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Abstract 

Physics-informed neural network (PINN) has recently gained increasing interest in 

computational mechanics. This work extends the PINN to computational solid mechanics 

problems. Our focus will be on the investigation of various formulation and programming 

techniques, when governing equations of solid mechanics are implemented. Two prevailingly 

used physics-informed loss functions for PINN-based computational solid mechanics are 

implemented and examined. Numerical examples ranging from 1D to 3D solid problems are 

presented to show the performance of PINN-based computational solid mechanics. The 

programs are built via Python with TensorFlow library with step-by-step explanations and can 

be extended for more challenging applications. This work aims to help the researchers who are 

interested in the PINN-based solid mechanics solver to have a clear insight into this emerging 

area. The programs for all the numerical examples presented in this work are available at 

https://github.com/JinshuaiBai/PINN_Comp_Mech. 
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1. Introduction 

Computational mechanics is the discipline that applies numerical techniques to solve mechanics 

problems. The majority of problems in mechanics can be represented using partial differential 

equations (PDEs) in different forms depending on the type of problem. Analytically solving 

these types of PDEs is found difficult for irregular problem domains. Thus, numerically solving 

PDEs becomes the central focus of computational mechanics. Numerous numerical approaches, 

such as the finite element method (FEM) and the element free Galerkin (EFG), or meshfree 

methods have been developed [1]. The most widely used method is the FEM not only in 

research but also in a wide range of industrial applications [2]. 

In recent years, deep learning (DL), i.e., multilayer perceptron that is fully connected artificial 

neural network (ANN), has attracted great attention in computational mechanics and provided 

alternative ways for solving mechanics problems. ANNs can be equipped with multiple hidden 

layers with neurons, providing them with powerful learning capability. As long as there is a 

sufficient amount of quality data or some form of information that can be used to train an ANN 

properly, it can become a powerful tool for a wide range of problems, including image 

processing [3, 4], biological predictions [5], and non-smooth dynamics [6]. The quality data is, 

however, often difficult to acquire. 

A fully trained ANN can also provide a powerful tool to unveil the relationships between field 

variables of mechanics problems. Based on the training data, optimisers can iteratively improve 

the performance of ANNs by tuning the parameters. Many neural network-based computational 

mechanics has been proposed [7, 8]. However, in most mechanics problems, only a limited 

number of observed or measured data are available. For example, quantifying inside substance 

and structures are hard to obtain even with state-of-the-art equipment [9]. It is very challenging, 

if not impossible, to obtain a well-developed and labelled database for computational 

mechanics. ANNs trained with insufficient data are susceptible to severe failures, such as low 

prediction accuracy and poor generalisation [10]. Therefore, data scarcity greatly hinders the 

applications of DL in computational mechanics. 

Recently, the physics-informed neural network (PINN) has been proposed by Raissi et al. [11], 

in which the physics laws and equations can be seamlessly integrated into training ANNs. In 

PINN, physics laws are transferred into training data. Compared to data-driven DL, PINN 

leverages physics laws as the remedy for insufficient data. In this manner, PINN can achieve 

better performance than data-driven DL when facing data scarcity. Up to now, a great number 
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of studies have been conducted for PINN. Meng et al. [12], and Dong and Li [13] introduced 

domain decomposition techniques, which segment complex problems into subdomains, to 

PINN. With such techniques, PINNs are now more powerful in coping with extreme PDEs. 

Wang et al. [14, 15] studied the training pathology of PINN and migrated the neural tangent 

kernel (NTK) theory to PINN. Based on the numerical findings, an annealing learning rate and 

adaptive training algorithm were proposed for PINN so that PINNs can be more effective for 

problems with high-frequency features. Sukumar and Srivastava [16] proposed the distance 

function method that can exactly impose boundary and initial conditions on PINN. Yang et al. 

[17] integrated Bayesian distribution into PINN and proposed the B-PINN, which can evaluate 

the noisy data during training processes. Furthermore, Wang et al. combined the Fourier feature 

embeddings with PINN and tailored neural network structures. With the tailored neural 

networks, PINN can be used to deal with multiscale feature problems. Kharazmi et al. [18] 

proposed a variational type PINN, which trains neural networks to find the stationary points of 

functional loss functions. Moreover, several mixed-form loss functions have been proposed 

[19], aiming at fusing the benefits of various loss function types. It has been proven that PINN 

is effective for solving PDEs. For more recent developments of PINN, readers are referred to 

[20]. 

