliminates the need and effort of the particle tracking. Some test and

benchmark problems, namely the Couette, Poiseuille and the lid driven cavity

flows, are carried out to demonstrate the working of the method (Tran-Canh

and Tran-Cong, 2003a).

• Chapter 7 reports on domain decomposition and parallelization techniques in

conjunction with the present Eulerian CVFNNSS. The iterative non-overlapping

domain decomposition technique is employed in both macro and microscopic

components of the method. The 10:1 planar contraction and lid square driven

cavity flows are used to estimate the efficiency of the domain decomposition

and parallization techniques (Tran-Canh and Tran-Cong, 2003c).

• Chapter 8 gives some concluding remarks emanating from this research and

some recommendations for further works.



Chapter 2

Fundamental background

In this chapter, several basic tools, which are the background of the computa-

tion and the polymer dynamics used in the present work, are described. These

tools are the boundary integral equations (BIEs), feed-forward neural-networks

(FFNNs), stochastic differential equations (SDEs) and Brownian dynamic sim-

ulations. Other tools and techniques will be introduced later in the relevant

chapters. In this dissertation, the FFNNs, especially radial basis function net-

works (RBFNs) which are developed as an element-free numerical method for

function approximation and numerical solution of partial differential equations

(PDEs), will be coupled with other methods in both macroscopic and meso-

scopic approaches. The coupling with the boundary element method is for the

numerical solution of the boundary integral equation in which FFNNs play the

role of an approximator to facilitate the finding of a particular solution of the

problem. In the hybrid simulation using stochastic simulation technique (SST),

RBFNs are used as a truly mesh-free method for the approximation of a given

function and the solution of PDEs.
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2.1 Boundary Integral Equations

The formulation of BIEs which is employed in this work is derived directly from

the governing PDE (1.4) while the indirect formulation which is obtained from

the potential theory, can be found, for example, in Banerjee and Butterfield

(1981) and Brebbia et al. (1984). Although the current formulation is valid for

different classes of material, it is here described for incompressible fluids only.

In general, the stress tensor of a body in an equilibrium configuration can be

written as

σ = σ
l + τ

p, (2.1)

where σl and τ
p are a fictitious linear part and the remaining non-linear part,

respectively. The total traction corresponding to the stress tensor is

t = n · (σl + τ
p) or

tj = σjknk = σl
jknk + τ pjknk, (2.2)

where n is the outward unit normal to the boundary. For the Newtonian fluids,

the linear stress σ
l (also σ

N elsewhere in this work) is given in Eq (1.8) as

follows

σ
l = −pI+ 2ηND. (2.3)

For viscoelastic fluids, comparing Eq (1.11) with Eq (2.1), we have

τ = 2ηND+ τ
p, (2.4)

where 2ηND and τ
p are the contribution of the linear and non-linear compo-

nents, respectively, to the extra stress. From Eq (2.1), the equation of motion

for steady state (1.4) is given by

∇ · σl + (∇ · τ p + b) = 0, (2.5)

where σ
l is determined from Eq (2.3). Assuming that ∇ · τ p is available,

(∇ · τ p + b) can be considered as a pseudo-body force. Applying the method

of weighted residuals, Eq (2.5) can be written as follows (Brebbia et al., 1984)
∫

Ω

(

∂σl
jk

∂xk

+

(

bj +
∂τ p

jk

∂xk

)

)

u∗jdΩ = 0, (2.6)
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where u∗ is an arbitrary velocity weighting field and Ω is the domain under

consideration with boundary Γ. Let (u,σl) and (u∗,σl∗) be two equilibrium

states of a material characterized by Eq (2.3), the following identity is given by

the reciprocity principle
∫

Ω

σl
jkD

∗
jkdΩ =

∫

Ω

σl∗
jkDjkdΩ, (2.7)

where Djk and D∗jk are determined by Eq (1.7). Assuming that the desired

boundary conditions are satisfied exactly, and using the identity (2.7), Eq (2.6)

can be recast as follows (more detail can be found in Tran-Cong, 1989 and

Becker, 1992).

Cij(x)uj(x) =

∫

Γ

u∗ij(x,y)tj(y)dΓ(y)−
∫

Γ

t∗ij(x,y)uj(y)dΓ(y)

+

∫

Ω

(

u∗ij(x,y)bj − τ pjk(y)
∂u∗ij(x),y

∂xk

)

dΩ(y), (2.8)

where x,y ∈ Ω; uj(y) is the j-component of the velocity at a point y; tj(y) is the

j-component of the total boundary traction at y; τ p
jk(y) is the jk-component of

τ
p at y; u∗ij(x,y) is the i-component of velocity field at x due to a point force in

j-direction at y (Kelvin fundamental solution, see Appendix A.1) and t∗ij(x,y)

is its associated traction. Cij(x) depends on the local geometry, for example

Cij(x) = δij (δij is the Kronecker delta) if x lies in Ω and Cij(x) = 1
2
δij if x

is located on the boundary Γ and the surface at x is Liapunov smooth. More

detail can be found in Tran-Cong (1989) and Phan-Thien and Kim (1994).

The volume integral on the RHS of Eq (2.8) can be determined by several

techniques, each of which have advantages as well as drawbacks. Some of these

techniques are briefly described below.

1. The use of Fourier expansion (Tang, 1988). In this scheme, the body force

is expressed by a set of functions using Fourier expansions. The set of vol-

ume integrals is transformed into boundary integrals by using Green’s second

identity.

2. The multiple reciprocity method (Novak and Brebbia, 1989). The basic idea
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of this method is to employ a set of higher order fundamental solutions which

permit the application of the reciprocity theorem. The main drawback of this

scheme is that it cannot be easily applied to general non-linear problems.

3. The Dual reciprocity method (Partridge et al., 1992) or the particular so-

lution method (Zheng et al., 1991; Coleman et al., 1991 and Ingber and Phan-

Thien, 1992). In this technique, an approximate particular solution, which is

obtained by expressing the integrand in terms of a linear combination of RBFs,

is employed to transform the volume integrals into the boundary.

4. Cell integration scheme. In this approach, the volume under consideration

is divided into a series of internal cells. On each of them, a numerical scheme

such as Thomson or Gauss quadrature can be applied. The method requires the

discretisation of domain and the introduction of further approximations which

diminishes the attractiveness of the BEM.

5. The Monte Carlo method. This scheme requires a system of random integra-

tion points rather than the regular integration grid used in the Cell integration

approach.

2.2 Feed-forward neural networks

Recently, many NN-models have been proposed to solve various problems in

different disciplines such as physics, engineering and computer science. Among

the NN-models, the MLPNs and RBFNs have emerged as the leading classes.

As pointed out by Poggio and Girosi (1990), the ability of learning in a FFNN

is closely related to its approximation capabilities. The capability of FFNNs in

approximating arbitrary input-output mappings has been demonstrated earlier

in the works of Hornik et al. (1989) and Cybenko (1989) for MLPNs and in

the work of Park and Sandberg (1991) for RBFNs. While both classes have

been considered as ‘universal approximators’ and met with remarkable suc-
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cess in applications, there are some fundamental differences between the theory

and practice of applying and designing these networks (Van-Yee, 1998; Haykin,

1999). In the present works, both MLPNs and RBFNs will be described as

basic tools for function approximation, but only the RBFN is employed as a

meshless method to solve PDEs.

In general, a FFNN f(x) : Rd → R can be represented by the following sum-

mation

f(x) =
m
∑

j=1

wjhj(x, cj, bj), (2.9)

where x = (x1, x2, ..., xd)
T ∈ Rd; {wj}mj=1 is a set of weights which are adjusted

in the training phase; cj ∈ Rd and bj ∈ R are the parameters of neural networks.

The form of functions hj’s depends on the specific class of considered networks.

2.2.1 Brief review of MLPNs

MLPNs have been applied successfully to solve some difficult and diverse prob-

lems by training them in a supervised manner with a popular algorithm known

as the back-propagation algorithm which is based on the error-correction learn-

ing rule (Rojas, 1996 and Haykin, 1999). Some significant distinctive features

of MLPNs are (i) the non-linear activation function at each neuron is smooth

(i.e. differentiable everywhere). The presence of non-linearities has an impor-

tant meaning because otherwise the input-output mapping of the NN can be

reduced to that of single-layer perceptron; (ii) the hidden layers enable MLPNs

to learn complex tasks by extracting progressively more meaningful features

from the input training patterns; (iii) the high degrees of connectivity are de-

termined by the population of synaptic connections or their weights.

For MLPNs, the function hj of Eq (2.9) is given by

hj(x, cj, bj) = φ((cj)Tx+ bj), (2.10)

where φ is a mapping Rd → R; cj ∈ Rd is a ‘direction vector’ and bj is a
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‘threshold’. The continuously differentiable nonlinear activation functions com-

monly used in MLPNs are the logistic and hyperbolic tangent function given

by respectively

hj(x, cj, bj) =
1

1 + exp(−((cj)T · x+ bj))
, (2.11)

hj(x, cj, bj) = bj tanh((cj)T · x). (2.12)

The logistic sigmoid function is considered as the best for MLPNs trained by

the back-propagation algorithm (Rojas, 1996; Haykin, 1999). After the training

process is successfully completed the set of weights corresponding to the chosen

architecture is obtained.

2.2.2 Radial basis function networks

Network description

The RBFN is the principal NN-model employed in the present work. An impor-

tant property of the RBFN is that it is considered as a linear combination of the

radial basis functions in a single hidden layer architecture where the function

hj of Eq (2.9) is a radial basis function and can be written as follows

hj(x, cj, bj) = hj(r, bj) = φ
( r

bj

)

, (2.13)

where φ is a mapping Rd → R; cj ∈ Rd and bj are the centre vector and

spread parameter (also namely the width) of the jth node, respectively and

r =‖ x− cj ‖ while ‖ ¦ ‖ is the Euclidean norm. Figure (2.1) shows a fully con-

nected RBFN with a single hidden layer. The linear combination of nonlinear

radial basis functions is the key to the RBFN’s representational ability while

maintaining the computational and analytical tractability. The final (output)

layer, fully connected with the hidden layer, is composed of a linear unit whose

weights are considered as unknowns of the neural network.
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Figure 2.1: Architecture of a fully connected radial basis function network.
x ∈ Rd; {wj}mi=1 is the set of weights of the NN. Each of d components of x
feeds forward to m basis function neurons whose outputs are linearly combined
with weights into the network output f(x).

Some well known radial basis functions

Among radial basis functions, the following are of particular interest in applying

RBFNs

• Gaussian-RBF

hj(r, bj) = hj(‖x− cj‖, bj) = exp

(

− r2

(bj)2

)

, (2.14)

• Multiquadrics RBF (MQ-RBF)

hj(r, bj) = hj(‖x− cj‖, bj) =
√

r2 + (bj)2, (2.15)

• Inverse multiquadrics RBF (IMQ-RBF)

hj(r, bj) = hj(‖x− cj‖, bj) = 1
√

r2 + (bj)2
, (2.16)

• Thin plate splines RBF (TPS-RBF)

hj(r) = hj(‖x− cj‖) = r2s log(r), s = 1, 2, ..., (2.17)

• Compact support RBF (CS-RBF)

hj(r) = hj(‖x− cj‖) = (1− r)l+p(r), l = 1, 2, ..., (2.18)
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where s is the order of TPS-RBF; p(r) is a polynomial of Wendland CS-RBF

(Wendland, 1995,1998). While the MQ-RBF, TPS-RBF and CS-RBF exhibit

global response, i.e. they increase monotonically with increasing distance from

the centre, the Gaussian-RBF and IMQ-RBF have local response (localized

function) (Haykin, 1999; Beatson and Light, 1997). RBFs are multivariate

as function of x ∈ Rd, but univariate as function of r, which should be a

tremendous computational advantage if the space dimension is large.

2.2.3 RBFN for the approximation of a given function

In this work, we focus on the problem of estimating an unknown mapping f :

Rd → R from a finite set Sn of n examples in which only the centres and linear

weights need to be determined while kernel functions and other parameters are

fixed beforehand. This process is considered as a supervised training of the

networks with the training set Sn. The training set contains elements which

consist of paired values of the independent (input) and dependent (output)

variables and is represented by

Sn = {(xi, ŷi)}ni=1, (2.19)

where xi and ŷi, i = 1, ..n are values of the training input and output vectors

of the networks, respectively. Note that the output is assumed to be one-

dimensional but this assumption does not in any way limit the general applica-

bility of the network training being developed in this work. The hat over the

symbol yi shows that the output values of the training set are usually assumed

to be corrupted by noise. In other words, the training set only specifies ŷi which

is equal to yi (the correct output value to pair with xi) plus a small amount

of unknown noise. In the following, the network training is described with the

two cases: (i) the noise-free case (ŷi = yi) and (ii) the noisy case (ŷi = yi + εi)

where εi is a random process of the training set.
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Approximation problem in the noise-free case

Let cmi=1 be the centre vectors which may be chosen either as a subset of the

training input vector (m <= n), or otherwise via a self-organizing procedure

such as k-means clustering (Duda and Hart, 1973; Darken and Moody, 1990).

With the training set Sn = {xi, ŷi = yi}ni=1, where {ŷi}ni=1 is the set of desired

output values corresponding to {xi}ni=1, the weight vector of networks can be

determined via the minimization of the following cost function

C(w) =
n
∑

i=1

(ŷi − f(xi))
2 . (2.20)

Applying the linear least-squares principle leads to a system of linear algebraic

equations of m unknown weights as follows (see Appendix B.2 for more detail)

(HTH)w = HT ŷ, (2.21)

where H is the m×n design matrix (or interpolation matrix) with Hij = hj(xi);

m is the number of RBF-neurons and n is the number of training points, and

ŷ = [ŷ1 ŷ2...ŷn]
T is the n-dimensional vector of training output values. In the

case where the centres are chosen to be identical to the training input vectors

(n = m), (strict interpolation in multidimentional space), Eq (2.21) is rewritten

as follows

Hw = ŷ. (2.22)

The regularization approach to the approximation problem

The strict interpolation procedure with the least-squares principle in Eq (2.20)

may not be a good strategy for RBFN training in the case where the networks

may end up fitting misleading variation. It is due to idiosyncrasies or noise in

the input data caused by the number of data points of Sn which is much larger

than the number of degrees of freedom of the underlying mapping (Broomhead

and Lowe, 1988 and Haykin, 1999). In other words, the reasons could be that (i)
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there may not be as much information in the training sample as really needed

to reconstruct the input-output mapping uniquely; (ii) there is the presence of

noise or imprecision in the training data; (iii) there is a distinct output which

may not exist for every input. The learning is an ill-posed inverse problem

which could be regularized with a suitable mechanism that allows the fit to

deviate from the training data. Such a regularized least-squares solution es-

sentially imposes a smoothness constraint on the estimate. The regularization

approach determines a solution f of the approximation problem by minimizing

the following functional (Girosi, 1992 and Girosi et al., 1995)

n
∑

i=1

(ŷi − f(xi))
2 + λφ(f), (2.23)

where φ(f) is a smoothness functional and also called the stabilizer which en-

forces some smoothness constraint and needs to be chosen from a suitable class

of stabilizers (see Haykin, 1999 for more details); λ is a positive parameter that

is usually called the regularization parameter and controls the tradeoff between

the two terms in (2.23). There are several model selection criteria for choosing

a value of λ such as Bayesian information criterion, cross-validation (Wahba,

1990), General cross-validation (GCV) (Haykin, 1999), structural risk mini-

mization (Vapnik, 1998) or some other principles which can be found in Haykin

(1999) and Orr (1999a,b). The GCV is used in this work. The structure of φ(f)

embodies the prior knowledge about the solution and the characteristic of the

problem. If λ = 0, we return to the noise-free case while for λ → ∞, it is the

case of a low pass filter.

2.2.4 RBFN for the approximation of the solution of a

PDE

During the last decade, many scientists and engineers have discovered the merits

of RBFNs when working with multidimensional data in which the applications

seem to have shifted from scattered data approximation to the numerical solu-
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tion of partial differential equations. The variables of the governing PDEs are

represented by networks which are designed simultaneously to satisfy the PDEs

together with the boundary conditions. Two important features of RBFN-based

method in solving PDEs are (i) it does not require any element (truly meshless

method); (ii) it is space dimension independent in the sense that convergence

order is of O(ϑd+1) where d is the spatial dimension and ϑ is the density of

collocation points (Wu, 1983 and Kansa and Hon, 2000).

The RBFN-based methods for numerical solution of PDEs can also be classified

into several categories as follows.

• The particular solution method. RBFNs are used to find a particular

solution (PS) of the inhomogeneous PDE. The general solution is the sum

of the homogeneous fundamental solution and the PS (Golberg and Chen,

1997 and Tran-Canh and Tran-Cong, 2002a);

• The Meshless Galerkin method using RBFNs (Wendland, 1999). In this

category, the unknowns are approximated by RBFs and the error functions

(see §1.4) are distributed on the domain via the Galerkin method;

• The RBFN collocation method (Kansa’s method). The variables in this

method are approximated by RBFNs and then the distribution of the er-

ror functions is carried out on the domain under consideration via the

collocation method. Both the PDEs and boundary conditions are sat-

isfied by collocation (Kansa, 1990a,b; Fasshauer, 1996,1999; Franke and

Schaback, 1998).

• The RBFN least-squares method. The variables are approximated by

RBFNs, the least-squares scheme, instead of collocation method, is em-

ployed to distribute the errors on the analysis domain (Mai-Duy and Tran-

Cong, 2001 and Tran-canh and Tran-Cong, 2002a,b).

In approximating functions using RBFNs, there are two different direc-

tions: (i) the closed-form RBFN approximating a function (or unknown) is
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obtained from the set of training points and then their derivatives are de-

termined directly by differentiating this RBFN (Kansa, 1990b, Zerroukat

et al., 1998; Tran-Canh and Tran-Cong, 2002a,b); or (ii) the formulation

of the problem starts with the expression of the highest order derivatives

of the unknown (existing in the PDEs) in terms of RBFNs and then the

derivative expressions are integrated to obtain the approximating expres-

sion for the unknowns (Mai-Duy and Tran-Cong, 2001). Since its in-

troduction (Kansa, 1990b), there have been several modifications to and

improvements on the RBFN-based method, which can be summarized as

follows.

¦ The straightforward RBF collocation method is proposed by Kansa

(1990a,b) in which collocation with the boundary points satisfies the

boundary conditions, and collocation with the interior points satisfies

the PDEs;

¦ In the direct collocation, the PDE is collocated both on the boundary

and the internal region (Fedoseyev et al., 2002). The method reduces

the error near boundaries in RBF-based approximation (Fornberg

et al., 2002);

¦ The symmetric collocation scheme modifies the basis functions in the

approximant according to specific properties of the operator in the

PDEs. This modification of RBF leads to a symmetric equation

system (see Fasshauer (1996) for more details).

Depending on the problem, the modification used can be better in some cases

but not in others. However, in this work, the second one is applied in solving

PDEs for its error reduction capability. In the next chapters, this scheme will

be described in more detail for individual applications as appropriate. Besides

the advantages, the primary drawback of the RBFN-based meshless methods

is that the coefficient matrices obtained from the global discretization scheme

are full. This makes these matrices become more ill-conditioned as the rank in-
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creases. Several techniques have been proposed to improve the conditioning of

the coefficient matrix and the solution accuracy, including (i) domain decompo-

sition methods for large problems; (ii) knots adaptivity that minimizes the total

number of knots required in a simulated problem; (iii) matrix preconditioners;

(iv) replacement of global solvers by block partitioning etc. A combination of

the approaches can contribute to more accurate solution. In this dissertation,

the research focuses on the element-free RBFN-based least-squares method in

conjunction with the domain decomposition for the numerical solution of PDEs.

2.3 The stochastic differential equation

Recently, the theory of SDEs has had application in a large number of disciplines

such as physics, engineering, biology, communication, economics (Kubo et al.,

1978; van Kampen, 1981; Gardiner, 1994 and Kloeden and Platen, 1995), and

especially in rheology where the basic equations describing the polymer dynam-

ics, using the coarse-grained models of kinetic theory, are stochastic in nature

(Öttinger, 1996). In order to describe a stochastic process, two of the most

commonly used interpretations of the equations are the Ito and Strastonovich

interpretations. The first one is most practical for computation and the sec-

ond one appeals more to physical intuition. In this section, a brief review of

the SDEs of an Ito process is presented, the other extension of the Ito SDEs

relating to the present work will be introduced later in relevant chapters.

2.3.1 Introduction

Consider the multi-component SDE of an Ito process as follows

dQ(t) = A(t,Q(t))dt+B(t,Q(t))dW(t), (2.24)
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where A is a d-dimensional column vector and A(t,Q(t))dt is referred to as

the drift term; B is a d × d′ matrix and B(t,Q(t))dW(t) is referred to as the

diffusion term;W(t) is the Wiener process (Appendix C.3). In the present work,

Q(t)’s represent the configuration fields of polymer solution. The solution Q

and the Wiener process W(t) are defined on the same probability space. More

details on this problem can be found in Gihman and Skorohod (1974); Friedman

(1975) and Garnier (1994). If B = 0, (2.24) becomes a deterministic differential

equation. Depending on whether B is a function of Q(t) or not, we have a

multiplicative or additive noise process. In this dissertation, it is assumed that

the SDE (2.24) satisfies the conditions for the existence and uniqueness of the

solution. This assumption is considered to be accepted in many important

classes of SDE used in the kinetic theory application (Öttinger, 1996).

2.3.2 Numerical integration schemes

Since the SDEs associated with non-linear models of polymer kinetic theory usu-

ally cannot be solved analytically, many numerical integration approaches have

been developed. In this section, several numerical stochastic time discretisation

methods employed in the Brownian simulation techniques in the present work

are presented. In these methods the time evolution of individual realizations

of a stochastic variable is simulated. Averaged quantities can be determined

at any instant in time by statistically averaging over a large number of inde-

pendent realizations. A detailed and comprehensive description of numerical

schemes on SDEs can be found in Kloeden and Platen (1995), Öttinger (1996)

and Kloeden et al. (1997).
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2 The stochastic theta method (STM)

Considering the numerical solution of an Ito stochastic process given by (2.24)

dQ(t) = A(t,Q(t))dt+B(t,Q(t))dW(t). (2.25)

The initial condition Q(to) = Qo is independent of the Wiener process Wt.

Applying the STM with fixed stepsize leads to the iterative series as follows

Qi+1 = Qi + (1− θ)A(ti,Qi)∆t+ θA(ti+1,Qi+1)∆t+B(ti,Qi)∆Wi, (2.26)

with

E(∆Wi) = 0,

E((∆Wi)
2) = ∆t, (2.27)

where ti = i∆t, (i = 0, 1, · · · , n−1), Qi = Q(ti); ∆Wi =Wi+1−Wi represents

the N(0;∆t) distributed increment of the standard Wiener process W, θ (θ ∈
[0, 1]) is a parameter which shows the degree of implicitness.

• For θ = 0, we have the explicit Euler-Maruyama method and (2.26) is

rewritten as follows

Qi+1 = Qi +A(ti,Qi)∆t+B(ti,Qi)∆Wi, (2.28)

• For θ > 0, the method is implicit. Especially with θ = 1, the fully implicit

Euler method is given from (2.26) by

Qi+1 = Qi +A(ti+1,Qi+1)∆t+B(ti,Qi)∆Wi, (2.29)

The implicit method is applied only in the drift term but not in the diffu-

sion term. The increment ∆Wi can be generated by the Box-Muller or Polar

Marsaglia generator (Appendix C.4), or other random number generators. The

Euler method can be interpreted as an order 0.5 strong Ito-Taylor approximation

and is known to converge with order 1 for deterministic differential equations

(Kloeden and Platen, 1995). The other methods with higher order strong Tay-

lor approximation are not mentioned here and can be found in Kloeden and

Platen (1995); Öttinger (1996).
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2 Predictor-Corrector methods (PCM)

Predictor-Corrector methods are employed because of their numerical stability,

which they inherit from the implicit counterparts of their corrector schemes. In

this section, only the family of weak predictor-corrector methods is presented.

The methods consist of two steps

• The predictor step uses the explicit schemes given by

Q∗
i+1 = Qi +A(ti,Qi)(∆ti) +B(ti,Qi)(∆Wi); (2.30)

• The corrector step uses implicit schemes, in which the predicted value

Q∗
i+1 is employed instead of Qi+1 on the RHS of the corrector step. The

corrected value is expressed as follows

Qi+1 = Qi +
{

θA(Q∗
i+1, ti+1) + (1− θ)A(Qi, ti)

}

∆ti+

+
{

θ
′

B(Q∗
i+1, ti+1) + (1− θ

′

)B(Qi, ti)
}

∆Wi, (2.31)

where θ, θ
′ ∈ [0, 1]. The corrector (2.31) includes some degree of implicitness

in the diffusion term (θ
′

> 0). In predictor-corrector methods, the difference

between the predicted and corrected values provides an indication of local errors

at each step.

2.4 Brownian dynamics simulations (BDS) in

polymeric kinetic theory

As described in chapter 1, in the micro-macroscopic modelling of viscoelastic

flows, the continuity and momentum equations are considered together with

the extra-stress derived from BDS. The development of the kinetic theory for

polymers allows a hierarchical description of the fluid microstructure that can
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Figure 2.2: Elastic dumb-
bell model: the connector
vector Q describes the con-
figuration of the model.

be systematically reduced in dimensionality (coarse-grained). The approach,

which is based on the dynamics of the polymer chains and their interaction

with the solvent, gives rise to macro-molecular kinetic models. In these models,

the polymer chains are modelled not at molecular level but as macroscopic

objects with respect to the size scale of molecules. For example, a number

of molecules are approximated as a chain of dumbbells. A dumbbell consists

of a massless spring connecting two equal point masses which are related to

the actual molecular mass. The coarsest approximation used in modelling a

polymer chain is a single dumbbell. In this section, the BDS will be presented

for simulating dilute polymer solutions using the elastic dumbbell.

2.4.1 Equation of motion of a dumbbell

A dumbbell can be described at any time t by either the coordinates of its

beads xi(t) (i = 1, 2), or the coordinate of dumbbell’s center of mass x(t) and

the connector vector Q(t) (Fig. 2.2) as follows

x(t) =
x1(t) + x2(t)

2
, (2.32)

Q(t) = x2(t)− x1(t).
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Q(t)’s, also named configuration vectors, describe the orientation and elonga-

tion of polymer molecules and define a configuration space of the flow field of

the polymer solution.

Neglecting the inertia term, other external forces and assuming that the masses

of the beads as well as their acceleration are very small, the Newton’s law for a

dumbbell at a time t is given by

ζ

(

u(xi, t)−
dxi(t)

dt

)

+ FS(xi′(t)− xi(t)) + FB
i (t) = 0, i = 1, 2, (2.33)

where i, i′ are the indices of the two beads of a dumbbell (if i = 1 then i′ = 2

and vice versa); ζ is the bead friction coefficient; u(xi, t) is the velocity of the

solution at the considered bead at time t. In Eq (2.33), the forces acting on

each bead include

• The hydro-dynamic drag force (FD
i = ζ

(

u(t,xi(t))− dxi
dt
(t)
)

, i = 1, 2).

This force is due to the average hydrodynamic resistance of the motion of

the polymer through a viscous solvent. It is proportional to the difference

between the bead velocity and the average velocity of the solution and

tends to make the beads follow the flow;

• The Brownian force (FB
i , i = 1, 2). It is due to the thermal fluctuation in

the solution and the cumulative effect of the bombardment of the dumb-

bell by the solvent molecules. The average of this random force can be

determined as an expression with respect to the configuration distribu-

tion function. The force is from the Brownian motion theory which can

be found in Gardiner (1995) or Öttinger (1996), for example.

• The intramolecular (spring potential) force (FS
i ). This force comes from

the spring of the dumbbell. The spring potential force is calculated accord-

ing to the dumbbell force law F(Q) associated with particular molecular

models which can be found in Bird et al. (1987b). In the present work,

several elastic dumbbell models will be employed and presented in the

relevant chapters.
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The Brownian dynamics simulation based on the dynamics of the dumbbells in-

volves the stochastic differential equations, which describe the internal configu-

rations of the dumbbells and the expression of the extra-stress, which is related

to the configurations of the dumbbells via a formula involving the expectation.

In this section, the Brownian dynamics simulation is presented according to

both the Lagrangian and Eulerian points of view.

2.4.2 Lagrangian Brownian dynamics simulation

Governing equation for a dumbbell

From the Brownian motion theory, the Brownian force is given by (chapter 3,

Öttinger, 1996)

FB(t) =
√

2kBTζ
d

dt
W(t), (2.34)

where the factor
√
2kBTζ is dictated by fluctuation-dissipation theorem of the

second kind, with kB is the Boltzmann’s constant; T is the absolute temperature

and W(t) is a standard Wiener process. Integration of the Eq (2.33) for the

beads of a dumbbell over [0, t], making use of the Brownian force (2.34) and the

Taylor expansion for velocity field, yields the integral form of the equations of

motion of a dumbbell as follows.

x (t) = x(0) +

∫ t

0

u (x(t′), t′) dt′, (2.35)

Q (t) = Q (0) +

∫ t

0

(

κ (x(t′), t′) ·Q (t′) +
2

ζ
F (Q (t′))

)

dt′

+

√

4kBT

ζ

∫ t

0

dW (t′). (2.36)

Equations (2.35) and (2.36) are often expressed in the form of stochastic differ-

ential equations as follows.

dx(t) = u(x(t), t)dt, (2.37)

dQ(t) =

(

κ(x(t), t) ·Q(t) +
2

ζ
F(Q(t))

)

dt+

√

4kBT

ζ
dW(t), (2.38)
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where κ is the velocity gradient and u(x(t), t) = uo(x) + κ(x(t), t) · x(t).

Equations (2.35)-(2.36) or (2.37)-(2.38) describe the evolution of the configura-

tion of a dumbbell expressed by (x(t),Q(t)) from the Lagrangian point of view.

In other words, Q(t) represents the elongation vector of a dumbbell moving

along its trajectory. Although x(t) in (2.35) or (2.37) is not a proper stochastic

process, it can be considered as a random variable because the initial position

of the dumbbell is distributed according to a uniform law (Öttinger, 1996).

Thus, at any time t′ ∈ [0, t], the configuration of a dumbbell (x(t),Q(t)) can be

considered as a multivariate random variable.

The extra stress tensor formulation

The extra polymer stress τ
p of a polymer solution as described in chapter 1

is obtained from the dynamics of polymer molecules. This relation between

the polymer stress tensor (macroscopic property) and the configurations of the

dumbbells Q′s of the dumbbells (microscopic quantity) has been established

through various different works such as Giesekus, Kramers, Kramers-Kirkwood

and Modified-Kramers (Bird et al. 1987b). In this work, the following Kramer

formulation is employed to express the polymer contribution to the stress at a

location x̄ = x(t) and time t as follows.

τ
p(t, x̄) = ndkBT

(

E

(

Q(t) · F(Q(t))|x(t)=x̄

)

−I
)

, (2.39)

where nd is the volume density of dumbbells in the solution; I is the unity

tensor; E
(

Q(t) · F(Q(t))|x(t)=x̄

)

denotes the expectation of (Q(t) ·F(Q(t))) of

the dumbbells at time t having coordinates x(t) = x̄.
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2.4.3 Eulerian Brownian dynamics simulation

In the Lagrangian Brownian dynamics simulation, x(t) in the equations of mo-

tion (2.37)-(2.38) is nothing but the trajectory of the dumbbells. These gov-

erning equations for the connector (elongation) vector can be rewritten under

the Eulerian point of view and Hulsen et al. (1997) proposed it as the Brown-

ian configuration fields (BCF) method. In this approach, instead of writing an

independent equation for the center of mass of a dumbbell, the configuration of

the dumbbell is considered as a field variable Q̂(x, t). The equation of motion

is rewritten as follows.

dQ̂(x, t) =

(

−u(x, t) ·∇Q̂(x, t) + κ(x, t) · Q̂(x, t)− 2

ζ
F(Q̂(t))

)

dt

+

√

4kBT

ζ
dW(t), (2.40)

for the differential form and

Q̂(x, t) = Q̂(x, 0) +

∫ t

0

(

− u(x, t′) ·∇Q̂(x, t′) + κ(x, t) · Q̂(x, t′)

−2

ζ
F(Q̂(x, t′))

)

dt′ +

√

4kBT

ζ

∫ t

0

dW(t′), (2.41)

for the integral form. The field variable Q̂(x, t) is a stochastic process and

depends on x and t. Clearly, in these equations, the term u(x, t) · ∇Q̂(x, t)

accounts for the displacement of dumbbells along the fluid trajectories. The

BCF method avoids the extra effort associated with a necessary particle tracking

procedure.

In the Eulerian Brownian dynamics simulation, the extra polymer stress tensor

is given by

τ
p(t,x) = ndkBT

(

E
(

Q̂(x, t) · F(Q̂(x, t))
)

− I

)

. (2.42)

In spite of the difference of the meaning of Q and Q̂ as described, for the sake

of brevity, Q is used for both.
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2.4.4 Variance reduction methods

In Brownian dynamics simulation, a large number of independent realizations

is simulated. In macromolecular approaches, the macro-quantities use to be

determined as a function of the average values of stochastic quantities. Such an

average is approximated by their arithmetic mean as follows

µ =
1

n

n
∑

i=1

qi, (2.43)

where qi is a stochastic quantity; i = 1, 2, ..., n; n is the number of realizations.

Hence, there exists a deviation from the theoretical expectation value of qi’s,

which can be measured by the following root-mean-square (RMS) deviation

√

E ((µ− E(qi))2) =

√

√

√

√E

(

1

n2

∑

i

q2i +
1

n2

∑

i

∑

j 6=i

qiqj

)

− E (qi)
2

=

√

E (q2i )− E (qi)
2

n

=

√

V ar(qi)

n
, (2.44)

where E(.) means the expectation of (.). A reduction of this deviation can be

achieved by (i) increasing the number of realizations (n) or (ii) reducing directly

the variance. Since the increase of realizations entails a higher computation

time, the variance reduction methods, which are based on the same ideas as

Monte-Carlo scheme, are chosen to decrease the variance. In this section, two

classes of variance reduction methods, namely importance sampling and control

variate, are described.

• The importance sampling method. The main idea behind this method is

to sample another probability density p̄(x) instead of p(x). A correction

factor p(x)
p̄(x)

is introduced to assure that the same E(q) is obtained

E(q) =

∫

q(x)p(x)dx =

∫

q(x)
p(x)

p̄(x)
p̄(x)dx = E

(

q
p

p̄

)

p̄

(2.45)
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The new variance associated with density p̄(x) is V ar(q p
p̄
). This variance

is zero if the term q p
p̄
is independent of x. The choice of p̄ depends on the

variable to be averaged and so p̄ = q(x)p(x)
E(q)

is used. The implementation of

the method for the numerical solution of a SDE is quite complex and more

details can be found in Melchior and Öttinger (1995, 1996) and Kloeden

and Platen (1995).

