
DEVELOPMENT OF RIGOROUS METHODS

IN FLUID MECHANICS

AND THEORY OF WATER WAVES

A Thesis submitted by

Andrei Ermakov,

BAppMaths, MThAppMech

For the award of

Doctor of Philosophy

2019



ABSTRACT

The thesis consists of five chapters where the following problems are considered

– the transformation of long linear waves in an ocean with a variable depth; long

wave scattering in a canal with a rapidly varying cross-section; long linear surface

waves on stationary currents in a canal of constant depth and variable width; and

a resonant interaction of a solitary wave with external pulse-type perturbations

within the framework of forced Korteweg-de Vries equation.

Chapter 1 reviews the history of these problems, and notes previous literature

and research in this area.

In Chapter 2, the transformation of long linear waves in an ocean of a variable

depth is studied. The transformation coefficients are considered as functions of

frequency and the total depth drop for three typical models of bottom profile

variation: piecewise linear, piecewise quadratic and hyperbolic tangent profiles.

The results obtained for all these profiles are analysed and compared from the

physical point of view.

In Chapter 3, long wave scattering in a canal with a rapidly varying cross-

section is studied. The scattering coefficients are calculated for all possible in-

cident wave orientations (background current downstream and upstream with

respect to the background flow); and current types subcritical, transcritical, and

supercritical. It is shown that when the over-reflection or over-transmission oc-

curs, negative energy waves can appear in the flow. A spontaneous wave gener-

ation can happen in a transcritical accelerating flow, resembling a spontaneous

wave generation on the horizon of an evaporating black hole due to the Hawking

effect in astrophysics.

In Chapter 4, long wave transformation is studied in the canal with abrupt

variation of width and depth. Again, all possible wave orientation with respect

to the background current is considered, and all types of a current is studied

(subcritical, transcritical, and supercritical). The transformation coefficients are

calculated and analysed as functions of wave frequency, Froud number, and depth

drop.

In Chapter 5, we revise the solutions of the forced Korteweg–de Vries equation

for the resonant interaction of a solitary wave with the various external pulse-
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type perturbations. In contrast to the previous studies, we consider an arbitrary

relationship between the width of a solitary wave and external forcing.

In many cases, exact solutions of the forced Korteweg–de Vries equation can be

obtained for the specific forcings of arbitrary amplitude. The theoretical outcomes

obtained by asymptotic method are in good agreement with the results of direct

numerical modelling within the framework of forced Korteweg–de Vries equation.

In Conclusion, we summarise the results obtained within the various models

and equations; discuss the future applications and innovation of the results; and

suggest further perspectives for the future research.
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Chapter 1

INTRODUCTION AND

LITERATURE REVIEW

The century-old problem of the transformation of surface waves over the bottom

ledge [32, 88, 156] has always garnered interest from both the theoretical and

practical points of view. It is already known that when waves propagate from

the open ocean to the coast, they usually have to overcome the shelf zone, in

which there is a relatively sharp change in ocean depth. A similar kind of sharp

Figure 1.1: A sketch of the typical oceanic profile.

rise along the bottom is often observed in the less deep coastal zones of the seas

and oceans, as well as in lakes, rivers and reservoirs. When a wave passes over

the bottom its transformation proceeds with the formation of transmitted and

reflected waves. In this case, the amplitude of the transmitted wave may be

greater than the amplitude of the incident wave. Similar phenomena relating to

transforming internal waves have also attracted the attention of researchers in

recent years [65]. A great contribution to the study of the transformation of both

surface and internal solitary waves has been made by many scientists during the
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past two centuries.

In order to assess the possible impact of a transmitted wave on offshore engi-

neering structures, platforms, oil and gas pipelines, as well as on beaches, ports,

bank protection structures and ships, we need to know the parameters of the

transmitted waves as accurately as possible. This problem, as noted above, is

also of certain academic interest, because, despite the relative simplicity of the

problem statement, its solution has not been fully represented until recently, al-

though quite a lot of theoretical, experimental and numerical works have already

been dedicated to the calculation of the coefficients of transformation of the sur-

face and internal waves in the framework of various approximations. [Fig. 1.2]

Figure 1.2: Sketch of the wave scattering on a bottom step

shows schematically the process of wave transformation on an underwater ledge.

Let a quasi-monochromatic wave packet with a given frequency ωi, a wavenumber

ki and an amplitude Ai propagate from region 1 with depth h1 to region 2 with

depth h2. As a result of its transformation on the underwater ledge at x = 0,

the transmitted wave packet with the wavenumber kt and amplitude At and the

reflected packet with wavenumber ki are the same as in the incident packet and

the amplitude Ar. In this case, the frequency of the wave remains unchanged.

The characteristic lengths of the wave packets Di,t are assumed to be significantly

larger than the carrier wavelengths λi,t = 2π/ki,t, so that the spatial spectra of

wave packets are fairly narrow.

Below we describe the problem of determining the parameters of transformed

waves depending on the amplitude and wavelength of the incident packet, as well

as on the magnitude of the depth difference in the framework of linear theory.

Next, we describe the approaches used in determining the parameters of trans-

formed waves based on the amplitude, wavenumber and length of the incident

wave packet, as well as on the magnitude of the depth difference. The results ob-
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tained within the framework of both linear and nonlinear theories are presented.