Physics-informed neural network-based computational mechanics has become one of the most 

popular topics in computational mechanics. Haghighat et al. [21] proposed a PINN-based 

framework for predicting field variables (such as displacement and stress) in elastostatic and 

elastoplasticity problems. In their study, ANN is applied to approximate the displacement field 

of mechanics problems. In addition, the collocation approach is used to incorporate governing 

equations and boundary conditions in the physics-informed loss function in order to assess the 

performance of ANN. The residuals of the ANN approximated displacement are minimised 

using optimisers until convergence. Samaniego et al. [22] leveraged PINN for computational 

mechanics from the energy point of view. In their work, the principle of minimum potential 

energy is applied as the physics laws for static problems. Optimisers are used to seek the 

stationary state of the total potential energy for static mechanics problems. Up to now, various 

PINN-based computational mechanics have been proposed for numerous applications, 

including fluid mechanics, vibrations, and fracture, to name but a few [9, 19, 23-33].  

Compared to traditional computational mechanics methods, PINN-based computational 

mechanics has the following advantages [21, 22, 32, 34]: 
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• Physics-informed neural network provides a powerful tool for solving nonlinear 

systems. In this manner, PINN-based computational mechanics can easily deal with 

mechanics problems with nonlinearity, such as large deformation and material 

nonlinear problems. Those problems are considered to be challenging for traditional 

computational mechanics methods.  

• Partial differential terms can be analytically obtained through automatic differentiation 

instead of spatial discretisation schemes and approximation methods in traditional 

computational mechanics. In this manner, PINN-based computational mechanics 

frameworks are less likely to be affected by the mesh quality and the distortion 

problems in mesh-based, or the arbitrary particle distribution and the boundary 

truncation issues in meshfree methods. 

• Physics-informed neural network-based computational mechanics has great potential 

for solving inverse problems. 

• Physics-informed neural network-based computational mechanics is easy to implement. 

Open libraries for coding PINN are available online and are easy to use. 

This study presents the details of the basic conceptions and implementations of PINN-based 

computational solid mechanics. Comparisons between different types of physics-informed loss 

functions are summarised. It has been proven that PINNs with the collocation loss function can 

produce accurate predictions for both displacement and stress fields, for both the equilibrium 

equation and boundary conditions are enforced in the physics-informed loss function. PINNs 

with the energy-based loss function can produce good displacement predictions but have large 

errors for the stress predictions. This is because the energy-based loss function indirectly 

imposes the governing equation. However, the energy-based loss function requires lower 

partial differential terms than the collocation loss function. Hence, the energy-based loss 

function is easier to implement and computationally more efficient than the collocation loss 

function.  

The aim of this work is to help researchers and engineers comprehend PINN-based 

computational mechanics and its programming. To this end, fundamental PINN-based 

computational solid mechanics programs are available with step-by-step explanations for 1D, 

2D, and 3D problems. The programs are written in Python with the TensorFlow library [35], 

which is one of the most popular DL libraries. Besides, readers can easily extend the program 

to challenging solid mechanics problems, such as geometric nonlinearity [19, 36], hyperelastic 

[37], and fracture problems [38]. 
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This paper is organised as follows. Section 2 introduces the essential conceptions of PINN-

based computational solid mechanics. In Section 3, a 1D problem is conducted to elucidate the 

implementations of the PINN-based computational mechanics. Besides, the program 

corresponding to the 1D problem is also provided in detail. In Sections 4 and 5, the extensions 

of PINN-based computational solid mechanics for 2D and 3D problems are provided with 

discussions. Section 6 summarises and provides further perspectives. The program for all the 

numerical examples presented in this paper is available at 

https://github.com/JinshuaiBai/PINN_Comp_Mech. 

2. PINN-Based Computational Solid Mechanics 

In this section, the essential conceptions of PINN-based computational solid mechanics are 

introduced. First, governing equations and boundary conditions in solid mechanics are recalled. 

Next, a brief introduction of PINN and its application to solve solid mechanics problems are 

elucidated. Finally, a boundary condition imposition technique for the PINN-based 

computational solid mechanics is presented. 

2.1. Governing equations in solid mechanics 

In solid mechanics, the governing equation for linear elastic problems is as follow 

 , 0,    ,f x   + =   (1) 

where σ is the Cauchy stress tensor, f is the body force per unit mass. Under the small 

deformation assumption, the stress tensor is calculated by 

 2 ,      = +  (2) 

 , ,

1
( ),

2
u u     = +  (3) 

where λ and µ are the Lamé constants. δαβ is the Kronecker delta function. ε is the strain tensor 

and u is the displacement. The above governing equations are closed by boundary conditions, 

which can be written as 

 ,         ,uu u x =   (4) 

 ,    ,tn t x   =   (5) 

https://github.com/JinshuaiBai/PINN_Comp_Mech
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where u and t denote the displacement and traction force on the corresponding boundaries, 

respectively, and n denotes the unit outward normal vector on the corresponding boundaries 

[39]. 

