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ABSTRACT 

 

With the increasing use of fibre reinforced polymer (FRP) composites in civil 

engineering structures, there is a growing realisation of the need to develop new 

structural systems which can utilise the unique characteristics of these materials in a 

more efficient and economical manner. In many instances this will require the 

development of new materials tailored to address the unique performance and economic 

parameters of mainstream construction. 

Over recent years, researchers at the University of Southern Queensland have pioneered 

the use of a new type of particulate filled polymer core material which greatly improves 

the robustness and cost effectiveness of FRP structural systems. These composite 

materials are composed of small hollow spherical fillers (microspheres) in a 

thermosetting polymer matrix. Initial research into these materials, including their 

feasibility in prototype structural elements, have shown these materials to have major 

potential for widespread application in structural composite systems. 

One of the most promising classes of these materials investigated to date are vinyl ester / 

cenosphere composites, which utilise cenospheres derived from fly ash in a vinyl ester 

matrix. Previously reported studies into these materials have been restricted to initial 

surveys of material behaviour which sought to identify key parameters in achieving 

desired performance outcomes in the composite.  

This dissertation presents the first in-depth investigation of these materials specifically as 

a core material option for civil infrastructure applications. The particular focus of this 

work is on the relationship of the vinyl ester matrix to the characteristics of the resulting 

composite. Several key matrix parameters were identified and assessed as to their 

influence on cure characteristics, fabrication operations, mechanical properties and the 

retention of such properties under elevated service temperatures.  

The outcomes of this work have significantly improved the understanding of matrix 

influences on the behaviour of these composite systems and have been drawn together to 

provide a number of recommendations on the application of this new technology to new 

structural systems. 
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CHAPTER 1.         

       

 INTRODUCTION 

1.1. INTRODUCTION 

The focus of this PhD thesis is the investigation of vinyl ester / cenosphere composite 

materials for civil and structural engineering applications. This research builds on earlier 

preliminary investigations into particulate composite materials made at the University of 

Southern Queensland (USQ). This study is the first specifically directed at examining 

the behaviour of vinyl ester / cenosphere composite systems in terms of both their 

processing characteristics and end performance.  

1.2. BACKGROUND 

While fibre reinforced polymer (FRP) composites offer significant potential for 

application in civil engineering structures, their widespread acceptance into this industry 

continues to be hampered by their high cost relative to traditional building materials. In 

order to offset the high cost of FRPs, it is necessary to utilise these materials in unique 

ways that extract maximum performance while minimising fabrication costs.  

In 1998 researchers at the University of Southern Queensland developed a new type of 

structural beam concept which used high performance FRP laminate flanges placed on 

either side of a new type of particulate filled resin (PFR) core [1]. This modified version 

of traditional sandwich construction allows for more efficient use of the FRP laminates 

by increasing their distance from the neutral axis of the section. The use of what is 
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normally a lower cost core material (compared to the laminates) for the majority of the 

cross-section helps to reduce the overall cost of the section. 

The PFR core material was developed as an alternative to tradition core material options 

which were seen to be either too expensive or lack the robustness required in civil 

engineering applications [2]. This stems from the fact that most traditional core 

materials have historically been designed for use in the marine or aerospace industries 

where cost considerations are secondary to weight reduction. Sometimes referred to as 

syntactic foam, the new PFR materials can provide significantly higher structural and 

functional performance compared to traditional polymeric foams, whilst retaining a 

competitive cost structure [2].  

These materials can also be designed to give good flow characteristics in their uncured 

form, enabling mass casting fabrication techniques [3]. The potential of mass casting 

both in terms of freedom-of-form and cost have been well demonstrated in concrete 

construction and it is thought that these types of benefits may also be seen in composite 

structures constructed using casting techniques. 

Since the development of the initial beam concept, researchers at USQ have investigated 

their application in a range of additional structural elements including: 

 Girders [4] 

 Floor slabs [5] 

 Bridges [6], and 

 Trusses [7]. 

Testing of these elements has confirmed the strong potential for application of 

particulate composite core materials in primary structural elements. Development of 

these element concepts is ongoing. 
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  a)      b) 

 

c) 

Figure 1.1  Prototype structural elements fabricated utilising resin / cenosphere 

composite materials: a) beam, b) bridge deck and c) truss. 

 

While initial developments in these new core materials appear extremely promising, 

there is need to develop a more comprehensive understanding of their behaviour to 

properly develop the technology for the mainstream civil engineering industry. In 

particular, there is a need to improve understanding of constituent influences on the 

behaviour of a resulting composite.  

1.3. AIMS AND OBJECTIVES 

It is the broad aim of this project to improve understanding of the behaviour of vinyl 

ester / cenosphere composites as applicable to civil and structural engineering 

applications. Within this aim the following specific objectives were adopted: 
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1. Review the current status of particulate composite research and the constituent 

material options for vinyl ester / cenosphere composite systems as core materials for 

civil and structural engineering applications. 

2. Identify key parameters to aid in the evaluation of constituent materials for vinyl 

ester / cenosphere composites for civil and structural engineering applications. 

3. Develop a fundamental understanding of the relationships between constituent 

materials and the behaviour of vinyl ester matrix systems and vinyl ester / cenosphere 

composites. 

4. Improve the understanding of the relationships between the processing 

characteristics of the materials and performance of the end-product vinyl ester / 

cenosphere composites. 

1.4. SCOPE AND LIMITATIONS 

Limited previous research on these topics means that this investigation had to be 

constrained to the most prominent outstanding issues that could be identified by the 

author. The established objectives were therefore constrained by the following:  

 The experimental components of this research are quite involved, with the planning, 

preparation and testing stages requiring a considerable investment of time, effort and 

capital. With all of these investments at a premium, generally only single sample sets 

were used for experiments to identify key behaviours with conclusions based on 

these experiments. 

 The foundational nature of this PhD study means that the focus was on determining 

the existence (or lack) of relationships rather than their precise nature. Over 500 

individual tests were completed examining only a limited number of parameters. 

This strategic investigation provides the platform to undertake a large number of 

subsequent detailed investigations. Consequently caution has been exercised in the 

analysis and interpretation of data because much more testing will be required to 

establish and verify detailed relationships.    

 The experimental techniques applied within this dissertation have been restricted to 

those permitted by the facilities available at the University of Southern Queensland. 
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It is noted that the utilisation of some techniques (eg: Differential Scanning 

Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA)) only became 

possible late in the research.   

1.5. STRUCTURE OF DISSERTATION 

Chapter 2 reviews the current status of particulate composite research and examines in 

detail the formulation options for vinyl ester / cenosphere composite systems. It 

identifies a range of constituent parameters, and evaluates their potential for application 

based on manufacturer-supplied data and research previously reported in the literature. 

At its conclusion, the study draws together several of the most promising constituent 

material options as recommended systems for further study. 

Using constituent materials based on the recommendations made in Chapter 2, 

Chapter 3 investigates the cure behaviour of vinyl ester matrix systems and vinyl ester / 

cenosphere composites. Thermal analysis techniques were utilised to examine the 

influences of the constituents on the cure kinetics and network properties. 

The processing characteristics of vinyl ester / cenosphere composites are examined in 

Chapter 4. The viscosity and shrinkage behaviour of the composite systems were 

identified as important parameters influencing the processing of particulate composite 

systems. The relative influences of the constituent materials on these properties are 

investigated.  

Chapter 5 assesses the mechanical properties of vinyl ester / cenosphere composites 

through an experimental characterisation program examining capacity and stiffness 

behaviour. 

The transition behaviour is investigated in Chapter 6, examining the mechanical 

performance of vinyl ester matrix systems and vinyl ester / cenosphere composites under 

elevated temperatures. An alternative approach to characterising the temperature 

performance is suggested. 

Chapter 7 provides a summary of the results of the previous chapters, presenting the 

major findings of the completed research. A number of key areas identified for further 

research are also presented. 
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CHAPTER 2.         

            

 A REVIEW OF CONSTITUENT OPTIONS FOR 

VINYL ESTER / CENOSPHERE COMPOSITES 

2.1. INTRODUCTION 

There are a plethora of materials available that can be combined to produce particulate 

composite systems. This wide range of materials offers considerable flexibility to the 

engineer to optimise material combinations for the requirements of a specific 

application, service environment or available fabrication technique. All of the alternative 

types of constituent materials have their own specific properties that in some way 

contribute to the characteristics of the resultant composite. Developing an 

understanding of the issues relating to the relative constituents, properties of the range 

of material options and their subsequent impact on the characteristics of a particulate 

composite is of considerable importance. 

This Chapter firstly introduces the basics of particulate composite systems and assesses 

the status of research in this field. The focus then shifts to a review of constituent 

material options for vinyl ester / cenosphere composite systems, the subject of this 

dissertation. Vinyl ester (VE) resins are detailed including modifications to basic grades 

which offer improved performance in response to industry requirements. The materials 

for curing vinyl ester resins and cenosphere fillers are also outlined. The Chapter 
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concludes with a discussion on the selection of appropriate constituent material 

combinations for vinyl ester / cenosphere composites, culminating in the 

recommendation of materials for subsequent experimental investigations discussed in 

the remainder of this dissertation.  

2.2. COMPOSITION BASICS 

Particulate composite systems are formed by the combination of a series of discrete 

particles and a continuous binder phase referred to as the matrix. The discontinuous 

particle phase may be formed by the combination of one or more particulate materials.  

For the composite systems considered in this current study, the particles are small, 

hollow spheres (microspheres) of either glass or ceramic material. The ceramic spheres, 

which are the primary focus of this study, are derived from fly ash and are commonly 

referred to as cenospheres. Cenospheres are comprised largely of silica and alumina and 

are a naturally occurring by-product of the burning process at coal-fired power 

stations [1]. 

The matrix materials considered in this current study are thermosetting polymer 

systems. These materials are typically two-part chemical systems which react when 

mixed to form the final thermoset polymer network. The primary matrix chemistry 

considered is that of vinyl esters, which feature an acrylated epoxy oligomer crosslinked 

with styrene monomer.  

2.3. REVIEW OF PREVIOUS RESEARCH 

Initial research at USQ into the characteristics of particulate composite core materials 

was reported by Ayers and Van Erp [2,3,4]. These preliminary studies examined a range 

of different composite formulations based on epoxy and vinyl ester resins with glass and 

ceramic microspheres. The aim of this work was to identify basic relationships between 

the constituent materials and resulting characteristics of the particulate composite. 
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Parameters studied included the volumetric ratio of microspheres to matrix resin, the 

type and size of microsphere particles, and the mechanical properties of the matrix.  

A subsequent study by Ayers and Van Erp [5] built on the outcomes of this original 

work, presenting a more detailed examination of constituent influences on the stiffness 

characteristics of microsphere composite systems. The study included experimental work 

with several different epoxy and vinyl ester resins and included both glass and ceramic 

microspheres. The outcomes of this work indicated that the use of cenospheres (ceramic 

microspheres) in these systems provided beneficial increases in particulate composite 

stiffness, while offering a more advantageous cost structure compared with glass 

microspheres. It was also concluded that due to an apparent convergence in properties at 

high filler loadings, the use of high performance matrix systems may be unwarranted at 

the type of loading levels considered cost effective for civil engineering applications. A 

consequence of this finding is that vinyl ester / cenosphere composites would appear to 

present a more viable combination for civil engineering applications. 

Recently, Ayers and Van Erp [6] have published a further study on constituent 

influences, this time on the specific characteristics of vinyl ester / cenosphere systems. 

The vinyl ester resins used in this study were standard commercial grades commonly 

used within the Australian composites industry. The study examined several matrix 

parameters and the flexural properties of the resulting composites. While highlighting 

several key trends observed in experimental work the primary conclusion of the study 

was that further work was needed to improve the understanding of constituent 

influences. 

A number of other authors have reported studies on the behaviour of particulate 

composite systems using hollow microspheres [7,8,9]. However, most of these have only 

considered glass microspheres and have examined systems with filler loadings under 

25% by volume.  

Kim and Khamis [10] have reported on the behaviour of glass microsphere composite 

systems at filler loadings up to 65%. While limited to a single matrix / microsphere 

combination, the reported flexural properties were consistent with those reported earlier 

by Ayers and Van Erp [2] for lightweight glass microspheres. This study also examined 
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the influence of particulate volume fraction on impact characteristics, highlighting 

improvements in energy dissipation characteristics gained with increased loadings. 

Subsequent work by Kim and co-researchers [11,12] has extended the original findings 

with Kim and Oh [11] suggesting a model for impact force and stress as a function of 

specimen diameter.  

While the work of Kim and co-researchers provides valuable insight into the failure 

mechanisms of lightweight glass microsystems, the direct applicability of these results to 

cenosphere systems is questionable due to differences in the physical structure of the two 

types of filler. The glass microspheres used by Kim were very thin walled, flexible 

spheres whereas cenospheres typically have much thicker walls yielding a more rigid 

particle with higher compression strength. This difference in structure has been shown 

to cause significant differences in the failure strains obtained from resulting 

composites [3].  

More recently, a number of investigations into the behaviour of cenospheres / polymer 

systems have been reported by Shukla and co-authors [13,14,15]. Of particular interest 

to this current study is the work of Cardoso, Shukla and Bose [14], who investigated the 

behaviour of cenospheres in a thermosetting polyester matrix. The study investigated the 

effect of particle size and surface treatments on a range of mechanical properties 

including elastic modulus, compressive strength and fracture toughness. Results 

indicated that both tensile modulus and compressive strength increase with decreasing 

particle diameter, which is consistent with the earlier work of Ayers [16]. It was also 

found that the cenosphere composite yielded improved toughness compared to the neat 

matrix. This toughness was shown to increase as the sphere diameter decreased.  

From the data presented, it would appear that the mechanism of failure varies with the 

size of particle used. Samples with larger particle diameters were reported to exhibit 

significant sphere fracture while samples with smaller diameters showed greater sphere 

pop out on the failure surface. Efforts to improve sphere/matrix adhesion in samples 

with smaller spheres through silane treatment displayed only modest improvements in 

properties. It was not reported whether the silane treatments resulted in a reduced rate 

of sphere pop out and greater sphere fracture. If this is the case, it would appear to 

suggest that the failure of cenosphere composites is largely limited by the sphere 
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themselves and not the matrix. It is thought that further investigation of this theory 

should be undertaken in developing a sound strategy for optimising performance of 

these materials. 

Like many of the other studies previously reported in the literature, the work of 

Cardoso et al. [14] is limited to the investigation of a single composite formulation, with 

a set 25% mass fraction of a single cenosphere grade in the nominated polyester matrix 

system. This situation is characteristic of most published studies in the literature, with 

few authors providing a justification for the particular formulations investigated.  

From the various studies reported it would appear that interactions between factors such 

as the particle and matrix mechanics, mix ratio, and particle/matrix adhesion are key 

factors in the performance of microsphere (or more specifically cenosphere) polymer 

composites. Understanding of these interactions is vitally important in developing a 

thorough knowledge of the behaviour of these materials. There is therefore seen to be a 

need for a more comprehensive study of these materials which expands upon the range 

of previously reported formulations and examines the effect of constituent interactions 

on composite behaviour.  

2.4. VINYL ESTER POLYMERS 

2.4.1. BASIC CHEMISTRY 

Vinyl ester (VE) matrix systems bear a strong similarity to conventional unsaturated 

polyester (UP) systems. Both utilise a base oligomer and reactive monomer which react 

via a free-radical cross-linking cure mechanism to form the final thermoset polymer 

network. Like UP systems, both the VE oligomers and the reactive monomers contain 

unsaturation sites through which covalent bonds are established.  

The vinyl ester oligomers are formed by the reaction of an unsaturated carboxylic acid 

(eg: methacrylic or acrylic acid) with a base epoxide. The most widely used epoxide for 

commercial VE systems is common diglycidal ether of bisphenol A (DGEBA) epoxy, 
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however other epoxy chemistries (eg: novolacs) are also used for specialised VE 

formulations. 

DGEBA epoxy only possesses terminal epoxy functional groups, which are reacted with 

the carboxylic acid to yield a molecule with terminal unsaturation (see Figure 2.1). This 

is considerably different to conventional UP oligomers where unsaturation exists at 

multiple points along the molecule. The lower ester content and lower unsaturation of 

the VE oligomer leads to greater chemical and hydrolysis resistance compared with UP 

systems [17] . It also leads to reduced exothermic heat generation during cure, which 

may be beneficial in the production of thicker parts. The shrinkage exhibited by these 

materials is less than that found for UP systems, however this shrinkage is still high 

when compared to epoxy systems [18]. 

 

Figure 2.1 Bisphenol-A epoxy-based dimethacrylate (vinyl ester) oligomer. Source [19] 

 

One of the commonly reported benefits of vinyl esters compared with epoxy systems is 

their lower cost. Though the cost of the VE oligomer is higher than a standard DGEBA 

epoxy due to the extra process step required to convert the DGEBA to VE, this is 

normally offset through the addition of the reactive monomer. Monomeric styrene, the 

most widely used monomer, is significantly cheaper than DGEBA epoxy even before its 

conversion to VE [20]. With typical addition levels from between 35% to 50% of the 

final volume, any cost increase in the oligomer is more than offset. 

2.4.2. GRADES OF BASE VINYL ESTER RESIN 

Proposals for the synthesis of VE resin appear in the literature from the early 1960’s 

[21,22]. However the vinyl esters on today’s market trace their roots back to vinyl esters 

developed in the late 1960’s by Shell Oil Co. [23,24,25,26], and The Dow Chemical 

↓ ↓
Unsaturation Site Unsaturation Site
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Company [27]. These formulations used a basic methacrylated DGEBA backbone in 

styrene monomer. Several companies now produce resins based on this type of 

formulation (see Table 2.1). These products are normally sold within the marketplace as 

equivalent products and are often regarded as “standard” grade VE resins. Over the years 

these products have established a good performance reputation, particularly in areas 

requiring high chemical and/or environmental resistance [28]. 

Table 2.1  Types of vinyl ester resin and resin properties. 

Product 

Name 
Manufacturer 

Tensile 

Strength 

(MPa) 

Tensile 

Modulus 

(GPa) 

Elong-   

ation 

(%) 

Styrene 

Content 

(%) 

HDT 

(°C) 

R
ef

er
en

ce
 

Derakane 
411-350 

Dow Chemical 
Company 

86 3.2 5.5 45 105 [29] 

Hetron 
922 

Huntsman 
Chemical Company 
(Australia) Pty Ltd 

86 3.4 6.5 45 100 [30] 

Dion 
VER 
9100 

Reichhold 
Chemicals, Inc. 

83 3.2 5.2 44 105 [31] 

Vipel 
F010 

AOC Resins 88 3.2 6.2 39 120 [32] 

 

In recent years, both Ashland Chemical Company (Hetron 922) and Dow Chemical 

Company (Derakane 411) have made alterations to their resin formulation process to 

alter the processing characteristics of their respective resin systems [33,34]. The resulting 

products are still marketed as being equivalent in their end performance, however these 

claims would appear to warrant further investigation. Given the lack of reported 

comparative studies on the various “standard” grades, the equivalence of any two 

products should not be assumed and should be the subject of appropriate analysis and 

verification. 
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2.4.3. MODIFIED VINYL ESTER GRADES 

Equivalence issues aside, the “standard” VE grades have demonstrated successful 

performance in a wide range of application areas over the years. However, instances may 

arise where these products do not meet the processing or performance specifications of a 

particular application. For example, standard resins may need to be modified to provide: 

1. Greater toughness 

2. Reduced emissions during processing 

3. Improved performance at elevated or low temperatures 

4. Improved chemical resistance 

In some instances, it may be possible to modify the formulation of the VE resin to 

accommodate these needs. Such modifications may be separated into two primary 

techniques: 

 Modification of the VE oligomer or reactive monomer chemistry. 

 Introduction of other additives to the resin solution. 

The following sections discuss ways in which these two techniques may be applied to 

achieve some of the aforementioned performance modifications. 

2.4.4. MODIFICATION OF TOUGHNESS 

The usage and maintenance strategy of many civil engineering structures requires that 

they are relatively robust, being able to withstand moderate impacts or other damage 

events. One method of achieving this robustness is to have good toughness and impact 

dissipation characteristics. For polymer composites, the toughness characteristics of the 

matrix play a primary role in the resulting system toughness [35]. 

Toughness can be defined as the ability of the matrix to resist crack propagation. All 

polymers develop micro level cracks in service. The key issue is preventing the 

propagation and growth of these defects into macro level failures. In rigid glassy 
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materials, an initial crack rapidly develops into a larger crack. In tough materials, the 

crack energy can be dissipated into the surrounding material and the crack front pinned 

either through the inherent properties of the polymer network or by the addition of 

non-matrix inclusions such as fibres within the network. 

In considering improvement to the inherent properties of the polymer network, two 

potential paths emerge. The first is through simple modifications to the VE oligomer or 

the reactive monomer. Li [36] and co-authors [37], Shan et al. [38] and Burts [39] have 

reported on the influence of crosslink density on the toughness of VE resins. The 

mechanisms studied were the molecular weight of the VE oligomer and the addition rate 

of styrene monomer. As vinyl esters possess only terminal unsaturation, increasing the 

molecular weight of the oligomer pushes the crosslink sites further apart, resulting in a 

lower crosslink density. Reported results indicate that increased oligomer molecular 

weight (and hence decreased crosslink density) leads to increased fracture toughness. 

It has been widely reported [36,37,38,39] that the fracture toughness of a fully cured VE 

matrix system decreases as styrene addition levels increase. Li et al. [37] attributed these 

observed decreases to the VE backbone providing greater toughness compared to the 

styrene. However, the majority of commercial VE resins contain much greater styrene 

levels than that required for a straight stoichiometric cross-link formation. While a 

percentage of this excess monomer is lost as atmospheric emissions during processing 

and cure, a portion homopolymerises to form polystyrene segments within the final 

matrix network. As polystyrene is a rather brittle material, it is thought that higher 

styrene additions may result in higher polystyrene contents within the cured matrix and 

this may be the mechanism which causes reduced matrix toughness. Further 

experimental investigation is required to verify this behaviour. 

Whatever the underlying mechanism, the reported data indicates that toughness can be 

improved through reducing the level of styrene monomer in VE resins. However, 

reducing styrene monomer levels causes an increase in the VE resin viscosity and lowers 

the workability of the resin. Therefore there needs to be a compromise made with regard 

to styrene levels which are high enough to maintain good resin workability but low 

enough to improve resin toughness. 
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Over recent years, some manufacturers have begun to investigate the use of alternative 

monomer systems (eg: Hetron HP35, Ashland Specialty Chemical Co. [40]). However, 

investigation of such systems to date has focussed on emission issues. Further 

investigation is required to establish the toughness alterations resulting from such 

monomer substitutions. 

An alternative path to modifying the intrinsic characteristics of the resin chemistry is 

through the grafting of elastomer segments onto the VE oligomer. A notable example of 

this approach is the Derakane 8084 resin produced by the Dow Chemical 

Company [41]. While the exact formulation of the VE backbone in this resin is 

proprietary, literature indicates that this product has an elastomer grafted directly onto 

the resin backbone [42]. Several studies have shown that this elastomeric modification 

results in improved resin toughness [35,43,44]. 

As mentioned earlier, modification of the VE or reactive monomer chemistry is one of 

the methods used for toughness modification. The other method is through use of non-

matrix additives, the most common of which are liquid butadiene nitrile rubbers. These 

materials, which contain reactive terminal groups tailored to a specific resin chemistry, 

are added to the resin solution in liquid form. During the cure process prior to gelation, 

phase-separation occurs providing a dispersion of rubbery domains within the final 

(relatively brittle) thermoset network. 

A number of authors have reported on this technique. Pham and Burchill [43] and 

Dreerman et al. [44] both reported on the use of butadiene nitrile rubber additives in 

commercial VE resin systems, while Auad and co-authors [45,46] utilised VE resins 

synthesised in-house. 

Dreerman et al. [44] utilised commercially available butadiene nitrile rubber additives 

with vinyl (VTBN) and epoxy (ETBN) terminal functionality in their study. The study 

noted that the compatibility of the studied vinyl esters and rubbers was poor, however 

fracture toughness improvements of between 30 to 70% were still possible at low 

loading rates. Under impact conditions fracture toughness was not improved. 

Furthermore it was found that the addition of the rubbers resulted in decreases to both 

the flexural modulus and yield stress of the matrix. 
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Pham and Burchill [43] also examined the behaviour of hydroxy terminated (HTBN) 

and vinyl terminated (VTBN) rubbers in VE resins. In an effort to overcome observed 

incompatibilities of the rubbers with the VE resin, they also investigated the use of 

hydroxy terminated polybutadiene (HTPB) modified with isocyanate end-caps. 

Reported results from the modified HTPBs indicate improvements of 200 – 300% in 

the stress intensity factor K1C and a ten-fold increase in G1C fracture energy with addition 

levels of 5%.  Toughness of the tested resins was seen to improve with increased length 

and polarity in the end-caps of the HTPB. Loss of elastic modulus due to the rubber 

additives was relatively low at a 5% addition level, however modulus losses increased to 

between 30 – 50% at 10% addition levels. This would suggest use of this technique 

should be limited to low addition levels. 

From the reported data it would appear that the addition of liquid butadiene nitrile 

rubbers is a valid strategy for the toughening of VE matrix systems. While the rubbers 

are immiscible with the resin solution, the fine dispersion of rubbery particles which 

results during gelation appears to work in harmony with other crosslinked material to 

create an effective toughening mechanism. Due to the phase separation observed in this 

material, dispersion of the rubber within the resin solution would need to occur shortly 

before manufacturing and would likely need to be done by the fabricator. While this is 

not an entirely satisfactory scenario from a manufacturing perspective the performance 

improvements afforded by this approach may justify its use. 

If this path is to be pursued care should be taken to minimise the loss of other important 

mechanical properties of the matrix. Reported data indicates that elastic modulus and 

yield and break stresses of the matrix are adversely affected by addition of the liquid 

rubbers. Care should be taken to balance toughness improvements with adequate 

retention of other properties. 
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2.4.5. REDUCED EMISSIONS DURING PROCESSING 

In response to increasing regulatory actions aimed at decreasing volatile organic 

compounds (VOCs) from manufacturing operations (eg: California’s South Coast Air 

Quality Management District Rule 1162, National Emission Standards for Hazardous 

Air Pollutants [47], Maximum Achievable Control Technology (MACT) standards 

[48]), many resin manufactures have sought to modify the formulation of their VE 

resins to limit the VOC emissions during fabrication operations. The primary target of 

regulatory controls to date has been styrene, the most widely used monomer in VE resin 

systems.  

The reasons for the focus on styrene are complex but extend well beyond the composites 

industry. Styrene is a major commodity chemical used in vast quantities across a wide 

array of industries. Styrene emissions are also distinctive and easily detectable with an 

aromatic odour at low concentrations and a sharp, penetrating disagreeable odour at 

higher levels with a human detection threshold of around 0.1ppm [49]. The effect of 

styrene on humans is currently the subject of significant international debate and 

different regulatory bodies have adopted different stances on the issue. For example, 

while the official US Environmental Protection Agency (EPA) position is that the 

carcinogenic potential of styrene is still under review, the EPA Office of Research and 

Development has suggested that styrene be listed as a Group C carcinogen [50]. In 1987 

the International Agency for Research on Cancer (IARC) upgraded the classification of 

styrene from "not carcinogenic" to "possibly carcinogenic to humans" [50]. This finding 

was upheld in two subsequent reviews in 1994 [51] and 2002 [52].  

The uncertain status of styrene and the threat of increasing restrictions on emissions has 

resulted in a rethink on styrene usage by the composites industry, the sector identified 

by IARC as having highest styrene exposures [52]. Over the past few years a number of 

companies have introduced products aimed at providing the end-user with reduced 

emissions during fabrication operations. As with the toughening of matrix systems, 

styrene emission levels can be modified by two different paths: 

 Modification of the resin chemistry. 

 Incorporation of additional compounds to the resin solution. 
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The primary techniques used in modification of the resin chemistry involve reductions 

in the amount of styrene blended into the resin solution. This can be achieved through a 

reduction in the overall reactive monomer content of the solution or by substitution of 

another reactive monomer in place of styrene. As mentioned previously, the styrene 

addition level required to achieve a stoichiometric balance with the VE oligomers is well 

below the 40 to 50% addition levels used in typical vinyl ester resins. The theory is that 

by reducing the disparity between required and available styrene, the amount of styrene 

available for emission is reduced. 

The most obvious path to reduce the amount of excess styrene in a system is to simply 

reduce the percentage added at manufacture. Some manufacturers have pursued this 

path with their vinyl ester resins, offering a range of products with the same oligomer 

but different styrene contents. Table 2.2 shows three such vinyl ester products from the 

Dow Chemical Company. This table highlights one of the inherent problems in 

limiting formulation changes to a simple reduction in styrene content. As can be seen 

from the figures, when the styrene content is decreased there is a corresponding increase 

in the resin viscosity. With most formulators seeking to achieve low viscosity levels to 

facilitate high filler or fibre loadings, this viscosity increase can be an undesirable side 

effect of styrene reduction strategies. Even the 45% styrene level of the 411-350 resin 

would be regarded as a relatively high styrene content. For styrene contents to be 

reduced to the 30 - 35% typically regarded as necessary for meeting new legislation, 

greater formulation changes are required to retain workable resin solutions. 

Table 2.2  Styrene content and viscosity of VE resins by the Dow Chemical Company.  

Product Name 

Styrene 

Content   

(%) 

Viscosity 

(cP) 

R
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Derakane Momentum 411-100 52 100 [53] 

Derakane Momentum 411-200 48 200 [53] 

Derakane Momentum 411-350 45 370 [54] 
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As previously mentioned, styrene content has been shown to influence a number of 

properties of a VE resin [36,37,38,39]. A lower styrene content increases the crosslink 

density with a lower portion of brittle polystyrene segments forming leaving the matrix 

dominated by the VE structure. This leads to improved mechanical performance which 

is supported by published manufacturer data. However with a lower styrene content, the 

greater oligomer content will increase the cost of the VE resin [20] and increase the 

viscosity, adversely affecting processing.  

One alternative to simply reducing the level of styrene in a resin solution is the 

substitution of another reactive monomer in place of styrene. Some manufacturers have 

approached the new legislation by using alternative monomer systems to manage styrene 

emission issues. An example is the previously mentioned Hetron HP35 which is styrene 

free, using an acrylate monomer instead of styrene [40].  

As noted earlier, styrene is used in a broad range of applications and produced in very 

high volumes. With its associated health issues still being debated, this high profile has 

potentially contributed to movements directed at regulating styrene emissions. Acrylates 

and methacrylates are not as widely used and their use does not currently appear to 

attract the same attention. Additionally, acrylates and methacrylates are not considered 

to be carcinogenic by the U.S. EPA [55] and methyl methacrylate has been deemed “not 

classifiable as to its carcinogenicity to humans (Group 3)” by IARC [56].  

Costin and Bailey [57] investigated the use of acrylic monomers as additives in UP 

resins and found that both acrylate and methacrylate monomers reduced emissions and 

lowered odours. The use of these alternative monomers was found to reduce gel times, 

improve tensile strength and elongation but reduce tensile modulus. Complete 

replacement of styrene with methacrylate was found to reduce emissions by 

approximately 80%. However, complete replacement was not regarded as being a viable 

option due to the higher cost of the alternative monomers and the resulting increased 

resin viscosity. Agrawal et al. [58] studied the curing behaviour of VE resins with methyl 

methacrylate and styrene monomers, with reported results indicating that combinations 

of styrene and methyl methacrylate were more reactive than each on their own.  
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Lowering the styrene content or replacing the styrene with an alternative addresses the 

styrene emission issue but in doing so, can increase the cost of the VE and the viscosity. 

The combination of these two techniques appears a promising option which may 

maintain the resin viscosity at a workable level appropriate for processing, however the 

cost increases may still hinder the adoption of these methods.  

In addition to changing the reactive monomer in a resin formulation, it is possible to 

make modifications to the VE oligomer so as to reduce styrene addition levels while 

maintaining an acceptable viscosity. As will be discussed in more detail later, a reduction 

in the molecular weight of the oligomer yields a corresponding drop in viscosity [36]. 

This could permit a reduction in styrene addition rates without sacrificing formulation 

viscosity. 

Another approach to reducing emissions is by sealing the exposed surfaces of parts 

during fabrication, limiting the escape of styrene and reducing emissions. An example of 

a commercial product that applies this theory is the Derakane LSE (Low Styrene 

Emission) resin series by the Dow Chemical Company [28]. Emission levels are 

reportedly the same as standard grades during fabrication with the low styrene 

mechanism activating after the resin surface becomes static, preventing further styrene 

emissions. These resins reportedly handle and cure and possess similar properties to the 

standard resins. 

The “sealing” of resin surfaces to prevent emissions may be achieved in a variety of ways. 

One of the most common ways is through the addition of a paraffin wax to the resin 

which blooms to the surface forming a barrier layer of wax that limits the emission of 

styrene [18,28]. These mixtures however have been known to phase separate over time 

and the strength of secondary bonds to the surface may be lowered due to the wax 

concentration. 

It is also possible to utilise specially formulated additives which are designed to reduce 

emissions by sealing the surface through forming a barrier film. An example is BYK-

 S 750 produced by BYK Chemie that, when combined with the resin prior to the 

addition of other components is reported to suppress styrene emissions without 
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adversely effecting secondary bonds, however phase separation of the system over time is 

still a concern [59].    

More recently, some authors have suggested techniques which essentially seal volatile 

monomers into the system by partially curing the surface of the resin. McCartney [60] 

reported on “UV Cocooning” where a photo-initiated ultraviolet (UV) curing process is 

applied to cure the resin surface, reducing monomer evaporation, before completing the 

ambient cure of the product. 

While each of these methods is reported to reduce emissions, the selection of an 

appropriate method must take into consideration the fabricated product and the 

adopted manufacturing processes.  

2.4.6. ELEVATED TEMPERATURE PERFORMANCE 

Thermosetting resins are amorphous polymers, possessing networks which consist of 

random arrangements of polymer chains, as opposed to a crystalline polymer where the 

network consists of an ordered arrangement of chains. Although most crystalline 

polymers contain portions of both amorphous and crystalline material, the distinction 

between the two classes is important as it determines the behaviour of a polymer when 

exposed to heat at elevated temperatures.  

When exposed to heat, crystalline polymers melt at a certain temperature changing from 

a solid to a liquid phase. Amorphous polymers on the other hand do not melt, instead 

they exhibit a softening transition where they pass from a glassy state to rubbery state. 

This temperature of this transition is known as the glass transition temperature or Tg. 

When cooled below the Tg a polymer is rigid and brittle but heated above the Tg the 

polymer is soft and flexible. The Tg of a resin is dependant on the mobility of the chains 

within the network. The more mobile the chains are, the less heat is required to instigate 

molecular movement, resulting in a lower glass transition temperature. Similarly the less 

mobile the chains are the more heat is required to instigate movement, resulting in a 

higher glass transition temperature. 



  - 23 - 

The glass transition temperature is a key factor in determining the suitability of a 

polymer to various service conditions. While in some situations it may be advantageous 

to operate a material above its glass transition to achieve tough, elastomeric properties, 

the cenosphere composites examined in this dissertation are most commonly applied as 

structural core materials [61,62,63,64] and in these instances it is seen as more desirable 

to operate the material below its glass transition to provide maximum rigidity.  

One of the reported advantages of VE resins is that they possess high transition 

temperatures that approach 90°C without a post-cure [18]. This characteristic may be 

particularly beneficial in the fabrication of large civil engineering components where it is 

difficult to post cure products at elevated temperatures. Given that the high thermal 

insulation characteristics of the VE / cenosphere composites would generally slow 

temperature ramps and prolong soak times to achieve uniform part temperature during 

post-cure, the ability to achieve high Tg values without post-cure may be particularly 

attractive.  

Another measure of the softening transition of an amorphous polymer is the heat 

distortion temperature (HDT or temperature of deflection under load). Evaluation of 

the HDT involves the measurement of deflection in a constantly loaded flexural 

specimen with increasing temperature. The HDT is the temperature at which the 

deflection equals a predetermined level specified in the relevant testing standard [65,66]. 

The test essentially measures the loss of modulus in the specimen which occurs when the 

material passes through is glass transition. While the Tg and HDT are not exactly the 

same they are related. Initial HDT testing of cenosphere composites by FCDD staff has 

indicated a strong correlation between the HDT of the matrix and the HDT of the 

resulting composite. It is therefore thought that the glass transition characteristics of the 

matrix will be an important parameter in temperature performance of the vinyl ester / 

cenosphere composites. 

Unlike most of the other performance modifications discussed previously, the elevated 

temperature performance of a matrix can generally only be improved through 

modification of the chemical structure of the polymer network. Most additives used 

with vinyl ester systems tend to reduce the glass transition temperature of the polymer 
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rather than improve it. The current discussion will therefore be limited to chemical 

structure modifications which aid in elevated temperature performance. 

The primary factor in the glass transition temperature of a thermosetting polymer is the 

crosslink density of the network. The Tg is determined by the inherent mobility of the 

molecules within the network. The more mobile the structure, the lower the glass 

transition temperature. The crosslinking of a thermoset network significantly reduces 

the mobility of the various molecules within the network and thus raises the glass 

transition temperature. A number of authors [36,37,38,39] have reported on the 

relationship between the crosslink density of the cured polymer network and the 

resulting glass transition temperatures in VE resins. These studies indicate that an 

increased crosslink density due to the use of lower molecular weight oligomers leads to 

increased glass transition temperatures. Conversely, the addition of increasing amounts 

of styrene, which effectively reduces the crosslink density, was found to lower the Tg of 

systems with lower molecular weight oligomers. However, the studies [37,38] showed 

the addition of styrene to higher molecular weight oligomers had only a minor effect on 

glass transition temperatures. 