1.1 Transformation of surface waves on the bot-

tom ledge

1.1.1 Linear theories

The first theoretical results on the transformation of surface waves over the bot-

tom ledge, apparently, were published by Lamb in his famous monograph [88].

From simple physical considerations, he derived in the long-wave approximation

the transformation coefficients for waves of infinitesimal amplitude in a channel

of a rectangular cross section with a sharp change in the depth and width. Using

the conditions of continuity of pressure, as well as equality of fluid flows to the left

and right of the ledge, he obtained expressions for the transformation coefficients,

which are now known as Lamb’s formulas, as follows:

T ≡ At
Ai

=
2c1

c1 + c2

, R ≡ Ar
Ai

=
c1 − c2

c1 + c2

, (1.1)

where Ai is the amplitude of the free surface displacement in the incident wave,

and At and Ar are the amplitudes of the transmitted and reflected waves, re-

spectively, c1 and c2 are the speeds of long waves before and behind the ledge

(here Lamb’s formulae are given for a channel of constant width). Substituting in

(1.1) the well-known expressions for the propagation speeds of long waves in the

linear approximation [15, 88, 142] c =
√
gh, one can obtain the transformation

coefficients depending only on the ratio of depths before and after the step:

T =
2

1 +
√
h2/h1

, R =
1−

√
h2/h1

1 +
√
h2/h1

. (1.2)

The derivation of formulas (1.2), given by Lamb, was subsequently criticized

in view of the fact that when they were derived, the vertical velocity component

in the wave was neglected, which is not fair in the area of the bottom step.

The rigorous formulation of the problem of the transformation of surface waves

of arbitrary length on a ledge in the linear approximation was first proposed

in the paper by Bartholomeus [9], in which the author took into account the

boundary conditions with zero normal velocity components on all solid surfaces.

With such a formulation of the problem in the region of the ledge, the wave field

consists of both propagating waves (incident, transmitted and reflected), and of an

infinite number of non-propagating modes localised near the ledge, exponentially

decaying in both directions with increasing distance from it. Matching solutions
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on both sides of the ledge, Bartholomeus reduced the problem of calculating

the transformation coefficients to the Fredholm integral equation of the second

kind. However, he was only able to apply to the limit the solution of the derived

equation to infinitely long waves, which led to the same Lamb formulas (1.2),

confirming their validity in this limit. In the general case, for waves of arbitrary

length, no transformation ratios were obtained in his work. Germaine obtained

similar results in 1984 [50].

An attempt to calculate the transformation coefficients for waves of finite

length was undertaken earlier in the work of Krylov 1949 [85] (see also [142]) for

the case where the incident wave length is much less than the depth of region

1 (kih1 � 1), so this area can be considered infinitely deep. Using the the-

ory of analytic functions of complex variable and the conformal transformation

method, Krylov derived the following asymptotic formulas for the transformation

coefficients:

- for short incident waves compared to the depth above the ledge (kih2 � 1):

T ≈ 1− 1

2
exp(−4kih2), R ≈ exp(−2kih2); (1.3)

- for long incident waves compared to the depth above the ledge (kih2 � 1):

T ≈ 1√
1 +

[
ln(2/kih2)

π

]2
, R ≈ 1√

1 +
[

π
ln(2/kih2)

]2
; (1.4)

The dependence of the transformation coefficients on the dimensionless wavenum-

ber kih2 of the incident wave, plotted on the basis of from these formulas, are

shown in [Fig. 1.3]

Figure 1.3: The transformation coefficients according to formulas (1.3) and (1.4).
1 - transmission coefficient T with kih2 � 1; 2 - reflection coefficient R at kih2 �
1; 3 - transmission coefficient T with kih2 � 1; 4 - reflection coefficient R with
kih2 � 1.
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The curves 1-4, plotted using the asymptotic formulas (1.3) and (1.4), do not

hold in the vicinity of kih2 = 1. In this case, in the region kih2 > 1, curves 1 and

2 very quickly approach their limiting values 1 and 0 respectively. Essentially,

these formulas mean that with the transformation of short waves over an under-

water ledge, there is only a slight reflection of them, basically the wave almost

completely passes into the area behind the ledge. In the case of long waves, the

opposite is observed, that is, there is an almost complete reflection of waves from

the ledge, and only a small part of them passes into the area behind the ledge. In

quantitative terms, however, the transmission coefficient for long waves decreases

with a decreasing wavenumber rather slowly (see curve 3 in [Fig. 1.3]). So, even

for values kih ∼ 10−4 , the transmission coefficient T ≈ 0.3.

Substantial progress in the calculation of the transformation coefficients of

surface waves was made by Takano [148, 149], who presented the wave field in the

scarp region as a superposition of traveling and evanescent modes and, using the

orthogonality of these modes, reduced the problem of finding transformations to

the solution of a system of an infinite number of algebraic equations with respect

to the transmission and reflection coefficients of propagating waves, as well as

the excitation coefficients of the evanescent modes. Due to the fact that the

absolute value of the excitation coefficients of the evanescent modes decreases as

the number increases, the infinite system of equations can be limited to a finite

number of modes and an approximate solution can be obtained, the accuracy

of which depends on the number of evanescent modes taken into account. A

similar approach was later used by various authors [104, 105, 113, 114]. In these

works, the number of modes taken into account reached 80, but the accuracy of

calculating the transformation coefficients was not controlled, the convergence of

solutions was not considered, and the excitation coefficients of the pressed modes

were not calculated. These gaps were partially filled in [87], in which the number

of modes in the calculations reached 500. In addition, it was shown that the

number of modes needed to achieve a certain accuracy depended on the depth

difference h2/h1. In the same was, the excitation coefficients of the evanescent

modes were calculated and their effect on the matching of the wave fields in the

region of the depth difference was shown.