2.2. Physics-informed Neural Network for solid mechanics 

PINN comprises two main components, i.e., ANN and physics-informed loss function. Herein, 

details of ANN and physics-informed loss functions are introduced, respectively.  

 

Fig. 1. A physics-informed neural network comprises two main components, i.e., artificial neural network (ANN) and physics-

informed loss function. An example of an L-layer ANN is shown in the red dash box. x and u denote the input and output of 

the ANN, respectively. ϑ denotes the activation function used in the ANN. The physics-informed loss function is shown in the 

blue dash box. The physics-informed loss function is formulated by the physics laws and governing equations of the 

investigating systems. Note that partial differential terms, which are widely seen in physics laws and governing equations, are 

able analytically obtained via automatic differentiation.  

2.2.1. Artificial Neural Network 

The artificial neural network is a powerful bionic computing system that is inspired by the 

biological brain [40]. It consists of multiple neural network layers with artificial neurons, an 

example of an ANN is shown in Fig. 1. Specifically, the first layer is the input layer while the 

last layer is the output layer. In an ANN, the adjacent neural network layers are connected with 

each other via weights, biases and activation functions [41]. When using ANN, input 

information is fed into the neural network through the input layer, and then propagated through 

the adjacent layers. Finally, the prediction of the ANN is output through the output layer. An 

L-layer ANN can be mathematically expressed as [10] 
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 (6) 

where w(l) and b(l) are the l-th layer’s weights and biases in the ANN, respectively. ϑ denotes 

the activation function, which provides nonlinear features to the neural network [41].  

Referred to the universal approximation theorem [42], an ANN is capable of approximating 

any Borel measurable functions by changing the values of weights and biases [43]. Therefore, 

ANNs are widely used to study and capture the underlying relationship between inputs and 

outputs. In the PINN-based computational solid mechanic, ANN is applied to approximate the 

displacement field by using the coordinate information. For different solid mechanics problems, 

training algorithms are used to seek different sets of the optimal weights and biases inside the 

ANN [10]. 

2.2.2. Physics-informed loss function 

In DL, the loss function quantifies the performance of ANNs with current weights and biases. 

Generally, it calculates the overall differences between the ANNs’ output and the ground truth 

data (such as experimental data and observations). Based on current loss, training algorithms 

are applied to improve the performance of ANNs by modifying the weights and biases. In PINN, 

the physics-informed loss function is applied to estimate the performance of ANNs. As 

indicated by its name, the physics-informed loss function is formulated by physics laws, which 

can effectively govern how the variables change under the investigating systems [44]. By using 

such a loss function, the physics laws provide additional knowledge in training ANNs. In this 

manner, PINN can achieve favourable accuracy than ANN which is only trained by ground 

truth data.  

Additionally, by applying specific activation functions such as tanh, sigmoid and mish [45], 

ANNs provide differentiable mathematical mappings from inputs to outputs. Thus, partial 

differential terms in the physics and governing equations can be analytically obtained through 

automatic differentiation [46], while traditional computational mechanics requires numerical 

schemes to approximate the partial differential terms. In traditional computational mechanics, 

the schemes for approximating partial differential terms rely on the surrounding information. 

When the surrounding information is inadequate, such as in cases of uneven particle 

distribution or near-boundary conditions, the accuracy of the approximation will be greatly 
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impacted. These problems can be greatly mitigated through neural network mappings with 

automatic differentiation [32]. 

In PINN-based computational mechanics, there are mainly two kinds of physics-informed loss 

functions, i.e., the collocation loss function and the energy-based loss function. Herein, brief 

introductions for them are summarised as follows:  

• Collocation loss function 

The collocation loss function is the most straightforward loss function in PINN-based 

computational solid mechanics. It sums up the Mean Square Error (MSE) from the 

governing equation and traction boundary condition at every sample point, which reads 

 ,g t= +  (7) 

where g and t respectively denote the loss terms from the governing equation and 

boundary condition. By applying the Eq. (1) and (5), the collocation loss function can 

be written as 

 ( ) ( )
2 2

,

1 1

1 1
,

tmn
i i i i

i it

f n t
n m

      
= =

= + + −   (8) 

where n is the total number of sample points, and m is the number of sample points on 

the traction boundary. The idea of the collocation loss function is to minimise the 

physics residuals at every sample point by modifying the weights and biases in the ANN. 