The crosslink density can also be increased by increasing the number of sites available 

for crosslinking. This can be achieved by utilising a novolac epoxy as opposed to the 

DGEBA epoxy as the chemical backbone for the VE resin (eg: Derakane 470-300, The 

Dow Chemical Company [67]). The DGEBA epoxide with its terminal epoxy groups 

yields a vinyl ester which only possesses terminal unsaturation. However, the novolac 

epoxide is a branched molecule with an epoxy reactive group terminating each "branch". 

When the novolac is reacted to form the vinyl ester oligomer each of these epoxide 

groups is converted to provide terminal unsaturation on each "branch" (see Figure 2.2). 

The number of unsaturation points on a novolac vinyl ester is always three or more, 

allowing crosslinks to form along the length of the molecule rather than just on the 

ends. This results in a network with increased crosslink density. 
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Figure 2.2 Chemical structure of alternative VE resin oligomers. Source: [19] 

 

Investigations by Scott et al. [19] found improvements in Tg were achieved by use of a 

novolac based oligomer. Tg improvements of 17 to 27°C compared to standard grade 

vinyl esters have been reported for novolac vinyl ester systems [17]. One manufacturer 

has even reported improvements of up to 45°C [67]. Manufacturer literature shows 

novolac based VE resins generally maintain comparable mechanical properties to 

standard grades but have reduced elongation [67], which would be a direct influence of 

the increased crosslink density. Literature also indicates that novolac based VEs are 

typically formulated to have a lower styrene content compared to their standard grade 

counterparts. It is reasonable to conclude that the lower styrene content also contributes 

to the increases in Tg, perhaps explaining the disparity between the aforementioned 

values. At similar levels of styrene content however, Scott et al. [19] found 

approximately a 20°C improvement in Tg with a novolac based oligomer. 

Novolac Vinyl Ester 

Standard Vinyl Ester 
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While improvements in glass transition temperature can be achieved by increasing 

crosslink density, there are additional side effects which should be considered. As was 

reported earlier, lower crosslink densities lead to increased fracture toughness and highly 

crosslinked novolac vinyl esters typically display lower toughness characteristics 

compared to standard grade products. Manufacturer data of elastomer modified VE 

resins indicates the toughening process led to a lower Tg [41]. Other conflicts in 

performance expectations exist where higher styrene concentrations provide improved 

processing characteristics yet can lower the Tg and influence other properties. It would 

therefore appear that desired temperature performance characteristics cannot be 

considered in isolation but must be evaluated concurrently with other details of the 

proposed application to provide a suitable matrix system.  

2.4.7. IMPROVED CHEMICAL RESISTANCE 

Many industries utilise corrosive and hazardous materials which require processing, 

storage and handling facilities capable of withstanding these aggressive surroundings. 

Vinyl ester resins have been reported to provide good resistance to a wide range of 

aggressive chemical environments [28]. The good chemical resistance of VE resins is a 

result of their reduced number of ester linkages and the epoxy resin backbone [17]. 

Vinyl ester resins with higher styrene concentrations offer improved resistance to acids 

and alkalis while those with lower styrene concentrations offer better resistance to 

solvents [36]. 

Compared to DGEBA based VE resins, the higher crosslink density of novolac based 

VE resins tends to provide improved chemical resistance due to the higher density of 

crosslinks in the network limiting the infiltration of aggressive agents. The increased 

crosslink density of novolac epoxy based VE resins combines corrosion resistance with 

elevated temperature performance [68].  

Improved corrosion resistance and high temperature performance may also be achieved 

by altering the resin chemistry through a urethane-modification [69]. An example of a 

commercial resin using this technique is Atlac 580-05 by Reichhold Chemicals Inc. 

Manufacturer data indicates the incorporation of a urethane onto the backbone creates a 

tough and resilient polymer which provides superior corrosion resistance and elevated 
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temperature strength retention [70]. However by comparison, the temperature 

performance did not reach that of other high temperature performance resins. 

Atlac 580-05 is free radically cured, with Martin et al. [71] investigating the influences 

of initiator concentration and promotion level on gel and vitrification times. Similar to 

other resin grades, the desired performances must be prioritised to determine a suitable 

resin system.  

2.5. CURING VINYL ESTER POLYMERS 

Vinyl ester resins cure through a free radical initiated, copolymerisation reaction. The 

cure process commences with the addition of a chemical initiator to the resin solution. 

The initiator decomposes under heat or radiation to provide the free radicals required 

for the cure. The free radicals start the polymerisation reaction by breaking the 

unsaturation (double carbon) bonds of the oligomer end groups and the reactive 

monomer. These sites then link to create the three dimensional crosslinked thermoset 

network. A more detailed discussion of the reaction mechanisms is provided in 

Chapter 3. 

The most common types of initiators used for VE resins are organic peroxides, however 

other initiators such as UV activated photo-initiators may also be used. Due to their 

inherent instability, the organic peroxides used for VE resin curing are blended products 

containing a proportion of the particular peroxide in some form of carrier medium. The 

carrier can be water, a solvent or some other liquid with which the peroxide does not 

react. The reactivity of the initiator is determined by the type of peroxide used and its 

concentration within the particular product. The active oxygen content of an initiator is 

a quantitative descriptor of the product's reactivity addressing both the type and 

concentration of peroxide, with higher active oxygen contents translating to more 

reactive systems. 

At ambient temperature the decomposition rate of most peroxide initiators is too low for 

viable composites production so an accelerator is used to speed up the decomposition 

rate. The accelerator is added to the resin solution at relatively low levels (typically 0.1 to 
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0.8%) prior to introduction of the peroxide initiator. When the initiator is added to the 

resin, the accelerator causes the peroxide to decompose at a much increased rate. It 

should be noted that accelerators should never be directly combined with peroxide 

initiators as this will result in a violent decomposition reaction. However, when 

combined in the appropriate manner, accelerators can be used to increase decomposition 

of the peroxide to a viable rate for ambient temperature fabrication.  

Methyl ethyl ketone peroxides (MEKP) are probably the most widely used type of 

organic peroxide initiator used for ambient temperature curing. MEKP solutions appear 

as clear, colourless liquids and are normally used in combination with metal salt (cobalt) 

accelerators. The MEKP is dissolved in a phthalate plasticiser or phlegmatiser such as 

dimethyl phthalate (DMP) forming a solution typically containing 30 - 40% peroxide 

with the balance predominantly DMP with a small quantity of methyl ethyl ketone 

(MEK) and water. A number of MEKP based initiators of varying reactivity 

manufactured by Akzo Nobel are shown in Table 2.3. The relative concentrations of 

components and the active oxygen contents of each solution are also shown, 

highlighting the general lowering of reactivity of the solutions with decreasing active 

oxygen content. 

Table 2.3 Composition and reactivity of MEKP based organic peroxide initiators. 

Product Description 

Active Oxygen 

Content        

(%) 

Peroxide 

Content   

(%) R
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Butanox M-60 Medium reactive MEKP 9.9 36 [72] 

Butanox M-50 Medium reactive MEKP 8.9 33 [73] 

Butanox LA Low reactive MEKP 8.7 34.5 [74] 

Butanox LPT Very low reactive MEKP 8.5 35 [75] 

 

Manufacturer supplied MEKP product data sheets generally recommend an initiator 

addition level of between 1 and 4%. Addition levels lower than the recommended 
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minimum will potentially result in an undercure of the resin, while levels greater than 

the maximum will increase costs with only minimal increases in cure speed [76].  

One of the disadvantages of using MEKP initiators is the presence of hydrogen peroxide 

within the peroxide blend. Hydrogen peroxide is used in the production of MEKP and 

small residual quantities are found in all end products. In unsaturated polyester reaction 

the H2O2 can provide a beneficial initial "kick" to the cure reaction due to its high 

reactivity and a similar effect can be observed with vinyl esters. In vinyl esters however, 

the decomposition of the H2O2 will yield oxygen which will exhibit itself in the 

formation of bubbles within the resin. This phenomena known as "fizzing" can result in 

voids in the cured matrix which may adversely affect performance and durability.  

The relatively high concentration of phlegmatiser used in MEKP solutions also requires 

care. This non-reactive material will remain as an inclusion within the cured network 

and tends to act as a plasticiser. When high initiator addition levels are used, this 

plasticising material can begin to exhibit detrimental effects on the mechanical and 

thermal characteristics of the cured network. 

Use of an accelerator is necessary for ambient temperature curing with MEKP initiators. 

The most common accelerators used are cobalt complexes such as cobalt napthenate and 

cobalt octoate. Like the peroxide initiators, cobalt accelerators are formulated solutions 

containing the active cobalt component in a non-reactive carrier. The percentage of 

active cobalt in a formulation varies with the particular cobalt complex used and its 

addition level. Examples of commercially available cobalt accelerators with relative 

cobalt concentrations are shown in Table 2.4. The lower limit for cobalt accelerator 

addition is probably only determined by the ability to achieve a desired minimum 

reactivity at a given processing temperature. However, work by Abadie et al. [77] and 

Cook et al. [78] has suggested that there may be an upper limit for the addition of 

cobalt accelerators. Published test results indicate a drop off in system reactivity above 

certain addition levels, with the conclusion that the cobalt accelerator actually retards 

the reaction. Further investigation would be needed to assess whether it is the cobalt 

itself which retards the reaction or whether this effect is due to the other components of 

the accelerator solution. 
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Table 2.4 Composition of cobalt accelerators.  

Product Description 

Cobalt 

Complex    

(%) 

Active 

Cobalt      

(%) R
ef

er
en

ce
 

Accelerator NL-48P Cobalt octoate in plasticiser  3 0.5 [79] 

Accelerator NL-49P Cobalt octoate in plasticiser  6 1 [80] 

Accelerator NL-51P Cobalt octoate in plasticiser  35 6 [81] 

Accelerator NL-53 Cobalt octoate in solvent  55 10 [82] 

 

In some instances the cobalt accelerator will not provide the reactivity levels for a 

particular production scenario. In such instances it is possible to further increase the 

reactivity of the initiated system by using an amine accelerator such as dimethylaniline 

(DMA). For MEKP these accelerators must be used in conjunction with the cobalt 

accelerator. Addition levels for the amine are much lower than for the cobalt accelerator, 

typically only being in the order of 0.05 to 0.1% [83]. 

An alternative to the ketone peroxides are the hydroperoxides. These materials, generally 

cumyl hydroperoxides (CHP), are slower reacting than MEKP and subsequently cure 

occurs over a longer period. CHP solutions appear as a clear, colourless to pale yellow 

liquid. They are commonly used with vinyl esters instead of ketone peroxides due to the 

absence of “fizzing” and can still be used with cobalt accelerators. The CHP is dissolved 

in a solvent mixture and can contain from 40 - 90% peroxide, less than 10% cumene 

and water with the balance formed by the solvent. Again a number of formulations are 

available with degrees of reactivity achieved by altering the peroxide content and active 

oxygen content. The CHP based Trigonox 239 initiator manufactured by Akzo Nobel 

also contains an accelerator in its formulation to increase the reactivity [84]. Initiator 

addition levels are typically from 1-3% but depend on the reactivity of the CHP 

solution with higher minimum concentrations required for those of lower reactivity.  

To effect curing at moderately elevated temperatures, diacyl peroxides are often utilised. 

Benzoyl peroxide (BPO), the most widely used form, is used extensively for heated, 
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closed mould production methods such as resin transfer moulding. For midly elevated 

temperature production, BPO is normally used in conjunction with amine accelerators 

such as dimethylaniline (DMA), diethylaniline (DEA) or dimethyl paratoluidine 

(DMPT). For high temperature curing the BPO is often sufficiently active such that 

accelerators are not required. BPO is available in a number of forms that offer improved 

handling characteristics including free flowing powders and thixotropic pastes. The 

peroxide content of these formulations can vary from 20 to 50% with the balance in 

pastes comprised of water and plasticisers and in powders, an inert filler (eg: calcium 

sulphate). Examples are shown in Table 2.5. 

Table 2.5 Composition and reactivity of BPO based organic peroxide initiators. 

Product Description 

Active Oxygen 

Content        

(%) 

Peroxide 

Content   

(%) R
ef

er
en

ce
 

Perkadox BT-50 Standard BPO paste 3.3 50 [85] 

Perkadox CH-50 Standard BPO powder 3.3 50 [86] 

Perkadox 20S BPO on filler 1.3 20 [87] 

 

Formulations have been developed where ultraviolet (UV) light from lamps or natural 

light is used to initiate the cure of adhesives and resins. The UV curing of resins has 

advantages of extended resin pot-life and working time, when kept protected from UV 

light and not being affected by heat sources that can potentially lead to ambient 

temperature cure. The cure kinetics of VE resins cured with UV light has been studied 

by Scott et al. [88,89]. A UV curing system would not be an option to effectively cure 

particulate reinforced composites. The filler suspended within the matrix would obstruct 

the penetration of light into the material leading to a non-homogeneous cure 

throughout the cross-section with only the exposed external surfaces hardening.   

The reactivity of the cure system can also be adjusted through the use of inhibitors. An 

inhibitor which is combined into the resin formulation before use, consumes the first 

free radicals as they are formed thus delaying the onset of the cure reaction at ambient 
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and elevated temperatures. Delaying the onset of the cure can aid processing procedures 

by lengthening the gel time of the resin. Examples of inhibitors are hydroquinone, p-

benzoquinone and t-butyl catechol [18] with some commercial varieties produced by 

Akzo Nobel shown in Table 2.6. Inhibitors can have an inhibitor content of 1 to 20% 

in a solution with the balance formed from plasticiser or styrene with an inhibitor of 

lower concentration requiring higher addition levels. 

Table 2.6 Composition of inhibitors. Source: [90]  

Product Description 

Inhibitor 

Content         

(%) 

Inhibitor NLC-1 p-tert-Butyl catechol in styrene  1 

InhibitorNLC-10 p-tert-Butyl catechol in plasticiser  10 

Inhibitor NLD-20 Di-tert-butyl-p-cresol in styrene 20 

    

Commercial resin grades are often supplied with the option of being “pre-promoted”, 

containing accelerators, promoters, inhibitors and other additives to meet specific 

requirements. An advantage of these grades is that the resin is supplied in a condition 

that can be used immediately, not requiring an on-site promotion process. However 

there are associated disadvantages due to the exact details of the formulation being 

proprietary knowledge and not available, the flexibility of promoting the resin to suit 

on-site processes and conditions is lost and the resins generally have a limited shelf-life. 

There is a considerable variety of cure system components available to cure VE resins. 

While advantageous in the fact that systems can be tailored, care must be taken to select 

constituents to optimise the cure process to suit the fabrication materials, available 

processing techniques, operating conditions and the desired properties of the final 

product.  
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2.6. CENOSPHERES 

Particulate reinforcements for composite systems are available in numerous different 

forms including spherical, cubic, platelet or any other regular or irregular geometry 

[91,92]. Each type and form imparts their own specific properties to the composite. 

Particulate reinforced composites have been reported to offer many advantages over neat 

resin matrices including [93]: 

 increased stiffness, strength and dimensional stability, 

 increased toughness or impact strength, 

 increased heat distortion temperature, 

 increased mechanical damping, 

 reduced permeability to gases and liquids, 

 modified electrical properties, and  

 reduced costs. 

 

Of particular interest to this current study are cenospheres (see Figure 2.3) which are a 

type of hollow ceramic microsphere found in the fly ash by-product created through the 

burning of coal at power stations [94,95]. When fly ash is placed in the storage ponds 

normally used by power stations, the lightweight cenospheres (SG ≈ 0.7) float to the 

surface and can be collected for re-use. With the current low global utilisation of ash by-

products, cenospheres are seen to offer some significant environmental benefits. 
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Figure 2.3 Cenosphere particles, a fly ash derivative used as a particulate reinforcement. 

Source: [96]  

 

The concentration of cenospheres in coal combustion ash is typically less than 1% 

however they can constitute up to 80% of some fly ashes. Gurupira et al. [97] cited an 

example of a fly ash from one coal type having a cenosphere concentration of 9% 

whereas another type had a cenosphere concentration of 87%. The chemical and 

physical composition of a fly ash is a function of many factors including coal rank, coal 

source and the burning plant characteristics and processes [98]. The amount of ash 

generated by a plant is directly related to the grade of coal being burnt, with higher 

grades having less ash than lower grades. The ASTM Coal Classification Index defines 

coal grades including: 

 Anthracite 

 Bituminous 

 Subbituminous 

 Lignite 

 

The chemical properties of coal ash with respect to coal rank are shown in Table 2.7. 
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Table 2.7  Typically chemical properties of coal ash with respect to coal rank.          

Source: [98] 

 Anthracite Bituminous Subbituminous Lignite 

Silicone, SiO2 48 - 68% 7 - 68% 17 - 58% 6 - 40% 

Aluminium, Al2O3 25 - 44% 4 - 39% 4 - 35% 4 - 26% 

Calcium, CaO 0.2 - 4% 0.7 - 36% 2.2 - 52% 12.4 - 52% 

Potassium, K2O - 0.2 - 4% - 0.1 - 1.3% 

Iron, Fe2O3 2 - 10% 2 - 44% 3 - 19% 1 - 34% 

Titanium, TiO2 1 - 2% 0.5 - 4% 0.6 - 2% 0 - 0.8% 

Magnesium, MgO 0.2 - 1% 0.1 - 4% 0.5 - 8% 2.8 - 14% 

Sulphur, SO3 0.1 - 1% 0.1 - 32% 3 - 16% 8.3 - 32% 

Sodium, Na2O - 0.2 - 3% - 0.2 - 28% 

Ash 4 - 19% 3 - 32% 3 - 16% 4 - 19% 

 

The cenosphere component of fly ash will take on similar properties to the coal it is 

formed from. Between current commercial suppliers, the chemical and physical 

properties of cenospheres appear similar with only small percentages differences in key 

components [1,99,100,101]. Typical chemical composition properties are summarised 

in Table 2.8. Comparing the chemical composition of the cenospheres to the 

composition of each coal rank gives an indication from which coal type the cenospheres 

may have been sourced. 
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Table 2.8  Typical chemical properties of cenospheres. Source: [1] 

 Concentration 

Silicone, SiO2 53% 

Aluminium, Al2O3 38% 

Calcium, CaO 3.6% 

Potassium, K2O 1.5% 

Iron, Fe2O3 1.3% 

Titanium, TiO2 1.3% 

Magnesium, MgO 0.7% 

Phosphorous, P2O5 0.4% 

Sodium, Na2O 0.1% 

Manganese, Mn2O3 0.1% 

 

The implications of the chemical properties with regard to potential applications of 

cenospheres and the characteristics of final products is not clearly defined. Trelleborg 

Fillite Ltd, a supplier of cenosphere products, supply a specialty grade of cenospheres 

marketed as being specifically developed for high temperature applications [102]. This 

grade has a high alumina content of 40 - 44% as opposed to the usual 34 - 37%.  In 

general the chemical composition primarily relates to resistance to acids and alkalis. 

With their neutral pH, cenospheres generally do not interfere with the reaction of the 

matrix materials [1]. Typical physical properties of cenospheres are summarised in Table 

2.9.  
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Table 2.9  Typical physical properties of cenospheres. Source: [1] 

 Description 

Specific Gravity 0.68 - 0.72 g/cm3 

Loose Bulk Density 350 - 450 kg/m3 

Mohs Hardness 5 - 6 

Compressive Strength 180 - 280 kg/cm2 (18 – 28 MPa) 

Shape Spherical 

Colour Off-white 

Shell Thickness 1/10 d, nominal 

Melting Point 1250 oC 

Thermal Conductivity 0.11 W/mK 

pH in water 7.0 - 8.0 

Moisture Content 0.2% max 

 

Due to their low density, cenospheres can be used to produce composites of low weight. 

Their hard surface also provides good resistance to erosion and weather, with the glassy 

shell being impermeable to liquids and gases [1].  

The spherical shape of cenospheres also has many advantages as it provides the lowest 

particle surface area compared to volume. This shape requires less resin to wet the 

particle surface, permitting higher filler loadings which aid in reducing shrinkage and 

lowering costs. The shape also leads to good flow characteristics, improving workability 

and handling characteristics. Furthermore, the spherical shape provides a uniform stress 

distribution on its surface, avoiding localised high stress concentrations and premature 

failure initiation of the matrix, often associated with sharp edged particles [91].  

Cenospheres are supplied in the form of a free flowing, white to grey coloured powder, 

available in different grades generally classed by particle size. The colour of cenospheres 

appears to be a reflection of the severity of cleaning processes applied with the lighter 
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colours often preferred for use in paints and decorative applications. An example of 

cenosphere grades and the associated particle sizes are shown in Table 2.10. 

Table 2.10 Available product grades of cenospheres from Envirospheres Pty Ltd.    

Source: [101] 

E-Spheres SL Series 

Nominal Particle 

Size            

(µm) 

Approximate 

Particle Mean      

(µm) 

Description 

E-Spheres SLG 20 – 300 130 General multi-purpose 

E-Spheres SL500 250 – 500 300 Coarsest 

E-Spheres SL350 250 – 350 270 Coarse 

E-Spheres SL300 150 – 300 150 Mid range coarse 

E-Spheres SL180 20 – 180 115 Mid range fine 

E-Spheres SL150 20 – 150 100 General purpose fine 

E-Spheres SL125 12 – 125 80 Very fine 

E-Spheres SL75 12 – 75 45 Finest specialist 

 

By using particles of different sizes, higher packing densities are possible due to the finer 

particles filling the voids between the larger particles. With regard to suspensions 

containing coarse and fine particles, Shenoy [103] concluded that smaller particles 

interposed between larger particles causes a reduction in the interparticle impact 

resulting in a decrease in the viscosity. Generally by altering the particle size distribution 

from a sharp monomodal type to a broad distribution, the filler content can be increased 

without increasing the viscosity of the system [103]. This suggests a graded particle 

distribution containing a range of particle sizes may be the most appropriate to facilitate 

high filler concentrations while maintaining a workable viscosity.  
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2.7. DISCUSSION 

The above review has shown there are a wide range of constituent material options 

available for vinyl ester / cenosphere particulate composites. Through the review process 

it has become apparent that complex relationships exist within each material group. In 

the case of a composite where several constituents must be combined into a unified 

structural system, thorough understanding of these relationships and their interactions 

with each other is essential to achieve desired physical, mechanical and durability 

requirements. These relationships must be considered concurrently to select the most 

appropriate constituents for a particulate composite core material in a given application.  

This also implies evaluating the materials not entirely on the merits of their chemical 

structure and performance but how these merits apply in meeting the engineering 

requirements of an application.  Currently of interest to this study are civil infrastructure 

applications comprised of elements which lend themselves to open casting techniques 

completed in ambient conditions [61,62,63,104].  

In considering the options for a given end application, a number of parameters have 

been identified to aid in the selection of constituent materials. These parameters address 

the characteristics of the final composite and include: 

 mechanical performance, 

 processing characteristics, and 

 cost.  

 

The sensitivity of the construction industry to up-front costs has been well documented 

[105] and often influences the selection of any construction material to some degree. As 

detailed by earlier research by the author into particulate composite core materials, one 

of the primary aims of these new materials is to offset some of the cost disparity between 

FRP laminates and traditional core materials [61,104]. Thus the mechanical 

performance and processing characteristics must be considered with respect to their 
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associated cost ramifications. For the purposes of this study, costs are explained using 

supplier list prices for materials with the prices in $AUD on the dates as detailed in the 

appropriate references.     

The cost savings associated with using a filled system are achieved through the 

replacement of more expensive resin with a less expensive filler. It follows that the more 

resin that is replaced by filler, the more cost effective the composite becomes. However 

the actual savings are dependent on the relative cost differences between the resin and 

filler. Limits on the filler volume fraction do apply. It is obvious that a 100% filler 

volume fraction is not feasible, and the imposed constraints due to processing 

limitations must still be considered. Drawing on previous related research by the author 

[61,104], the potential filler volume fraction is restricted to a maximum of around 50% 

by volume.  

Standard vinyl ester resins offer a good balance of physical and mechanical properties 

but for some applications their performance (eg: glass transition temperature, toughness) 

may be inadequate. It is a considerable advantage of VE resins that a variety of different 

types exist and as detailed earlier, their properties can be modified using a number of 

methods to meet specific performance expectations. There are commercially available 

grades of resin which utilise these techniques to provide improved performance in 

various applications. Examples of selected grades produced by The Dow Chemical 

Company with associated costs are shown in Table 2.11.  

Table 2.11  Commercial resin grades and associated costs. 

Performance Resin Grade 
Cost     

($/kg) 

Standard Derakane 411-350 8.30 

Improved Toughness Derakane 8084 13.54 

Reduced Emissions Derakane 441-400 LSE 8.91 

Improved Temperature Performance Derakane 470-300 11.10 

Source: Pricing [106] 
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This indicates that enhanced performance comes at significantly higher cost which 

suggests that the use of these modified resin grades would be limited to specialised 

applications where the extra cost may be justified. The cost issue is relative, requiring the 

consideration of all materials in the system. If the use of a resin that is twice the cost of 

another doubles the performance of the overall composite system, then the added resin 

cost may be appropriate. However in many instances such performance increases may 

not be adequate to warrant the extra expenditure. 

In some instances, broader policies may significantly negate the types of considerations 

discussed above, for example emissions policy. Although not currently in place in 

Australia, many countries have imposed regulations that restrict volatile emissions. Thus 

the available options for VE resins may be constrained to those that meet emission 

requirements, limiting the range of material and processing options available. It would 

therefore appear reasonable to include the influence of styrene levels in any study of 

constituent influences. 

Ambient temperature cure appears to offer the greatest flexibility for the fabrication of 

vinyl ester / cenosphere composite products, implicating the use of MEKP or CHP 

based initiators to effect cure. Generally MEKP initiators would be the standard 

selection but CHP initiators may provide better exotherm control when fabricating large 

products. Elevated temperature curing may have some benefits for specific applications 

but the ambient cure option is more generally appropriate and has been chosen for this 

investigation. 

As mentioned previously, there are a number of suppliers of cenospheres who generally 

supply grades classed by particle size. The finer grade particles typically attract a higher 

cost due to extra grading processes (see Table 2.12). A product with a range of particle 

sizes over a broad distribution would appear to be the most promising with regard to 

maintaining processing characteristics at higher filler volume fractions where cost 

effectiveness is highest. Table 2.12 also shows that the graded product is lowest in cost.  
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Table 2.12 Grades of E-Spheres cenospheres with associated costs. 

Product Grade 
Nominal Particle Size        

(µm) 

Cost     

($/kg) 

E-Spheres SLG 20 – 300 1.50 

E-Spheres SL150 20 – 150 1.80 

E-Spheres SL125 12 – 125 1.90 

E-Spheres SL75 12 – 75 4.89 

Source: Grades and sizes [101]; Pricing [107]  

Again while a specific application may warrant the use of finer particles, for general 

applications the graded distribution appears appropriate and has been chosen for this 

investigation.   
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2.8. CONCLUSIONS 

This Chapter has reviewed the status of particulate composite research and the range of 

constituent material options available to optimise the performance of vinyl ester / 

cenosphere composite systems. The review indicated that research in the field is at a 

relatively early stage suggesting that before specialised performances are explored, it is 

logical to develop an understanding of the fundamentals of material behaviour. This 

implies the investigation of systems based on standard materials should be prioritised to 

develop a base-line of knowledge for system behaviour that subsequent research can be 

built from.   

From this review, the following types of constituent materials were identified to meet 

these requirements: 

 A standard grade vinyl ester resin that offers a good balance of mechanical and 

physical performance while remaining cost-effective.  

 Alternative grade of vinyl ester resin with a basic oligomer type modification which 

may possess improved performances.  

 An ambient temperature cure system that offers considerable flexibility to cure VE 

resins using standard equipment in a range of conditions. 

 A class of cenospheres with a graded particle distribution and a range of particle 

sizes. 

The aforementioned criteria will form the basis for the selection of materials in the 

subsequent work of this PhD study. 
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CHAPTER 3.          

           

 THE CURE BEHAVIOUR OF VINYL ESTER / 

CENOSPHERE COMPOSITES 

3.1. INTRODUCTION 

Having reviewed the various constituent options available for vinyl ester / cenosphere 

composites in the previous chapter, the next step in developing a more complete 

understanding of such systems is to examine their production from the constituents 

options identified. Creation of a functional composite system requires that the various 

constituents be blended together while the vinyl ester is in an uncured state and that this 

blend then be chemically cured to form the final thermoset composite. It is therefore 

important to understand the curing mechanisms of the vinyl ester resin and the various 

parameters which influence this cure in a cenosphere composite system. 

As discussed in the previous Chapter, vinyl ester resins are generally cured through a 

free-radical-initiated copolymerisation reaction. In this reaction, the double-bond 

endgroups of the oligomer are crosslinked with the double-bond of the styrene 

monomer to form a three-dimensional network. The cure process is shown 

schematically in Figure 3.1. The free radicals will normally be generated through the 

decomposition of an organic peroxide initiator aided by heat and/or an accelerator. The 

cure can be achieved at ambient or elevated temperatures depending on the adopted 

cure system and its elements. 
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Figure 3.1 Schematic of free radical crosslinking reaction of VE oligomer with styrene.  
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It is important here to note the difference between a resin changing from liquid to solid 

state and the attainment of full cure. The term “cured” refers to a state in which all 

possible network linkages have been formed through the conversion of unsaturation sites 

in the oligomer and reactive monomer. However, a resin will typically change from 

liquid to solid state when only a small portion of these bonds have been formed. The 

cure reaction must then continue within the new solid for full conversion to be 

achieved. 

For a crosslink to occur, it is necessary for two unsaturation points and two free radicals 

to be in sufficient proximity for the reaction to initiate. The mobility of the oligomer 

and reactive monomer will significantly influence their ability to achieve this required 

proximity and hence will be a determining factor in the progress of a given cure 

reaction. The mobility of the oligomer and reactive monomer is a function of their 

respective molecular weights and temperature.   

The molecular weight also influences the inherent proximity of unsaturation points in 

the resin solution. As VE oligomers are only terminally unsaturated, a shortening of the 

chain length (corresponding to a reduction in molecular weight) will result in more 

molecules within a given volume and thus increasing the number of unsaturation points 

within that volume.  

The reactive monomer is normally of significantly lower molecular weight than the 

oligomer to achieve desired viscosity reduction of the resin solution. Additional 

monomer into a resin formulation will therefore introduce a greater number of 

monomer molecules into a given volume. This will in turn result in a higher 

concentration of unsaturation sites within that volume. Examination of molecular 

weight and monomer content influences would therefore appear to be an important part 

of any experimental investigation of cure behaviour. 

In addition to the proximity to reactive unsaturation sites, the progression of the cure 

process is heavily influenced by the presence of free radicals near these sites. As 

mentioned previously the free radicals required to initiate a crosslink reaction are 

provided through the decomposition of an organic peroxide. When added to a resin 

solution which is properly promoted for the given processing temperature, the organic 

peroxide breaks down to form a pair of free radicals. During the cure reaction each free 

radical may participate in a large number of crosslink formations, being temporarily 
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taken up by a VE oligomer or styrene molecule during the breaking of the unsaturated 

double bond and then coming free again as the VE and styrene react with each other to 

create the thermoset network. The number of crosslink formations that a given radical 

can participate in is generally limited by the decreasing mobility of the molecule as 

network formation progresses. It may also be consumed in a side reaction with other 

substances such as inhibitors. Successful polymerisation therefore requires the generation 

of an adequate distribution of radicals over a prescribed timeframe to affect all the 

necessary crosslinks before the growing network can restrict further movement. 

Based on this scenario, it would appear that two factors will play a primary role in the 

progression of the cure process. Firstly, the initiator addition rate will largely determine 

the rate distribution of peroxide and thus radical creation throughout the resin solution. 

This assumes of course that the peroxide is properly dispersed within the solution 

through adequate mixing procedures. In such instances, higher addition rates will result 

in a greater number of peroxide molecules within a given volume, leading to greater 

radical density as the peroxide decomposes. Secondly, the rate at which the peroxide 

decomposes will obviously determine the profile of the radical distribution with respect 

to time. Given the need for a degree of molecular mobility in achieving optimum cure, 

it is probably preferable to have the free radical generation spread over a time period. 

This would allow for some redistribution of the oligomer, reactive monomer and radical 

before crosslink formation fully retards molecular movements. The rate of 

decomposition of the peroxide is influenced by three principal factors, namely 

 the type of peroxide, 

 the temperature of the system, and 

 the presence of accelerators within the system. 

 

The aim of this current experimental investigation is to develop an improved 

understanding of vinyl ester curing and the impact of the cure profile on vinyl ester / 

cenosphere composite systems. To achieve this end, the study will first examine the cure 

characteristics of neat vinyl ester resin systems and utilise these findings in characterising 

cenosphere composite systems. Based on the observations outlined already, the study of 

neat resin curing will examine the following parameters: 
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 The concentration of initiator. 

 The type of peroxide initiator. 

 The promotion regime. 

 The molecular weight of the oligomer. 

 The reactive monomer concentration. 

 The filler addition level. 

 

The influence of each parameter is studied using differential scanning calorimetry 

(DSC), an analytical technique which measures changes in the heat flow characteristics 

of a material. This technique utilises the exothermic nature of the crosslinking reaction 

to assess cure behaviour. 

Following the study of the neat resin matrix, the parameters will be examined for their 

influence on cenosphere composite systems. In this instance however, experimentation 

will monitor temperature changes in the sample due to the exothermic reaction. 

 

3.2. EXPERIMENTAL INVESTIGATION 

This section outlines the materials selected for use in this study which are based on the 

recommendations made in Section 2.8. The adopted experimental techniques and 

procedures used to examine the cure behaviour of vinyl ester matrix systems and vinyl 

ester / cenosphere composites are summarised before the results are presented in 

Section 3.3. 
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3.2.1. MATERIALS 

 Matrix Systems  

In accordance with the conclusions of Chapter 2, two different vinyl ester matrix 

systems were utilised in this study of cure behaviour: 

 Standard grade vinyl ester - Hetron 922 PAW 

Hetron 922 is a direct derivative of the original Epocryl vinyl ester resin 

introduced by the Shell Chemical Company in 1965, and along with Dow 

Chemical’s Derakane 411 vinyl ester is considered one of the industry’s standard 

products. Formulation rights for 922 are now owned by the Ashland Specialty 

Chemical Company and the product is manufactured in Australia under license 

by Huntsman Chemical Company (Australia). It is a basic methacrylated 

DGEBA epoxy resin solution containing 45% styrene monomer by weight. 

Hetron 922 PAW is a ready-to-use version of 922 which is supplied with 

promoters, accelerators and a thixotrope already blended. The resin sample used 

for this experimentation was not synthesised using Ashland’s new F-Cat 

technology. 

 Reduced styrene grade - Hetron 914 

Hetron 914 is a low styrene vinyl ester resin which is normally used as a basis for 

other formulated vinyl ester resins. It was selected for this investigation due to its 

very low styrene content (20% as opposed to 45% in Hetron 922 PAW) which 

allows for the investigation of styrene content influences through end user 

addition of extra styrene to the solution. The oligomer backbone of Hetron 914 

also possesses a lower molecular weight compared to Hetron 922, allowing for 

investigation of molecular weight influences on cure behaviour. The resin is 

manufactured locally by Huntsman Chemical Company (Australia) under licence 

from Ashland Specialty Chemical Company. It is supplied unpromoted and 

without a thixotrope. For the purposes of the current study it was accelerated by 

the author with a cobalt octoate (cobalt(II)-ethylhexanoate) solution containing 

6% cobalt (NL-51P, Akzo Nobel). Accelerator levels varied with different 

experiments as described in the relevant experiment details. 
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 Reactive monomer 

Styrene monomer was used in conjunction with the Hetron 922 PAW to investigate the 

influence of styrene addition levels on cure characteristics. The styrene was supplied by 

Huntsman Chemical Company Australia Pty Ltd. 

 Peroxide Initiators 

Four different organic peroxide initiators were used for this study. These are listed in 

Table 3.1. The two MEKP grades were selected as being representative of the curing 

systems widely used within industry for this type of material. MEKP-SR was 

recommended by Huntsman Chemical Company for curing Hetron 922 and is 

referenced on the product data sheet [1]. 

Table 3.1  Organic peroxide initiators used in cure study. 

Product Name Description 

Active 

Oxygen 

Content 

(%) 

Manufacturer 

Butanox M-60 General purpose MEKP, 36% 
solution in phlegmatiser.  

9.8 – 10 Akzo Nobel 

MEKP-SR Slow reactivity MEKP n/a Laporte Organics 

CHP 90 Cumyl hydroperoxide, 90% solution n/a Huntsman Chemical 
Company (Aust) 

Trigonox 239 Cumyl hydroperoxide, 45% solution 
in solvent mixture, with promoter 

4.6 Akzo Nobel 

 

The two cumyl hydroperoxide (CHP) grades were chosen as ambient temperature cure 

options which would not induce fizzing in the resin. MEKP solutions contain a 

percentage of hydrogen peroxide (H2O2) which react with the cobalt accelerator to 

produce oxygen. This forms bubbles within the resin solution (fizzing) which can 

remain within the cured matrix as voids. The hydrogen peroxide in MEKP solutions is a 

by product of their production and cannot be entirely eliminated. CHP does not 

contain H2O2 and hence do not produce fizzing. A drawback of CHP systems is that 
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they are typically much slower reacting than MEKP systems. Trigonox 239 contains a 

promoter to increase the reactivity of the system. 

 Cenospheres 

Cenospheres are available in a number of grades classed by particle size with the more 

finely graded particles typically having a higher cost. The cenosphere filler used in this 

study was E-spheres supplied by Envirospheres Pty Ltd. Based on the recommendation 

made in Chapter 2, only the more cost-effective general purpose E-spheres SLG grade 

which has a graded particle distribution (20 – 300µm) was used in the study.  