The problem of the transformation of surface waves over the bottom ledge

was also considered by Newman in the 1960s. In [113], he obtained the general

symmetry conditions for the wave transformation coefficients:

|Rr| = |Rl| ≡ R, |TrTl| = 1−R2 (1.5)

where Rl, Tl are the transformation coefficients when the wave runs from the left
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to the ledge, as shown in [Fig. 1.2] (so that h2/h1 < 1), and Rr, Tr are the trans-

formation coefficients when a wave propagates in the opposite direction (so that

h2/h1 > 1). Note that the first of relations (1.5) for reflection coefficients was

derived by Kreissel in 1949 [84]. The transformation coefficients, generally speak-

ing, are complex quantities, which reflect the fact that during the transformation

of a wave, not only the amplitudes of the transmitted and reflected waves, but

also their phases change. For wave phases, Newman also derived the symmetry

relations:

arg Tr = arg Tl ≡ δT, argRr = argRl ≡ π + 2δT (1.6)

Then, in [113], Newman, using the approach developed in the works of Bartho-

lomeus [9] and Takano [148, 149], essentially calculated for the first time the wave

transformation coefficients for the special case where the region of finite depth h2

is adjacent to the region of infinite depth h1 =∞ . He obtained the dependencies

of the transformation coefficients on the frequency using a numerical solution

of a system of 80 equations, including both travelling and evanesced modes. In

this case, two cases were considered: when a wave runs from an infinitely deep

region to a ledge, and when a wave propagates from a region of finite depth

to an infinitely deep region. The obtained results were in complete agreement

with the symmetry relations (1.5) and (1.6) [Fig. 1.4]. A feature of the problem

Figure 1.4: The transformation coefficients of surface waves according to [149].
a - transmission |Tr,l| and the reflection of R coefficients as functions of the nor-
malized frequency of the incident wave; b - the phases of the transformed waves
on the normalized frequency of the incident wave.

considered by Newman is that in the case of an infinitely deep fluid, the spectrum
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of the evanescent modes becomes continuous. As a result, the infinite sum over all

pressed modes is replaced by an integral in the region above a deep fluid. A similar

problem was considered later by Miles [110], who noted that to calculate the wave

transmission coefficient with an error not exceeding 5%, it suffices to confine to

only the running modes, completely ignoring the contribution of non-propagating

modes (the error in determining the reflection coefficient can reach 90%). This

conclusion has been confirmed. Then in [87], in which explicit formulas were

derived for the transformation coefficients in accordance with the idea of Miles,

but for a fluid of finite depth on both sides of the ledge.

In the long-wave approximation (ki, kt → 0) the formulas derived in [87] are

transformed into the well-known Lamb formulas (1.2). In the work of Nudner

[114], the problem of the wave transformation over a ledge was considered using

the method of Takano (apparently developed independently). The transformation

coefficients were not calculated, but the elevations of the free surface and the

pressure at any point of the liquid were determined. The approach of Takano

[148, 149] was also used by Massel [104, 105], who considered the transformation

of waves on an underwater obstacle of finite length and, as a particular case, on

an infinitely long obstacle, that is, on an underwater ledge. If the length of the

obstacle is finite, then resonant effects arise from the multi-reflection of waves

from its edges. As a result of this interference, the reflection coefficient as a

function of the wavelength is repeatedly turned to zero, which leads to a non-

reflective transmission of waves above the underwater barrier. A typical graph

of the reflection coefficient of the wavenumber is the traveling wave, as shown in

[Fig. 1.5].

Figure 1.5: A typical graph of the reflection coefficient of the surface wave from
an underwater step of finite length according to [104]. Here h = 0.3 m is the
depth of the reservoir, ht = 0.15 m is the depth of the liquid over an obstacle
of length λ = 0.6 m. The solid line reflects the theoretical results of Massel, the
dashed curve is the results of May and Black [108] obtained using the variational
approach, and the dots experimental data of [104] are shown.
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Considering the problem of the transformation of waves on an underwater

ledge, Massel, using a numerical solution of a truncated system of equations for

the excitation coefficients of the evanescent modes, obtained the dependencies of

the transformation coefficients on the frequency for several fixed values of the

depth difference in front of the ledge and beyond. The movement of the incident

wave in both directions from left to right and from right to left was considered.

The dependencies of the transformation coefficients on the frequency of the wave

for the case h2/h1 = 3/16 (h1 = 0.8 m, h2 = 0.15 m) are shown in [Fig. 1.6]. It

is easy to see that the transformation coefficients satisfy the symmetry condition

(1.5).

Figure 1.6: Dependencies transformation coefficients of surface waves on the fre-
quency for a given depth ratio h2/h1 = 3/16 according to [104, 105].

Applying a rigorous approach to solving the problem of transformation of

linear surface waves on the bottom ledge has shown that expressions for transfor-

mation coefficients can be obtained theoretically with any accuracy by numerical

solution of a system of a large number of linear algebraic equations. Practical

application of this approach leads to rather cumbersome calculations; sometimes

situations arise when the matrix of coefficients of an algebraic system is ill-posted.