Despite the simplicity of implementing the collocation loss function, the usage of the 

collocation loss function may induce the bias training issue. Since the collocation loss 

function simply sums up residuals from different physics, the magnitude differences of 

the residuals can be significant. During the training process, the optimiser may pay 

more attention to minimising the relatively larger loss terms while neglecting the others. 

To address this problem, techniques including adaptive learning and dimensionless 

formulation can be applied. For more details, readers can refer to [15, 47].  

• Energy-based loss function 

Based on the principle of minimum potential energy, the energy-based loss function is 

proposed based on the variational PINN [48]. In the energy-based loss function, the 

overall potential energy of the solid system is used as the loss function 

 in ex ,E E= −  (9) 
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where Ein and Eex are the internal potential energy and potential energy of the external 

force, respectively. The two potential energies can be obtained through 

 in

1
d ,

2
E V  


=   (10) 

 ex d .
t

tE u t 


=   (11) 

Therefore, the energy-based loss function can be written as  

 
1

d d .
2 t

tV u t    
 

= −    (12) 

The idea of the energy-based loss function is to find a neural network mapping that 

reaches the stationary point of the overall potential energy. Compared to the collocation 

loss function, the energy-based loss function naturally unifies the unit of all loss terms 

into the energy unit. Therefore, the energy-based loss function greatly alleviates the 

bias training issue [26]. Additionally, as observed from Eq. (12), the energy-based loss 

function only requires the first-order derivative of the displacement u, while the 

collocation loss function requires the second-order derivative of the displacement u. 

Thus, implementing the energy-based loss function can have a simpler way of coding 

and is computationally more efficient than the collocation loss function [26]. 

Nevertheless, the energy-based loss function suffers inaccurate strain and stress fields, 

because it does not explicitly embed the equilibrium equation, which describes the 

stress balance condition [36].  

Additionally, Henkes et al. [43], and Fuhg and Bouklas [19] tried to combine the above two 

loss functions. However, the collocation loss function and the energy-based loss functions have 

different physical units. In another word, these two loss terms are physically not able, to sum 

up. Thus, by using such mixed-form loss functions, PINNs perform unstably and can always 

generate ridiculous predictions. Artificially weights are required to carefully balance the 

different loss terms. 

2.3. Fixed boundary conditions imposition 

Imposing the fixed boundary condition is important in PINN-based computational solid 

mechanics. It is worth noting that, with boundary condition imposition techniques, fixed 

boundary conditions can be naturally satisfied. In this manner, the physics-informed loss 

function can be simplified, resulting in significantly decreasing the complexity of the training 
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process and training expense. Currently, various boundary condition imposition techniques 

(such as distance function [16] and tailored ANN structure [22]) have been proposed for PINN. 

In this study, we adopt the boundary imposition technique introduced by Samaniego et al. [22] 

to deal with fixed boundary conditions. Considering a fixed boundary condition as follow 

 0,( ).u x a= =  (13) 

To exactly implement the fixed boundary condition, we tailored the output layer of the ANN 

as  

 ˆ( ) ,u x a u= −   (14) 

where û  is the direct output from the original ANN, and u is the actual output after the tailored 

output layer. Consequently, u satisfies the fixed boundary condition in Eq. (13). 

3. PINN-based Computational Solid Mechanics in One Dimension 

3.1. Stretching rod 

Herein, a 1D stretching rod problem is considered to illustrate the implementation of the PINN-

based computational solid mechanics. The configuration of the problem is given in Fig. 2. The 

length of the rod is 1 m and Young’s modulus of the material is E = 10 Pa. A stretching force, 

t = 1 N, is applied at the right end of the rod. In this manner, the equilibrium equation and the 

corresponding boundary conditions can be given by 

 

, 0, [0,1]

( 0) 0,

( 1) 1.

x x

x

x

u x

x





= 

= =

= =

 (15) 

From the energy point of view, the overall potential energy of the problem can be written as 

 
1

0

1
d ( 1).

2
x x x t u x  = −  =  (16) 

Finally, the analytical solution to this problem is 

 ( ) .
x

u x
E

=  (17) 
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Fig. 2. Configuration of the stretching rod problem. The arrow in red denotes the traction boundary condition. 

