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Abstract 

The requirement for anaesthesia during modern surgical procedures is unquestionable to ensure a safe experience 
for patients with successful recovery. Assessment of the depth of anaesthesia (DoA) is an important and ongoing field 
of research to ensure patient stability during and post-surgery. This research addresses the limitations of current DoA 
indexes by developing a new index based on electroencephalography (EEG) signal analysis. Empirical wavelet trans-
formation (EWT) methods are employed to extract wavelet coefficients before statistical analysis. The features Spectral 
Entropy and Second Order Difference Plot are extracted from the wavelet coefficients. These features are used to train 
a new index,  SSEDoA, utilising a Support Vector Machine (SVM) with a linear kernel function. The new index accurately 
assesses the DoA to illustrate the transition between different anaesthetic stages. Testing was undertaken with nine 
patients and an additional four patients with low signal quality. Across the nine patients we tested, an average correla-
tion of 0.834 was observed with the Bispectral (BIS) index. The analysis of the DoA stage transition exhibited a Choen’s 
Kappa of 0.809, indicative of a high agreement. 
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Introduction
Anaesthesia is a crucial component of modern surgical 
procedures. Bowdle [1] observes that accurate monitor-
ing of anaesthetic levels during surgery is associated with 
improved patient outcomes, reduced likelihood of opera-
tive awareness, and faster recovery following surgery. 
Traditional measures of determining DoA include obser-
vation of physical traits such as muscle reflex actions, 
pulse, and blood pressure. Despite this, Diykh et  al. [2] 
suggested that the variation in individual patient response 
to anaesthetic agents prevents reliable and uniform 
observations of the DoA based on these measures. Alter-
natively, an accurate assessment of the DoA is achievable 
by examining patterns in electroencephalography (EEG) 

[3, 4]. EEG signals can reflect the intrinsic connections 
and functions of the brain [5, 6]. The observed regular-
ity and patterns of EEG signals can provide insights into 
the level of unconsciousness. Furthermore, John [7] and 
Saadeh, Khan and Altaf [8] observed that EEG-based 
DoA monitoring methods’ reliability is independent of 
the anaesthetic agent used.

A range of EEG-based DoA monitoring algorithms are 
currently in operation throughout modern surgical pro-
cedures. The bispectral index (BIS) is the current market-
leading application for measuring DoA and is considered 
a suitable comparative index in model building for DoA 
applications [9, 10]. The BIS index processes the EEG 
signal based on time and frequency components and 
returns a value between 0 and 100 on a BIS monitor. This 
index reflects the patient’s anaesthetic states during sur-
gery and may assist the anaesthetist in providing appro-
priate medication for maintaining appropriate levels 
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of unconsciousness. In recent studies, Li and Wen [11], 
Diykh et al. [2], and Nguyen-Ky et al. [12, 13] addressed 
the limitations of its observed susceptibility to interfer-
ence from noise, time delay, and inconsistency between 
patients in the BIS index. Continual research and devel-
opment in refining EEG based DoA algorithms are neces-
sary to assist medical professionals in the care of patients 
undergoing surgery.

Recent work by Liu et  al. [14] in applying empirical 
wavelet transform (EWT) to decompose seismic data 
has shown promising results. We were motivated by the 
effectiveness of EWT for signal decomposition in our 
application with EEG signal for DoA estimation. In this 
paper, a new index for estimating DoA based on EEG sig-
nals is proposed to utilise EWT and statistical features 
and use a window technique to divide the EEG signal 
into segments. Each EEG segment is then partitioned 
into n EWT subbands to produce a vector of wavelet 
coefficients for each subband. Two statistical features, 
Second Order Differential Plot (SODP) and Spectral 
Entropy (SE), are extracted from the highest order sub-
band of each segment. A new function of a DoA estimate 
 (SSEDoA) is designed with a Support Vector Machine 
(SVM) utilising a linear kernel function. The new index 
is evaluated using a recorded EEG signal and the BIS 
index from 13 subjects. Pearson correlation, r, and Mean 
Squared Error (MSE) are used to evaluate the agreement 
between the BIS and the new index,  SSEDoA. Supervised 
machine learning utilising 80% confidence interval rule 
classification based on the  SSEDoA index is implemented 
to evaluate the DoA states classification of the transition. 
Cohen’s Kappa coefficient is used to determine the level 
of agreement between the predicted and actual DoA state 
classification for the test patients. The actual DoA state is 
determined based on the anaesthetist’s notes and exami-
nation of the BIS of the patient at that time. This classifi-
cation method is a novel application based on the work 
by Nguyen-Ky et al. [15].