• The control variate method. The method uses a control variate q̄ which

is correlated with a random variable q, to produce a better estimator of

E(q). While E(q) is unknown and needs to be estimated, E(q̄) can be

calculated by a deterministic method. Let µ̄ be the estimator of E(q̄).

Instead of approximating E(q) by µ; (µ− µ̄+ E(q̄)) is used, i.e.

E(q) = µ− µ̄+ E(q̄), (2.46)

and its associated variance is V ar(q)+V ar(q̄)−2Cov(µ, µ̄), where Cov(µ, µ̄)
is the covariance of q and q̄ and shows how they are correlated. If each

control variate q̄i is strongly correlated with qi, then 2Cov(µ, µ̄) is a large

positive number and the value of V ar(q)+V ar(q̄)−2Cov(µ, µ̄) is smaller

than the value of V ar(q). Using the same random numbers for the real-

izations qi and q̄i of q and q̄ ensures a strong correlation between them

(Melchior and Öttinger, 1996; Bonvin and Picasso, 1999 and Kloeden and

Platen, 1995).

In the present work, the control variate technique is employed in conjunction

with the CVFNNSS from the Lagrangian and Eulerian points of view to reduce

the variation of the macro-quantities.

2.5 Conclusion

Some brief reviews of the basic tools concerning the computational methods

for the present work such as BIEs, FFNNs, SDEs and Brownian dynamics
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simulations, were presented in this chapter.

• The FFNNs and especially RBFNs are described at two levels:

– The universal approximators for explicit functions and their deriva-

tives. This capability of FFNNs allow efficient treatment of volume

integrals. Hence, FFNNs are combined with other methods to solve

boundary integral equations. The training procedure, in which the

shape parameters of NNs are chosen in advance, is to determine a set

of weights of the NNs based on the training data set by optimizing

the cost function in the sense of general linear least-squares principle;

– The meshless method for solving differential equations. This capabil-

ity allows approximation of a PDE’s solution via a training procedure

where the information of the PDE and the boundary and/or initial

conditions are employed as the training data for the networks design.

Depending on the source, training data could be noise-free or randomly

noisy and correspondingly specific networks training procedures are also

presented. ‘Mesh’ convergence of FFNN-based methods is assured accord-

ing to the Cover’s theorem, which can be found in Haykin (1999) and is

not repeated in this work. Among the various kinds of RBFNs, the MQ-

RBFNs and TPS-RBFNs are chosen for the present work because of their

known superior capability for approximation (Franke, 1982).

• The SDEs together with several time discretisation methods are presented

as tools to deal with the Brownian dynamics simulations. These compu-

tational methods, which are the microscopic component of the hybrid

simulation for the calculation of complex viscoelastic flows, are described

from the Lagrangian and Eulerian points of view. In order to reduce sta-

tistical error in Brownian simulations, variance reduction schemes are also

described.



2.5 Conclusion 44

As a first step in the coupling of the neural-like network-based mesh-free method

and another numerical method in the macroscopic simulation approach, the

BEM-FFNN-based numerical scheme for analysis of a non-Newtonian fluid,

namely the GNF, will be presented in the next chapter.



Chapter 3

FFNN-based element-free

scheme in BEM computation of

GNF flows

This chapter presents a FFNN boundary-element-only scheme for analysis of

GNF flows (Tran-Canh et al., 2000a and Tran-Canh and Tran-Cong, 2000b,

2002a). The volume integral arising from the inhomogeneous PDEs, especially

from nonlinear effects, is approximated via a particular solution (PS) technique.

MLPNs and RBFNs are used for global approximation of field variables. Hence

volume discretisation, associated with the volume integral, is not required, and

in this way, BEM maintains the advantage of being a boundary-element-only

method. The iterative numerical formulation is achieved by viewing the mate-

rial as being composed of a Newtonian base (artificially assigned with a constant

viscosity which may be different from sub-domain to sub-domain) and the re-

maining component which is accordingly defined from the original constitutive

equation. This decoupling of the nonlinear effects allows a Picard-type iterative

procedure to be employed by treating the nonlinear term as a known forc-

ing function. However, convergence is sensitive to the estimate of this forcing
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function and an adaptive subregioning of the domain is adopted to control the

accuracy of the estimate of this nonlinear term. The criterion for subregioning

is that the velocity gradient should not vary significantly in each sub-domain.

This strategy enables convergence of the present method (BEM-NN) at power-

law index as low as 0.2 for the difficult power law fluid. The use of MLPNs

(instead of single layer perceptrons) and RBFNs is another contributing factor

to the improved convergence performance. The overall scheme is very suitable

for coarse-grain parallelization as each sub-domain can be independently ana-

lyzed within an iteration. Furthermore, within each sub-domain process there

are other parallelizable computations. The present method is verified with cir-

cular Couette and planar Poiseuille flows of the power-law, Carreau-Yasuda and

Cross fluids.

3.1 Introduction

Many practical simulations of polymer flows, especially in complex geometries,

still rely on the use of GNF models, due to the difficulties in using realistic but

very complicated viscoelastic constitutive equations. The aim of this chapter

is to report a contribution to further developments of a numerical approach

based on integral equations (IEs), and global function approximation by NNs

with particular application in the numerical analysis of GNF flows. By using

certain particular solution techniques, the direct computation of the volume

integrals is avoided and the IE formulation results in boundary-element-only

methods (Coleman et al., 1991; Zheng et al., 1991a,b; Zheng and Phan-Thien,

1992). However, volume discretisation may still be needed for the purpose of

piecewise approximation of functions in the style of finite element (FE) repre-

sentation. The FE-type volume discretisation can be avoided with the use of

methods of global function approximation such as NN methods (Nguyen-Thien

and Tran-Cong, 2000) where only an unstructured distribution of data points is

required. To overcome the lack of convergence, when nonlinearity is strong, the
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present approach adopts multi-layer perceptron networks, radial basis function

networks, adaptive subregioning based on velocity gradients and a particular

solution technique to enhance the IE formulation. Florez et al. (2000) devised

a new multiple domain dual reciprocity method (MD-DRM) and also studied

similar flow problems involving inelastic non-Newtonian fluids. These authors

concluded that at low power law indices (strong nonlinearities) subregioning is

necessary to obtain convergence. Here the MLPNs prove to be better than the

single layer perceptron networks and the RBFNs are easier to train than the

MLPNs in the present applications. Furthermore, a linear boundary element

scheme is developed where the geometric corner problem is resolved in general

and all singular integrals and some special non-singular integrals are calculated

in closed form. The resultant BEM-NN method is a BE-only method without

FE-type volume discretisation and is illustrated with the problems of circular

Couette and planar Poiseuille flow of several GNFs. Although one might argue

that subregioning is a form of FE discretisation, the two approaches differ in

two important respects. Firstly, FEs require rigid connectivity to define a con-

sistent topology while the present subregioning does not require any element

along the interfaces. Secondly, the number of subregions is generally very small

in comparison with the number of FEs (only two subregions are required in the

present work and based on the coarse number of collocation points the equiv-

alent number of quadrilateral FEs would be 180). The design of subregions is

quite flexible, simple and should not cause any difficulty even in problems with

moving boundary. This chapter is organized as follows: the governing equations

for GNFs are reviewed in §3.2, followed by the BEM-NN formulation in §3.3.
Numerical examples are then discussed in §3.4 with a brief conclusion in §3.5.

3.2 Governing equation for GNFs

From the description given in chapter 1, the system of mass and momentum

conservation equations for the steady state, isothermal and creeping flow of an
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incompressible fluid is rewritten as follows (ignoring gravity)

∇ · σ = 0, x ∈ Ω, (3.1)

∇ · u = 0, x ∈ Ω, (3.2)

with boundary conditions

u = u0, x ∈ ∂Ωu, (3.3)

t = n · σ = t0, x ∈ ∂Ωt, (3.4)

where σ is the total stress tensor and u is the velocity vector; n is the outward

unit normal to the boundary ∂Ω = ∂Ωt+∂Ωu of the volume Ω; t is the traction

vector. Considering the Newtonian fluid as a special case of a more general

non-Newtonian fluid, the total stress tensor is decomposed into a Newtonian

and a non-linear component as follows

σ = −pI+ τ = (−pI+ 2ηND) + (τ − 2ηND) = σ
N + τ

p, (3.5)

where p is the hydrostatic pressure arising from the incompressibility constraint

(3.2), I is the unit tensor, D is the rate-of-strain tensor, τ is the extra stress

tensor, ηN is a conveniently chosen ‘Newtonian’ viscosity, σN is an arbitrarily

defined ‘Newtonian component’, τ p is the corresponding non-linear component

consequently defined by

τ
p = τ − 2ηND. (3.6)

The extra stress τ is governed by the constitutive equation for GNF as

τ = 2η(γ̇)D, (3.7)

where the non-Newtonian viscosity η is a function of the magnitude of the rate-

of-strain tensor γ̇ =
√

2DijDji (e.g. see Bird et al ., 1987a). In the present

work, several well known models are considered. The power-law model is given

by

η = mγ̇n−1, (3.8)
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where n (dimensionless) and m (with units of Pa.s) are two parameters. The

Carreau-Yasuda model is given by

η − η∞
ηo − η∞

= [1 + (λγ̇)a]
n−1

a , (3.9)

where ηo is the zero-shear-rate viscosity, η∞ is the infinite shear rate viscosity,

λ is a time constant, n is the ‘power-law exponent’, a is a dimensionless param-

eter describing the transition region between the zero-shear-rate region and the

power-law region. For many concentrated polymer solutions and melts, a = 2

and η∞ = 0, and (3.9) is known as the Carreau model (Bird et al ., 1987a) in

the form of

η = ηo
[

1 + (λγ̇)2
]
n−1

2 . (3.10)

Finally, the Cross model is given by (Macosko, 1994)

η − η∞
ηo − η∞

=
1

1 + (K2γ̇2)
1−n

2

, (3.11)

where K is a time constant and the other parameters are as defined above in

the Carreau-Yasuda model.

3.3 BEM-PS-NN formulation for GNFs

3.3.1 PS and NN-based meshless method for the elimi-

nation of volume integral

For a given spatial point x of (3.1)-(3.4), noting (3.5), the integral representation

(2.8) is rewritten as follows (see §2.1, chapter 2)

Cij(x)uj(x) =

∫

Γ

u∗ij(x,y)tj(y)dΓ(y)−
∫

Γ

t∗ij(x,y)uj(y)dΓ(y)

−
∫

Γ

τ pjknk(y)u
∗
ij(x,y)dΓ(y) + up

i , (3.12)

where x,y ∈ Ω; uj(y) is the j-component of the velocity at y; tj(y) is the

j-component of the boundary traction at y; τ p
jk(y) is the jk-component of τ p



3.3 BEM-PS-NN formulation for GNFs 50

at y; u∗ij(x,y) is the i-component of the velocity at x due to a point force in

j-direction at y (Kelvin fundamental solution corresponding to the Newtonian

base material, see Appendix A.1) and t∗ij(x,y) is its associated traction. Cij(x)

depends on local geometry and is described in §2.1. The volume integral up
i is

defined by

up
i =

∫

Ω

u∗ij(x,y)
∂εjk(x,y)

∂xk

dΩ(y)

=

∫

Ω

Gij(x,y)φj(y)dΩ(y), (3.13)

where φj(y) =
1
2

∂εjk(x,y)

∂xk
, and Gij(x,y) = 2u∗ij(x,y) is twice the Kelvin funda-

mental solution.

The term

bi(x) = −
∫

Γ

τ pjknk(y)u
∗
ij(x,y)dΓ(y) + up

i , (3.14)

is treated as a pseudo body force which is estimated using the data obtained in

the previous iteration or some initial guess for the first iteration. In the present

work the Newtonian solution is used as the initial guess. Since the formulation

of the problem is basically a Newtonian one with the non-Newtonian effects

acting as a perturbation, it is natural to choose the Newtonian solution as an

initial guess. Indeed, when the initial guess is set arbitrarily to zero on the inter-

faces betwen subregions, convergence is difficult to achieve. The compatibility

conditions imposed on the primary variables (velocity and traction) ensure that

convergence, if achieved, is global. The term (3.13) can be estimated without

numerical volume integration by a particular solution technique (Nguyen-Thien

et al., 1997). Extra stress can also be calculated without volume discretisation

by a neural network method similar to that used in Nguyen-Thien and Tran-

Cong (2000) where single hidden layer perceptron neural networks were used. In

order to improve convergence, different NN architectures are used in the present

work as described in later sections. FFNN, as a universal global approximator

or scattered data interpolator, only needs a random distribution of data points

in the domain. In the present IE formulation, these data points are calculated

point by point by a re-application of the IE for domain points. Since these



3.3 BEM-PS-NN formulation for GNFs 51

data points are not simultaneous unknowns in the formulation they can easily

be calculated in parallel. Once a NN approximation of the scattered data is

found, the derivatives, which are needed in the calculation of the extra stress

and pseudo body force, can be calculated in a straightforward manner owing to

the closed form nature of the function decomposition into differentiable bases.

The boundary of the domain is discretised into a number of standard finite

elements (i.e. boundary elements) and the discrete version of the IE (3.12) can

now be written in the following matrix form

[G] {t} = [H] {u}+ {b}, (3.15)

where [G] and [H] are the coefficient matrices resulting from the discretisation

of the boundary into BEs; {t}, {u} and {b} are the global nodal traction

vector, velocity vector and pseudo body force vector, respectively. Hence, the

problem is solved numerically by decoupling the nonlinear effects which are

represented by {b} and treated as known small perturbations in an otherwise

linear problem. The procedure is started with an initial guess of the solution,

which is the Newtonian solution in the present application (i.e. {b} = {0}).
A Picard-type iteration is performed where the pseudo body force vector is

estimated using the data obtained in the previous iteration until convergence

or divergence is ascertained according to the following convergence measure

CM1 =

√

∑N
1

∑2
i=1(u

n
i − un−1

i )2
∑N

1

∑2
i=1(u

n
i )

2
< tol, (3.16)

where tol is a preset tolerance, ui is the i component of the velocity at a node,

N is the total number of nodes and n is the iteration number.

In summary, the computational steps are

(1.) If necessary, the analysis domain is divided into a small number of subdo-

mains (coarse-grain parallelisable);
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(2.) Specify the boundary conditions on the artificial interfaces according to

the method described in Davies and Mushtaq (1996) (Newtonian values

for the first iteration);

(3.) Then for each subdomain or the whole domain (the case of no domain

decomposition)

(a.) the BE equations (3.15) are solved with the assumed pseudo body

force (zero for the first iteration);

(b.) calculate the domain velocity field by a re-application of Eq. (3.12)

point by point (further parallelisable);

(c.) approximate the continuous velocity field by an appropriate neural

network. Each velocity component is represented by a different NN

and therefore the process can be further parallelised ;

(d.) calculate the extra stress field point by point (further parallelisable);

(e.) approximate the continuous extra stress field by an appropriate neural

network. Each stress component is represented by a different NN and

therefore the process can be further parallelised ;

(f.) check for subdomain convergence (i.e. CM1 < tol for each subdo-

main); go to 4 on convergence;

(g.) calculate the particular solution point by point (further parallelisable);

(h.) calculate the pseudo body force point by point (further parallelisable);

(i.) go to step 3a.

(4.) If there are subdomains, the ‘master’ program collects results from in-

dividual ‘slave’ programs and performs the book-keeping associated with

the numerical domain decomposition scheme; check for convergence or di-

vergence and go back to 2 or stop on convergence or divergence. The

convergence measure for this step is defined as

CM2 =

√

√

√

√

∑F
interface=1

∑N
i=1(u

I
i − uII

i )2
∑F

interface=1

∑N
i=1(u

II
i )2

, (3.17)
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where N = 2 for 2D problems; I and II denote the two subregions sharing

the interface and F is the total number of interfaces;

Although the aim of this chapter is not a study in parallelization, the latter is

simulated on a serial machine and indicated in the above algorithm for general

interest. The results obtained here indicate that the MLPN procedure takes

about 70 percent of the CPU time and therefore parallel computation is im-

portant in achieving high throughput. One way to achieve parallelization is to

adopt the domain decomposition (DD) technique. Furthermore, it is found that

the accuracy of the estimate of the pseudo body force has strong influence on

whether the procedure is convergent and it is shown in a later §3.4 that DD can

help achieve the required accuracy and improve convergence. The details of the

steps in the above algorithm are discussed in the following sections.

3.3.2 Non-dimensionalisation

The velocity is scaled by U , the length dimension by a, the viscosity by η∗, the

stress by η∗
U
a
the dimensionless variables are given by

u′ =
u

U
; l′ =

l

a
; η′ =

ηn
η∗

; τ ′ =
τ

η∗
U
a

; τ p′ =
τ

p

η∗
U
a

;D′ =
D
U
a

, (3.18)

where η∗ varies from model to model.

For the power-law model, from (3.7) and (3.8), the extra stress is now written

as

τ = 2mγ̇n−1D, (3.19)

and in dimensionless form

τ
′ = 2

m

ηN

(

U

a

)n−1
γ̇′

n−1
D′. (3.20)

Let L = ( m
ηN

)
1

n−1 (the dimensional unit is second), where η∗ = ηN , (3.20) can

now be written as

τ
′ = 2

(

L
U

a

)n−1
γ̇′

n−1
D′ = 2

(

Wγ̇′
)n−1

D′, (3.21)
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where the dimensionless group

W ≡ L
U

a
(3.22)

is also called the Weissenberg number (Khellaf and Lauriat, 2000).

For the Carreau-Yasuda model, from (3.7) and (3.9), the extra stress is

τ = 2
(

(ηo − η∞) [1 + (λγ̇)a]
n−1

a + η∞

)

D, (3.23)

and, similarly, the dimensionless form is

τ
′ = 2

(

[

1 +W aγ̇′
a]n−1

a + η̃

)

D′, (3.24)

where W = λU
a
is the Weissenberg number; η∗ = ηo − η∞ and η̃ = η∞

η∗
. In the

case where a = 2 and η∞ = 0, the model reduces to the Carreau model

τ
′ = 2

[

1 +W 2γ̇′
2
]
n−1

2

D′, (3.25)

where η∗ = ηo.

For the Cross model, from (3.7) and (3.11), the extra stress is

τ = 2

(

(ηo − η∞)

[

1

1 + (Kγ̇)1−n

]

+ η∞

)

D, (3.26)

and in dimensionless form

τ
′ = 2

([

1

1 + (Wγ̇)1−n

]

+ η̃

)

D′, (3.27)

where W = K U
a
is the Weissenberg number; η∗ = ηo − η∞; and η̃ = η∞

η∗
.

The IE (3.12) is now also in dimensionless form where the viscosity ηN in the rel-

evant kernel is non-dimensionalised to η′ = ηN
η∗

and η∗ is dependent on particular

models as mentioned above.

3.3.3 Boundary elements

In the present work, the 2D boundary elements used are straight line segment

linear elements. The problem of multi-valued traction at a geometric corner is
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resolved in general and all singular integrals and some special case non-singular

integrals are calculated analytically (see Appendix A.2) while other non-singular

integrals are estimated using numerical quadrature.

3.3.4 Artificial neural networks (ANN)

The discrete velocity field obtained in the algorithm step 3b is to be approx-

imated by a NN in the algorithm step 3c. Similarly, the discrete extra stress

field obtained in the algorithm step 3d is to be approximated by a NN in the

algorithm step 3e. A general discussion of NNs, including diagramatic represen-

tation of network architectures, was given in chapter 2 and can be found in many

texts (Rojas, 1996; Mitchell, 1997; Haykin, 1999; Fine, 1999). Although FFNNs

with only one hidden layer are capable of universal approximation, a practical

rule for the determination of the number of neurons for a given accuracy is

lacking. Furthermore, the corresponding ‘training’ to determine the synaptic

weights is a difficult optimisation problem. In the present work it is found that

it is difficult to achieve convergence for highly shear thinning fluids with sin-

gle layer perceptrons. However, the single layer RBFNs as well as MLPNs are

found to be suitable. Furthermore, the training sets in the present application

are expected to be noisy due to numerical errors during iteration and therefore

it is necessary to filter these noises in order to obtain the correct approximation

(Rojas, 1996; Fine, 1999). For example, the sensitivity to peculiarities can be

reduced by comparing models made up of different subsets of basis functions

drawn from the same fixed set of candidates. Alternatively, regularisation can

be employed, which is the case in the present work. Experience shows that

training with regularisation (specially for MLPNs) yields better results. For

example, the accuracy increases more than 8% in the function approximation

and about 3% for its derivatives.
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3.3.5 Multi-layer perceptron neural networks (MLPNs)

Approximation by MLPNs

As mentioned in chapter 2, a scalar function f(x), x ∈ RN can be represented

by a MLPN architecture (N − h1....hn − 1) where N is the number of neurons

in the input layer corresponding to the dimension of the input data space, hi is

the number of neurons in the ith hidden layer of n hidden layers and the output

layer has one neuron corresponding to the scalar function f . In the present

work, MLPNs of two hidden layers are employed and the function is computed

by the network according to (Fig. 3.1)

f(x) =
m2
∑

k=1

w1k
o A

k
h2

(

m1
∑

j=1

wkj
h2A

j
h1(x

Twj
h1)

)

, (3.28)

where m1 is the number of neurons in the 1st hidden layer; m2 the number of

neurons in the 2nd hidden layer; w1k
o the synaptic weights associated with the

connection between the output neuron (output layer) to the neuron k of the 2nd

hidden layer; wkj
h2 the synaptic weights associated with the connection between

the neuron k of the 2nd hidden layer to the neuron j of the 1st hidden layer;

wj
h1 the vector of synaptic weights associated with the connection between the

neuron j of the 1st hidden layer and the input layer; and Aj
h(.) the chosen

activation functions. The set of weights are determined by the training process.

The log-sigmoidal function is here chosen (see §2.2.1, chapter 2) for the two

hidden layers and the purelin function for the output layer. After the training

process is successfully completed and the set of weights corresponding to the

chosen architecture is obtained, the first order derivatives of the function are

calculated by

∂f(x)

∂xi

=
m2
∑

k=1

w1k
o w

kj
h2DA

(

m1
∑

j=1

wji
h1DA(x

Twj
h1)

)

, i = 1, · · · ,m, (3.29)

where

DA(p) =
dA(p)

dp
= A(p) [1− A(p)] (3.30)

is the derivative of the log-sigmoidal activation function.
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Figure 3.1: Architecture of a fully connected multi-layer perceptron network
with two hidden layers.

Training MLPNs with backpropagation algorithm (BPA)

With a structure of a MLPN chosen and a given training set of n patterns

{(xi, ŷi)}ni=1, the determination of a set of weights (unknowns) is based on the

minimization of the following objective function (Moody and Darken, 1989;

Michell, 1997)

S =
n
∑

j=1

(ŷi − f(xi))
2 + λ

(

∑

j,i

(

wji
h1

)2
+
∑

k,j

(

wkj
h2

)2

+
∑

k

(

w1k
o

)2

)

, (3.31)

where f(xi) is given by (3.28) and λ is the global regularisation parameter.

There is no ‘best’ algorithm for finding the weights of FFNNs in general, and

MLPNs in particular (Fine, 1999). In the present work, Levenberg-Marquard
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method (see Appendix B.1) with error back-propagation is used because it is

specially adapted to the minimization of the present objective function and

the BPA organizes efficiently the gradient calculation for networks having more

than one hidden layer (Michell, 1997; Demuth and Beale, 1998; Fine, 1999).

There are several heuristics for the estimate of λ (Sen and Srivastava, 1997;

Haykin, 1999; Orr, 1999a,b) of which the generalised cross-validation is used in

the present work to optimize the regularisation parameter λ.

3.3.6 Radial basis function networks (RBFNs)

Approximation by RBFNs

A brief review of function approximation using the RBF network was presented

in §2.2, chapter 2, and further details are given here in which the function f(x)

is decomposed into m fixed RBFs as (linear in wj, j = 1, · · · ,m)

f(x) =
m
∑

j=1

wjhj(x), (3.32)

where wj are synaptic weights and hj are chosen radial basis functions. Let n be

the number of input data points {xi, ŷi}ni=1, usually m 6 n. After the training

process is completed and a set of weights corresponding to the chosen radial

basis functions is obtained, the first order derivatives of f(x) can be calculated

as follows
∂f(x)

∂xi

=
m
∑

j=1

wj ∂h
j

∂xi

. (3.33)

The MQ-RBF and TPS-RBF are recognised mathematically for giving better

approximation results by Franke (1982). However, the TPS-RBF has the ad-

vantage of containing no adjustable width parameter (see §2.2.2). Both the

global MQ-RBF and the TPS-RBF are employed in this chapter. Specifically,
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the MQ-RBF and its derivatives are given by

hj(r) = hj(‖x− cj‖) =
√

r2 + (bj)2, (3.34)

∂hj

∂xi

=
xi − cji

√

r2 + (bj)2
, (3.35)

where r = (x − cj) and r = ‖(x − cj)‖ is the Euclidean norm of r; bj > 0

is the width of the jth RBF. The accuracy of the approximation can be very

dependent on the width of the RBF (Kansa, 1990a; Carlson and Foley, 1991),

of which the choice is still an open question. In the present work the approach

proposed in (Carlson and Foley, 1991) is followed and the width is calculated

by

bj = kdj, (3.36)

where dj is the distance from an RBF centre to its nearest neighbor and k = 1.25

is an empirical factor. The estimates of dj were detailed in (Carlson and Foley,

1991).

In the case of the TPS-RBF, the function and its first order derivatives are

given by

hj(r) = hj(‖x− cj‖) = r2s log(r), s = 1, 2, ..., (3.37)

∂hj

∂xi

= r2(s−1)(xi − cji )(2s log r + 1). (3.38)

Since the MQ-RBF is C∞-continuous, it can be employed directly. In the case

of TPS-RBF, it is C2s−1-continuous, the power index s must be appropriately

chosen for a given partial differential operator. In the present work, s = 1 is

sufficient to satisfy the continuity condition. However, the case s = 2 is also

investigated and the corresponding RBFNs are denoted by TPS-RBFN1 and

TPS-RBFN2 respectively.

Training the linear RBFNs

The training of the model (3.32) given a training set of n patterns {(xi, ŷi)}ni=1,

which is described in §2.2.3, chapter 2, can be achieved via the minimisation
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of a cost function based on the sum of squared errors. To counter the effects

of over-fitting, a roughness penalty term can be added to the cost function to

produce

C(w, λ) =
n
∑

i=1

(ŷi − f(xi))
2 + λ

m
∑

j=1

(wj)2, (3.39)

where λ is the global regularisation parameter. Given a choice for λ, the

minimisation of the cost function (3.39) yields an optimal weight vector w =

[w1, w2, ..., wm]
T
according to

Gw = HT ŷ, (3.40)

where H is the design matrix with Hij = hj(xi) and ŷ = [ŷ1ŷ2...ŷn]
T is the

n-dimensional vector of training output values. G = HTH+ λI is the variance

matrix and I is the identity matrix (more detail can be found in Appendix

B.3). There are several heuristics for the estimate of λ (Sen and Srivastava,

1997; Haykin, 1999) of which the generalised cross-validation is used in the

present work to optimize the regularisation parameter λ.

Solving the least squares problems

One method for a least squares problem is to solve the corresponding normal

equation in which the Gaussian elimination is employed to solve (3.40). How-

ever, this method may not be stable in the presence of round-off errors because

of the high condition number of the normal matrix (Bjorck, 1996). The QR

method, namely method of orthogonal triangle decomposition with pivoting,

which can solve a wider class of least-squares problem for an over-determined

linear system of equation (Bjock, 1996 and Lawson and Hanson, 1974), is used

in this chapter.
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Figure 3.2: Circular Couette flow problem: (a) the outer cylinder is fixed and the
inner concentric cylinder rotates with a constant speed Ω; non-slip boundary
conditions at the walls are assumed (b) schematic subregioning of the flow
domain where the point distribution is only schematic.



3.4 Numerical examples 62

3.4 Numerical examples

The approach presented above is illustrated principally in this section with the

analysis of the circular Couette flow and planar Poiseuille flow of three typical

GNFs, described the power-law, the Carreau-Yasuda and the Cross models.

The power-law fluid is particularly difficult to simulate at low power-law indices

(high shear thinning) where it is helpful to employ the DD technique to alleviate

the difficulty.

3.4.1 Circular Couette flow Problem

In this section, the circular Couette flow problem is considered where the fluid is

confined between two infinitely long and concentric cylinders, the outer cylinder

is fixed and the inner cylinder rotates at a constant angular speed (Fig. 3.2a).

Let R = Ro

Ri
, To = mΩnR2

i = ηoΩR
2
i , where Ro is the radius of the outer

cylinder; Ri is the radius of the inner cylinder; Ω is the angular speed of the

inner cylinder; To is the torque exerted on the outer cylinder. With regard to

the non-dimensionalization scheme described in §3.3.2, U = ΩRi, a = Ri.

Power-law model

The analytical solutions for the tangential velocity and the torque in dimen-

sionless form are given by (1 ≤ r ≤ R)

v(r) =
1

R2/n − 1

(

R2/n − r2/n

r(2−n)/n

)

, (3.41)

T = 2(n+1)πR2

(

1

n (R2/n − 1)

)n

. (3.42)

Numerical results are obtained for the following specific parameters: R = 2, the

power-law index n is in the range of 0.2 to 0.7 and W = 1 (W is defined by

§3.3.2).
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Table 3.1: BEM-MLPN for circular Couette flow of power law fluids: maximum
relative errors of the velocity field (single domain) in comparison with analytical
results for different power law indices. Nb: number of boundary points, Ni:
number of internal points, er: maximum relative error of the velocity field, ni:
number of iterations, CM1: convergence measure.

n Nb Ni ni CM1 er%
0.7 72 144 16 10−4 0.97
0.6 72 144 19 10−4 1.13
0.5 84 168 43 10−4 1.65
0.4 84 168 61 10−4 2.42

Results for the single domain case

This case is used to illustrate the parallelization of the computation related to

the NN approximation of individual variables (velocity components and stress

components). In other words, each scalar component is handled by a ‘slave

computing unit’. For n = 0.7 and n = 0.6, the number of boundary points and

internal points is 72 and 144 respectively. For n = 0.5 and n = 0.4, the number

of boundary points and internal points is 84 and 168 respectively. Table 3.1

shows the maximum of the errors of the velocity field with the values of power-

law index n in the range of 0.7 to 0.4.

It can be seen from Table 3.1 that the solution accuracy deteriorates with de-

creasing power-law index n. This is expected as stronger non-linearity is asso-

ciated with lower power-law indices n. High accuracy can be maintained in this

case with “mesh refinement”, i.e. with an increase in data density. However,

increasing the data density adversely affects the convergence rate due to the

optimization nature of MLPN training. Furthermore, for n < 0.4 convergence

is not achieved. To overcome this problem the DD technique can be used as

shown in the next section.

Results for the 2-subdomain case
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Figure 3.3: Circular Couette flow of power-law fluid: comparison of the present
BEM-RBFN and BEM-MLPN results with the exact (analytical) solution where
the tangential velocity profiles correspond to several values of the power-law
index n.

The primary objective of DD here is to overcome the lack of convergence at

low power-law indices (high non-linearity). As a beneficial consequence the DD

process lends itself to coarse-grain parallelization. To verify the working of the

DD scheme, the cases of n = 0.7, 0.5 and 0.4 are also analyzed and the results

are compared with those obtained using a single domain. According to the

AVGDD (adaptive velocity gradient domain decomposition) scheme (Tran-Canh

et al., 2000a,2002a), subregioning depends upon the variation of the velocity

field. The non-linear component of the stress tensor (3.6) contains a velocity-

gradient-dependent viscosity which is highly non-linear. This non-linear stress

component contributes to the forcing term in the BIE formulation. By ensuring

that the velocity gradient is similar in a domain of interest, the non-linear

stress component remains relatively uniform in the domain and hence a more

accurate NN approximation can be achieved for the same level of discretisation,

which in turn enhances the convergence ability of the Picard-type iterative

procedure used here. In the present circular Couette flow problem it is found

that the velocity gradient is higher near the inner cylinder (Fig. 3.3). By
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Table 3.2: BEM-MLPN for circular Couette flow of power-law fluids: maximum
relative error of velocity field (two subdomains) in comparison with analytical
results for different power law indices n. rIi = Ri = 1.0: internal radius of
subdomain I, rIIo = Ro = 2.0: external radius of subdomain II, rIo : external
radius of subdomain I, rIIi : internal radius of subdomain II; Nb: number of
boundary points, Ni: number of internal points, er: maximum relative error of
velocity in comparison with analytical results, er1: maximum difference between
single domain and two-domain results, n1i : number of iterations for CM1, n2i :
number of iterations for CM2 where CM1 is the convergence measure for each
subdomain and CM2 is convergence measure on the artificial boundary.

n Subdomain I Subdomain II
rIo Nb Ni n1

i CM1 rIIi Nb Ni n1
i CM1 CM2 n2

i er1% er%
0.7 1.5 72 72 11 10−4 1.5 72 72 6 10−4 1.13e− 2 6 1.18 1.75
0.5 1.5 72 72 24 10−4 1.5 72 72 10 10−4 1.24e− 2 9 1.54 2.29
0.4 1.5 72 72 39 10−4 1.5 72 72 14 10−4 1.37e− 2 11 1.87 2.73

choosing only two subdivisions each of which is a concentric annulus (Fig. 3.2b),

it is possible to ensure that magnitudes of the velocity gradients are similar

within individual subdomains. The inner annulus has radii of 1 and 1.5 and

the outer 1.5 and 2. The data density for each subdomain as well as the results

of numerical computations are reported in Table 3.2. As described earlier in

section 3.3.1, the mechanism to ensure velocity and traction compatibility at the

artificial interfaces is adopted from Davies and Mushtaq (1996) and the degree

of compatibility is measured by the convergence measure CM2 (Eq. (3.17)).

When n = 0.3, 0.25 and 0.2, the variation of the gradient of the velocity field

is very strong across the domain. In order to achieve the stated goal that the

velocity gradients should be of similar magnitude in each subdomain, the radius

of the interface between the two subdomains has to decrease with decreasing

n. Of course this process has a limit and as n becomes too small more than

two subdomains might be needed. Table 3.3 reports the results corresponding

to n ≤ 0.35.