In this regard, it seems useful to search for fairly simple, albeit approximate,

methods for the calculation of transformation coefficients, which make it possi-

ble to obtain and analyze the required result relatively quickly with controlled

accuracy. Of particular interest are cases where transformation ratios can be

represented by analytical formulas.

A different approach to the approximate calculation of the transformation of

surface waves over the bottom ledge was proposed in the work by Marshall and

Naghdi in 1990 [101]. It is based on an approximate theory of Green – Naghdi,
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which consists in representing the velocity field as a finite sum of the products of

the vertical and horizontal current profiles [53, 54, 56, 55]. It was shown in these

papers that the process of calculation of dynamics of surface waves can be greatly

simplified by using the specified representation of the velocity field. Using the

previously developed approximate theory [53, 54, 56, 55], Marshal and Naghdi

[101] considered the propagation of a monochromatic wave of arbitrary length in

a pool with a finite number of bottom obstacles in the form of steps and derived

the following formulas for the transformation coefficients on one step:

T =
2kt

kt + ki
, |R| = kt − ki

kt + ki
, (1.7)

where ki and kt are the wavenumbers of the incident and transmitted waves. In

this case, kt is determined from the following transcendental equation expressing

the equality of the frequencies of the waves:

kt tanh(kth2) = ki tanh(kih1) (1.8)

It is easy to see that in the long-wave approximation from (1.8) it follows

that (ki/kt)
2 = h2/h1; then the dependencies (1.7) reduces to the Lamb formulas

(1.2). However, Marshal and Naghdi in their work did not compare the theoretical

results they obtained with the data of any laboratory experiments or numerical

calculations. The accuracy of calculations by the formulas (1.7) is not high; the

results are only partially consistent with the conclusions of a rigorous theory and

data of direct numerical calculations.

In [51], approximate formulas were proposed for calculation of the transfor-

mation coefficients based on the formal use of Lamb’s formulas in the form (1.1),

in which instead of the ”long-wave” speeds c1,2 =
√
gh1,2 speeds, phase or group

wave velocities were used, determined from the dispersion relation. It is obvious

that in the limit of long waves, when there is no dispersion, the Lamb formulas

follow from this approach. The subsequent comparison with the conclusions of

the exact theory and the data of direct numerical simulation showed that the best

agreement for the transmission coefficient T is provided by substitution of group

velocities into formula (1.1); the error does not exceed 5.5% for any wavelengths

and depth differences h2/h1. For the reflection coefficient, the best agreement

is provided by substituting the phase velocities in formula (1.1); however, the

calculation error is much higher - it can reach 45%. The corresponding formulas

for the transformation coefficients are:
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Tg ≡
2cg1

cg1 + cg2
=
q

κ

tanh(qh2/h1)

tanhκ

2

1 +Qκ/q
, |Rp| ≡

|cp1 − cp2|
cp1 + cp2

=
|q − κ|
q + κ

,

where Q =

[
1 +

qh2

h1

sech2(hh2/h1)

tanh(qh2/h1)

](
1 + κ

sech2 κ

tanhκ

)
; (1.9)

κ = kih1 - the dimensionless wavenumber of the incident waves; q = kth1 the di-

mensionless wavenumber of the transmitted wave. These numbers are connected

by the transcendental equation (1.8), which in the dimensionless form takes the

form: q tanh(qh2/h1) = κ tanh(κ).

Note that the Marshall and Naghdi formulas (1.7) essentially reduce to the

fact that in the Lamb formulas (1.1), for both the transmission coefficient and the

reflection coefficient, the wavelength phase velocities are replaced by the wave-

lengths. As a result, the reflection coefficient, as noted above, is estimated with

a maximum error of 45% at |R| > 0.01, and the error in determining the coeffi-

cient of transmission can exceed 100%, which is much worse than the error of the

formulas proposed in [51].

1.1.2 Nonlinear theories

A natural continuation of the study of the transformation of surface waves on the

bottom ledge is to take into account the effects of nonlinearity associated with

the finite amplitudes of the waves. Nonlinear effects are especially important in

the last wave, if the depth of the reservoir over the ledge decreases, for example,

when a wave rushes from the open ocean to the shelf area.

In particular, as shown in the monograph by Pelinovsky [124], when tsunami

waves propagate in the open ocean, the effects of nonlinearity are weak or sub-

stantial when reaching the shore. This leads to an increase in the amplitude of the

transmitted wave, to the twisting of its front and, in some cases, to the collapse of

the wave behind the ledge. In this regard, of great interest is the problem of the

nonlinear transformation of surface waves on the bottom ledge with the study of

the subsequent evolution of the transmitted and reflected waves. Mirchina and

Pelinovsky [111] considered the transformation of nonlinear waves on the bot-

tom ledge in the long-wave approximation, when the effects of dispersion are not

significant.

Using the approximate Lamb approach, consisting of using boundary condi-

tions for maintaining fluid flow and pressure continuity over an underwater ledge,

the authors derived a system of nonlinear equations to determine the dependen-

cies of the amplitudes of transmitted and reflected waves depending on the depth

difference and amplitude of the incident wave. The resulting system of equations
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for the amplitudes of the transformed waves in general is too complicated for

analysis, but in some particular cases it is possible to get visible results from it.