A variety of DoA methods based on EEG recordings 
have been developed. The purpose of ongoing research 
in this area is to refine an accurate index to monitor the 
DoA. The general structure of DoA assessment models 
follows the flow chart in Fig. 1. The core feature extrac-
tion and index design processes contribute to the signifi-
cant difference between DoA assessment methods.

Saadeh et  al. [8] proposed a method for DoA classifi-
cation based on spectral estimation methods, including 
spectral edge frequency, beta ratio, and spectral energy; 
these selected features are known to be present in the BIS 
algorithm [8, 11, 16, 17] and have been shown to develop 
indices with close representation to the BIS index. This 
work implemented a band-pass filter for signal denoising, 
and a fine decision tree classifier was used in the DoA 
index design. In classifying the DoA states into four levels 
of unconsciousness, an accuracy of 92.2% was observed 
in that study. The outcome added strength to the valid-
ity of the selected feature extraction methods and their 
associated similarity with the BIS index. The spectral 
density methods utilised the extracted information from 
a signal as a stochastic process that can describe the dis-
tribution of the signal’s power in its frequency domain. 
The randomness of EEG signals limits this characteristic 
to an estimation based on the sequence of time samples. 
The spectral density process assumes that the signal can 
be described parametrically from a linear system driven 
by white noise [17].

Different levels of cognitive awareness are known to 
be associated with varying patterns of EEG signal com-
plexity. Consequently, entropy-based feature extraction 
methods are specifically suited to decoding an EEG signal 
through the detection of its complexity [18–20]. More 
recently, Almeer [20] implemented multi-scale sample 
entropy to extract complexity information from several 
EEG channels simultaneously for DoA analysis. In this 
work, index design was implemented with an artificial 
neural network. Classification of the DoA states observed 
an overall accuracy of 95% in that work. The computa-
tional intensity of the algorithm design was considered a 
limitation of this method.

Wavelet-based methods have been extensively utilised 
in EEG signal analysis for various biomedical applica-
tions. The computational efficiency and capacity to 
discriminate both the temporal and spectral domain fea-
tures of signals add value to this method [21, 22]. Fur-
thermore, wavelet-based approaches are not inhibited by 
time–frequency compromises inherent to other meth-
ods [17]. Due to the extent of features extracted through 
these methods, feature selection plays an increasingly sig-
nificant role in research methodologies. The application 
of EWT to EEG signals for DoA analysis is considered 

Fig. 1 Structure Diagram for EEG based DoA assessment methods
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novel. The success of this method in other fields of EEG 
signal analysis was a motivation for this research.

Li and Wen [11] implemented linear regression fol-
lowing the extraction of mobility, permutation entropy 
and Lempel–Ziv complexity in DoA estimation with an 
EEG signal. Their proposed method is considered the 
benchmark in index design due to the observed effec-
tiveness because of the modelling technique’s simplic-
ity and computational efficiency. This index observed 
close representation to the BIS index with an average 
Pearson correlation across 19 patients of 0.809. Fur-
thermore, an earlier time response of 25 to 264  s was 
observed in that study.

Alternatively, Support Vector Machines (SVM) is a 
popular model building technique for EEG analysis 
in both regression and classification systems [8, 23]. 
Recently, Tapani, Vanhatalo and Stevenson [24] applied 
an SVM index design to time and frequency domain 
features in seizure classification for neonatal subjects. 
The method outperformed human expert classifications 
in 73/79 cases.

Methods
The proposed method for the new DoA index,  SSEDoA, 
is based on statistical feature extraction that is derived 
from the coefficients following EWT, as illustrated in 
Fig.  2. The application of EWT processing employed 
here is the first paper that uses this process in DoA 
assessment. The EEG signal is initially partitioned into 
small segments utilising the window segmentation 
method discussed by Diykh, Li, Wen and Li [2] and Li 
[25]. The authors observed that a 56 s EEG signal win-
dow with a 55-s overlap produced optimal results and 
was hence applied in this paper. The incoming signal 
is decomposed using EWT into n subbands, where the 
wavelet coefficients are extracted for analysis. The SE 
and SODP parameters are calculated from these win-
dows and averaged over each segment. Index design is 
undertaken with an SVM utilising a linear kernel func-
tion. The novel work in this research is the application 
of EWT for preliminary EEG signal decomposition for 
the DoA analysis.

Feature extraction and feature selection
The  spectral entropy  (SE) of a signal is the measure of its 
spectral power distribution. The concept is based on infor-
mation entropy, a subset of information theory. The SE treats 
the signal’s normalised power distribution in the frequency 
domain as a probability distribution and calculates the spec-
tral entropy of the signal. This property is seen to be useful 
for feature extraction in biomedical applications [26].