From Tables 3.1-3.3, it can be seen that for two sub-domains, the accuracy of

solutions is not as good as the single-domain results. However, at lower power-
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Table 3.3: BEM-MQ-RBFN for circular Couette flow of power law fluids: max-
imum relative error of velocity field (two subdomains) in comparison with ana-
lytical results for different power law indices n. rIi = Ri = 1.0: internal radius
of subdomain I, rIIo = Ro = 2.0: external radius of subdomain II, rIo : exter-
nal radius of subdomain I, rIIi : internal radius of subdomain II; Nb: number
of boundary points, Ni: number of internal points, er: maximum relative er-
ror of velocity in comparison with analytical results, n1

i : number of iterations
for CM1, n2i : number of iterations for CM2 where CM1 is the convergence
measure for each subdomain and CM2 is convergence measure on the artificial
boundary.

n Subdomain I Subdomain II
ro Nb Ni n1

i CM1 ri Nb Ni n1
i CM1 CM2 n2

i er%
0.35 1.3 72 72 21 10−4 1.3 84 84 24 10−4 1.75e− 2 14 3.11
0.30 1.3 72 72 32 10−4 1.3 84 84 31 10−4 2.11e− 2 17 3.54
0.25 1.2 72 72 42 10−4 1.2 96 96 47 10−4 2.76e− 2 21 4.15
0.20 1.2 72 72 57 10−4 1.2 96 96 59 10−4 3.47e− 2 26 5.18

law indices (e.g. n ≤ 0.4), the results show that the accuracy is nearly as good

as those obtained with single domain for n = 0.4 and, more importantly, con-

vergence is achieved with two sub-domains for n < 0.4 which is not the case

with a single domain. This might be explained by the better NN approximation

owing to the AVGDD scheme. Furthermore, it is found that the number of iter-

ations associated with each sub-domain decreases and hence a further speed-up

is achieved with parallel computation. Apart from overcoming the loss of con-

vergence at lower values of the power-law index, the computation throughput

with parallel DD is also improved significantly in comparison with the cases of

single domain. For example, with n = 0.7, for the 2-sub-domain case, the paral-

lel DD technique makes throughput increase by about 29.5%. In this section,

a comparison between the BEM-MLPN, BEM-MQ-RBFN, BEM-TPS-RBFN1

and BEM-TPS-RBFN2 approaches is also carried out for the case of power-

law indices n = 0.7, n = 0.4 (single domain) and n = 0.2 (two sub-domains).

Table 3.4 shows that at the high power-law index, the MLPN method gives

slightly better results in comparison with those by the MQ-RBFN and TPS-

RBFN1 methods. However, the convergence rate of the MLPN method is poor

in general and as the power-law index decreases the accuracy and convergence
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Table 3.4: BEM-MLPN, BEM-MQ-RBFN, BEM-TPS-RBFN1 and BEM-TPS-
RBFN2 methods for circular Couette flow of power law fluids: the comparison
of accuracy for power-law indices n = 0.7 and n = 0.4 (single domain) and
n = 0.2 (two sub-domains). The number of boundary points, the number of
internal points, the convergence measure CM1 and other parameters are given
in Table 3.1 and Table 3.3. er: maximum relative error of the velocity field
in comparison with analytical results; ni: number of iterations; CM2 is the
convergence measure on the artificial boundary; n1

i : number of iterations for
CM1; n2i : number of iterations for CM2.

Circular Single domain Two subdomains
Couette n = 0.7 n = 0.4 n = 0.2
Flow er% ni er% ni CM2 er% n1i n2i ni

BEM-MLPN 0.97 16 2.42 61 ... ... ... ... ...
BEM-MQ-RBFN 1.16 11 2.57 45 3.34e− 2 5.18 57 59 26
BEM-TPS-RBFN1 1.22 11 2.71 42 2.71e− 2 5.97 56 57 26
BEM-TPS-RBFN2 0.91 11 2.27 42 1.86e− 2 4.83 56 57 26

deteriorate. The present results show that the performance of the MQ-RBFN

method is slightly better than that of the TPS-RBFN1 method. However,

when the value of m is increased to 2 in the TPS-RBF (3.38), resulting in the

TPS-RBFN2 method, the accuracy of the solution and the smoothness on the

artificial boundary (in the case of domain decomposition) are improved slightly

on the MQ-RBFN method (Table 3.4). Since the accuracy of the approximation

can be very dependent on the width of the MQ-RBF, a thorough comparison

between the MQ-RBFN and the TPS-RBFN approaches is beyond the scope of

the present work.

Carreau-Yasuda and Cross models

A number real fluids were described by these models. For example, the Carreau-

Yasuda model parameters for three polymer solutions and three polymer melts

are taken from Bird et al. (1987a) and presented in Table 3.5. For these models

it is found that convergence is achieved with a single domain where 72 boundary
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points and 144 internal points are used in the case of polystyrene in Aroclor,

polyacrylamide in water and glycerin, and 84 boundary points and 168 internal

points in the other cases. The tolerance for the CM1 is set at 5.e − 5. Table

3.6 shows that the convergence rate depends on both n and λ where it takes

497, 20 and 98 iterations respectively for the 3 cases of polymer solutions and

12, 28, 48 iterations in the case of the 3 polymer melts.
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Table 3.5: Carreau-Yasuda model parameters for some polymer solutions and
melts, (from Bird et al., 1987a, pp171-175).

Materials ηo(Pa.s) η∞(Pa.s) λ(s) n a
Polymer solution

polyisobutylene in Primol 355 9.23e+2 1.50e-1 191 0.358 2
polystyrene in Aroclor 1.01e+2 5.90e-2 0.84 0.364 2

polyacrylamide in water and glycerin 1.06e+1 1.00e-2 8.04 0.364 2
Polymer Melts

Polystyrene at 453 K 1.48e+4 ≈0 1.04 0.938 2
High-density polyethylene 443 K 8.92e+3 ≈0 1.58 0.496 2

Phenoxy-A at 485 K 1.24e+4 ≈0 7.44 0.728 2

Table 3.6: BEM-MLPN for circular Couette flow of some Carreau-Yasuda flu-
ids: the number of iterations required to reach a convergence measure CM1 of
O(10−4). Nb: number of boundary points, Ni: number of internal points, ni:
number of iterations. Model parameters are given in Table 3.5.

Materials Nb Ni ni CM1
Polymer solutions

polyisobutylene in Primol 355 84 168 497 5.e− 5
polystyrene in Aroclor 72 144 20 5.e− 5

polyacrylamide in water and glycerin 72 144 98 5.e− 5
Polymer melts

Polystyrene at 453 K 72 144 12 5.e− 5
High-density polyethylene 443 K 72 144 28 5.e− 5

Phenoxy-A at 485 K 72 144 48 5.e− 5
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Table 3.7: Cross model parameters ηo, η∞, K(s), n for several materials (from
Macosko, 1994, p86).

Materials ηo(Pa.s) η∞(Pa.s) K(s) n
ABS (200oC) 45000 - 2.5 0.400

Blood 0.125 0.005 52.5 0.285
Yogurt 10 0.004 0.26 0.100

Table 3.8: BEM-MLPN for circular Couette flow of some Cross fluids: the
number of iterations required to reach a convergence measure CM1 of O(10−4).
Nb: number of boundary points, Ni: number of internal points, ni: number of
iterations. Model parameters are given in Table 3.7.

Materials Nb Ni ni CM1
ABS (200oC) 72 144 48 5.e− 5

Blood 72 144 522 5.e− 5
Yogurt 72 144 23 5.e− 5

The Cross model can be used to describe several materials whose parameters

are given in Table 3.7 which is taken from Macosko (1994). Table 3.8 reports

the results of the analysis of these materials.

The radial profile of the velocity field corresponding to both models is similar

to the power-law profile in terms of their general shape (Fig. 3.3) and therefore

is not specifically shown here.
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Figure 3.4: Planar Poiseuille flow problem: (a) single domain; (b) two sub-
domains. The velocity profile is assumed to be parabolic and the walls to be
non-slip. Training point distribution is only schematic.

3.4.2 Planar Poiseuille problem

The planar Poiseuille flow problem is described in Fig 3.4. Let 2a be the gap

between the two parallel plates and a be the length of the domain under consid-

eration. A typical shear rate is U/a where U is the centreline fluid speed, η∗
U
a
is

a typical stress mentioned in §3.3.2. The inlet and outlet boundary conditions

are assumed to be unidirectional velocity with a parabolic profile. The solution

shows that the parabolic profile is reproduced throughout the domain as ex-

pected. The present method is further verified by solving the problem with the

constant pressure drop boundary condition instead of the velocity one as shown

in Fig. 3.5 where the pressure drop is ∆p = 1. With all other parameters the

same, the velocity profile is obtained as shown in Fig. 3.6 for the power-law

model with a single domain. It can be seen in Fig. 3.6 that the present numer-
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Figure 3.5: Planar Poiseuille flow problem: The pressure drop ∆p = (P−Q) > 0
and the no-slip wall boundary conditions. Training point distribution is only
schematic.

ical results are accurate in comparison with the exact solution which is given

by

vx =
n

n+ 1

(

∆p

m

)1/n
(

a
n+1

n − |y|n+1

n

)

, (3.43)

where the coordinates (x, y) are defined in Fig. 3.5.

Power-law model

Similar to the case of Couette flow of power-law fluid, it is found that the

convergence of the procedure is difficult to achieve at lower power-law indices

with a single domain. However, with DD convergence can be easily achieved.

Results for the single domain case (for n = 0.7, 0.6, 0.5)

The number of boundary points and internal points are 52 and 135 respectively

distributed on an 11×17 grid for n = 0.7, n = 0.6. For n = 0.5, the correspond-

ing points are 60 and 171 on an 11× 21 grid. Table 3.9 illustrates the influence

of the power-law index n on the convergence rate of the present BEM-MLPN

method.
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Figure 3.6: Planar Poiseuille flow of power-law fluid with pressure drop bound-
ary conditions: comparison of the present BEM-RBFN results with the exact
(analytical) solution where the velocity profiles correspond to several values of
the power-law index n.

Results for the 2-subdomain case (for n ≤ 0.4)

The analysis domain is divided into two subdomains symmetrical about the

centreline. The number of data points per each subdomain is shown in Table

3.10 where the convergence characteristics are associated with the BEM-MQ-

RBFN approach. The corresponding results associated with the BEM-MLPN

method are not shown. However, it is noted that the training of the MLPNs

are less deterministic due to the nature of the BP algorithm. Specifically, al-

Table 3.9: BEM-MLPN for planar Poiseuille flow of power law fluids (single
domain): the number of iterations required to reach a convergence measure
CM1 of O(10−4) for different power law indices. Nb: number of boundary
points, Ni: number of internal points, ni: number of iterations.

n Nb Ni ni CM1
0.7 52 135 37 5.e− 5
0.6 52 135 41 5.e− 5
0.5 60 171 98 5.e− 5
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Table 3.10: BEM-MQ-RBFN for planar Poiseuille flow of power law fluids (two
subdomains): the number of iterations required to reach a convergence mea-
sure CM1 of O(10−4) for different power law indices. Nb: number of boundary
points, Ni: number of internal points, n1i : number of iterations for CM1, n2i :
number of iterations for CM2 (CM1 is the convergence measure for each sub-
domain and CM2 the convergence measure on the artificial boundary). The
width of the channel is l1 + l2.

n Subdomain I Subdomain II
l1 Nb Ni n1i CM1 l2 Nb Ni n1i CM1 CM2 n2i

0.4 1.0 44 99 38 5.e− 5 1.0 44 99 38 5.e− 5 10−3 19
0.3 1.0 48 117 81 5.e− 5 1.0 48 117 81 5.e− 5 10−3 25
0.25 1.0 52 135 97 5.e− 5 1.0 52 135 97 5.e− 5 10−3 27

Table 3.11: BEM-MQ-RBFN for planar Poiseuille flow of some Carreau-Yasuda
fluids (single domain): the number of iterations required to reach a convergence
measure CM1 of O(10−4). Nb: number of boundary points, Ni: number of
internal points, ni: number of iterations. Model parameters are given in Table
3.5.

Materials Nb Ni ni CM1
Polymer melts

Polystyrene at 453 K 60 171 17 5.e− 5
High-density polyethylene 443 K 60 171 31 5.e− 5

Phenoxy-A at 485 K 60 171 55 5.e− 5

though the two subdomains are identical owing to symmetry, the training of the

corresponding MLPNs requires very different number of iterations for the same

convergence criterion in contrast to the case of RBFNs where both subdomains

require the same numbers of iterations.

Carreau-Yasuda and Cross models

As in the case of the circular Couette geometry, the planar Poiseuille flow is

successfully simulated with a single domain for both the Carreau-Yasuda and

the Cross models. The number of data points is the same in both cases and
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Table 3.12: BEM-MQ-RBFN for planar Poiseuille flow of some Cross fluids
(single domain): the number of iterations required to reach a convergence mea-
sure CM1 of O(10−4). Nb: number of boundary points, Ni: number of internal
points, ni: number of iterations. Model parameters are given in Table 3.7.

Materials Nb Ni ni CM1
ABS (200oC) 60 171 54 5.e− 5

Blood 60 171 492 5.e− 5
Yogurt 60 171 21 5.e− 5

distributed on a 21× 11 grid. The results for three polymer melts described by

the Carreau-Yasuda model (Table 3.5) are shown in Table 3.11. On the other

hand, the Cross model is used to describe three common materials (Table 3.7)

which are simulated with results shown in Table 3.12.

3.4.3 ‘Mesh convergence’

The results reported in the preceeding sections correspond to the highest data

densities. The confidence in the results is established with a series of increasing

densities and ‘mesh convergence’ is then measured by the following criterion

CR =

√

∑

ITP

∑2
i=1(u

n
i − un−1

i )2
∑

ITP

∑2
i=1(u

n
i )

2
, (3.44)

where ITP is the number of internal test points, un−1
i is the ith component

of the velocity at an internal test point belonging to the coarser grid and un
i

is the corresponding quantity associated with the finer grid. For example, the

circular Couette flow of polyisobutylene in Primol 355 (Table 3.5) described

by the Carreau-Yasuda model is analyzed with the following seven different

grid densities (number of boundary points, number of internal point)= (36,72),

(44,88), (52,104), (60,120), (68,136), (72,144) and (84,168) with a set of 120

internal test points and Table 3.13 reports the trend of CR with increasing grid

density. The process is deemed to have achieved ‘mesh convergence’ when CR

is O(10−3).
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Table 3.13: BEM-MLPN simulation of the circular Couette flow of polyisobuty-
lene in Primol 355 (described by the Carreau-Yasuda model): Trend of the ‘mesh
convergence’ measure, CR defined by (3.44) with increasing number of training
points. Nb: number of boundary points, Ni: number of internal points, TP :
number of training points. The number of internal test points is 120.

Nb Ni TP CR
36 72 108 1.0000
44 88 132 0.3113
52 104 156 0.1076
60 120 180 0.0350
68 136 204 0.0187
72 144 216 0.0105
84 168 252 0.0094

3.5 Concluding remarks

A boundary-element-only method is formulated and implemented for the flow

analysis of GNFs. The BEM-NN approach results from the use of NNs for the

global approximation of field variables and a particular solution technique to

estimate the volume integral. Volume discretisation is avoided and new lin-

ear boundary element techniques are developed where a general treatment of

the corner problem and exact calculations of singular integrals are achieved.

The present approach is a first step towards element-free approaches, developed

in subsequent chapters, for the simulation of non-Newtonian fluid flows. The

method is able to achieve convergence for the difficult situation of the flow of

power-law fluids at small power-law indices (as low as 0.2). Although the Cou-

ette and planar Poiseuille flow are geometrically simple, the material is highly

non-linear and convergence and accuracy achieved here were not achieved else-

where previously. Thus, in Table 3.1 (Couette flow), relative errors are given as

0.97%, 1.13%, 1.65%, and 2.42% corresponding to power law indices 0.7, 0.6,

0.5, and 0.4, respectively, which are relatively small in comparison with others

(e.g. Florez et al., 2000). Similarly, the maximum error in the case of the Planar

Poiseuille flow (Figure 3.6) is 2.87% corresponding to the worst case of n=0.4.
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Furthermore, the present method achieved convergence for indices as low as

0.2 where no other methods could achieve before. The present combination of

BEM and MLPN has demonstrably achieved better results than those obtained

by BEM alone and so the error trend was due to increasing non-linearity (de-

creasing power law index), not by BEM or MLPN. The accuracy depends on

the number of collocation points N as already presented in section 3.4.3, Table

3.13, where convergence quality was shown to increase with increasing N. In

the next chapters, the coupling of the RBFN-based element-free method and

the Brownian dynamics simulation will be described for dilute polymer solu-

tions. Specifically, chapters 4 and 5 are devoted to the Lagrangian approach

and chapter 6 and 7 report the development of the Eulerian method.



Chapter 4

Calculation of Viscoelastic Fluid

Flow Using Neural Networks

and Stochastic Simulation

(CVFNNSS)

This chapter reports a new technique, from the Lagrangian point of view, for

numerical calculation of viscoelastic flows based on the combination of a RBFN-

based mesh-free method and Brownian dynamics simulation or stochastic sim-

ulation technique (Tran-Canh and Tran-Cong, 2002b). This method uses an

‘universal approximator’ based on neural network methodology in combination

with the kinetic theory of polymeric liquid in which the stress is computed from

the molecular configuration rather than from closed form constitutive equa-

tions. Thus the present method obviates not only the need for a rheological

constitutive equation to describe the fluid (as in the original CONNFESSIT

idea) but also any kind of finite element-type discretisation of the domain and

its boundary for numerical solution of the governing PDEs.
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4.1 Introduction

The computation of viscoelastic fluid flow has undergone strong development for

the last three decades or so. Most common methods of numerical computation

and analysis are macroscopic in nature where the system of mass and momen-

tum conservation equations are supplemented by an appropriate closed form

constitutive equation. The disadvantage appears for those models that cannot

be cast into a closed form. A technique of hybrid simulation using Brownian dy-

namics, namely the CONNFFESSIT proposed by Laso and Öttinger (1993), has

been introduced to bypass the need of a closed form constitutive equation. It is

a combination of the traditional element method and the SST. The main idea

of the CONNFFESSIT approach is that the polymer contribution to the stress

is calculated from the configuration of a large ensemble of microscopic entities,

which acts as a stress calculator instead of a closed form constitutive equation

(Öttinger, 1996; Laso and Öttinger, 1993; Feigl et al., 1995; Laso et al., 1997,

1999). This approach is an attempt to emulate the situation in real liquids,

where the full information about the stress is contained in the configuration of

molecules which results from the deformation history. However, the FEM in

CONNFFESSIT requires the discretisation of the domain under consideration

into a number of finite elements (FE) which are defined by certain fixed topology

in terms of a number of nodes. Breaking the original domain of analysis into a

set of finite elements is not easy, specially for problems with moving boundaries,

complex boundary or free surface. In addition to the popular methods for the

numerical solution of PDEs such as FEM, BEM and FVM, more recent NN-

based methods such as RBFNs (Kansa, 1990b; Zerroukat et al., 1998; Mai-Duy

and Tran-Cong, 2001), MPLNs (He et al, 2000), approximate identity networks

(AINs) (Conti and Turchetti, 1994) prove to be promising. Such a NN-based

method is developed in conjunction with the Brownian dynamics simulation

from the Lagrangian point of views in the present chapter. Thus in contrast

to FE-type approximations, the presently proposed Computation of Viscoelas-
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tic Flow by NN and SS method (CVFNNSS) is based on a direct combination

of the stochastic simulation of molecular model of polymers with RBFN-based

element-free techniques. In the present CVFNNSS method, the polymer stress

is computed by a Brownian simulation technique as a component of the macro-

molecular approach (Fixman, 1978a,b; Bird et al., 1987; Öttinger, 1996). The

polymer-contributed stress is then used as position-dependent known terms in

solving the continuity and momentum equations in a macroscopic approach.

The present method does not require any fixed connectivity to satisfy a prede-

termined topology, i.e. a mesh in which the elements are constrained by some

geometrical regularity conditions (e.g. a positive volume). The present discrete

model is completely represented by a set of unstructured discrete collocation

nodes in the analysis domain and on its boundary in both microscopic and

macroscopic part of the CVFNNSS procedure and therefore is referred to as

a mesh-free numerical technique according to commonly cited concepts (Onate

et al., 1996; Belytschko et al., 1996) and mentioned in §1.4.1. This chapter is or-
ganized as follows. In §4.2, §4.3, §4.4, the basic ideas of Lagrangian CVFNNSS

are presented in which the governing equations and the stochastic simulation

technique for computing the stress are described. In §4.5, the NN-based numeri-

cal method for approximation of a function and its derivatives is reviewed briefly

and the RBFN method for solving the conservation equations is described. A

treatment of the time dependent ordinary differential equation is a major topic

of this chapter. §4.6 presents the algorithm of the CVFNNSS procedure, high-

lighting the macroscopic-microscopic interfaces of the method. The numerical

examples are then discussed in §4.7 with a brief conclusion in §4.8.
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4.2 Governing Equations

Consider the transient isothermal flow of an incompressible fluid with density

ρ, the system of momentum and mass conservation equations is given by

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+∇ · τ , (4.1)

∇ · u = 0, (4.2)

where p is the pressure arisen from the incompressibility constraint; u denotes

velocity field; τ is the extra stress. As mentioned in the previous chapters, the

extra stress is then further decomposed as

τ = 2ηND+ τ
p, (4.3)

where 2ηND is the Newtonian solvent contribution; ηN is the solvent viscosity;

D is the rate of strain tensor; τ p is the polymer-contributed stress. Using Eq

(4.3), Eq (4.1) can be rewritten as follows

ρ
∂u

∂t
+ ρ(u ·∇)u = −∇p+ ∇ · (2ηsD+ τ

p). (4.4)

In the traditional macroscopic approach the sytem is usually closed by the speci-

fication of a closed form constitutive equation for the polymer-contributed stress

τ
p. In contrast, τ p is here calculated numerically via a microscopic technique.

The overall macro-microscopic procedure is described in the next section.

4.3 The micro-macroscopic approach

The micro-macroscopic approach employed in this thesis uses Brownian dynam-

ics simulation (or stochastic simulation technique) (see §1.3, chapter 1) and the

general procedure for this approach is as follows. At each time step the polymer-

contributed stress is assumed known from the previous iteration and the system

of mass and momentum conservation equations is solved by a macroscopic nu-

merical method. The velocity field thus obtained is then used in a stochastic
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simulation technique to calculate the polymer-contributed stress. The iteration

is continued until convergence is achieved before advancing to the next time

level.

The microscopic method employs the Brownian dynamics simulation to deter-

mine the stress via kinetic modelling which is described in the next section,

followed by the description of a mesh-free collocation method for the solution of

the continuity and momentum equations. All function approximations are based

on RBFNs and the overall procedure is free of finite-element-type discretisation

and thus referred to as mesh-free.

In the next section, the stochastic simulation technique is presented for the

computation of the polymer-contributed stress τ p.

4.4 Stochastic simulation technique in polymeric

kinetic theory

As mentioned in chapter 1, in polymer kinetic theory, the determination of

polymer stresses is carried out through two steps. The first step is to derive the

diffusion equation or Fokker-Planck equation for the configurational distribution

function ψ(Q, t) which is the probability density of the polymer configuration

Q occurring at time t. The second step is to develop an expression for the stress

tensor corresponding to the polymer configuration of which the distribution is

expressed by ψ(Q, t). The stochastic simulation is based on the relationship

between the diffusion equation and the stochastic differential equation (SDE).

In the present work, two nonlinear dumbbell models, the FENE and FENE-P

models, are used in the development of a mesh-free stochastic simulation tech-

nique. The FENE-P has a corresponding approximate closed form constitutive

equation (Bird et al., 1987b) while, the FENE model has not. These two dumb-
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Figure 4.1: Elastic dumb-
bell model: the connector
vector Q describes the con-
figuration of the model.

bell models are shown in Fig. 4.1 where the polymer configuration is described

by the connector vector Q(t). The dynamics of polymeric liquids can be rep-

resented by the diffusion equation for ψ(Q, t) which, in the absence of external

forces, is rewritten from (1.14) as follows

∂

∂t
ψ(Q, t) = − ∂

∂Q
· [A(Q, t)ψ(Q, t)] +

1

2

∂

∂Q
·
[

∂

∂Q
· {L(Q, t)ψ(Q, t)}

]

, (4.5)

whereA(Q, t) is a 3-component column vector; L(Q, t) is a positive semidefinite

3 × 3 matrix. Instead of solving Eq (4.5) directly, the polymer configuration

Q(t) is determined by using an equivalent SDE which is given by

dQ(t) = A(Q(t), t)dt+B(Q(t), t) · dW(t), (4.6)

where W(t) is a 3-component column vector which is a Wiener process with

mean 〈Wi(t)〉 = 0 and covariance 〈Wi(t)Wj(t
′)〉 = δij min(t, t′); B(Q, t) is a 3×3

matrix and L(Q, t) = B(Q, t)BT (Q, t). Stochastic theory shows that in general,

the tensor B is existent but not unique (Öttinger, 1996). There are several

schemes to evaluate the tensor B, among them is the Cholesky decomposition

which is generally employed. In the present work, B is specifically given in closed

form for each of the FENE and FENE-P models as shown in later sections. The

theory also shows that although the trajectoriesQ(t) obtained from the SDE are

different for various choices of the tensor B, all transition probabilities ψ(Q, t)

and then averages of Q(t) are identical (more details can be found in Öttinger,

1996, for example).
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In simulating the flow of polymeric fluids, for a given kinetic model of polymer

molecules, the solution of Eq (4.6) at each time ti (the time discretization)

is obtained by the simulation of the configuration of the model, which starts

from a given probability distribution function of the configuration at to. The

drift and diffusion terms A and B respectively of Eq (4.6) depend on the given

kinetic models. The numerical integration of the SDE (4.6) can be carried out

using different schemes (see §2.3.2, chapter 2). In this chapter, the explicit

Euler integration scheme is employed. The SDEs and their numerical solution

for the FENE and FENE-P models are presented in the next section.

4.4.1 FENE dumbbell model

The configuration of a dumbbell is completely described by the length and orien-

tation of the vectorQ connecting the two beads (Fig. 4.1). In a Hookean dumb-

bell model the linear spring force is realistic only for small deformation from

the static equilibrium configuration and the extent of the dumbbell’s stretch is

not limited. This unphysical behaviour is removed in the FENE model which

plays an important role in the description of non-linear rheological phenomena.

Neglecting the external forces, the diffusion equation (4.5) corresponding to the

FENE model can be expressed as (Öttinger, 1996; Bird et al., 1987b)

∂

∂t
ψ(Q, t) =

2

ζ

∂

∂Q
· Fψ − ∂

∂Q
· [κ ·Q]ψ +

2kBT

ζ

∂

∂Q
· ∂

∂Q
ψ, (4.7)

where κ is the velocity gradient which can be a function of time, but not position

(i.e. locally homogenous flows at the dumbbell (Bird et al. 1987b, §13.2)). The
velocity gradient tensor is calculated analytically from the velocity field which

is approximated by TPS-RBFNs (see §4.5 and step (d) of §4.6 for more details).

In the present work, the local homogeneity of the flow around each dumbbell can

naturally be assumed in an arbitrarily small volume around the dumbbell. The

spatially constant velocity gradient takes the value computed at the dumbbell

centre of mass position. The FENE spring force F is given by (Bird et al.,
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1987b; Herrchen and Öttinger, 1997)

F =
H

1−
(

Q

Qo

)2Q, (4.8)

where Qo is the maximum possible spring length. The SDE corresponding to

the FENE model is now given by

dQ(t) =






κ(t) ·Q(t)− 2H

ζ

Q(t)

1−
(

Q(t)
Qo

)2






dt+

√

4kBT

ζ
dW(t), (4.9)

where W(t) accounts for the random displacement of the beads due to thermal

motion; T is the absolute temperature and kB is Boltzmann constant.

Let Qi be an approximation of Q(t) at time ti, ∆ti = ti+1 − ti. The solution

from the explicit Euler integration scheme is written as follows

Q(i+1) = Qi +






κi ·Qi −

2H

ζ

Qi

1−
(

Qi

Qo

)2






∆ti +

√

4kBT

ζ
∆Wi. (4.10)

The dimensionless forms of equations (4.9) and (4.10) are written as follows (by

dividing by
√

kBT
H

)

dQ′(t) =

(

κ(t) ·Q′(t)− 1

2λH

Q′(t)

1− Q
′2

b

)

dt+

√

1

λH

dW(t), (4.11)

Q
′

(i+1) = Q
′

i +

(

κi ·Q
′

i −
1

2λH

Q
′

i

1− Q′2
i

b

)

∆ti +

√

∆ti
λH

Wi, (4.12)

where Q
′

i = Qi[H/(kBT )]
1/2 is the dimensionless connector vector at ti; λH =

ζ/(4H) is the relaxation time of dumbbells; b = HQ2
o

kBT
is the square of the max-

imum extension of the dimensionless connector vector Q′. Thus in the FENE

dumbell model, the connector vector cannot be stretched beyond a maximum

value of
√
b in the dimensionless sense (Laso and Öttinger, 1993). The compo-

nents of the random vector Wi are independent Gaussian variables with mean

zero and variance ∆t (Here the time step size is fixed ∆ti = ∆t). This model

has no corresponding closed form constitutive equation for the polymeric stress
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tensor and therefore it cannot be solved with the traditional macroscopic ap-

proaches.

Based on the polymer configuration Eq (4.12), the dimensionless form of the

polymer contributed stress tensor at the time ti can be determined as follows

(Öttinger, 1996; Bird et al., 1987b; Herrchen and Öttinger, 1997)

τ
′p
i = −ndkBT

(〈

Q′
iQ

′
i

1− Q′2
i

b

〉

− I

)

, (4.13)

where nd is number of dumbbells per unit volume of the solution.

4.4.2 FENE-Peterlin (FENE-P) dumbbell model

The FENE-P model is based on the FENE dumbbell model in which the term

Q2

Q2
o
in the denominator of the spring force shown in equation (4.8) is replaced by

its everage 〈Q2

Q2
o
〉. The spring force F is rewritten as follows (Bird et al., 1987b;

Herrchen and Öttinger, 1997; Keunings, 1996)

F =
H

1− 〈Q2

Q2
o
〉
Q. (4.14)

In this case, the dimensionless form of the polymer configuration and the con-

tribution to stress are given as follows, respectively,

Q′
(i+1) = Q′

i +



κi ·Q′
i −

1

2λH

Q′
i

1− 〈Q′2
i 〉
b



∆ti +

√

∆ti
λH

Wi, (4.15)

τ
′p
i = −ndkBT





〈Q′
iQ

′
i〉

1− 〈Q′2
i 〉
b

− I



 . (4.16)

The average which appears in the denominator of equations (4.15) and (4.16)

is calculated over the number of dumbbells in a small local domain where the

dumbbells are located. From equation (4.15), it can be seen that the length

of connector vectors Q′ could become greater than the maximum allowable

limit
√
b during the simulation (Laso and Öttinger, 1993; Keunings, 1996).
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In the present work, this unphysical situation is corrected by contracting the

unphysical value as follows ‖Q′‖ = ‖Q′‖ − mod (‖Q′‖,
√
b). The ‘reflecting’

method of Laso and Öttinger (1993) is a special case in which the length of Q′

satisfies:
√
b < ‖Q′‖ < 2

√
b.

At time step (i+1), the computed stress tensor τ p
i+1 is then employed to get the

solution of the velocity field u from the governing PDEs (4.1) and (4.2) which

are solved by an element-free RBFN-based numerical method presented in the

next section.

4.5 RBFNs for solving the continuity and mo-

mentum equations

Recently, the application of RBFNs in numerical solution of PDEs have brought

interesting results (Kansa, 1990; Zerroukat et al., 1998; Mai-Duy and Tran-

Cong, 2001). Comparing many available interpolation methods for scattered

data, Franke (1982) ranked Multiquadric RBF(MQ-RBF) of Hardy (1971) and

Thin Plate Splines RBF (TPS-RBF) of Duchon (1976) as superior in accuracy

and both of these RBFs are employed in this chapter.

4.5.1 Review of Radial basis function network interpo-

lation

As presented in the chapter 3, the present work uses the neural-like network

with one hidden layer of RBFs where the function f(x) is decomposed into m

fixed RBFs as

f(x) =
m
∑

j=1

wjhj(x), (4.17)
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where wj is the synaptic weight and hj is the chosen radial basis function

corresponding to the jth neuron). Usually m ≤ n (Haykin, 1999) where n is the

number of input data points (xi, ŷi); xi is the coordinate of the ith collocation

point (xi is a scalar in the case of 1-dimensional space) and ŷi is the desired

value of function f at the collocation point xi. The partial derivatives of f(x)

can be calculated analytically as follows

∂kf(x)

∂xi...∂xn

=
m
∑

j=1

wj ∂khj

∂xi...∂xn

, (4.18)

where the RBF’s hj employed here are either MQ-RBF or TPS-RBF. Together

with the first order derivatives (3.35) and (3.38) described in chapter 3, the

corresponding second order derivatives of MQ-RBF and TPS-RBF are given

respectively by

∂2hj

∂xi∂xl

=
χ(r)− (xi − cji )(xl − cjl )

√

(r2 + (bj)2)3
,

χ(r) = r2 + (bj)2 ∀i = l, (4.19)

χ(r) = 0 ∀i 6= l

∂2hj

∂xi∂xl

= 2r2(s−2)(xi − cji )(xl − cjl )[2s(s− 1) log(r) + (2s− 1)] + χ(r),

χ(r) = r2(s−1)(2s log(r) + 1) ∀i = l, (4.20)

χ(r) = 0 ∀i 6= l

where r = (x− cj) and r = ‖(x− cj)‖ is the Euclidean norm of r; {cj} is a set

of centers that can be chosen from among the data points; bj > 0 is the width

of the jth RBF.

Since TPS-RBF is C2s−1-continuous, the power index s must be appropriately

chosen for a given partial differential operator. In this chapter, the existence

of the second order derivatives of unknowns, which need to be approximated in

the governing PDE (4.4), requires m ≥ 2 to satisfy the continuity condition.

The training of the linear model (in wj) Eq (4.17), given a training set of n

collocation points {(xi, ŷi)}ni=1 can be found in §3.3.6, chapter 3. When the
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training is completed, the RBFN-based approximation of the function f(x) is

given by Eq (4.17) and its derivatives can be calculated analytically in terms of

the basis functions according to Eqs (3.35) and (4.18) in the case of MQ-RBFNs

or Eqs (3.38) and (4.20) in the case of TPS-RBFNs.

4.5.2 Time integration of the momentum conservation

equation by a RBFN-based least-squares method

This section describes the RBFN-based numerical method employed to solve

the continuity and the momentum equations in which the velocity field u is

considered as an unknown and the polymer contributed stress τ
p is already

computed by the SST as described in §4.3 and §4.4. Specifically, the start-up

planar Couette flow is used to explain the method.

• Governing equation, boundary conditions and initial conditions

For the start-up planar Couette flow problem, a Cartesian coordinate system is

chosen as shown in Fig. 4.2. For t < 0, the fluid is at rest. At t = 0, the lower

plate starts to move with a constant velocity V. No-slip condition is assumed

at the walls, following Mochimaru (1983). A velocity field that satisfies the

equation of continuity (4.2) is given by

u = ux = ux(y, t), uy = 0, uz = 0. (4.21)

In the present problem, it is not neccessary to calculate the pressure field (Laso

and Öttinger, 1993; Mochimaru, 1983) and the momentum equation (4.4) is

rewritten as follows

ρ
∂u

∂t
= ηs

∂2u

∂y2
− ∂τ pyx

∂y
y ∈ Ω, (4.22)

where y and t are the space and time coordinates; ρ is the density of the fluid;

ηs is the solvent viscosity; τ pyx(y, t) is the polymer-contributed stress. In the
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Figure 4.2: The start-up planar Couette flow problem for t ≥ 0: the bottom
plate moves with a constant velocity V , the top plate is fixed; no-slip boundary
conditions apply at the fluid-solid interfaces. The collocation point distribution
is only schematic.

more general situation the pressure would have to be calculated.