In the limit of infinitely small wave amplitudes, the Lamb formulas (1.2) follow

from the resulting system. In the following order in the amplitude of the incident

wave, the transformation coefficients take the form:

T =T0

{
1 +

Ai
h1

T0
2 1 +

√
X

8
√
X

[
3(1−X) +

(3−X)
√
XR0

2 − 2

1−
√
X

R0

T0

]}
,

R =R0

[
1 +

Ai
h1

T0

2(
√
X − 1)

(
3−X

2
R0

2 − 1√
X

)]
; (1.10)

where Ai is the amplitude of the incident wave, and X = h1/h2.

Figure 1.7: Dependencies of normalized corrections to Lamb’s formulas τ ≡
(∆T/T0)/(Ai/h1) and ρ ≡ (∆R/R0)/(Ai/h1) on the relative height of the ∆h/h1

step according to [111, 124].

[Fig. 1.7] shows the relative corrections to the Lamb formulas ∆T/T0 ≡
(T − T0)/T0 and ∆R/R0 ≡ (R − R0)/T0, normalized to Ai/h1, as functions of

the relative height of the ledge ∆h/h1 ≡ (h1 − h2)/h1 = 1 − 1/X. As can be

seen from these graphs, non-linearity leads to an increase in the wave reflection

coefficient at ∆h/h1 < 0.4; for large h/h1 values, the correction to the reflection

coefficient becomes negative. The correction to the transmission coefficient is

negative for any values of ∆h/h1. When ∆h/h1 → 0, i.e., when there is no

step, the amendment to the reflection coefficient ∆R disappears; Naturally, the

reflection coefficient R0 itself disappears, but their ratio formally remains finite
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∆R/R0 ≈ 0.22. In the other limiting case, when h/h1 → 1, i.e., when h2 → 0,

both corrections, being negative, increase unboundedly in absolute value. Other

details of the transformation of nonlinear waves in the long-wave approximation

can be found in the original work of the authors [111], and also in the monograph

[124]. We note one significant point related to the transformation of nonlinear

waves: the obtained transformation coefficients only make sense in the immediate

vicinity of the edge of the ledge. Since nonlinear waves are not stationary, as they

move away from the edge of the ledge, the transmitted and reflected waves evolve,

become twisted, and either turn over or turn into solitons.

In the work of Pelinovsky [122], as well as in the subsequent work [39], the

transformation of a soliton on the bottom ledge was studied in the framework of

the Korteweg – de Vries (KdV) equation. At the same time, it was shown that

with moderate amplitudes of the incident and transmitted waves, the transfor-

mation at the ledge edge can be calculated approximately using Lamb’s formulas

(1.2). Moreover, all three pulses, falling, past and reflected, near the edge of the

ledge at x = 0 have the same shape and duration, only the amplitude of the

pulses changes:

ηi(x, t) =η0 sech2

(
t
√

3gη0

2h1

)
,

ηt(x, t) =
2

1 +
√
h2/h1

η0 sech2

(
t
√

3gη0

2h1

)
,

ηr(x, t) =
1−

√
h2//h1

1 +
√
h2//h1

η0 sech2

(
t
√

3gη0

2h1

)
. (1.11)

Here, η0 is the soliton incident on the ledge. Taking into account the formulas

derived in [111], the transformation coefficients can be refined, taking into account

the finiteness of the amplitude of the incident soliton. The preservation of the

pulse shape and their durations during the transformation of solitons at a sharp

depth jump at the ledge edge was confirmed in subsequent numerical calculations

[123] and laboratory experiments [94, 139]. After transformation in the past and

reflected pulses, the balance between amplitude and duration, characteristic of a

stationary soliton, is disturbed. As a result, transformed pulses in the process of

propagation evolve, generating secondary solitons, the number and parameters

of which can be calculated using the inverse scattering method (see, for example,

[1]). In this case, only one soliton appears in the reflected wave if h2/h1 < 1; if

h2/h1 > 1, then the reflected pulse has a negative polarity, evolving only into a

non-stationary wave packet without solitons.
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1.2 Numerical studies of the transformation of

waves on the bottom ledge

The transformation of solitary waves was studied in detail in the work of Peli-

novsky and co-authors [123]. As in earlier papers [39, 122], the authors used

the linear theory to calculate the amplitudes of the waves transformed over the

ledge, using the Lamb formulas (1.2). To confirm the conclusions of the theory,

calculations of the dynamics of a single wave (soliton) were performed within the

framework of various numerical schemes on the basis of the KdV equation, the

generalized Boussinesq equation, and also in the framework of the full-non-linear

Navier – Stokes model. The calculations performed in the framework of all these

schemes showed close to theoretical results, both in the number of secondary soli-

tons and in terms of their amplitudes (the phase coincidences were much worse

due to the inaccuracy in determining the soliton velocities within approximate

models).

Figure 1.8: The dependencies of the amplitudes of secondary solitons An+1 in the
transmitted wave (a) and in the reflected wave (b), normalized to the amplitude
of the incident soliton ηi, on the depth difference h2/h1 according to [123]. Solid
lines are theoretical dependencies, points are numerical data obtained within the
framework of the KdV equation.