 

Table 3.2 lists the materials used in this study. All materials utilised in subsequent 

investigations as part of this PhD project were made from this selection. 

Table 3.2 Selected materials used in the investigations of this PhD study.  

Product Number Product Name Description 

1 Hetron 922 PAW Standard grade vinyl ester resin 

2 Hetron 914 Low styrene content vinyl ester resin 

3 Accelerator NL-51P Cobalt octoate medium-reactivity accelerator 

4 Butanox M-60 General purpose medium-reactivity MEKP 

5 MEKP-SR Slow reactivity MEKP 

6 CHP 90 Cumyl hydroperoxide, 90% solution 

7 Trigonox 239 Cumyl hydroperoxide, 45% solution in 
solvent mixture, with promoter 

8 E-Spheres SLG 20 - 300µm cenosphere filler  

9 Styrene Styrene monomer 
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3.2.2. EXPERIMENTAL TECHNIQUES 

A number of techniques are available to examine the cure characteristics of 

thermosetting polymers. These techniques fall into two basic classes which either 

monitor changes in the chemical structure of a sample or which monitor energy changes 

in the sample.  

Monitoring of molecular changes in vinyl esters typically relies on detection and 

monitoring of the number of unsaturation sites in both the VE oligomer and the 

reactive monomer.  As the cure reaction progresses the number of these sites within the 

sample decreases as they are consumed in crosslink formations.  

Spectroscopy analysis techniques investigate material structure on a molecular level. 

Fourier transform infrared spectroscopy (FTIR) monitors the functional groups of a 

material. Cure can be analysed by comparing the spectra of materials and monitoring 

changes in the signal peaks corresponding to the functional groups.  Nuclear magnetic 

resonance spectroscopy (NMR) examines the actual molecular structure of a material. A 

material is characterised by a spectrum and the molecular structure inferred from the 

relevant signals of the spectrum. 

The other means of characterising cure behaviour is through the monitoring of heat 

flows in a sample. The vinyl ester cure reaction is exothermic and thus its progress can 

be followed by measuring the generation of this heat. The two most widely used 

techniques for this type of measurement are differential thermal analysis (DTA) and 

differential scanning calorimetry (DSC). DSC is normally preferred due to its ability to 

quantify heat flows.  

 

3.2.2.1. Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is a thermal analysis technique which evaluates 

the heat capacity characteristics of a material under specific thermal conditions. In DSC 

a test specimen and a reference specimen are simultaneously subjected to a controlled 

temperature programme within a high precision furnace (Figure 3.2). The temperatures 

of both the test and reference specimens are measured by thermocouples located 

underneath the base of each specimen holder. Differences in the temperature of the 
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reference and sample are used to determine endothermic and exothermic thermal events 

in the sample material. 

 

Figure 3.2 Test and reference specimens located on the thermocouple bases within the 

DSC furnace (lid removed). 

 

Generally two types of test methods are utilised: temperature-scanning measurement 

where the temperature is ramped according to a specified cycle or isothermal 

measurement where the temperature is maintained at a specified value. All experiments 

in this current study were performed as temperature-scanning measurements to provide 

for detection of phase transition temperatures in addition to basic cure kinetics.  

Through the specified temperature cycle, the changes in heat flow of a sample that occur 

due to the exothermic crosslinking reaction are measured. This enables the progression 

of the cure reaction to be analysed and phase transitions of a cured network determined.  
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 Experimental Conditions 

All DSC measurements in this current study were performed using a TA Instruments 

Q100 DSC with refrigerated cooler (-90°C to 550°C temperature range) calibrated with 

an indium standard. Specimens were run in hermetically sealed aluminium pans. 

Specimens were prepared by initiating a larger resin batch (100g) with the designated 

peroxide curative at ambient temperature (20°C). A small portion of the mixed resin 

(10mg) was then removed from the larger batch and sealed in the hermetic sample pan 

under air. Larger resin quantities were originally initiated to ensure the initiator and 

resin blend of the DSC specimen was homogenous.  

DSC runs were then conducted on each specimen using a heat / cool / heat cycle 

running from -20°C to 250°C with a heating and cooling ramp rate of 10°C/min.  

 

 Evaluation Parameters 

The heat flow versus temperature data was recorded for each heating or cooling run. 

The DSC results of the first run on each sample were baseline corrected at a heat flow of 

0 W/g at 25°C. The results of the second heating run were used to examine the 

transition behaviour. The transition curves on the plots were offset to allow a clearer 

interpretation of the transition behaviour. The following indicators from the DSC 

results were used to analyse the cure behaviour of the samples using the Universal 

Analysis software provided with the instrument. First and second run DSC curves with 

analysis indicators are shown in Figure 3.3 and Figure 3.4 respectively. The DSC results 

of Hetron 922 PAW initiated using 2.0% Butanox M-60 are used. 

The onset temperature of the cure reaction provides an indication of the speed of 

formation of the network. A lower onset temperature indicates a more rapid network 

formation. The extrapolated onset temperature was used as it relates to the onset of the 

main cure reaction. The extrapolated onset temperature is defined as the intersection 

between the tangent to the maximum slope of the peak and the extrapolated baseline 

(Figure 3.3).  
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The heat of reaction is a measure of the release of heat due to the polymerisation cure 

reaction. The heat of reaction was determined by integrating the DSC curve over the 

temperature range of 25°C to 175°C (Figure 3.3). 
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Figure 3.3 Interpreting first run DSC heat flow versus temperature curves to analyse cure 

behaviour.  

 

The peak heat flow is indicative of the rates of cure of specimens with a higher peak heat 

flow associated with a faster rate of cure. The temperature corresponding to the peak 

heat flow is also indicative of the speed of the cure reaction (Figure 3.3).  

The glass transition temperature is an important property of a polymer network that 

indicates its transition from a rigid glassy state to a flexible rubbery state. Although often 

described by a single temperature, the glass transition actually occurs over a temperature 

range (Figure 3.4) which can introduce some ambiguity with regard to the selection of 

the glass transition temperature. The glass transition temperature and transition 

behaviour is examined further in Chapter 6. For this investigation, the onset 

temperature and the point of inflection of the transition were interpreted from the 

second run DSC curves as the glass transition temperature. The onset temperature is 

indicative of the start of the transition and defined as the intersection between the 
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tangent to the curve at the selected lower limit and the tangent through the point of 

inflection of the transition (Figure 3.4). The point of inflection describes the midpoint 

of the glass transition. 
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Figure 3.4 Interpreting second run DSC heat flow versus temperature curves to analyse 

the transition behaviour. 

 

3.2.2.2. Cure Assessment of Cenosphere Composites  

With such small sample sizes used for the DSC specimens, the accuracy of analysing 

filled samples using this technique was questioned with regard to the relatively small 

specimens being an accurate representation of the cenosphere composite material under 

investigation. Therefore a relatively simple method was devised to monitor the cure 

behaviour of vinyl ester / cenosphere composite systems.  

Thermocouples were used to monitor the changes in temperature of neat resin and filled 

samples due to the exotherm of the cure reaction. By comparing the data of the two 

samples the relative influences due to the addition of the filler may be extricated. Resin 

samples (100g) were initiated with the designated peroxide curative at ambient 

temperature and a thermocouple secured in the sample. To isolate the influence of the 

filler in the cenosphere composite samples, the 100g of resin was maintained and the 
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volume of filler added as determined by the adopted filler volume fraction. For the filled 

samples, the filler was combined with the resin prior to the addition of the initiator.  

The changes in temperature of each specimen due to exotherm were recorded over time. 

The temperature was recorded at one minute intervals using T-type thermocouples and 

a Datataker 50 acquisition system.  

The initial stages and onset of the cure were examined by determining a latency period 

that corresponded to an increase in temperature of 5°C. The magnitude of the peak 

temperature and the time to this temperature were established to study the main cure 

reaction.  

 

3.3. RESULTS AND DISCUSSION 

This section presents the experimental results of this investigation of cure behaviour. 

The cure behaviour of unfilled vinyl ester resins is considered first followed by the cure 

behaviour of filled vinyl ester resins. Where appropriate the discussion also draws on 

previous research material for the purpose of comparison. 

 

3.3.1. CURE BEHAVIOUR OF UNFILLED VINYL ESTER RESINS 

3.3.1.1. Influence of Initiator Concentration 

The initial part of this investigation sought to evaluate the influence of increasing 

peroxide levels on the cure of the nominated vinyl ester systems. The aim of this work 

was to evaluate whether there were upper and lower bounds on the rate of initiator 

addition to the matrix system and if so what these bounds were. To achieve this aim, 

DSC testing was conducted on the Hetron 922 PAW system using Butanox M-60 as 

the initiator. Initiator concentration levels were varied from 0% to 5% to study the 

influence of the addition rate. Each specimen was subject to two heating ramps to assess 

the thermal kinetics of both a curing and a cured sample. Key data for each sample is 
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summarised in Table 3.3. Full heat flow versus temperature plots for the first and second 

DSC heating runs are given in Appendix A. 

General observation of the obtained data shows that at initiator addition levels above 

1.0% all samples produced similarly shaped heat flow curves, although the curve for 

1.0% initiator lagged behind the others in terms of both onset temperature and peak 

heat flow. At 0.5% initiator, the material still displayed an exothermic peak albeit at a 

noticeably lower level, however the heat flow plot also displays a plateau both before and 

after the peak. At addition levels of 0 and 0.25% initiator DSC curves did not show a 

normal exothermic reaction but instead displayed endothermic heat flows which would 

indicate a reaction other than peroxide initiated crosslinking. 

Table 3.3 Key thermal data from DSC analysis of Hetron 922 PAW vinyl ester with 

varying initiator levels. 

Resin Hetron 922 PAW Initiator: Butanox M-60 

First Heating Run 

Cure Behaviour 

Second Heating Run 

Glass Transition Initiator 

Addition 

Level  

(%) 

Reaction 

Onset 

Temp. 

(°C) 

Total Heat 

of 

Reaction 

(J/g) 

Peak Heat 

Flow 

(W/g) 

Temp at 

Peak Heat 

Flow 

(°C) 

Onset 

(°C) 

Point of 

Inflection 

(°C) 

0.0 145 -165 -0.61 160 82 84 

0.25 144 -86 -0.27 165 92 97 

0.5 102 291 1.09 120 95 101 

1.0 79 316 1.34 104 89 94 

1.5 75 364 1.52 101 94 99 

2.0 74 352 1.53 102 96 100 

2.5 73 360 1.58 102 91 95 

3.0 74 377 1.63 102 87 92 

4.0 75 369 1.57 103 84 89 

5.0 71 378 1.52 104 82 86 
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The variation of the reaction onset temperature with initiator concentration is shown in 

Figure 3.5. It can be seen that at addition levels of 1.0% and above the temperature 

appears stable at approximately 75°C, independent of the initiator concentration.  

For the 0 and 0.25% initiator levels, the onset temperature for the endothermic reaction 

was considerably higher at just over 140°C, supporting the theory that the reaction was 

enabled by the elevated temperatures and not peroxide decomposition.  With the sample 

using 0.5% initiator addition, the plateau on the high temperature side of the heat flow 

plot also began at ≈140°C. Given the discontinuity in material behaviour in this range it 

would seem reasonable to conclude that the reaction seen with the 0 and 0.25% 

addition samples also occurs in the 0.5% sample, suggesting that the 0.5% addition rate 

is insufficient to effect full cure by standard means. 

An examination of the variation in total heat of reaction (Figure 3.6), peak heat flow 

(Figure 3.7) and the peak heat flow temperature against increasing initiator addition 

rates further supports these findings. At addition rates of 1.5% and above, the heats of 

reaction and peak heat flows were relatively consistent at approximately 365 J/g and 

1.56 W/g, indicating a stable cure behaviour that is independent of the initiator 

addition rate.  

Similarly, the temperatures at which the peak heat flow occurred were all between 

101°C and 104°C. While the peak heat flow temperatures do increase with the 

increasing addition rate, the magnitude of this increase is under 4% and it is difficult to 

ascertain whether this change is indicative of alterations in the cure mechanics without 

further testing. 

Nevertheless, this data would appear to indicate that a stable reaction which is 

independent of the initiator addition rate can be achieved at addition levels above 1.5%. 

The alternative reaction occurring in the 0% and 0.25% initiator addition samples is 

clearly demonstrated by the heat flow characteristics of the DSC samples. The total heat 

of reaction for each sample is negative indicating a net endothermic event taking place. 

Peak heat flows are similarly negative. The temperature at which the peak flow occurs is 

also distinctly different, occurring at around 160°C. While it is not possible to ascertain 

the nature of this reaction with DSC, it is clearly different than the reactions occurring 

at higher addition rates. 



  - 66 - 

While the sample with the 0.5% addition rate highlights the occurrence of an 

exothermic reaction, the shoulder on either side of the peak indicates a significance 

difference in the cure cycle from that seen with addition levels over 1.5%. The exact 

reason for the shoulders is not known but it is thought that the initial shoulder may 

indicate the generation of an insufficient number of free-radicals at ambient 

temperature. After initial gelation, the molecular mobility is retarded and the reaction 

cannot progress without the increase in mobility granted by additional heat energy into 

the system. Verification of this theory would require the use of alternative techniques 

such as FTIR, however the data is sufficient to conclude that the addition of 0.5% 

initiator is insufficient to support a normal reaction. 

The 1.0% initiator addition level appears to be around the minimum acceptable 

addition level to support normal curing of the matrix through peroxide decomposition. 

While the heat flow curve has the same characteristic shape as higher addition levels, the 

total heat of reaction and peak heat flow are both noticeably lower indicating differences 

in the reaction which is occurring. The lower heat of reaction may indicate that the 

radical distribution created by the peroxide decomposition is insufficient to progress 

cure to an optimal level before network formation restricts further molecular movement. 

Again this would need to be investigated by alternative techniques.  

Observation of the glass transition temperatures obtained with the various initiator 

addition levels (Figure 3.8) also tends to support the proposition of a lower initiator 

addition level of between 1.0% and 1.5%. It can be seen that the Tg obtained with 1.0% 

initiator is noticeably lower than for 1.5 or 2.0%.This would support the suggestion that 

the molecular movement restrictions created by the evolving polymer network limit the 

ability of the reaction to progress further. While the same restrictions would occur with 

the higher addition levels, the increased distribution density of available free radicals 

would reduce the need for molecular mobility and would thus allow the reaction to 

progress further than with a lower distribution. 

The drop off in Tg seen at the higher addition levels is thought to be due to the 

increasing amount of non-reactive material introduced into the system at higher initiator 

addition rates. The dimethyl phthalate used as a carrier/damper medium in the 

Butanox M-60 would remain within the cured network and act as a plasticiser.  
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Figure 3.5 Relationship of the reaction onset temperature of Hetron 922 PAW vinyl ester 

with varying initiator concentration. 
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Figure 3.6 Relationship of the total heat of reaction of Hetron 922 PAW vinyl ester with 

varying initiator concentration. 
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Figure 3.7 Relationship of the peak heat flow of Hetron 922 PAW vinyl ester with 

varying initiator concentration. 
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Figure 3.8 Relationship of the glass transition temperature of Hetron 922 PAW vinyl 

ester with varying initiator concentration.   
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Using the earlier discussion, it could then be concluded that while higher initiator levels 

do not retard the cure reaction there is ultimately not a lot to be gained through their 

use. The heat flow curves for addition rates above 1.5% are very similar except for their 

initial shoulder (Figure 3.9). Cook et al. [2] attributed the presence of the initial 

shoulder to small traces of H2O2 that react more readily with the cobalt to form radicals 

than the MEKP potentially causing early initiation of the resin. As the initiator 

concentration was increased the size of the shoulder increased indicating more of the 

reaction occurs at this early stage. This suggests that higher initiator concentrations may 

be utilised to increase the initial rate of cure and gelation of the resin to suit specific 

processing requirements. However initiator addition levels in the range of those studied 

do not appear to change the ultimate characteristics of the matrix cure. 
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Figure 3.9 Initial section of DSC curves of Hetron 922 PAW vinyl ester with varying 

initiator concentration. 

 

Overall, maintaining a minimum initiator level of 1.5% appears to produce stable cure 

behaviour with generally consistent cure characteristics. No significant changes in cure 

behaviour were achieved as the concentration was increased, indicating that if the 
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distribution density of generated radicals is sufficient, the cure behaviour is largely 

independent of the initiator concentration. Higher initiator concentrations may be used 

to accelerate initial cure of the matrix, however this does begin to have a detrimental 

effect on the Tg above about 2.5% in the tested material. It is thought that similar effects 

would be observed for other vinyl esters due to the increase in non-reactive material 

within the system which will remain as a contaminant in the final cured matrix. 

   

3.3.1.2. Influence of Peroxide Initiator Type 

Having examined the variation in cure behaviour caused by alteration of the initiator 

addition level, testing was then conducted to investigate how the cure characteristics of 

the matrix system changed when alternative peroxides were used. For the purposes of 

this current study, DSC testing was conducted on the Hetron 922 PAW system using 

the four different peroxide initiators listed in Table 3.1. All samples used an initiator 

addition level of 2%, which is within the range identified, to isolate the influences of the 

different peroxides. Each specimen was subjected to two heating ramps to assess the 

thermal kinetics of both a curing and a cured sample. Full heat flow versus temperature 

plots for the first and second DSC heating runs are given in Appendix A. Key data from 

each sample is summarised in Table 3.4. The heat of reaction for the CHP initiated 

samples was determined over the range of 25°C to 225°C to encompass the plateau 

exhibited after the main exotherm peak. 
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Table 3.4 Key thermal data from DSC analysis of Hetron 922 PAW vinyl ester with 

different peroxide initiator types. 

Resin Hetron 922 PAW Initiator Addition Rate: 2% 

First Heating Run 

Cure Behaviour 

Second Heating Run 

Glass Transition 

Initiator  Reaction 

Onset 

Temp. 

(°C) 

Total Heat 

of 

Reaction 

(J/g) 

Peak Heat 

Flow 

(W/g) 

Temp at 

Peak Heat 

Flow 

(°C) 

Onset 

(°C) 

Point of 

Inflection 

(°C) 

Butanox 
M-60 

74 352 1.53 102 96 100 

MEKP-SR 71 336 1.52 98 110 115 

Trigonox 
239 

95 385 2.03 114 100 104 

CHP 90 101 365 1.42 119 99 104 

 

Both the MEKP based initiators produced similar shaped heat flow curves as did both of 

the samples cured with CHP based initiators. However the curves between the two 

different peroxide types were quite different with the CHP initiators exhibiting a plateau 

after the main exotherm peak.  

The plateau on the high temperature side of these samples began at ≈140°C, 

approximately the same temperature of the plateau exhibited by a sample in the previous 

section. The presence of this plateau suggests part of the cure may be due to the elevated 

temperature. In the previous section, the plateau was not evident at higher initiator 

concentrations suggesting a 2% concentration of CHP based initiator solutions may be 

insufficient to effect cure entirely through peroxide decomposition. This indicates a 

different optimum concentration range for these initiator types may be required.  

The lower reaction onset temperatures and temperatures at peak heat flow of the MEKP 

based initiator solutions highlights their comparably higher reactivity when compared to 

the CHP based initiators.  
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The Trigonox 239 sample exhibited a considerably higher peak heat flow attributed to 

an increased reactivity due to the promoter in the initiator solution. Overall the 

promoter appears to have only influenced the heat flow and potentially the total heat of 

reaction of the cure for this sample. The total heat of reaction of the samples initiated 

with CHP initiators appears higher than the MEKP initiators.   

The differences between the extrapolated onset and point of inflection values for the 

glass transition temperature were consistent between each sample. The higher glass 

transition temperature of the MEKP-SR cured sample may be due to the lower 

comparable content of DMP phlegmatiser in the MEKP-SR initiator solution [3] 

compared to Butanox M-60 [4]. An unknown at this time is the relative influence of 

alternative phlegmatiser types or solvents contained in initiator solutions on the Tg, with 

some types potentially having more of an effect on the network properties than others.  

In the previous section, the general stabilisation of first scan DSC results above an 

initiator concentration of 1.5% suggested that for peroxide cure, the behaviour is 

independent of the initiator concentration. The variability in the first scan DSC results 

between each of the initiator solutions and not just the base peroxide suggests that cure 

behaviour is very dependent on the composition of initiator solution utilised to effect 

cure.     

 

3.3.1.3. Influence of Accelerator Level 

The initial two portions of this study examined initiator influences on the curing of a 

vinyl ester system. Having examined such influences in relative isolation, it is desirable 

to extend the findings by assessing the consistency of the outcomes when changes are 

made to the vinyl ester oligomer itself. To investigate potential changes in behaviour, 

Hetron 914 was selected as it provided a lower molecular weight oligomer compared 

with Hetron 922.   

While the Hetron 922 PAW was supplied as a pre-promoted system, Hetron 914 was 

not and it was therefore necessary to accelerate it for curing with the four peroxide 

initiators identified earlier. As discussed earlier, the acceleration of the resin solution is 

another variable which may significantly alter the cure characteristics. Testing was 

therefore undertaken in an effort to quantify such effects. DSC testing was conducted 
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on the Hetron 914 system using the Butanox M-60 initiator at a set addition rate 

of 2%. Resin samples were prepared using the NL-51P cobalt accelerator with addition 

rates ranging from 0% to 0.4%. Each specimen was subject to two heating ramps to 

assess the thermal kinetics of both a curing and a cured sample. Full heat flow versus 

temperature plots for the first and second DSC heating runs are given in Appendix A. 

Key data from each sample is summarised in Table 3.5. 

Table 3.5 Key thermal data from DSC analysis of Hetron 914 vinyl ester with varying 

levels of cobalt accelerator. 

Resin Hetron 914 Initiator Butanox M-60 @ 2% 

First Heating Run 

Cure Behaviour 

Second Heating Run 

Glass Transition Promoter 

Addition 

Level 

(%)  

Reaction 

Onset 

Temp. 

(°C) 

Total Heat 

of 

Reaction 

(J/g) 

Peak Heat 

Flow 

(W/g) 

Temp at 

Peak Heat 

Flow 

(°C) 

Onset 

(°C) 

Point of 

Inflection 

(°C) 

0 99 295 2.41 115 142 151 

0.1 71 302 3.21 82 129 138 

0.2 67 298 3.27 77 124 136 

0.3 67 294 3.03 76 122 133 

0.4 65 297 2.99 75 129 139 

 

All samples accelerated with cobalt exhibited similar shaped heat flow curves. The curve 

for the un-accelerated sample was marginally broader with a lagged onset and lower peak 

heat flow.  

The reaction onset temperatures of specimens with cobalt accelerator appear stable with 

only a very slight reduction as the accelerator level was increased (Figure 3.10). The 

onset temperature of the un-accelerated sample is considerably higher. The role of the 

accelerator is to promote the decomposition of the peroxide initiator at ambient 

temperatures. With no accelerator present in the system, the decomposition of the 

initiator appears due to the elevated temperature.  These results indicate the need for the 



  - 76 - 

presence of an accelerator within the system to facilitate an effective peroxide cure, 

particularly for curing in ambient conditions. 

The total heats of reaction appear stable at ≈300J/g and independent of the accelerator 

level (Figure 3.11). Results from previous sections have indicated that for cure through 

peroxide decomposition, the heat of reaction is independent of the initiator 

concentration but dependent on the initiator solution. With these results and the 

initiator influences a constant, it appears that the total heat of reaction is dependent on 

the characteristics of the resin being cured and not the level of accelerator within the 

resin.  

The cobalt level appears to have a varied effect of the peak heat flow behaviour of the 

resin (Figure 3.12). The peak heat flow of the sample with no cobalt was considerably 

lower but is attributed to potentially different cure reaction mechanisms. The highest 

peak heat flow coincided with a cobalt level of 0.2% with further increases in cobalt 

lowering the heat flow, apparently impeding the rate of the reaction. The temperature at 

the peak heat flow showed a similar trend to that observed for the reaction onset 

temperatures, lowering as the cobalt level was increased. 

Cook et al. [2] and Abadie et al. [5] observed peaks occurring at higher temperatures as 

cobalt concentrations were increased and suggested that the cobalt salt actually retards 

the reaction at higher concentrations. The retardation of the reaction at higher cobalt 

levels may be due to excessive cobalt within the system. However Abadie et al. [5] 

observed the retardation of reaction at 0.7% and 1% levels of NL51P and 

Cook et al. [2] at 0.8% and 3.2% levels of a similar cobalt solution (6% weight of cobalt 

in white oil). This suggests the accelerator levels used in this study may not be of 

sufficient magnitude to clearly show the behaviour.    
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Figure 3.10 Relationship of the reaction onset temperature of Hetron 914 vinyl ester with 

varying cobalt accelerator level. 
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Figure 3.11 Relationship of the total heat of reaction of Hetron 914 vinyl ester with 

varying cobalt accelerator level. 
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Figure 3.12 Relationship of the peak heat flow of Hetron 914 vinyl ester with varying 

cobalt accelerator level. 
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Both the extrapolated onset and point of inflection methods of interpretation of the 

glass transition temperature show a consistent difference between the values at each of 

the cobalt levels (Figure 3.13). The glass transition temperatures lowered as the cobalt 

content was increased however the Tg of the 0.4% cobalt level sample was marginally 

higher. The reason for this is unknown at this time.  

The accelerator is actually cobalt in a solution so a higher level of addition leads to a 

higher content of diluent within the system. At higher initiator concentrations it was 

observed that a higher content of this non-reactive material degraded the properties of 

the network. Therefore it is reasonable to conclude that a similar behaviour may occur 

with regard to increasing the accelerator addition level. This is supported by the 

considerably higher Tg values observed for the un-accelerated sample with no cobalt in 

the system. 

Overall the results indicate the presence of an accelerator is necessary for peroxide 

decomposition to cure vinyl ester resins at ambient temperatures. Over the range of 

levels examined in this study, the predominant influence of the cobalt addition level 

appeared to be the rate of the cure reaction with a 0.2% cobalt level producing the 

highest peak heat flow. The results suggested that higher concentrations of cobalt 

accelerator solution may actually retard the reaction and lower the network properties 

however further investigations are required to examine these behaviours.   

 

 

 

 

 

 

 

 

 



  - 81 - 

 

 

 

 

80

90

100

110

120

130

140

150

160

0 0.1 0.2 0.3 0.4 0.5

Cobalt Addition Level (%)

G
la

ss
 T

ra
ns

it
io

n 
T

em
pe

ra
tu

re
 (

°C
)

Extrapolated Onset

Inflection Point

 

Figure 3.13 Relationship of the glass transition temperature of Hetron 914 vinyl ester 

with varying cobalt accelerator level. 
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3.3.1.4. Influence of the Oligomer Molecular Weight 

Applying an accelerator regime of 0.2% cobalt octoate for the Hetron 914 from the 

previous testing, an investigation was then undertaken to examine cure differences 

resulting from a change in the oligomer. Hetron 922 PAW and Hetron 914 were used 

for this work with a primary focus on the molecular weight differences between the two 

oligomers. DSC data was obtained for both Hetron 922 PAW and Hetron 914 using 

each of the four peroxide initiators listed earlier in Table 3.1. An initiator addition level 

of 2% was maintained for all tests. Each sample was subjected to a heat/cool/heat test 

cycle to obtain data for both the resin cure process and the final cured product. Key data 

for the Hetron 922 PAW system was presented earlier in Table 3.4. Full heat flow versus 

temperature plots for the first and second DSC heating runs are given in Appendix A. 

Key data points for Hetron 914 are given in Table 3.6. 

 

Table 3.6 Key thermal data from DSC analysis of Hetron 914 vinyl ester with different 

peroxide initiator types. 

Resin Hetron 914 Initiator Addition Rate: 2% 

First Heating Run 

Cure Behaviour 

Second Heating Run 

Glass Transition 

Initiator  Reaction 

Onset 

Temp. 

(°C) 

Total Heat 

of 

Reaction 

(J/g) 

Peak Heat 

Flow 

(W/g) 

Temp at 

Peak Heat 

Flow 

(°C) 

Onset 

(°C) 

Point of 

Inflection 

(°C) 

Butanox 
M-60 

67 298 3.27 77 124 136 

MEKP-SR 69 303 3.20 79 133 140 

Trigonox 
239 

94 287 4.21 101 144 150 

CHP 90 99 291 4.68 107 137 146 
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The different resin types produced different shaped heat flow curves. The curves of the 

Hetron 914 samples were acute with a relatively narrow base compared to the broader 

based curves of Hetron 922 PAW samples.  

The plateau observed on the high temperature side of the CHP initiated Hetron 922 

PAW samples was not evident when curing Hetron 914. This suggests that the 

Hetron 914 with the 0.2% cobalt may be a more reactive resin system compared to 

Hetron 922 PAW with an initiator concentration of 2% sufficient to effect cure.  

Independent of initiator type, the reaction onset temperatures were lower for the lower 

molecular weight Hetron 914 suggesting a comparably higher reactivity of this resin 

formulation compared to Hetron 922 PAW (Figure 3.14).  

The apparent increased reactivity of the Hetron 914 formulation is possibly attributable 

to its lower oligomer molecular weight compared to Hetron 922 PAW. Resins with 

lower molecular weight have higher numbers of unsaturation points per unit mass than 

resins of higher molecular weight. This higher unsaturation point “density” facilitates 

faster curing in lower molecular weight resins since the radicals do not have to travel as 

far for the crosslinking of molecules to occur. Thus the cure onset time and temperature 

is shortened in these resins. 

The relationship of the effect of different initiator types on the reaction onset 

temperatures for each resin appears relatively consistent indicating the peroxide type has 

a predominant influence on the reaction onset temperature. 

The total heat of reaction for Hetron 914 appears relatively stable at ≈300J/g when 

compared to Hetron 922 PAW (Figure 3.15). From previous sections, the total heat of 

reaction appears dependent on the characteristics of the resin and initiator solution. The 

higher molecular weight and styrene concentration of Hetron 922 PAW led to a higher 

heat of reaction. The lower molecular weight and styrene concentration of Hetron 914 

led to a lower heat of reaction. Similar relationships were observed by Scott et al. [6]. 

This is potentially due to the crosslinking of the oligomer and styrene producing less 

heat compared to the crosslinking of adjacent styrene molecules forming polystyrene 

that may be associated with higher styrene concentrations. Again the relative influences 

of the molecular weight and styrene concentration need to be isolated through further 

investigation. 
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Figure 3.14 Relationship of the reaction onset temperature of vinyl ester resins of different 

molecular weight cured with alternative peroxide initiators.  

 

  

 

 



  - 85 - 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

450

Butanox M-60 MEKP-SR Trigonox 239 CHP 90

Peroxide Initiator Type

T
ot

al
 H

ea
t o

f R
ea

ct
io

n 
(J

/g
)

Hetron 922

Hetron 914

 

Figure 3.15 Relationship of the total heat of reaction of vinyl ester resins of different 

molecular weight cured with alternative peroxide initiators.  
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For each initiator type, the peak heat flows of Hetron 914 are more than double those of 

Hetron 922 PAW (Figure 3.16). The considerably higher peak heat flows are attributed 

to the lower molecular weight of the Hetron 914 oligomer. The shorter chain lengths 

increase the number of unsaturation sites within a given volume. The breaking of the 

double-bonds which are at a higher concentration and closer proximity, leads to a more 

rapid reaction and rapid generation of heat with an associated higher peak heat flow. 

The relationship of the glass transition temperature with initiator type is shown in 

Figure 3.17. The crosslink density of a network is a primary influence on the glass 

transition temperature and can be increased by using oligomers of lower molecular 

weight [7,8,9,10]. For each peroxide type, the glass transition temperature of Hetron 

914 was higher compared to Hetron 922 PAW. This is attributed to the lower 

molecular weight of the Hetron 914 oligomer producing a network of higher crosslink 

density.  

Styrene concentration also influences the crosslink density of networks with higher 

concentrations leading to lower crosslink densities [8,9]. Therefore the 20% styrene 

content of the Hetron 914 compared to 45% of Hetron 922 PAW would contribute to 

the higher crosslink density and resulting higher glass transition temperature. Again 

further testing would be required to isolate the relative influences of the differences in 

molecular weight and styrene concentration. 

Overall the predominant influence of the molecular weight appears to be on the 

network properties with a lower molecular weight and styrene concentration resulting in 

a higher glass transition temperature. For the resins used in this study, the results suggest 

that less energy is required to cure resins of lower molecular weight with the associated 

heat flow considerably higher.  

The use of different initiator types indicates that for a resin and accelerator system of 

appropriate reactivity, the main difference between the types is the delayed cure of the 

CHP based solutions when compared to MEKP based initiators. The onset temperature 

and temperature at peak heat flow appear dominated by the selected initiator type. 
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Figure 3.16 Relationship of the peak heat flow of vinyl ester resins of different molecular 

weight cured with alternative peroxide initiators. 
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Figure 3.17 Relationship of the glass transition temperature of vinyl ester resins of 

different molecular weight cured with alternative peroxide initiators. 
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3.3.1.5. Influence of Styrene Concentration 

The influence of styrene concentration on the cure behaviour was investigated using the 

standard grade Hetron 922 PAW. Samples were prepared by adding extra styrene 

monomer to the resin which is supplied with a styrene content of 45%. Styrene 

additions ranged up to 15% of the initial resin weight with the styrene concentration of 

the samples ranging from 45% to 60%. All samples were cured using the Butanox M-60 

initiator at an addition level of 2%. Each DSC test included two heating runs to 

examine both curing and cured behaviour of the matrix. Full heat flow versus 

temperature plots for the first and second DSC heating runs are given in Appendix A. 

Key data for each sample is summarised in Table 3.7. 

Table 3.7 Key thermal data from DSC analysis of Hetron 922 PAW vinyl ester with 

varying styrene levels. 

Resin Hetron 922 PAW Initiator Butanox M-60 @ 2% 

First Heating Run 

Cure Behaviour 

Second Heating Run 

Glass Transition Styrene 

Addition 

Level 

(%)  

Reaction 

Onset 

Temp. 

(°C) 

Total Heat 

of 

Reaction 

(J/g) 

Peak Heat 

Flow 

(W/g) 

Temp at 

Peak Heat 

Flow 

(°C) 

Onset 

(°C) 

Point of 

Inflection 

(°C) 

0 74 352 1.53 102 96 100 

2 75 374 1.54 101 90 95 

5 75 379 1.49 103 90 95 

10 76 376 1.48 103 94 98 

15 77 398 1.47 106 88 93 

 

Each level of the styrene addition produced a similarly shaped heat flow curve. The type 

of initiator solution used to effect cure has been shown in previous sections to be a 

dominant influence on both the onset temperature and the temperature at peak heat 

flow. Over the range of addition levels investigated, the incorporation of additional 

styrene into the system showed minimal influence on both these temperatures.  
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The properties of both the resin and initiator solution have been shown to significantly 

influence the total heat of reaction. The total heat of reaction of the samples appears to 

increase as the styrene concentration was increased (Figure 3.18) which is consistent 

with results reported by Scott et al. [6].  

The increased concentration of styrene unsaturation points may promote the 

crosslinking of styrene molecules forming polystyrene. The associated higher total heat 

of reaction may suggest more heat is generated from this reaction compared to the 

crosslinking of the oligomer and styrene, thus increasing the heat of reaction. This 

behaviour was suggested earlier with regard to the lower styrene content of Hetron 914 

influencing the cure reaction. 

The influence of the increased styrene concentration on the peak heat flow appears 

minimal.  

Both the extrapolated onset and point of inflection methods of interpretation of the 

glass transition temperature show a consistent difference between the two values for each 

sample (Figure 3.19). Generally the glass transition temperature appears to lower as the 

styrene concentration is increased. However the Tg of the sample with 10% styrene 

addition does not match this trend.  

An increased styrene concentration appears to lower the glass transition temperature 

which is consistent with the results of Li et al. [8] and Shan et al. [9] who reported that 

the addition of styrene to lower the Tg of systems with lower molecular weight oligomers 

but to have only minor effects on the Tg of high molecular weight systems.  

Overall the predominant influence of the additional styrene appears to be on the density 

of unsaturation sites available for crosslinking during cure and the crosslink density of 

the final cured network. For the range of levels investigated, the increasing styrene 

concentration appeared to have only minimal influence on the cure behaviour. 
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Figure 3.18 Relationship of the total heat of reaction of Hetron 922 PAW vinyl ester with 

additional styrene. 
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Figure 3.19 Relationship of the glass transition temperature of Hetron 922 PAW vinyl 

ester with additional styrene. 
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3.3.2. CURE BEHAVIOUR OF FILLED VINYL ESTER RESINS  

The previous section has outlined findings regarding the behaviour of unfilled vinyl ester 

matrix systems. In the context of this current study of vinyl ester / cenosphere 

composites it is necessary to establish how the identified trends are altered by the 

addition of the cenosphere fillers to the curing matrix. Due to the addition of filler to 

the matrix, continued cure investigation using DSC was not regarded as an optimal 

approach. This is because of the very small sample size used in DSC and the 

consequential risk of non-representative sampling of the filled resins. Therefore the cure 

behaviour of the vinyl ester / cenosphere composites was characterised using the 

temperature monitoring procedure outlined in Section 3.2.2.2. 

For this foundational study, a filler volume fraction of 40% was selected to investigate 

the cure behaviour of vinyl ester / cenosphere composites. The temperature monitoring 

experiments were completed on both neat resin and filled samples so the relative 

influences due to the addition of filler may be extricated. The assessment of cure 

behaviour in the vinyl ester / cenosphere composites was constrained to the following 

effects: 

 Influence of peroxide initiator type. 

 Influence of accelerator level. 

 Influence of oligomer type. 

Once an initial understanding of the cure behaviour is developed, it would be useful to 

investigate the influence of gradually increasing filler volume fractions for each of the 

effects above. 