Equation (4.22) is subjected to Dirichlet boundary conditions as follows

u(0, t) = V ∀t > 0,

u(L, t) = 0 ∀t > 0, (4.23)

and the initial conditions

u(0, 0) = V, u(y, 0) = 0 ∀y 6= 0. (4.24)

The shear stress τ pyx, at a time step is considered as a known function of y

and calculated in the previous step by Brownian simulation technique already

described. Its derivative
∂τpyx
∂y

is approximated by a RBFN-based method as

presented in §4.5.1.

The PDE (4.22), subject to conditions (4.23) and Eq (4.24), can be solved by

a RBFN-based numerical method which is described in the next subsection.
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• Solution of differential equations by a RBFN-based least squares

method

Using the standard implicit approximation and rearranging the terms, equa-

tion (4.22) can be written as follows (Kansa, 1990b; Zerroukat et al., 1998;

Constantinides and Mostoufi, 1999)

un+1 + α
∂2un+1

∂y2
= un + β

∂2un

∂y2
+∆tKn+1/2, (4.25)

where ∆t is a uniform time step size; let tn = tn−1 + ∆t, un = u(y, tn); α =

−θ∆tηs
ρ
; β = (1− θ)∆t ηs

ρ
with 0 ≤ θ ≤ 1; K = 1

ρ
.
∂τpyx
∂y

; and (Constantinides and

Mostoufi, 1999)

Kn+1/2 =
1

2
(Kn+1 +Kn), (4.26)

where Kn = K(tn) and Kn+1 is approximated by the backward difference op-

eration as follows

Kn+1 = Kn + K̇n∆t = 2Kn −Kn−1, (4.27)

where K̇n is the gradient of K at tn. Using (4.26) and (4.27), (4.25) is rewritten

as

un+1 + α
∂2un+1

∂y2
= un + β

∂2un

∂y2
+

∆t

2
(3Kn −Kn−1). (4.28)

Thus equation (4.28) is the time discretization of the PDE (4.22) in which the

terms on the RHS are determined from the previous steps. The first and second

terms on the RHS are determined from a TPS-RBFN-based approximation of

the current velocity field. The third term is obtained from a TPS-RBFN-based

approximation of the data of the Brownian simulation process.

Specifically, to start the process, equation (4.28) is rewritten as follows

u1 + α
∂2u1

∂y2
= uo + β

∂2uo

∂y2
+

3Ko

2
∆t, (4.29)

where Ko = ς
∂τxyp
∂y
|t=o. It can be seen that the first term on the RHS of (4.29)

is the initial condition of the problem.
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In the present work, equation (4.28) with the boundary conditions (4.23) is

solved for u at the time step (n+1) using the linear least square principle. The

sum of squared errors corresponding to the first step is given by

SSE(1) =
∑

yi∈Ω

[(

u1(yi) + α
∂2

∂y2
u1(yi)

)

−
(

u0(yi) + β
∂2

∂y2
u0(yi)

+
3

2
∆tK0(yi)

)]2

+ [u0(0)− V ]2 + [u0(L)]2. (4.30)

where Ω is the domain under consideration. u1, τ pxy and their derivatives in

equation (4.30) are approximated by either MQ-RBFNs (Eq (4.17), Eq (4.18),

Eq (3.34) and Eq (4.19)) or TPS-RBFNs (Eq (4.17), Eq (4.18), Eq (3.37) and

Eq (4.20)). Note that in the case of 1-D problem under consideration, yi’s are

internal collocation points, yo = 0 and yl = L are boundary collocation points.

Generally, at time level (n+ 1), the sum of squared errors is

SSE(n+ 1) =
∑

yi∈Ω

[(

un+1(yi) + α
∂2

∂y2
un+1(yi)

)

−
(

un(yi) + β
∂2

∂y2
un(yi)

+
∆t

2
(3Kn(yi)−Kn−1(yi))

)]2

+ [un(0)− V ]2 + [un(L)]2. (4.31)

In the general case, the set of collocation points consists of the internal data

and boundary data points. The collocation points can be distributed randomly

or regularly. Here, the collocation points are arranged regularly and coincident

with RBF centers. This choice gives the best results according to Kansa (1990a),

Zerroukat et al. (1998) and Mai-Duy and Tran-Cong (2001). A system of linear

algebraic equations is obtained in terms of the unknown weights by minimizing

the SSE (4.30) and (4.31) and written as follows

Gw = HT ŷ, (4.32)

where G is the variance matrix and described in §3.3.6 and Appendices B.2

and B.3. Here, each row of the design matrix H contains the values of the

RBF corresponding to the terms u1(yi) + α∂2u1(yi)
∂y2 ; ŷ is a column vector whose

elements correspond to the terms u0(yi) + β ∂2u0

∂y2 (yi) +
3
2
∆tKo(yi) and w is the

vector of weights.
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In this chapter, the unknown (weights) of the system of linear algebraic equation

(4.32) is obtained by using the QR method (Dongarra et al., 1979; Bjock, 1996).

furthermore, for using MQ-RBFN based method, this method can produce the

solution the solution at larger values of k in Eq (3.36) than the normal equation

method arising from (4.32). The velocity field is thus described by the RBFNs

once the sets of weights are calculated.

The numerical solution of the velocity field u1 from equation (4.30) (in the least

square sense) is the starting point for the solution of (4.31) at a general time

step. The process continues until the steady state or a desired time is reached.

The time discretisation is based on the Crank-Nicolson implicit method with

θ = 0.5 which reduces the total volume of calculation and is convergent and

stable for a large range of ∆t
∆y2 (Smith, 1978; Carnahan et al., 1969).

4.6 Algorithm of the CVFNNSS procedure

The general macro-microscopic approach mentioned in §4.3 can now be de-

scribed in a more detailed algorithm as follows.

(1.) Start with a given initial velocity condition, generate a set of collocation

points and an initial velocity field is approximated by RBF networks;

(2.) Generate an ensemble of homogenously distributed dumbbells over the flow

domain. This initialisation of the polymer configuration field is based on

the known equilibrium distribution function which is a three dimensional

Gaussian distribution with zero mean and unit covariance (Öttinger, 1996;

Bird et al., 1987b);

(3.) Generate local volumes surrounding the collocation points. The local vol-

umes are chosen such that each dumbbell is accounted for in one of these

local volumes;
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(4.) After the current velocity field is approximated by RBF networks, deter-

mine the velocity gradient field by calculating directly the gradient of the

approximated velocity field for individual dumbbells;

(5.) Calculate the polymer configuration field (the connector vectors of the

dumbbell ensemble) using the method described in §4.4. The velocity of the

center of mass of each dumbbell is considered to be equal to the pointwise

local fluid velocity;

(6.) Determine the local stress tensor by taking the ensemble average of the

polymer configuration on each local volume and assign this stress to the

collocation point associated with this volume. The stress is then approxi-

mated globally on the whole domain by RBF networks which are the ulti-

mate description of the stress field. This global approximation procedure

smooths the piecewise continuous stress field with a globally continuous

function. This could be achieved by either TPS-RBFNs or MQ-RBFNs.

However, the former was proved to have superior smoothing charateristic

(Beatson and Light, 1997) and hence is used in the present work;

(7.) With the stress field just obtained, solve the set of conservation equations

for the new velocity field using a mesh-free RBFN method as described in

§4.5;

(8.) Terminate the simulation when either the desired time or steady state is

reached. The latter is determined by a convergence measure for either the

velocity field or the stress field between two consecutive iterations which is

defined for velocity field by

CM =

√

∑N
1

∑d
i=1(u

n
i − un−1

i )2
∑N

1

∑d
i=1(u

n
i )

2
< tol, (4.33)

where d is the number of dimension (1 in the present work); tol is a preset

tolerance; ui is the i component of the velocity at a node; N is the total

number of collocation points and n is the iteration number. Convergence

is also checked for the shear stress and the first normal stress difference;
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(9.) Return to step (4) for the next time level.

4.7 Numerical examples

The aim of this section is to report an initial assessment of the validity and effi-

ciency of the present meshless method and therefore the start-up planar Couette

flow is considered using two kinds of kinetic dumbbell models: the FENE and

FENE-P. This problem, already described in §4.5.2 and Fig. 4.2, was solved

using the FENE-P model by Mochimaru (1983), and FENE/FENE-P by Laso

and Öttinger (1993) while Fan (1985) provided a steady state solution using

the FENE model. In order to compare the present results with those from

Mochimaru (1983), Laso and Öttinger (1993), the same number of dumbbells

M = 50000 is homogeneously distributed into the domain and the same non-

dimensionlisation scheme as in Laso and Öttinger (1993) is used. However,

before studying these models, the reliability of the present method is also inves-

tigated using Hookean model (Oldroyd-B) since the corresponding velocity field

is known in closed form. The non-interacting dumbbells are neutrally suspended

in a Newtonian solvent of known viscosity ηs, density % and the resultant mate-

rial is characterized by the relaxation time λH . The dimensionless gap L = 1,

moving plate velocity V = 1 and zero-shear-rate viscosity ηo = ηs + ηp = 1.

A set of N collocation points is generated in the volume either randomly or

regularly. In order to compare with other methods, the same local volumes are

chosen, namely line segments of equal length L/(N−1) except the two volumes

near the boundaries which are L/2(N − 1). The convergence measure is set at

1.0e − 4 and the simulation is continued for t ≥ 0 until the flow reaches the

steady state.
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4.7.1 Start-up planar Couette flow with the Hookean

model

The Hookean (Oldroyd-B) model has a closed-form constitutive equation and

the start-up planar Couette flow of this fluid can be found by inverting the

Laplace transform as follows (Laso and Öttinger, 1993)

L {ux (y, t)} =
1

s

sinh
√

ρs(1+λ1s)
ηo(1+λ2s)

(1− y)

sinh
√

ρs(1−λ1s)
η(1−λ2s)

where ρ is density of the fluid, ηo = ηp + ηs, ηp = nkTλH ; λ1 is the relaxation

time (λ1 = λH), λ2 is the retardation time (λ2 = λHηs
ηo

); s(t) is time. In

this example, the parameters are given as follows: ρ = 1.2757; ηs = 0.0521;

α = ηs
ηo

= 0.0521,λH = 49.62. Typical global ensemble size of 400000 dumbbells

and time step of ∆t = 10e−2 are used. While analytical result of the velocity is

determined using 31 collocation points, the results of velocity, computed from

the present method, are obtained using two different numbers of collocation

points N = 31, and 26. Figure 4.3 depicts the evolution of the velocity profile

at four location y = 0.2, 0.4, 0.6 and 0.8 using the analytical method (solid

line), and the present method (dashed lines). This figure shows that results of

the present method are in good agreement with those of the analytical method

although the present method is a stochastic process in nature.

4.7.2 Start-up planar Couette flow with the FENEmodel

The FENE model has no closed-form constitutive equation and the problem

was solved recently by Laso and Öttinger (1993) using the CONNFFESSIT

approach. In this work, as in Laso and Öttinger (1993), the parameters are:

50000 dumbbells, 41 collocation points, ρ = 1.2757, λH = 49.62, b = 50,

ηs = 0.0521, ∆t = 10−2 (∆t = 10−4 in Laso and Öttinger (1993)). The numeri-

cal solution by the present method confirms the velocity overshoot of viscoelas-
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Figure 4.3: The start-up planar Couette flow problem using the Hookean dumb-
bell model: the parameters of the problem are number of dumbbellsM = 50000,
λH = 49.62, ηs = 0.521, and ∆t = 10−2. The time evolution of the velocity
at y = 0.2, y = 0.4, y = 0.6, y = 0.8. The solid line represents the analytical
solution, given in Laso and Öttinger (1993), using N = 31, and the dashed lines
represent the solution of the present CVFNNS method using different numbers
of collocation points N = 31 and N = 26.

tic fluids and is in complete agreement with the findings of Laso and Öttinger

(1993).

Figures 4.4 and 4.5 describe the evolution of the velocity profile, which shows

that velocity undershoot is insignificant in comparison with overshoot. Fig.

4.6 shows that typical time evolutions of the velocity at four locations y = 0.2,

y = 0.4, y = 0.6 and y = 0.8 do not differ significantly for the cases N = 41

and 31, indicating that N = 31 is an adequate number of collocation points.

Fig. 4.6 also shows that velocity overshoot occurs sooner in fluid layers nearer

to the moving wall. The convergence behavior of velocity field with respect

to the iteration number for the case N = 21, 26, 31 and N = 41, Fig. 4.7,

shows that the method is convergent even with a coarse density of collocation

points. Figures 4.8 and 4.9 show a typical evolution of the shear stress and

the first normal stress difference, respectively, at locations y = 0.8 for the cases
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Figure 4.4: The start-up planar Couette flow problem using the FENE dumbbell
model: the parameters of the problem are number of dumbbells M = 50000,
number of collocation points N = 41, λH = 49.62, b = 50, ηs = 0.0521 and
∆t = 10−2. The velocity profile with respect to location y at different times
shows velocity overshoot but hardly any oscillation.

of N = 41, 31, 26 and 21 collocation points. Although the figures may present

interesting time-dependent behaviour of the flow, a rheological explanation is

not within the primary numerical scope of this work. On the other hand, Fig.

4.10 and Fig. 4.11 depict the evolution of shear stress and the first normal

stress difference, respectively, at locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8

using N = 31. The stress response is sharper near the moving wall which

is consistent with the velocity overshoot behaviour. The time-step size ∆t

influences the accuracy of the microscopic stochastic integration. Generally,

the larger is the time-step size, the bigger is the mean error of solution of SDE’s

(4.9) or (4.11). However, when ∆t is very small the variance may be large due

to roundoff errors and can destroy the result (Kloeden et al., 1997, Kloeden and

Platen, 1997). Furthermore, a very good agreement with the results of other

methods is obtained by the present method with a coarse set of collocation

points. Fig. 4.12 shows the shear stress profiles τyx and the statistical error

bars with respect to location y for a sampling of 120 computations using two
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Figure 4.5: The start-up planar Couette flow problem using the FENE dumbbell
model: the parameters are same as in Fig. 4.4 except that the number of
collocation points is less (N = 31).

time-step sizes, ∆t = 10−2 and 10−3, and 26 collocation points, at the following

times t = 0.60, 3.89, 5.82, 15.00 and 35.00. The results show that the statistical

errors are small and stable at the steady state.
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Figure 4.6: The start-up planar Couette flow problem using the FENE dumbbell
model: the parameters are same as in Fig. 4.4. The influence of the number
of collocation points on the time evolution of the velocity at locations y = 0.2,
y = 0.4, y = 0.6 and y = 0.8.
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Figure 4.7: The start-up planar Couette flows using the FENE model in the
present CVFNNSS method: the convergence behavior (CM ) of the velocity field
with respect to the iteration number for N = 31, 26 and 21 collocation points
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Figure 4.8: The start-up planar Couette flows using the FENE model: the
parameters other are shown in Fig. 4.4. The evolution of shear stress at the
location y = 0.8 with respect to time for N = 41, 31, 26 and 21.
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Figure 4.9: The start-up planar Couette flows using the FENE model: the
parameters other are the same as shown in Fig. 4.4. The evolution of the first
normal stress difference at location y = 0.8 with respect to time for N = 41,
31, 26 and 21.
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Figure 4.10: The start-up planar Couette flows using the FENE model: the
parameters are the same as shown in Fig. 4.4 except that the number of col-
location points is 31. The evolution of shear stress at locations y = 0.2, y =
0.4, y = 0.6, y = 0.8 and y = 1.0 with respect to time.
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Figure 4.11: The start-up planar Couette flows using the FENE model in the
present CVFNNSS method: the parameters are the same as shown in Fig. 4.4
except that the number of collocation points is decreased from 41 to 31. The
evolution of the first normal stress differences at locations y = 0.2, y = 0.4, y =
0.6 and y = 0.8 with respect to time.
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Figure 4.12: The start-up planar Couette flows using the FENE model in the
present CVFNNSS method: the shear stress profiles τyx and the statistical error
bar with respect to location y at different times t = 0.60, 3.89, 5.82, 15.00 and
35.00: the parameters are the same as shown in Fig. 4.4 except that the number
of collocation points is equal to 26 for both time-step sizes (a) ∆t = 10−2 and
(b) ∆t = 10−3.
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4.7.3 Start-up planar Couette flow with the FENE-P

model

The start-up planar Couette flow problem using the FENE-P model was solved

by Mochimaru (1983) where the macroscopic numerical approach made use of

the constitutive equation derived from the kinetic theory of a dilute solution

of the FENE-P dumbbells in a Newtonian fluid (e.g. equation (13.5-56) of

Bird et al. (1987b)). The problem with the same material parameters was

also solved by Laso and Öttinger (1993) using the CONNFFESSIT method.

Similarly, the problem is solved by the present CVFNNSS method with the

same parameters as in Mochimaru (1983), Laso and Öttinger (1993), i.e. ρ =

1.2325, λH = 49.62, b = 50, ηs = 0.050332. However the time increment

∆t in the present method can be as high as 10−2 which appears to be an

improvement in comparison with Laso and Öttinger (1993) where ∆t = 1.0e−.
Figs. 4.13-4.15 show the evolution of velocity field which exhibits oscillatory

transient behaviour. Keeping the number and distribution of dumbbells the

same, the number of collocation points is varied from 21 to 41 (Figs. 4.15-4.17)

to confirm that the obtained results are accurate. The present method are in

excellent agreement with the theoretical results by Mochimaru (1983), Laso

and Öttinger (1993) and the experimental results of Chow and Fuller (1985)

confirm the velocity overshoots (Fig. 4.13-4.15) and stress propagation between

the plates (Fig. 4.18-4.19).
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Figure 4.13: The start-up planar Couette flow problem using the FENE-P
dumbbell model in the present CVFNNSS method: the parameters are number
of dumbbells M = 50000, number of collocation points N = 41, λH = 49.62,
b = 50, ηs = 0.0521 and ∆t = 10−2. The velocity profile with respect to location
y at different times shows the strong velocity overshoots and undershoots. In
this plot the time is non-dimensionalised with respect to the reference time to
as defined in Mochimaru (1983) for easy comparison with the latter results.
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Figure 4.14: The start-up planar Couette flow problem using the FENE-P
dumbbell model in the present CVFNNSS method: the parameters are the
same as shown in Fig. 4.13 except that the number of collocation points is
decreased from 41 to 31. The results here show no significant difference from
those of Fig. 4.13.
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Figure 4.15: The start-up planar Couette flow problem using FENE-P dumbbell
model in the present CVFNNSS method: the parameters other than N are
shown in Fig. 4.13. The evolution of the velocity field with respect to time at
locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8 for the cases of N = 41, 31, 26
and 21.
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Figure 4.16: The start-up planar Couette flows using the FENE-P model in the
present CVFNNSS method: the parameters other than N are shown in Fig.
4.13. The evolution the shear stress at the location y = 0.8 with respect to time
for the cases of N = 41, 31, 26 and 21.
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Figure 4.17: The start-up planar Couette flows using the FENE-P model in
the present CVFNNSS method: the parameters other than N are the same
as shown in Fig. 4.13. The evolution of the first normal stress difference at
location y = 0.8 with respect to time for the cases of N = 41, 31, 26 and 21.
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Figure 4.18: The start-up planar Couette flows using the FENE-P model in the
present CVFNNSS method: The parameters are the same as shown in Fig. 4.13
except that the number of collocation points is decreased from 41 to 31. The
evolution of the shear stresses at locations y = 0.2, y = 0.4, y = 0.6, y = 0.8 and
y = 1.0 with respect to time.
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Figure 4.19: The start-up planar Couette flows using the FENE-P model in the
present CVFNNSS method: the parameters are the same as shown in Fig. 4.13
except that the number of collocation points is decreased from 41 to 31. The
evolution of the first normal stress differences at locations y = 0.2, y = 0.4, y =
0.6, y = 0.8 and y = 1.0 with respect to time.

4.7.4 Comparison between the FENE and FENE-P mod-

els

The comparison between the FENE and FENE-P models in planar Couette

start-up flows is summarised in Figs. 4.20-4.22. Fig. 4.20 denotes the time

development of the velocity field at four locations y = 0.2 y = 0.4 y = 0.6

and y = 0.8 between the FENE and FENE-P models. It shows that there is

a big difference in dynamic responses of the two models, but the difference is

non-significant after the flow reaches the steady state. Fig.4.20 also shows that

the duration of the velocity overshoot is much longer for the FENE-P model and

the steady state seems to take much longer to be reached than for the FENE

model. The strong oscillatory behaviour of the velocity and stress fields due to

the linearisation of the FENE-P models is in excellent agreement with results

presented in Fig. 5 and 6 of Laso and Öttinger (1993).
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Figure 4.21 depicts the difference of the evolution of shear stresses between the

FENE and FENE-P models at the fixed plate with respect to time. It can be

seen that the FENE-P model produces a maximum of the shear stress about

twice the corresponding value for FENE, however the maximum value seems

to take longer to be reached for the FENE-P model than for the FENE model.

Furthermore, the asymtotic values of the stress are the same at the steady state

in agreement with Laso and Öttinger (1993) and Herrchen and Öttinger (1997)

and the steady state is reached in about the same time.

The comparison of the first normal stress difference between the FENE and

FENE-P models at the fixed plate is shown in Fig. 4.22 where the FENE-P

model shows a secondary peak at time 10. This physical peak obtained from

the present method is in agreement with results obtained from macroscopic and

mesoscopic methods (see Fig.6 and Fig. 7 in Laso and Öttinger, 1993). Figs.

4.23 and 4.24 show the influence of noise on the shear stress and first normal

stress difference with respect to time at the fixed plate using 50 different random

shifts. The maximum values of the first normal stress difference seem to take

the same time to be reached for both models, despite the delay in the wall shear

stress maximum in the case of the FENE-P model. However, the values at the

steady state are different although they reach the steady state at about the

same time.
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Figure 4.20: The start-up planar Couette flows using FENE and FENE-P mod-
els in the present CVFNNSS method: the parameters are shown in Fig. 4.4
for the FENE model and Fig. 4.13 for the FENE-P model. Comparison of the
velocity fields with respect to time at locations: y = 0.2, y = 0.4, y = 0.6 and
y = 0.8.
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Figure 4.21: The start-up planar Couette flow problem using FENE and FENE-
P models in the present CVFNNSS method: the parameters are shown in Fig.
4.4 for the FENE model and Fig. 4.13 for the FENE-P model. Comparison of
the shear stress at the fixed plate with respect to time between the two models.
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Figure 4.22: The start-up planar Couette flow problem using the FENE and
FENE-P models in the present CVFNNSS method: the parameters are shown in
Fig. 4.4 for the FENE model and Fig. 4.13 for the FENE-P model. Comparison
of the first normal stress difference at the fixed plate with respect to time
between the two models.
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Figure 4.23: The start-up planar Couette flow problem using the FENEmodel in
the present CVFNNSS method: the parameters are shown in 4.4. The influence
of Brownian noise on the shear stress with respect to time at the fixed plate,
using 50 different random shifts.
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Figure 4.24: The start-up planar Couette flow problem using the FENE-P model
in the present CVFNNSS method: the parameters are shown in 4.13. The
influence of Brownian noise on the first normal stress difference with respect to
time at the fixed plate, using 50 different random shifts
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4.8 Concluding remarks

This chapter has demonstrated a successful adaptation of the macro-micro ap-

proach introduced in the CONNFFESSIT method. The finite element-based

macro-procedure of the CONNFFESSIT is replaced by the present meshless

neural network-based procedure. For the start-up Couette flow with the FENE

and FENE-P models, a complete agreement on the typical flow features with

the results of Mochimaru (1983) and Laso and Öttinger (1993) is obtained.

The present CVFNNSS method retains the properties inherent in the CON-

NFFESSIT (Öttinger, 1996; Laso and Öttinger, 1993; Feigl et al., 1995; Laso

et al., 1997, 1999) namely (i) easy handling of complex polymer models without

closed form constitutive equation, (ii) easy switching between different mod-

els, (iii) realistic treatment of boundary conditions. Furthermore, the present

CVFNNSS has the advantage of being a mesh-free numerical method where the

domain discretization for the governing PDE’s is simply an unstructured set of

collocation points. Owing to the approximation characteristics of RBFNs, the

initial conditions are represented in a more natural way. For shear flows, the

present CVFNNSS method appears to be much more stable than other methods

reviewed here and becomes unstable only at ∆t = 5e− 2. Furthermore, with a

coarse set of collocation points, the present method gives results with a similar

accuracy in comparison with those from other schemes. However, these initial

results are to be confirmed with more complex flows (e.g. elongational flows) in

the next stage of investigation where numerical issues such as stochastic inte-

gration schemes and choice of collocation points will be of major concern. The

noise arising in the velocity field and specially in the stress tensor (Fig. 4.8-4.11,

Fig. 4.16-4.19 and Fig. 4.21-4.22) due to the Brownian motion can be dras-

tically reduced by variance reduction methods (Öttinger et al., 1997; Bonvin

and Picasso, 1999). Variance reduction methods will also be taken into account

when the present method is implemented for higher dimensional problems and

its ability is tested in the next chapter.



Chapter 5

Element-free computation of 2D

viscoelastic flows using

CVFNNSS

The CVFNNSS method (Tran-Canh and Tran-Cong, 2002b), which was de-

scribed and verified in the previous chapter for 1D problems, is further devel-

oped for 2D steady-state problems in this chapter. The planar Poiseuille flow

is used to verify the method and the 4:1 axisymmetric contraction flow is sim-

ulated for materials characterized by Hookean, FENE and FENE-P dumbbell

models.

5.1 Introduction

The proposed method is based on the combination of RBFNs and Lagrangian

hybrid simulation using SST, in which the stress is computed from the Brow-

nian dynamics simulation through the particle tracking, and the velocity field

is determined by solving the equations of mass and momentum conservation
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with a mesh-free method based on RBFNs which does not require any kind of

finite element-type discretisation of the domain and its boundary. The variance

reduction technique, which is based on a control variate scheme, is employed

for the Brownian dynamics simulations. This chapter describes additional de-

tails of the microscopic component and then concentrates on the macroscopic

component of the computational method for 2D viscoelastic flows. The chapter

is organized as follows. In §5.2 and §5.3, an outline of the governing equations

and the stochastic simulation technique for computing the stress are presented.

In §5.4 the numerical methods for solving the SDEs and the conservation equa-

tions and the control variate variance reduction technique are described. §5.5
presents the algorithm of the present scheme for 2D viscoelastic problems high-

lighting the macroscopic-microscopic interfaces of the method. The numerical

examples are then discussed in §5.6 with a brief conclusion in §5.7.

5.2 Governing Equations for steady viscoelas-

tic flow problems

Considering the isothermal and steady flow of an incompressible fluid, the sys-

tem of momentum and mass conservation equations is given by

∇ · u = 0, (5.1)

−∇p+ ∇ · τ = ρ(u · ∇)u, (5.2)

where u denotes the velocity field; τ is the extra stress; ρ is the fluid density.

For a polymer solution, the extra stress τ can be decomposed as

τ = 2ηND+ τ
p, (5.3)

where 2ηND is the Newtonian solvent contribution; ηN is the solvent viscosity;

D = 1
2

(

∇u+ (∇u)T
)

is the rate of strain tensor; τ p is the polymer-contributed

stress and p is the pressure arisen from the incompressibility constraint. Using
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Eq (5.3), Eq (5.2) can be rewritten as follows

2ηN∇ ·D− ρ(u ·∇)u−∇p = −∇ · τ p. (5.4)

Instead of using the continuity equation (5.1), the incompressibility condition

is enforced via the penalty method as follows (Bernstein et al., 1994 and Laso

et al., 1999)

p = −pe(∇ · u), (5.5)

where pe is a sufficiently large penalty parameter. Thus, the momentum equa-

tion (5.4) is rewritten as

2ηN∇ ·D− ρ(u ·∇)u+ pe∇(∇ · u) = −∇ · τ p. (5.6)

Although this method produces an error of O(p−1e ) (Baker, 1983) in approxi-

mating ∇·u = 0, it is considered as a good method which allows the elimination

of the incompressibility condition and a corresponding reduction of the num-

ber of degrees of freedom of the problem in solving complex problems (Hughes

et al., 1979; Crochet et al., 1984; Bernstein et al., 1994; Laso et al., 1997, 1999).

Travis et al (1990) have made rigorous comparison between a number of nu-

merical methods and concluded that the methods based on penalty function

produce comparably accurate results. The value of the penalty parameter can

only be chosen from experience at this stage and the value chosen in this work

is based on the results reported in the references cited above.

The polymer-contributed stress τ p is determined numerically via a microscopic

technique which is based on the BDS and kinetic modelling. In the next sub-

section, the Lagrangian SST is described.
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5.3 Review of Lagrangian SST in polymeric ki-

netic theory

5.3.1 Governing SDE for a dumbbell

From presentation given in chapter 1, instead of solving the diffusion equation

directly, the polymer configuration Q(t) is determined by using an equivalent

SDE. The models, which consist of elastic dumbbells having two Brownian

beads attached by an entropic spring, satisfy the SDE as follows

dQ =

[

κ ·Q− 2

ζ
F(Q)

]

dt+

√

4kBT

ζ
dW(t), (5.7)

where ζ is the friction coefficient between the dumbbell and the solvent; W(t) is

a 3-component column vector which is a Wiener process with mean 〈Wi(t)〉 = 0

and covariance 〈Wi(t)Wj(t
′)〉 = δij min(t, t′) which accounts for the random

displacement of the beads due to thermal motion; F is the spring connector

force between the two beads; κ is the velocity gradient. Let H be the spring

constant, the connector force is given by

F = HQ, F = H
Q

1−
(

Q

Qo

)2 , F = H
Q

1− 〈Q2〉
Q2
o

, (5.8)

for the Hookean, FENE and FENE-P dumbbell models, respectively, where Qo

is the maximum possible spring length.

It can be considered that molecules are convected by macroscopic fluid flows

where the centres of mass of the molecules move along trajectories which satisfy

the following equation
dxi

dt
= vi(t,x), (5.9)

where vi is the i-component of the velocity of a dumbbell whose coordinate is

x. Please see §4.4 for more details.
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5.3.2 Non-dimensionalisation

Let λH = ζ
4H

be a characteristic relaxation time and b = HQ2
o

kBT
is the square of

the dimensionless maximum extensibility. The ηN is scaled by ηo (ηo = ηN+ηp),

Q by
√

kBT
H

, polymer stress by nbkBT , the gradient κ by λ−1H and time t by λH .

The dimensionless variables are given by

η
′

N = ηN
η
; Q

′

= Q
√

kBT

H

; t
′

= t
λH

; κ
′

= κλH ; τ
′

p =
τ p

ndkBT
,

where nd is the number of dumbbells per unit volume of the solution. For the

sake of brevity, the dimensionless forms are written without prime from here

on.

It is noted for further reference that the polymer contribution to the zero shear

rate viscosity is ηp(Hookean) = ndkBTλH , ηp(FENE) = ndkBTλHb/(b + 5) and

ηp(FENE-P) = ndkBTλHb/(b+ 3) (see Appendix C.2 for details).

The dimensionless form of the SDE (5.7) is now written as

dQ =

[

κ ·Q− F

2

]

dt+ dW(t), (5.10)

where F
′

is the dimensionless spring force and is given by

F = Q, F =
Q

1− Q2

b

, F =
Q

1− 〈Q2〉
b

, (5.11)

for the Hookean, FENE and FENE-P models, respectively.

5.3.3 Polymer-contributed stress

• Effective volume for stress averaging

From the Lagrangian BDS point of view, the polymer contributed stress at

each collocation point is determined by a local ensemble of dumbbells which
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are contained in a volume surrounding the collocation point, which is here

termed ‘effective volume for stress averaging’ (EVSA), and the local velocity

field. Therefore the convection of dumbbells in and out of the EVSA is tracked

to determine the relevant ensemble of dumbbells. The knowledge of the local

ensemble is a requirement for the numerical solution of the SDE to obtain

the stress tensor. Fig. 5.1 shows schematically the EVSAs associated with

collocation points. In this work, owing to the characteristic of the truly mesh-

free method, the EVSAs can be non overlapped or overlapped as shown in

Fig. 5.1 to assure a sufficient number of dumbbells are used in the calculation

of the polymer stress in the regions where the density of collocation points

is very high. The size of the EVSA corresponding to a collocation point is

dependent on the local density and the chosen number of dumbbells of each

EVSA. The Voronoi tessellation technique could be exploited as a convenient

way to build up EVSAs (Fig. 5.2) and this technique is supported by the library

of several programming languages. Thus, Lagrangian particle tracking in FEM

and in the present method are the same for either structured or unstructured

discretisation, including the convection of dumbbells in and out of the EVSA

(for the present method) or out of the element (for FEM). However, there

are two principal differences between the two approaches. Firstly, there is no

flexibility in determining the number of dumbbells in an element in the FEM

whereas in the present method the number of dumbbells in the EVSAs is flexibly

chosen, by virtue of the overlapping nature of EVSAs, to suit the local stress

behaviour. Secondly, in the FEM, the average stress is considered constant in

each element and is determined from the number of dumbbells located in the

element whereas the stress is determined at collocation points in the present

method. In the present work the minimum number of dumbbells in a EVSA is

approximately 200 (with variance reduction).
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Figure 5.1: Effective volumes for stress averaging (EVSA): example of non-
overlapped and overlapped EVSAs. ‘o’ denotes collocation points and ‘.’ dumb-
bells. The collocation point and dumbbell distributions are only schematic.

• Stress expression

In order to evaluate the macroscopic stress tensor, an ensemble of Nd dumbbells

is simulated. Once all Qs have been evaluated from the SDE (5.10), the rela-

tionship between the statistical distribution of dumbbell configurations and the

polymer stress τ p at each collocation point x and time t are approximated by

ensemble averages over the EVSAs described above and provided by Kramers’

expression as follows

τ
p = −〈Q · F(Q)〉+ I, (5.12)

where F(Q) is dependent on the models and given by (5.11) for the Hookean,

FENE and FENE-P models, respectively.
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Figure 5.2: Effective volumes for stress averaging (EVSA): example of non-
overlapped EVSAs using Voronoi Tessellation ‘o’ denotes collocation points.
The collocation points can be random or regular.



5.4 Numerical method for SDEs 122

5.4 Numerical method for SDEs

5.4.1 Numerical integration of SDEs

It is well known that Euler method does not produce accurate results in simu-

lating 2-D visco-elastic fluid flow problems (Feigl et al., 1995; Laso et al., 1997;

Halin 1998) and therefore Euler method is not employed in the present study of

2D problems. The numerical integration of the SDEs (5.7) or (5.10) is carried

out by the second-order semi-implicit predictor-corrector scheme in this chapter.