3.2. Numerical Implementation 

A PINN-based computational solid mechanics program for solving this 1D problem is available 

at https://github.com/JinshuaiBai/PINN_Comp_Mech. The overall structure of the program is 

given in Fig. 3. As shown in Fig. 3, the program is divided into three parts, i.e., Pre_Process.py, 

Train.py, and Post_Porcess.py. The functions in those three files are all called in the Main.py 

file, as shown in Fig. 4. For the environment settings, PyCharm is selected as the IDE for 

Python 3.7. Besides, TensorFlow 2.8.0 with Keras 2.8.0 are used to build neural networks. The 

L-BFGS-B optimiser is provided by SciPy 1.8.0. All the examples are tested on a 64-bit 

Windows system with an Intel(R) Core(TM) i7-8700 CPU (3.2 GHz).  

 

Fig. 3. Program structure for the 1D stretching rod problem.  

https://github.com/JinshuaiBai/PINN_Comp_Mech
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Fig. 4. The Pre_process(), the Train() and the Post_Process() functions are called in the Main.py. Those functions are written 

in the Pre_process.py, the Train.py and the Post_Process.py files, respectively.  

3.2.1. Pre-process.py 

The Pre_process.py file defines the problem parameters and initialises the frameworks. Four 

functions are called in this file, e.g., Input_Info(), FNN(), PINN(), and L_BFGS_B(). In the 

pre-processing, the problem parameters are firstly loaded through Input_Info() function. Then, 

the FNN is built through FNN() function. With the built FNNs and the loaded problem 

parameters, the PINN is then constructed through PINN() function. Finally, the L-BFGS-B 

optimizer is initialised through the function L_BFGS_B(). 

• Input_Info(): This function is to define the problem parameters, including geometrical 

information, material properties, and neural network settings. In this problem, 51 

sample points are generated on the rod with the same spacing. Besides, the FNN 

parameters in terms of the number of layers, neurons per layer and the activation 

function are also defined in this function. In this problem, an FNN is used to map the 

displacement field, u, with respect to the coordinate, x.  The FNN contains three hidden 

layers, where each layer possesses 5 neurons. The activation function used in the FNN 

is the tanh function and the initialisation scheme for weights and biases is the LeCun 

initialisation. The main code of the Input_Info() function is shown in Fig. 5. 
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Fig. 5. The Input_Info() function defines all the problem parameters and the neural network parameters. 

• FNN(): This function is to build up an FNN based on the parameters defined in the 

Input_Info() function. We note that the default activation function used for the 

generated FNN is the tanh function and the default initialisation method for weights 

and biases is LeCun initialisation. For more options regarding the activation function 

and initialisation scheme, readers are referred to https://keras.io/api/layers/activations/. 

The main code of the FNN() function is shown in Fig. 6. 

https://keras.io/api/layers/activations/
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Fig. 6. The FNN() function builds up an FNN based on the parameters defined in the Input_Info() function. 

• PINN(): This function is to create a PINN with the previously loaded problem 

parameters and the created FNN. In this function, Dif() is first used to obtain the partial 

differential terms in governing equations. Then, the partial differential terms are fed in 

Material() to calculate strain, stress, and residual from the equilibrium equation. Finally, 

the stress and residual from the equilibrium equation are output and will be used to 

formulate the physics-informed loss function. The main code of the PINN() function is 

shown in Fig. 7. 

 

Fig. 7. The PINN() function create a PINN with the previously loaded problem parameters and the created FNN. 

• L_BFGS_B(): This function is to initialise the optimiser for training the created FNN. 

Here, we adopt the L-BFGS-B optimiser, which is a quasi-Newton optimisation 
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algorithm [49]. The physics-informed loss function is employed as the target function 

for the initialised L-BFGS-B optimiser. Note that the collocation and energy-based loss 

functions are all prepared in the Loss.py file. To use them, users can load and call the 

corresponding function in the L-BFGS-B optimiser, as shown in Fig. 9. 

 

Fig. 8. Physics-informed neural network used for 1D stretching rod problem. 

 

Fig. 9. Example of applying different loss functions. As shown in this figure, the program is currently applying the collocation 

loss function. To implement the energy-based loss function, readers can simply remove line 139 and apply line 142. 

3.2.2. Train.py 

The Train.py file is to execute the training process. The previously prepared optimiser will 

iteratively minimise the physics-informed loss function till convergence. During the training, 

the current physics-informed loss will be printed to the command window every 10 training 

steps (default). Finally, the history of the loss, the final loss, and the number of iterations will 

be returned after convergence. 