The equations for the power spectrum and probability 
distribution for a signal underpin the spectral entropy 
function. For a given signal x(n), X(n) is the discrete Fou-
rier transform of x(n), n = 1, 2, …, N.

P(n), the probability distribution, is thus:

where 
∑M

m=1 P(n) = 1

Hence, the spectral entropy, SE, at time t, can be 
expressed as:

The SODP (Second Order Difference Plot) method 
has been shown to be effective in the analysis of the 
EEG signal for the DoA [25]. The SODP of intrinsic 
mode functions provides the elliptical structure, and 
the feature space is formed using ellipse area parame-
ters. The moving vector of the EEG signal encompass-
ing the 56-s window size is used as the input in this 
study.

SODP is calculated discreetly for each second in 
the input window [27]. The SODP for the signal, x(n), 
is found by plotting X(n) = x(n+ 1)− x(n) against 
Y (n) = x(n+ 2)− x(n+ 1) , where:

And SX  and SY  are defined as; SX =

√∑n−1
N=0

X(n)2

N  

and SY =

√∑n−1
N=0

Y (n)2

N

SXY  is defined as:

The distance, D, is hence calculated as;

The mean values of the SE and SODP over the 56-s 
window were used as the extracted features.

In the initial stages of feature extraction, EWT was 
applied to the Channel 2 signal in order to separate 
this signal into separate subbands. The previous feature 
extraction methods were then applied to select meaning-
ful features. The implementation of EWT in this work is 
considered novel in terms of measuring the DoA. How-
ever, it has been successfully implemented in other EEG 
applications. The extraction of a subband allows for the 
analysis to be performed on the coefficients of a single 

(1)P(m) =
X(n)∑
iX(i)

(2)SEn(t) = −

N∑

n=1

P(t, n)log2P(t, n)

(3)
SODP = |log(3π

√(
SX2 + SY 2 + D

)(
SX2 + SY 2 − D

)
|

(4)SXY =
1

N

∑
(X(n) ∗ Y (N ))

(5)D =

√(
SX2 + SY 2

)
− 4(SX2SY 2 − SXY 2)
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subband in isolation. In this way, the refined subband sig-
nal can exhibit the true nature of the brain function and 
can illustrate the DoA situation more accurately.

Existing research typically extracts frequency bands 
by implementing frequency band filters. This method 
requires a signal to be denoised prior to analysis, 
resulting in a substantial time delay. Implementing 
EWT methods does not require discreet denoising as 

the process itself can denoise the signal through the 
generation of subbands.

The EWT process was implemented in MATLAB 
using the algorithm by Gilles [28]. A fundamental char-
acteristic of the EWT method is the automatic identifi-
cation of the wavelet boundaries. This adaptive method 
constructs the wavelet filter bank on the basis of the 
information contained in the signal. The inability to 

Fig. 2 Block diagram of the proposed method to estimate the DoA
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specify these boundaries is a distinguishing difference 
between EWT and the conventional frequency band 
filter. The wavelet filters are constructed by applying 
Fourier boundary detection to each 56-s window of the 
EEG signal. Different portions of the spectrum corre-
sponding to different modes are separated by identify-
ing the Fourier supports [28].

The EWT, Wε
f (n, t) , is defined in the same manner as 

the classical wavelet transform. Here the coefficients are 
the inner products of the empirical wavelets [28]:

The approximation coefficients, given by Wε
f (0, t) , is 

the inner product with the scaling function:

where ψ̂n(ω) and φ̂1(ω) are defined according to the idea 
used in the construction of Littlewood-Paley and Meyer’s 
wavelets [29]. Therefore:

Therefore, the empirical mode fk , as defined by Gilles 
[28], is:

In implementing this function, a vector of the non-
denoised signal, representative of the 56-s window, was 
used as the EWT input. A range of window sizes was 
investigated based on the recommendation of appropri-
ate literature [25].

The  R2 value shows the degree of variance between the 
extracted feature and the BIS value. The extracted fea-
tures are calculated over the 15 EWT subbands. Analysis 
of the correlation between the extracted features and the 
BIS and their effectiveness for analysis. R2 is defined as:

where yi is the known BIS value, fi is the new index, 
and y is the mean of yi . The coefficient of determination 
ranges between 0 (no relationship) and 1 (a perfect rela-
tionship). In this case, the higher the observed R squared 

(6)W
ε
f (n, t) = �f ,ψn� =

∫
f (τ )ψn(τ − t)dτ

(7)W
ε
f (0, t) = �f ,φ1� =

∫
f (τ )φ1(τ − t)dτ

(8)

f (t) = Ŵ
ε
f (0,ω) ∗ φ̂1(ω)+

N∑

n−1

Ŵ
ε
f (n,ω) ∗ ψn(t)

(9)f0(t) = W
ε
f (0, t) ∗ φ1(t)

(10)fk(t) = W
ε
f (k , t) ∗ ψk(t)

(11)R2 = 1−

∑
i

(
yi − fi

)2
∑

i

(
yi − y

)2

value for a given feature, the more useful this feature (or 
parameter) set is expected to be in modelling the state of 
unconsciousness.