As described in §2.3.2, this scheme, as employed in many works on mesoscopic

numerical simulation (Laso et al., 1995, 1997; Halin et al., 1998; Somasi and

Khomami, 2000), consists of two steps, the predictor and corrector. For the

FENE dumbbell model used as an illustration, from the Eqs (2.30) and (2.31),

the two steps of the scheme are given by

• The predictor step. Let Qi, Qi+1 be an approximation of Q(t) at time ti

and ti+1, respectively; ∆ti = ti+1 − ti = constant is the stochastic time

increment. The predictor step is given by

Q∗
i+1 = Qi +



κi ·Qi −
Qi

2
(

1− Q2
i

b

)



∆ti +∆Wi, (5.13)

where ∆Wi = Wi+1 −Wi whose components are independent Gaussian

variables with zero mean and ∆t variance (here the time step size is fixed

∆ti = ∆t).

• The corrector step. This step is given by



1 +
∆t

4
(

1− Q2
i+1

b

)



Qi+1 =

Qi +
1

2



κ
∗
i+1 ·Q∗

i+1 + κi ·Qi −
Qi

2
(

1− Q2
i

b

)



∆ti +∆Wi. (5.14)
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The direction of the corrected vector Qi+1 is determined by the direction of the

RHS of (5.14), its length satisfies a cubic equation obtained from Eq (5.14) (see

Appendix C.5); Qi+1 is unique and satisfies 0 ≤ ‖Qi+1‖ <
√
b (Ottinger, 1996).

The random numbers Wi in Eqs (5.13) and (5.14) are the same.

In this approach, the velocity gradient at ti+1 is required to be known at ti

(see the RHS of Eq (5.14)). In this chapter, the backward difference scheme is

employed to approximate κ∗i+1 as follows

κ
∗
i+1 = κi + κ̇i∆ti ≈ κi +

κi − κi−1
∆ti−1

∆ti. (5.15)

5.4.2 Integration of the trajectories of the dumbbells

Although the 2D flow is macroscopically a steady-state flow, the microscopic

scheme requires the knowledge of the position of each dumbbell at every time

step. An effective local volume is chosen to surround the collocation point,

where the dumbbell is located, to calculate the macroscopic expectation stresses.

For every dumbbell that is convected out of the volume under consideration at

the outlet, a corresponding dumbbell is necessarily introduced at the inlet.

The centre of mass of each dumbbell moves along a trajectory that satisfies Eq

(5.9) whose numerical solution is given according to the explicit Euler scheme

as follows

xk,(i+1) = xk,i + uk(x, ti)∆ti, k = 1, 2, (5.16)

where xk,i is the kth component of the coordinate of the dumbbell at the time

ti; uk is the kth component of the velocity vector of the dumbbell. Since the

dumbbells are convected by the bulk velocity field which is calculated at each

time step, the trajectories of dumbbells can be determined. Details can be

found in Luo and Mitsoulis (1990) and Laso et al. (1997).
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5.4.3 Variance reduced simulation

As mentioned in chapter 2, in polymer dynamics, the variance reduced simu-

lation achieves a reduction of the variance for the same outcome regarding the

average of the quantities of interest without increasing the number of dumbbells

(Melchior and Öttinger, 1995,1996). The variance reduction method consists

of several different techniques which are detailed in §2.4.4, chapter 2. In this

chapter, the control variate method is employed in conjunction with the La-

grangian CVFNNSS. This technique is considered as an unbiased estimator of

〈¦〉 whose variance might be reduced via a good choice for the control variable.

The method has been applied in other studies more recently (Jendrejack et al.,

2000; Kröger et al., 2000 and Prabhakar and Prakash, 2002). Discussions on

the efficiency of the scheme can be found in those references cited earlier, for

example Melchior and Öttinger (1996), and are not repeated here.

For illustration, the scheme is described for the numerical approximation of

the expectation of the random term (Q ·F(Q)) in the following polymer stress

formula (5.12)

τ
p = −〈Q · F(Q)〉+ I, (5.17)

where Q is governed by Eq (5.10)

dQ(x, t) =

[

κ(x, t) ·Q(x, t)− 1

2
F(Q(x, t))

]

dt+ dW(t). (5.18)

The control variable is determined from a simulating process which is carried

out in parallel with the process that approximates Q .

At each position x and time t > 0, Q̄ corresponding to the connector vector Q

is determined by

dQ̄(x, t) =

[

κ(x, t) · Q̄(x, t)− 1

2
F̄(Q̄(x, t))

]

dt+ dW(t). (5.19)

In this scheme, the expectation 〈Q · F(Q)〉 is split as follows

〈Q · F(Q)〉 = 〈Q · F(Q)− Q̄ · F̄(Q̄)〉+ 〈Q̄ · F̄(Q̄)〉, (5.20)
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where F̄(Q̄) is determined by Eq (5.11). 〈Q̄ · F̄(Q̄)〉 is obtained from a deter-

ministic process and 〈Q · F(Q) − Q̄ · F̄(Q̄)〉 by the stochastic simulation. A

good choice of Q̄ makes reduce the variance corresponding to the RHS of Eq

(5.20). From (5.20), the polymer stress tensor (5.17) is rewritten as follows

τ
p = −〈Q · F(Q)− Q̄ · F̄(Q̄)〉+ τ̄

p, (5.21)

where τ̄ p = −〈Q̄ ·F̄(Q̄)〉+ I. At the equilibrium state, u = 0 and F̄(Q̄) = F(Q̄)

(i.e. 〈Q̄ · F(Q̄〉 = I, hence τ̄ p = 0), the evolution equation of Q̄ is given by

dQ̄(x, t) = −1

2
F
(

Q̄(x, t)
)

dt+ dW(t). (5.22)

Eq (5.22) can be solved by the Euler explicit scheme described in §2.3.2. Using
the same random numbers for the realizations Qi and Q̄i of Q and Q̄ ensures

a strong correlation between them.

5.5 Review of RBFN interpolation

Unlike the RBFN used in the previous chapters, due to the complexity of the

2D problems, a combination of RBF and Polynomial Basis Function (PBF) is

employed in a RBFN as follows (Fig. 5.3)

f(x) =
m
∑

j=1

wjhj(x) +
m̄
∑

k=1

ιkpk(x) = HT (x)w +PT (x)ι, (5.23)

where wj ∈ w (wT = [w1 w2 ... wm]) and ιk ∈ ι (ιT = [ι1 ι2 ... ιm̄])

are the synaptic weights; hj is the chosen radial basis function corresponding to

the jth RBF-neuron; pk is the polynomial basis function corresponding to the

kth PBF-neuron; m + m̄ is the total number of neurons. H and P are defined

as follows

HT (x) = [h1(x) h2(x) ... hm(x)], (5.24)

PT (x) = [p1(x) p2(x) ... pm̄(x)]. (5.25)



5.5 Review of RBFN interpolation 126

Figure 5.3: Schematic of the RBF-PBF neural networks. Each of d (d = 2, in
the present work) components of the input vector x feeds forward to m RBFs
and m̄ PBFs whose outputs are linearly combined with weights {wj}mj=1 and
{ιk}m̄k=1, respectively, into the network output f(x).

Let n be the number of training points (xi, ŷi); xi is the coordinate of the ith

collocation point and ŷi is the desired value of function f at the collocation

point xi. While the RBFs hj employed here are either MQ-RBF or TPS-RBF

which were described in §4.5.1, the PBF of order p for a 2D problem is given

by

PT (x) = [1 x1 x2 x21 x1x2 x22 ... xp
2]. (5.26)
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5.5.1 RBF-centres, collocation points and RBFN train-

ing

The choice of the quantity and location of collocation points (xi, i = 1, .., n)

depends on the problem geometry and desired solution accuracy and is a major

open issue requiring separate investigation (Fodoseyev et al, 2002; Orr, 1999a,b;

Larsson and Fornberg, 2001). However, one can imagine an analogy between

an adaptive discretisation in the present finite point method and that in a finite

element method. In this respect, an advantage of the present finite point method

is that points can be added or removed much more easily than a corresponding

addition or removal of finite elements, since there is no topology to be concerned

about. In general, both collocation points and RBF centres can be randomly

and separately distributed in the analysis domain. However, in the present

work, collocation points are chosen to be the same as RBF centres, i.e. m = n

(Fig. 5.4). An extra requirement for the uniqueness of the approximation (5.23)

is imposed as follows (Zerroukat et al., 1998; Golberg et al., 1996)

n
∑

i=1

pk(xi)ωi = 0, k = 1, · · · , m̄, (5.27)

where the linear PBF is chosen (m̄ = 3), i.e

PT (x) = [1 x1 x2]. (5.28)

The training of the model Eq. (5.23), given a training set of n collocation points

{(xi, ŷi)}ni=1, can be achieved via the minimisation of a cost function based on

the sum of squared errors (taking into account (5.27))

C(w
′

, λ) =
n
∑

i=1

(ŷi − f(xi))
2 + λ

n
∑

j=1

w(j)2, (5.29)

with respect to the weights w̃ ∈ w′,w′ = [wT , ιT ]T , which yields the following

linear system of equations

Gw
′

= BT ŷ
′

, (5.30)
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Figure 5.4: Collocation points ‘o’ and RBF centres ‘*’: RBF centres are reg-
ularly distributed and collocation points are the same as RBF centres (upper
figure); RBF centres are regularly distributed and collocation points are dis-
tributed randomly (lower figure).

where G = BTB+ λK; λ is the global regularization parameter and B is given

by

B =





H∗ P∗

P∗T 0



 ,

H∗ =

















h1(x1) h2(x1) · · · hn(x1)

h1(x2) h2(x2) · · · hn(x2)
...

...
. . .

...

h1(xn) h2(xn) · · · hn(xn)

















,
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P∗ =

















p1 (x1) p2 (x1) p3 (x1)

p1 (x2) p2 (x2) p3 (x2)
...

...
...

p1 (xn) p2 (xn) p3 (xn)

















, K =





In 0

0 03



 , (5.31)

w
′

= [w1 w2 ... wn ι1 ι2 ι3]T and

ŷ
′

= [ŷ1 ŷ2 ... ŷn 0 0 0]T .

The partial derivatives of f(x) can be calculated analytically as follows

Lf(x) =
n
∑

j=1

wjLhj(x) +
3
∑

k=1

ιkLpk(x), (5.32)

where L is a derivative operator.

5.5.2 RBFN-based method for solving the deterministic

PDEs

Considering the following problem in general

Lu = y ∀x ∈ Ω, (5.33)

Bu = b ∀x ∈ Γ, (5.34)

where Ω is the volume under consideration; Γ is the boundary of Ω; L and B are

differential operators; u is an unknown function; y and b are given functions.

The problem may be multidimensional, however, without loss of generality,

1-D problem is presented here for simplicity. Since RBFN is a good universal

approximator as mentioned above, u is represented by an approximant f defined

by Eq (5.23) and then Lf and Bf can be described by (5.32). The numerical

problem is therefore reduced to an unconstrained optimization problem of the

objective function as follow

Φ =

∫

Ω

‖ Af − y ‖2 dΩ +

∫

Γt

‖ Bf − b ‖2 dΓ. (5.35)
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For a more detailed mathematical derivation leading to (5.35) see Franke (1982);

Hornik et al. (1989); Golberg et al. (1996) and Dissanayake and Phan-Thien

(1994). Equation (5.35) can now be applied particularly to solve the macro-

scopic governing equations.

5.5.3 RBFN-least-squares method for solving the conti-

nuity and momentum equations

In the continuity and momentum equations, the velocity field u and p are consid-

ered as unknowns while the polymer contributed stress τ p is already computed

by the SST as described in §5.2. In this section, the numerical solution of Eqs

(5.1) and (5.4) is obtained by a RBFN-based element free method.

In component forms, Eqs (5.1) and (5.2) in 2D space are as follows

∂u1
∂x1

+
∂u2
∂x2

= 0,

ηN

[

∂2u1
∂x21

+
∂2u1
∂x22

]

− ρ

[

u1
∂u1
∂x1

+ u2
∂u1
∂x2

]

− ∂p

∂x1
= −∂τ

p
11

∂x1
− ∂τ p21
∂x2

, (5.36)

ηN

[

∂2u2
∂x21

+
∂2u2
∂x22

]

− ρ

[

u1
∂u2
∂x1

+ u2
∂u2
∂x2

]

− ∂p

∂x2
= −∂τ

p
12

∂x1
− ∂τ p22
∂x2

,

and Eq (5.4) is developed as follows

ηN

[

∂2u1
∂x21

+
∂2u1
∂x22

]

− ρ

[

u1
∂u1
∂x1

+ u2
∂u1
∂x2

]

+ pe

[

∂2u1
∂x21

+
∂2u1
∂x1∂x2

]

=

−∂τ
p
11

∂x1
− ∂τ p21
∂x2

,

ηN

[

∂2u2
∂x21

+
∂2u2
∂x22

]

− ρ

[

u1
∂u2
∂x1

+ u2
∂u2
∂x2

]

+ pe

[

∂2u2
∂x22

+
∂2u2
∂x1∂x2

]

=

−∂τ
p
12

∂x1
− ∂τ p22
∂x2

, (5.37)

together with the following boundary conditions

u1 = uo, x ∈ Γu,

n ·∇u2 = qo, x ∈ Γt, (5.38)
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where ηN is the viscosity of the solvent which is a Newtonian fluid; ρ is the

density of the fluid; p is the pressure; n is the outward unit normal; uo and

qo are known boundary conditions; Γ = Γ1 ∪ Γ2. Since τ p11, τ
p
12, τ

p
22 are the

components of the polymer-contributed stress tensor which are considered as

pseudo-forces. These are calculated from stochastic simulation technique, the

terms on the RHS of Eqs (5.36) or (5.37) are known and calculated as follows

(1.) τ p11, τ
p
12, τ

p
22, calculated by the SST, are approximated by three separate

RBFNs;

(2.) The derivatives of the polymer stresses in Eqs. (5.36) or (5.37) are then

calculated analytically as shown in §5.5.

Equations (5.36) or (5.37) and (5.38) can now be discretised by a process of

point collocation. As mentioned in §5.5.1, generally, the collocation points in

the domain and on the boundary can be different from the RBF centres. The

centres can be random or arranged on a regular grid. The set of collocation

points can be different from, the same as, or a subset of the set of RBF centres.

In this work, the two sets are the same and hence n = m where n is the number

of collocation points and m is the number of neurons of RBFNs.

With a chosen set of collocation points (in the analysis volume and on the

boundaries), according to Eq (5.35), the sum square error associated with Eqs

(5.36) and (5.38) is written as follows

SSE =
∑

i∈Ω

{

∂u1
∂x1

+
∂u2
∂x2

}2

i

+
∑

i∈Ω

{

ηN

[

∂2u1
∂x21

+
∂2u1
∂x22

]

− ρ

[

u1
∂u1
∂x1

+ u2
∂u1
∂x2

]

− ∂p

∂x1
+

[

∂τ p11
∂x1

+
∂τ p21
∂x2

]}2

i

+
∑

i∈Ω

{

ηN

[

∂2u2
∂x21

+
∂2u2
∂x22

]

− ρ

[

u1
∂u2
∂x1

+ u2
∂u2
∂x2

]

− ∂p

∂x2
+

[

∂τ p12
∂x1

+
∂τ p22
∂x2

]}2

i

+
∑

i∈Γu

{u1 − uo}2 +
∑

i∈Γt

{

[n1
∂u1
∂x1

+ n2
∂u1
∂x2

]− qo

}2

i

, (5.39)
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and the sum square error associated with Eqs (5.37) and (5.38) is given by

SSE =

∑

i∈Ω

{

ηN

[

∂2u1
∂x21

+
∂2u1
∂x22

]

− ρ

[

u1
∂u1
∂x1

+ u2
∂u1
∂x2

]

+ pe

[

∂2u1
∂x21

+
∂2u1
∂x1∂x2

]

i

+ φ1i

}2

i

+

∑

i∈Ω

{

ηN

[

∂2u2
∂x21

+
∂2u2
∂x22

]

− ρ

[

u1
∂u2
∂x1

+ u2
∂u2
∂x2

]

+ pe

[

∂2u2
∂x22

+
∂2u2
∂x1∂x2

]

i

+ φ2i

}2

i

+

∑

i∈Γu

{u1 − uo}2 +
∑

i∈Γt

{

[n1
∂u1
∂x1

+ n2
∂u1
∂x2

]− qo

}2

i

, (5.40)

where i denotes the ith collocation point; φ1i =
∂τp

11

∂x1
(xi) +

∂τp
21

∂x2
(xi) and φ2i =

∂τp
12

∂x1
(xi) +

∂τp
22

∂x2
(xi). Substituting the expression of u1, u2, p (without penalty

method) and their derivatives, (given by Eqs (5.23), (5.32), (3.35), (4.19)) into

Eq (5.39) and applying the general linear least squares principle, a system of

linear algebraic equations of the unknown weights is obtained (see §5.5). Al-

though the solution can be obtained by several schemes mentioned in previous

chapters, here the algorithm to solve the least squares problem (5.39) or (5.40)

is the Singular Value Decomposition (SVD) which can be found in Trefethen

and Bau Iii (1997) and Bjock (1996) (see appendix B.4).

The non-linear convective term (u ·∇)u present in (5.39) or (5.40) is estimated

using a Picard-type iterative procedure as follows

(1.) Imposing the initial velocity field for the first iteration (zero value in this

work);

(2.) Linearizing the non-linear terms by using the current estimate of the ve-

locity field, keeping the derivatives as unknown, i.e. (u ·∇)u is represented

by (un · ∇)un+1;

(3.) Obtaining a new estimate of the velocity field via (5.39) or (5.40) in the

sense of the general linear least squares principle;

(4.) Calculating the convergence measure (CM) for velocity at the nth iteration,
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defined as follows

CM =

√

√

√

√

∑N
j=1

∑2
i=1(u

n
i,j − un−1

i )2
∑N

j=1

∑2
i=1(u

n
i,j)

2
< tol, (5.41)

where N is the number of collocation points;

(5.) If not yet converged (CM > tol; tol is a tolerance), return to step 2;

(6.) Stop.

5.6 Algorithm of the present method

In summary, the present approach can be described in a detailed algorithm as

follows.

(1.) Generate a set of collocation points. Start with an initial velocity for the

first iteration (zero in the present work) and the boundary conditions of

the problem. The initial velocity field is approximated by RBFNs;

(2.) Generate an ensemble of homogenously distributed dumbbells in the flow

domain. This initialisation of the polymer configuration field is based on

the known equilibrium distribution function which is a three dimensional

Gaussian distribution with zero mean and unit covariance (Öttinger, 1996).

Determine an ensemble of control variates Qc’s associated with Q’s as

represented in §5.4.3;

(3.) Generate effective volumes for stress averaging (EVSA) surrounding the

collocation points, i.e. only dumbbells belonging to a EVSA have any

influence on the polymer contributed stress at the collocation point associ-

ated with that EVSA. Determine the EVSA where a dumbbell is initially

located. In this work, each dumbbell can belong to one (non-overlapped

case) or many different EVSA’s (overlapped case) (Fig. 5.2);
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(4.) After the current velocity field is approximated by RBF networks, deter-

mine the velocity gradient field by calculating directly the gradient of the

approximated velocity field;

(5.) Calculate the polymer configuration field (the connector vectors of the

dumbbell ensemble) using the methods described in §5.3 and the corre-

sponding control variates as described in §5.4.3. The velocity of the centre

of mass of each dumbbell is considered to be equal to the pointwise local

fluid velocity;

(6.) If there are dumbbells leaving the domain under consideration at the outlet,

they are relocated at the inlet with the same value of connector vector;

(7.) Determine the local stress tensor by taking the ensemble average of the

polymer configuration in each effective volume using variance reduced sim-

ulation. Assign this stress to the collocation point associated with this

volume and then impose the stress boundary conditions at the collocation

points located on boundary, if relevant. The stress is then approximated

globally by RBF networks which are the ultimate description of the stress

field. This global approximation procedure smooths the piecewise continu-

ous stress field with a globally continuous function. This could be achieved

by either TPS-RBFNs or MQ-RBFNs. However, the former was proved

to have superior smoothing characteristics (Beatson and Light, 1997) and

hence is used in the present work;

(8.) With the stress field just obtained, solve the set of conservation equations

for the new velocity field using the element-free RBFN method as described

in §5.5.2; Determine the new positions of dumbbells and the EVSA where

they are located (particle tracking).

(9.) Terminate the simulation when either the desired time or the convergence is

reached. The latter is determined by a convergence measure for either the

velocity field or the stress field between two consecutive iterations which is
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defined for the velocity field by

CM =

√

∑N
1

∑d
i=1(u

n
i − un−1

i )2
∑N

1

∑d
i=1(u

n
i )

2
< tol, (5.42)

where d is the number of dimensions (2 in the present work); tol is a preset

tolerance; ui is the i component of the velocity at a node; N is the total

number of collocation points and n is the iteration number. Convergence

is also checked for the shear stress and the first normal stress difference;

(10.) Return to step (4) for the next time level of the microscopic process.

5.7 Numerical examples

This section reports the verification of the present method with the simulation

of the planar Poiseuille flow, and the application of the method to solve the

benchmark 4:1 axisymmetric contraction flow problem. Kinetic dumbbell mod-

els considered include the Hookean, FENE and FENE-P models. These models

consist of non-interacting dumbbells neutrally suspended in a Newtonian sol-

vent of known viscosity ηN , density ρ. The resultant material is characterized

by the relaxation time λH and zero-shear-rate viscosity ηo = ηN + ηp.

5.7.1 Planar Poiseuille flow

The planar creeping Poiseuille problem and coordinate system is described in

Fig. 5.5a where only half of the fluid domain needs to be considered, owing to

symmetry. For this problem, a is a half of the gap between the two parallel

plates. The length of the domain under consideration is a. The domain under

consideration is filled with 240000 dumbbells. In this example, the results of the

creeping Poiseuille flow problem using Hookean dumbbell model are compared

with the analytical result of the Oldroyd-B model. Furthermore, the results
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Figure 5.5: The planar Poiseuille flow problem: the inlet velocity profile is fully
developed; non-slip boundary conditions applied at the fluid-solid interfaces.
The collocation point distribution is only schematic.

of the FENE and FENE-P models indicate partially the behavior differences

between these fluids. The fluid parameters are as follows (Feigl et al., 1995)

ηN = 0.5; α =
ηN
ηo

= 0.5; λH = 1; V = 1;

and b = 50 for both FENE and FENE-P models.

where V is the maximum velocity on the centreline corresponding to a given

flow rate.

Boundary conditions and analytical solution

The macroscopic boundary conditions are given as follows:

1. On the wall (Γ4), there is no slip

u(x) = 0;
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2. At the inlet section (Γ1), the flow is fully developed Poiseuille where the

velocity profile is parabolic for the Newtonian or Boger fluid as follows






u1(x) = up = V
(

1−
(

x2

a

)2
)

,

u2(x) = 0;

If the model is shear-thinning (for example the FENE model), this ve-

locity profile is not parabolic and determined by the periodical boundary

condition at inlet and outlet. Generally, the planar Poiseuille flow can be

computed as a 1D-problem. In this work, the 2-D method described in

Laso et al., (1999) is employed as follows

• Initially, the inlet of the domain is given a guessed initial velocity

profile (zero-value or a parabolic profile as described above for New-

tonian fluid in the present work);

• The obtained outlet velocity profile at a step i is used to update the

inlet velocity profile of the next step i+ 1.

• The process is continued until there is no further change in the outlet

profile.

3. At the outlet section (Γ3)

u2(x) = 0,

4. On the centreline (Γ2), the symmetry condition applies

u2(x) = 0,
∂u1
∂x2

(x) = 0, τ12 = 0.

Furthermore, in the microscopic component, the domain is filled with dumbbells

drawn from the equilibrium distribution function. The dumbbells are convected

according to the velocity field of flows. Dumbbells leaving the domain through

the outlet are reintroduced at the inlet at the same value x2 and the same

configuration. Although the fully developed velocity of Poiseuille flows using

Hookean (Oldroyld-B) dumbbell model can be approximated as parabolic pro-

file, the scheme described above is used in the 4 : 1 axisymmetric contraction

flow problem described next in §5.7.2.
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For the Hookean dumbbell (Oldroyd-B) model, the creeping Poiseuille flow

problem has the analytical solution given by

τ11 = 3(1− α)De

(

∂u1
∂x2

)2

; τ12 = (1− α)
∂u1
∂x2

; τ22 = 0. (5.43)

where De = λH
〈u1〉
a

= 2
3
λH

V
a
= 2

3
is the Deborah number. The above analytical

solution is used to judge the quality of the numerical results.

Sum square error

The expression of sum square error (5.39) for the creeping planar Poiseuille

flows is rewritten as follows

SSE =
∑

xi∈Ω

(

∂u1
∂x1

(xi) +
∂u2
∂x2

(xi)

)2

+

∑

xi∈Ω

(

ηN

[

∂2u1
∂x21

(xi) +
∂2u1
∂x22

(xi)

]

− ∂p

∂x1
(xi) + φ1(xi)

)2

+

∑

xi∈Ω

(

ηN

[

∂2u2
∂x21

(xi) +
∂2u2
∂x22

(xi)

]

− ∂p

∂x2
(xi) + φ2(xi)

)2

+

∑

xi∈Γ1

{u1(xi)− up}2 +
∑

xi∈Γ1

u22(xi) +
∑

xi∈Γ2

u22(xi) +
∑

xi∈Γ2

{

∂u1
∂x2

(xi)

}2

+

∑

xi∈Γ3

u22(xi) +
∑

xi∈Γ4

u21(xi) +
∑

xi∈Γ4

u22(xi) (5.44)

where φ1(xi) =
∂τp

11

∂x1
(xi) +

∂τp
21

∂x2
(xi); φ2(xi) =

∂τp
12

∂x1
(xi) +

∂τp
22

∂x2
(xi); up is the inlet

velocity profile given above.

Results and discussion

Initially, an ensemble of dumbbells (240000) is homogenously distributed in the

whole domain. The schematic distribution of collocation points and associated

EVSA’s are shown in Fig. 5.5b. In this example, the non-overlapped EVSA’s are

employed, using four sets of coarse density collocation points, namely (11×11),
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Table 5.1: Planar Poiseuille flow: Collocation point convergence. N is the total
number of collocation points; CR: the convergence of measure. The number of
test points Nt = 121.

N CR
11× 11 1.00000
15× 15 0.00104
19× 19 0.00087
21× 21 0.00082

(15× 15), (19× 19) and (21× 21). The convergence test (which is described in

§3.4.3 of chapter 3), using 121 test points, shows that the problem can be solved

with a coarse grid of collocation points (Table 5.1). The Deborah number is

chosen to be 2/3. Higher values of Deborah number can easily be simulated,

but the results are of no further interest, and hence not reported here. The

velocity and stress fields corresponding to a grid of collocation points 15 × 15,

are obtained by averaging the results of 1000 iterations after the convergence

measure CM u reaches 1.0e−4 for the velocity field. For the Hookean dumbbell

model, Fig. 5.6 shows the velocity profile on the plane x1 = 0.5 which is in ex-

cellent agreement with the inlet velocity profile. Fig. 5.7 shows the shear stress

and the first normal stress difference on the plane x1 = 0.5. Compared with the

analytical results from Eq (5.43), the error of the shear stress is insignificant (see

Fig. 5.7), and the error of the first normal stress difference is less than (2%).

At the steady state, the velocity profiles and shear stresses of the two models

(the FENE and FENE-P models) are nearly the same while the first normal

stress differences are different (see Fig. 5.8). Similar conclusion was found, for

example, in Laso and Öttinger (1993) and Tran-Canh and Tran-Cong (2002b)

for the start-up planar Couette flow problem.
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Figure 5.6: Steady-state planar Poiseuille using the Hookean dumbbell model:
the velocity profile on the cross-section x1 = 0.5 and at the inlet section with
15× 15 collocation points.
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Figure 5.7: Steady-state planar Poiseuille flow problem using the Hookean
dumbbell model: comparison of the polymer shear stress and the first normal
stress difference obtained by the present method with the analytical solution on
the plane x1 = 0.5 with 15× 15 collocation points.
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Figure 5.8: Steady-state planar Poiseuille flow problem using the FENE (b=50,
b=20) and FENE-P (b=50) models: the polymer shear stress and the first
normal stress difference on the cross-section x1 = 0.5.
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5.7.2 The 4:1 axisymmetric contraction flow

In this section, the ability of the present method is investigated using a bench-

mark problem: the steady state 4:1 axisymmetric contraction flow.

This steady state problem was simulated with different models and schemes

(Marchal and Crochet, 1987; Debbaut et al., 1988; Dupont and Crochet, 1988;

Luo and Mitsoulis, 1990, Boger et al., 1992 and Debae et al., 1994). Especially

Feigl et al. (1995) used the CONNFFESSIT method to solve this problem using

Hookean model and compared their solution with the results obtained using

the FEM (Bernstein et al., 1994). For the sake of comparison with the results

obtained from a hybrid simulation scheme (CONNFFESSIT), the same model

and physical parameters as in Feigl et al. (1995) are used for this example.

Owing to symmetry, only half of the analysis domain needs to be considered

in cylindrical coordinates as shown in Fig. 5.9. Let rd = 1 be the radius of

downstream channel. The radius of upstream channel is ru = 4rd; the upstream

and downstream lengths are Lu = 10rd and Ld = 30rd, respectively. The fluid

parameters are given by

ρ = 0.1; ηo = ηN + ηp = 1;α =
ηN
ηp

= 1; λH = 1, Vu = 0.3 (5.45)

where Vu is the maximum inlet velocity on the centreline and ηo is the viscosity

of the fluid. The boundary conditions of the problem are the ones which were

employed in Dupont et al. (1988); Luo and Mitsoulis, (1990); Ryssel and Brunn

(1999); Boger et al. (1992); Feigl et al. (1995) where no slip condition is imposed

along the wall and a fully developed velocity profile is specified at the inlet and

outlet. The symmetry condition is imposed on the centre-line. Let Γ be the

boundary of the domain Ω; Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 as shown in Fig. 5.9. The

boundary conditions are therefore given by

1. On the wall (Γ4), there is no slip condition, i.e. ur = ux = 0
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Figure 5.9: The steady state axisymmetric 4:1 contraction flow problem: non-
slip boundary conditions are imposed at the fluid-solid interfaces; fully devel-
oped Poiseuille at the inlet, and symmetry on the centre-line.

2. At the inlet (Γ1), the flow is fully developed. In this work, the velocity

profile at the inlet is determined by solving the 2D Poiseuille problem

(see §5.7.1) with the same Vu at the inlet centreline. The approximated

velocity profile, and the dumbbells leaving the domain after convergence

for a time period ∆t are stored and used as the inlet condition in the

4:1 contraction flow problem. The obtained inlet velocity profile given in

Fig. 5.10 shows that the difference between the velocity profiles of the

parabolic approximation and present work is very little. At the outlet,

ur = 0 and ux is considered as an unknown and need to be calculated.

3. On the centreline (Γ2), the symmetry condition is given by

∂ux

∂r
(x) = 0, ur = 0. (5.46)

Three sets of collocation points are employed for this problem and given in

Table 5.2. The collocation points are not uniformly distributed and a higher

density of collocation points is specified in the reentrant corner area to capture

the expected strong flow gradients in that region. A schematic distribution of
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Figure 5.10: The axisymmetric 4:1 contraction problem: the inlet velocity pro-
file using. The solid line denotes the parabolic approximation and ’-*-’ the
results by the present method.

Table 5.2: The axisymmetric 4:1 contraction flow problem: three sets of collo-
cation points. Nt: the total number of collocation points; Nup: the number of
collocation points of the upstream area; Ndn: the number of collocation points
of the downstream area; Nb: the number of boundary points.

Nt Nup Ndn Nb

404 224 180 115
620 340 280 151
755 440 315 169

collocation points and associated EVSAs are shown in Fig. 5.11, using 450000

dumbbells in the total domain under consideration. In order to assure a suf-

ficient number of dumbbells in each EVSA in the areas where the density of

collocation points is high, the overlapped EVSA method is employed in the

salient corner area and specially the reentrant corner area as shown in Fig.

5.11.

The penalty method leading to the form of momentum equation (5.6) is em-

ployed to reduce the number of degrees of freedom. Thus with regard to the
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Figure 5.11: The steady state axisymmetric 4:1 contraction flow problem:
schematic distribution of collocation points ‘ ¦’ and EVSAs.

symmetry, the sum square error (5.40) is given in the cylindrical coordinates by

SSE =
∑

i∈Ω
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+
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where φ1i =
τprr−τp

θθ

r
+ ∂τprr

∂r
+ ∂τprx

∂x
|i; φ2i = τprx

r
+ ∂τprx

∂r
+ ∂τpxx

∂x
|i; up is the inlet velocity

profile given in the section on boundary conditions. The stochastic simulation

is time-dependent with simulation time step ∆t = 0.01λ = 0.01.

For large problems, the coefficient matrix, resulting from the application of the

general linear least squares principle to the SSE, could be ill-conditioned. Such

a coefficient matrix is also dense. To overcome the problem of ill-condition and
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Table 5.3: Axisymmetric 4:1 contraction flow problem: two sets of collocation
points. N : the number of subdomains; Nt: the number of collocation points;
Ns: the number of collocation point of each subdomain and CMu : convergence
measure based on velocity.

N Nt Ns CMu

4 620 145− 170 1.52e− 4
8 620 77− 85 2.12e− 4
12 620 50− 60 2.68e− 4

Figure 5.12: The steady state axisymmetric 4:1 contraction flow problem: A
schematic domain decomposition of 8 sub-domains.

storage limitation, the iterative non-overlapping Domain Decomposition (DD)

method is employed. Here, the analysis domain is divided into a number of sub-

domains to reduce the rank (and then the condition number) of the coefficient

matrices. In this chapter the DD technique is used only for the numerical

solution of deterministic PDEs using the RBFN method.

The results presented just below correspond to the grid of 620 collocation points

and using 8 sub-domains (Fig. 5.12). This problem is also solved with 4 and

12 sub-domains and the convergence behavior corresponding to the number

of sub-domains is given in Table 5.3. Domain decomposition techniques and

parallelization in conjunction with the RBFN-based element-free method are

described in more detail in chapter 7.
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Figure 5.13: The steady state axisymmetric 4:1 contraction flow of the Hookean
dumbbell model fluid: the convergence behavior of the velocity field CM u , shear
stress CM τ and first normal stress difference CM Φ with respect to the iteration
number.

Results and discussion

The velocity and stress fields are obtained by averaging the results of 1000

iterations after attaining the desired convergence measures for the velocity field

(CMu < 2.5e − 4), shear stress (CMτ < 0.2e − 2) and the first normal stress

difference (CMΦ < 1.0e − 2), see Fig. 5.13. In this figure, the oscillations

appear pronounced as the CMs are plotted on a base 10 logarithmic scale and

the actual oscillations remain small and within the same order of magnitude in

each case. Although small oscillations can generally be attributed to the nature

of stochastic processes, it is not clear why there is an apparent minimum in the

CM behaviour. However, this minimum is not too different from the final value

of the CM (same order of magnitude). Fig. 5.14 shows the streamlines including

the size of the vortex, which is in pretty good agreement with the results of Laso

et al. (1995). Fig. 5.15 denotes the output velocity profile obtained from the

present method in which the maximum velocity on the centreline is 4.9743 (while

it is 5 in Laso et al. (1995)). For comparison with the results in Feigl et al.