3.2.3. Post_process.py 

The Post_process.py file is to visualise and output the results from the well-trained PINN. 

Currently, the program provides displacement, strain, and stress plots. Besides, the data in 

terms of displacement, strain, and stress is also saved in out.mat file. 

Finally, the flowchart of the program for the 1D stretching rod problem is also given in Table 

1. 
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Table 1. Flowchart of the PINN-based computational solid mechanics program for 1D stretching rod problem.  

PINN-based computational solid mechanics program for 1D stretching rod 

 

I. Pre-processing: 

          i. Load problem information via Input_Info(), including: 

                    Problem geometry; 

                    Material properties;  

                    Boundary conditions; 

                    FNN information.  

          ii. Build up FNNs via FNN(); 

          iii. Build up PINN via PINN(); 

          iv. Initialise the L-BFGS-B optimiser via L_BFGS_B(). 

II. Training; 

III. Post-processing. 

 

3.3. Results and discussions 

To quantify the error predicted by PINN, we define the relative mean square (RMS) error as 

follow 

 

2
* pred

RMS *

max

1
.

n
i i

i

e
n

 



 −
=  

 
  (18) 

where ω* and ωpred are ground truth and PINN predicted field variables, respectively. Fig. 10 

shows the comparisons of the displacement, strain, and stress results obtained from PINNs with 

different loss functions and the analytical results. Fig. 11 shows the point-wise absolute error 

plots from PINNs using different loss functions. It is clear to find that the PINN predicted 

displacement by using the collocation and energy-based loss function agrees well with the 

analytical solution. However, the strain and stress predictions by using the energy-based loss 

function show a large departure from analytical solutions. This is because the energy-based 

loss function indirectly embeds the equilibrium equation [19]. Consequently, the stress 

equilibrium equations are not strictly enforced during the training process. Table 2 compares 

the RMS errors, the number of iterations required for convergence and the CPU time while 

utilising different loss functions. The PINN trained with the collocation loss function achieves 

higher accuracy but converges more slowly than the PINN trained with the energy-based loss 

function. Compared to the collocation loss function, which contains second-order differential 

terms, the energy-based loss function only contains first-order differential terms. The use of 

lower-order differential physics makes the energy-based loss function easier to numerically 
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implement. Therefore, PINNs with the energy-based loss function are computationally more 

efficient than PINNs with the collocation loss function. 

 

Fig. 10. Comparisons of the displacement, strain, and stress fields between the collocation loss function, energy-based loss 

function and the analytical solution. 

 

Fig. 11. Point-wise absolute error plots of the displacement, strain, and stress fields from PINNs using the collocation loss 

function and the energy-based loss function.  

Table 2. Comparisons of the RMS errors, number of iterations for convergence and the CPU time with respect to different 

kinds of loss functions for the 1D problem.  

 RMS errors Iterations CPU time 

 U ε σ  (s) 

Collocation 5.20×10-10 1.96×10-9 1.96×10-9 83 1.0996 

Energy-based 1.80×10-3 1.70×10-3 1.70×10-3 39 0.6559 
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4. PINN-based Computational Solid Mechanics in Two Dimension 

4.1. In-plain stretching square plate 

In this section, the program is extended to a 2D in-plain stretching square plate problem. The 

configuration of the problem is shown in Fig. 12(a). Due to the geometric symmetry, a quarter 

of the plate is used for the modelling, which is shown in Fig. 12(b). The length of the plate L = 

2 m. A distributed force, ( )t y , is applied on the right side of the plate 

 ( ) cos( ).
2

y
t y


=  (19) 

The displacement boundary conditions are given as follows 

 (0, ) 0, ( ,0) 0.U y V x= =  (20) 

For the plane stress problem, the Lamé constants are obtained through 

 

,
(1 )(1 )

,          
2(1 )

E

E




 





= + −


 =
 +

 (21) 

where E = 7 Pa and ν = 0.3 are used in the plate problems.  

 

Fig. 12. (a) Configuration of the in-plain stretching square plate problem; (b) Actual geometry applied for modelling. 

4.2. Numerical implementation 

In the computational domain, 2601 uniformly distributed sample points are generated in the 

computational domain, where the spacing of sample points in all directions is 0.02 m. 

Furthermore, two FNNs with the same structures are applied to respectively predict U and V, 
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where each FNN contains three hidden layers and 20 neurons per hidden layer, as shown in  

Fig. 13. The FEM results from ABAQUS with fine mesh are used as the reference, where the 

quadratic element is applied, and the size of all elements is 0.005 m. 