 

3.3.2.1. Influence of Peroxide Initiator Type  

Following on from the neat resin investigations, temperature monitoring was conducted 

for the cenosphere composites with different initiator types. Testing was conducted 

using Hetron 922 PAW resin with each of the four initiators outlined previously in 

Table 3.1. An initiator addition rate of 2% was used for all samples. Testing was 

conducted with both neat resin and 60% vinyl ester / 40% cenosphere composite blends 
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(by volume). A temperature versus time plot for the neat resin and composite samples 

are shown in Appendix A. Key data of each sample is summarised in Table 3.8. 

Table 3.8 Key thermal data from thermocouple monitoring of Hetron 922 PAW vinyl 

ester neat resin and with 40% filler using different peroxide initiator types. 

Resin Hetron 
922 PAW 

Initiator Addition Level 2% Filler Type E-Spheres SLG 

Unfilled Resin Resin with 40% Filler 

Initiator Latency 

Period 

(h:min) 

Peak 

Temp. 

(°C) 

Time to 

Peak 

Temp 

(h:min) 

Latency 

Period 

(h:min) 

Peak 

Temp. 

(°C) 

Time to 

Peak 

Temp 

(h:min) 

Butanox 
M-60 

0:11 162 0:30 0:11 148 0:34 

MEKP-SR 0:11 167 0:30 0:17 152 0:35 

Trigonox 
239 

1:47 133 4:24 2:40 118 5:16 

CHP 90 1:05 85 6:17 1:11 63 7:26 

 

Generally the shape of the cure relationship for both neat resin and filled samples were 

similar for each initiator type. However a small plateau was observed before the main 

peak of the CHP 90 initiated samples. The relationship of the latency period with 

initiator type for neat resin and filled systems is shown in Figure 3.20. The shorter 

periods for the MEKP initiators compared to CHP solutions shows the higher reactivity 

of the MEKPs with a similar relationship observed using DSC.  

The addition of the filler generally increased the latency period but appeared to have a 

significantly lower influence on the MEKP initiators compared to the CHP solutions 

which may be due to their higher reactivity. The increased latency period is attributed to 

the filler component absorbing exotherm heat which consequently delays the initial 

stages of the reaction. The higher reactivity of the MEKP means that sufficient heat is 

still being developed to limit the influence of the heat absorption. It may also be 

influenced by the filler reducing the proximity of crosslink sites within a volume causing 
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the radicals to travel further which may delay the onset of the reaction. The more rapid 

generation of radicals of the MEKP initiators may lower the effects of this influence. 

Results from the DSC analysis suggest the type of initiator solution was the 

predominant influence on the reaction onset temperatures are supported by the 

behaviours observed in this investigation.     

The comparably higher peak temperatures observed for MEKP initiated samples was 

attributed to the higher reactivity of these initiator types (Figure 3.21). The addition of 

the filler lowered the peak temperature for each initiator type with the reduction in 

temperature quite consistent at ≈16°C. The lowering of the peaks is attributed to the 

filler absorbing a portion of the heat generated by the exothermic reaction.  

The addition of the filler led to increases in the time to the peak temperature for each of 

the samples. Again the addition of filler to MEKP initiated samples showed less of an 

influence on the time which is attributed to their higher reactivity.  

Overall the addition of filler appeared to lower the intensity of the cure reactions 

initiated by each initiator type, delaying the reaction times and lowering temperatures. 

The use of MEKP based initiator solutions appeared to show more resilience to the 

effects of the filler, particularly with regard to reaction times.  
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Figure 3.20 Relationship of the latency period of Hetron 922 PAW vinyl ester neat resin 

and filled systems cured with alternative peroxide initiators. 
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Figure 3.21 Relationship of the peak temperature of Hetron 922 PAW vinyl ester neat 

resin and filled systems cured with alternative peroxide initiators. 
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3.3.2.2. Influence of Accelerator Level 

As with the earlier DSC characterisation, temperature monitoring was conducted on 

composite samples to assess the influence of resin acceleration on cure characteristics. 

This work was conducted using Hetron 914 vinyl ester with the Butanox M-60 

initiator. An initiator addition level of 2% was used for all samples. The resin was 

promoted using the NL-51P cobalt accelerator at addition levels of 0.1, 0.2, 0.3 and 

0.4%. Testing was conducted with both neat resin and 60% vinyl ester / 40% 

cenosphere composite blends. Temperature versus time plots for the neat resin and 

composite samples are shown in Appendix A. Key data of each sample is summarised in 

Table 3.9. 

Table 3.9  Key thermal data from thermocouple monitoring of Hetron 914 vinyl ester 

neat resin and with 40% filler using different levels of cobalt accelerator. 

Resin Hetron 
914 

Initiator  Butanox M-60 @ 2% Filler  E-Spheres SLG 

Unfilled Resin Resin with 40% Filler 
Promoter 

Addition 

Level 

(%) 

Latency 

Period 

(h:min) 

Peak 

Temp. 

(°C) 

Time to 

Peak 

Temp 

(h:min) 

Latency 

Period 

(h:min) 

Peak 

Temp. 

(°C) 

Time to 

Peak 

Temp 

(h:min) 

0.1 0:14 162 0:22 0:22 138 0:32 

0.2 0:12 173 0:19 0:09 149 0:15 

0.3 0:06 178 0:12 0:06 149 0:12 

0.4 0:05 175 0:11 0:06 147 0:12 

The cure relationships of both neat resin and composite samples were very similar for 

each level of cobalt accelerator. As the level of cobalt was increased, the latency periods 

and times to peak temperature lowered, indicating an increased reactivity of the system. 

At low cobalt levels, the addition of filler increased these times and which could be 

attributed to the filler reducing the proximity of crosslink sites thus delaying the onset of 

the reaction. At higher cobalt levels the decomposition of the initiator is more rapid 

leading to a greater density of radicals present potentially reducing the effect of the lower 

mobility.  
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Figure 3.22 Relationship of the peak temperature of Hetron 914 vinyl ester neat resin and 

filled systems cured with varying cobalt accelerator levels. 
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At a concentration of 0.2% and above, the peak temperatures appear consistent for both 

neat resin and filled systems with the subsequent addition of filler lowering the peak 

temperature of all samples by similar amount (Figure 3.22).     

Overall the results suggest minimum cobalt accelerator of 0.2% to produce a stable cure 

behaviour of neat resin and filled samples. Using a high cobalt level, the filled systems 

appeared to maintain similar cure characteristics as the neat resin matrices.   

 

3.3.2.3. Influence of the Oligomer Molecular Weight 

Temperature monitoring was also conducted to assess changes in cure characteristics in 

the cenosphere composites as a result of changes to the vinyl ester oligomer. Tests were 

conducted using Hetron 922 PAW and Hetron 914, the Hetron 914 having been 

promoted with 0.2% cobalt. Tests were conducted using each of the four peroxides 

listed in Table 3.1 with an initiator addition rate of 2% used for all tests. Both neat resin 

and 60% vinyl ester / 40% cenosphere composite blends were investigated.  

Key data for the Hetron 922 PAW samples were presented previously in Table 3.8 with 

the plots shown in Appendix A. The time versus temperature plots for Hetron 914 neat 

resin and composite samples are shown Appendix A. Key data points are summarised in 

Table 3.10. 

The shape of the cure curves for both neat resin and filled samples were similar for each 

initiator type. The addition of filler increased the latency periods and times to peak 

temperature for each of the samples however the differences in times between the neat 

resin and filled samples cured with the MEKP initiators are negligible.  

The DSC analysis results suggested the initiator was the dominant influence with regard 

to the onset and peaks of cure behaviour. These trends are also apparent in the 

thermocouple monitoring with similar reaction times exhibited by the Hetron 922 

PAW and Hetron 914 samples. 
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Table 3.10 Key thermal data from thermocouple monitoring of Hetron 914 vinyl ester 

neat resin and with 40% filler using different peroxide initiator types. 

Resin Hetron 
914 

Initiator Addition Level 2% Filler Type E-Spheres SLG 

Unfilled Resin Resin with 40% Filler 

Initiator Latency 

Period 

(h:min) 

Peak 

Temp. 

(°C) 

Time to 

Peak 

Temp 

(h:min) 

Latency 

Period 

(h:min) 

Peak 

Temp. 

(°C) 

Time to 

Peak 

Temp 

(h:min) 

Butanox 
M-60 

0:08 173 0:15 0:09 149 0:15 

MEKP-SR 0:11 176 0:19 0:13 147 0:20 

Trigonox 
239 

4:30 122 5:16 5:06 66 5:39 

CHP 90 7:15 120 8:14 8:15 63 8:57 

 

The relationship of the peak temperature with initiator type of the Hetron 914 neat 

resin and filled system is shown in Figure 3.23. The Hetron 914 samples exhibited 

higher peak temperatures compared to the Hetron 922 PAW. The addition of filler 

lowered the peak temperature of each of the initiated Hetron 922 PAW samples by a 

similar magnitude of ≈16°C. The drop in peak temperature for Hetron 914 was not 

consistent at ≈25°C for the MEKP based initiators and ≈55°C for the CHP type 

initiators. This may be due to a combined effect of the apparent longer reaction times 

and relatively higher peak temperatures of the Hetron 914 resin. 

Overall the lower molecular weight Hetron 914 samples possessed higher peak 

temperatures and similar reaction times to the Hetron 922 PAW. The influences of the 

filler were generally consistent but were more pronounced on the CHP initiated 

samples. 
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Figure 3.23 Relationship of the peak temperature of Hetron 914 vinyl ester neat resin and 

filled systems cured with alternative peroxide initiators. 
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3.4. SUMMARY AND CONCLUSIONS 

This Chapter has investigated the cure behaviour of vinyl ester matrix systems and vinyl 

ester / cenosphere composites examining the relationships between constituent materials 

and the cure kinetics. The findings of this investigation are summarised as follows: 

 Operating limits for the initiator concentration were established with a lower limit 

of 1.5% to produce stable cure behaviour and an upper limit of 2.5% to maintain 

good network properties with the Tg observed to degrade above this level. The 

MEKP based initiator solution Butanox M-60 was used for this investigation. 

 The utilisation of different peroxide initiator types and initiator solutions were 

shown to result in different cure characteristics. MEKP based initiators appear to 

have a higher reactivity compared to CHP based initiators. The results indicate the 

type used significantly influences the start of the cure reaction with CHP initiators 

resulting in a delayed onset. MEKP initiators also appear to provide an initial rapid 

gel of the resin.  

 The requirement of an accelerator to effect cure at ambient temperatures was 

established. The results indicate that the cobalt accelerator level is a predominant 

influence on the rate of cure with a peak rate corresponding to 0.2% cobalt. Higher 

concentrations appear to retard the reaction and degrade the network properties. 

 The styrene concentration and oligomer molecular weight of the resin were found to 

predominantly influence the network properties and the reaction energy. Lower 

styrene levels and a lower oligomer weight improved the network properties, 

increasing the Tg. The addition of styrene to a higher molecular weight oligomer 

appeared to have only a minimal effect on the cure behaviour.  

 The addition of filler generally appeared to lower the intensity of the cure reaction, 

extending reaction times and lowering peak temperatures. The use of MEKP based 

initiators appeared less sensitive to the influences of filler with peak temperatures 

lowering but reaction times remaining similar to those of the neat resin matrix.  

This investigation has highlighted the considerable flexibility available to cure vinyl ester 

matrix systems and composites. Cure systems may be tailored to meet specific working 

conditions and processing requirements, a feature which is taken advantage of in the 

following Chapters. 
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CHAPTER 4.         

           

 THE PROCESSING CHARACTERISTICS OF 

VINYL ESTER / CENOSPHERE COMPOSITES 

 

4.1. INTRODUCTION 

An understanding of the cure mechanisms of vinyl ester resin and cenosphere composite 

systems was developed in the previous Chapter, along with an understanding of the 

influences of the constituent options on the cure behaviour. While still in their uncured 

state, the constituent materials must be combined, then handled and placed utilising any 

number of manufacturing techniques to ultimately produce a cured product that meets 

specified dimensions. The physical properties of composite systems that facilitate their 

transformation from a formless substance into a rigid and structured composite can be 

classified as processing characteristics.    

This Chapter presents a review of processing characteristics of composite systems and 

relevant influences on these characteristics. Following the review, an experimental 

investigation aimed at developing an understanding of the relationships between 

constituent materials and key processing characteristics of vinyl ester / cenosphere 

composite systems is presented. 
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4.1.1. REVIEW OF PROCESSING CHARACTERISTICS 

Previous research by the author [1] included the fabrication of a particulate composite 

prototype deck unit. Approximately 180 litres in volume, the unit was cast in a single 

continuous operation using a vinyl ester / cenosphere composite. Before the unit was 

cast, a suitable viscosity of the formulation had to be established to allow the vinyl ester / 

cenosphere composite to flow appropriately and minimise air voids. 

As the unit cured, it shortened and developed a large bow over its length with 

distortions appearing along its sides (see Figure 4.1). These problems were attributed to 

internal forces developed due to large volumetric shrinkage contractions. The shrinkage 

was attributed to the high exotherm temperatures and the considerable volume of 

material within the unit. Li et al. [2] explained that “the combination of rapid reactions, 

large volume contractions, and highly cross-linked products (low mobility) may result in 

residual mechanical stresses which are not yet fully understood” [3,4].  

 

Figure 4.1  Distortions that appeared along the sides of the decking unit that were 

attributed to shrinkage forces. 

 

This relatively simple practical exercise demonstrated the importance of: 

 viscosity, and 

 shrinkage; 
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on the processing of vinyl ester / cenosphere composites. Shrinkage is not an entirely 

negative attribute having processing advantages by promoting the easy removal of 

manufactured parts. However the shrinkage behaviour and its influences must be 

quantified to prevent or minimise the effect of potential problems resulting from 

shrinkage. 

The rationales used to select a resin / cenosphere formulation are often conflicting. High 

filler volume fractions are sought to improve the cost-effectiveness of the composite but 

these high filler levels increase the viscosity (lowering the flow characteristics). Styrene 

can be added to reduce the viscosity to maintain flow characteristics but subsequently 

can increase the shrinkage and affect other properties. Understanding the complexities 

of these relationships is an important consideration.  

This section outlines characteristics that may influence the processing of vinyl ester / 

cenosphere composite materials, focussing on viscosity and shrinkage. Both the viscosity 

and shrinkage behaviour of vinyl ester matrix systems and vinyl ester / cenosphere 

composites are influenced by many parameters including the: 

 styrene concentration, 

 oligomer molecular weight, 

 temperature, and: 

 additives, 

 filler characteristics. 

Additives are often incorporated into a resin formulation enabling enhanced properties 

to meet desired requirements of product quality, ease of manufacture and processing and 

mechanical and physical performance [5]. Common additives that can influence these 

characteristics are also discussed.  

 

 Viscosity 

The measure of a fluid’s resistance to flow is viscosity. The shear stress in a solid material 

is proportional to shear strain whereas the shear stress in a viscous fluid is proportional 

to the time rate of strain. When the shear stress is directly proportional to the rate of 

strain, fluids are called Newtonian fluids. Where the shear stress is not directly 
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proportional to the rate of strain, fluids are called non-Newtonian fluids. The unit of 

viscosity is the Pascal.second (Pa.s) however viscosity is often expressed in Poise (P) with 

1Pa.s = 105P. 

Quantifying viscosity is important because it has a significant influence on the 

processing of fibre composite and particulate composite products. A lower viscosity resin 

formulation leads to improved handling and processing characteristics. Particulate 

composite systems require a base resin of low viscosity or additional methods to 

maintain a workable formulation at cost-effective higher filler volume fractions. A higher 

styrene content VE resin will have a lower viscosity, permitting the addition of filler at 

higher volume fractions. For VE resins that are dissolved in a reactive diluent, additional 

quantities of styrene can be added to lower the viscosity, increasing the allowable filler 

volume fraction and maintaining the viscosity at a workable level. Although a cost-

effective method, increasing the styrene concentration can significantly influence other 

resin properties (eg: glass transition temperature) as discussed in Chapter 2. 

Li [6] and Burts [7] reported that for a constant styrene concentration at ambient 

temperatures, VE resins with a higher molecular weight oligomer possess a higher 

viscosity. Thus VE resins with a lower molecular weight oligomer possess a lower 

viscosity. Therefore selecting a resin formulation with a lower molecular weight 

oligomer may permit higher filler volume fractions without requiring additional styrene.  

The viscosity of a VE resin can also be lowered by heating the resin above ambient 

temperature. When using this method to lower viscosity, the filler should also be heated 

so as not to absorb heat from the resin when the materials are combined. As a 

consequence, the desired cure system may require modification to take into 

consideration the elevated temperatures. For example, a heat activated BPO initiator 

may be appropriate. However heating constituents to lower the viscosity requires heating 

equipment and potentially other adjustments to processing procedures. 

There are a range of additives commercially available (eg: by BYK Chemie) which are 

designed to improve the wetting and dispersing speed of fillers and lower the viscosity 

enabling higher loadings of filler [8]. Many of these additives have been developed for 

use with polyester resins, moulding compounds and putties and can accommodate a 

number of common filler types. However some additives are limited to use with certain 

resins and can increase the gel time of UP resins promoted with cobalt accelerators. 



 

  - 109 - 

Thixotropy is the property of a material which enables it to stiffen or thicken on a 

relatively short time on standing but upon agitation or manipulation to change to a low 

viscosity fluid [9]. These fluids have a high static shear strength and low dynamic shear 

strength. When fabricating fibre composites, a resin may have a tendency to drain from 

a laminate reducing the quality of the overall product. Additives known as thixotropes 

can be used to modify the thixotropy of a resin which limits this tendency to drain. 

When fabricating particulate composites, the matrix resin phase and filler phase can 

separate before the gelation of the resin locks the filler in place. This is particularly 

noticeable when low density fillers are used. A heterogeneous material can result with 

resin rich and resin poor surfaces leading to uneven mechanical properties within the 

cross-section. The use of thixotropes in the resin can reduce the tendency to separate. At 

low levels of addition (2%), thixotropes maintain a low resin viscosity at high shear rates 

and increase the resin viscosity at low shear rates [10]. Therefore, processing operations 

such as mixing and casting are not adversely affected by its presence. Many commercial 

grades of resin are supplied with thixotropes present in the formulation. 

The selection of a rapid cure system will also assist in preventing the separation of the 

resin and filler components. By rapidly hardening the resin matrix, the filler remains 

suspended throughout the network and maintains the homogeneity of the composite. 

However the cure system must still allow sufficient time for processing activities to be 

completed. 

The inclusion of filler in a vinyl ester matrix system will increase the viscosity. For a 

given volume, a higher volume fraction of filler will lead to an increase in viscosity. The 

viscosity will also be influenced by the characteristics of the nominated filler including 

the type of filler, particle size, particle size distribution and particle surface 

treatment [11]. 

 

 Shrinkage 

The shrinkage of a vinyl ester resin occurs as a consequence of two effects:  

 the polymerisation cure reaction, and 

 cooling after exotherm or post-cure.  



 

  - 110 - 

In free radically cured networks, cure shrinkage results from the conversion of double-

bonds to single-bonds [7]. Shrinkage can lead to problems such cracking, warping, 

porosity and poor dimensional accuracy in a completed part.  

Li [6] and co-authors [2] and Burts [7] reported that using a lower molecular weight 

oligomer and increasing the styrene content leads to increased volumetric shrinkage 

upon cure. This was attributed to the shorter chains of the lower molecular weight 

oligomer shrinking more when cured. By increasing the styrene content, the shrinkage 

increased due to a reduction in density in going from monomeric styrene to polystyrene 

during cure [7].  

Burts [7] also examined the influence of cure conditions, investigating the effects of cure 

temperatures, post-cure and the degree of conversion of double-bonds to single-bonds 

on the shrinkage. Cure shrinkage is influenced by vinyl group conversion with the more 

groups that are converted, the more shrinkage will occur [7]. Lower shrinkage was 

observed when samples were cured at ambient temperatures followed by an elevated 

post-cure rather than a single complete cure at elevated temperatures. The higher 

shrinkage was attributed to the greater mobility of molecular chains at the elevated 

temperatures and a greater degree of conversion [7]. The degree of conversion was low 

after the ambient cure stage and increased after post-cure but not to the degree of the 

single elevated temperature cured sample.  

Low-profile additives (LPAs), generally a type of thermoplastic, have been shown to 

compensate or eliminate the polymerisation shrinkage of UP resins. However, LPAs 

have been shown to be less effective with VE resins particularly when curing at low 

temperatures [12]. Often called low-shrinkage additives (LSAs) when used with VE 

resins, Cao and Lee [12] found volumetric shrinkage decreases with increasing LSA 

concentrations. 

The inclusion of cenospheres with a VE resin will lower shrinkage by two means. First, 

by replacing resin with filler, the resin volume is lowered leading to reduced 

polymerisation shrinkage and reduced cooling shrinkage due to lower exotherm 

temperatures. Second, the spherical shape of the cenospheres effectively resists shrinkage 

forces pushing the particles together [13].  
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4.1.2. MATERIAL COMBINATIONS FOR INVESTIGATION 

Standard grade Hetron 922 PAW was selected as the base resin for both viscosity and 

shrinkage investigations, and combined with quantities of E-Spheres SLG cenosphere 

filler and styrene monomer to examine the respective influences of filler volume fraction 

and styrene concentration on the viscosity and shrinkage behaviour. 

Hetron 922 is significantly higher in molecular weight when compared to Hetron 914 

and also has a greater styrene concentration of 45% compared to 20% [14]. The 

Hetron 914 was used to primarily examine the influence of molecular weight differences 

on the shrinkage behaviour.  

All samples were initiated at a 2.5% concentration of Butanox M-60. The cure 

investigations of Chapter 3 found this initiator type and concentration provided a 

relatively rapid cure. The Hetron 914 was accelerated with 0.2% cobalt octoate due to 

results from Chapter 3 indicating this accelerator level combined with an MEKP based 

initiator provided a relatively rapid cure. A single initiator type was selected for this 

investigation as the influence of the cure system on the shrinkage behaviour is beyond 

the scope of this research.  

Although no specific examination of thixotropy was conducted, the pre-promoted 

Hetron 922 PAW formulation contains a thixotrope. An indication of its influence, if 

any, may be obtained by comparing results of the non-thixotroped Hetron 914 with the 

Hetron 922 PAW. However due to the selection of a fast cure system its influence may 

not be obvious due to the rapid formation of the network preventing the segregation of 

the resin and filler. 

Only the influence of the E-Spheres SLG on the viscosity was considered with the effects 

of particle size, particle size distribution and particle surface treatment on the viscosity 

behaviour is beyond the scope of this research. With regard to the viscosity behaviour, 

the effect of particle size distribution is nominal at filler volume fractions of less than 

20%, however at high volume fractions the viscosity is significantly reduced by 

increasing the modality of particle size [11]. Using a broad particle size distribution as 

opposed to a single particle size, the filler content can be increased without increasing 

the viscosity of the system [11]. This suggests that the graded particle distribution of E-
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Spheres SLG may permit higher filler volume fractions than other grades with a 

narrower distribution of particle sizes.   

  

4.1.3. CHARACTERISATION PARAMETERS 

The previous review has highlighted a number of processing characteristics and a range 

of influential parameters that affect these characteristics.  

In the practical applications of interest to this investigation, the viscosity must remain at 

a castable level such that the material possesses good flow characteristics, filling moulds 

quickly, enveloping and flowing around and between reinforcement while minimising 

the entrapment of air. As the filler volume fraction is increased, the viscosity will also 

increase but can be lowered through the addition of a styrene monomer to maintain the 

flow characteristics. However, the degree at which the filler volume fraction and styrene 

concentration influences the viscosity is not fully understood. Therefore the influence 

of:  

 styrene concentration, and 

 filler volume fraction, 

on the viscosity and shrinkage of vinyl ester / cenosphere composites will be the main 

focus of this investigation.  

The shrinkage behaviour is dependent on a number of additional factors however this 

shrinkage investigation will be constrained to the following additional parameters: 

 Oligomer molecular weight. 

 Volume of material. 

Shrinkage before and after final cure was investigated because quantifying the initial 

shrinkage after ambient cure and total shrinkage after post-cure can facilitate the 

adoption of appropriate processing techniques and procedures to ensure the quality of 

end products.  
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4.2. EXPERIMENTAL INVESTIGATION 

This section summarises the materials selected for the investigation of processing 

characteristics. Experimental techniques and procedures to examine the influence of the 

parameters presented in Section 4.1.3 on the viscosity and shrinkage behaviour are 

summarised before the results are presented in Section 4.3. 

 

4.2.1. MATERIALS 

The experimental investigation utilised a number of different materials that were 

detailed in Section 3.2.1 and listed in Table 3.2. Their selection was based on 

recommendations made in Section 2.8. The selected materials for use in this part of the 

study are shown in Table 4.1. 

Table 4.1  Materials used for the investigation of the viscosity and shrinkage behaviour. 

Product Number Product Name Description 

1 Hetron 922 PAW Standard grade vinyl ester resin 

2 Hetron 914 Low styrene content vinyl ester resin 

3 Accelerator NL-51P Cobalt octoate medium-reactivity accelerator 

4 Butanox M-60 General purpose medium-reactivity MEKP 

8 E-Spheres SLG 20 - 300µm cenosphere filler  

9 Styrene Styrene monomer 

 

4.2.2. EXPERIMENTAL TECHNIQUES 

There are a number of techniques available to characterise the viscosity and shrinkage 

behaviour of polymers. This section outlines a range of techniques and describes the 

adopted methods for characterising the viscosity and shrinkage behaviour. The rationale 

for adopting the techniques used in this investigation is then presented. 
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 Viscosity 

Typically viscosity can be measured using three types of devices: capillary, orifice, and 

rotational.  

The use of capillary devices to measure the viscosity is limited to substances of low 

viscosity (eg: paint). Capillary devices rely on measuring the time for a known quantity 

of fluid to flow from a higher reservoir to a lower reservoir through a capillary tube. 

Viscosity is then calculated from this measurement of time. The use of this method is 

limited (due to the fragility of the instrument) to very low shear rates and the technique 

is not easily adapted to field use [15].  

Orifice flow devices (viscosity cups) generally consist of a series of specific cups with an 

orifice in their base. The viscosity is determined by measuring the time to the first break 

in the stream of fluid from the orifice which is converted to a viscosity using tables 

specific to each cup. Due to gravity being a contributing factor in this type of test, the 

viscosity is the Stoke viscosity which is defined as the Poise viscosity divided by the 

material density. Viscosity cups are widely used due to their low cost, suitability to field 

use, ease of cleaning and the method is quite accurate [15]. 

Rotational instruments are widely used and can measure over a wide range of viscosities 

at different shear rates. In these methods, a spindle is immersed in the fluid material and 

driven at a constant rotational frequency with the recorded torque resistance of the 

spindle used to determine viscosity. The spindle type and rotational frequency can be 

altered to accommodate measurements over a range of viscosities. Rotational viscometers 

are generally complex instruments, being costly, and may require practice to achieve 

good results. Evaluation of the flow properties of mixtures where the solid content is 

relatively high is best accomplished using rotational type devices with a variable shear 

rate [15]. 

 

 Shrinkage 

Shrinkage can be determined by measuring the volumetric contractions that occur 

during cure, and is typically expressed as a percentage of the original dimensions.    
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The volumetric shrinkage can be calculated using a density method which was used by 

Li [6] to determine the cure shrinkage of VE networks. The shrinkage is calculated by 

comparing the density of cured and uncured samples with the density determined by 

measuring the weight of samples in air and in water. Automatic density analysers are also 

available such as the AccuPyc 1330 Pycnometer [16]. This device uses a gas 

displacement technique to provide high-speed volume and density measurements by 

measuring the amount of displaced gas from a sample chamber into a second chamber.  

Burts [7] used a dilatometer to measure the cure shrinkage of VE networks. In this 

method, a degassed resin sample was sealed in a pouch, placed in the dilatometer 

chamber and encapsulated in oil. The pouch was pressurised in the closed system with 

volumetric changes during cure measured using an LVDT attached to a piston that 

recorded the response of the oil and sample as it cured. An advantage of this method is 

that the volumetric changes are recorded throughout the entire cure reaction.  

Although shrinkage occurs volumetrically, an indication of the shrinkage can be 

obtained using linear shrinkage methods. In these methods, samples are cast in moulds 

of specified dimensions and the shrinkage determined by measuring the change in 

dimensions of the sample compared to its original moulded length. This method is 

relatively quick and simple and, from a processing perspective, provides shrinkage data 

that is directly relevant to a manufacturing and production environment.  

 

4.2.2.1. Viscosity Measurement Using the Brookfield Test Method  

A rotational device was selected to measure the viscosity using the Brookfield Test 

method in accordance with the International Standard ISO 2555:1989 [17]. This 

method provides for the measurement of apparent viscosity of resins in the liquid state, 

as emulsions or dispersions (generally non-Newtonian) using a rotational viscometer. It 

is conventionally known as apparent viscosity because the velocity gradient on the 

spindle for these viscometer types varies and does not provide a true viscosity at a known 

velocity gradient as is the case for non-Newtonian fluids. 

A type “A” Brookfield Viscometer was used for this investigation. The viscometer was 

calibrated using liquid 500 with a viscosity of 4830cP at 25°C. Spindle number 4 and a 

rotational frequency of 20rpm was selected using Table 2 in ISO 2555 [17], providing 
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for measurements up to a maximum viscosity of 10000cP (10 Pa.s). All materials were 

conditioned at 25°C in the temperature-controlled laboratory for 24 hours prior to 

testing.  

For each filler volume fraction, the required quantities of resin and filler were combined 

in cylindrical glass beakers and blended, ensuring the filler was wet-out. As required, 

styrene quantities were then incorporated. The beaker was positioned centrally under 

the viscometer and the activated spindle immersed to the mark on its shaft, ensuring the 

spindle end remained more than 10mm from the bottom of the beaker in accordance 

with the standard. Measurements were recorded after the reading stabilised or after one 

minute had elapsed. This period of fixed rotation was set to take into account the 

thixotropic nature of the Hetron 922 PAW formulation. The spindle was removed and 

cleaned with a solvent after each test. 

The samples were not initiated due to the nature of this experimental technique thus the 

influence of initiator concentration on the viscosity of a composite formulation is not 

included in these results.  

 

4.2.2.2. Shrinkage Measurement Using a Linear Method 

A linear method was selected to assess the shrinkage in accordance with the ASTM 

standard D6289 – 98 [18]. This test method provides for the measurement of shrinkage 

of thermosetting plastics from their moulds both initially and after post-cure. A multiple 

cavity steel mould, shown in Figure 4.2, was fabricated with cavities to the dimensions 

specified for bars of: 

   Length  = 127mm,  

  Width  = 12.7mm, and  

  Depth  = 12.7mm. 

The pre-calculated masses of resin and filler for each volume fraction were combined by 

hand and blended to ensure all of the filler was wet out and distributed evenly 

throughout the mix. The initiator was added and thoroughly mixed. Three specimens 

were cast for filler volume fraction and allowed to cure at room temperature. The 
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specimens were measured along the major axis within 16 to 72 hours of casting to 

determine initial shrinkage. After post-cure at 110°C for a period of 48 hours, the 

samples were measured again to determine post-cure shrinkage. The total shrinkage was 

calculated from this value after comparison with the initial mould dimensions. 

Measurements were made to the nearest 0.01mm using vernier callipers. 

 

Figure 4.2  Multiple cavity mould fabricated in accordance with ASTM D 6289 – 98 for 

the determination of linear shrinkage. 

 

4.2.2.3. Shrinkage Measurement Using a Block Method  

To examine volume effects associated with shrinkage, a relatively simple method was 

developed by measuring the shrinkage of blocks of higher volume compared to the linear 

shrinkage bars. Samples were cast in a steel mould, shown in Figure 4.3, fabricated to 

the dimensions of: 

  Length = 225mm,  

  Width  = 100mm, and 

  Depth = 50mm.  

The individual specimens were subjected to an equivalent cycle of measurement and 

post-cure as specified for the linear shrinkage method. Measurements were made to the 

nearest 0.5mm using vernier callipers. 
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Figure 4.3  Block shrinkage mould used to examine the influences of material volume on 

shrinkage. 

 

4.3. RESULTS AND DISCUSSION 

This section presents the experimental results of the investigation of the viscosity and 

shrinkage behaviour of vinyl ester / cenosphere composites using the techniques 

described in Section 4.2. Where appropriate the discussion also draws on previous 

research material discussed in Section 4.1.1 for the purpose of comparison. 

 

4.3.1. CHARACTERISATION OF VISCOSITY BEHAVIOUR 

4.3.1.1. Influence of Filler Volume Fraction 

An investigation was undertaken to examine the influence of filler volume fraction on 

the viscosity of vinyl ester / cenosphere composite systems. Experiments were performed 

using Hetron 922 PAW with alternative filler volume fractions ranging from 0 to 50% 

in 10% increments. The 50% filler volume fraction represents the practical limit for 

processing identified during previous related research by the author [1,19]. Specimens 

with a 55% filler volume fraction were used in the following shrinkage investigation but 

proved very difficult to cast.  
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ISO 2555:1989 [17] recommends that the choice of spindle and rotational frequency be 

such that no measurement is outside the range of 20% to 95% of full-scale, and for the 

best accuracy, to keep to the range of 45% to 95% of full-scale. However because 

viscosities of non-Newtonian materials are being compared, the standard states it is 

necessary to use the same spindle/rotational frequency combination for all the 

measurements, even if the accuracy of some measurements is markedly decreased.  

The sample with 50% filler was tested first as this combination would possess the 

highest viscosity. However a measurement could not be obtained as the viscosity of the 

material exceeded the upper limit of the selected 4/20 spindle/rotational frequency 

combination. A 6/50 combination was trialled and the viscosity was successfully 

measured. However the use of this spindle/rotational frequency combination to measure 

the viscosity of all material combinations introduced some uncertainty with respect to 

the precision of results.  

Due to the broad range of material combinations being assessed, viscosity measurements 

for the samples with low filler contents using the 6/50 were at the lower end of the 

recommended precision scale. Therefore to improve the overall accuracy of results and 

aid in the establishment of trends, the 4/20 combination was used where possible but 

when its capacity exceeded, the 6/50 combination utilised. For comparison, some 

readings were also recorded using the 4/50 combination. The results are summarised in 

Table 4.2 and shown graphically in Figure 4.4. 

Table 4.2  Viscosity of Hetron 922 PAW vinyl ester / cenosphere composite systems with 

increasing filler volume fraction. 

Resin Hetron 922 PAW Filler E-Spheres SLG 

Viscosity (cP) 

Filler Volume Fraction (%) 

Viscometer / Spindle 

/ Rotational 

frequency 
0 10 20 30 40 50 

A / 4 / 20 380 530 800 1660 4180  

A / 4 / 50 384 532 808 1760   

A / 6 / 50     3060 12800 
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Figure 4.4  Influence of filler volume fraction on the viscosity of Hetron 922 PAW vinyl 

ester / cenosphere composite systems. 
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As expected, an increase in the filler volume fraction led to an increase in the viscosity. 

The measured neat resin viscosity of 380cP is similar to the manufacturer reported value 

of 450cP [20] for Hetron 922. The difference may be attributed to the manufacturer’s 

test using a Brookfield 2/30 combination at 25°C. The addition of 50% filler increased 

the viscosity of neat resin more than thirty times.   

There are only minor differences between viscosity values measured using the 4/20 and 

4/50 combinations. At the lower filler levels the readings were easier to obtain due to the 

measurements stabilising quickly. The readings from the 6/50 combination, used to 

measure the viscosity at the higher filler levels of 40 to 50%, were harder to obtain due 

to the samples containing high concentrations of air bubbles. 

Figure 4.4 shows the resultant non-linear relationship between viscosity and filler 

volume fraction. The graphical presentation highlights the sensitivity of the relationship 

between viscosity and filler volume fraction at higher filler levels. At the higher filler 

levels (greater than 40%), significantly greater increases in viscosity were experienced for 

the 10% incremental increases in filler content. This is attributed to increasing 

interactions between the particles themselves.   

As the filler volume fraction increases the interaction between filler particles will increase 

and have a greater influence on the viscosity of the formulation. The concentration at 

which this particle-to-particle interaction begins depends on the geometry and surface 

activity of the particles [11]. For non-agglomerated randomly dispersed spherical 

particles, Shenoy [11] identified a volume fraction of 40% as corresponding to the point 

when a complete network formation occurs due to particle-to-particle contact. Reported 

data shows a sharp rise in viscosity at the volume fraction beyond which particle-to-

particle contact occurs. The observed large increase in viscosity at a filler volume fraction 

above 40% is consistent with this elucidation of particle interaction. 

From these viscosity experiments, the viscosity at a 50% filler volume fraction appears in 

the order of 12000cP at 25°C. The 50% filler volume fraction was identified as the 

practical limit for processing in previous research [1,19]. This viscosity investigation did 

not consider the influence of initiator concentration and further investigations are 

required to quantify its influence on the viscosity.  
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4.3.1.2. Influence of Styrene Concentration 

An investigation was undertaken to examine the influence of styrene concentration on 

the viscosity behaviour of vinyl ester / cenosphere composite systems. Experiments were 

performed again using Hetron 922 PAW with alternative filler volume fractions (0 to 

50% in 10% increments) and styrene at addition levels of 5%, 10% and 15% by 

volume. However for 5% and 15% additional styrene, the viscosity was determined only 

for neat resin samples and those with 40% and 50% filler. The styrene was 

incrementally combined into the samples with the viscosity determined for each 

combination. The experimental results are summarised in Table 4.3. 

 

Table 4.3  Viscosity of Hetron 922 PAW vinyl ester / cenosphere composite systems with 

increasing styrene concentration. 