(1995), the polymer-contributed stress field (the shear stress τxr and the first
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Figure 5.14: The steady state axisymmetric 4:1 contraction flow problem using
the Hookean model: Streamlines of the velocity field.

normal stress difference τxx − τrr) is determined and plotted with respect to x

and r along the length of the channel for three values of radius r1 = 0.05 (near

the centreline), r2 = 0.31 and r3 = 0.945 (near the wall of downstream). Figures

5.16, 5.17 and 5.18 are for the polymer shear stress and 5.19, 5.20 and 5.21 for

the first polymer normal stress difference as functions of x (−10 ≤ x ≤ 30)

along the channel.

In general, the present results are in good agreement with the results depicted

in figures 6-8 of Feigl et al. (1995) using CONNFFESSIT method. Several

differences can be found as follows: for shear stress, in the region near the

centreline of the section downstream of the abrupt contraction, the current

result is higher than ones of Feigl et al. (1995), but nearer to the results from a

macroscopic FEM, which were also presented in Feigl et al. (1995). The shear

stress seems to oscillate less in the region near the centerline of the upstream

section before the abrupt contraction but more on the downstream side (see

Fig. 5.16 and figure 6 of Feigl et al. (1995)).

In this example, the domain is filled homogenously with 450000 dumbbells. Two

cases of N = 300000 and 140000 dumbbells are also considered to assess the

adequacy of the number of dumbbells used. Figs. 5.16-5.21 show that, owning

to the use of the variance reduction technique and the overlapping EVSAs,
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Figure 5.15: The steady state axisymmetric 4:1 contraction flow using the
Hookean dumbbell model: the velocity profile at the outlet section.

a fewer number of dumbbells (300000) also gives good solutions for stresses.

The deviation in stresses increases noticeably (Figs. 5.18 and 5.21) when using

140000 dumbbells. The Reynold and Deborah numbers associated with problem

are given by Re = ρVdrd/ηo ≈ 0.5, De = λHVd
rd

≈ 5, respectively.
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Figure 5.16: The steady state axisymmetric 4:1 contraction flow problem using
the Hookean model: The polymer shear stress on the cylinder r = 0.05.
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Figure 5.17: The steady state axisymmetric 4:1 contraction flow problem using
the Hookean model: The polymer shear stress on the cylinder r = 0.31.
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Figure 5.18: The steady state axisymmetric 4:1 contraction flow problem using
the Hookean model: The first polymer normal stress difference on the cylinder
r = 0.945.
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Figure 5.19: The steady state axisymmetric 4:1 contraction flow problem using
the Hookean model: The first polymer normal stress difference on the cylinder
r = 0.05.
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Figure 5.20: The steady state axisymmetric 4:1 contraction flow problem using
the Hookean model: the polymer shear stresses on the cylinder r = 0.31 near
the reentrant corner.
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Figure 5.21: The steady state axisymmetric 4:1 contraction flow problem using
the Hookean model: the polymer first normal stress difference on the cylinder
r = 0.945 near the centre-line.

5.8 Concluding remarks

A new method for the computation of viscoelastic flows based on the com-

bination of a RBFN mesh-free numerical procedure and a Lagrangian SST is

demonstrated. The resultant micro-macro approach is able to solve several 2-D

viscoelastic flow problems.

The present method adopt the micro-macro approach of the CONNFFESSIT

idea (Feigl et al., 1995; Laso et al., 1997, 1999). However, the present method

has several advantages. Firstly, it is a mesh-free numerical method where the

governing PDEs are discretised simply by a set of random collocation points.

Secondly, the approximation of the variables is achieved with global RBF and

consequently it is also simple to generate effective volumes surrounding collo-

cation points (non-overlapped or overlapped) for the purpose of determining

polymer average stresses. The variance reduction technique and EVSAs allow

for a reduction of the number of dumbbells, and hence the computation time is
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decreased. Thirdly, since the stress tensor is determined by the SST, the number

of unknowns in the macroscopic component is significantly reduced. Further-

more, the pressure is dealt with by a penalty function technique, again reducing

the number of unknowns. Smaller number of unknowns improves the condition

number of the system, memory requirement and processing time. The use of

TPS-RBFN-based approximation results in a very smooth global stress tensor.

Finally, the inclusion of additional PBFs in the RBFNs improves remarkably

the accuracy and the convergence rate of the method. Besides the advantages

mentioned above, there exists several drawbacks associated with methods based

on the Lagrangian point of view, such as the present method: (i) extra effort

is required for both the particle tracking process and the stochastic simulation

technique, (ii) the implementation of the variance reduction technique is more

difficult. These drawbacks can be avoided by the use of the Brownian dynamics

simulation from the Eulerian point view, namely BCFs, which will be presented

in the next chapter.



Chapter 6

Element-free simulation of dilute

polymeric flows using Brownian

Configuration Fields

This chapter reports the CVFNNSS from the Eulerian point of view (Tran-

Canh and Tran-Cong, 2003a). The present method is based on the combination

of RBFN-based mesh-free method and Brownian configuration fields (BCFs)

where the stress is computed from an ensemble of continuous configuration fields

instead of convecting discrete particles, and the velocity field is determined by

solving the conservation equations for mass and momentum with a truly mesh-

free method based on RBFNs. Owing to nature of the BCFs, the control variate

variance reduction method is installed easily in the method. The method is

verified and its capability is demonstrated with the start-up planar Couette

flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE

model materials.
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6.1 Introduction

While the hybrid simulations using Brownian dynamics from the Lagrangian

point of view, namely CONNFFESSIT, have been introduced as a robust method

to solve the viscoelastic problems without the requirement of closed-form con-

stitutive equations, the BCFs (Hulsen et al., 1997) makes this mesoscopic ap-

proach easier in implementation and more efficient in performance. The BCF

method, also called Eulerian CONNFFESSIT (Suen et al., 2002), uses an en-

semble of configuration fields which represent the internal degrees of freedom

of the polymer molecules and bypasses the particle tracking process and hence

the extra effort associated with this process. Many works have used success-

fully this approach (Fan et al., 1998; Bonvin and Picasso, 1999; Somasi and

Khomami, 2000) where stochastic simulation techniques (SST for the calcula-

tion of the stress tensor) are coupled with element-based methods (e.g. FEM for

the solution of the governing equations such as the continuity and momentum

equations) in a micro-macroscopic approach.

In general, as an alternative to element-based discretisation of PDEs, various

finite point methods can be used in the so called meshless approach. Tran-Canh

and Tran-Cong (2002b, 2003a) coupled successfully the RBFN-based meshless

method with Lagrangian SST for the numerical solution of the start-up Couette

and 2D viscoelastic fluid flows. In the macroscopic part, the discrete model is

completely represented by a set of unstructured discrete collocation nodes in

the analysis domain and on its boundary (i.e. there is no need to generate finite

elements or define any topological connectivity) which is commonly referred to

as truly meshless or mesh-free or element-free approach. In other words, the

method can at least avoid the extra effort of meshing and re-meshing (if the

problem requires) associated with the element type methods. However, effective

volumes for stress averages (EVSA) can be flexibly generated around the collo-

cation points to help determine the average polymer stress (see 5.3.3). The re-

sultant element-free RBFN-SST method is Lagrangian as far as the microscopic
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part is concerned, and particle tracking could be inconvenient as described in

chapter 5.

In this chapter, an Eulerian element-free RBFN-SST method is developed fol-

lowing the BCF idea. In the present method, the polymer contribution to stress

at all collocation points is calculated using the BCF technique and then the con-

tinuity and momentum equations are solved using the RBFN-based method for

the velocity field and pressure. The chapter is organized as follows: §6.2 is

an outline of the scheme in which the governing PDEs and SDEs for the elas-

tic dumbbell models are briefly reviewed. In §6.3, the RBFN-based numerical

method for solving the conservation equations is briefly described, followed by

numerical methods of the solution of BCF’s. The associated variance reduction

techniques are described for the SDE’s for the Hookean and FENE dumbbell

models. §6.4 presents the algorithm of the present scheme for viscoelastic flow

problems, highlighting the macroscopic-microscopic interfaces of the method.

Numerical examples are then discussed in §6.5, followed by a brief conclusion

in §6.6.

6.2 Review on governing equations

The present work is concerned with the flow of dilute polymer solutions which

are modelled as an incompressible suspension of non-interacting macromolecules

in a Newtonian solvent. Under isothermal and steady state condition, an ap-

plication of the penalty function method transforms the governing equations

into

2ηN∇ ·D− ρ(u ·∇)u+ pe∇(∇ · u) = −∇ · τ p, (6.1)

and the penalty equation is given by

p = −pe(∇ · u), (6.2)
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subject to boundary conditions

u = uo, x ∈ Γu,

n ·∇u = qo, x ∈ Γt,

where u denotes the velocity field; n is the unit vector outwardly normal to the

boundary; D is the rate of strain tensor; ηN is the Newtonian solvent viscosity;

τ = 2ηND+τ
p is the extra stress; ρ is the fluid density; pe is a sufficiently large

penalty parameter (please see §5.2).

The microscopic method employs the Brownian dynamics simulation (or SST)

to determine the polymer contribution to stress τ p via kinetic modelling. The

kinetic theory-based models used here are the Hookean and FENE dumbbell

models in which the configuration of a dumbbell satisfies a certain stochastic

differential equation (SDE). In the Lagrangian approach, it is necessary to con-

vect a large number of molecules through the domain under consideration, which

requires extra effort associated with particle tracking. Hulsen et al. (1997) pro-

posed a modified CONNFFESSIT method which overcomes these drawbacks.

The method employs an ensemble of nd continuous configuration fields Q(x, t)

with respect to space and time instead of convecting discrete connector vectors

Qi’s. The main idea of this scheme is that after initiating nd spatially uni-

form configuration fields (nd,Q) whose values are independently sampled from

an equilibrium distribution function, the configuration fields are convected and

deformed by the drift component (flow gradient, elastic retraction) and by the

diffusion component (Brownian motion). This evolution of a configuration field

satisfies the following SDE

dQ =

[

−u ·∇Q+ κ ·Q− 2

ζ
F(Q)

]

dt+

√

4kBT

ζ
dW(t), (6.3)

where ζ is the friction coefficient between the dumbbell and the solvent; kB is

Boltzmann constant; T is the absolute temperature;W(t) is a 3-component vec-

tor which is a Wiener process with mean 〈Wi(t)〉 = 0 and covariance 〈Wi(t)Wj(t
′)〉

= δij min(t, t′) and accounts for the random displacement of the beads due to



6.2 Review on governing equations 159

thermal motion; κ is the velocity gradient; F is the spring connector force

between the two beads and depends on the model. Letting H be the spring

constant, the connector force is given by

F = HQ, (6.4)

F = H
Q

1−
(

Q

Qo

)2 , (6.5)

for the Hookean and the FENE dumbbell models, respectively, where Qo is the

maximum possible spring length. The configuration fields (nd,Q) are obtained

by solving the SDE Eq (6.3). The term u(x, t) · ∇Q(x, t) accounts for the con-

vection of the configuration fields by the flow. It can be seen that the existence

of the convective term in this Eulerian framework is completely equivalent to

the particle tracking in the traditional Lagrangian CONNFFESSIT approach.

Once the configuration fields are known, the stress can be determined as follows

τ
p = −ndkBT I+ nd〈Q · F〉, (6.6)

where nd is the density of dumbbells; I is the identity tensor and F is the spring

force. The configuration field Q is non-dimensionalised by
√

kBT
H

, and equation

(6.3) becomes

dQ′(t) =

[

−u(x, t) ·∇Q′(x, t) + κ(x, t) ·Q′(x, t)− 1

2λH

F
′

(Q
′

(x, t))

]

dt

+

√

1

λH

dW(t), (6.7)

where Q
′

= Q[H/(kBT )]
1/2 is the dimensionless form of the configuration field

vector Q; λH = ζ/(4H) is the relaxation time of dumbbells; b = HQ2
o

kBT
is the

square of the maximum possible extension of the dimensionless configuration

field Q′ and F′ is the dimensionless spring force given by

F′ = Q′, (6.8)

F′ =
Q′

1− Q
′2

b

, (6.9)

for the Hookean and FENE dumbbell models, respectively. For the sake of

brevity, primes will be dropped in the following discussion.
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6.3 Computational schemes

In this section, computational techniques are described for the numerical solu-

tion of the conservation equations (momentum and continuity equations) and

the Brownian configuration fields, respectively. For the stochastic processes,

a variance reduction technique is described, followed by a presentation of the

overall algorithm.

6.3.1 RBFN-based element-free method for solving the

momentum and continuity equations

An element-free method based on RBFNs for solving PDEs was developed

and reported elsewhere (e.g. Tran-Canh and Tran-Cong, 2002b). Briefly, the

method takes advantage of the fact that a smooth function can be approximated

by a RBFN such as (Haykin, 1999; Golberg et al., 1996)

f(x) =
m
∑

j=1

wjhj(x) +
m̄
∑

k=1

ιkpk(x) = HT (x)w +PT (x)ι, (6.10)

m
∑

i=1

pk(xi)ω
i = 0, k = 1, · · · , m̄, (6.11)

where wj ∈ w (wT = [w1 w2 ... wm]) and ιk ∈ ι (ιT = [ι1 ι2 ... ιm̄])

are the synaptic weights; hj is the chosen radial basis function corresponding to

the jth RBF-neuron; pk is the polynomial basis function corresponding to the

kth PBF-neuron; m + m̄ is the total number of neurons. H and P are defined

as follows

HT (x) = [h1(x) h2(x) ... hm(x)], (6.12)

PT (x) = [p1(x) p2(x) ... pm̄(x)]. (6.13)

Let n be the number of training collocation points (xi, ŷi); xi is the coordinate

of the ith collocation point and ŷi is the desired value of function f at the

collocation point xi.
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RBFN procedure

As discussed in chapter 5, here collocation points are chosen to be the same

as RBF centres, i.e. m = n, which are uniformly distributed in the physical

domain. The unknown weights are found by minimizing an appropriate cost

function given by

C(w
′

, λ) =
n
∑

i=1

(ŷi − f(xi))
2 + λ

n
∑

j=1

w̃(j)2, (6.14)

where λ is a global regularization parameter; w̃j ∈ w′

, then the partial deriva-

tives of f(x) can be calculated analytically as follows

Lf(x) =
n
∑

j=1

wjLhj(x) +
m̄
∑

k=1

ιkLpk(x), (6.15)

where L is a derivative operator

In particular, each variable in the momentum and continuity equations is ap-

proximated by an RBFN such as (6.10), and those equations are collocated

at chosen points throughout the analysis domain, yielding the following sum

square error (non-dimensional form) as follows

SSE =

∑

i∈Ω

{

α

[

∂2u1
∂x21

+
∂2u1
∂x22

]

−Re

[

u1
∂u1
∂x1

+ u2
∂u1
∂x2

]

+ pe

[

∂2u1
∂x21

+
∂2u1
∂x1∂x2

]

i

+ φ1i

}2

i

+

∑

i∈Ω

{

α

[

∂2u2
∂x21

+
∂2u2
∂x22

]

−Re

[

u1
∂u2
∂x1

+ u2
∂u2
∂x2

]

+ pe

[

∂2u2
∂x22

+
∂2u2
∂x1∂x2

]

i

+ φ2i

}2

i

+

∑

i∈Γu

{u1 − uo}2 +
∑

i∈Γt

{

[n1
∂u1
∂x1

+ n2
∂u1
∂x2

]− qo

}2

i

, (6.16)

where i denotes the ith collocation point; α = ηN
ηo
; ηo = ηN+ηp, ηp is the polymer

viscosity; Re = ρV a
ηo

, V and a are characteristic velocity and length, respectively;

φ1i =
∂τp

11

∂x1
(xi) +

∂τp
21

∂x2
(xi); φ2i =

∂τp
12

∂x1
(xi) +

∂τp
22

∂x2
(xi). The stresses are scaled by

ηoV/a. Applying the general linear least-squares principle to (6.16) (taking into

account (6.11)), a system of linear algebraic equations of the unknown weights
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is obtained as follows

Gw′ = BT ŷ, (6.17)

where G is the variance matrix and B is the design matrix defined in §5.5.2;
w′ is the vector of all weights; ŷ is the vector of known values. In the present

work, the RBFN-based least squares method did not encounter any instability.

Furthermore, several recent works (Fasshauer, 1996; Franke and Schaback, 1998

and Kansa and Hon, 2000) have pointed out that the RBFN-based meshfree

methods are stable and do not require any stabilizing schemes. In this chapter,

the TPS of Duchon (1976) is chosen as the RBF which was presented in chapter

5.

6.3.2 Numerical simulation of the configuration fields

In this section, the second-order semi-implicit predictor-corrector scheme is ap-

plied in solving the governing Eulerian SDE of Brownian configuration fields

(6.7). Here, the time discretisation of the elastic dumbbell configuration fields

is described only briefly for the FENE model. The technique consists of two

steps as follows

(i) The predictor step

For a dumbbell, let Qn, Qn+1 be an approximation of Q(t) at time steps

tn and tn+1, respectively. Using a fixed time stepsize ∆t for the stochas-

tic process, the predicted BCF Q∗
n+1at the time step tn+1 is explicitly

determined as follows:

Q∗
n+1 = Qn −



un · ∇Qn − κn ·Qn −
Qn

2λH

(

1− Q2
n

b

)



∆t+

√

∆t

λH

Wn,

(6.18)

where the components of the random vector Wn are independent Gaus-

sian variables with zero mean and ∆t variance. Since Wn depends on

time only, it affects the configuration fields in a spatially uniform way and
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hence the gradient of the configuration fields are well defined as smooth

functions with respect to spatial coordinates (Hulsen et al., 1997). The

gradient of the configuration and velocity, ∇Qn and κn, at time-step tn

are determined by calculating directly the derivatives of the approximant

of Qn and un (TPS-RBFNs), as shown in Eq (6.15). The updated config-

uration fields Q∗
n+1 are employed to estimate the polymer contribution to

the predicted stress τ ∗n+1, according to (6.6), which is in turn used to get

the solutions of the predicted velocity at time tn+1 by solving Eq (6.1).

The predicted velocity fields u∗n+1, also approximated by TPS-RBFNs,

and associated gradients are employed in the corrector step.

(ii) The corrector step



1 +
∆t

4λH

(

1− Qn+1

b

)



Qn+1 = Qn+
1

2



− un · ∇Qn − u∗n+1 · ∇Q∗
n+1

+ κn ·Qn + κ
∗
n+1 ·Q∗

n+1 −
Qn

2λH(
(

1− Q2
n

b
)
)



∆t+

√

∆t

λH

Wn. (6.19)

Eq (6.19) leads to a unique cubic equation for |Qn+1| of which admissible so-

lutions are those that satisfy 0 ≤ |Qi+1| <
√
b (Öttinger, 1996). It is noted

that the gradients of the configuration and velocity on the RHS of (6.19) and

(6.18) are determined by calculating directly the derivatives of their TPS-RBFN

approximant as shown in Eq (6.15) and the random numbers Wn in the two

predictor and corrector steps are the same.

The polymer stress tensor is then determined by the average of the configuration

fields evaluated at each collocation point and given by Kramers’ expression as

follows (Bird et al., 1987b; Öttinger, 1996):

τ
p = −ndkBT (〈QQ〉 − I) , (6.20)

τ
p = −ndkBT

(〈

QQ

1− Q2

b

〉

− I

)

, (6.21)

for the Hookean and FENE dumbbell models, respectively.



6.3 Computational schemes 164

6.3.3 Control variate scheme for variance reduction in

BCFs simulation

Owing to the Eulerian nature of the BCF scheme, the implementation of the

the control variate techniques is achieved easily in the present approach. In this

chapter, the implementation of the control variate method in conjunction with

BCFs is presented for the Hookean and FENE dumbbell models as follows: at

each collocation point, nd dumbbells are assigned and numbered from i = 1..nd

where dumbbells having the same index in the whole analysis domain have the

same random number. Here, for illustration, this technique is employed for the

numerical calculation of the polymer contribution to stress (6.20)-(6.21) where

the expectations of random variables QQ and QQ

1−Q2

b

are required, respectively,

for the Hookean and FENE models. At each time t and position x, let Q̄(x, t)

be the control variate corresponding to the configuration field Q(x, t). The

variance reduction method is carried out by splitting the expectation above as

follows (Bonvin and Picasso, 1999)

〈QQ〉 =
〈

Q̄Q̄
〉

+
〈

QQ− Q̄Q̄
〉

, (6.22)
〈

QQ

1− Q2

b

〉

=

〈

Q̄Q̄

1− Q̄2

b

〉

+

〈

QQ

1− Q2

b

− Q̄Q̄

1− Q̄2

b

〉

. (6.23)

When Q̄ = 0 there is no variance reduction. From (6.22)-(6.23), the polymer

stress tensors (6.20)-(6.21) are rewritten as follows

τ
p = −ndkBT

(

〈QQ− Q̄Q̄〉
)

+ τ̄
p
hook, (6.24)

τ
p = −ndkBT

(〈

QQ

1− Q2

b

− Q̄Q̄

1− Q̄2

b

〉)

+ τ̄
p
fene, (6.25)

where τ̄ P
hook and τ̄

p
fene are given by

τ̄
p
hook = −ndkBT

(〈

Q̄Q̄
〉

− I
)

, (6.26)

τ̄
p
fene = −ndkBT

(〈

Q̄Q̄

1− Q̄2

b

〉

− I

)

. (6.27)

The first terms of the RHS of (6.24) and (6.25) are calculated by using Brownian

dynamic simulations and the second terms are determined in a deterministic
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way. In the present work, since Q̄’s are estimated at equilibrium configuration

both τ̄ hook and τ̄ fene are zero and the configuration vectors Q̄’s satisfy the

following SDE

dQ̄ = − F̄

2λH

dt+

√

1

λH

dW(t), (6.28)

where F̄ is given by

F̄ = Q̄, (6.29)

F̄ =
Q̄

1− Q̄2

b

, (6.30)

for Hookean and FENE dumbbell models, respectively. The polymer stress

tensors (6.24)-(6.25) are rewritten as follows

τ
p = −ndkBT

(

〈QQ− Q̄Q̄〉
)

, (6.31)

τ
p = −ndkBT

(〈

QQ

1− Q2

b

− Q̄Q̄

1− Q̄2

b

〉)

. (6.32)

6.4 Algorithm of the present method

In general, the overall approach can now be described in a detailed algorithm

(see Figs. 6.1 and 6.2 for flowcharts) as follows:

(a) Generate a set of collocation points and start with an initial velocity for the

first iteration (zero in the present work) along with the boundary conditions

of problem;

(b) Assign nd dumbbells to each collocation point. These dumbbells are num-

bered from i = 1 to nd. All dumbbells having the same index constitute

a configuration. Hence there is an ensemble of nd configuration fields Qi

(i = 1..nd). Initially, the polymer configuration fields are spatially uniform

and their values are independently sampled from the known equilibrium dis-

tribution function which is a 3-D Gaussian distribution with zero mean and

unit covariance (Bird et al., 1987b; Öttinger, 1996). Since all the dumbbells
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having the same index receive the same random numbers, there is a strong

correlation between dumbbells in a configuration. The control variates Q̄i’s

associated with the configuration fields Qi’s are created as described in

§6.3.3;

(c) Calculate velocity gradient fields directly by differentiating the RBFNs that

approximate the velocity fields;

(d) Calculate the polymer configuration fields using the method described in

§6.3.2. To ensure strong correlation within a configuration field, all the

dumbbells of the same index have the same random numbers. For each

configuration field Q, a corresponding control variate Q̄ is determined ac-

cording to the procedure described in §6.3.3. In this work, while the time

discretisation of the BCF is carried out by a predictor-corrector scheme,

the control variates which are governed by Eq (6.28) is estimated by Euler

method;

(e) Determine the polymer contribution to stress by taking the ensemble av-

erage of the polymer configurations at each collocation point using (6.24)

and (6.25) for the Hookean and the FENE dumbbell models, respectively.

Impose the stress boundary conditions at the collocation points located on

the boundary;

(f) The stress is then approximated globally by TPS-RBF networks which are

the ultimate description of the stress field;

(g) With the stress field just obtained, solve the set of conservation equations for

the new velocity field using the RBFN-based mesh-free method as described

in §6.3.1;

(h) Terminate the simulation when either the desired time or convergence is

reached. The latter is determined by a convergence measure for either the

velocity field or the stress field, which is defined for the velocity field by

CM =

√

∑N
1

∑d
i=1(u

n
i − un−1

i )2
∑N

1

∑d
i=1(u

n
i )

2
< tol, (6.33)
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where d is the number of dimension (2 in the present work); tol is a preset

tolerance; ui is the i component of the velocity at a collocation point; N

is the total number of collocation points and n is the iteration number.

Convergence is also checked for the shear stress and the first normal stress

difference;

(i) Return to step (d) for the next time level of the microscopic process.
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Figure 6.1: General flow-chart of the present meshless RBFN-SST method. See
Fig. 6.2 for details of the calculation of the BCFs.
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Figure 6.2: Details of the calculation of the BCFs using semi implicit predictor
corrector method. This flowchart represents part of the overall flowchart shown
in Fig. 6.1.
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Figure 6.3: The start-up planar Couette flow problem: the bottom plate moves
with a constant velocity V = 1, the top plate is fixed; no-slip boundary con-
ditions apply at the fluid-solid interfaces. The collocation point distribution is
only schematic.

6.5 Numerical examples

The present method is verified with the simulation of the start-up planar Cou-

ette and steady state planar Poiseuille flows of Hookean and FENE model fluids.

The capability of the method is then demonstrated with the simulation of the

lid driven cavity flow of the Hookean model fluid. For all examples, the criterion

for convergence is tol = 10−4 applied to the velocity field.

6.5.1 Start-up planar Couette flow

This problem was earlier studied by Mochimaru (1983) for the FENE-P model,

by Laso and Öttinger (1993) and Tran-Canh and Tran-Cong (2002b) for the

FENE and FENE-P models, and it is used here to verify the present method.

The problem is defined in Fig. 6.3 and the chosen physical parameters are

ηo = ηN + ηp = 1, ρ = 1.2757, λH = 49.62, b = 50, ηN = 0.0521, ∆t = 10−2

(Mochimaru, 1983; Laso and Öttinger, 1993).
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Figure 6.4: The start-up planar Couette flow problem using the FENE model:
the velocity convergence rate. The parameters of the problem are number of
collocation points = 25, the number of dumbbells at each collocation point
= 1000, λH = 49.62, b = 50, ηN = 0.0521 and ∆t = 10−2.

To ensure that the centre density is adequate, three levels of discretisation are

used, namely n = 17, n = 23 and n = 25, and the results show that the

solutions obtained do not differ significantly. Only the results corresponding to

n = 25 are presented here. The analysis is carried out for the FENE dumbbell

model where the configuration fields are produced with one thousand dumbbells

at each collocation point and the velocity convergence is shown in Fig. 6.4.

The control variate is calculated at the equilibrium state. The simulation is

continued for t ≥ 0 until the flow reaches the steady state. Fig. 6.5 describes

the evolution of the velocity at four locations y = 0.2, y = 0.4, y = 0.6 and

y = 0.8 and shows that the velocity overshoot occurs sooner in fluid layers

nearer to the moving wall. Fig. 6.6 depicts the evolution of the velocity profile

with respect to the coordinate y, which confirms that velocity undershoot is

insignificant in comparison with overshoot. Figs. 6.7 and 6.8 describe the

evolution of the shear stress and the first normal stress difference, respectively

at locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8. The present result is a

close match with the results of CONNFFESSIT (Laso and Öttinger, 1993). It

is notable that the quality of convergence is better than that achieved with the

Lagrangian CVFNNSS method reported in chapter 4.
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Figure 6.5: The start-up planar Couette flow problem using the FENE model:
the time evolution of velocity at locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8.
The parameters of the problem are number of collocation points = 25, the
number of dumbbells at each collocation point = 1000, λH = 49.62, b = 50,
ηN = 0.0521 and ∆t = 10−2.
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Figure 6.6: The start-up planar Couette flow problem using the FENE dumbbell
model: the velocity profile with respect to location y at different times. The
parameters are the same as in Fig. 6.5.
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Figure 6.7: The start-up planar Couette flow problem using the FENE dumbbell
model: the evolution of shear stress at locations y = 0.2, y = 0.4, y = 0.6,
y = 0.8 with respect to time. The parameters are the same as shown in Fig.
6.5.
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Figure 6.8: The start-up planar Couette flow problem using the FENE dumbbell
model: the evolution of the first normal stress difference at the locations y = 0.2,
y = 0.4, y = 0.6, y = 0.8 with respect to time. The parameters are the same as
in Fig. 6.5.
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Figure 6.9: a) The planar Poiseuille flow problem with parabolic inlet velocity
profile; non-slip boundary conditions applied at the fluid-solid interfaces. b)
The collocation point distribution is only schematic.

6.5.2 The steady state planar Poiseuille flow

The planar creeping Poiseuille problem and coordinate system are described in

Fig. 6.9a where only half of the fluid domain needs to be considered, owing

to symmetry. The geometry and fluid parameters are the same as in §5.7.1.
Using two collocation densities, namely 15 × 15 and 25 × 25, whose schematic

distribution is shown in Fig. 6.9b, 1000 dumbbells are assigned at each collo-

cation point. In this example, two models, namely Hookean and FENE, are

considered. The boundary conditions were described in §5.7.1.

Sum square error

The expression of sum square error (6.16) for the creeping planar Poiseuille

flows is given by
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SSE =
∑

xi∈Ω

(

∂u1
∂x1

(xi) +
∂u2
∂x2

(xi)

)2

+
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xi∈Ω
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α

[
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∂x21
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]

− ∂p
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+
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∑
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u22(xi) +
∑

xi∈Γ2
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∑

xi∈Γ2

{

∂u1
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(xi)
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+

∑

xi∈Γ3

u22(xi) +
∑

xi∈Γ4

u21(xi) +
∑

xi∈Γ4

u22(xi), (6.34)

where φ1(xi) =
∂τp

11

∂x1
(xi) +

∂τp
21

∂x2
(xi); φ2(xi) =

∂τp
12

∂x1
(xi) +

∂τp
22

∂x2
(xi); up is the inlet

velocity profile given in section §5.7.1.

Results and discussion

The solutions obtained for the velocity field, shear stress and the first normal

stress difference are the averages of the last 200 iterations after reaching the

steady state. For the Hookean dumbbell model, the parabolic velocity profile

is accurately recovered in the downstream region as expected. Fig. 6.10 and

6.11 show the polymer shear stress and the first normal stress difference on the

middle plane x1 = 0.5 corresponding to the two collocation densities 15 × 15

and 25 × 25. The results are in very good agreement with the analytical solu-

tion given by Eq (5.43). Fig 6.10 also shows the polymer shear stress and the

first normal stress difference at several steps after convergence (steps 120, 121,

122) which depicts small oscillation in steady state solutions as iteration goes

on. Such oscillation has its origin in stochastic nature of the microscopic stress

calculation, and therefore the final result is obtained by averaging a large num-

ber of these ‘steady state’ solutions. If different random numbers are generated

for the initial configuration, different trajectories of velocity and stresses will be

experienced but the final average results do not change, which is a characteristic
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Figure 6.10: The steady state planar Poiseuille flow problem using the Hookean
dumbbell (Oldroyd-B) model: the polymer shear stress and the first normal
stress difference on the middle plane x1 = 0.5 with respect to x2 are denoted
by ‘×’ for the step 121, ‘o’ for step 122, solid line for step 123, solid line for
the average of the last 200 steps and dashed line for the analytical solution,
respectively.

of stochastic simulations (Öttinger, 1996). Furthermore, the error observed in

Fig. 6.10 is due to the coarse discretisation used (15x15 collocation points), as

evidenced by the accurate results presented in Fig. 6.11 where 25x25 collocation

points were used.
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Figure 6.11: The steady state planar Poiseuille flow problem using the Hookean
dumbbell (Oldroyd-B) model with 25×25 collocation points: the polymer shear
stress and the first normal stress difference (averaged of the last 300 steps) on
the middle plane x1 = 0.5 with respect to x2 are denoted by ‘4’. The dashed
line represents the analytical solution.
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Figure 6.12: The steady state planar Poiseuille flow problem: comparison of
the polymer shear stress on the middle plane x1 = 0.5, ‘4’ for Hookean model,
‘∗’ for FENE (b=50), ‘¦’ for FENE (b=20) using the present method and solid
line through ‘+’ for Oldroyd-B (Hookean) model using analytical method.
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Figure 6.13: The steady state planar Poiseuille flow problem: comparison of
the first normal stress difference on the middle plan x1 = 0.5, ‘4’ for Hookean
model, ‘∗’ for FENE (b=50), ‘¦’ for FENE (b=20) using the present method and
solid line through ‘+’ for Oldroyd-B (Hookean) model using analytical method.
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Figure 6.14: a) The lid driven square cavity problem: velocity of the upper lid
is unity; non-slip boundary conditions apply at the fluid-solid interfaces. b)
The collocation point distribution is only schematic.

6.5.3 Lid driven square cavity

While this problem has attracted the interest of many researchers in the case

of viscous fluids, there are very few numerical results for viscoelastic fluids.

Mendelson et al. (1982) and Grillet et al. (1999) use the FEM for the anal-

ysis and Tran-Cong et al. (2002) employs a BEM and RBF approach for the

numerical solution for the Oldroyd-B model. On the other hand, Pakdel et al.

(1997) performed experiments on an ideal Boger fluid. The results cited above
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are used here for qualitative comparison with the present results since the flu-

ids used in those studies are different, except for the case of Tran-Cong et al.

(2002), from the Hookean dumbbell model (Oldroyd-B model) used here. The

flow is creeping, isothermal and in a steady state.

The geometry of the computational domain with the chosen coordinate system is

shown in Fig. 6.14a. Let L andH be the width and height of cavity, respectively.

Using six different sets of collocation points (11×11+2); (15×15+2); (17×17+

2), (19×19+2), (21×21+2) and (41×41+2) whose schematic distribution is

described in Fig. 6.14b, 1000 dumbbells are assigned at each collocation point.

The fluid parameters are given by

α =
ηN
ηo

= 1/9; λH = 1. (6.35)

Let V be the speed of the lid. The Deborah numbers is given by

De =
λHV

H
.

Similar to the works of Tran-Cong et al. (2002) and Grillet et al. (1999), the

Dirichlet boundary conditions are given, in dimensionless form, by (Fig. 6.14.a):


















u1(x) = 1 ∀x ∈ Γ1,

u2(x) = 0 ∀x ∈ Γ1,

u(x) = 0 ∀x ∈ Γ2.