Regression models
Machine learning algorithms have been extensively used 
in signal classification for EEG analysis. Two different 
machine learning algorithms were applied: linear model 
regression (LM) and support vector machine (SVM) are 
applied for training using the training datasets, and the 
model is evaluated using the testing datasets. Combining 
the features developed utilising the EWT wavelet subbands 
can describe the difference in the aesthetic states.

Linear regression models are those that can be described 
by the generalised equation below:

where yi represents the response for the ith sample based 
on the input features xi1 to xiP . The coefficients of the 
predictors are represented by b1 to bP and b0 represents 
the model’s constant. ei represents the error term. These 
models attempt to estimate the parameters bn, such that 
the mean square error (MSE) for the training data is at a 
minimum.

SVM models utilise the squared residuals when they are 
comparatively small and adapt the function to employ the 
absolute residuals when larger. Data points outside the 
user-defined threshold contribute a linear scale amount, 
while those within the threshold do not contribute to the 
regression fit. Consequently, large outliers have a limited 
effect on modelling. Furthermore, data points that the 
model fits overly well do not contribute to the model. The 
SVM employs the loss function, ǫ , and applies a penalty 
factor. Thus, the SVM regression model attempts to mini-
mise the function:

where Cost parameter is the user-defined penalty to 
larger residuals. The predictor based on the SVM can be 
defined as:

where f (u) is the predictor and u is the vector of explana-
tory variables. The function K (xi,u) defines the kernel 
function. In this research, a linear kernel function was 
employed.

A moving average was applied to improve the stability of 
the developed index for both the SVM and linear models. 

(12)yi = b0 + b1xi1 + b2xi2 + · · · + bPxiP + ei

(13)Cost

n∑

i=1

Lǫ(yi − ŷi)+

P∑

j=1

β2
j

(14)f (u) = β0 +

n∑

i=1

αiK (xi,u)
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The moving average was applied over a 6-s window with a 
5-s overlap, such that:

Evaluation methods
The strength of the linear relationship between the BIS 
and the new index can be measured with Pearson corre-
lation, r, and is defined as:

where x is the DoA prediction for the new index and 
y represents the corresponding BIS value for that time 
component. The means of x and y are represented by x 
and y , respectively. The correlation coefficient represents 
the degree of the linearity between the predicted index 
and the BIS value, where a correlation of 1 represents a 
perfect linear relationship, and −1 represents a perfect 
inverse relationship. A correlation of 0 is indicative of no 
meaningful relation.

A complimentary evaluation method, Mean Square 
Error (MSE), is considered. The MSE measures the aver-
age squared difference between the estimated values and 
the actual value. RMSE is the square root of MSE, where 
MSE is defined as:

(15)Indexsmoothed(t) =

∑5
0Index(t − i)

6

(16)r =

∑
N

(
(x − x)

(
y− y

))
√∑

N (x − x)2
∑

N

(
y− y

)2

DoA states and transition analysis
In addition to regression analysis, the overall effective-
ness of the new index in predicting the DoA states was 
also evaluated. This was achieved by developing a rule-
based assessment process to translate the new index 
into a categorical DoA state descriptor. This evaluation 
method is an adaptation based on the work by Nguyen-
Ky, Tuan, Savkin, Do and Van [15]. Li et al. [30] observe 
that the DoA states, as indicated by the BIS, correspond 
to the following ranges: 0–40 corresponds to deep anaes-
thesia (DA), 40–60 moderate anaesthesia (MA), 60–80 
light anaesthesia (LA), and 80–100 awake (AW). A mod-
erate anaesthesia depth is noted as corresponding to a 
suitable level for surgery.

The attending anaesthetist recorded surgery stages 
and drug administration relevant to the state of patient 
consciousness. The anaesthetic stage was assessed in 
conjunction with the BIS information and the recording 
physicians’ surgical notes to determine the anaesthetic 
state of the patient during surgery, as shown in Fig.  3. 
This information was compiled for both the testing and 
training patient groups. For example, the rapid decrease 
in the BIS level at 500  s coincides with the observed 
stage transition into deep anaesthesia. The state of deep 
anaesthesia is observed to be relatively stable, extending 
into moderate anaesthesia from 1000 s to approximately 
2000  s. This coincides with the recorded incision time 

(17)MSE =
1

N

∑N

n=1

(
yn − ŷn

)2

Fig. 3 The BIS index over time for patient 7 with surgical notes indicated
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and the ending of the anaesthetic agent at approximately 
3000  s. The following period is considered the recovery 
period, and consciousness is to be restored. In this case, 
monitoring of the DoA ceases prior to the resumption of 
full cognitive awareness.