Resin Hetron 922 PAW Filler E-Spheres SLG 

Viscosity (cP) 

Filler Volume Fraction (%) 

Styrene 

Addition 

(%) 

Viscometer / 

Spindle / 

Rotational 

Frequency 0 10 20 30 40 50 

0 A / 4 / 20 380 530 800 1660 4180  

 A / 6 / 50     3060 12800 

5 A / 4 / 20 250    2530  

 A / 6 / 50     2040 5100 

10 A / 4 / 20 190 290 400 760 2020 6520 

 A / 6 / 50     1560 4060 

15 A / 4 / 20 140    1130 4710 

 A / 6 / 50     1240 3000 
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The inclusion of additional quantities of styrene monomer lowered the viscosity of neat 

resin and filled samples. Reductions in viscosity of approximately 50% were realised 

after an additional 10% of styrene monomer was incorporated into each composite 

system. At a filler volume fraction of 50%, the viscosity was reduced by almost 70% 

through the addition of only 10% styrene monomer.   

Figure 4.5 shows the relationship of viscosity and filler volume fraction for standard 

vinyl ester / cenosphere composite systems and similar systems with an additional 10% 

styrene monomer. The non-linear relationship between viscosity and filler volume 

fraction is maintained even with the additional styrene. The addition of styrene 

produces a more pronounced reduction in viscosity at the higher filler volume fractions.  

Figure 4.6 illustrates how the viscosity decreases as the addition level of styrene 

monomer is increased. The relationship appears almost linear for neat resin however the 

incorporation of filler appears to introduce a non-linearity into the relationship. Li [6] 

reported that the viscosity of vinyl ester resins decreases with increases in styrene 

concentration. This study encompassed VE resins with a greater range of styrene 

contents from 20% to 60% and ultimately suggested a logarithmic equation to describe 

the relationship between viscosity and styrene content. Results of this investigation 

suggest a linear relationship exists between the styrene concentration and viscosity of 

neat resin systems. However the observed linear relationship may also be related to the 

considerably narrower range of styrene concentrations of 45% to 60% used in this 

investigation. 

As the styrene monomer content was increased, the viscosity measurements for the 

higher filler volume fractions (40 - 50%) were easier to obtain. There was a visible 

decrease in the concentration of air bubbles and the lower viscosity led to a rapid 

stabilisation of the measurements. 
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Figure 4.5  Influence of 10% additional styrene on the viscosity of Hetron 922 PAW 

vinyl ester / cenosphere composite systems. 
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Figure 4.6  Influence of styrene addition level on the viscosity of Hetron 922 PAW vinyl 

ester / cenosphere composite systems. 
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4.3.2. CHARACTERISATION OF SHRINKAGE BEHAVIOUR 

4.3.2.1. Influence of Filler Volume Fraction 

An investigation was undertaken to examine the influence of filler volume fraction on 

the shrinkage behaviour of vinyl ester / cenosphere composite systems. Shrinkage 

experiments were conducted according to ASTM D6289 [18] using Hetron 922 PAW 

with filler volume fractions from 0 to 50% in 10% increments. Samples with filler 

contents of 35%, 45% and 55% were also included to provide more detailed 

information at the higher volume fractions. The 55% volume fraction specimens were 

very viscous and proved difficult to cast with some specimens discarded due to the 

presence of large air voids.  

Table 4.4 shows the initial shrinkage after ambient cure and total shrinkage after post-

cure of Hetron 922 PAW / cenosphere composite systems. These values are the average 

of the measured shrinkages of each specimen. The results are presented graphically in 

Figure 4.7.  

Table 4.4  Linear shrinkage of Hetron 922 PAW vinyl ester / cenosphere composite 

systems with increasing filler volume fraction. 

Resin Hetron 922 PAW Initiator Butanox M-60 Filler E-Spheres SLG 

Linear Shrinkage (%) 

Filler Volume Fraction (%) 

 

Shrinkage 

0 10 20 30 35 40 45 50 55 

Initial 0.53 0.68 0.48 0.48 0.82 0.81 0.71 0.74 0.55 

Total 1.31 1.21 1.01 0.88 0.99 0.93 0.85 0.80 0.65 

 

The total shrinkage consistently exceeded the initial shrinkage due to the elevated 

temperature post-cure progressing the cure and increasing the degree of conversion of 

the networks and it ensures all samples ultimately experience a comparable thermal cycle 

and subsequent thermal shrinkage.   
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Figure 4.7  Variation of the initial and total shrinkage of Hetron 922 PAW vinyl ester / 

cenosphere composite systems with increasing filler volume fraction. 
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 An increasing filler volume fraction had varying effects on the initial cure shrinkage 

behaviour of Hetron 922 PAW. It was expected that as the filler volume fraction was 

increased, the initial shrinkage would decrease due to a combination of two influences of 

the lowering resin content:  

 reduced polymerisation shrinkage, and 

 reduced thermal shrinkage due to lower exotherm temperatures.  

Cure investigations presented in Chapter 3 showed the addition of filler lowered the 

peak temperature of curing composite systems. Contrary to expectation, the initial 

shrinkage behaviour exhibited considerable variability. This is particularly evident for 

samples with filler volume fractions less than 35%, at which a step in both the initial 

and total behaviour was observed. Overall the total shrinkage behaviour generally 

followed the expected trend of decreasing with increasing filler volume fraction.  

Due to the observed variability and step in the results, the shrinkage experiments for 

samples with filler volume fractions of 0, 10, 20, 30 and 40% were repeated. The results 

of these experiments were similar to those of the original tests, supporting the observed 

behaviours.  

The vitrification of the resin matrix is believed to contribute to the variation in the 

initial shrinkage behaviour of Hetron 922 PAW vinyl ester / cenosphere composite 

systems with low filler contents.  

Vitrification relates to the resin transforming from a liquid rubbery state to a rigid glassy 

state during cure. Vitrification occurs when the Tg of the system reaches the cure 

temperature and the reaction stops due to a lack of mobility [7]. Martin et al. [21] stated 

that near vitrification, the cure kinetics are affected by the local viscosity of the resin 

which is influenced by the extent of the reaction and the temperature. The cessation of 

the reaction is not necessarily an indication that the cure is complete but may have 

quenched due to vitrification of the resin matrix.  It follows that if the temperature is 

increased above the Tg the chains regain the mobility to continue the reaction. 

The results show that, in general, after post-cure the total shrinkage behaviour follows 

the expected trend of decreasing with increasing filler volume fraction. This was 

attributed to the elevated temperatures increasing the mobility of the chains, progressing 

the cure and increasing the degree of conversion of the network. The degree of 
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conversion of the network directly influences the cure shrinkage [7]. Therefore the 

shrinkage values also provide an indication of the degree of conversion of the network.  

If it is assumed that all specimens reach an equivalent degree of conversion due to the 

post-cure temperature being above the Tg of Hetron 922 PAW (≈95°C from 

Chapter 3), the initial shrinkage and the links between the initial and total shrinkage 

values (Figure 4.7) provide an indication of the initial degree of conversion of the 

network. The higher initial shrinkage values and relatively shorter links suggest a higher 

degree of conversion is achieved initially in the more highly filled specimens compared 

to those with a low filler and high resin content. The relatively lower degree of 

conversion of the specimens with high resin content is attributed to vitrification of the 

resin matrix. These specimens with high resin content were believed to have hardened 

more rapidly locking the network in place but possessing an associated low degree of 

conversion. Further investigations are required to verify this behaviour with FTIR 

spectroscopy a potentially suitable technique for this investigation. 

There was quite a significant step in the initial and total shrinkage behaviour 

corresponding to a 35% filler volume fraction. This filler volume fraction may represent 

a transition from resin dominated behaviour to filler dominated behaviour. It was also at 

a similar level of filler concentration that the viscosity behaviour became dominated by 

particle-to-particle interaction (see Section 4.3.1).  

The total shrinkage of Hetron 922 PAW vinyl ester / cenosphere composite systems was 

reduced from 1.31% for neat resin to 0.80% through the addition of 50% filler. This 

equates to an approximate 40% reduction in shrinkage.  

 

4.3.2.2. Influence of the Oligomer Molecular Weight 

An investigation was undertaken to examine the influence of a change in the oligomer 

molecular weight on the shrinkage behaviour. Additional shrinkage experiments were 

conducted according to ASTM D6289 [18] using Hetron 914 with filler contents 

equivalent to those used in the previous investigation of Hetron 922 PAW composite 

systems.  
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Shrinkage results for the Hetron 922 PAW composite systems were presented earlier in 

Figure 4.7 with key data provided in Table 4.4.  The shrinkage behaviour of 

Hetron 914 is shown in Figure 4.8 with the key data presented in Table 4.5. The values 

are the average of the measured shrinkages of each specimen. 

Table 4.5  Linear shrinkage of Hetron 914 vinyl ester / cenosphere composite systems 

with increasing filler volume fraction. 

Resin Hetron 914 Initiator Butanox M-60 Filler E-Spheres SLG 

Linear Shrinkage (%) 

Filler Volume Fraction (%) Shrinkage 

0 10 20 30 35 40 45 50 55 

Initial 0.89 0.31 0.22 0.27 0.30 0.49 0.16 0.43 0.19 

Total 1.13 0.66 0.51 0.45 0.39 0.58 0.32 0.53 0.31 

 

The initial cure shrinkage behaviour of Hetron 914 with increasing filler content was 

varying, but appeared marginally more consistent than that observed for the Hetron 922 

PAW. The variability may be the result of the vitrification behaviour described 

previously. 

Generally after post-cure, the total shrinkage of the Hetron 914 samples followed the 

expected behaviour of decreasing with increasing filler volume fraction. Considerably 

higher initial and total shrinkage values were observed at volume fractions of 40% and 

50%. The shrinkage experiments for samples with filler volume fractions of 30, 35, 40 

and 45% were repeated with the results of these experiments similar to those of the 

original tests. A step in the shrinkage behaviour was observed at similar filler volume 

fractions for Hetron 922 PAW indicating that a potentially complex behaviour exists at 

these higher volume fractions. Further investigation of this behaviour is warranted but is 

beyond the scope of this research. 
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Figure 4.8  Variation of initial and total shrinkage of Hetron 914 vinyl ester / cenosphere 

composite systems with increasing filler volume fraction. 
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Figure 4.9  Comparison of the total shrinkage of Hetron 922 PAW and Hetron 914 vinyl 

ester / cenosphere composite systems with increasing filler volume fraction. 
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The test method used for this shrinkage investigation specified a post-cure temperature 

of 110°C [18].  As part of the cure studies presented in Chapter 3, the Tg of Hetron 914 

was determined as ≈136°C which is higher than the post-cure temperature used in this 

study. This indicates that the Hetron 914 samples may possess a comparably lower 

degree of conversion after post-cure compared to the Hetron 922 PAW samples with a 

Tg of ≈95°C.  

The total shrinkage of Hetron 914 vinyl ester / cenosphere composite systems was 

reduced from 1.13% for neat resin to 0.53% through the addition of 50% filler. This 

equates to an approximate 50% reduction in shrinkage.  

The total shrinkage behaviour of Hetron 922 PAW and Hetron 914 shown in Figure 

4.9 highlights the comparably lower shrinkage of Hetron 914 at each filler volume 

fraction.  

On average the total shrinkage of Hetron 914 composite systems was 44% lower than 

that of Hetron 922 PAW composite systems. Reported results by Burts [7] and Li [6] 

and co-authors [2] indicated that a lower molecular weight and higher styrene content 

led to increased shrinkage. Even though possessing a comparably lower molecular 

weight, the Hetron 914 samples exhibited a lower shrinkage. This is attributed to the 

lower styrene content which suggests that the styrene concentration may have a more 

significant influence on shrinkage behaviour than the molecular weight of the oligomer. 

Further investigations are required to isolate the relative influences of oligomer 

molecular weight and styrene concentration on the shrinkage behaviour. 

 

4.3.2.3. Influence of Styrene Concentration 

An investigation was undertaken to examine the influence of styrene concentration on 

the shrinkage behaviour of vinyl ester / cenosphere composite systems. Experiments were 

performed using Hetron 922 PAW neat resin and 60% vinyl ester / 40% cenosphere 

composite formulations, similar to the combinations used for the cure investigation of 

composites presented in Chapter 3. Styrene was incorporated into these systems at 

addition levels of 5%, 10% and 15% by volume. The experimental results are 

summarised in Table 4.6 and presented graphically in Figure 4.10. The values are the 

average of the measured shrinkages of each specimen. 
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Table 4.6  Linear shrinkage of Hetron 922 PAW vinyl ester / cenosphere composite 

systems with increasing styrene concentration. 

Resin Hetron 922 PAW Initiator Butanox M-60 Filler E-Spheres SLG 

Linear Shrinkage (%) 

Styrene Addition (%) Shrinkage 

Filler   Volume 

Fraction        

(%) 
0 5 10 15 

Initial 0 0.53 0.24 0.38 0.41 

Total 0 1.31 1.31 1.30 1.32 

Initial 40 0.81 0.63 0.77 0.76 

Total 40 0.93 0.93 0.97 1.03 

 

Reported results indicate that increasing the styrene concentration of neat vinyl ester 

resins increases the shrinkage [6,2,7].  The results of this study show that the addition of 

styrene actually lowered the initial shrinkage of neat resin and filled samples. In the 

previous investigations, considerable variation in the initial shrinkage behaviour was 

observed. It is reasonable to assume that the discussed influences of vitrification may be 

extended to this shrinkage study.   

The total shrinkage behaviour of the filled samples increased as the styrene 

concentration was increased. However the total shrinkage of neat resin samples showed 

no significant changes with increasing styrene concentration. This could indicate that an 

upper limit to the shrinkage behaviour of neat resin may exist, above which further 

increases in styrene concentration have no significant effect on the shrinkage behaviour. 

Further investigations over a wider range of styrene addition levels are required to 

further examine this relationship.  
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Figure 4.10  Influence of styrene concentration on the linear shrinkage of Hetron 922 

PAW vinyl ester / cenosphere composite systems. 
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4.3.2.4. Influence of Material Volume 

An investigation was undertaken to examine the influence of material volume on the 

shrinkage behaviour of vinyl ester / cenosphere composite systems. Shrinkage 

experiments were performed in accordance with the block method, outlined in 

Section 4.2.2.3, using Hetron 922 PAW with filler volume fractions of 0%, 20% and 

40%. The shrinkage values from the block samples were compared to those of linear 

bars cast from equivalent composite formulations to determine the volume effects. The 

results are summarised in Table 4.7 and presented graphically in Figure 4.11. 

Table 4.7  Linear shrinkage of Hetron 922 PAW vinyl ester / cenosphere composite 

systems of increased material volume. 

Resin Hetron 922 PAW Initiator Butanox M-60 Filler E-Spheres SLG 

Linear Shrinkage (%) 

Filler Volume Fraction (%) 

 

Shrinkage 

 

Test Type 

0 20 40 

Initial Linear Bar 0.53 0.48 0.81 

Total Linear Bar 1.31 1.01 0.93 

Initial Block 1.77 1.33 1.33 

Total Block 2.65 1.77 1.33 

Both the initial and total shrinkage of the blocks were higher than the bars indicating 

that increased material volume leads to increased shrinkage. The greater volume of 

material may lead to higher exotherm temperatures which are sustained for longer thus 

maintaining the mobility of the chains leading to a greater degree of conversion of the 

network (and associated shrinkage) compared to lower volume samples. Further 

investigation is required to quantify the effects of material volume on the shrinkage 

behaviour.  

In addition, a reason for selecting a linear method to examine the shrinkage behaviour 

was that the data is relevant to production. This study suggests that shrinkage values 

obtained using the linear method may not be directly applicable to a practical 

manufacturing situation and may only be indicative of the shrinkage behaviour.  
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Figure 4.11  Influence of material volume on the initial and total shrinkage of Hetron 922 

PAW vinyl ester / cenosphere composite systems. 
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4.4. SUMMARY AND CONCLUSIONS 

This Chapter has presented a review and results of an investigation of the processing 

characteristics of vinyl ester / cenosphere composites, examining the relationships 

between constituent materials and the viscosity and shrinkage behaviour. The findings 

of this investigation are summarised as follows: 

 The viscosity of vinyl ester / cenosphere composites in their uncured state was found 

to increase non-linearly with increasing filler volume fraction. At high filler levels the 

viscosity behaviour appeared dominated by particle interaction, characterised by 

significant increases in viscosity for only small increases in filler volume fraction.  

 The established techniques for measuring viscosity were not able to provide 

consistent precision for the significant variations in the order of magnitude of the 

different viscosities associated with the large parameter variations. 

 The viscosity at a 50% filler volume fraction (practical processing limit) appears in 

the order of 12000cP at 25°C.  

 The experiments highlighted the sensitivity of the viscosity behaviour to styrene 

concentration with only small additions of styrene producing large decreases in 

viscosity, particularly at higher filler volume fractions.  

 The shrinkage behaviour of vinyl ester / cenosphere composites was found to be 

relatively complex, particularly the initial shrinkage behaviour. The variation of 

initial shrinkage values was attributed to different degrees of conversion achieved in 

samples at each filler volume fraction.  

 The total shrinkage behaviour generally followed the expected trend of decreasing 

with increasing filler volume fraction. This was attributed to the post-cure 

progressing the degree of conversion such that each sample was cured to a similar 

extent and the post-cure exposing each sample to an equivalent thermal cycle.  

 The shrinkage is lower when curing occurs at ambient temperatures followed by an 

elevated temperature post-cure compared to a single complete cure at elevated 

temperatures. 
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 The styrene concentration appeared to have a more dominant influence on the 

shrinkage behaviour than the oligomer molecular weight of the VE resin. Generally 

increases in styrene concentration led to increases in the total shrinkage which was 

more apparent in filled systems.  

 Increases in material volume also led to increases in shrinkage indicating that results 

obtained using the linear shrinkage tests may not be directly applicable to a 

production environment where three-dimensional volumetric shrinkage effects may 

be significant.  

 The observed shrinkage behaviour of these composite systems suggests that for their 

application to structural elements, the required shape and final dimensions must be 

carefully considered during both the element design and mould design phases.  
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CHAPTER 5.         

          

 THE MECHANICAL PROPERTIES OF VINYL 

 ESTER / CENOSPHERE COMPOSITES 

5.1. INTRODUCTION 

The previous Chapters have investigated the processes involved in the creation of a vinyl 

ester / cenosphere composite. The mechanisms of cure that transform the blended 

constituents into a rigid network and the parameters that influence the cure were 

examined. The processing characteristics were analysed, investigating the viscosity 

behaviour which affects the handling and placing of the materials and the shrinkage 

behaviour which influences the tolerances and quality of the final products.  

For vinyl ester / cenosphere composite systems to be utilised in structural applications it 

is necessary to understand the mechanical behaviour of the cured networks and the 

relative influence of the constituents on the mechanical properties. For primary 

structural applications, the mechanical performance of the material combinations must 

be quantified to facilitate the accurate design and analysis of structural elements.  

This Chapter reviews research relating to the mechanical performance of resin / 

cenosphere composite systems and establishes characterisation parameters for the 

evaluation of mechanical properties of vinyl ester / cenosphere composite systems. An 

experimental investigation assessing the strength and stiffness characteristics of these 

composite systems is then presented.  
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5.1.1. BACKGROUND 

Preliminary applications of resin / cenosphere composite materials have utilised 

sandwich construction techniques in which the particulate composite core is combined 

with high strength fibre composite laminates [1,2,3,4,5]. For this technique, the 

laminates typically provide the bending strength and longitudinal stiffness while the core 

supports the shear forces and provides local performance. Investigations examining the 

mechanical behaviour of particulate composite systems were previously outlined in 

Chapter 2.  

Foundational studies by Ayers [6] examined the properties of particulate composites and 

included vinyl ester / cenosphere systems however the study was limited to stiffness 

characteristics in flexure and compression. Investigations of stiffness behaviour were also 

been reported by Ayers and Van Erp [7,8,9]. A subsequent study by Ayers and Van 

Erp [10] examined constituent influences on the properties of vinyl ester / cenosphere 

composites but focussed on the flexural strength and stiffness behaviour.  

Research by Cardoso et al. [11] examined the properties of polyester / cenosphere 

composites. These investigations primarily focussed on the influences of particle size and 

surface treatment of cenospheres on mechanical properties with material combinations 

of this study limited to a 25% volume fraction of filler.  

Chalivendra et al. [12] investigated the influence of cenospheres over a wider range of 

volume fractions (0 to 40%) on the tensile and compressive behaviour of composites 

however these systems used a polyurethane resin matrix. 

These investigations are limited in their evaluation of strength and stiffness 

characteristics of vinyl ester / cenosphere composite systems in tension and compression.   

 

5.1.2. CHARACTERISATION PARAMETERS 

An experimental program was developed to characterise the basic mechanical properties 

of vinyl ester / cenosphere composite systems by assessing their behaviour in:  

  Tension, 
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  Compression, and  

  Flexure. 

Flexural performance was included in this investigation as a benchmark against previous 

research which used flexural properties to examine material behaviour [6,7,8,9,10,13]. 

Standard test procedures, which will be outlined in Section 5.2.2, were used to 

determine the following material properties: 

  Strain at failure 

  Modulus 

  Stress at failure 

  Poisson’s ratio 

The strength characteristics of the composite systems were examined using the strain at 

failure values with failure stress values calculated at these strains. The stiffness 

characteristics were examined using the modulus properties. The Poisson’s ratio was also 

determined to examine the relationship of the transverse and axial strain.  

The current investigation examines the influence of filler volume fraction on the 

strength and stiffness characteristics by varying the content from 0 to 50% in 10% 

increments. A filler volume fraction of 45% was also included to provide more detailed 

data at the higher filler levels. The investigations presented in earlier Chapters included 

the influence of initiator type, oligomer molecular weight and styrene on the behaviour 

however these influences are not considered in this study of mechanical properties and 

may be the subject of future research.    

To aid in the development of an understanding of the relationships between the 

mechanical behaviours and the filler volume fraction of the composite systems, 

polynomial interpolation was used to identify behavioural relationships. Where 

appropriate, linear trends are preferred due to the foundational nature of the 

investigation and the limited variation of parameters examined. For each of the 

polynomials, the coefficient of determination or R-squared value was determined as a 

measure of the variability of the established relationships. The R-squared value is an 

indicator between 0 and 1 which shows how close the estimated values for the 

polynomial correspond to the data [14].  
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5.2. EXPERIMENTAL INVESTIGATION 

This section summarises the materials selected for use in this study and the experimental 

techniques and procedures used to characterise the mechanical behaviour. The results 

are presented in Section 5.3. 

 

5.2.1. MATERIALS 

The materials used for the characterisation program were detailed in Section 3.2.1 and 

Table 3.2. The selected materials for this part of the study are listed in Table 5.1. 

Table 5.1  Constituent materials selected for the characterisation of mechanical 

properties of vinyl ester / cenosphere composite systems. 

Product Number Product Name Description 

1 Hetron 922 PAW Standard grade vinyl ester resin 

4 Butanox M-60 General purpose medium-reactivity MEKP 

8 E-Spheres SLG 20 - 300µm cenosphere filler  

 

All samples were initiated with Butanox M-60 at a 2.5% concentration. The cure study 

presented in Chapter 3 showed this initiator level of Butanox M-60 produced a 

relatively rapid cure. As outlined in Section 4.1.1, a rapid cure limits the opportunity for 

segregation of the resin and filler particles ensuring the production of a homogeneous 

composite. The cure investigation also showed the cure times of samples initiated using 

MEKP based solutions were quite consistent even after the addition of filler.  

 

5.2.2. EXPERIMENTAL TECHNIQUES 

The tension, compression and flexure specimens for each filler volume fraction were cast 

from a single batch of material. The types of test specimens used in the study are shown 
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in Figure 5.1. The pre-calculated constituent resin and filler quantities were combined 

by hand and blended ensuring the filler was wet out and distributed evenly throughout 

the mix. The initiator was added and thoroughly blended. Generally six specimens were 

produced for each volume fraction. All castings were allowed to cure at ambient 

temperatures, removed from the moulds and post-cured using a general (industry 

recommended) post-cure schedule of 80°C for a period of 8 hours. All testing was 

conducted using a universal testing machine. 

 

 

Figure 5.1  A compression cylinder, flexure bar (inclined) and two types of tension 

specimens. 

 

 

 

5.2.2.1. Characterisation of Tensile Properties  

Tension specimens were produced using two methods to ascertain whether the method 

of fabrication influences the results. All specimens were fabricated to the dimensions 

specified in ISO 527-2:1993 [15] of: 
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    Length = 160mm,  

Width = 10mm, and 

        Thickness = 4mm. 

In the first method, the specimens were cast in a six cavity steel mould which is shown 

in Figure 5.2. Each of the identical “dog-bone” shaped cavities was sized to produce 

specimens of the specified dimensions. In the second method, the specimens were cut 

from a single flat 250mm x 210mm x 6mm cast panel and machined to size. 

 

 

Figure 5.2  Tensile test specimens cast in a multiple cavity “dog-bone” shaped mould. 

 

The tensile properties were assessed using a direct tension test in accordance with ISO 

527-1:1993 [16]. The specimens were first tested using a dual extensometer to calculate 

Poisson’s ratio. The specimens were loaded to an axial strain of approximately 0.15% 

and the Poisson ratio was calculated from this initial linear portion of the axial strain / 

transverse strain relationship.  
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The specimens were then tested to failure with the recorded applied load used to 

determine the stress in the specimen at failure. The elongation was measured using a 

single extensometer to determine the strain on the surface of the specimen at failure. 

The modulus of elasticity was determined over a strain range of 0.05-0.25% as specified 

by ISO 527-1 [16]. Typical tensile test configurations are shown in Figure 5.3.  

  

  

   a)     b) 

Figure 5.3  Typical tensile test configuration using: (a) dual extensometer to determine 

Poisson’s ratio and, (b) single extensometer to determine stress, strain and 

modulus of elasticity values. 

 

5.2.2.2. Characterisation of Compressive Properties 

Compression specimens were cast in individual cylindrical moulds. The specimens were 

approximately 36mm in diameter and had a height of 72mm in accordance with the 2:1 

aspect ratio specified in ASTM D 695 [17]. The applied load and cross-head 

displacement were continuously monitored and used to determine the stress and strain 

in the specimen. The compression modulus was determined from a tangent drawn 

through the initial linear portion of the stress / strain relationships to compensate for the 

initial alignment and seating adjustment of the specimen. 
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Figure 5.4  A typical compression specimen under load (note the shear failure plane). 

 

5.2.2.3. Characterisation of Flexural Properties 

The flexural properties were assessed using a three-point bending flexure test in 

accordance with ISO 178:1993 [18] (see Figure 5.5). Blocks were cast in individual 

190mm x 150mm x 16mm vertical steel moulds and the individual flexure specimens 

cut from these castings to the dimensions of approximately: 

Length = 190mm,  

Width = 16mm, and  

       Thickness  = 9mm. 

These specimen dimensions exceed the values preferred by the standard but were 

adopted for ease of manufacture. The supported span was determined for each sample 

using the 16:1 span-depth ratio specified by ISO 178 [18]. The applied load and central 

deflection were continuously monitored and used to determine the stress and strain on 

the outer surface of the specimen. The flexural modulus was determined over a strain 

range of 0.05-0.25% as specified by ISO 178 [18].  
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Figure 5.5 Typical test configuration for the determination of flexural properties. 

 

5.2.3. SAMPLE DETAILS 

Sample details for the characterisation of mechanical properties of vinyl ester / 

cenosphere composites are shown in Table 5.2. The “T” suffix identifies tension 

specimens machined from a cast flat panel, the “DB” suffix identifies tension specimens 

cast using the dog-bone shaped mould, the “C” suffix identifies compression specimens 

and the “F” suffix identifies flexure specimens.  

The experimental data and results are available in the Appendices: details of the 

characterisation of tensile properties are presented in Appendix B, details of the 

characterisation of compressive properties are presented in Appendix C and details of the 

characterisation of flexural properties are presented in Appendix D. 
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Table 5.2 Sample details for the experimental characterisation of mechanical properties 

of vinyl ester / cenosphere composites. 

Resin Hetron 922 PAW Filler E-Spheres SLG 

Sample ID Filler Volume Fraction              

(%) 

USQI-01-038-T, DB, C, F 0 

USQI-01-042-T, DB, C, F 10 

USQI-01-043-T, DB, C, F 20 

USQI-01-044-T, DB, C, F 30 

USQI-01-039-T, DB, C, F 40 

USQI-01-040-T, DB, C, F 45 

USQI-01-041-T, DB, C, F 50 

 

5.3. RESULTS AND DISCUSSION 

This section presents the results of the experimental investigation of the mechanical 

behaviour of vinyl ester / cenosphere composites. As mentioned earlier, the filler volume 

fraction was varied from 0 to 50% in 10% increments and included a 45% filler level. 

The viscosity investigations presented in Chapter 4 have shown that within this range, 

the viscosity of the composite systems remains suitable from a practical ambient 

temperature processing perspective.  

5.3.1. INFLUENCE OF SPECIMEN FABRICATION 

The variation of tensile strain and the Modulus of Elasticity with filler volume fraction 

are shown respectively in Figure 5.6 and Figure 5.7 for both the moulded and machined 

specimens. For each data point, the maximum, minimum and mean values are 

displayed. To aid in the interpretation of the Figures, the mean values were connected 

by straight lines. The coefficients of variation (COV) of the results are presented in 

Table 5.3.  
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Figure 5.6  The tensile strain at failure of Hetron 922 PAW vinyl ester / cenosphere 

composite systems obtained from specimens prepared using alternative 

fabrication methods. 
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Figure 5.7  The Modulus of Elasticity of Hetron 922 PAW vinyl ester / cenosphere 

composite systems obtained from specimens prepared using alternative 

fabrication methods. 
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Table 5.3 Coefficients of variation for tensile test results of specimens fabricated using 

alternative methods. 

Moulded Specimens  

Coefficient of Variation 

(%) 

Machined Specimens  

Coefficient of Variation 

(%) 

Filler Volume 

Fraction        

(%) 

Strain Modulus Strain Modulus 

0 19.7 4.0 6.3 3.1 

10 18.5 3.3 6.0 0.6 

20 18.0 3.9 1.2 1.0 

30 15.9 1.8 12.3 1.4 

40 17.7 2.1 6.5 1.4 

45 9.3 4.4 11.1 1.6 

50 8.3 2.6 8.2 2.1 

 

The COV values of the strain and modulus properties determined from the moulded 

specimens is much higher, particularly for the strain properties for low filler levels. The 

comparable COV values for strain properties at filler levels greater than 40% suggests 

that the high filler content may alleviate the apparent detrimental influences of the 

moulding method on the specimen behaviour.  

The greater variation in results of the moulded specimens is also apparent in Figure 5.6 

and Figure 5.7. The range of the results obtained from the moulded specimens is greater 

than those of the machined specimens, indicating a greater variation in the test results 

obtained from moulded specimens. The results obtained from the moulded specimens 

were also generally lower, particularly the failure strain properties. 

The variation and comparably lower properties of the moulded specimens is attributed 

to a number of influences.  

 Visual inspection of specimens confirmed that air voids were often present in the 

failure zone. This entrapped air in the moulded specimens appeared due to the 
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casting process with the surface tension of the material with the sides of the mould 

restricting the escape of the air. Air voids effectively reduce the cross-sectional area of 

the specimen, potentially leading to a premature failure.  

 The shape of the moulded dog-bone specimens with the larger ends restricts the 

specimens from shrinking during cure, leading to the development of internal 

stresses that may initiate the premature failure of the specimens. Investigations in 

Chapter 4 showed that the shrinkage of a vinyl ester resin is reduced through the 

addition of filler. The difference in strain values (Figure 5.6) between the samples 

fabricated using each method lowered as the filler content was increased, almost 

appearing to converge. This suggests that as the filler content was increased and the 

shrinkage reduced, the internal stresses were also reduced and subsequently had less 

influence on the failure strain behaviour. 

The imperfections present in the tensile specimens fabricated using the moulded 

method appears to have a significant influence on the test results. This suggests that 

these specimens do not provide an accurate representation of material behaviour. 

Specimens fabricated using the machining method provided good, consistent results. 

Consequently the results from this method will be used in the following sections. 

 

5.3.2. STRENGTH CHARACTERISTICS 

The relationships of the strain at failure in tension, compression and flexure with 

increasing filler volume fraction are shown in Figure 5.8. The results for each individual 

test specimen are plotted to show the variation of the results.  

For each filler volume fraction, the tension and flexure specimens fractured in a brittle 

manner with the failure coinciding with the peak of the stress / strain relationships. The 

failure mechanism of the flexure specimens is further discussed later. The peak values 

were accepted as the strain (and stress) at failure for the tension and flexure behaviour. 

Different modes of failure were observed for the compression specimens as the filler 

volume fraction was increased. For specimens with filler volume fractions from 0 to 

40%, loads continued to be supported after the peak of the stress / strain relationship 

was reached, exhibiting a relatively ductile behaviour (Figure 5.9). For the neat resin 
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specimens, approximately 75% of the peak stress was still supported at a 15% strain 

level. For the specimens with filler levels of 20%, 30% and 40%, failure occurred after 

the peak of the stress / strain relationship but with no significant plateau. Failure 

occurred through a shear plane at 45° to the direction of loading (Figure 5.4). Research 

by Cardoso et al. [11] reported that the inclusion of 25% cenospheres lowered the 

compressive strength of polyester matrices. It was also reported that the compression 

specimens failed in shear along a plane at 45° to the loading direction.  

For the specimens with filler volume fractions greater than 40%, fracture occurred 

almost immediately after the peak of the stress / strain relationship (Figure 5.9). In these 

specimens the failure occurred due to a combination of shear and crushing.  

Although a ductile failure behaviour may have significant advantages in some specific 

applications, for this investigation once the peak of the stress / strain relationship was 

attained the specimens were deemed to have failed from an engineering perspective. The 

peak values were accepted as the strain and stress at failure properties for the 

compression behaviour. 

First order polynomials or linear trendlines were fitted to the data. The R-squared value 

of 0.95 for the compression and tension results generally indicates good correlation 

between the trendline and data exists. The 0.89 value for the flexural data is lower but 

attributed to the large scatter of results from the neat resin specimens. Due to the high 

comparable loads supported by the specimens with lower filler contents, the 

performance may be more susceptible to the presence of air than the more highly filled 

specimens that fail at considerably lower loads.  

Increases in filler volume fraction led to decreases in the strain at failure values. The 

reduction in strain capacity was attributed to the reduced resin content of the 

formulations.  
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Figure 5.8  Relationship of strain at failure with filler volume fraction of Hetron 922 

PAW vinyl ester / cenosphere composites in tension, compression and flexure. 
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Figure 5.9 Typical stress versus strain relationships of Hetron 922 PAW vinyl ester / 

cenosphere composites with varying filler volume fractions in compression.  
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The compressive strain at failure values are considerably higher compared to the failure 

strain values of the systems in tension and flexure.  The closeness of the tension and 

flexure results suggests that the flexure behaviour of the composite systems may be 

highly influenced by the tensile properties. This is particularly evident at high filler 

volume fractions where the results appear to converge.  

A study by Ayers and Van Erp [10] using alternative VE resin matrix systems reported a 

convergence of flexure strain properties at higher filler levels and concluded that at high 

filler levels (greater than 30%), the capacity of the composite is filler dominated.   

The stress values were calculated as a secondary descriptor of the strength characteristics 

of the vinyl ester / cenosphere composite systems. The relationship of the stress values 

with increasing filler volume fraction are shown in Figure 5.10.  

First order polynomials or linear trendlines were fitted to the data. The R-squared value 

of approximately 0.97 for the tension results shows good correlation between the 

trendline and the data. The compression and flexure data R-squared values of 0.88 and 

0.90 respectively are lower but are attributed to the scatter in results, particularly for the 

neat resin flexure data. The scatter in results of the neat resin flexure samples is largely 

attributed to air trapped in the specimens.  

An increase in the filler volume fraction lowered the stress at failure values and was 

attributed to the reduced resin content of the composites. A similar trend was observed 

with the failure strain properties. 

The compressive failure stress is considerably higher compared to the stress in tension. 

This is similar to the relationship between the strain at failure behaviour in compression 

and tension. The flexure stress behaviour appears quite different to the strain behaviour. 

For neat resin, the flexure stress values were similar to the compression values and 

lowered as the filler content was increased, approaching the tensile stress values. This 

relationship suggests that at low filler volume fractions, the flexure behaviour is highly 

influenced by the compression properties and as the filler content is increased the 

behaviour becomes more influenced by the tension properties of the composite system.  

These results suggest that considerable flexibility is available to the tailor the properties 

of the composite to meet desired performances by varying the content of filler.  
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Figure 5.10 Relationship of stress at failure with filler volume fraction of Hetron 922 

PAW vinyl ester / cenosphere composites in tension, compression and flexure. 
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The failure observed in the flexure specimens may support the suggested influences. 

Loading in three-point bending leads to both compression and tension forces within the 

specimen. Although all specimens failed in a brittle manner, the actual fracture 

behaviour changed as the filler content was increased.  

The neat resin specimens failed in a brittle manner with a segment of the material from 

the compression face that straddled the main cleavage line breaking away, shown in 

Figure 5.11. As the filler volume fraction was increased, the release of energy at failure 

appeared of lower magnitude with the segment breaking from the compression face 

reducing in size (Figure 5.12). At filler volume fractions of 30% and higher, no segment 

broke away from the compression face and the specimen failed through a single cleavage 

line (Figure 5.13). Further investigations are required to examine the failure mechanisms 

of vinyl ester / cenosphere composite systems. 

 

Figure 5.11 A neat resin flexure specimen showing the break away segment from the 

compression face over the main cleavage line.  

 

 

Figure 5.12 A flexure specimen with a 10% filler content showing the reduced size of the 

break away segment from the compression face. 
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Figure 5.13 A flexure specimen with a 40% filler content showing the single cleavage line 

of failure.  

 

5.3.3. STIFFNESS CHARACTERISTICS 

The modulus properties were used to examine the stiffness characteristics of vinyl ester / 

cenosphere composite systems. The relationships of the modulus in tension, 

compression and flexure with increasing filler volume fraction are shown in Figure 5.14. 