The figures [Fig. 1.8] from [123] show a comparison of the theoretical depen-

dencies with the numerical data for the amplitudes of secondary solitons arising

in the past wave on the depth difference. Note that the maximum amplitude of

the highest of the secondary solitons cannot exceed the amplitude of the incident

soliton by more than four times. In this case, as follows from Lamb’s formulas

(1.2), the maximum amplification of the transmitted wave in terms of the incident

wave cannot exceed two near the edge of the ledge. Then, as the transformed

pulse evolves, secondary solitons form from it, and according to the theory of the

KdV equation [39, 122], the maximum amplitude of the secondary soliton can
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exceed the amplitude of the pulse transformed on the ledge no more than twice.

These figures [Fig. 1.8] demonstrates good agreement of theoretical calcula-

tions with numerical data in the framework of the KdV model. This confirms

the validity of using Lamb’s formulas (1.2), derived within the framework of the

linear theory of long waves to calculate the transformation of impulse perturba-

tions of small but finite amplitude, such as, for example, KdV solitons. Direct

numerical modelling of the transformation of linear waves of arbitrary length on

the bottom ledge was performed only recently in [51, 87]. At the same time,

far from the ledge, a quasi-monochromatic wave packet with a central wavenum-

ber ki was specified. In order to avoid dispersion effects when such a packet

propagates, its characteristic width D was chosen rather large compared to the

carrier wavelength λi = 2π/ki << D. Numerical calculations were performed

using the MITgcm software package, adapted to simulate the transformation of

surface waves above the bottom ledge ideal fluid [4, 102, 103]. The view of the

two-dimensional computational domain is presented in [Fig. 1.2]; on all vertical

sides and at the bottom, the no-flow condition (zeroing of the normal velocity

component) was used, and on the free surface standard boundary conditions,

kinematic and dynamic, were used [15, 88, 142]. The initial perturbation was

defined as a wave packet with a Gaussian envelope in a region with depth h1:

ηi(x, t) =η0 sech2

(
t
√

3gη0

2h1

)
,

φ(x, y, 0) =
g

ω(ki)
Ai exp

[
−
(
x− x0

D

)2
]

cosh[ki(h1 − y)]

cosh(kih1)
sin(kix) (1.12)

Here η(x, t) - is the disturbance of the free surface, φ(x, y, t) - is the hydrody-

namic potential of velocity, Ai - is the amplitude of the wave packet, g - is the

acceleration of gravity, ω(ki) is the frequency of the carrier wave associated with

the wavenumber dispersion ratio: ω(k) =
√
gk tanh(kh)

The amplitude of the initial disturbance was chosen so small that nonlinear

effects did not manifest themselves in the computational domain Ai = min{h2, h1}
/500. Numerical calculations were performed for a depth difference of 0.01 ≤
h2/h1 ≤ 100, which corresponds to the incidence of waves from a deep region to a

greater shallow area, and in the opposite direction. In this case, the depth h1 in all

calculations was set to the same h1 = 50 m, and the depth behind the h2 ledge was

varied. Below are the results of calculations for only three values of dimensionless

wavenumbers k = kih1 = 0.1, 1, and 10, which successively differ in order. The

amplitudes of the transmitted and reflected waves were determined at a sufficient

distance from the ledge so that there was no interference with the incident wave.

After that, the transmission coefficients are |T | = |At/Ai| and the reflections
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are |R| = |Ar/Ai|. The results of numerical simulation of the transformation

process for the three specified wavenumbers are presented in [Fig. 1.9] As can

Figure 1.9: The coefficients of transmission (a) and reflection (b) as a function
of the depth difference. The results of numerical calculations are represented by
various symbols: diamonds - κ = 0.1; points - κ = 1; triangles - κ = 10; solid
lines are calculations using Lamb’s formulas (1.2). The remaining curves are
constructed using approximation formulas (1.9).

be seen from this figure, the approximation formulas (1.9) are in good agreement

with the data of direct numerical calculations, not only qualitatively but also

quantitatively, reproducing the local minimum of the transmission coefficient at

κ = 10 in the region h2/h1 < 1, as well as T values in the region h2/h1 > 1. As

was to be expected, the agreement between the transformation coefficients of the

waves and the Lamb formulas (2) is observed only for fairly small values of the

wavenumbers κ (see, for example, the diamonds in [Fig. 1.9] and curves 1 for

the transmission and reflection coefficients for κ = 0.1). An interesting feature of

the transformation coefficients is their non-monotonic dependence on the depth

difference. Due to the non-monotonic nature of the transmission coefficient for

sufficiently large values of κ, it can turn into a unit not only for h2/h1 = 1 when

there is no step at all, but also for a certain value of h2/h1 < 1 (see [Fig. 1.9]),

which depends on κ. In this case, the reflection coefficient does not vanish again

for the second time, and the length of the transmitted wave does not coincide with

the length of the initial wave, q 6= k. The relationship between the wavenumber

of the initial wave κ∗ and the depth difference h2/h1, at which the transmission

coefficient becomes one, can be obtained from the condition T = 1 together with

equation (1.8). Due to the complexity of the resulting transcendental equation,

it is not given here; its numerical solution is presented in [Fig. 1.10]. For small

values of h2/h1 << 1, the dependence of κ∗ on h2/h1 can be approximated

by the simple formula κ∗ = 0.36h1/h2, represented by the dotted line in the

double logarithmic scale in [Fig. 1.10]. A somewhat worse agreement between

the approximation formulas and the numerical data is observed for the reflection
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Figure 1.10: The dependence of the dimensionless wavenumber of the incident
wave on the depth difference, when the transmission coefficient again vanishes.

coefficient, especially for large κ values in the h2/h1 < 1. But in general, the

agreement with the numerical data can be considered quite satisfactory in this

case too.