Rules are generated for the classification of anaesthetic 
states based on the training data distribution within each 
DoA state group. These rules are based on the new SVM 
index developed for the prediction of the DoA. A confi-
dence interval of 80% based on the proportion of training 
information was implemented. This interval was consid-
ered appropriate as a minimal gap or overlap between 
states was observed. In addition, this rule produced 
intervals in very close agreement with the suggested BIS 
ranges for anaesthetic states.

Cohen’s Kappa score (K) is computed to evaluate the 
degree of agreement between the predicted and actual 
DoA states generated by the new index [8]. K is defined 
as:

where i and j represent the row and column indexes 
of the confusion matrix. Cohen’s Kappa score is used 
to justify the level of agreement between the observed 
state based on the anaesthetist notes and the rule-based 
assessment based on the new  SSEDoA index.

Results
Experimental data
The EEG signal data analysed in this study included 23 
adult patients aged from 22 to 83  years and weighing 
between 60 and 130  kg. The EEG signal consisted of a 
two-channel signal recorded at a 128 Hz frequency. The 
BIS index values for patients are recorded during surgery 
at a rate of one value each second. The EEG signal was 
not denoised prior to analysis. Li and Wen [11] observed 
that Channel 2 EEG signal more closely represented the 
DoA and was used exclusively in this study. In addition, 
the anaesthetist’s notes with drug dosage and administra-
tion times were available and considered for 22 of the 23 
patients.

The medical condition and procedure of data collection 
were explained to all patients. The consent, including all 
ethical issues, was obtained from all patients. The study 
was approved by the University of Southern Queensland 
Human Research Ethics Committee (No: H09REA029) 
and the Toowoomba and Darling Downs Health Ser-
vice District Human Research Ethics Committee (No: 
TDDHSD HREC 2009/016).

(18)K =
n
∑k

i=1nii−
∑k

i=1n.ini.

n2 −
∑k

i=1n.ini.

Pre‑processing
EEG signals are often disrupted or distorted by different 
types of noise, for example, from environmental or physi-
ological sources. Environmental noise can be generated 
from powerline interference or other devices in the surgi-
cal theatre. Physiological noise can arise due to cardiac 
signals, movement, or poor device contact interference. 
A broad-spectrum band-pass filter is implemented on 
the original EEG signal to eliminate the impact of noise. 
The filter would select the EEG data samples between 0.1 
and 64 Hz frequency ranges.

The 23 patients were randomly divided into two inde-
pendent groups for training and testing. Feature extrac-
tion, feature selection, and index design were based on 
the selection of stable subsets of signal from the train-
ing patient group. Signal stability was considered based 
on the observed correlation between the anaesthetist’s 
notes and the recorded BIS value. Periods of rapid stage 
transition or poor signal quality were not used for model 
training. As defined by the BIS, approximately equal dis-
tribution across the full range of DoA stages was incor-
porated into the training data to reduce training bias. 
The results presented in this paper were based on the 
implementation of the new index on the testing patient 
group. Patients 1 to 10 were used to develop the train-
ing patient dataset, and patients 11 to 19 were used as the 
testing dataset for validation of the training model. The 
EEG data from patients 20 to 23 were observed to exhibit 
high levels of irregularity in the signal quality. They were 
used independently to test the effectiveness of the new 
index in the case of poor signal quality. Signal quality was 
measured during the surgery by the SQI (Signal Quality 
Index).

Parameter selection
The Fourier boundaries were detected by computing 
the local maxima with the boundaries set as the small-
est minima between consecutive maxima, known as 
"locmaxmin". This method was selected as it allows a 
finite number of subbands to be specified. The bound-
ary detection was implemented based on the logarithm 
of the spectrum instead of the spectrum itself. Following 
the identification of the Fourier boundaries, the 1-dimen-
sional (1D) wavelet coefficients for each subband were 
calculated.