The results of each individual test specimen are plotted to show the variation of the 

results.  

First order polynomials or linear trendlines were fitted to the data. The R-squared values 

for the tensile behaviour of 0.96 and flexural behaviour of 0.97 show a good correlation 

between the trendlines and the data. The 0.80 value for the compression data is lower 

however smaller sample sizes were used leading to any outlying values significantly 

influencing the R-squared value. The presence of air in the neat resin samples does not 

appear to have as significant an influence on the stiffness behaviour as it does on 

strength. 

An increase in the filler volume fraction increased the modulus values and improved the 

stiffness of the composites. This is due to the reinforcing effect of the more rigid filler 

particles increasing the stiffness of the composite as their volume in the matrix increases. 

The filler particles restrict the deformation of the matrix thus stiffening the composite. 
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Figure 5.14  Relationship of modulus with filler volume fraction of Hetron 922 PAW vinyl 

ester / cenosphere composites in tension, compression and flexure. 

 

 

 

 



 

  - 164 - 

Upon closer observation of Figure 5.14, an increase in the filler volume fraction from 

45% to 50% appears to slightly lower the stiffness particularly in tension and flexure. 

This suggests that a filler content of 45% may be an optimum volume fraction with 

increases above this level actually lowering the stiffness properties. 

The modulus relationships in flexure and tension with increasing filler volume fraction 

are quite similar suggesting the flexure stiffness behaviour is highly influenced by the 

tension properties. This indicates that the flexure modulus values, which are easier to 

acquire through a much simpler specimen fabrication and test process, may be 

conservatively used in place of tensile modulus properties for design and analysis.  

The compression modulus values are considerably lower than the tension values 

indicating the comparably low stiffness of the composites when used in compression. 

However this may be due to influences of the testing process such as the testing platens 

not being exactly horizontal or the load may not have been applied axially through the 

machine. With the strain being determined from the cross-head displacement, these 

influences may have affected the accuracy of the results.  

 

5.3.4. POISSON’S RATIO 

Poisson’s ratio was calculated using lateral and axial strain measurements recorded by the 

dual extensometer. The relationship of Poisson’s ratio with increasing filler volume 

fraction is shown in Figure 5.15.  

A first order polynomial (linear trendline) was fitted to the data. The R-squared value of 

0.82 shows a lower correlation between the trendline and the data exists compared to 

other data. A high degree of scatter exists at most of the data points which contributes to 

the lower correlation. 

Poisson’s ratio decreased as the filler content was increased. This was attributed to the 

observed decreases in lateral strain values lowering the ratio with the axial strain values. 

The failure strain properties examined in relation to the strength characteristics were also 

observed to decrease with the addition of filler.  

Cardoso et al. [11] reported reductions in Poisson’s ratio after the inclusion of 25% 

cenosphere particles in polyester matrices.   
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Figure 5.15 Relationship of Poisson’s ratio with filler volume fraction of Hetron 922 

PAW vinyl ester / cenosphere composites. 
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5.4. SUMMARY AND CONCLUSIONS 

This Chapter has presented the experimental characterisation of the mechanical 

properties of selected vinyl ester / cenosphere composite systems in tension, compression 

and flexure. The strength characteristics were examined using the failure strain and the 

failure stress with the stiffness characteristics examined using the modulus values. 

Poisson’s ratios were also determined.  

Through the completion of this investigation, the following observations were made: 

 The addition of filler to a vinyl ester resin matrix was found to lower the properties 

of strain and stress at failure and increase the modulus. Overall, for vinyl ester / 

cenosphere composite systems as the filler volume fraction was increased the strength 

characteristics were reduced and stiffness characteristics improved in tension, 

compression and flexure.  

 A filler volume fraction of 45% appeared to produce optimum stiffness 

characteristics particularly in tension and flexure.  

 The strain capacity of composites in compression was considerably higher than in 

tension with the flexure strain behaviour appearing highly influenced by the tension 

properties.  

 The failure stress of the composites was consistently higher in compression than 

tension. The flexure strength at low filler levels appeared highly influenced by the 

compression properties of the composite and at high filler levels highly influenced by 

the tension properties. 

 The composites are stiffer in tension than compression with the flexure stiffness 

behaviour appearing highly influenced by the tension properties. 

 Poisson’s ratio was found to decrease with increasing filler volume fraction. 

Alternative methods of tensile specimen preparation were trialled as part of the 

investigation. The fabrication of specimens using a machining method led to improved 

consistency and a lower variation of the tension results.  
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To aid in the development of an understanding of the mechanical behaviour of the 

composite systems, polynomials were used to examine the data and identify behavioural 

relationships. The polynomials are indicative of the material behaviour. The equations 

to the polynomials for each material property are presented in Table 5.4. For these 

equations the filler volume fraction, vf  is expressed as a percentage.  

Table 5.4  Relationship of the mechanical properties of vinyl ester / cenosphere 

composites with filler volume fraction. 

Resin Hetron 922 PAW Filler E-Spheres SLG 

Behaviour Material Property Equation 

Tension Failure Strain (%) 

Failure Stress (MPa) 

Modulus of Elasticity (MPa) 

Poisson’s Ratio 

ε = -0.032 vf + 2.20 

σ = -0.72 vf + 57.78 

E = 38.38 vf + 3394 

ν = -0.0013 vf + 0.37 

Compression Failure Strain (%) 

Failure Stress (MPa) 

Modulus (MPa) 

ε = -0.043 vf + 5.29 

σ = -0.33 vf + 88.77 

E = 17.41 vf + 2324 

Flexure Failure Strain (%) 

Failure Stress (MPa) 

Modulus (MPa) 

ε = -0.045 vf + 2.84 

σ = -1.02 vf + 85.54 

E = 36.07 vf + 3287 

     Note:         vf  = filler volume fraction (%) 

 

These equations describe mean value relationships between the filler volume fraction 

and mechanical properties for the selected constituent materials. This investigation has 

been constrained to characterising the behaviour of vinyl ester / cenosphere composite 

systems using a single resin and a single filler type as material constituents. The 

parameter varied for this investigation was the filler volume fraction.  

While these investigations have focussed on a single resin / filler combination the results 

suggest that modification of key engineering parameters with the addition of fillers tend 

to follow linear relationships (change of filler volume fraction). More accurate 

establishment of such relationships is quite important for materials design purposes. 
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CHAPTER 6.         

             

THE TRANSITION BEHAVIOUR OF VINYL 

ESTER / CENOSPHERE COMPOSITES 

UNDER ELEVATED TEMPERATURES 

6.1. INTRODUCTION 

Thus far, this dissertation has examined the curing behaviour, processing characteristics 

and the mechanical properties of vinyl ester matrix systems and vinyl ester / cenosphere 

composites. Now it is important to understand how the properties of these materials are 

maintained during service. The effects of temperature are an important consideration in 

the design of civil structures [1]. Of particular interest to this current project is the 

retention of material properties under elevated temperature conditions.  

As discussed earlier in Chapter 2, vinyl ester resins are amorphous polymers consisting of 

networks of randomly arranged polymer chains. They do not possess the ordered 

molecular orientation of crystalline polymers. Unlike crystalline polymers, amorphous 

polymers do not melt. When exposed to heat, crystalline polymers increase in 

temperature until they reach the melting temperature at which point they change 

completely from solid to liquid state. At the melting temperature, increases in heat do 

not result in a temperature increase until all material is converted from solid to liquid 

state.  
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Amorphous polymers do not melt but exhibit a softening transition where they pass 

from a glassy to a rubbery state. The temperature at which this transition occurs is 

known as the glass transition temperature or Tg. When cooled below the Tg the polymer 

is hard and rigid but heated above the Tg it becomes soft and flexible. Unlike a 

crystalline material melt transition, the glass transition does not involve the breaking of 

intermolecular bonds. It does however involve a change in molecular mobility thereby 

creating a change in material heat capacity. This change in heat capacity can be 

monitored using the DSC techniques previously discussed in Chapter 3. Observation of 

DSC plots indicates that the glass transition occurs over a temperature range rather than 

at a single distinct temperature. 

On a mechanical level the glass transition is characterised by a loss of material stiffness 

which is exhibited by both the elastic modulus and shear modulus. Reported 

experimental data indicates that the loss of elastic modulus across the glass transition can 

be in the order of 95% [2,3]. Such degradation in properties may have serious 

ramifications on the overall performance of a structure. Understanding the behaviour of 

this transition is imperative in assessing the suitability of a polymer to a given 

application. 

This Chapter presents an experimental investigation of the behaviour of vinyl ester 

matrix systems and vinyl ester / cenosphere composites under elevated temperatures. 

The aim of this work is to develop an improved understanding of glass transitions in 

these materials and related effects on mechanical properties. The study uses dynamic 

mechanical analysis to investigate the influence of several key constituent and curing 

parameters on resulting mechanical behaviour of the neat resins and composites. 

 

6.1.1. GLASS TRANSITIONS IN VINYL ESTER RESINS 

As discussed previously in Chapter 2, the crosslink density of a network is the primary 

influence on the glass transition temperature of a vinyl ester resin. The crosslink density 

can be increased through the use of oligomers of lower molecular weight [4,5,6,7] or 

different backbone chemistry (eg: novolac) [2,8].  



 

  - 172 - 

An increase of the reactive monomer (styrene) has been shown to reduce the crosslink 

density and consequently lower the Tg of systems with lower molecular weight 

oligomers, though the effect on high molecular weight systems is only minor[5,6].  

Cook et al. [3] reported that the Tg strongly depends on the degree of cure of a vinyl 

ester resin, with a greater degree of cure (conversion) leading to a higher Tg. As the 

degree of conversion is characterised by the amount of crosslink formation, it follows 

that higher degree of conversion will translate to an increased crosslink density. One of 

the functions of an elevated temperature post-cure is to progress the cure such that a 

high crosslink density is obtained and hence a high Tg.  

Investigations by Ziaee and Palmese [9] examined the influence of curing cycles on the 

mechanical properties of vinyl ester resins. It was reported that post curing of materials 

performed below the “full-cure” Tg resulted in glass transition temperatures below the 

ultimate full-cure Tg. However post-curing performed above the ultimate Tg 

temperature resulted in transition temperatures approaching the ultimate Tg, regardless 

of the initial isothermal cure temperature used.  

Due to the relationship between the glass transition temperature and the degree of 

conversion of the network, comparing of the Tg achieved after an ambient cure and after 

an elevated temperature post-cure will provide an indication of the initial degree of cure 

achieved in a network. Comparing these Tg values will provide details regarding the 

development of properties of the network. 

  

6.1.2. CHARACTERISATION OF GLASS TRANSITIONS 

Glass transitions can be characterised in a number of ways. As discussed earlier in 

Chapter 3, differential scanning calorimetry is one common method of determining a 

glass transition temperature. With this technique the glass transition is determined by a 

change in material heat capacity. As the material passes from a rigid to a rubbery state 

there is a change in molecular mobility which displays itself in a corresponding change 

in heat capacity. As can be seen from the DSC results of Chapter 3, the change in heat 

capacity occurs over a temperature range rather than at a single temperature, thus 

creating some debate over what actually constitutes the glass transition temperature 

(extrapolated onset temperature, inflection point temperature). Irrespective of the value 
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used, DSC determination of Tg is somewhat limited in its direct engineering application 

as it does not actually quantify mechanical changes in the material.  

An alternative to DSC is thermomechanical analysis (TMA). In TMA the Tg of a 

material is generally assessed in terms of material softening and the penetration of a 

probe into the test sample. The Tg can also be determined as the temperature at which 

the sample exhibits a significant change in thermal expansion or from the derivative 

TMA curve. These methods provide a measure of the glass transition temperature but 

not the associated changes in engineering properties (E or G). 

Dynamic mechanical analysis (DMA) offers several advantages over DSC or TMA for 

the engineer seeking to evaluate glass transitions of polymers and composites. In DMA a 

sample is mechanically deformed at alternative rates and the response of the sample is 

measured as a function of temperature or time [10]. Samples can be tested in either 

tension, compression or bending modes. DMA measures the applied load and 

corresponding displacement of the sample allowing for direct determination of 

mechanical properties. As polymer materials are non-Newtonian, viscoelastic materials 

the time response of the material to applied loads is also important. DMA can assess 

these behaviours measuring both the input signal of the instrument and the time 

response of the specimen. Time lag between input and response can be assessed as a 

function of temperature. 

Dynamic mechanical analysis (DMA) has been reported to offer advantages in the 

measurement of glass transition temperatures in highly crosslinked networks where there 

are only small measurable changes in heat flow in the transition region and DSC is not 

as sensitive as DMA in detecting these changes [4,7].  

These alternative methods use different responses of the materials to characterise glass 

transitions which can lead to variability in the results. Furthermore these techniques are 

directed towards measuring a singular value of the glass transition temperature to 

represent the temperature performance of the networks. An advantage of DMA from a 

structural engineering perspective is that it allows for direct monitoring of mechanical 

property variations as a function of temperature. This provides the engineer with 

information relating to the actual changes in mechanical performance due to an 

elevating temperature.   
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6.1.3. INTERPRETATION OF DMA DATA 

A number of materials, including polymers, flow when subjected to stress or strain at 

elevated temperatures. This flow is accompanied by the dissipation of energy due to an 

internal loss mechanism [11]. Such materials are known as viscoelastic materials, 

exhibiting both elastic and viscous properties. 

Under dynamic loading linear viscoelastic properties can be described by a modulus (E) 

which is a function of the frequency of loading (ω) with a linear relationship existing 

between stress and strain [11]. For periodic loading, the modulus consists of real (E’) 

and imaginary (E”) components, and the stress and strain will generally be out of phase 

due to the effects of delayed elasticity and viscous flow in the material. The phase angle 

of strain behind stress is δ and related to the moduli E’ and E” by the relationship: 

   '

''

tan
E
E

=δ           (6.1) 

The E’ component which is in phase with the strain, is often referred to as the storage 

modulus and is associated with the energy stored in the specimen due to the applied 

strain. The E” component which is out of phase with the strain, is often referred to as 

the loss modulus and is associated with the dissipation of energy. Tan δ is 

conventionally employed as a measure of internal friction. 

DMA provides three alternative values that are often interpreted as the glass transition 

temperature [10], namely:  

 onset (extrapolated) of loss of storage modulus which occurs at the lowest 

temperature and relates to mechanical changes in the material;  

 loss modulus peak which occurs at a middle temperature and is more closely related 

to the molecular changes attributed to the glass transition in plastics; and  

 tan δ peak which occurs at the highest temperature and is a good measure of the 

midpoint between the glassy and rubbery states. 

The temperature at the peak of the tan δ curve appears to be the most widely applied 

measure of glass transition temperature [2,4,5,6,12] in polymer research. The value of 
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this particular Tg interpretation is questionable from a civil engineering perspective, as 

will be discussed.  

Figure 6.1 shows a typical DMA plot for a vinyl ester polymer (Hetron 922 PAW 

Butanox M-60 @ 1.0%). The storage modulus, loss modulus and tan δ are all shown 

plotted against temperature. The glass transition temperatures for each of the three 

interpretations above are shown. An additional value at the inflection point of the 

storage modulus is also shown. A list of these values is shown in Table 6.1. From these 

figures it can be seen that each interpretation yields a significantly different Tg and it can 

thus be concluded that it is of paramount importance that Tg values determined by 

DMA should be accompanied by a qualifying statement giving the particular method of 

determination used. 
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Figure 6.1  DMA results of a vinyl ester matrix showing alternative interpretations of the 

glass transition temperature. 

 

As noted previously, from an engineering perspective the key issue with a material going 

through its glass transition is its corresponding loss of mechanical capacity, specifically 

the loss in Modulus of Elasticity. Table 6.1 also shows the storage modulus of the 
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material at the Tg given by each interpretation and the relative magnitude of modulus 

loss between ambient temperature and each Tg. From these figures it can be observed 

that by the time a material reaches the Tg given by any of the interpretations, there has 

already been a significant drop in material stiffness. Thus the provision of an ambient 

temperature Modulus of Elasticity and Tg for a material would appear to be an 

inadequate representation of material behaviour for civil engineering applications. 

Table 6.1 Variation of glass transition temperature using alternative interpretations with 

the associated loss in storage modulus. 

Resin Hetron 922 
PAW 

Initiator Butanox M-60 @ 1.0% 

 

Extrapolated 

Onset  

(Storage 

Modulus) 

Point of 

Inflection 

(Storage 

Modulus) 

Peak of 

Loss 

Modulus 

Peak of   

Tan δ 

DSC     

Point of 

Inflection 

Glass Transition 

Temperature (°C) 
105 117 117 125 94 

Storage Modulus at 

Tg (MPa) 
2039 885 885 151 2369 

Reduction in Storage 

Modulus from 

Ambient Temp. 

(3116MPa) to Tg 

35% 72% 72% 95% 24% 

 

What is more important from an engineering perspective is the loss of mechanical 

performance over typical civil engineering services ranges. Figure 6.2 shows a more 

detailed plot of the storage modulus loss of the same material over the 35°C to 120°C 

temperature range. The rate of modulus drop as a function of temperature is also shown. 

As can be observed from this plot, the material displays a relatively uniform rate of 

storage modulus loss up to around 90°C. Above this temperature there is a rapid 

increase in the rate of modulus loss through the glass transition of the material. This 

behaviour is typical of most thermoset polymers.  
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Figure 6.2  Storage modulus loss of a vinyl ester matrix between 35°C and 120°C. 

 

As it would normally be desirable to maintain a material at a temperature below its glass 

transition for structural applications, understanding of the pre-transition modulus drop 

would appear relatively important from an engineering perspective. It would also appear 

equally important to understand the way in which modulus losses are accelerated as the 

material enters the glass transition. Given that the glass transition occurs over a relatively 

narrow temperature band and that the net modulus loss can be over 90%, the 

behavioural changes of the material through this temperature range are of great 

significance.  

For this study, the primary aim of performing dynamical mechanical analysis is to 

develop a better understanding of how the vinyl ester matrices and their corresponding 

cenosphere composites behave under conditions of elevated temperature. Therefore, 

while Tg values will be calculated on the grounds of their current widespread usage, the 

analysis will focus on the rate of modulus loss in the pre-transition region and the rate of 

loss through the glass transition itself. The pre-transition changes are considered of 

major importance as the temperature range of this region lies within that which could be 

expected in typical civil engineering structures. The influence of constituent and curing 
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changes on behaviour in this temperature range may thus play a critical role in the 

development of successful structures.  

6.2. EXPERIMENTAL INVESTIGATION 

This section outlines the materials selected for use in this study and the experimental 

techniques and procedures used to examine the transition behaviour of vinyl ester matrix 

systems and vinyl ester / cenosphere composites. 

 

6.2.1. MATERIALS 

The experimental investigation utilised a number of different materials that were 

detailed in Section 3.2.1 and listed in Table 3.2. The selected materials for use in this 

study are shown in Table 6.2.  

Table 6.2  Materials used for the investigation of transition behaviour. 

Product Number Product Name Description 

1 Hetron 922 PAW Standard grade vinyl ester resin 

2 Hetron 914 Low styrene content vinyl ester resin 

3 Accelerator NL-51P Cobalt octoate medium-reactivity accelerator 

4 Butanox M-60 General purpose medium-reactivity MEKP 

5 MEKP-SR Slow reactivity MEKP 

6 CHP 90 Cumyl hydroperoxide, 90% solution 

7 Trigonox 239 Cumyl hydroperoxide, 45% solution in 
solvent mixture, with promoter 

8 E-Spheres SLG 20 - 300µm cenosphere filler  

9 Styrene Styrene monomer 
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6.2.2. EXPERIMENTAL TECHNIQUES 

6.2.2.1. Dynamic Mechanical Analysis (DMA) 

Dynamic mechanical analysis of the material combinations was performed on a TA 

Instruments Q800 DMA in dual cantilever mode (see Figure 6.3). Samples were 

prepared in ambient conditions and not exposed to an elevated temperature post-cure 

and were machined to dimensions of: 

   Length = 60mm,  

Width  = 10mm, and 

       Thickness  = 4mm.   

Each sample was subjected to an oscillating displacement of ±10µm at a frequency of 

1Hz. The dynamic analysis was performed from 25°C to 200°C with a heating ramp of 

10°C/min. The cell and specimen were allowed to cool between each run. Two runs 

were performed on each specimen to assess behaviour before and after an elevated 

temperature post-cure. Data was analysed using the Universal Analysis software provided 

with the instrument. Generally only single specimens were tested for each material 

combination. 

The glass transition temperature of each sample was calculated by three different 

methods as follows: 

• The inflection point of the storage modulus. 

• The peak of the loss modulus. 

• The peak of the tan δ. 

As discussed earlier, the Tg characterises the material transition by a single temperature 

which is not directly linked to a specific mechanical behaviour. From an engineering 

perspective the key issue is not the value of the Tg but the way in which the mechanical 

characteristics of the material change as it approaches and goes through the glass 

transition. To gain better insight into these changes, this current study also investigated 

changes in the storage modulus both prior to and through the glass transition region. 
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Figure 6.3 Test specimen positioned in the DMA dual cantilever clamp arrangement. 

 

The changes in mechanical performance through the glass transition were examined 

using two parameters:  

• The loss of storage modulus between 40°C and the inflection point Tg   

• The rate of loss for the storage modulus at the inflection point Tg 

The lower temperature of 40°C may be considered high however the behaviour at this 

temperature appeared quite stable and was selected to exclude some inconsistencies 

present in the initial lower temperature stages of some DMA scans.  

A temperature range over 40°C to 80°C was adopted to examine the mechanical 

behaviour prior to the transition. These limits are reasonably indicative of the elevated 

temperature environments which may be seen in civil engineering structures with the 

investigation of modulus changes over this range providing an indication of behavioural 

changes which may be exhibited in such structures [1].  The factors considered in this 

current study were the rate of modulus loss over the designated temperature range and 

the corresponding absolute losses between the lower and upper temperatures.  
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All specimens were prepared from the same batches of resin and the transition behaviour 

determined from individual specimens to examine influences of the selected parameters. 

The behavioural relationships were established using these results. Additional 

investigations may address the variability of these established relationships both within 

and between batches to further consolidate the understanding of this behaviour.  

 

6.3. RESULTS AND DISCUSSION 

This section presents the results of the experimental investigation of the transition 

behaviour of vinyl ester / cenosphere composites at elevated temperatures. The use of the 

glass transition temperature as an indicator of temperature performance is examined and 

followed by the transition behaviour of unfilled and filled vinyl ester resins. The 

temperature performance of ambient cured systems is also considered. Where 

appropriate, other research material is referred to during the discussion for the purpose 

of comparison. 

 

6.3.1. USING THE GLASS TRANSITION TEMPERATURE TO 

GAUGE ELEVATED TEMPERATURE PERFORMANCE 

The selected interpretation of the Tg to describe the elevated temperature performance 

of composites may have significant consequences. This section examines the associated 

mechanical behaviour of materials at alternative glass transition temperatures. Results 

from investigations of the influences of initiator concentration on the behaviour of vinyl 

ester matrix systems are used. 

The glass transition temperature of Hetron 922 PAW cured with varying initiator 

concentrations determined using both DSC and DMA techniques is shown in Table 

6.3. The DSC values (extrapolated onset, point of inflection) were determined as part of 

the cure behaviour investigations presented in Chapter 3. The DMA values (point of 

inflection, loss modulus peak, tan δ peak) were determined from a second scan of 

specimens after exposure to an elevated temperature post-cure. The complete storage 
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modulus transition curves and the loss modulus and tan δ relationships for the second 

scans are presented in Appendix E. 

Table 6.3 Alternative interpretations of the glass transition temperature.  

Glass Transition Temperature (°C) 

DSC DMA 
Initiator 

Addition 

Level  

(%) 
Extrapolated 

Onset 

Point of 

Inflection 

Point of 

Inflection 

Storage Modulus 

Peak     

Loss 

Modulus 

Peak     

Tan δ 

1.0 89 94 117 117 125 

1.5 94 99 115 115 123 

2.0 96 100 111 111 119 

2.5 91 95 109 109 117 

3.0 87 92 102 103 113 

4.0 84 90 99 99 107 

5.0 82 86 92 92 101 

 

Each interpretation of the glass transition temperature produces a markedly different 

value leading to a wide variation of results. This variation in Tg values using the 

alternative interpretations was highlighted in Section 6.1.3.  

The loss of mechanical properties, represented by the change in storage modulus, 

associated with heating to the glass transition temperature is shown in Table 6.4. The 

loss of storage modulus was calculated between 40°C and the applicable glass transition 

temperature.  
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Table 6.4 Corresponding loss of storage modulus at the glass transition temperature. 

% Loss of Storage Modulus (E’) 

DSC DMA 
Initiator 

Addition 

Level     

(%) Extrapolated 

Onset 

Point of 

Inflection 

Point of 

Inflection 

Storage Modulus 

Peak     

Loss 

Modulus 

Peak    

Tan δ 

1.0 20 23 71 71 95 

1.5 24 27 70 70 95 

2.0 27 32 67 67 95 

2.5 30 34 67 70 93 

3.0 28 36 70 71 96 

4.0 34 41 62 62 89 

5.0 34 43 64 65 90 

  

The DSC onset temperature Tg values were the lowest with the associated loss in storage 

modulus relatively low. The loss in storage modulus associated with the DMA Tg values 

was much higher, particularly for the tan δ peak values with losses in the order of 90%.   

The relatively high losses in storage modulus associated with heating to the Tg supports 

the suggestion that the glass transition temperature may not be the most appropriate 

indicator of elevated temperature performance from an engineering perspective. 

Monitoring of the actual changes in mechanical behaviour of the material when exposed 

to elevated temperatures, which is used in the following sections appears a more suitable 

measure of the temperature performance.  

In addition it is desirable to minimise the viscoelastic behaviour of the materials thus 

curtailing influences of creep and relaxation. This suggests a focus on the elastic 

characteristics of the materials and monitoring the elastic (storage) modulus properties.   

The following investigations focus on the mechanical behaviour of the materials when 

exposed to elevated temperatures by analysing the storage modulus properties. Both the 
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pre-transition and glass transition behaviour are analysed by examining the loss in 

storage modulus and the rate of the loss of storage modulus. The interpretation of the 

glass transition temperature for this investigation is the point of inflection of the storage 

modulus.   

 

6.3.2. TRANSITION BEHAVIOUR OF UNFILLED VINYL 

ESTERS 

This section examines the transition behaviour of unfilled vinyl ester matrix systems. 

The selected parameters for investigation were also used to examine the cure behaviour 

of vinyl ester matrix systems presented in Chapter 3. The assessment of transition 

behaviour of vinyl ester matrix systems includes the effects of: 

• The concentration of initiator. 

• The type of peroxide initiator. 

• The promotion regime. 

• The molecular weight of the oligomer. 

• The reactive monomer concentration. 

 

6.3.2.1. Influence of Initiator Concentration 

Cure investigations discussed earlier in Chapter 3 have shown that the cure behaviour of 

vinyl ester resins can be modified by altering the initiator addition level. Test data 

indicated a lower limit for initiator addition of around 1.5%. Above this level the cure 

behaviour appears relatively consistent. However the use of addition rates above 2.5% 

resulted in decreases to the glass transition temperature.  

This investigation sought to understand the impact of these variations in cure behaviour, 

specifically the influence of initiator concentration on the transition behaviour of vinyl 

ester resins.  
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Specimens of Hetron 922 PAW cured with increasing initiator levels of Butanox M-60 

from 1.0% to 5.0% were prepared. While the earlier cure characterisation work also 

investigated addition rates of 0, 0.25 and 0.5%, these were discounted for the current 

study due to their alternative cure behaviour exhibited in Chapter 3. Key transition data 

from post-cured samples of each addition rate are summarised in Table 6.5. The 

complete storage modulus transition curves for the post-cured samples are presented in 

Appendix E. Transition curves for the post-curing cycle are also given in Appendix E. 

 

Table 6.5  Key transition data of Hetron 922 PAW vinyl ester with varying initiator 

levels. 

Resin Hetron 922 PAW Initiator Butanox M-60 

Pre-Transition Behaviour Glass Transition Behaviour 
Initiator 

Addition 

Level     

(%) 

E’ 

40°C 

(MPa) 

E’ 

80°C 

(MPa) 

E’ 

Loss   

(%) 

Rate of E’ 

Loss 

(MPa/°C) 

Tg 

(°C) 

E’         

Tg      

(MPa) 

E’ 

Loss   

(%) 

Peak Rate 

of Loss 

(MPa/°C) 

1.0 3090 2624 15 11.6 117 885 71 140 

1.5 3050 2586 15 11.7 115 926 70 151 

2.0 3050 2577 16 11.9 111 1017 67 151 

2.5 2835 2398 15 10.9 109 932 67 129 

3.0 3203 2481 23 17.9 102 959 70 128 

4.0 2594 2135 18 11.3 99 975 62 117 

5.0 2992 2184 27 18.8 92 1082 64 122 

 

As can be observed from the data in Table 6.5, the pre-transition behaviour appears 

stable up to an initiator addition rate of around 2.5%, with consistent initial storage 

modulus values at 40°C and a relatively uniform loss in storage modulus of 15 to 16% 

when the sample is heated to 80°C. This similarity is further highlighted in the average 

rate of loss over the 40 to 80°C temperature range. 
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Above a 2.5% initiator concentration, storage modulus losses were significantly greater 

than the 15% seen at the lower initiator addition rates (Figure 6.4). While the data does 

display some significant scatter, the overall trend is still clear enough to question the use 

of higher addition rates.  

Increases in the initiator concentration also led to significant decreases in the glass 

transition temperature as determined from the inflection point of the storage modulus 

curve (Figure 6.5). This drop is evident across the range of addition levels studied and 

progresses in a relatively linear relationship with increasing initiator addition rates.  

A similar trend was observed during the cure investigations (Chapter 3) and is attributed 

to an increasing content of non-reactive material (eg: phlegmatiser) within the cured 

network. This material decreases the crosslink density of the network, thereby degrading 

the elevated temperature properties. 

In an apparent contradiction to earlier results, the loss in storage modulus associated 

with reaching the glass transition temperature actually decreased with increasing initiator 

concentration (Table 6.5). The magnitude of the storage modulus at the Tg also 

increased with increasing initiator levels. However, while this may appear to indicate a 

more desirable transition behaviour, such a conclusion would be erroneous. The reduced 

modulus loss is only due to the lower temperature range of the glass transition associated 

with higher initiator concentrations. Consideration of the storage modulus at a given 

service temperature (eg: 100°C) shows that the loss of modulus at that temperature still 

increases with increasing initiator content.  

Thus it can be reasonably concluded that the addition of higher initiator levels to a resin 

system will have a detrimental effect on mechanical performance in terms of both pre-

transition behaviour, as well as the temperature range over which the glass transition 

occurs. 
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Figure 6.4 Relationship of the pre-transition loss of storage modulus between 40°C and 

80°C of Hetron 922 PAW vinyl ester with varying initiator concentration. 
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Figure 6.5 Relationship of the glass transition temperature of Hetron 922 PAW with 

varying initiator concentration. 
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6.3.2.2. Influence of Peroxide Initiator Type 

Cure investigations discussed in Chapter 3 have shown that different initiator types and 

solutions produce different cure behaviours. The results indicated that MEKP based 

initiator solutions (Butanox M-60, MEKP-SR) produced a more rapid cure compared to 

CHP initiators (Trigonox 239, CHP 90) with a relatively consistent cure behaviour.  

This investigation was undertaken to examine the influence of the cure achieved using 

different peroxide initiator types on the transition behaviour of vinyl ester resins.  

Specimens of Hetron 922 PAW cured with alternative initiator types at a 2% 

concentration were prepared. Key transition data from post-cured samples of each 

initiator are summarised in Table 6.6. The complete storage modulus transition curves 

for the post-cured samples and for the post-curing cycle are presented in Appendix E.  

Table 6.6 Key transition data of Hetron 922 PAW vinyl ester with varying initiator 

types. 

Resin Hetron 922 PAW Initiator Addition Level 2% 

Pre-Transition Behaviour Glass Transition Behaviour 

Initiator E’ 

40°C 

(MPa) 

E’ 

80°C 

(MPa) 

E’ 

Loss   

(%) 

Rate of E’ 

Loss 

(MPa/°C) 

Tg   

(°C) 

E’     

Tg     

(MPa) 

E’   

Loss   

(%) 

Peak Rate 

of E’ Loss 

(MPa/°C) 

Butanox 
M-60 

3050 2577 16 11.9 111 1017 67 151 

MEKP-
SR 

3108 2579 17 13.3 109 1034 67 139 

Trigonox 
239 

2858 2379 17 11.6 111 966 66 129 

CHP 90 2752 2343 15 10.2 113 968 65 131 

 

As observed from the data in Table 6.6, the different initiator types produced different 

pre-transition behaviours. The pre-transition behaviour of the samples initiated with 

MEKP solutions were similar with consistent storage modulus values at 40°C and 80°C. 
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The CHP initiated samples also exhibited similar storage modulus values for each of the 

solutions but were lower when compared to the MEKP specimens.  

All samples had similar glass transition temperatures and comparable losses in modulus 

when heated to the Tg. However the storage modulus at the Tg was higher for the 

MEKP initiated samples and is attributed to the comparably higher modulus values at 

40°C.  

For Trigonox 239, the DMA was completed on three specimens to achieve consistent 

results and a stable transition behaviour. The initially inconsistent results were attributed 

to the uneven and generally poor surface quality of these specimens. The final specimen 

from which the consistent results were obtained was sanded smooth prior to testing. 

Although ultimately exhibiting a comparable transition behaviour, the apparent 

inconsistency in the results of the Hetron 922 PAW samples cured with Trigonox 239 

may preclude its use. 

Overall the use of the MEKP initiators produced a slightly superior mechanical 

performance over the temperature range of the pre-transition and glass transition.  

 

6.3.2.3. Influence of Accelerator Level 

Cure investigations discussed in Chapter 3 established that the presence of an accelerator 

was required to produce stable cure behaviour with a minimum 0.1% cobalt level used 

in these investigations. It was also surmised that an upper limit to the level of accelerator 

may exist, above which the cure reaction appeared retarded and the glass transition 

temperatures lowered by the higher concentrations of cobalt.  

This investigation was undertaken to examine the influence of the cure achieved using 

alternative accelerator levels on the transition behaviour of vinyl ester resins. Specimens 

of Hetron 914 accelerated with cobalt at 0.1, 0.2, 0.3 and 0.4% and initiated with 2% 

Butanox M-60 were prepared. Key transition data from post-cured samples of each 

accelerator level are summarised in Table 6.7. The complete storage modulus transition 

curves for the post-cured samples and post-curing cycles are presented in Appendix E.  

A second transition was observed in the storage modulus curves of the post-curing cycle 

for each of the samples. This second transition was attributed to the heat from the 
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thermal cycle progressing the cure of each of the samples after being only partially cured 

at ambient. The molecular mobility of the network is increased as the temperature is 

raised which allows the cure to continue, increasing the degree of conversion and 

crosslink density and thus improving the modulus of the network as it approaches full-

cure. Once the temperature is raised above the Tg, the storage modulus again lowers as 

the material passes through the transition. A similar behaviour was observed by 

Cook et al. [3]. 

Table 6.7  Key transition data of Hetron 914 vinyl ester with varying accelerator levels. 

Resin Hetron 914 Initiator Butanox M-60 @ 2% 

Pre-Transition Behaviour Glass Transition Behaviour 
Accelerator 

Addition 

Level     

(%) 

E’ 

40°C 

(MPa) 

E’ 

80°C 

(MPa) 

E’ 

Loss   

(%) 

Rate of E’ 

Loss 

(MPa/°C) 

Tg    

(°C) 

E’      

Tg 

(MPa) 

E’   

Loss   

(%) 

Peak Rate 

of E’ Loss 

(MPa/°C) 

0.1 3032 2679 12 9.0 146 840 72 58 

0.2 3131 2672 15 11.6 143 853 73 58 

0.3 3173 2688 15 12.1 140 869 73 61 

0.4 3511 3028 14 12.0 141 951 73 66 

 

As observed form the data in Table 6.7, the pre-transition behaviour appears to stabilise 

above a level of 0.2% cobalt illustrated by the uniform loss in storage modulus of ≈15% 

when heated to 80°C and similar rates of loss of storage modulus over the 40 to 80°C 

temperature range (Figure 6.6). The storage modulus values of the 0.4% sample were 

comparably higher however the temperature performance through the transition was 

similar. 

Increases in the cobalt levels led to decreases in the glass transition temperature (Figure 

6.7). A similar trend was observed in DSC investigations and was attributed to non-

reactive material in the cobalt solution degrading the network properties.  
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Figure 6.6 Relationship of the pre-transition rate of loss of storage modulus between 

40°C and 80°C of Hetron 914 vinyl ester with varying cobalt accelerator level. 
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Figure 6.7 Relationship of the glass transition temperature of Hetron 914 vinyl ester 

with varying cobalt accelerator level. 
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The temperature performance through the glass transition was stable for each cobalt 

level with similar losses in storage modulus to the glass transition temperature (Table 

6.7). The peak rate of loss of storage modulus through the glass transition increased as 

the level of cobalt was increased however the highest rate corresponding to the 0.4% 

cobalt may only be relative to the higher initial storage modulus of this sample.  

Overall for the range of cobalt levels examined, the results suggest a cobalt level of 0.2% 

to produce a stable pre-transition behaviour with increases above this level lowering the 

Tg and increasing the peak rate of loss through the glass transition. Further 

investigations over a wider range of addition levels are required to further examine the 

behaviour.  

 

6.3.2.4. Influence of the Oligomer Molecular Weight 

The influence of molecular weight on the cure behaviour was examined previously in 

Chapter 3 using both Hetron 922 PAW and Hetron 914. Test data indicated the 

predominant influence of oligomer molecular weight was on the network properties 

with a lower molecular weight resulting in higher glass transition temperatures.  