Generation of solitary waves by transcritical flow over a step was also studied

in the work [70]. The authors consider the analogous transcritical flow over a

step, primarily in the context of water waves. They used both numerical and

asymptotic analytical solutions of the forced Korteweg–de Vries equation, to-

gether with numerical solutions of the full Euler equations, to demonstrate that a

positive step generates only an upstream-propagating undular bore, and a nega-

tive step generates only a downstream-propagating undular bore [Fig. 1.11]. The

Figure 1.11: Generation of solitary waves by transcritical flow over a step. (The
step is not shown.)

numerical study of transformation of a finite-amplitude interfacial solitary wave

of depression at a bottom step in a two-layer fluid was also conducted in [97].
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The parameter range studied in this paper goes outside the range of the weakly

nonlinear theory, viz, the extended Korteweg–de Vries or Gardner equation. The

authors described various scenarios of transformation in terms of the incident

wave amplitude and the step height. The dynamics and energy balance of the

transformation are also described. Several numerical simulations were carried

out using the nonhydrostatic model based on the fully nonlinear Navier–Stokes

equations in the Boussinesq approximation. Three distinct runs were discussed in

detail. The first simulation was done when the ratio of the step height to the lower

layer thickness after the step was about 0.4 and the incident wave amplitude was

less than the limiting value estimated for a Gardner solitary wave. This shows

the applicability of the weakly nonlinear model to describe the transformation

of a strongly nonlinear wave in this case. In the second simulation, the ratio of

the step height to the lower layer thickness was the same as that in the first run

but the incident wave amplitude was increased and then its shape was described

by the Miyata–Choi–Camassa solitary wave solution. In this case, the process of

wave transformation was accompanied by shear instability and the billows that

result in a thickening of the interface layer. In the third simulation, the ratio

of the step height to the thickness of the lower layer after the step was 1.33,

and then the same Miyata–Choi–Camassa solitary wave passes over the step, it

undergoesunderwent stronger reflection and mixing between the layers although

the Kelvin–Helmholtz instability was absent. The energy budget of the wave

transformation was calculated. It was shown that the energy loss in the vicinity

of the step grows with an increase of the ratio of the incident wave amplitude to

the thickness of the lower layer over the step.

The numerical study was extended in the paper [150]. The authors contin-

ued their work on the interaction of an interfacial solitary wave with a bottom

step, considering (i) the energy loss of solitary waves of both positive and nega-

tive polarities interacting with a bottom step and (ii) important features of the

transformation of a large amplitude internal solitary waves at the step [Figs.

1.12 - 1.14]. It was shown that the dependence of energy loss on the step is not

monotonic, but has different maximum positions for different incident wave po-

larities. The energy loss does not exceed 50% of the energy of an incident wave.

The results of numerical modeling were compared with some recent results from

the laboratory tank modeling. In all case when a solitary wave amplitude was

large enough, generation of a turbulence was observed though the mechanism of

Kelvin-Helmholtz instability. This is clearly seen in [Figs. 1.12-1.14].
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Figure 1.12: The salinity field in the vicinity of the step shows Kelvin-Helmholtz
instability for an incident elevation (a) and depression (b) internal solitary waves.

Figure 1.13: The transformation of an incident positive polarity solitary wave of
a big amplitude at a bottom step.

Figure 1.14: The transformation of an incident negative polarity solitary wave of
a big amplitude at a bottom step.
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1.3 Laboratory experiments on the transforma-

tion of waves on the bottom ledge

Apparently, the first work containing a comparison of experimental data on the

transformation of surface waves above the underwater scarp with the theoretical

results is the work of Newman [113], in which the transition of a quasimonochro-

matic wave from an infinitely deep region to a region of finite depth was studied.

As can be seen from [Fig. 1.15], taken from this work, the laboratory experiment

data results are in good agreement with the theoretical results. In subsequent

Figure 1.15: The dependence of the coefficient transmission and reflection of
waves from the dimensionless parameters (kh)1/2 [113], where k is the incident
wavenumber, and h - the depth of the reservoir behind the ledge. Different
symbols correspond to different depths h, symbols, on the vertical axis indicate
the limiting values of the transformation ratios for infinitely long waves according
to the Lamb formulas (1.2).

laboratory experiments, only the transformation of long (compared to the depth

of the pool) solitary waves was studied. Thus, in [139], the authors present the

results of a large series of experiments in which the height of the underwater

ledge and the amplitude of the incident solitary wave changed. In this case, the

amplitudes of the waves in some cases were not small, so that nonlinear effects

were observed, leading even to the collapse of the waves passing behind the ledge.
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The studies performed with small wave amplitudes demonstrated good agreement

with the theoretical formulas obtained in [122]. In particular, in experiments with

a certain depth ratio, two or more single pulses were observed in the transmit-

ted wave, whereas only a soliton was formed in the reflected wave. In addition,

it was noted that the number and amplitude of the transmitted waves increase

with increasing height of the ledge. In another work on the same topic [94], the

transformation of solitary waves of both small and large amplitudes was also con-

sidered. In this case, both the transformation of solitary waves in the immediate

vicinity of the ledge, and the further evolution of the waves passing behind the

ledge were studied in detail. According to the observations of the authors of [94],