 

Fig. 13. Physics-informed neural networks used for 2D in-plain stretching plate. Two FNNs are applied to predict U and V, 

respectively. 

4.3. Results and discussions 

Table 3 shows the comparisons of the RMS errors, the number of iterations for convergence 

and the CPU time by using different loss functions. As observed from the table, the PINN with 

collocation loss function achieves higher accuracy than the PINN with energy-based loss 

function. However, the PINN with the energy-based loss function converges significantly 

earlier than that with the collocation loss function. As for computational efficiency, the training 

time for the PINN with the energy-based loss function is significantly faster than the training 

time for the PINN with the collocation loss function. However, the computational efficiency 

of PINN is still incomparable with the prevailing used computational mechanics methods. This 

is because PINNs are complex nonlinear systems and can be only trained by gradient 

descendent algorithms, while the prevailingly used computational mechanics methods can 

simplify the governing equations into a linear system (i.e. KU = F). Fig. 14 shows the PINNs’ 

predictions, and FEM reference results and Fig. 15 shows the point-wise error contours of the 
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displacement and stress fields for the in-plane stretching problem. The FEM results are given 

in Fig. 14(c) for reference. As observed from Fig. 14(a), the PINN with the collocation loss 

function successfully predicts all the field variables well, while only a minor discrepancy is 

found. Besides, using the collocation loss function, PINN clearly captures the stress 

concentration of σy at the bottom right corner of the plate. As for the energy-based loss function 

results shown in Fig. 14(b), the displacement fields show good agreement with the FEM results. 

However, obvious oscillations can be observed in the three stress fields contour obtained by 

the energy-based loss function. This is mainly because the energy-based loss function lacks 

direct information on the equilibrium equation. Since the stress fields are calculated through 

the derivatives of the displacement fields, the stress fields can be sensitive even for slight 

displacement errors. Nevertheless, the stress fields from the energy-based loss function roughly 

capture the patterns of the stresses from the FEM. In this manner, post-processing methods can 

be applied to further smoothen the predictions from the energy-based loss function. The above 

conclusions are further demonstrated by the error contours. Fig. 16 shows the comparisons of 

the displacement and stress fields along the diagonal of the plate from position (0,1) to (1,0). It 

is clear that the displacement predictions from both collocation and energy-based loss functions 

perform well, as illustrated in Fig. 16(a). For the stress fields shown in Fig. 16(b), the 

collocation results align with the reference results, while the σx and σy from the energy-based 

loss function show discrepancy near the boundary of the plate. More investigations and efforts 

are required to improve the accuracy of the energy-based loss function for stress fields, 

especially the enforcement of boundary conditions.  

 

Table 3. Comparisons of the RMS errors, the number of iterations for convergence and the CPU time with respect to different 

kinds of loss functions for the 2D problem. 

 RMS errors Iterations CPU time 

 U V σx σy τxy  (s) 

Collocation 3.24×10-7 3.06×10-6 6.28×10-6 2.84×10-5 1.86×10-4 2491 62.4290 

Energy 2.61×10-4 2.68×10-3 2.16×10-3 4.03×10-3 9.14×10-2 721 6.2549 
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Fig. 14. Comparison of the displacement and stress fields of the in-plain stretching square plate problem from (a) collocation 

loss function; (b) Energy-based loss function; (c) FEM. 
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Fig. 15. (a) Point-wise absolute error contours from PINN using the collocation loss function. (b) Point-wise absolute error 

contours from PINN using the collocation loss function. 
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Fig. 16. (a) Comparison of the displacement along the diagonal of the plate, from (0,1) to (1,0); (b) Comparison of the stress 

fields along the diagonal of the plate, from (0,1) to (1,0). The solid lines in the two figures denote the results from the FEM. 

The triangles and circles in the two figures respectively denote the results from the collocation loss function and energy-based 

loss function.  

5. PINN-based Computational Solid Mechanics in Three Dimension 

5.1. Stretching cube 

A three-dimensional stretching cube problem is conducted here. The configuration of the 

problem is shown in Fig. 17(a). The length of the cube L = 2 m. A distributed force, ( , )t x y , is 

applied on the top and bottom surfaces of the cube in the z direction 

 ( , ) cos( )cos( ).
2 2

x y
t x y

 
=  (22) 

The displacement boundary conditions are given as follows 

 (0, , ) 0, ( ,0, ) 0, ( , ,0) 0.U y z V x z W x y= = =  (23) 

The Young’s modulus and Poisson’s ratio are E = 10 Pa and ν = 0.25. Due to its symmetrical 

property, one-eighth of the geometry is modelled, which is shown in Fig. 17(b).  
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Fig. 17. (a) Configuration of the stretching rod cube problem; (b) Actual geometry used in modelling due to the geometric 

symmetry. The arrows in red denote the distributed force boundary condition. 