This investigation was undertaken to examine the influence of the molecular weight of 

the oligomer on the transition behaviour of vinyl ester resins. 

Key data for Hetron 922 PAW specimens cured with each of the four initiator types was 

presented earlier in Table 6.6. An accelerator level of 0.2% cobalt for the Hetron 914 

was used based on recommendations made in Chapter 3. An initiator addition level of 

2% was maintained for each of the four initiator types. Key transition data from post-

cured samples of each initiator type are summarised in Table 6.8. The complete storage 

modulus transition curves for the post-cured samples are presented in Appendix E. 

Transition curves for the post-curing cycle are also given in Appendix E. 
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Table 6.8  Key transition data of Hetron 914 vinyl ester with alternative initiator types. 

Resin Hetron 914 (0.2% Cobalt) Initiator Addition Level 2% 

Pre-Transition Behaviour Glass Transition Behaviour 

Initiator E’ 

40°C 

(MPa) 

E’ 

80°C 

(MPa) 

E’ 

Loss   

(%) 

Rate of E’ 

Loss 

(MPa/°C) 

Tg   

(°C) 

E’     

Tg 

(MPa) 

E’ 

Loss   

(%) 

Peak Rate 

of E’ Loss 

(MPa/°C) 

Butanox 
M-60 

3131 2672 15 11.6 143 853 73 58 

MEKP-
SR 

3175 2724 14 11.2 147 826 74 60 

Trigonox 
239 

3374 2916 14 11.5 149 920 73 70 

CHP 90 3059 2699 12 9.2 151 852 72 67 

 

Other than for CHP 90, the pre-transition behaviour of each sample appeared stable 

with consistent storage modulus values at 40°C and comparable losses in modulus of 

≈15% and rates of loss of storage modulus associated with heating the samples to 80°C. 

The pre-transition behaviour of the CHP 90 sample was marginally improved. Notably 

the specimen quality of the Trigonox 239 initiated Hetron 914 samples was markedly 

improved when compared to Hetron 922 PAW.  

The glass transition temperature for the Hetron 914 samples of ≈145°C is considerably 

higher than those for the Hetron 922 PAW samples of ≈110°C (Figure 6.8). The pre-

transition behaviour of both resins is generally quite similar even though the Tg values 

are different. The higher glass transition temperatures is attributed to the significantly 

lower molecular weight of the Hetron 914 vinyl ester [13] compared to Hetron 922 

PAW, producing a network with a higher crosslink density. The low mobility of the 

increased crosslink density network results in higher glass transition temperatures with 

similar results reported by Li [4] and Burts [7]. The lower styrene content of the Hetron 

914 would also contribute to the higher crosslink density of the cured network with 

further investigations required to isolate the relative influences.  
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Figure 6.8 Relationship of the glass transition temperature of different molecular weight 

vinyl ester resins cured with alternative peroxide initiators. 
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The behaviour through the transition of the Hetron 914 samples was quite stable with 

consistent storage modulus values after heating to the glass transition temperature and 

comparable rates of storage modulus loss through the transition (Table 6.8).  

The loss in modulus to the Tg was marginally higher for the Hetron 914 specimens at 

≈73% compared to ≈67% for Hetron 922 PAW. The peak rate of loss of modulus 

through the glass transition for Hetron 914 was significantly lower at ≈65MPa/°C 

compared to ≈140MPa/°C for Hetron 922 PAW. The lower molecular weight 

Hetron 914 maintains its properties and remains functional to considerably higher 

temperatures due to its higher Tg with the associated rate of loss of mechanical 

properties through the transition considerably lower (Figure 6.9). 
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Figure 6.9 Storage modulus transition curves for vinyl ester resins of different molecular 

weight. 

 

The lower molecular weight oligomer (and lower styrene content) led to higher glass 

transition temperatures with broader transition behaviours. Although these networks 

had a lower peak rate of loss through the glass transition, the higher glass transition 
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temperature meant that the mechanical properties were maintained to significantly 

higher temperatures.  

 

6.3.2.5. Influence of Styrene Concentration 

The styrene concentration was observed to have only minimal influence on the cure 

behaviour but did effect the properties of the cured network in cure investigations 

discussed in Chapter 3. This investigation was undertaken to examine the influence of 

the styrene levels on the transition behaviour of vinyl ester resins.  

Specimens of Hetron 922 PAW were prepared by adding extra styrene monomer to the 

resin at levels up to 15% by weight. All samples were cured using Butanox M-60 at an 

addition level of 2%. Key transition data from post-cured samples for each styrene 

concentration are summarised in Table 6.9. The complete storage modulus transition 

curves for the post-cured samples and the post-curing cycle are presented in Appendix E.  

Table 6.9  Key transition data of Hetron 922 PAW vinyl ester with varying styrene 

addition levels. 

Resin Hetron 922 PAW Initiator Butanox M-60 @ 2% 

Pre-Transition Behaviour Glass Transition Behaviour 
Styrene 

Addition 

Level     

(%) 

E’ 

40°C 

(MPa) 

E’ 

80°C 

(MPa) 

E’ 

Loss   

(%) 

Rate of E’ 

Loss 

(MPa/°C) 

Tg 

(°C) 

E’      

Tg 

(MPa) 

E’ 

Loss   

(%) 

Peak Rate 

of Loss of 

Modulus 

(MPa/°C) 

0 3050 2577 16 11.9 111 1017 67 151 

2 3067 2567 16 12.5 109 1046 66 140 

5 3092 2536 18 13.7 111 927 70 131 

10 2970 2366 20 14.9 107 913 69 128 

15 2993 2416 19 14.2 108 925 69 132 
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As can be observed from the data in Table 6.9, increasing the level of styrene within the 

system appeared to degrade the pre-transition behaviour by lowering the storage 

modulus at 40°C and increasing the loss in storage modulus and associated rate of loss 

in storage modulus (Figure 6.10) when heating the specimens to 80°C.  

No significant changes in the glass transition temperature were observed as the styrene 

concentration was increased. It was expected that as the styrene concentration was 

increased the Tg would decrease due to a lowering crosslink density [4,7]. The 

investigation on molecular weight influences highlighted the significant influence of 

crosslink density on material properties. Auad et al. [12] found increases in styrene 

content lowered the Tg however the applied concentrations ranged from 3.4 to 80%. 

For this investigation the range of concentrations was significantly narrower from 45 to 

60%. By broadening the range of investigated levels, the influences of styrene 

concentration may become more apparent.  

However Li et al. [5] found the glass transition temperature decreased with increasing 

styrene concentration for vinyl ester resins with low molecular weight oligomers, 

however no significant influence on the Tg of high molecular weight oligomers. 

Scott et al. [2] also found no consistent decrease in Tg with increasing styrene 

concentration reporting a more significant contribution of the resin backbone on the Tg.  

The loss in storage modulus to the glass transition temperature was quite consistent as 

the styrene concentration was increased (Table 6.9). However observing the magnitude 

of the storage modulus, the storage modulus value at the Tg generally decreased as the 

styrene concentration was increased. Although no significant changes in the Tg or 

modulus loss were observed, the peak rate of loss through the transition also decreased as 

the styrene concentration was increased.  

The results indicate that the temperature performance is lowered as the styrene 

concentration is increased. These results also highlight how by considering the Tg in 

isolation, changes in material behaviour may be overlooked. Only by examining the 

actual mechanical performance through the transition can changes in material behaviour 

due to the elevated temperatures be detected. 
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Figure 6.10 Relationship of the rate of storage modulus loss between 40°C and 80°C of 

Hetron 922 PAW vinyl ester with additional styrene. 
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6.3.3. TEMPERATURE PERFORMANCE AFTER AN AMBIENT  

TEMPERATURE CURE 

This section examines the requirement of an elevated temperature post-cure to fully 

develop the properties of the vinyl ester matrix systems. Samples used for this analysis 

are those used to investigate the influence of the initiator concentration on the transition 

behaviour. The alternative interpretations of the glass transition temperature for the first 

post-curing cycle and second scans of a post-cured sample for each of the investigated 

parameters are tabulated in Appendix E. 

The glass transition temperatures of Hetron 922 PAW samples from the post-curing 

cycle and of a post-cured sample are shown in Table 6.10. Irrespective of the 

interpretation of the glass transition temperature, the Tg values are higher after exposure 

to an elevated temperature post-cure. The elevated temperature increases the mobility of 

the molecular chains which progresses the cure and increases the degree of conversion of 

the network which subsequently increases the glass transition temperature [3]. The 

differences in transition behaviour between samples cured at ambient temperature and 

after an elevated temperature post-cure is shown in Figure 6.11. 

Table 6.10 Ambient and post-cure glass transition temperatures of Hetron 922 PAW 

vinyl ester with varying initiator concentration. 

Glass Transition Temperature (°C) 

Point of Inflection Peak Loss Modulus  Peak Tan δ  

Initiator 

Addition 

Level 

(%) 
First Run Second Run First Run Second Run First Run Second Run 

1.0 71 117 75 117 115 125 

1.5 73 115 77 115 111 123 

2.0 74 111 77 111 106 119 

2.5 74 109 79 109 100 117 

3.0 80 102 82 103 96 113 

4.0 74 99 74 99 89 107 

5.0 76 92 78 92 90 101 
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Figure 6.11 Transition behaviour of ambient temperature cured and elevated temperature 

post-cured Hetron 922 PAW vinyl ester cured with 2.0% Butanox M-60. 

 

The changes in storage modulus transition behaviour due to the post-cure are clearly 

evident. Table 6.11 presents key transition data that describe the mechanical 

performance to compare the transition behaviour after ambient temperature cure and 

after an elevated temperature post-cure.  

The initial storage modulus values of the ambient temperature cured samples were 

increased after post-cure. The rate of loss of storage modulus in the pre-transition of the 

ambient cured specimens was significantly higher with the upper bound of the range 

actually exceeding the glass transition temperature of most specimens. The peak rate of 

loss of storage modulus through the transition was generally higher for each specimen 

after post-cure. 

The results illustrate the relatively poor temperature performance of the ambient cured 

specimens and emphasise the requirement of an elevated temperature post-cure to 

achieve good network properties and superior elevated temperature performance. 
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Table 6.11  Key transition data of ambient and post-cured Hetron 922 PAW vinyl ester 

with varying initiator levels. 

Resin Hetron 922 PAW Initiator Butanox M-60 

Ambient Temperature Cure Elevated Temperature Post-Cure 

Initiator 

Addition 

Level      

(%) 

E’  

40°C 

(MPa) 

Rate of E’ 

Loss         

40°C –80°C 

(MPa/°C) 

Peak Rate 

of E’ Loss 

(MPa/°C) 

E’      

40°C 

(MPa) 

Rate of E’ 

Loss          

40°C –80°C 

(MPa/°C) 

Peak Rate 

of E’ Loss 

(MPa/°C) 

1.0 2145 47.5 74 3090 11.6 140 

1.5 2378 47.0 83 3050 11.7 151 

2.0 2416 47.4 92 3050 11.9 151 

2.5 1831 35.7 60 2835 10.9 129 

3.0 2644 42.1 90 3203 17.9 128 

4.0 2285 50.8 93 2594 11.3 117 

5.0 2565 47.5 119 2992 18.8 122 

 

These results also indicate that the general industry standard 80°C post-cure 

temperature, which was utilised to post-cure the test specimens fabricated for the 

investigation presented in Chapter 5, may result in inferior network and subsequent 

material properties and poor elevated temperature performance.   

 

6.3.4. TRANSITION BEHAVIOUR OF FILLED VINYL ESTERS 

The findings regarding the transition behaviour of unfilled vinyl ester matrix systems 

were outlined in Section 6.3.2. This investigation draws on these findings to examine 

the transition behaviour of vinyl ester / cenosphere composites. The influence of the 

molecular weight of the oligomer on the transition behaviour of vinyl ester resins was 

shown to be significant. The influence of the filler addition level is obviously an 

important parameter when considering the behaviour of composite systems. The 
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assessment of transition behaviour of vinyl ester / cenosphere composites includes the 

effects of: 

• The filler addition level.  

• The molecular weight of the oligomer.  

 

6.3.4.1. Influence of Filler Volume Fraction 

This investigation was undertaken to examine the influence of the filler volume fraction 

on the transition behaviour and temperature performance of vinyl ester / cenosphere 

composite systems.  

Samples of Hetron 922 PAW were prepared with increasing filler volume fractions from 

0 to 50%. All samples were cured using Butanox M-60 at an addition level of 2%. Key 

transition data from the post-cured samples for each filler volume fraction are 

summarised in Table 6.12. The complete storage modulus transition curves for the post-

cured samples and the post-curing cycle are presented in Appendix E.  

Table 6.12  Key transition data of Hetron 922 PAW vinyl ester with varying filler volume 

fraction. 

Resin Hetron 922 PAW Initiator Butanox M-60 @ 2% 

Pre-Transition Behaviour Glass Transition Behaviour 
Filler 

Addition 

Level     

(%) 

E’ 

40°C 

(MPa) 

E’ 

80°C 

(MPa) 

E’ 

Loss   

(%) 

Rate of E’ 

Loss 

(MPa/°C) 

Tg   

(°C) 

E’      

Tg 

(MPa) 

E’ 

Loss   

(%) 

Peak Rate 

of E’ Loss 

(MPa/°C) 

0 2768 2382 14 9.7 110 960 65 131 

10 3272 2710 17 14.1 109 1131 65 145 

20 3237 2771 14 11.6 111 1144 65 156 

30 3083 2541 18 13.3 109 989 68 124 

40 3372 2932 13 10.9 110 1248 63 143 

50 3347 2919 13 10.5 110 1320 61 133 
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As can be observed from the data in Table 6.12, no significant trends are evident in the 

pre-transition behaviour.  The relationship of the storage modulus values at 40°, 80°C 

and the glass transition temperature is shown in Figure 6.12. The relationship at each 

temperature is consistent with quite similar losses in storage modulus experienced as the 

temperature was increased.  

Increases in the addition of filler generally stiffened the composite systems (Figure 6.12). 

Improvements in stiffness characteristics of Hetron 922 vinyl ester / cenosphere 

composite systems with increasing filler content were reported in Chapter 5. 

The inclusion of filler showed little effect on the glass transition temperature (Table 

6.12). The peak rate of storage modulus loss through the transition appeared relatively 

consistent as the filler content was increased.   

The relationship of the average flexural modulus properties of Hetron 922 PAW vinyl 

ester / cenosphere composites determined by the investigation presented in Chapter 5 

and the storage modulus at 40°C for similar systems is shown in Figure 6.13. The 

storage modulus values are lower and as the filler volume fraction was increased the 

difference between the two properties increased.  

This investigation has shown the loss of modulus for only small increases in temperature 

so it is reasonable for the storage modulus values at 40°C to be lower than flexural 

modulus properties which were typically determined at ambient temperatures (≈25°C).  

However the increasing difference between the modulus values as the filler volume 

fraction increases suggests the influence of other factors potentially a combination of 

dynamic and size effects whose influence becomes more prominent at higher filler 

volume fractions. Further investigations are required to quantify these relationships. 
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Figure 6.12 Relationship of the storage modulus of Hetron 922 PAW vinyl ester at 40°C, 

80°C and the glass transition temperature with increasing filler volume 

fraction. 
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Figure 6.13 Relationship of the flexural and storage modulus (40°C) of Hetron 922 PAW 

vinyl ester with increasing filler volume fraction.  
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6.3.4.2. Influence of the Oligomer Molecular Weight 

This investigation was undertaken to examine the influence of the oligomer molecular 

weight on the transition behaviour of vinyl ester / cenosphere composite systems. Both 

Hetron 922 PAW and Hetron 914 were used for this work with a focus on the influence 

of the different molecular weights.  

Key transition data for Hetron 922 PAW specimens with varying filler volume fractions 

was presented previously in Table 6.12 with the storage modulus transition curves in 

Appendix E. Hetron 914 specimens were prepared with increasing filler volume 

fractions from 0 to 50%. The Hetron 914 was accelerated with 0.2% cobalt and all 

samples cured using Butanox M-60 at an addition level of 2%. Key transition data from 

post-cured samples for each filler volume fraction are summarised in Table 6.13. The 

complete storage modulus transition curves for the post cured samples are presented in 

Appendix E. Transition curves for the post-curing cycle are also given in Appendix E. 

Table 6.13 Key transition data of Hetron 914 vinyl ester with varying filler volume 

fraction. 

Resin Hetron 914 (0.2% Cobalt) Initiator Butanox M-60 @ 2% 

Pre-Transition Behaviour Glass Transition Behaviour 
Filler 

Addition 

Level     

(%) 

E’ 

40°C 

(MPa) 

E’ 

80°C 

(MPa) 

E’ 

Loss   

(%) 

Rate of E’ 

Loss 

(MPa/°C) 

Tg   

(°C) 

E’      

Tg 

(MPa) 

E’ 

Loss   

(%) 

Peak Rate 

of E’ Loss 

(MPa/°C) 

0 3178 2621 18 13.9 140 849 73 58 

10 3338 2872 14 11.6 141 959 71 64 

20 3408 2932 14 11.9 141 989 71 66 

30 3842 3377 12 11.6 141 1239 68 79 

40 3471 3091 11 9.5 142 1174 66 70 

50 4398 3939 10 11.4 140 1573 64 86 
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Although producing a more random effect on the pre-transition behaviour of Hetron 

922 PAW, the addition of filler appeared to improve the behaviour of Hetron 914 

generally reducing the loss and rate of loss of storage modulus between 40°C and 80°C 

(Figure 6.14). This may be due to the formation of a denser network from the higher 

crosslink density and filler restricting the mobility of the chains. The crosslink density of 

the Hetron 922 PAW matrix may be too low for the filler to have any significant effect. 

The glass transition temperature of the Hetron 914 vinyl ester / cenosphere composites 

was consistently ≈140°C compared to ≈110°C for Hetron 922 PAW systems (Figure 

6.15). This is attributed to an increased crosslink density due to the lower molecular 

weight and lower styrene content of the Hetron 914. The consistent results for both 

resins suggest that the glass transition temperature of the composite systems may be 

independent of the filler volume fraction. This would appear reasonable as the glass 

transition temperature is a property of the amorphous polymer resin matrix and the 

addition of the inert filler does not effect the molecular structure of the resin. 

The addition of the filler also improved the glass transition behaviour by lowering the 

loss of modulus to the Tg (Table 6.13). This is in contrast to the behaviour observed for 

Hetron 922 PAW. This may suggest that the inclusion of filler with lower molecular 

weight oligomer vinyl ester resins improves the performance but for higher molecular 

weight oligomer vinyl ester resins the influence is negligible. 

Of significance is the general increase in storage modulus of the composite systems as 

the filler volume fraction was increased. This trend also extends to the storage modulus 

at the glass transition temperature (Figure 6.16) with the behaviour observed for both 

resin types. Improvements in stiffness characteristics of Hetron 922 vinyl ester / 

cenosphere composite systems with increasing filler content were reported in Chapter 5.  

Although the addition of filler showed negligible effects on the glass transition 

temperatures, the observed behaviour suggests that the transition behaviour of vinyl ester 

matrix systems is improved through the addition of filler and the temperature 

performance of composite systems is superior to the neat resin matrices. 
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Figure 6.14 Relationship of the storage modulus loss between 40°C and 80°C of vinyl 

ester / cenosphere composites with increasing filler volume fraction. 
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Figure 6.15 Relationship of the glass transition temperature of vinyl ester / cenosphere 

composites with increasing filler volume fraction. 
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Figure 6.16 Relationship of the storage modulus at the glass transition temperature of 

vinyl ester / cenosphere composites with increasing filler volume fraction.  
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6.4. SUMMARY AND CONCLUSIONS 

This Chapter has investigated constituent influences on the transition behaviour of vinyl 

ester matrix systems and vinyl ester / cenosphere composites under elevated 

temperatures. The development of properties in cured networks and the temperature 

performance were examined by analysing the glass transition temperatures and transition 

curves using dynamic mechanical analysis (DMA) techniques. 

The glass transition temperature values often interpreted from DMA results (loss 

modulus peak, tan δ peak) were shown to be an inadequate representation of the 

elevated temperature performance. An alternative approach to gauging the temperature 

performance of systems using DMA was suggested. The approach encompassed 

monitoring the changes in mechanical performance that occur at elevated temperatures 

by examining the storage modulus transition behaviour and the associated glass 

transition temperature (point of inflection). The adopted approach is directed more 

towards meeting the requirements of engineering. 

Using alternative interpretations of the glass transition temperature yields different Tg 

values which suggests that Tg values determined using DMA techniques should be 

accompanied by a qualifying statement providing the utilised interpretation. 

The changes in mechanical behaviour in the pre-transition between 40°C and 80°C and 

through the glass transition were analysed. The results are summarised as follows: 

 The influence of initiator concentration on the elevated temperature performance 

was examined with the losses in storage modulus in the pre-transition behaviour 

increasing significantly above an initiator concentration of 2.5%. Higher initiator 

levels also detrimentally affected the mechanical performance through the glass 

transition.  The glass transition temperature decreased almost linearly as the initiator 

concentration was increased.  

 Both the MEKP initiator solutions and both the CHP initiator solutions produced 

similar transition behaviours. Overall the MEKP initiated samples possessed higher 

storage modulus values and a superior transition behaviour. The use of the Trigonox 

239 initiator solution produced samples with a poor surface quality which led to 

inconsistent results. Although stable transition values were finally determined, the 
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use of this initiator to cure Hetron 922 PAW based products should be carefully 

considered. 

 A minimum cobalt accelerator level of 0.2% was shown to produce a stable pre-

transition behaviour with increases above this concentration degrading the network 

properties, lowering the glass transition temperature. 

 The crosslink density of networks was found to be a significant contributing factor 

on the glass transition temperature and transition behaviour. Increasing the crosslink 

density by using a resin with a lower molecular weight and lower styrene 

concentration typically improved elevated temperature performance. The pre-

transition behaviour was similar however the glass transition occurred at significantly 

higher temperatures with the associated rate of loss of mechanical properties at these 

temperatures significantly lower.  

 The results indicate that the temperature performance is lowered as the styrene 

concentration is increased. Although no significant changes in the glass transition 

temperature were observed with an increase in styrene content the results highlight 

how by considering the Tg in isolation, changes in material behaviour may be 

overlooked. Only by examining the actual mechanical performance through the 

transition can changes in material behaviour due to the elevated temperatures be 

detected. 

 The necessity of an elevated temperature post-cure above the glass transition 

temperature to develop optimal network properties and subsequent superior elevated 

temperature performance was established. 

 The temperature performance of vinyl ester / cenosphere composites was superior to 

the neat resin matrix systems. Although possessing similar glass transition 

temperatures, increases in the filler volume fraction generally led to higher storage 

modulus values at the Tg.  

 The improvements in temperature performance were significantly higher for the 

more highly crosslinked networks when the lower molecular weight oligomer resin 

was used. Improvements in the pre-transition and glass transition behaviour were 

observed. 
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The established requirement of a post-cure temperature above the glass transition 

temperature also indicated that the general industry recommended 80°C post-cure 

temperature utilised to post-cure the test specimens (Hetron 922 PAW vinyl ester based 

composites, Tg ≈ 110°C) fabricated for the investigation presented in Chapter 5, would 

not result in optimal network and subsequent material properties. The consequence of 

incomplete cure obtained by standard industry cure procedures should be seriously 

evaluated for each application.   

The advantages of monitoring the changes in mechanical behaviour at elevated 

temperatures suggest that the heat distortion temperature or HDT (see Section 2.4.6) 

may be a more appropriate indicator of elevated temperature performance than the glass 

transition temperature.  

From a design perspective, the use of a single glass transition temperature value has 

advantages. Therefore it may be suggested that both of these properties are still quite 

important with the Tg used to determine appropriate post-cure temperatures and the 

HDT as an indicator of elevated temperature performance.  
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CHAPTER 7.         

        

 CONCLUSIONS 

7.1. OVERVIEW 

Particulate reinforced composites are at a relatively early stage of development. With a 

range of constituent material options available to optimise performance, vinyl ester / 

cenosphere composites may offer considerable flexibility in design and application to 

civil engineering structures. An understanding of the fundamentals of behaviour should 

be developed by examining systems based on standard materials before specialised 

performances are considered.  

To meet this requirement, the following criteria were identified and utilised to select 

constituent materials for this investigation: 

 A standard grade vinyl ester resin that offers a good balance of mechanical and 

physical performance while remaining cost-effective.  

 Alternative grade of vinyl ester resin with a basic oligomer type modification which 

may possess improved performances.  

 An ambient temperature cure system that offers considerable flexibility to cure VE 

resins using standard equipment in a range of conditions. 

 A class of cenospheres with a graded particle distribution and a range of particle 

sizes. 
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This foundational PhD study focussed on determining the existence (or lack) of 

relationships between parameters and fundamental behaviours rather than the precise 

nature of the relationships. Through completing over 500 individual tests and applying 

a variety of experimental techniques, this strategic investigation provides the platform to 

undertake more detailed investigations to further establish and verify these relationships. 

 

7.2. KEY FINDINGS 

This PhD study has examined the influence of a number of parameters on the behaviour 

of vinyl ester matrix systems and vinyl ester / cenosphere composites. The investigations 

have shown that complex interrelationships exist between the constituent materials and 

the behaviour of the system. The findings of this research are numerous and diverse. 

The investigated parameters and behaviours with the associated key findings are 

summarised in Table 7.1. References to the relevant Sections of this dissertation 

corresponding to the findings are provided. 

The influence of the parameters on the performance of vinyl ester matrix systems and 

vinyl ester / cenosphere composites were examined under two broad performance 

categories: 

1. Processing Performance including:  

•  Cure Characteristics 

•  Viscosity Behaviour 

•  Shrinkage Behaviour 

 

2. Product Performance including: 

•  Mechanical Properties 

•  Temperature Performance 

The influence of the parameters in the shaded cells in Table 7.1 were considered 

primarily on the behaviour of vinyl ester matrix systems with the other parameters 

focussed towards addressing composite system behaviour in addition to the resin system. 



  - 219 - 

The relationships between the parameters and behaviours in the cells of Table 7.1 

marked with an “X” were not addressed as part of this investigation. 

The relationships between the behaviours are significant demonstrating the necessity to 

collectively consider the relative influences of parameters on the behaviours (Table 7.1). 

From an engineering perspective, the systems must meet the requirements of the desired 

application. This implies the consideration of the end product performance then 

adapting the processing performance to meet these requirements.   
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Table 7.1 Key Findings from Investigations of the Influence of Selected Parameters on Fundamental Behaviour.  

  Processing & 

Curing 

Temperatures 

Initiator 

Concentration 

(MEKP) 

Initiator Type      

(MEKP and CHP) 

Accelerator Level 

(Cobalt) 

Oligomer 

Molecular Weight 

Styrene 

Concentration 

Filler 

(E-Spheres SLG) 

Remarks 

Cure 

Characteristics 

 Elevated 
temperatures 
required to 
complete reaction 

 

 1.5% min. 
for stable 
behaviour 

 above 2.5% 
reduction in 
Tg 

MEKP – initial kick 

 higher reactivity 

 rapid cure 

CHP – delayed onset 

 lower reactivity 

 required for 
stable cure at 
ambient 

 0.2% rapid cure 

 higher levels - 
retard reaction, 
reduce Tg  

Lower MW -  

 more rapid cure 
reaction 

 considerably 
higher Tg 

 

 minimal cure 
influences 

 low  effect on Tg 
due to high MW 
resin 

 

 lowers reaction intensity 

 reduces peak temperatures 

 extends reaction times 

 MEKP less sensitive to effects 
of filler 

Section 3.4  Section 3.3.1.1 Section 3.3.1.2 Section 3.3.1.3 Section 3.3.1.4 Section 3.3.1.5 Section 3.3.2 

 Considerable flexibility 
available to effect cure. 

 Important to achieve full 
cure. 

 

Viscosity 

Behaviour 

 Higher 
temperature, lower 
viscosity. X X X X 

 reduces viscosity 

 significant 
reduction at high 
filler levels 

 

 increases viscosity 

 significant increase at higher 
filler levels 

 ≈12000cp @50% filler, 
practical max. viscosity 

Section 4.4      Section 4.3.1.2 Section 4.3.1.1 

 Only higher MW resin 
investigated. 

 Initiator concentration not 
assessed but consideration 
noted. 

 Lower MW resin, lower 
viscosity. 

Shrinkage 

Behaviour 

 Shrinkage 
behaviour stabilises 
after post-cure at 
elevated temp. 

X X X 

Lower MW – 

 Should lead to 
higher shrinkage 
but styrene 
greater influence. 

 neat resin - no 
significant effect 

 filled resin – 
slightly increased 
shrinkage 

 initial shrinkage variable – 
attributed to vitrification 

 total shrinkage reduced by 
40% with 50% filler 

P
ro

ce
ss

in
g 

P
er

fo
rm

an
ce

 

Section 4.4 Section 4.3.2    Section 4.3.2.2 Section 4.3.2.3 Section 4.3.2.1 

 Measured shrinkage not 
fixed but indicative. 

 Actual shrinkage related to 
volume of sample.     
(Section 4.3.2.4) 

 Need examination of broader 
range of styrene levels. 

Mechanical 

Properties 

 Tg ambiguous for 
mechanical 
properties. 

 Requirement to 
understand 
relationships.  

X X X X X 

 reduced strength 

 increased stiffness 

 reduced Poisson’s ratio 

 degree of influence depends on 
loading (tension, compression) 

Section 5.4 Section 6.3      Section 5.3.2, Section 5.3.3 

 Linear behavioural 
relationships suggested. 
(Section 5.3.4) 

 Superiority of machining 
method of tensile specimen  
preparation. (Section 5.3.1) 

Temperature 

Performance 

 Dependent on 
thermal history.  

 2.5% max. 
for stable pre-
transition 

 above 2.5%, 
reduction in 
Tg  

 no significant effect on 
transition behaviour 

 variability in CHP 
results 

 no significant effect on 
Tg  

 0.2% min. for 
stable pre-
transition 

 above 0.2%, 
reduction in Tg 

 

Lower MW –  

 considerably 
higher Tg 

 broader glass 
transition 

 degraded pre-
transition 

 no significant 
effect on Tg 

 

Higher MW – 

  no significant influence 

Lower MW –  

 improved pre-transition 

 improved temp. performance 

P
ro

du
ct

 P
er

fo
rm

an
ce

 

Section 6.4 Section 6.3.3 Section 6.3.2.1 Section 6.3.2.2 Section 6.3.2.3 Section 6.3.2.4 Section 6.3.2.5 Section 6.3.4 

 Considerable variation in Tg 
using different methods. 
(Section 6.3.1) 

 Correlation between storage 
and flexural modulus. 
(Section 6.3.4.1) 

 Standard post-cure schedules 
may not be sufficient. 
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7.3. PRIMARY CONCLUSIONS 

A plethora of materials are available to form vinyl ester / cenosphere composites 

resulting in a range of performance outcomes to suit specific applications. The 

development of particulate reinforced composite systems functional as core materials for 

civil and structural engineering applications is relatively adolescent. This investigation 

has been constrained to a limited number of constituent materials primarily suitable for 

civil engineering applications as defined by previous research. Very little rigorous 

research has previously been conducted in this area. 

Complex relationships exist between the constituent materials and the behaviour of the 

composite system. Four key parameters (see Table 7.1) influence the end product 

performance and processing characteristics, namely:  

 Filler volume fraction 

 Molecular weight of the vinyl ester oligomer 

 Styrene concentration 

 Processing and curing temperatures 

Other important parameters (see Table 7.1) which primarily influence the processing 

performance of vinyl ester / cenosphere composites are: 

 Initiator concentration 

 Initiator type 

 Accelerator level 

These secondary parameters can be used to adjust finer aspects of processing 

performance once the key parameters have been defined. 

Approximate relationships between filler volume fraction and the physical characteristics 

were established, in particular: 

 Stiffness increases with filler content 

 Strength decreases with filler content 
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 Viscosity increases non-linearly with filler content 

Shrinkage behaviour is complex and varies with respect to the key performance 

parameters listed above. However the geometry of the specimen appears to have a 

significant effect on measured shrinkage values particularly as the sample volume 

increases. This suggests that the measured shrinkage values may only be an indicator of 

the overall shrinkage behaviour of a product. 

Similarly cure behaviour appears quite complex. Both the processing and product 

parameters can be significantly influenced by the thermal history of a specific product. 

While a range of techniques can be used as indicators of performance (eg: DMA, DSC) 

further development of an understanding of the fundamental influences on this complex 

behaviour and their application to the curing of actual products is required. 

This investigation of vinyl ester / cenosphere composites has shown particulate 

composite systems offer improved performances when compared to neat resin matrices 

in a range of areas. The characteristics of the matrix resin and the volume fraction of 

filler used significantly influence the performance outcomes as summarised in Table 7.1. 

The main advantages of particulate composite systems when compared to neat resins 

are:  

 Lower cost 

 Reduced cure reaction temperatures 

 Reduced total shrinkage  

 Increased stiffness characteristics 

 Improved temperature performance 

However this improved performance also has associated detrimental side effects 

including: 

 Increased viscosity 

 Reduced strength 
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A number of experimental techniques and procedures were utilised to complete this 

investigation examining the behaviour of vinyl ester matrix systems and vinyl ester / 

cenosphere composites.  

As part of the experimental program to characterise the mechanical properties of vinyl 

ester / cenosphere composites, two methods of fabrication of tensile test specimens were 

trialled. The machining method of manufacture of specimens (developed as part of this 

investigation) produced results of improved consistency and lower variation. 

Differential scanning calorimetry (DSC) was used as a relatively simple and quick 

method of examining the cure behaviour and development of network properties of 

vinyl ester matrix systems. Dynamic mechanical analysis (DMA) provided valuable 

information relating the actual changes in mechanical properties of materials when 

exposed to elevated temperatures. From an engineering perspective, this information 

appears to have considerably more value than the traditional measure of the glass 

transition temperature to gauge the elevated temperature performance.  

For the effective use of these materials an understanding of the processing and 

mechanical performance is required. These techniques may be readily applied to assess 

material performance relating to the cure behaviour and mechanical properties of 

polymer matrices and particulate composite systems. The techniques are not only rapid 

but provide detailed information applicable to engineering requirements. 

Meeting the requirements of civil engineering applications, requires simple and 

consistent experimental techniques that relate to physical properties of interest to 

structural and production engineers. A number of techniques currently used to quantify 

polymer behaviour are inconsistent with these requirements. Further development of 

these concepts to suit civil engineering applications may require adjustments to materials 

characterisation paradigms commonly available.  

The outcomes of this investigation have significantly improved the understanding of the 

processing and end performances of vinyl ester / cenosphere composite materials. This 

improved understanding may facilitate the continued development and integration of 

these systems into FRP composite structural solutions for civil engineering applications. 
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7.4. RECOMMENDATIONS FOR FUTURE RESEARCH 

This research has identified a number of relationships that relate constituent material 

parameters to fundamental behaviour of vinyl ester / cenosphere composite systems. 

More work is required to further develop and quantify these relationships. 

During the course of this PhD research a number of other issues have become apparent 

that warrant further investigation. The main topics for further investigation are 

categorised into those that are: 

1. Extensions of parametric investigations presented in this research. 

2. Significant relationships identified but beyond the scope of the current 

investigation. 

3. Production application investigations. 

 

7.4.1. EXTENSIONS OF CURRENT RESEARCH 

- An investigation to determine optimum initiator concentrations for other types of 

peroxide initiator and initiator solutions. 

- An investigation of the influence of cure conditions on the cure behaviour of vinyl 

ester matrix systems and vinyl ester / cenosphere composites. 

- A detailed investigation to isolate the relative influences of the oligomer molecular 

weight and styrene concentration on the cure behaviour of vinyl ester matrix systems 

and vinyl ester / cenosphere composites. 

- An investigation of the influence of high levels of cobalt accelerator on the cure 

behaviour and network properties of vinyl ester matrix systems. 

- An investigation to examine the influence of vitrification on the shrinkage behaviour 

of vinyl ester matrix systems and vinyl ester / cenosphere composites. 
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- A detailed investigation of the shrinkage behaviour of vinyl ester / cenosphere 

composites at high filler volume fractions including the examination of the potential 

influences of particle distribution within the composite.  

- An investigation of the failure mechanisms of vinyl ester / cenosphere composites (eg:  

matrix failure, filler failure). 

- A detailed investigation of the relationship between flexure performance and the 

tensile and compressive properties of the composite and its application to the design 

and analysis of structures. 

- An investigation of oligomer molecular weight and styrene influences on the 

mechanical properties of vinyl ester / cenosphere composites. 

 

7.4.2. ADDITIONAL FOUNDATIONAL INVESTIGATIONS 

- An investigation of alternative filler types on the viscosity behaviour of vinyl ester / 

cenosphere composites including the influence of: 

  Filler particle size  

  Filler particle size distribution 

- An investigation of the influence of particle / matrix adhesion on the mechanical 

properties of vinyl ester / cenosphere composites. 

- An investigation of the shear strength characteristics of vinyl ester / cenosphere 

composites. 

- An investigation of the toughness characteristics of vinyl ester / cenosphere 

composites including the influence of: 

  Filler type (particle size and particle size distribution) 

  Filler volume fraction 

  Resin type 
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- An investigation of the creep behaviour of vinyl ester / cenosphere composites 

including the influence of: 

  Filler type (particle size and particle size distribution) 

  Filler volume fraction 

  Resin type 

- Continued development of the use of DMA techniques and alternative indicators to 

gauge the elevated temperature performance of polymer matrices and composite 

systems.  

- The correlation of DMA results (transition behaviour and glass transition temperature) 

with the heat distortion temperature (HDT) of vinyl ester matrix systems and vinyl 

ester / cenosphere composites.  