The EWT method employed generated 15 subbands 
with feature extraction utilising only the highest order 
subband. EWT was applied to each 56-s window and 
extracted 15 subbands, whereby three features were 
extracted from each, generating 45 unique features 
in total per window. A range of EWT subbands were 
assessed for correlation with the features discussed 
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above. In all cases, features extracted from the highest 
order EWT subband coefficients were seen to be most 
highly correlated with the BIS index. It was observed that 
when 15 EWT subbands were specified, the extracted 

features exhibited peak correlation with the BIS index; 
the effect was most significant for spectral entropy. The 
correlation of the BIS with both the SODP and median 
was seen to maintain uniformity independent of the 

(a)
(b)

(c) (d)

(e) (f)
Fig. 4 Comparison of EWT subbands: a Correlation of Median with the BIS feature for each EWT subband. b Scatter plot of the median EWT coef-
ficient for the 15th band against the BIS index, 95% confidence interval shown. c Correlation of SODP with the BIS feature for each EWT subband. d 
Scatter plot of SODP for the 15th band against the BIS index, 95% confidence interval shown. e Correlation of Spectral Entropy with the BIS feature 
for each EWT subband. f Scatter plot of Spectral Entropy coefficient for the 15th band against the BIS index, 95% confidence interval shown
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number of extracted subbands. The selection of 15 EWT 
subbands was made regarding the effect of these respec-
tive features in the model building.

Figure  4a, c and e illustrate the R2 value for each 
respective EWT subband when 15 subbands are speci-
fied; the EWT subbands are presented in ascending order 
according to the respective detected Fourier boundaries 
with the highest frequency band assigned the highest ref-
erence index. The information presented is constructed 
using the training data set from 10 patients. Figure  4 
illustrates the distribution of each feature extraction 
applied to the 15th EWT subband coefficient against the 
BIS value with the 95% confidence interval bands and the 
linear trend line indicated.

The Median value of the EWT coefficient is included in 
the model training as it has been observed to provide a 
stable baseline for the index design despite the low corre-
lation with the BIS index. The peak correlation occurred 
with the 15th EWT band for all extracted features. The 
R squared value for Spectral Entropy and SODP with the 
BIS index is 0.52 and 0.47, respectively.

Index design
Linear regression and SVM models are employed inde-
pendently and evaluated to select the most suitable meth-
ods for the DoA index design. The outcomes are shown 
in Table 1 across three evaluation methods: Pearson cor-
relation coefficient, MSE and RMSE. These models were 
developed using the three parameters, median wavelet 
coefficient, spectral entropy, and SODP. The SVM model 
is seen to be most effective when considering both the 
Pearson correlation, r, and the Mean Square Error (MSE). 
The highest correlation was observed at 0.943 for patient 
15 with the SVM model. The smallest MSE of 79.12 was 
observed for patient 34 with the SVM model.

The agreement of the new DoA index using SVM 
with the BIS value
The selected parameters of the median wavelet coef-
ficient, spectral entropy and SODP are used to obtain 
the coefficients of a new DoA index using SVM, named 
 SSEDoA. The new index is evaluated by comparing it with 
the BIS index using the testing EEG dataset. The aver-
age correlation of the  SSEDoA index for the testing results 
is 0.834, with a range from 0.768 (patient 17) to 0.943 
(patient 15). The average RMSE is 12.74, with a range 
between 19.10 (patient 14) and 8.90 (patient 18). Figure 5 
illustrates the  SSEDoA index against the BIS index for each 
observation in the training data set, including the poor-
quality patient data. The SVM model is seen to produce a 
DoA index with a closer relationship with the BIS value. 
This is indicated by the proximity of the 95% confidence 
bounds to the trend line. The bulk of the patient data is 
in the BIS range of 20 to 60, corresponding to a moderate 
to deep anaesthetic state. In this region, the prediction 
is seen to be strong except for a few noticeable outli-
ers that will be discussed in the following sections. The 

Table 1 Evaluation of testing patients

Model Evaluation method Patient index

11 12 13 14 15 16 17 18 19 Average

SVM Pearson 0.866 0.808 0.786 0.859 0.943 0.925 0.768 0.787 0.848 0.834

LM Pearson 0.798 0.769 0.773 0.793 0.940 0.799 0.639 0.612 0.600 0.753

SVM MSE 111.5 88.2 239.0 364.8 131.1 177.6 188.6 79.1 116.2 172.5

LM MSE 125.8 95.7 180.6 387.8 110.9 213.1 233.0 148.0 218.4 199.5

SVM RMSE 10.56 9.39 15.46 19.10 11.45 13.33 13.73 8.90 10.78 12.75

LM RMSE 11.22 9.78 13.44 19.69 10.53 14.60 15.26 12.17 14.78 13.84

Fig. 5 The scatter plot of the BIS index against the new index,  SSEDoA, 
with 95% confidence interval, from testing results
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performance of the new DoA index for the entire testing 
patient group, inclusive of the low SQI EEG recordings, is 
shown in Fig. 6.