In order to reduce the number of the degrees of freedom of the problem, the

penalty function method for the momentum equation (6.1) is employed and

then the sum square error (6.16) is rewritten as follows:

SSE =
∑

xi∈Ω

(

α

[

∂2u1
∂x21

+
∂2u1
∂x22

]

xi

+
pe
ηo
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+
∂2u1
∂x1∂x2

]

xi

+ φ1,i

)2

+
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∂2u2
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]

xi

+ φ2,i

)2

+

∑

xi∈Γ1

(u1 − 1)2xi +
∑

xi∈Γ1

(u2)
2
xi
+
∑

xi∈Γ2

(u1)
2
xi
+
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xi∈Γ2

(u2)
2
xi
. (6.36)
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where φ1,i =
∂τp

11

∂x1
(xi)+

∂τp
21

∂x2
(xi) and φ2,i =

∂τp
12

∂x1
(xi)+

∂τp
22

∂x2
(xi) are known by virtue

of the BCFs simulation and approximated using TPS-RBFNs and (.)xi denotes

the value of (.) at xi.

For the discretisation with (41 × 41 + 2) collocation points, the iterative non-

overlapping domain decomposition technique is employed in order to deal with

the dense matrix and its possible ill-conditioning. The result obtained as de-

picted in Fig. 6.16, is carried out using four equal sub-domains. The domain

decomposition problem is detailed in the next chapter.

Results and discussion

In order to demonstrate that numerical solutions converge to the correct so-

lution, six different sets of collocation points are used as described above and

‘mesh convergence’ is measured by the following criterion

CR =

√

√

√

√

√

√

√

√

∑

tp

2
∑

i=1

(

un
i − un−1

i

)2

∑

tp

2
∑

i=1

(un
i )

2

, (6.37)

where tp is the set of internal test points, un−1
i is the ith component of the

velocity at an internal test point associated with the coarser discretisation and

un
i is the corresponding quantity associated with the finer one. Since the solution

(velocity field) is the average of the results of a number of iterations, un−1
i and un

i

are the average values at the internal test points. Table 6.1 reports the trend of

CR for the velocity field with increasing collocation density for De = 1.0. The

process is deemed to have achieved ‘mesh convergence’ when CR is O(10−2).

As in the previous examples, the numerical solutions are the average of the

results of the last 200 iterations after convergence. In the case of the Hookean

dumbbell model, the result is in good agreement with the findings of Tran-Cong

et al. (2002). Figs. 6.15 (collocation density 21× 21 + 2) and 6.16 (collocation

density 41×41+2) depict the velocity field for De = 1 and Figs. 6.17 describes
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Table 6.1: The lid driven square cavity flow problem using the Hookean dumb-
bell model: Trend of the ‘mesh convergence’ measure, CR defined by (6.37) with
increasing number of collocation points for De = 1. N : number of collocation
points, tp: number of internal test points.

N tp CR
11× 11 + 2 81 1.0000
15× 15 + 2 81 0.0447
17× 17 + 2 169 0.0123
19× 19 + 2 225 0.0116
21× 21 + 2 289 0.0097
41× 41 + 2 443 0.0093

the x1-component velocity profile on the vertical central plane x1 = 0.5 and the

x2-component velocity profile on the horizontal central plane x2 = 0.5.

Fig. 6.18 depicts the velocity field for De = 1.5. The results show that the

primary vortex center tends to shift upstream and towards the driving lid when

De increases. The primary vortex appears to extend up to the walls as shown

in Fig. 6.16 where the size and location of secondary vortices can also be

observed in the lower left and right corners. Although the present results can

only be compared with Tran-Cong et al. (2002) as they used the same model

fluid (Oldroyd-B), it is generally in qualitative agreement on the typical flow

features reported by Grillet et al. (1999), Mendelson et al. (1982), and Pakdel

et al. (1997) in which the vortex shifts upstream as the De number increases.

Since the discussion on the efficiency of the control variate variance reduction

is not the object of the present work, only an observation of the effect of the

number of configuration fields on the velocity fields is given in Fig. 6.19 for the

cases of 600, 1000 and 1400 dumbbells assigned at each collocation point and

De = 1. The results shown in Fig. 6.19 demonstrate that the choice of 1000

dumbbells is adequate.



6.5 Numerical examples 183

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x 2

0.2 0.3 0.4 0.5 0.6 0.7

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

x
1

x 2

Figure 6.15: The lid driven square cavity flow problem using the Hookean
dumbbell model: The velocity field (upper figure). The zoomed velocity field
around the vortex position (lower figure). The parameters are α = 1/9, λH =
1 (De = 1), (21× 21 + 2) collocation points.
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Figure 6.16: The lid driven square cavity flow problem using the Hookean
dumbbell model: the velocity field (upper figure); the zoomed velocity field
around the vortex positions. The parameters are α = 1/9, λH = 1 (De = 1),
(41× 41 + 2) collocation points.
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Figure 6.17: The lid driven square cavity flow problem using the Hookean
dumbbell model: the profile of the velocity component u2 on the horizontal
central plane (upper figure). The profile of the velocity component u1 on the
vertical central plane (lower figure). The solid lines are for the last several steps
and −o− denotes the average of the results from the last 200 iterations. The
parameters are the same as in Fig. 6.15.
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Figure 6.18: The lid driven square cavity flow problem using the Hookean
dumbbell model: The velocity field (upper figure). The zoomed velocity field
around the vortex position (lower figure). The parameters are same as in Fig.
6.15 except that λH = 1.5 (De = 1.5).
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Figure 6.19: The lid driven square cavity flow problem using the Hookean dumb-
bell model: the profile of the velocity component u2 on the horizontal central
plane (lower figure). The profile of the velocity component u1 on the vertical
central plane (upper figure). The average of the results from the last 200 iter-
ations corresponding to the number of dumbbells assigned at each collocation
point 600, 1000 and 1400. The parameters are the same as in Fig. 6.15, De =
1.
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6.6 Concluding remarks

This chapter reports the development of a computational method for viscoelastic

flows using a combination of a RBFN-based element-free method and SST from

the Eulerian point of view for 1D and 2D problems.

The main advantages of the present method are that: particle tracking is not

necessary; variance reduction of the stochastic stress tensor is achieved for the

same number of dumbbells used; the noise effect due to the Brownian component

is reduced; the method is element-free in both macroscopic and microscopic

parts and only an unstructured set of collocation points is required to discretise

all governing equations.

The method is verified with standard test problems, namely the start up Couette

flow and the planar Poiseuille flow problems. The potential of the method is

demonstrated with the successful solution of a non trivial problem, namely

the lid-driven square cavity problem. Besides the advantages, the drawback of

the present method when solving large scale problems is the possibility that

coefficient matrices are ill conditioned. This disadvantage can be overcome by

means of a domain decomposition technique as described in the next chapter.



Chapter 7

Parallel mesh-free

TPS-RBFN-BCF with Domain

Decomposition for dilute

polymer solution

This chapter reports the suitability of a domain decomposition technique for

the hybrid simulation of dilute polymer solution flows using Eulerian Brownian

dynamics and RBFN-based methods (Tran-Canh and Tran-Cong, 2003c). As

shown in the previous chapter, the RBFN-BCF method incorporates the fea-

tures of the BCFs scheme (which render both closed form constitutive equations

and a particle tracking process unnecessary) and a meshless method (which

eliminates element-based discretisation of domains). However, when dealing

with large scale problems, there appear several difficulties: the high computa-

tional time associated with the SST, and the ill-condition of the system matrix

associated with the RBFNs. One way to overcome these disadvantages is to

use parallel domain decomposition (DD) techniques. This approach makes the

BCF-RBFN method more suitable for large scale problems
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7.1 Introduction

In this chapter, the RBFN-BCF method is considered in conjunction with do-

main decomposition techniques for approximation of functions and solution of

PDEs. The domain under consideration is partitioned into a number of subdo-

mains and the task on each subdomain is carried out on a distributed memory

computer with a parallelization procedure. Furthermore, since the tasks of the

stochastic and deterministic processes such as solving the SDEs for dumbbells

and the PDEs governing the flow, can be carried out separately in subdomains,

the parallel DD techniques can be applied effectively in both macroscopic and

microscopic components. In general either only one subdomain or a group of

sub-domains can be handled by a separate processor, the former case is con-

sidered here. Hence, the parallel domain decomposition method increases the

throughput, and, at the same time, removes the problem of ill-conditioning of

the system matrix associated with the RBFN-based method (discrete ill-posed

problem). For the purpose of function approximation, the domain decompo-

sition is relative simple in the sense that the data on the interfaces between

the sub-domains are known. It is more complex for solving PDEs in applying

the DD method. Since the interfaces between the subregions are considered as

part of the boundary of the sub-domains, the associated unknowns need to be

determined as part of the solution of the problem.

The domain decomposition techniques can be classified into two main categories,

namely the sub-regioning and the substructuring DD methods. The former in-

cludes iterative non-overlapping schemes (Marini and Quarteroni, 1988; Funaro

et al., 1988; Yang, 1996), and the iterative overlapping schemes using the addi-

tive or multiplicative Schwarz techniques (Zhou et al., 2003). While the subre-

gioning methods focus on the way to estimate the boundary conditions on the

interfaces that ensures the continuity and the smoothness across the interfaces,

the substructuring DD method is based on explicit computation and factoriza-

tion of a sequence of Schur complement matrices. These techniques circumvent
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the ill-posed problem resulted from using the RBFs as a global interpolant, re-

duce the memory requirement and achieve a high accuracy of the solution. In

the present work, the iterative non-overlapping domain decomposition method

is employed in conjunction with the hybrid RBFN-BCF simulation. The chap-

ter is organized as follows. In §7.2, the RBFN-BCF method for dilute polymer

solution is reviewed briefly. §7.3 is to present the domain decomposition for

the RBFN-based method in which the iterative non-overlapping DD for solving

PDEs is described. The parallelization of the BCF-RBFN method is reported

in §7.4. Numerical examples are then discussed in §7.5 in which the steady state

10:1 planar contraction and lid driven cavity flows are simulated, followed by a

brief conclusion in §7.6.

7.2 Review of TPS-RBFN-BCF method for di-

lute polymer solutions

A dilute polymer solution is considered as an incompressible suspension of non-

interacting dumbbells in a Newtonian solvent. Dumbbells are characterized by

connector vectors Q’s. These connector vectors, which constitute Brownian

Configuration Fields (Hulsen et al., 1997), satisfy the dimensionless form of the

SDE as follows

dQ =

[

−De

(

u ·∇Q+ κ ·Q
)

− 1

2
F(Q)

]

dt+ dW(t), (7.1)

where Q, u, t are the dimensionless forms of connector vectors, velocity fields

and time, scaled by (kBT/H)1/2, V , λH , respectively; De = λH/λflow is the

Deborah number; λH = ς/4H and λflow = a/V are characteristic relaxation

times of the fluid and flow, respectively; ς is the friction coefficient between

the dumbbell and the solvent; H is the spring constant; a, V are characteristic

length and velocity; kB is the Boltzmann constant; T is the absolute tempera-

ture; κ is the velocity gradient;W(t) is a Wiener process with mean 〈Wi(t)〉 = 0
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and covariance 〈Wi(t)Wj(t
′)〉 = δij min(t, t′) and accounts for the random dis-

placement of the beads due to thermal motion, and F is the dimensionless spring

force which is given by, for the FENE and FENE-P models, respectively

FFENE =
Q

1− (Q2/b)
, FFENE-P =

Q

1− 〈Q2〉/b, (7.2)

where b = HQ2
o/kBT is the square of the dimensionless maximum extensibil-

ity. Based on the Brownian configuration fields, the polymer stress tensor is

determined by Kramer formula as

τ
p = −〈Q.F(Q)〉+ I, (7.3)

where τ p is the dimensionless form of the polymer stress tensor scaled by ndkBT ;

nd is the density of dumbbells; I is the unity matrix. The velocity field in Eq

(7.1) of steady, isothermal, incompressible flows is governed by the equation of

momentum (using the penalty function method) as follows

2α∇ ·D−Re(u · ∇)u+ β1∇ (∇ · u) = −β2∇ · τ p, (7.4)

where p = −pe(∇ ·u); pe is a sufficiently large parameter (see §5.2); α = ηN/ηo;

Re = ρV a/ηo; ηo = ηN + ηP ; ηN , ηP are the solvent and polymer viscosities;

ρ is the fluid density; β1 = pe/ηo; β2 = ndkBT/(ηoV/a) is a dimensionless pa-

rameter; p is the pressure arisen from the incompressible constraint; D and τ p

denote the dimensionless form of the rate of strain tensor and polymer stress, re-

spectively. While τ p is determined by the Brownian configuration field method,

the solutions (u) of the governing PDEs (Eq (7.4)) are obtained by using the

TPS-RBFN-based mesh-free method described in the previous chapter.

7.3 Domain decomposition method for RBFN-

based element-free method

Although the parallel domain decomposition schemes were introduced a long

time ago with the advent of powerful supercomputers, they have been well



7.3 Domain decomposition method for RBFN-based element-free method 193

developed only for the element type methods (Quarteroni and Valli, 1999 and

Smith et al., 1996), and there are only a few attempts to couple RBFN based

meshless methods and DD techniques (Dubal, 1994; Beatson et al., 2000 and

Zhou and Hon, 2003).

The non-overlapping domain decompositions are easy for parallel implemen-

tation and they also have some advantages over the overlapping method, for

example they are efficient for handling elliptic problems with large jumps in

coefficients (Xu and Zou, 1998). For further references, these techniques can

be found in, for example, Smith et al. (1996). A very good survey on the

non-overlapping DD method was given by Xu and Zou (1998). In this work,

the iterative non-overlapping domain decomposition is employed to couple with

RBFN-based mesh-free method for the function approximation and numerical

solution of PDEs. The method is obviously well suited for parallel comput-

ing architectures. The implementation is for both macroscopic and microscopic

parts of the method. For the purpose of function approximation, since the data

are known on the interfaces, the DD techniques is very simple and not presented

here. For solving PDEs, the interfaces are considered as part of the boundary

of sub-domains and the associated boundary conditions need to be determined.

7.3.1 Review of TPS-RBFN-based method

Consider a general steady-state problem as follows

Lu(x) = y ∀x ∈ Ω, (7.5)

Bu(x) = b ∀x ∈ ∂Ω, (7.6)

where Ω is the volume under consideration; ∂Ω is the boundary of Ω; L is an

arbitrary differential operator; B is an operator imposed as boundary conditions,

such as Dirichlet, Newmann or a mixture of both; u is an unknown function; y
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Figure 7.1: The schematic overlapping domain decomposition techniques with
two and four sub-domains

and b are given functions. The solution u can be expressed as follows

u ≈
m
∑

j=1

wjhj(x) +
m̄
∑

k=1

ιkpk(x) (7.7)

where wj’s and ιk are the weights; hj is the chosen radial basis function corre-

sponding to the jth RBF-neuron; pj is the polynomial basis function of the kth

PBF. The partial derivatives of f(x) can be calculated analytically as follows

Lu(x) ≈
m
∑

j=1

wjLhj(x) +
m̄
∑

k=1

ιkLpk(x), (7.8)

where L is a derivative operator. The RBFs hj employed here are TPS-RBF, the

chosen PBF is 2-D linear; Lhj for TPS-RBFN is given in §5.5. The substitution
(7.7) and (7.8) into (7.5) and (7.6) followed by the application of the general

linear least squares principle lead to a system of equations in the unknowns wj’s

and ιk’s, which was described in §5.5.2.

7.3.2 The iterative non-overlapping DD scheme for RBFN

For illustration, reconsidering a steady state problem governed by (7.5) and

(7.6) using DD technique with two sub-domains (see Fig. 7.1). The domain

under consideration is divided into 2 non-overlapping sub-domains Ω1, Ω2. Let
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∂Ω1 and ∂Ω2 be the boundaries of Ω1 and Ω2, respectively; Γ12 is the artificial

boundary (interface) between Ω1 and Ω2. The boundary condition imposed on

this interface can be Dirichlet-Neumann, Neumann-Neumann or otherwise. In

this chapter, the boundary condition imposed on the interface Γ12 is of Dirichlet-

Neumann type. The algorithm of the iterative non-overlapping DD consists of

two main tasks. (i) Determining the unknowns on interfaces based on the com-

patibility conditions on the interfaces. (ii) Solving the smaller boundary value

problems on the sub-domains. This algorithm is written for the subdomains Ω1

and Ω2, at the step i+ 1, respectively, as follows

Lui+1
1 (x) = y x ∈ Ω1,

Bui+1
1 (x) = b x ∈ ∂Ω1 \ Γ12, (7.9)

f i+1
1 (x) = ci x ∈ Γ12;

and

Lui+1
2 (x) = y x ∈ Ω2,

Bui+1
2 (x) = b x ∈ ∂Ω2 \ Γ12, (7.10)

∂ui+1
2

∂n
(x) =

∂ui
1

∂n
(x) x ∈ Γ12,

where ci is extracted from Ω2 (the neighboring sub-domain sharing the interface

with Ω1) at the step i and given by

ci = θci−1 + (1− θ)ui
2; 0 ≤ θ ≤ 1,

ui
k (k = 1, 2) is the numerical solutions obtained from the subdomain Ωk at the

collocation points located on the interface at a step i and ∂u
∂n

= ∂u
∂n1

n1 +
∂u
∂n2

n2.

This algorithm can be extended for N > 2 subdomains by using the black and

white coloring method (Quarteroni, 1999). In order to facilitate the parallel

implementation, the block-parallel coloring scheme is used in this work. Let Ωk

be a subdomain (1 ≤ k ≤ N), Γkl = Ωk ∩Ωl the common interface between two

adjoining subdomain Ωk and Ωl, Gb and Gw be the two groups of sub-domains
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Figure 7.2: The iterative non-overlapping domain decomposition techniques
using black white coloring method:N = 4 sub-domains; Gb ≡ [Ω1,Ω4] and
Gw ≡ [Ω2,Ω3].

which are defined by (Fig. 7.2)

Gb = {Ωk is black , 1 ≤ k ≤ N},

Gw = {Ωk is white , 1 ≤ k ≤ N}.

The algorithm of this method is given by






Lui+1
k (x) = y x ∈ Ωk k ∈ Gb

ui+1
k (x) = θui

l + (1− θ) ui
k x ∈ Γkl, l ∈ Gw,Γkl 6= 0

(7.11)

and






Lui+1
l (x) = y x ∈ Ωl l ∈ Gw

∂ui+1

l

∂n
(x) =

∂ui
l

∂n
(x) x ∈ Γkl, k ∈ Gb,Γkl 6= 0

(7.12)

Hence, the sub-programs corresponding to subdomains Ωk are independent of
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one another and they are solved simultaneously with separate CPUs. If any

part of ∂Ωk coincides with the original boundary ∂Ω, the original boundary

conditions would apply there as appropriate.

The overall procedure can now be described as follows

(1.) Divide the analysis domain into a number of subdomains and determine

Gb and Gw and the interfaces between subdomains.

(2.) Guess initial boundary conditions at the interfaces for subdomains as ap-

propriate (Dirichlet condition for Ωk ∈ Gb and Neumann condition for

Ωk ∈ Gw).

(3.) Solve the boundary value problems described by (7.9)-(7.10) correspond-

ing to Ωk, (1 ≤ k ≤ N) using TPS-RBFN-based element-free method on

separate CPUs

(4.) Check for the compatibility on the whole artificial interfaces.

(5.) If the procedure is not yet converged, return step 3, when the boundary

conditions on all interfaces are updated as described in the second equation

of (7.11) for Ωk ∈ Gb and (7.12) for Ωl ∈ Gw .

(6.) stop the procedure.

The singular value decomposition scheme is employed to get the reciprocal

matrices associated with each subregion.

7.4 Parallelization and DD scheme for RBFN-

BCF method

The parallelization performed in the present work is focussed on both micro

and macro parts as mentioned in the previous section. The parallelization is
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carried out in regard to collocation points and based on the domain decompo-

sition technique. In this work the non-overlapping scheme is employed. The

basic parallelization scheme is described in the Figs. 7.3 and 7.4. Parallel

implementation of the algorithm is based on the single program, multiple data

(SPMD) paradigm with message passing interface (MPI) for parallel communi-

cation. Although a CPU could accommodate more than one sub-domain, in the

present work, only one sub-domain is allowed per processor. The parallel im-

plementation is carried out on the AlphaServer ES45 installed at the Australian

Partnership for Advanced Computing National Facility. It features 127 nodes,

each contains 4 × 1GHz ev68 cpus with between 4 and 16GB of RAM (total

of 700GB of RAM), see www.nf.apac.edu.au/facilities/sc/hardware.php for

more details. In this thesis, we use Fortran-90 (Press et al., 1992) supported by

the MPI (Gropp et al., 1998; Snir et al., 1998a,b) in parallel programming. MPI

is a library specification for message-passing and designed for high performance

on both massively parallel machines and on workstation clusters. Processor

loads are almost balanced with static balancing where sub-domains contain

the same number collocation points and then the same number of dumbbells.

Hence, the parallelization for both microscopic and macroscopic levels is carried

out on each subdomain.
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       * Generate collocation points and Partition the domain into N subdomains
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Figure 7.3: General flow-chart of the present RBFN-BCF-based element-free
method in conjunction with the iterative non-overlapping domain decomposi-
tion technique. See next page.
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Figure 7.4: General flow-chart of the present RBFN-BCF-based element-free
method in conjunction with the iterative non-overlapping domain decomposi-
tion technique. See previous page.
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7.5 Numerical examples

In this section, the ability of the RBFN-BCF method in conjunction with par-

allel domain decomposition technique to simulate challenging problems is esti-

mated, using the steady state planar 10:1 contraction and lid driven cavity flows

of several single dumbbell model fluids. As already discussed in Chapter 6, if

different random numbers are generated for the initial configuration, different

trajectories of velocity and stresses will be experienced but the final average re-

sults do not change, which is a characteristic of stochastic simulations (Öttinger,

1996). Thus, to ensure accurate results, the velocity and stress are obtained by

averaging the results of a large number of iterations that were continued after

convergence. Furthermore, by using the variance reduction method, the statis-

tical errors have been shown to be acceptable for a mesoscopic approach (Hua

and Schieber, 1998, Laso et al., 1997, 1999). In this chapter, the investigation

of the statistical error is not carried out for this is typically done in Chapter 4.

7.5.1 10:1 planar contraction flow

This problem was simulated with different models and schemes by several re-

searchers (Feigl and Ottinger, 1996; Laso, 1998; Laso et al., 1999). For the

sake of comparison, the same model and physical parameters as in Laso (1998),

Laso et al. (1999) are used here. In particular, the results for FENE model are

compared with the results of Laso (1998), Laso et al. (1999).

Owing to the symmetry, only half of the analysis domain needs be considered

as shown in Fig. 7.5. Let 2h (h = 0.003mm) be the height of downstream

channel. The height of upstream channel is 2H = 20h; the upstream and

downstream lengths are chosen to be Lu = 6H and Ld = 60h, respectively. The

fluid parameters are as follows

ρ = 1000kg/m3; ηN = 0.01Pa.s; b = 50;α =
ηN
ηo

= 0.2; λH = 2; (7.13)
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Figure 7.5: Planar 10:1 contraction flow problem: non-slip boundary conditions
are imposed at the fluid-solid interfaces; fully developed Poiseuille at the inlet
and outlet, and symmetry on the centre-line.

The characteristic length is chosen to be h; the characteristic velocity 〈ud〉
(downstream average axial velocity corresponding to the flow rate Dr); the

characteristic viscosity ηo = ηN + ηp; the characteristic time λH and the flow

rate is Dr = 2× 10−5m3/s.m.

The global boundary conditions of the problem are the same as in Laso et

al. (1999), Ryssel and Brunn (1999), Raghay and Hakim (2001) where no slip

condition is imposed along the wall; a fully developed velocity profile is specified

at the inlet and the symmetry condition is imposed on the centre-line.

Let Γ1, Γ2, Γ3 and Γ4 be the boundaries of the domain Ω (Fig. 7.5). Similar

to the boundary conditions described in §5.7.2, here the velocity profile at the

inlet is determined from the 2-D Poiseuille flow problem. The inlet velocity

profile obtained from this problem (Fig. 7.6) is in good agreement of the results

of Laso et al. (1999).

The inlet velocity profile for the FENE fluid is slightly different from the



7.5 Numerical examples 203

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

0

0.005

0.01

0.015

0.02

0.025

0.03

u
1

x 2

intial parabolic velocity profile
steady Poiseuille velocity profile

Figure 7.6: The steady state planar 10:1 contraction flow problem using the
FENE dumbbell model fluid: the inlet velocity profile obtained from the steady
Poiseuille flow problem, De = 4.4.

Table 7.1: Planar 10:1 contraction flow problem: four sets of collocation points.
Nt: the total number of collocation points; Niu: the number of internal points
of the upstream flow; Nid: the number of internal points of the downstream
flow; Nb: the number of boundary points.

Nt Niu Nid Nb

720 453 116 151
1024 667 186 171
1632 1102 312 218
1943 1286 414 243

parabolic profile, which is usually used to approximate the Oldroyd-B fluid.

Furthermore, at low Deborah numbers, the exact velocity profile is close to

parabolic. Hence, in the case of a small flow rate, a parabolic profile can be

used to approximate the inlet velocity profile of a fully developed Poiseuille

flows using the FENE model (Bonvin, 2000).

Four different densities of collocation points are employed to simulate this prob-

lems and several corresponding geometry parameters are given in Table 7.1. The

collocation points are not uniformly distributed. A higher density of collocation
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points is specified in the reentrant corner area to capture the expected strong

flow gradients in that region. The stochastic simulation is time-dependent with

simulation time step ∆t = 0.005λH = 0.01.

In order to deal with this large scale problem, the analysis domain is divided into

a number of sub-domains. Each subdomain is governed by a separate CPU. At

an iterative step, there are two groups of tasks, one for the stochastic process to

determine the stress tensor and the another one is for deterministic operations

to calculate the velocity field.

The stochastic task consists of solving SDEs and computing average stresses at

collocation points. In general, these tasks are carried out independently, except

several data exchange through the interfaces of adjacent subdomains, specially

when generating random numbers. In this work, the average stress at the collo-

cation points fixed on interfaces is the average of the whole configuration fields

obtained from adjacent sub-domains.

The macroscopic task is to solve the governing PDEs. Owing to the penalty

function method, only unknowns u need to be determined in each sub-domain.

The algorithm of the parallel mesh-free TPS-RBFN was presented in §7.3.1 and

§7.3.2 in which the sum square error associated with each sub-domain depends

on its boundary conditions (i.e. the location of subdomain). For each iterative

step, the parallel iterative non-overlapping DD procedure requires the commu-

nication between adjacent subdomains such as the interchanges of Dirichlet and

Neumann data at their interfaces from the previous iterative step. The results

presented in this work correspond to the use of 1632 collocation points with 8

sub-domains and 400 dumbbells assigned at each collocation point. A schematic

distribution of collocation points and a sub-regioning with 8 sub-domains are

shown in Fig. 7.7.
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Figure 7.7: Planar 10:1 contraction flow problem: Domain decomposition tech-
nique using 8 sub-domains; Gb = [Ω1, Ω3, Ω5, Ω7] and Gw = [Ω2, Ω4, Ω6, Ω8].

Results and discussion

In order to compare the present results with those obtained by Laso et al.

(1999), the Deborah and Reynold numbers associated with the flow are chosen

to be the same, namely,

De =
λH〈ud〉
h

= λH
Dr

2h2
= 4.44,

Re =
ρ〈ud〉h
ηo

= 0.4,

where 〈ud〉 is the downstream average axial velocity corresponding to the flow

rate Dr. The velocity and stresses are obtained by averaging the results of 500

iterations that were continued after convergence. For this problem the CMu <

1.0e−4 for the velocity field (Fig. 7.8) and CMτ < 2.0e−3 for the stress tensor.

Fig. 7.9 shows the streamlines which are in very good agreement with the results

of Laso et al. (1999) generally. However, a small difference in the vortex shape

can be seen. Fig. 7.10 shows the velocity profiles at several cross-sections along

the downstream channel x1 = 0.18123 (near the abrupt contraction) and 0.360



7.5 Numerical examples 206

0 50 100 150 200 250 300 350
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

C
M

Figure 7.8: The steady state planar 10:1 contraction flow problem using the
FENE dumbbell model fluid: the convergence behavior (CMu) of the velocity
field u with respect to the iteration number, using 8 subdomains
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Figure 7.9: The steady state planar 10:1 contraction flow problem using the
FENE dumbbell model fluid: the streamline of velocity field, De = 4.4.

(outlet). Figure 7.11 shows the variation of the axial velocity on several planes

x2 = 0.0150, 0.0028, 0.0013 and 0 (centre-line). The present results generally

agree with those obtained by Laso et al. (1999), including the velocity overshoot

feature at the abrupt contraction, which was also reported in Feigl and Ottinger

(1996). Figures 7.12 - 7.13 present the shear stresses along the channel on several

planes x2 = 0.00020, 0.00047, 0.00114 and 0.00284. It can be seen that there is

an abrupt change of shear stress at the cross-section of the contraction, which is

increasingly pronounced towards the reentrant corner. Figs 7.14-7.15 show the

first normal stress difference on several planes x2 = 0.00020, 0.00047, 0.00081,
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Figure 7.10: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: The velocity profile on several cross-sections of the down-
stream channel x1 = 0.360 (outlet), 0.18123; De = 4.4.

0.00114, 0.00258 and 0.00284. On the planes nearer to the centreline, stress

overshoots can be observed. Figs 7.16 - 7.17 show the variation in behavior of

the polymer shear stresses and the first normal stress differences with Deborah

numbers where the strength of the stress overshoots increases with increasing

elasticity (higher Deborah number). The problem is also solved using 200 and

500 dumbbells at each collocation points and the results show that there is no

discernible difference between using 400 and 500 dumbbells at each collocation

points (Fig. 7.18) but an increased oscillation of the stresses when reducing the

number of dumbbells at each collocation point down to 200 (Fig. 7.19). Figure

7.20 consolidates the results of shear stresses shown separately in Figs. (7.18)

and (7.19) to highlight the oscillatory behavior associated with low numbers of

dumbbells.

In order to estimate the efficiency of the parallel algorithm in conjunction with

BCF-RBFN mesh-free method, a range of 4, 12, 16 and 20 sub-domains (CPUs)

are also carried out using 1632 collocation points. Here, two elements of interest

studied to assess this algorithm: (i) the convergence measure or norm of error
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Figure 7.11: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: The velocity profile on several planes x2 = 0.0013, 0.0028,
0.0150 and on the centreline; De = 4.4.

(CM) and (ii) the efficiency which is defined as the ratio of the execution time

using one processor (T1) and the execution time using N processors. For this

numerical example, due to the difficulties associated with solving a large scale

problem, T1 is obtained from using 8 sub-domains but carrying out serially

on only one processor. T1 and the required memory for the problem are 764

minutes and 430 Mbytes, respectively, on Pentium 3, 1.8GHz, using Fortran 90.

Table 7.2 shows the effect of the number of sub-domains on the CM and the

number of CPUs on the efficiency of the parallel technique. Here, the method of

calculating T1 is slightly different from that reported in Tran-Canh and Tran-

Cong (2003c).
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Figure 7.12: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: The polymer shear stress on several planes x2 = 0.00020,
0.00047, 0.00114 and 0.00284; De = 4.4.
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Figure 7.13: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: The polymer shear stress on several planes x2 = 0.00020,
0.00047, 0.00081 and 0.00114; De = 4.4.
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Figure 7.14: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: The first polymer normal stress difference on several planes
x2 = 0.00020, 0.00047, 0.00114, 0.00258 and 0.00284; De = 4.4.
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Figure 7.15: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: The first polymer normal stress difference on several planes
x2 = 0.00020, 0.00047 and 0.00081; De = 4.4.
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Figure 7.16: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: the polymer shear stresses on the plane x2 = 0.00285 near
the reentrant corner, for two Deborah numbers De = 4.4 and 2.2.
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Figure 7.17: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: the polymer first normal stress differences on the plane
x2 = 0.00020 near the centre-line, for two Deborah numbers De = 4.4 and 2.2.
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Figure 7.18: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: the polymer first normal stress differences on the plane
x2 = 0.00258 for Deborah numberDe = 4.4 , using Nd = 400 and 500 dumbbells
at each collocation point.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

x
1

τ 12

N
d
 = 400

N
d
 = 200

x2 = 0.00258 

PSfrag replacements

x2
τ12

Figure 7.19: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: the polymer shear stresses on the plane x2 = 0.00258 for
Deborah number De = 4.4, using Nd = 400 and 200 dumbbells at each colloca-
tions.
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Figure 7.20: The steady state planar 10:1 contraction flow problem using the
FENE model fluid: the polymer shear stresses on the plane x2 = 0.00258 for
Deborah number De = 4.4, using Nd = 400, 200 and 500 dumbbells at each
collocation point.
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Table 7.2: Axisymmetric 10:1 contraction flow problem: two sets of collocation
points. N : the number of subdomains; Nt the total number of collocation
points; Ns: the number of collocations points of a subdomain; Nint: the number
of collocation points (range) on the interface of each subdomain; CMu: the
convergence measure and En: the efficiency coefficient of the algorithm of the
parallel DD technique.

N Nt Ns Nint CMu En%
8 1632 210 10→ 51 1.12e− 4 87.6
12 1632 140 10→ 48 1.20e− 4 83.4
16 1632 110 10→ 42 1.82e− 4 77.2
20 1632 90 10→ 38 2.12e− 4 68.7

Table 7.3: Lid driven cavity problem: the performance of the parallel domain
decomposition with respect to the number of CPUs. N : the number of com-
puting nodes; Ni: the number of collocation points of each sub-domain; Nint:
the number of the interface points of each sub-domain; CMu: the norm of error
and En: efficiency of the parallel decomposition scheme.

N Ni Nint CMu En

4 441 41 1.00e− 4 91.4
8 231 31 1.10e− 4 88.6
16 121 21→ 40 1.50e− 4 75.2
20 99 19→ 36 1.80e− 4 69.7

The results given in Table 7.2 show that the efficiency coefficient is pretty high

in comparison with the results reported on the efficiency of using the parallel

techniques in the mesoscopic approach (for example in Laso et al., 1997).

7.5.2 Lid driven cavity flow

In this problem, described in chapter 6, the parallel domain decomposition tech-

nique, focuses on both macro and micro components using 41× 41 collocation

points. Some geometrical parameters are given in Table 7.3.
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Figure 7.21: Lid driven cavity problem: the domain decomposition using 16
sub-domains; Gb = [Ω1,Ω3, Ω5,Ω7, Ω9,Ω11, Ω13,Ω15]; Gw = [Ω2,Ω4, Ω6,Ω8,
Ω10,Ω12, Ω14,Ω16]; Dirichlet boundary conditions are imposed on interfaces for
Gb and Neumann boundary conditions are for Gw.

The efficiency of the algorithm is estimated using 4, 8, 16, 20 subdomains

and the task of each subdomain is carried out independently by a separate

processor. For this example, the collocation points are uniformly distributed

and subdomains have the same size (Fig. 7.21).

The fluid parameters are given in §6.5.3. Since many results of the problem

was described in chapter 6, here, only results concerning the performance of the

parallel DD techniques are presented. Although the convergence measure of the

scheme is affected by the number of subdomains (and CPUs) (Table 7.3), the

results of velocity fields using 4, 8, 16, 20 sub-domains, given in Fig. 7.22, show

that the differences are not significant.