 

7.4.3. PRODUCTION INVESTIGATIONS 

- An investigation of the influence of cure conditions and the cure system on the 

shrinkage behaviour of vinyl ester / cenosphere composites. 

- An investigation of post-cure procedures for composite products to ensure the 

adequate distribution of heat to progress the cure and facilitate the development of 

optimal network properties. 
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APPENDIX A.  

DIFFERENTIAL SCANNING CALORIMETRY (DSC) AND 

THERMOCOUPLE MONITORING RESULTS 

 

This Appendix contains the DSC curves of the first and second heating runs and the 

thermocouple monitoring results from the investigation of cure behaviour presented in 

Chapter 3. The investigated parameters are listed below and the results are presented 

overleaf. 

Cure Behaviour of Unfilled Vinyl Esters 

  Influence of Initiator Concentration 

  Influence of Peroxide Initiator Type 

  Influence of Accelerator Level 

  Influence of Oligomer Molecular Weight 

  Influence of Styrene Addition Level 

 

Cure Behaviour of Filled Vinyl Esters 

  Influence of Peroxide Initiator Type 

  Influence of Accelerator Level 

  Influence of Oligomer Molecular Weight 
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APPENDIX B.  

EXPERIMENTAL DATA AND RESULTS FOR THE 

DETERMINATION OF THE TENSILE PROPERTIES OF VINYL 

ESTER / CENOSPHERE COMPOSITES 

 

This Appendix contains supplementary information relating to the characterisation of 

tensile properties presented in Chapter 5. The relationship of the sample ID and filler 

volume fraction are shown in Table B.1. The “USQI” of the sample ID numbers 

identifies the samples as internal USQ research and the “01” the year the research was 

initiated (eg: 2001). This system of sample identification was used throughout the 

characterisation program of mechanical properties. 

  

Table B.1 Correlation of Sample ID with Filler Volume Fraction. 

Sample ID 

Filler Volume 

Fraction           

(%) 

Sample ID 

Filler Volume 

Fraction           

(%) 

USQI-01-038-_ 0 USQI-01-039-_ 40 

USQI-01-042-_ 10 USQI-01-040-_ 45 

USQI-01-043-_ 20 USQI-01-041-_ 50 

USQI-01-044-_ 30   
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Table B.2 presents the experimental result series details for tensile testing of the 

machined (T) and moulded specimens (DB). The “DE” suffix identifies the tests 

completed using the dual extensometer and the “SE” suffix the tests completed using the 

single extensometer. The experimental data and results corresponding with each series 

are presented overleaf. The mean, standard deviation (SD) and coefficient of variation 

(COV) were calculated for the data and results.  

 

Table B.2 Tensile Testing Experimental Result Series Details.  

Machined Specimens – “T” Moulded Specimens – “DB” 

Test Type Test Type 

Dual Extensometer Single Extensometer  Dual Extensometer Single Extensometer   

038-T-DE 038-T-SE 038-DB-DE 038-DB-SE 

042-T-DE 042-T-SE 042-DB-DE 042-DB-SE 

043-T-DE 043-T-SE 043-DB-DE 043-DB-SE 

044-T-DE 044-T-SE 044-DB-DE 044-DB-SE 

039-T-DE 039-T-SE 039-DB-DE 039-DB-SE 

040-T-DE 040-T-SE 040-DB-DE 040-DB-SE 

041-T-DE 041-T-SE 041-DB-DE 041-DB-SE 
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Sample ID Number: USQI-01-038-T-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 0

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 11.48 4.23 48.54 258 0.15 0.051 0.347
2 10.98 4.25 46.72 228 0.14 0.058 0.390
3 10.96 4.27 46.80 252 0.15 0.057 0.373
4 11.11 4.23 47.05 275 0.15 0.054 0.364
5 11.22 4.13 46.34 238 0.14 0.052 0.358
6 10.93 4.19 45.83 243 0.15 0.057 0.378

Mean 11.11 4.22 46.88 249 0.15 0.055 0.368
SD 0.21 0.05 0.92 17 0.01 0.003 0.015

COV 1.9% 1.2% 2.0% 6.6% 3.5% 5.3% 4.1%  

 

Sample ID Number: USQI-01-038-T-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 0

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 11.48 4.23 48.54 2998 62 2.14 3438
2 10.98 4.25 46.72 2748 59 2.00 3363
3 10.96 4.27 46.80 2813 60 1.97 3608
4 11.11 4.23 47.05 2726 58 1.96 3517
5 11.22 4.13 46.34 2925 63 2.26 3355

Mean 11.15 4.22 47.09 2842 60.4 2.07 3456
SD 0.21 0.05 0.85 117 2.1 0.13 107

COV 1.9% 1.3% 1.8% 4.1% 3.4% 6.3% 3.1%  
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Sample ID Number: USQI-01-039-T-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 40

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 10.44 4.24 44.28 355 0.14 0.048 0.336
2 10.37 4.25 44.05 336 0.15 0.046 0.313
3 10.21 4.11 41.93 300 0.14 0.047 0.321
4 10.37 4.20 43.52 339 0.15 0.048 0.313
5 10.33 4.18 43.14 330 0.15 0.046 0.308
6 10.40 4.22 43.84 331 0.15 0.051 0.328

Mean 10.35 4.20 43.46 332 0.15 0.048 0.320
SD 0.08 0.05 0.85 18 0.01 0.002 0.011

COV 0.8% 1.2% 2.0% 5.4% 3.5% 3.9% 3.3%  

 

Sample ID Number: USQI-01-039-T-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 40

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 10.44 4.24 44.28 1241 28 0.80 4994
2 10.37 4.25 44.05 1256 28 0.87 5004
3 10.21 4.11 41.93 1237 29 0.96 4987
4 10.37 4.20 43.52 1258 29 0.87 4917
5 10.33 4.18 43.14 1249 29 0.89 5111

Mean 10.34 4.20 43.38 1248 28.6 0.88 5003
SD 0.08 0.06 0.93 9 0.55 0.06 70

COV 0.8% 1.3% 2.1% 0.7% 1.9% 6.5% 1.4%  
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Sample ID Number: USQI-01-040-T-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 45

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 10.27 4.20 43.18 336 0.15 0.047 0.321
2 10.18 4.20 42.74 353 0.15 0.047 0.314
3 10.16 4.20 42.69 361 0.15 0.047 0.320
4 10.30 4.21 43.38 341 0.15 0.045 0.316
5 10.22 4.21 43.06 342 0.15 0.048 0.317
6 10.26 4.15 42.53 340 0.15 0.043 0.308

Mean 10.23 4.20 42.93 346 0.15 0.046 0.316
SD 0.05 0.02 0.33 9 0.00 0.002 0.005

COV 0.5% 0.5% 0.8% 2.7% 0.0% 4.0% 1.5%  

 

Sample ID Number: USQI-01-040-T-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 45

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 10.27 4.20 43.18 1152 27 0.75 5374
2 10.18 4.20 42.74 1116 26 0.80 5165
3 10.16 4.20 42.69 1125 26 0.64 5286
4 10.30 4.21 43.38 1137 26 0.66 5357
5 10.22 4.21 43.06 1131 26 0.62 5237

Mean 10.23 4.20 43.01 1132 26.2 0.69 5284
SD 0.06 0.01 0.29 14 0.4 0.08 86

COV 0.6% 0.1% 0.7% 1.2% 1.7% 11.1% 1.6%  
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Sample ID Number: USQI-01-041-T-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 50

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 10.14 4.24 42.96 343 0.14 0.042 0.296
2 10.20 4.18 42.62 350 0.14 0.045 0.313
3 10.31 4.19 43.20 369 0.15 0.043 0.287
4 10.09 4.15 41.84 339 0.15 0.045 0.304
5 10.19 4.18 42.64 320 0.15 0.045 0.307
6 10.19 4.27 43.48 345 0.15 0.047 0.308

Mean 10.19 4.20 42.79 344 0.15 0.045 0.303
SD 0.07 0.04 0.57 16 0.01 0.002 0.009

COV 0.7% 1.1% 1.3% 4.6% 3.5% 4.0% 3.1%  

 

Sample ID Number: USQI-01-041-T-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 50

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 10.14 4.24 42.96 1006 23 0.52 5087
2 10.20 4.18 42.62 1027 24 0.61 5135
3 10.31 4.19 43.20 1030 24 0.53 5272
4 10.09 4.15 41.84 1010 24 0.62 4992
5 10.19 4.18 42.64 1027 24 0.60 5031

Mean 10.19 4.19 42.65 1020 23.8 0.58 5103
SD 0.08 0.03 0.51 11 0.4 0.05 109

COV 0.8% 0.8% 1.2% 1.1% 1.9% 8.2% 2.1%  
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Sample ID Number: USQI-01-042-T-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 10

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 10.79 4.23 45.63 272 0.15 0.054 0.353
2 10.73 4.18 44.89 282 0.15 0.054 0.357
3 10.71 4.20 45.00 266 0.15 0.057 0.372
4 11.00 4.15 45.70 277 0.15 0.057 0.359
5 10.79 4.21 45.46 271 0.15 0.052 0.356
6 10.90 4.18 45.56 257 0.14 0.051 0.358

Mean 10.82 4.19 45.37 271 0.15 0.054 0.359
SD 0.11 0.03 0.34 9 0.00 0.002 0.007

COV 1.0% 0.7% 0.8% 3.2% 2.8% 4.6% 1.8%  

 

Sample ID Number: USQI-01-042-T-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 10

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 10.79 4.23 45.63 2379 52 2.02 3627
2 10.73 4.18 44.89 2241 50 1.91 3671
3 10.71 4.20 45.00 2159 48 1.75 3651
4 11.00 4.15 45.70 2238 49 1.81 3670
5 10.79 4.21 45.46 2318 51 1.98 3629

Mean 10.80 4.19 45.34 2267 50.0 1.89 3650
SD 0.12 0.03 0.37 84 1.6 0.11 21

COV 1.1% 0.7% 0.8% 3.7% 3.2% 6.0% 0.6%  
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Sample ID Number: USQI-01-043-T-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 20

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 10.60 4.25 45.01 291 0.15 0.051 0.338
2 10.53 4.15 43.68 282 0.15 0.059 0.343
3 10.74 4.17 44.80 295 0.15 0.052 0.329
4 10.54 4.24 44.70 301 0.15 0.049 0.336
5 10.60 4.27 45.21 290 0.15 0.054 0.352
6 10.80 4.28 46.24 299 0.15 0.057 0.368

Mean 10.64 4.23 44.94 293 0.15 0.054 0.344
SD 0.11 0.05 0.83 7 0.00 0.004 0.014

COV 1.0% 1.3% 1.8% 2.4% 0.0% 7.0% 4.0%  

 

Sample ID Number: USQI-01-043-T-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 20

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 10.60 4.25 45.01 1867 41 1.78 4165
2 10.53 4.15 43.68 1837 42 1.77 4063
3 10.74 4.17 44.80 1875 42 1.73 4145
4 10.54 4.24 44.70 1857 41 1.77 4162
5 10.60 4.27 45.21 1925 42 1.74 4116

Mean 10.60 4.22 44.68 1872 41.6 1.76 4130
SD 0.08 0.05 0.59 33 0.5 0.02 42

COV 0.8% 1.3% 1.3% 1.7% 1.3% 1.2% 1.0%  
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Sample ID Number: USQI-01-044-T-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 30

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.99 4.23 42.24 292 0.15 0.050 0.337
2 10.37 4.24 44.00 309 0.15 0.048 0.322
3 10.15 4.26 43.24 311 0.15 0.054 0.353
4 10.27 4.26 43.72 309 0.15 0.052 0.340
5 10.24 4.16 42.56 310 0.15 0.049 0.338
6 10.11 4.17 42.12 286 0.15 0.050 0.340

Mean 10.19 4.22 42.98 303 0.15 0.051 0.338
SD 0.13 0.04 0.79 11 0.00 0.002 0.010

COV 1.3% 1.0% 1.8% 3.6% 0.0% 4.3% 2.9%  

 

Sample ID Number: USQI-01-044-T-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 30

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 9.99 4.23 42.24 1416 33 1.21 4616
2 10.37 4.24 44.00 1506 34 1.33 4593
3 10.15 4.26 43.24 1382 32 1.04 4608
4 10.27 4.26 43.72 1505 34 1.44 4542
5 10.24 4.16 42.56 1450 34 1.37 4720

Mean 10.20 4.23 43.15 1452 33.4 1.28 4616
SD 0.14 0.04 0.75 55 0.9 0.16 65

COV 1.4% 1.0% 1.7% 3.8% 2.7% 12.3% 1.4%  
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Sample ID Number: USQI-01-038-DB-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 0

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.76 4.28 41.77 233 0.15 0.056 0.367
2 9.81 4.26 41.81 221 0.15 0.058 0.386
3 9.73 4.33 42.08 223 0.14 0.050 0.360
4 9.76 4.24 41.36 213 0.14 0.053 0.366
5 9.81 4.27 41.87 214 0.15 0.053 0.370

Mean 9.77 4.28 41.78 221 0.15 0.054 0.370
SD 0.04 0.03 0.26 8 0.01 0.003 0.010

COV 0.4% 0.8% 0.6% 3.7% 3.8% 5.7% 2.6%  

 

Sample ID Number: USQI-01-038-DB-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 0

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (MPa)

1 9.76 4.28 41.77 1937 46 1.50 3212
2 9.81 4.26 41.81 1595 38 1.21 3228
3 9.73 4.33 42.08 1325 31 0.96 3339
4 9.76 4.24 41.36 1411 34 1.01 3538
5 9.81 4.27 41.87 1355 32 1.01 3290

Mean 9.77 4.28 41.78 1525 36.2 1.14 3321
SD 0.04 0.03 0.26 253 6.1 0.22 131

COV 0.4% 0.8% 0.6% 16.6% 16.8% 19.7% 4.0%  
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Sample ID Number: USQI-01-039-DB-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 40

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.80 4.18 41.01 312 0.14 0.047 0.326
2 9.92 4.26 42.28 320 0.15 0.050 0.332
3 9.78 4.08 29.89 306 0.15 0.045 0.297
4 9.79 4.26 41.67 318 0.15 0.045 0.309
5 9.81 4.16 40.81 314 0.15 0.050 0.327
6 9.86 4.21 41.52 302 0.15 0.051 0.326

Mean 9.83 4.19 39.53 312 0.15 0.048 0.320
SD 0.05 0.07 4.75 7 0.00 0.003 0.014

COV 0.5% 1.6% 12.0% 2.2% 2.8% 5.6% 4.2%  

 

Sample ID Number: USQI-01-039-DB-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 40

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 9.80 4.18 41.01 943 23 0.47 5084
2 9.92 4.26 42.28 982 23 0.52 4812
3 9.78 4.08 29.89 1071 27 0.73 4892
4 9.79 4.26 41.67 1077 26 0.65 4966
5 9.81 4.16 40.81 1071 26 0.66 5003

Mean 9.82 4.19 39.13 1029 25 0.61 4951
SD 0.06 0.08 5.20 62 2 0.11 104

COV 0.6% 1.8% 13.3% 6.0% 7.5% 17.7% 2.1%  
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Sample ID Number: USQI-01-040-DB-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 45

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.92 4.15 41.15 329 0.15 0.045 0.315
2 9.86 4.25 41.89 312 0.14 0.046 0.315
3 9.95 4.25 42.33 326 0.15 0.047 0.315
4 9.96 4.15 41.37 349 0.15 0.047 0.310
5 9.93 4.10 40.68 332 0.15 0.046 0.307
6 9.87 4.31 42.57 333 0.15 0.048 0.313

Mean 9.92 4.20 41.67 330 0.15 0.047 0.313
SD 0.04 0.08 0.73 12 0.00 0.001 0.003

COV 0.4% 1.9% 1.7% 3.6% 2.8% 2.3% 1.1%  

 

Sample ID Number: USQI-01-040-DB-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 45

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 9.92 4.15 41.15 978 24 0.55 5123
2 9.86 4.25 41.89 928 22 0.52 4846
3 9.95 4.25 42.33 932 22 0.52 4878
4 9.96 4.15 41.37 969 23 0.48 5238
5 9.93 4.10 40.68 1002 25 0.55 5260
6 9.87 4.31 42.57 1048 25 0.63 4736

Mean 9.92 4.20 41.67 976 23.5 0.54 5014
SD 0.04 0.08 0.73 45 1.4 0.05 222

COV 0.4% 1.9% 1.7% 4.6% 5.9% 9.3% 4.4%  
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Sample ID Number: USQI-01-041-DB-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 50

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.97 4.08 40.63 318 0.15 0.045 0.298
2 9.94 4.27 42.40 335 0.15 0.047 0.311
3 9.96 4.20 41.81 337 0.15 0.044 0.300
4 9.96 4.23 42.14 359 0.15 0.047 0.305
5 9.95 4.21 41.89 312 0.15 0.042 0.291
6 9.93 4.28 42.52 331 0.14 0.047 0.316

Mean 9.95 4.21 41.90 332 0.15 0.045 0.304
SD 0.01 0.07 0.68 16 0.00 0.002 0.009

COV 0.1% 1.7% 1.6% 5.0% 2.8% 4.6% 3.0%  

 

Sample ID Number: USQI-01-041-DB-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 50

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 9.97 4.08 40.63 771 19 0.44 4718
2 9.94 4.27 42.40 822 19 0.43 4857
3 9.96 4.20 41.81 819 19 0.42 4942
4 9.96 4.23 42.14 939 22 0.51 5051
5 9.95 4.21 41.89 865 21 0.47 4972
6 9.93 4.28 42.52 802 19 0.41 4757

Mean 9.95 4.21 41.90 836 19.8 0.45 4883
SD 0.01 0.07 0.68 59 1.3 0.04 129

COV 0.1% 1.7% 1.6% 7.0% 6.7% 8.3% 2.6%  
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Sample ID Number: USQI-01-042-DB-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 10

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.85 4.19 41.30 251 0.15 0.055 0.361
2 9.89 4.21 41.64 255 0.15 0.056 0.360
3 9.87 4.26 42.08 256 0.14 0.053 0.362
4 9.85 4.26 41.95 246 0.15 0.050 0.348
5 9.84 4.27 42.00 264 0.15 0.050 0.364
6 9.82 4.24 41.59 241 0.15 0.056 0.372

Mean 9.85 4.24 41.76 252 0.15 0.053 0.361
SD 0.02 0.03 0.30 8 0.00 0.003 0.008

COV 0.2% 0.8% 0.7% 3.2% 2.8% 5.3% 2.1%  

 

Sample ID Number: USQI-01-042-DB-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 10

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 9.85 4.19 41.30 1434 35 1.05 3923
2 9.89 4.21 41.64 1752 42 1.39 3897
3 9.87 4.26 42.08 1439 34 1.00 3857
4 9.85 4.26 41.95 1856 44 1.53 3776
5 9.84 4.27 42.00 1882 45 1.59 3803
6 9.82 4.24 41.59 1674 40 1.33 3577

Mean 9.85 4.24 41.76 1673 40.0 1.32 3806
SD 0.02 0.03 0.30 198 4.6 0.24 125

COV 0.2% 0.8% 0.7% 11.8% 11.5% 18.5% 3.3%  
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Sample ID Number: USQI-01-043-DB-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 20

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.84 4.06 40.00 253 0.15 0.050 0.343
2 9.78 4.12 40.29 274 0.15 0.055 0.369
3 9.86 4.08 40.22 274 0.14 0.050 0.345
4 9.88 4.11 40.65 271 0.15 0.054 0.356
5 9.87 3.94 38.91 264 0.15 0.053 0.345

Mean 9.85 4.06 40.01 267 0.15 0.052 0.352
SD 0.04 0.07 0.66 9 0.00 0.002 0.011

COV 0.4% 1.8% 1.6% 3.3% 3.0% 4.4% 3.1%  

 

Sample ID Number: USQI-01-043-DB-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 20

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 9.84 4.06 40.00 1423 35 1.09 4596
2 9.78 4.12 40.29 1522 38 1.33 4508
3 9.86 4.08 40.22 1611 40 1.61 4146
4 9.88 4.11 40.65 1558 38 1.45 4480
5 9.87 3.94 38.91 1355 35 1.06 4436

Mean 9.85 4.06 40.01 1494 37.2 1.31 4433
SD 0.04 0.07 0.66 104 2.2 0.23 171

COV 0.4% 1.8% 1.6% 6.9% 5.8% 18.0% 3.9%  
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Sample ID Number: USQI-01-044-DB-DE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 30

Specimen No. Width Thickness Area Peak Axial Transverse Poisson's
Load Strain Strain Ratio

(mm) (mm) (mm2) (N) (%) (%)

1 9.89 4.19 41.45 287 0.15 0.050 0.328
2 9.73 4.20 40.86 290 0.15 0.049 0.337
3 9.89 4.27 42.20 293 0.15 0.052 0.361
4 9.88 4.26 42.04 301 0.15 0.049 0.337
5 9.96 4.17 41.52 289 0.15 0.048 0.327
6 9.83 4.29 42.12 288 0.15 0.052 0.333

Mean 9.86 4.23 41.70 291 0.15 0.050 0.337
SD 0.08 0.05 0.52 5 0.00 0.002 0.012

COV 0.8% 1.2% 1.2% 1.8% 0.0% 3.3% 3.7%  

 

Sample ID Number: USQI-01-044-DB-SE 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 30

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 9.89 4.19 41.45 1355 33 1.06 4559
2 9.73 4.20 40.86 1271 31 0.87 4510
3 9.89 4.27 42.20 1351 32 1.20 4459
4 9.88 4.26 42.04 1219 29 0.76 4438
5 9.96 4.17 41.52 1288 31 0.92 4569
6 9.83 4.29 42.12 1315 31 1.02 4358

Mean 9.86 4.23 41.70 1300 31.2 0.97 4482
SD 0.08 0.05 0.52 52 1.3 0.15 80

COV 0.8% 1.2% 1.2% 4.0% 4.3% 15.9% 1.8%  
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APPENDIX C.  

EXPERIMENTAL DATA AND RESULTS FOR THE 

DETERMINATION OF THE COMPRESSION PROPERTIES OF 

VINYL ESTER / CENOSPHERE COMPOSITES 

 

This Appendix contains supplementary information relating to the characterisation of 

compressive properties presented in Chapter 5. The experimental result series details for 

compressive testing and the associated filler volume fraction of the series are shown in 

Table C.1. The adopted system of sample identification outlined in Appendix B was 

continued. The experimental data and results corresponding with each series are 

presented overleaf. The mean, standard deviation (SD) and coefficient of variation 

(COV) were calculated for the data and results. 

 

Table C.1 Compressive Testing Experimental Result Series Details. 

Sample ID 

Filler Volume 

Fraction            

(%) 

Sample ID 

Filler Volume 

Fraction           

(%) 

USQI-01-038-C 0 USQI-01-039-C 40 

USQI-01-042-C 10 USQI-01-040-C 45 

USQI-01-043-C 20 USQI-01-041-C 50 

USQI-01-044-C 30   
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Sample ID Number: USQI-01-038-C 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 0

Specimen No. Height Diameter Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 74.62 36.91 1069.79 94942 88.75 5.39 2356
2 74.80 36.87 1067.67 93228 87.32 5.02 2383
3 74.07 36.94 1071.72 93753 87.48 5.49 2319
4 75.17 36.91 1070.18 94559 88.36 5.39 2332

Mean 74.67 36.91 1069.84 94121 87.98 5.32 2348
SD 0.46 0.02 1.45 671 0.60 0.18 24

COV 0.6% 0.1% 0.1% 0.7% 0.7% 3.4% 1.0%  

 

Sample ID Number: USQI-01-039-C 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 40

Specimen No. Height Diameter Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 74.03 36.83 1065.16 81140 76.18 3.50 3080
2 74.75 36.74 1059.96 81807 77.18 3.61 3022
3 74.57 36.91 1069.79 82163 76.80 3.63 3109
4 74.10 36.80 1063.62 81697 76.81 3.61 3051

Mean 74.36 36.82 1064.63 81702 76.74 3.59 3066
SD 0.35 0.07 4.07 424 0.41 0.06 37

COV 0.5% 0.2% 0.4% 0.5% 0.5% 1.6% 1.2%  
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Sample ID Number: USQI-01-040-C 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 45

Specimen No. Height Diameter Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 74.83 36.38 1039.29 79166 76.17 3.27 3242
2 75.79 36.33 1036.81 77667 74.91 3.15 3268
3 74.81 37.07 1079.09 82365 76.33 3.48 3145
4 74.75 36.59 1051.51 79474 75.58 3.55 3207

Mean 75.05 36.59 1051.68 79668 75.75 3.36 3216
SD 0.50 0.34 19.37 1964 0.64 0.19 53

COV 0.7% 0.9% 1.8% 2.5% 0.9% 5.5% 1.7%  

 

Sample ID Number: USQI-01-041-C 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 50

Specimen No. Height Diameter Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 75.03 37.04 1077.34 74872 69.50 3.02 3162
2 74.61 37.74 1118.65 77142 68.96 3.08 3075
3 74.54 37.17 1085.11 73613 67.84 3.20 3005
4 74.78 36.20 1029.22 70239 68.24 2.79 3225

Mean 74.74 37.04 1077.58 73967 68.64 3.02 3117
SD 0.22 0.64 36.89 2882 0.74 0.17 97

COV 0.3% 1.7% 3.4% 3.9% 1.1% 5.7% 3.1%  
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Sample ID Number: USQI-01-042-C  

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 10

Specimen No. Height Diameter Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 75.18 36.45 1043.48 88562 84.87 4.84 2287
2 74.35 36.57 1050.56 87998 83.76 4.69 2551
3 74.37 36.31 1035.67 86738 83.75 4.62 2547
4 73.57 36.48 1045.20 86454 82.72 4.81 2176
5 74.84 36.64 1054.39 90623 85.95 4.62 2643

Mean 74.46 36.49 1045.86 88075 84.21 4.72 2441
SD 0.61 0.13 7.16 1670 1.23 0.10 199

COV 0.8% 0.3% 0.7% 1.9% 1.5% 2.2% 8.1%  

 

Sample ID Number: USQI-01-043-C 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 20

Specimen No. Height Diameter Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 74.55 36.64 1054.39 88918 84.33 4.56 2777
2 75.00 36.62 1053.24 88478 84.01 4.36 2838
3 74.90 36.37 1038.72 87540 84.28 4.47 2779
4 74.91 36.49 1045.96 86556 82.75 4.42 2792

Mean 74.84 36.53 1048.08 87873 83.84 4.45 2797
SD 0.20 0.13 7.27 1049 0.74 0.08 28

COV 0.3% 0.3% 0.7% 1.2% 0.9% 1.9% 1.0%  
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Sample ID Number: USQI-01-044-C 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 30

Specimen No. Height Diameter Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 73.85 36.18 1028.08 82254 80.01 4.20 2415
2 73.24 36.71 1058.23 85112 80.43 4.17 2838
3 72.75 36.35 1037.57 83405 80.38 4.38 2557
4 74 36.16 1026.94 81767 79.62 4.00 2925
5 73.78 36.63 1053.81 86205 81.80 4.13 2890

Mean 73.46 36.41 1040.93 83749 80.45 4.18 2725
SD 0.46 0.25 14.47 1882 0.82 0.14 226

COV 0.6% 0.7% 1.4% 2.2% 1.0% 3.3% 8.3%  
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APPENDIX D.  

EXPERIMENTAL DATA AND RESULTS FOR THE 

DETERMINATION OF THE FLEXURE PROPERTIES OF 

VINYL ESTER / CENOSPHERE COMPOSITES 

 

This Appendix contains supplementary information relating to the characterisation of 

compressive properties presented in Chapter 5. The experimental result series details for 

flexure testing and the associated filler volume fraction of the series are shown in Table 

D.1. The adopted system of sample identification outlined in Appendix B was 

continued. The experimental data and results corresponding with each series are 

presented overleaf. The mean, standard deviation (SD) and coefficient of variation 

(COV) were calculated for the data and results. 

Table D.1 Flexure Testing Experimental Result Series Details. 

Sample ID 

Filler Volume 

Fraction            

(%) 

Sample ID 

Filler Volume 

Fraction           

(%) 

USQI-01-038-F 0 USQI-01-039-F 40 

USQI-01-042-F 10 USQI-01-040-F 45 

USQI-01-043-F 20 USQI-01-041-F 50 

USQI-01-044-F 30   
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Sample ID Number: USQI-01-038-F 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 0

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 15.49 8.99 139.26 523.7 90.36 3.03 3458
2 15.34 9.18 140.82 465.1 77.72 2.50 3464
3 15.46 9.25 143.01 667.9 109.06 4.07 3108
4 15.31 9.25 141.62 525.6 86.66 2.90 3356
5 15.33 9.14 140.12 570.6 96.23 3.28 3148

Mean 15.39 9.16 140.96 550.6 92.01 3.16 3307
SD 0.08 0.11 1.44 75.5 11.66 0.58 169

COV 0.5% 1.2% 1.0% 13.7% 12.7% 18.5% 5.1%  

 

Sample ID Number: USQI-01-039-F 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 40

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 15.44 9.18 141.74 293.8 48.77 1.16 4679
2 15.58 9.13 142.25 263.5 43.83 1.01 4737
3 15.65 9.22 144.29 270.9 43.99 0.97 4680
4 15.52 9.16 142.16 264.4 43.85 0.96 4705
5 15.44 9.16 141.43 287.2 47.89 1.12 4706

Mean 15.53 9.17 142.37 276.0 45.67 1.04 4701
SD 0.09 0.03 1.12 13.8 2.45 0.09 24

COV 0.6% 0.4% 0.8% 5.0% 5.4% 8.7% 0.5%  
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Sample ID Number: USQI-01-040-F 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 45

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 15.60 9.24 144.14 258.5 41.92 0.89 4975
2 15.60 9.16 142.90 247.1 40.78 0.84 4981
3 15.62 9.20 143.70 240.2 39.24 0.78 4997
4 15.65 9.08 142.10 235.7 39.45 0.80 4938
5 15.58 9.21 143.49 238.0 38.91 0.79 5046

Mean 15.61 9.18 143.27 243.9 40.06 0.82 4987
SD 0.03 0.06 0.79 9.2 1.26 0.05 39

COV 0.2% 0.7% 0.6% 3.8% 3.1% 5.5% 0.8%  

 

Sample ID Number: USQI-01-041-F 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 50

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 15.62 9.20 143.70 219.1 35.79 0.71 5023
2 15.65 9.14 143.04 225.9 37.33 0.74 5004
3 15.68 9.14 143.32 190.5 31.42 0.62 4906
4 15.71 9.12 143.28 224.1 37.05 0.76 5029
5 15.78 9.25 145.97 229.3 36.68 0.74 5072

Mean 15.69 9.17 143.86 217.8 35.65 0.71 5007
SD 0.06 0.05 1.20 15.7 2.44 0.06 62

COV 0.4% 0.6% 0.8% 7.2% 6.8% 7.8% 1.2%  
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Sample ID Number: USQI-01-042-F 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 10

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 15.70 9.25 145.23 423.0 68.02 2.13 3566
2 15.63 9.19 143.64 426.5 69.79 2.18 3380
3 15.66 9.20 144.07 402.8 65.65 2.03 3651
4 15.56 9.15 142.37 426.0 70.64 2.16 3633
5 15.47 9.20 142.32 426.7 70.39 2.20 3695

Mean 15.60 9.20 143.53 421.0 68.90 2.14 3585
SD 0.09 0.04 1.22 10.3 2.08 0.07 124

COV 0.6% 0.4% 0.9% 2.4% 3.0% 3.1% 3.4%  

 

Sample ID Number: USQI-01-043-F 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 20

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 15.23 9.31 141.79 409.6 67.02 1.99 4188
2 15.23 9.19 139.96 361.9 60.77 1.74 3837
3 15.19 9.09 138.08 386.1 66.44 1.96 4045
4 15.18 9.14 138.75 349.2 59.47 1.67 3979
5 15.17 9.21 139.72 338.7 56.86 1.59 3921

Mean 15.20 9.19 139.66 369.1 62.11 1.79 3994
SD 0.03 0.08 1.41 28.7 4.45 0.18 133

COV 0.2% 0.9% 1.0% 7.8% 7.2% 9.9% 3.3%  
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Sample ID Number: USQI-01-044-F 

Resin: Hetron 922 PAW
Initiator: 2.5% Butanox M-60
Filler: E-Spheres SLG
Filler Volume Fraction: 30

Specimen No. Width Thickness Area Peak Peak Peak Modulus
Load Stress Strain

(mm) (mm) (mm2) (N) (MPa) (%) (MPa)

1 15.35 9.14 140.30 354.9 59.78 1.53 4375
2 15.18 9.13 138.59 324.8 55.45 1.40 4536
3 15.28 9.18 140.27 321.5 53.92 1.32 4491
4 15.43 9.21 142.11 332.4 54.85 1.44 4359
5 15.22 9.17 139.57 327.0 55.19 1.40 4525

Mean 15.29 9.17 140.17 332.1 55.84 1.42 4457
SD 0.10 0.03 1.29 13.3 2.28 0.08 84

COV 0.7% 0.4% 0.9% 4.0% 4.1% 5.4% 1.9%  
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APPENDIX E.  

DYNAMIC MECHANICAL ANALYSIS (DMA) RESULTS 

 

This Appendix contains the DMA curves and glass transition data from the first and 

second heating runs for the investigation of transition behaviour presented in Chapter 6. 

The investigation parameters are listed below and the results are presented overleaf. 

 

Transition Behaviour of Unfilled Vinyl Esters 

  Influence of Initiator Concentration 

  Influence of Peroxide Initiator Type 

  Influence of Accelerator Level 

  Influence of Oligomer Molecular Weight 

  Influence of Styrene Addition Level 

 

Transition Behaviour of Filled Vinyl Esters 

  Influence of Peroxide Initiator Type 

  Influence of Oligomer Molecular Weight 
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Table E.1 Glass Transition Temperatures of Hetron 922 PAW Vinyl Ester with Varying 

Initiator Levels using DMA. 

Glass Transition Temperature 

First Heating Run Second Heating Run 
Initiator 

Addition 

Level 

(%) 
Point of 

Inflection 

(°C) 

Peak   Loss 

Modulus 

(°C) 

Peak    

Tan δ  

(°C) 

Point of 

Inflection   

(°C) 

Peak   Loss 

Modulus   

(°C) 

Peak    

Tan δ 

(°C) 

1.0 71 75 115 117 117 125 

1.5 73 77 111 115 115 123 

2.0 74 77 106 111 111 119 

2.5 74 79 100 109 109 117 

3.0 80 82 96 102 103 113 

4.0 74 74 89 99 99 107 

5.0 76 78 90 92 92 101 

 

 
Table E.2 Glass Transition Temperatures of Hetron 922 PAW Vinyl Ester with Varying 

Initiator Types using DMA. 

Glass Transition Temperature 

First Heating Run Second Heating Run 

Initiator  
Point of 

Inflection 

 (°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Point of 

Inflection 

 (°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Butanox M-60 74 77 106 111 111 119 

MEKP-SR 79 81 108 109 109 118 

Trigonox 239 76 86 115 111 111 119 

CHP 90 79 94 117 113 113 120 
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Table E.3 Glass Transition Temperatures of Hetron 914 Vinyl Ester with Varying 

Accelerator Levels using DMA. 

Glass Transition Temperature 

First Heating Run Second Heating Run Accelerator 

Addition 

Level         

(%) 
Point of 

Inflection 

 (°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Point of 

Inflection 

 (°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

0.1 76 80 116 146 146 161 

0.2 74 79 145 143 142 157 

0.3 72 78 142 140 138 155 

0.4 74 79 144 141 140 157 

 

 
Table E.4 Glass Transition Temperatures of Hetron 914 Vinyl Ester with Alternative 

Initiator Types using DMA. 

Glass Transition Temperature 

First Heating Run Second Heating Run 

Initiator  
Point of 

Inflection 

 (°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Point of 

Inflection 

 (°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Butanox M-60 74 79 145 143 142 157 

MEKP-SR 74 78 109 147 146 160 

Trigonox 239 71 80 156 149 148 161 

CHP 90 71 78 156 151 151 163 
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Table E.5 Glass Transition Temperatures of Hetron 922 PAW Vinyl Ester with Varying 

Styrene Addition Levels using DMA. 

Glass Transition Temperature 

First Heating Run Second Heating Run Styrene 

Addition 

Level         

(%) 
Point of 

Inflection 

(°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Point of 

Inflection 

(°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

0 74 77 106 111 111 119 

2 77 80 107 109 109 119 

5 68 77 106 111 110 119 

10 67 77 103 107 107 116 

15 68 75 101 108 108 117 

 
Table E.6 Glass Transition Temperatures of Hetron 922 PAW Vinyl Ester with Varying 

Filler Volume Fraction using DMA. 

Glass Transition Temperature 

First Heating Run Second Heating Run Filler 

Addition 

Level  

(%) 

Point of 

Inflection 

(°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Point of 

Inflection 

(°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

0 76 79 107 110 110 120 

10 73 76 105 109 109 118 

20 74 78 108 111 111 119 

30 72 76 107 109 109 117 

40 73 77 107 110 110 118 

50 70 75 106 110 111 118 
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Table E.7 Glass Transition Temperatures of Hetron 914 Vinyl Ester with Varying Filler 

Volume Fraction using DMA. 

Glass Transition Temperature 

First Heating Run Second Heating Run Filler 

Addition 

Level  

(%) 

Point of 

Inflection 

(°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

Point of 

Inflection 

(°C) 

Peak   

Loss 

Modulus 

(°C) 

Peak    

Tan δ 

(°C) 

0 75 78 112 140 139 155 

10 75 80 113 141 141 156 

20 75 81 114 141 140 155 

30 78 86 141 141 141 154 

40 74 94 143 142 142 154 

50 78 90 139 140 141 151 
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