Assessment of the DoA states and transition
In assessing the DoA states classification capacity of the 
new index,  SSEDoA, association rules based on the anaes-
thetic states and EEG signal of stable anaesthesia periods 

SSEDoA index

BIS index

Fig. 6 The BIS index against the new index,  SSEDoA, from testing result for patients 11 to 23

Fig. 7 Comparison of DoA States: a BIS value against DoA Prediction with anaesthetic state indicated in colour. b Box plot illustrating the range of 
DoA prediction for each anaesthetic state for the training data from 10 patients/subjects
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were applied. Stability was considered based on the align-
ment of the anaesthetist notes and the BIS index. In addi-
tion, only patients’ EEG signal intervals that observed 
stable levels of SQI were considered.

Rules for classifying the DoA states were generated 
by assessing the association between the DoA state 
and the  SSEDoA index from 5930 data points from the 
training EEG set. Rules implemented a boundary con-
fidence interval of 80% of the proportion of training 
data for each state group. This interval provided mini-
mal gap or overlap between states. Figure 7a shows the 
BIS value against the  SSEDoA index with the anaesthetic 
state indicated in colour for the training group. The box 
plot, Fig. 7b, illustrates the  SSEDoA index range for each 
anaesthetic state for the training dataset. The DoA state 
boundary rules are indicated in Table 2.

In assessing the strength of these association rules, a 
selection of 4491 s of testing EEG data with stable DoA 
intervals was used. The association rules were applied 
directly to the  SSEDoA index for the testing data. Com-
parison between the actual DoA state and the predicted 

state indicates the very strong predictive power of the 
new index in assessing the DoA state. The classification 
accuracy of the DoA state is illustrated in the confusion 
matrix in Fig. 8. The Cohen’s Kappa coefficient is ascer-
tained to justify the effectiveness of the proposed index in 
determining the overall level of anaesthesia. The Cohen 
Kappa score of 0.809 is observed and considered a high-
level agreement (between 0.8 and 1) [31, 32]

Effectiveness of new index in the case of poor signal 
quality
As measured by the Signal Quality Index (SQI), signal 
quality was available for a limited subset of patients in the 
testing set. In several cases, information regarding the 
SQI may be used to suggest the reason behind the diver-
gence between the predicted level of unconsciousness 
and the actual BIS level. Patients 20, 21, 22, and 23 were 
considered to be suitable examples of poor signal quality.

In the case of patient 23, a correlation of 0.760 is 
observed between the  SSEDoA index and the BIS index 
and is directly associated with the observed instances 
of poor signal quality. The BIS index, alongside the new 
 SSEDoA index and the SQI, is shown below in Fig.  9 for 
the duration of patient 23’s surgery. The atypical infor-
mation corresponding to the first 170  s when the BIS 
was observed outside acceptable bounds. The SQI for 
patient 23 drops below 20 for the period corresponding 
to the misled BIS prediction. Despite this, the new index 
 SSEDoA made an appropriate and reasonable estimation 
for the level of the DoA, which is in alignment with the 
attending anaesthetist’s notes. The divergence in the BIS 
and the  SSEDoA index from 600 to 1300 s is again seen to 
correspond with a period of poor signal quality. Once the 

Table 2 DoA state rule boundaries based on the new 
 SSEDoA index

State Lower bound Upper bound

Awake (AW) 71.8993 100

Light anaesthesia (LA) 57.9933 70.4623

Moderate anaesthesia (MA) 43.2464 57.9141

Deep anaesthesia (DA) 21.446 38.6928

Fig. 8 Confusion matrix for the prediction of DoA state based on the 
new index  SSEDoA

Fig. 9 The  SSEDoA index is compared to the BIS value for patient 23 
with SQI indicated
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signal quality becomes stable, the new index and the BIS 
converge at 1400 s.

A similar trend is observed in patients 21 and 22, as 
shown in Fig.  10a and b. The correlation of the  SSEDoA 
index with the BIS value for patient 21 is 0.7916 over the 
entire surgical procedure. Over this time frame, the mean 
SQI for patient 36 is seen to be 77.53 with high volatil-
ity. Figure  10a illustrates where the volatility in SQI is 
reflected in the BIS index from 400 to 1500 s. In compari-
son, the new index is observed to remain relatively stable. 
Despite the observed poor signal quality for patient 22, 

BIS and the  SSEDoA index correlation is 0.864. The high 
correlation shown in Fig. 10 suggests its stability in this 
new index despite signal interference. This is reinforced 
by the relative stability in the  SSEDoA index, compared to 
the BIS, from 1000 to 1500  s during the period of poor 
signal quality. Based on the Anaesthetist observations, 
there is no evidence suggesting that the patient experi-
enced an elevated level of awareness during this period, 
as indicated by the change in the BIS index.