Fig. 7.23 depicts the convergence behavior of the problem using 8 sub-domains.

The performance of the algorithm of the parallel technique given in table 7.3

shows that the efficiency of the parallel technique is pretty high for a mesoscopic

method. Here, the computation time T1 and required memory, using (41x41+2)

collocation points are 733 minutes and 441 Mbytes, respectively, on Pentium 3,

1.8GHz, using Fortran 90.
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Figure 7.22: The lid driven square cavity flow problem using the Hookean
dumbbell model fluid: the profile of the velocity component u2 on the horizontal
central plane (lower figure) and the profile of the velocity component u1 on
the vertical central plane (upper figure) using parallel domain decomposition
techniques. ‘−−’ for 4 sub-domains, ‘− ∗ −’ for 8 sub-domains, ‘−o−’ for
16 sub-domains and ..¦ for 20 sub-domains. The parameters are α = 1/9,
λH = 1 (De = 1), (41× 41 + 2) collocation points; De = 1.
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Figure 7.23: The lid driven cavity using the Hookean dumbbell model fluid: the
convergence behavior (CMu) of the velocity field u with respect to the iteration
number, using 8 subdomains

7.6 Concluding remarks

A parallel domain decomposition mesh-free TPS-RBFN-BCF method for dilute

polymer solution is reported. The incorporation of a parallel domain decom-

position technique makes the RBFN-BCF element-free methods more suitable

for large scale problems. The iterative non-overlapping domain decomposition

method, which is employed in both macro and micro components of the hybrid

TPS-RBFN-BCF simulation scheme, converts a large problem into a number

of smaller ones, facilitates coarse grained parallelization and decreases the wall

time of a micro-macroscopic method. The experience gained from solving some

benchmark problems shows the following (i) Although the convergence of the

scheme can be affected by the number of subdomains, the results obtained are

very good, judging by the convergence measure (Tables 7.2 and 7.3); (ii) In

spite of the complexity involved in parallelizing the mesoscopic approach as

mentioned in Laso et al. (1997), the achieved efficiency is high (Tables 7.2 and
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7.3) (≥ 60% when using 20 CPUs); (iii) It is relatively easy and simple to imple-

ment parallel domain decomposition using MPI for both macro and microscopic

components.



Chapter 8

Conclusion

With the aim to create a new and improved numerical approach for the analysis

of non-Newtonian fluid flows, the objectives of the present research effort have

been attained through a number of logical steps, progressing from meshless

function approximation, partial removal of element-based discretisation to total

element-free simulation methods.

The proven “universal approximation” capability of neural-like networks, such

as the MLPNs and the RBFNs, is the theoretical basis for the element-free ap-

proach to function approximation and the numerical solution of PDEs. This

numerical approach is relatively new, particularly in relation to the numeri-

cal solution of PDEs. In the context of non-Newtonian fluid flow, the present

endeavour is a significant contribution of new knowledge in the application of

the meshless methodology to the hybrid simulation approach which is coming

from the CONNFFESSIT philosophy. The least-squares point collocation tech-

nique eliminates element-based discretisation and the SST renders closed form

constitutive equations unnecessary. The system matrix size is reduced by the

decoupling of the computation of the velocity field (macroscopic component)

from the calculation of the stress field (microscopic component). At a more

detailed level, various techniques are introduced to make the overall approach
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more effective and efficient. These improvements include the use of penalty

function in the macroscopic component, the velocity gradient-based domain de-

composition, the variance reduction, network regularisation and the iterative

non-overlapping domain decomposition techniques.

Apart from the improvement of the hybrid simulation approach based on La-

grangian SST, the present element-free methodology is particularly helpful in

the parallelisation of the Eulerian hybrid simulation method. Domain decompo-

sition (iterative non-overlapping), which is relatively simple in the element-free

framework, helps remove the matrix ill-condition problems in larger problems.

Thus, in its final form, the present method is not only simpler to implement,

but also more efficient and effective. The element-free nature of the method

makes its application much easier in situations where complex geometries or

moving boundaries are involved.

The methods have been successfully implemented with appropriate verification

using

• circular Couette flow of GNFs.

• start-up planar Couette flow of FENE and FENE-P fluids;

• planar Poiseuille flow of Hookean, FENE and FENE-P fluids.

The effectiveness and efficiency of the methods have been established with the

simulation of non-trivial problems, including

• axisymmetric 4:1 contraction flow of Hookean fluids. In this case the cir-

cular Poiseuille flow was simulated and the results were used in specifying

the inlet condition;

• planar 10:1 contraction flow of FENE and FENE-P fluids. In this case the

planar Poiseuille flow was simulated and the results were used in specifying

the inlet condition;
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• lid-driven cavity flow of Hookean fluids.

For the above problems, some outcome highlights include

• convergence has been achieved for the first time at very low value of the

power law index;

• comparable or better accuracy has been achieved with coarser discretisa-

tion, both spatially and temporally;

• highly parallelised implementation.

Finally, some outstanding issues for further investigation are

• Free surface flow simulation;

• Flow analysis with more realistic models of complex fluids (for example,

the inclusion of hydrodynamic interaction in the dumbbell models for

dilute polymer solutions, and Reptation models for concentrated solution

and melts);

• Approximation of SDE’s (microscopic component) using neural networks-

based methods;

• Overlapping domain decomposition techniques.



Appendix A

Complements to integral

equations

A.1 Fundamental solution (Kevin solution)

The small displacement field (Kevin solution) which is produced by a concen-

trated force f at a point (y) in a homogenous, isotropic and infinite linear elastic

medium is given by

ui(x) = u∗ij(x,y)fj(y), (A.1)

where

u∗ij(x,y) =
1

8π(1− ν)η

[

(3− 4ν)δij ln(r) +
rirj
r2

]

for 2D-space,

u∗ij(x,y) =
1

16π(1− ν)ηr

[

(3− 4ν)δij +
rirj
r2

]

for 3D-space, (A.2)

r = ‖r‖ = ‖x− y‖, δij is the Kronecker delta, η is the shear modulus and ν is

the Poisson’s ratio.

The associated traction is given by

ti(x) = t∗ij(x,y)fj(y), (A.3)
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t∗ij(x,y) = −
1

4απ(1− ν)rα

{

[

(1− 2ν)δij + β
rirj
r2

] ∂r

∂n

− (1− 2ν)
(ri
r
nj −

rj
r
ni

)

}

, (A.4)

α = 1, 2 and β = 2, 3 are for two and three-dimensional problems, respectively

and n(x) is the outward unit normal vector at a point x.

If the material is an infinite medium of incompressible viscous fluid, the corre-

sponding fundamental solution (Stokeslet) and its associated traction field are

obtained from (A.2) and (A.4) by interpreting u as velocity, η as viscosity and

ν = 0.5.

A.2 Analytical integration of functions involv-

ing 2D kernels

In this appendix, superscripts are used to denote the node of the element while

subscripts denote tensor components (lower case symbols, e.g. aij) or simply

identifiers for upper case symbols (e.g. C1). Consider the following integrals in

standard BIE formulation

I =

∫

Γe

u∗ij(x,y)tj(y)dΓ(y) (A.5)

J =

∫

Γe

t∗ij(x,y)uj(y)dΓ(y) (A.6)

where Γe is the boundary element defined by a straight line segment between

two nodes 1 and 2 as shown in Figure A.1; y ∈ Γe is the field point; x is the

source point under consideration; u∗ij(x,y) is the i component of velocity field

at x due to a point force in j direction at y (Kelvin fundamental solution)

and t∗ij(x,y) is its associated traction; uj(y) and tj(y) are the j components of

velocity and boundary traction at y, respectively. In order to estimate (A.5)

and (A.6), the components uj(y) and tj(y) can be assumed to have a certain
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shape (usually constant, linear or quadratic). In this work, the linear shape

function is employed and hence the components uj(y) and tj(y) are expressed

as

uj(y) = N1(ξ)u
(1)
j +N2(ξ)u

(2)
j (A.7)

tj(y) = N1(ξ)t
(1)
j +N2(ξ)t

(2)
j (A.8)

yj = N1(ξ)y
(1)
j +N2(ξ)y

(2)
j (A.9)

where u
(1)
j , t

(1)
j , y

(1)
j and u

(2)
j , t

(2)
j , y

(2)
j are the j components of the nodal velocity,

nodal traction and coordinate associated with nodes 1 and 2, respectively; N1

and N2 are known linear shape functions and ξ is the natural coordinate (−1 ≤
ξ ≤ 1). Substitution of (A.8) into (A.5) and (A.7) into (A.6) yields

I =

∫

Γe

u∗ij(x,y)
(

N1(ξ(y))t
(1)
j +N2(ξ(y))t

(2)
j

)

dΓ(y)

= t
(1)
j

∫

Γe

N1(ξ(y))u
∗
ij(x,y)dΓ(y) + t

(2)
j

∫

Γe

N2(ξ(y))u
∗
ij(x,y)dΓ(y) (A.10)

J =

∫

Γe

t∗ij(x,y)
(

N1(ξ(y))u
(1)
j +N2(ξ(y))u

(2)
j

)

dΓ(y)

= u
(1)
j

∫

Γe

N1(ξ(y))t
∗
ij(x,y)dΓ(y) + u

(2)
j

∫

Γe

N2(ξ(y))t
∗
ij(x,y)dΓ(y) (A.11)

By denoting

g
(1)
ij =

∫

Γe

N1(ξ(y))u
∗
ij(x,y)dΓ(y) =

∫

Γe

N1(ξ)u
∗
ij(x(ξ),y(ξ))

l

2
dξ(A.12)

g
(2)
ij =

∫

Γe

N2(ξ(y))u
∗
ij(x,y)dΓ(y) =

∫

Γe

N2(ξ)u
∗
ij(x(ξ),y(ξ))

l

2
dξ(A.13)

h
(1)
ij =

∫

Γe

N1(ξ(y))t
∗
ij(x,y)dΓ(y) =

∫

Γe

N1(ξ))t
∗
ij(x(ξ),y(ξ))

l

2
dξ(A.14)

h
(2)
ij =

∫

Γe

N2(ξ(y))t
∗
ij(x,y)dΓ(y) =

∫

Γe

N2(ξ)t
∗
ij(x(ξ),y(ξ))

l

2
dξ,(A.15)

(A.10) and (A.11) become

I = t
(1)
j g

(1)
ij + t

(2)
j g

(2)
ij (A.16)

J = u
(1)
j h

(1)
ij + u

(2)
j h

(2)
ij (A.17)

The integrals g
(1)
ij , g

(2)
ij , h

(1)
ij and h

(2)
ij can be obtained analytically when the

source point x lies on the line through nodes 1 and 2 and the final results are

given as follows
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• x ≡ x1

g
(1)
ij =

C1l

2

[

aij + C2δij

(

3

2
− ln(l)

)]

(A.18)

g
(2)
ij =

C1l

2

[

aij + C2δij

(

1

2
− ln(l)

)]

(A.19)

h
(2)
ij = bijC3C4 (A.20)

Note that h
(1)
ij can be obtained by using the condition of rigid body motion.

• x ≡ x2

g
(1)
ij =

C1l

2

[

aij + C2δij

(

1

2
− ln(l)

)]

(A.21)

g
(2)
ij =

C1l

2

[

aij + C2δij

(

3

2
− ln(l)

)]

(A.22)

h
(1)
ij = −bijC3C4 (A.23)

Note that h
(2)
ij can be obtained by using the condition of rigid body motion.

• x ≡ p

g
(1)
ij =

C1laij
2

− C1C2D2δij
l

(D2 ln(D2)−D1 ln(D1)− l)

+
C1C2δij

2l

(

D2
2 ln(D2)−D2

1 ln(D1)−Dl
)

(A.24)

g
(2)
ij =

C1laij
2

+
C1C2D1δij

l
(D2 ln(D2)−D1 ln(D1)− l)

− C1C2δij
2l

(

D2
2 ln(D2)−D2

1 ln(D1)−Dl
)

(A.25)

h
(1)
ij =

C3C4bij
l

(D2(ln(D2)− ln(D1))− l) (A.26)

h
(2)
ij = −C3C4bij

l
(D1(ln(D2)− ln(D1))− l) (A.27)

• x ≡ q

g
(1)
ij =

C1laij
2

+
C1C2D1δij

l
(D2 ln(D2)−D1 ln(D1)− l)

− C1C2δij
2l

(

D2
2 ln(D2)−D2

1 ln(D1)−Dl
)

(A.28)
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g
(2)
ij =

C1laij
2

− C1C2D2δij
l

(D2 ln(D2)−D1 ln(D1)− l)

+
C1C2δij

2l

(

D2
2 ln(D2)−D2

1 ln(D1)−Dl
)

(A.29)

h
(1)
ij =

C3C4bij
l

(D1(ln(D2)− ln(D1))− l) (A.30)

h
(2)
ij = −C3C4bij

l
(D2(ln(D2)− ln(D1))− l) (A.31)

• x ≡ r: This case corresponds to the special treatment of the corner situa-

tion where the traction is two-valued. Following the technique devised by

Tran-Cong and Phan-Thien (1988) for a general resolution of this prob-

lem, the traction at the corner is assumed to have different value for each

element connecting to the corner node. Then each element is assigned a

collocation point (i.e. r) situated on the element but slightly shifted from

the corner to provide the sufficient number of algebraic equations for the

unknowns.

g
(1)
ij =

C1D1

2

[

aij + C2δij

(

1

2
− ln(D1)

)]

+
N1(ξ)C1l

2

[

aij + C2δij

(

3

2
− D1 ln(D1)

l
− D2 ln(D2)

l

)]

(A.32)

g
(2)
ij =

C1D2

2

[

aij + C2δij

(

1

2
− ln(D2)

)]

+
N2(ξ)C1l

2

[

aij + C2δij

(

3

2
− D1 ln(D1)

l
− D2 ln(D2)

l

)]

(A.33)

h
(1)
ij =

bijC3C4

2
[(1− ξ) (ln(D2)− ln(D1))− 2] (A.34)

h
(2)
ij =

bijC3C4

2
[(1 + ξ) (ln(D2)− ln(D1))− 2] (A.35)

in which ξ is determined from x = N1(ξ)y
(1) +N2(ξ)y

(2)
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where

li = y
(2)
i − y

(1)
i (A.36)

aij =
lilj
l2

(A.37)

n1 =
l2
l
, n2 = −

l1
l

(A.38)

bij =
linj − ljni

l
(A.39)

C1 =
1

8G(1− ν)π
, G =

E

2(1 + ν)
(A.40)

C2 = 3− 4ν (A.41)

C3 =
1

4π(1− ν)
(A.42)

C4 = 1− 2ν (A.43)

D1 =
√

(x− x1)T (x− x1) (A.44)

D2 =
√

(x− x2)T (x− x2) (A.45)
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Figure A.1: Integration of functions involving the kernels over the boundary
element defined by a straight line segment between two nodes 1 (x1) and 2
(x2). Neighbouring elements are denoted by dashed lines. Nodes 1 and 2 are
normal nodes in figure (a) and corner nodes in figure (b). In the latter case,
due to the existence of two traction vectors associated with the two elements
at the same corner, two collocation points per node are located at r away from
the corner.



Appendix B

Complements to FFNNs

B.1 Back Propagation (BP) and Levenberg Mar-

quardt algorithms

The MLPN can be trained to approximate a function over a domain and the

MLPN training is considered as an optimization problem in the weight space.

The mean square error (MSE) is computed for a MLPN relative to the desire

output as follows

MSE(w) =
m
∑

i=1

e2i =
m
∑

i=1

(ŷi − f(xi))
2, (B.1)

where ŷi’s are the desired outputs and {xi, ŷi}mi=1 are data patterns; f(xi)s are

approximated outputs corresponding to the inputs xis; w = [w1, w2, ..., wn] is

the weight vector and e = [e1, e2, ..., ei, ..., em] is the error vector.

The BP training consists of the following steps

• An input pattern {xi, yi}i=1
m sweeps forward through the network to gener-

ate an output f(xi). Hence, BP starts a loop over all training pattern and

computes the corresponding errors by feeding the input forward through
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the network;

• The mean square error is determined via the equation (B.1);

• An optimization algorithm based on the backward propagation of errors

is employed to adjust the values of the weights.

Among the optimization algorithms such as the Adaptive learning rate (Ja-

cob, 1988); Newton and Quasi Newton methods (Becker and Le cun, 1989);

Gauss-Newton method (Mckeown et al., 1997), Leveberg-Marquardt algorithm

(Levenberg, 1994), the latter one is considered as an efficient method for mini-

mizing the MSE whose weight vector is updated as

wt+1 = wt −∆w (B.2)

∆w = −(JTJ+ µI)−1JTe (B.3)

where wt+1 is the weight vector at the time (t + 1); wt is the weight vector

at the current time; e is the current error vector; J = ∂e
∂w

is the Jacobian

matrix of e; µ is a scalar; I is the identity matrix. Depending on the value of

µ, the Levenberg-Marquardt recovers the steepest decent scheme if µ is very

large or Gauss-Newton method in the case of small µ. The line searches have

been employed to improve convergence. This is a powerful technique when

using L-M (Levenberg-Marquardt) method. In the present method, line searches

are used to determine the value of µ in Eq. (B.3) and then the step size is

adjusted accordingly in an iteration where the CM does not significantly reduce

in comparison with the CM in the previous iteration.
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B.2 Least-squares method for the optimisation

of weight vectors

In the case of least-squares applied to RBFN models, the function to be mini-

mized with regularization is the sum-square error C(w,λ) (3.39) as follows

C(w,λ) =
n
∑

i=1

(ŷi − f(xi))
2 +

m
∑

j=1

λj(w
j)2, (B.4)

where in general {λj}mj=1 is the non-negative local regularization parameters and

the second term of (B.4) is called the additional weight penalty term; f(x) =
∑m

j=1w
jhj(x). λj = 0,∀j is the case of non-regularization. Differentiating the

cost function (B.4) for each jth weight, we have

∂C

∂wj
= 2

n
∑

i=1

(f(xi)− ŷi)
∂f

∂wj
(xi) + 2λjw

j; (B.5)

where ∂f
∂wj (xi) = hj(xi). Substituting this derivative into (B.5), the minimiza-

tion of (B.4) leads to the following equations

n
∑

i=1

f (xi)h
j (xi) + λjw

j =
n
∑

i=1

ŷih
j (xi) j = 1, ...,m. (B.6)

Each equation corresponding to j represents a constraint on the solution. In

general, the system of equations (B.6) has a unique solution because the number

of unknowns and constraints are the same. This system of m equations is

rewritten via the language of matrices as follows

HT f + λw = HT ŷ; (B.7)

where

λ =

















λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λm

















; f =

















f(x1)

f(x2)
...

f(xn)

















; ŷ =

















ŷ1

ŷ2
...

ŷn

















;
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and

H =

















h1 (x1) h2 (x1) · · · hm (x1)

h1 (x2) h2 (x2) · · · hm (x2)
...

...
. . .

...

h1 (xn) h2 (xn) · · · hm (xn)

















. (B.8)

f can be decomposed into the product of two terms, the design matrix and the

weight vector as follows

f = Hw. (B.9)

Substituting (B.9) into the equation (B.7), we have

HT ŷ = HT f + λw (B.10)

= HTHw + λw (B.11)

=
(

HTH+ λ
)

w. (B.12)

There are two cases

(1.) For the global regularization (λi = λ,∀i), (B.12) becomes

(

HTH+ λI
)

w = HT ŷ, (B.13)

where I is unity matrix;

(2.) For the case where there is no regularization (λ = 0), (B.12) is rewritten

(

HTH
)

w = HT ŷ (B.14)

B.3 The variance matrix

Since the weights have been determined from the basis of a measurement, ŷ, of

a stochastic variable y, the corresponding uncertainty in w needs to be known

and depends on the nature of ŷ and the relationship between w and y. In
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this work, the noise affecting y is considered to be normal and independently,

identically distributed

〈

(y − 〈y〉) (y − 〈y〉)T
〉

= σ2In; (B.15)

where σ is the standard deviation of the noise, 〈y〉 is the mean value of y and

the expectation is taken over all training sets. Due to the linear characteristic

of the model, the relationship between w and y is given by

w = G−1HTy; (B.16)

where G = HTH+ λ. Hence, the expected value of w is

〈w〉 = 〈G−1HTy〉 = G−1HT 〈y〉. (B.17)

The corresponding variance is given by

var(w) = 〈(w − 〈w〉)(w − 〈w〉)T 〉 (B.18)

= σ2G−1HTHG−1. (B.19)

For the case of non-regularization var(w) = σ2G−1. G−1 can be considered

as the variance matrix, because of its close link to the variance of w in the

least squares method without regularization. For the global regularization

var(w) = σ2(G−1 − λG−2). In the case where the training set is used to

estimate the regularization, the matrix G is a stochastic variable and the rela-

tionship between var(y) and var(w) is not simply linear any more. This case is

not considered in this work.

B.4 SVD scheme for solving linear least squares

problems

The sum square errors SSE described in chapters 3, 4, 5 can be rewritten under

the short form as follows

min | Gw − b |2, (B.20)
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where b is a known vector; w is the unknown and the design matrix G ∈
Rm×n,m ≥ n is generally non-square. Depending on the characteristic of this

matrix, the solution of this problem can be either unique or infinitive. If m is

less than n or G is rank deficient, the problem has infinitely many solutions.

The single value decomposition (SVD) of a matrix G is a matrix decomposition

of great theoretical and practical importance for the treatment of least squares

problems (Bjorck, 1996). Let r = min(m,n) is the rank of G, the SVD of

matrix G is given by

G = UΣVT =
r
∑

i=1

uiσiv
T
i , Σ =





Σ1 0

0 0



 ,

where Σ ∈ Rm×n; Σ1 = diag(σ1, σ2, ..., σr) with σ1 ≥ σ2 ≥ ... ≥ σr > 0, σi’s are

called the singular values of G; U = (u1,u2, ...,ur) and V = (v1,v2, ...,vr).

The condition number of matrix G influences the perturbation of least squares

solutions and is defined as the ratio of the largest and smallest singular values

of matrix G (σ1/σr). The condition number is large then the matrix G can be

ill-conditioned. The problems usually belong to two types of ill conditioning of

G: rank deficient and discrete ill-posed problems. While for the former, the

numerical treatment is to extract the linearly independent information of G to

form another problem with a well-posed matrix, for the latter, the purpose is

to find a balance between the residual norm and the norm of the solution. See

Hansen (1998) and Bjorck (1996) for more details.

If G is ill-conditioned, the minimum variance (B.20) is still large. If the estima-

tor is allowed to be biased, the variance can be drastically reduced. One way

to achieve this is to compute the truncated SVD (TSVD) solution in which we

assign a numerical rank k that is a positive integer between 1 and r to G. Set-

ting to zero all singular values σi, i > k, the solution of the linear least squares

problems can be written as follows

w =
r
∑

i=1

uib

σi

vi, (B.21)
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which cuts out all the contributions to the solution related to the singular

values σi, i > k. Note that the index k is usually referred to as the truncation

parameter or the regularization parameter. Hence, the TVSD solution solves

the related least squares problem

min
w
|Gkw − b|2 , Gk =

k
∑

i=1

uiσiv
T
i

where Gk is the best rank approximation of G.



Appendix C

Complements to the polymeric

kinetic theory and stochastic

simulation technique

C.1 Equilibrium configurations

In kinetic theory, one of the ways to determine the initial distribution of the

dumbbell configurations Qs is to use the equilibrium distribution whose prob-

ability density is ψe(Q). This probability density can be obtained by solving

the FPE at equilibrium (i.e. u = 0). The equilibrium distribution is spatial

and time independent and given for the Hookean and FENE dumbbell models,

respectively, as follows (Bird et al., 1987b).

ψ
e(Hookean)(Q) =

1

(2π)d/2
exp

(

−|Q|
2

2

)

; (C.1)

ψ
e(FENE)

(Q) =
1

Je

(

1− |Q|
2

b

)b/2

; (C.2)

where (C.1) is nothing but the probability of the Gaussian distribution N (0, I);

d is the dimension of problem; Je is the normalization factor for the FENE
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model and given by

Je = πbB
(

1,
b+ 2

2

)

for d = 2; (C.3)

Je = 2πb3/2B
(

3/2,
b+ 2

2

)

for d = 3; (C.4)

where B is the Beta function and given by

B(u, v) = 2

∫ 1

0

tux−1(1− t2)v−1dt; (C.5)

where u, v ∈ C and Re(u) > 0, Re(v) > 0.

For the Hookean and FENE dumbbell models, the equilibrium stress tensor

must be zero (τ̄ (t,x) = 0) and then we have 〈QF(Q)〉 = I, ∀x ∈ Ω.

C.2 Zero shear rate viscosity

A typical feature of non-Newtonian fluids is that the viscosity depends on the

shear rate and a zero-shear-rate viscosity ηp can be defined for such a fluid. The

zero shear rate viscosity is an important parameter for fitting a model to given

fluid rheological quantities. The zero shear rate for the dumbbell models can

be determined by using the Taylor expansion for the shear stress in the limit of

a small shear rate flows at the equilibrium configuration distribution (Bird et

al., 1987b).

For the Hookean dumbbell model, since the shear stress is linear in the shear

rate, the viscosity is independent of the shear rate and given by

ηp(Hookean) = λHnkBT. (C.6)

For the FENE dumbbell model, a shear thinning fluid, the viscosity is given by

ηp(FENE) =
λHnkBT

1 + (d+ 2)/b
, (C.7)

where d is the spatial dimension of the problem.
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C.3 The Wiener process

The Wiener process W is a time dependent Gaussian variable. In this process,

the process increments ∆Wi = W (ti +∆ti)−W (ti), are uncorrelated

〈∆Wi∆Wj〉 = δij∆ti. (C.8)

where ∆ti is non-overlapping time intervals. Hence, (C.8) shows the statistical

independence of non-overlapping time intervals. From (C.8), since the time

increment of a Wiener process scales as ∆W ∝
√
∆t (i.e. 〈∆W 2〉 = ∆t), the

Wiener process is non differentiable.

C.4 Random number generators

In the microscopic component of the hybrid simulation approach discussed here,

the stochastic processes employ random numbers in two stages:

(1.) In guessing the initial values of random variables;

(2.) In discretizing the Wiener process term of the evolution equations.

These random vector variables satisfy either the Gaussian distribution law

N (0, 1) (C.1) or some other, for example (C.2). In this section, algorithms for

generating the initial configurations of equilibrium Hookean and FENE dumb-

bells, and the Wiener increments are presented. These algorithms are based on

the uniform law U(0, 1) whose random numbers can be obtained from standard

scientific computation libraries.
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Gaussian random numbers

The initial configuration of Hookean dumbbells at equilibrium and the Brownian

(Wiener) increments are generated via the normal law generator which can be

found in standard scientific computation libraries. These random numbers are

also obtained from either Box-Muller or Polar-Marsaglia methods. Here, only

the former is described. More details and the algorithm of the Polar-Marsaglia

scheme can be found in Deak (1990) and Kloeden and Platen (1995). In the

Box-Muller scheme, the two independent random numbers Q1, Q2 satisfying the

Gaussian law N (0, 1) are generated as follows

(1.) Generating independently s1, s2 ∼ U(0, 1);

(2.) Q1 =
√

−2 ln(s1) cos(2πs2) and Q2 =
√

−2 ln(s1) sin 2πs2.

FENE equilibrium configurations

The method of generating the initial configuration of equilibrium FENE dumb-

bells is based on Von Newmann’s rejection technique (Von Neumann, 1951).

Let Q be a desired scalar random number which satisfies a known, bounded

probability density ψ(Q), m ≤ Q ≤ n and M ≥ ψ(Q) a positive number. The

random number Q is generated according to the following algorithm

(1.) Generating s1 ∼ U(m,n) as follows

• generating s1 ∼ U(0, 1);

• s1 = m+ (m− n)s1;

(2.) Generating s2 ∼ U(0, 1);

(3.) If s2 >
1
Mψ(s1) then goto (1);

(4.) Q = s1,
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whereM = maxm≤Q≤n (ψ(Q)) is considered to be optimal in the sense that the

number of iterations to generate Q is minimal.

For FENE equilibrium distribution (C.2), in order to generate Q ∈ BRd(0,
√
b),

the polar coordinate coordinates (Q,α) ∈ [0,
√
b[×[0, 2π[ and spherical coordi-

nates (Q,α, β) ∈
[

0,
√
b
[

×
[

0, 2π
[

×
[

0, π
]

are employed. Q then is written for

d = 2 and 3, respectively as follows

Q =





Q1

Q2



 =
(

Q cosα Q sinα
)T

;

Q =











Q1

Q2

Q3











=
(

Q sin β cosα Q sin β sinα Q cos β
)T

.

(C.9)

Hence, the algorithm for the FENE equilibrium distribution Q satisfying (C.2)

consists of generating the radial coordinate Q and the angular coordinate. Q

is then determined by (C.9). The algorithm is written for 2D and 3D problems

as follows

For the 2D problem

(1.) Generating independently s1, s2 ∼ U(0, 1);

(2.) If
(

s2 >
√
b
(

1 + 1
b

)(b+1)/2
s1(1− s21)

b/2
)

goto (1);

(3.) Q = s1
√
b;

(4.) Generating α ∼ U(0, 2π);

(5.) Q1 = Q cosα and Q2 = Q sin θ.

For the 3D problem

(1.) Generating independently s1, s2 ∼ U(0, 1);

(2.) If
(

s2 >
√
b
2

(

1 + 2
b

)(b+2)/2
s21(1− s21)

b/2
)

goto (1);
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(3.) q = s1
√
b;

(4.) Generating α ∼ U(0, 2π);

(5.) Generating independently s3 ∼ U(0, π) and s4 ∼ U(0, 1);

(6.) If (s4 > sin s3) goto (5);

(7.) β = s3;

(8.) Q1 = q sin β cosα, Q2 = q sin β cosα and Q3 = q cos β.

C.5 Computation of connector vectors using

predictor-corrector scheme

For illustration, the computation of FENE connector vectors (namely config-

uration fields) Q’s is described and based on eqns (5.13) and (5.14), (similar

derivation can be developed for (6.18) and (6.19)), as follows

Q̄i+1 = Qi +



κi ·Qi −
Qi

2
(

1− Q2
i

b

)



∆t+∆Wi, (C.10)



1 +
∆t

4
(

1− Q2
i+1

b

)



Qi+1 =

Qi +
1

2



κ̄i+1 · Q̄i+1 + κi ·Qi −
Qi

2
(

1− Q2
i

b

)



∆t+∆Wi. (C.11)

Eq. (C.11) leads to a cubic equation for Q whose algorithm is described as

follows. Let

α = |a| and Q = |Qi+1(x)| (C.12)

where a is the random vector on the RHS of (C.11); Q̄i+1 is calculated by

(C.10), κ̄i+1 is determined by the backward difference scheme (5.15). The cubic
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equation of Q is given by

Q3 − αQ2 − b(1 +
∆t

4
)Q+ αb = 0 (C.13)

The intermediate quantities are given by

L1 = −α
3

[

(α

3

)2

− b

(

1− ∆t

8

)]

,

L2 =
(α

3

)2

+
b

3

(

1 +
∆t

4

)

,

θ = arccos

(

L1

L23/2

)

.

Since the solution Q satisfies 0 ≤ Q <
√
b, its value is

Q = −2
√

Q cos

(

θ − 2π

3

)

+
α

3
,

and Qi+1(x) =
Q
α
a. More detail can be found in Ottinger, (1996) and Press et

al. (1992).
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[104] Herrchen, M. and Öttinger, H.C. (1997). A detailed comparison of various

FENE dumbbell model. J. Non-Newt. Fluid Mech., 68, 17-42.

[105] Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedfor-

ward networks are universal approximators. Neural networks, 2, 359-366.

[106] Hua, C.C. and Schieber, J.D. (1998). Viscoelastic flow through fibrous

media using the CONNFFESSIT approach. J. Rheol., 42(3), 477-491.

[107] Hughes, T.J.R., Liu, W.K. and Brooks, A. (1979). Finite element analysis

of incompressible viscous flows by the penalty function formulation. J. Comp

phys., 30, 1-60.

[108] Hulsen, M.A., van-Heel, A.P.G. and van de Brule, B.H.A.A (1997). Simu-

lation of viscoelastic flows using Brownian configuration fields. J. Non-Newt.

Fluid Mech., 70, 79-101.

[109] Ingber, M.S. and Phan-Thien, N. (1992). A boundary element approach

for parabolic differential equations using a class of particular solutions. Ap-

plied Mathematical Modeling, 16, 124-132.

[110] Jacobs, R.A. (1988). Increase rate of convergence through learning rate

adaptation. Neural Networks, 1, 295-307.

[111] Jendrejack, R.M., Graham, M.D. and de Pablo, J.J. (2000). Hydrody-

namic interactions in long chain polymer: Application of the Chebyshev

polynomial approximation in stochastic simulations. J. Chem. Phys., 113,

2894-2900.

[112] Jourdain, B., Lelivre, T. and Le Bris, C. (2002). Numerical analysis of

micro-macro simulations of polymeric fluid flows: A simple case. Mathemat-

ical Models and Methods in Applied Sciences, 12, 1205-1243.

[113] Kansa, E.J. (1990a). Multiquadrics - A scattered data approximation

scheme with applications to computational fluid dynamics-I: Surface approx-



References 254

imations and partial derivatives estimates. Comput. Math. Appl.. 19(8-9),

127-145.

[114] Kansa, E.J. (1990b). Multiquadrics - A scattered data approximation

scheme with applications to computational fluid dynamics-II: Solution to

parabolic, hyperbolic and elliptic partial differential equations. Comput.

Math. Appl., 19(8-9), 147-161.

[115] Kansa, E.J. and Hon, Y.C. (2000). Circumventing the ill-conditioning

problem with multiquadric radial basis functions: Application to elliptic par-

tial differential equations. Comput. Math. Appl., 39, 123-137.

[116] Kao, E.P.C. (1997). An introduction stochastic process. Belmont:

Duxbury.

[117] Kawahara, M. and Takeuchi, N. (1977). Mixed finite element method for

analysis of viscoelastic fluid flow. Comput. Fluids, 5, 33-45.

[118] Keunings, R. (1996). On the Petelin approximation for finitely exensible

dumbbells. J. Non-Newt. Fluid Mech., 68, 85-100.

[119] Khellaf, K. and Lauriat, G. (2000). Numerical study of heat transfer in a

Non-Newtonian Carreau-fluid bwtween rotating concentric vertical cylinders.

J. Non-Newt. Fluid Mech., 89, 45-61.

[120] Klebaner F.C. (1998). Introduction to Stochastic Calculus with Applica-

tions. London: Imperial College.

[121] Kloeden, P.E. and Platen, E. (1995). Numerical solution of stochastic

differential equations. Berlin: Springer.

[122] Kloeden, P.E., Platen, E. and Schurz, H. (1997). Numerical solution of

SDE through Computer Experiments. Berlin: Springer.
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