5.2. Numerical implementation 

Overall 9261 sample points are generated in the computational domain, where the spacing of 

sample points in all directions is 0.05m. Three FNNs are established for predicting U, V and 

W, respectively. Each FNN contains 4 layers and 20 neurons per hidden layer. Since the 

analytical solution is not available for this problem, the FEM results from ABAQUS with a 

fine mesh are used as the reference, where the quadratic element is applied and the size of all 

elements is 0.01 m. Here, only the collocation loss function is applied to deal with this problem. 

Readers can easily implement the energy-based loss function through the collocation program 

with small modifications. 

5.3. Results and discussions 

Fig. 18 and Fig. 19 show the comparisons of the displacement and stress fields of the problem 

between the proposed loss function and FEM results, respectively. From the figures, one can 

find that both the displacement and stress fields agree with the reference results. Besides, 

results from PINN-based computational solid mechanics show good symmetrical properties. 

However, Fig. 20 shows the point-wise absolute error contours from PINNs by using the 

collocation loss function. It is clear to observe that the error for displacement U is relatively 

larger than the error for displacement V. This is because three independent FNNs are applied 

to respectively predict the displacement fields and are trained separately. Given that the 

displacement U and V should be symmetry to each other. Thus, one FNN can be applied for 
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predicting both the displacement U and V, instead of using two independent FNNs. Besides, 

large point-wise absolute errors can be always observed at the corner of the cube, suggesting 

that more attention should be paid to minimising the residuals calculated from corners. We note 

that adaptive learning strategies [15, 50] can be a way to address this issue. 

 

Fig. 18. Comparisons of the displacement fields of the 3D stretching cube problem from (a) PINN-based computational solid 

mechanics; (b) FEM. 
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Fig. 19. Comparisons of the stress fields of the 3D stretching cube problem from (a) PINN-based computational solid 

mechanics; (b) FEM. 
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Fig. 20. Point-wise absolute error contours from the PINN using the collocation loss function. 

6. Summary 

In this paper, details of the PINN-based computational solid mechanics and its numerical 

implementation have been introduced. The prevailingly used physics-informed loss functions 
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for PINN-based computational solid mechanics are summarised. Additionally, examples 

including 1D, 2D, and 3D problems are presented to show the performance and capability of 

PINN-based computational solid mechanics. It has been demonstrated that both types of 

physics-informed loss functions are effective for displacement predictions. The PINN with the 

collocation loss function can achieve better accuracy for stress fields since the equilibrium 

equation is explicitly imposed in the loss function. In contrast, PINN with the energy-based 

loss function is computationally more efficient, for it requires lower-order differential terms 

and is easier to implement. However, the use of the energy-based loss function can result in 

severe stress prediction errors. This is because the energy-based loss function does not enforce 

the equilibrium equation explicitly. Furthermore, programs based on the Python coding 

language are provided with step-by-step explanations. It is worth noting that the programs for 

the PINN-based computational solid mechanics are manoeuvrable and can be easily extended 

to broaden applications, such as geometric nonlinearity and hyperelastic problems. 

Additionally, with the programs, more investigations regarding the neural network settings, 

training algorithms sections and sample points initialisation strategies can be easily 

implemented. We remain this to the readers to explore.  

Despite its good performance, PINN-based computational mechanics is still in its infancy. 

Issues regarding robustness and computational efficiency are still severe during the use of 

PINN-based computational mechanics [20]. Besides, the number of hidden layers and neurons 

is mainly determined by the authors’ experiences. Currently, only empirical criteria are 

available to determine the size of neural networks for various applications [41, 51]. More 

investigations should be conducted to determine the size of neural networks from the 

computational mechanics regard. This work aims to provide readers with a fundamental insight 

into PINN-based computational mechanics. Meanwhile, we provide open questions regarding 

the effectiveness, robustness and efficiency of PINN-based computational solid mechanics. 

The great potential of PINN-based computational mechanics still remains to be tapped. We 

hope this work can spark further investigations and development of PINN-based computational 

mechanics to be an effective way for mechanics applications.  
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