(a) (b)

SSEDox index

BIS index

SQI

SSEDox index

BIS index

SQI

Fig. 10 SSEDoA index compared to the BIS with SQI indicated for patient 21 (a) and 22 (b)

Fig. 11 SSEDoA alongside the BIS index with time delay highlighted for a for patient 15 and b for patient 19
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Time delay for DoA stage transition
Time delay and responsiveness of a DoA index to changes 
in a patient’s level of awareness are critical for effective 
surgical awareness management. The newly developed 
index is seen to exhibit advantages over the BIS index 
in periods of state changes with extensive time delay 
observed from the BIS value compared to the. This is 
evident in patient 15 in Fig. 11a, where the  SSEDoA index 
indicates a change of anaesthetic state from 20 to 50 up 
to 500 s earlier than the BIS index. This anaesthetic state 
corresponds to a change from deep to moderate anaes-
thesia; timely monitoring of these changes is critical dur-
ing surgical procedures. During this observed time delay, 
the patient’s signal is subject to reduced signal quality. 
This lower SQI is suggested to be the contributing fac-
tor behind the time delay. Due to the significance of this 
change in SQI, patient 15 was excluded from the main 
testing patient group.

A similar trend was observed in patient 19 between 400 
and 640 s. The time delay of the BIS index compared to 
the  SSEDoA index, in this case, is 239 s, again, during the 
transition from deep to moderate anaesthesia, as shown 
in Fig. 11b. In a similar manner to patient 15, this time 
delay coincided with observed changes in the SQI. These 
trends have been observed in several other patients, as 
shown in Table 3.

In five of the nine test cases, the time delay was 
observed in the BIS index compared to the  SSEDoA 
index. These effects are outlined in Table 3. In no case 
was the new  SSEDoA index seen to respond to changes 
in DoA at a slower rate than the BIS index. It is sug-
gested that the time delay seen with the BIS results 
from changes in signal quality occurring during or 
just prior to the observed time delay event. The newly 
developed index  SSEDoA is seen to respond to changes 
in SQI in a superior manner to the BIS index, which 
exhibits both volatility and time delay during these 
events.

Discussion and conclusions
This paper investigated a new DoA index,  SSEDoA, based 
on current and novel practices in EEG signal analysis. 
Specifically, the inclusion of empirical wavelet trans-
formation is a means of filtering and segmenting the 
EEG signals. This feature was utilised in combination 
with SODP and spectral entropy to produce the new 
DoA index. The outcomes of this research are evaluated 
against the known DoA industry standard, the BIS. The 
index was developed utilising the SVM modelling tech-
nique and was seen to accurately model changes in the 
anaesthetic state with an average correlation of 0.834 
with the BIS index.

This index was shown to have the capacity to closely 
follow the BIS index distribution under anaesthesia 
and, in some cases, exhibited significant time advan-
tages to the BIS. A strong association between the BIS 
index and the  SSEDoA index was observed, with correla-
tions ranging between 0.77 and 0.94 across the testing 
group. The effect of poor signal quality on the perfor-
mance of the proposed index was investigated. It was 
seen that the new index was able to respond to poor 
signal quality in a superior manner to the BIS index. 
In these cases, time delay and index volatility were fre-
quently present in the BIS index. These abnormalities 
were not seen in the  SSEDoA index. It is suggested that 
the effectiveness of the new index,  SSEDoA, in respond-
ing to low levels of signal quality is a direct manifesta-
tion of the design of the new index. The adaptability 
of the EWT method allowed for the proposed support 
vector machine to deliver robust and meaningful 
information even when variations in signal quality are 
present.

This model successfully extracted critical informa-
tion from the EEG signal to accurately model the state 
of unconsciousness, as indicated by Cohen’s Kappa score 
of 0.801. This included correspondence with DoA states 
and transitions and exhibited proficiency during peri-
ods of poor signal quality. Furthermore, the new index 
highlighted time delay in the BIS index corresponding 
to faster response times during the transition between 
anaesthetic states. Most significantly, these results were 
achieved without the application of a discreet denoising 
process. The advantage of developing a highly effective 
and adaptable DoA model without a discreet denois-
ing process is significant because of the reduced com-
putational time and processing requirements necessary 
in developing these surgical applications. Future work 
in this area will be to explore alternate model building 
techniques, such as K-Nearest Neighbour (KNN), Sup-
port Vector Regression (SVR), or quadratic Gaussian 
regression.

Table 3 Catalogue of time advantage of the  SSEDoA index 
observed across all testing cases

Patient ID Time delay (s) Correlation

13 601 0.7861

15 599 0.8124

16 150 0.9427

18 450 0.638

19 239 0.787

20 123 0.8475
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