when the wave approaches the underwater ledge, the amplitude of solitary waves

increases slightly, and in the region behind the ledge a decrease in the free sur-

face level was observed. Far from the ledge, the results of laboratory experiments

were compared with the soliton solution of the KdV equation for the transmitted

pulses. For solitons of small amplitude incident on a ledge, satisfactory agreement

with theoretical predictions was observed, whereas at large amplitudes, experi-

mental data differed from theoretical results, as well as non-stationary dynamics

of transmitted pulses up to their collapse. Based on the accumulated experimen-

tal data, a diagram was constructed that defines various modes of transformation

of solitary waves depending on the amplitude of the initial wave and on the depth

ratio before and after the step in the range 1.0 < h2/h1 < 4.3. It was noted at

what parameters the decay of the transmitted pulse into several solitons occurs,

the splitting and collapse of the transmitted wave, almost complete transmission,

and, conversely, total reflection. In conclusion of this section, we note that the

process of transformation of surface waves on the bottom ledge has also been stud-

ied experimentally using modelling in nonlinear power lines [145]. As was shown

in this paper, in the long-wave approximation, the basic equations describing the

propagation of signals in such lines are reduced to the KdV equation. In this case,

a good agreement was found between experimental data on soliton transforma-

tion at a jump in parameters between two sections of a long line with theoretical

conclusions similar to those obtained for waves in a shallow pond [39, 122].

1.4 Wave transformation and analogue gravity

The problems of water wave transformation in a variable-depth fluid have unex-

pected analogy with the fundamental astrophysical problem of electro-magnetic

wave scattering on black holes and Hawking radiation. The deep physical analogy
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between water waves in inhomogeneous classical continuum media and astrophys-

ical phenomena in the vicinity of black hole horizon was established in 1981 by

Unruh [152] who demonstrated the analogy between the long-wave equations in

non-uniform media and a curved space-time metric in general relativity. It was

shown also that there is an analogy between the Hawking radiation [72] in as-

trophysics and emission of negative energy waves [46] in non-uniformly moving

fluids.

Increased attention occurred in this field when it was discovered that analogue

Hawking radiation is mainly disengaged to the Lorentz-violating short-wavelength

dispersion [16, 73, 74, 153] ubiquitous in realistic media. There have since been

many theoretical and experimental study in various physical systems. This in-

cludes optics [11, 127], BEC [143, 144], waves in solids [5, 17, 21] and spin waves

[40, 76], acoustic waves [6, 7], and surface waves in water [134, 135, 136, 138].

The well-observed dispersive corrections to the Hawking flux (see e.g. [96, 133]),

have garnered greater understanding and cognisance into the possible effects of a

quantised spacetime using more accessible systems where microscopic behaviour

has been well documented. As all-pervasive as dispersion, dissipation is another

vital cog in this relativistic machine [2, 18, 91, 132] and a direct player in all

of the analogue gravity systems already mentioned. For example, in BEC, the

effect of Landau damping [128] happens when phonon energy is lost due to in-

teractions with the non-condensed thermal cloud. While optical media are all

absorptive to some extent, the main dissipative channel of polaritons is the ra-

diation of photons to the environment [17, 21], while losses from spin waves are

caused by ohmic dissipation [40, 76]. Although viscosity is the main cause of

dissipation in fluids, this also creates several other dissipative effects including

friction at the boundaries and absorption in the bulk. Wave breaking is often

described as a ‘super-dissipative’ process, where wave energy is lost to turbu-

lence. It is suggested that quantum fluctuations of space-time geometry may act

as a dissipative force on black holes [8, 119]. Therefore, it is vital that dissipa-

tion is included and gauged in the design and execution of all experiments to

optimise and maximise our observations and results. Instead of determining the

relevance and scope of dissipation of surface waves on fluids in analogue gravity

experiments [136], or quantitatively characterising the lowest-order corrections

induced [132], our focus here shall be on minimizing the overall dissipative effects

and giving greater emphasis to surface waves on water, in keeping with previous

experiments. Where possible, the results will be expressed in the dimensionless

form that can apply to many different fluids with one goal being to garner greater

attention from experimentalists in fluid mechanics unfamiliar with the analogue

gravity program.
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1.5 The objectives of this research

The Project is devoted to the development of new exact solutions to classical

problems in fluid mechanics. In the long history of development of hydrodynam-

ics, several formulations of the primitive equations have been proposed as the

basis for investigation of various aspects of flow dynamics. Unfortunately, in gen-

eral, equations of fluid motion are very complicated and only in special cases can

the exact analytical solutions be found. Such solutions are very important, and

therefore researchers continue to look for such formulations as will enable them to

construct exact solutions and use them for practical purposes. There are several

different approaches which allow one to reduce the original equations to simpli-

fied forms containing fewer variables. In this Project, exact solutions for several

simplified hydrodynamic problems will be studied using rigorous mathematical

approaches.

1.6 Content of this research

In Chapter 1, the history of the problems considered in the Thesis is presented

and the existing solutions and methods are reviewed. The transformation of

surface waves over underwater obstacles of various shapes is a long-term prob-

lem that has grown more pressing due to increasing technological and societal

demands. Development of advanced models to describe the influences of depth

variation of the ocean or of cross-section of canals, and the current speed effect on

wave transformation has many applications, from protecting coastlines or natural

treasures such as the Great Barrier Reef to the introduction of higher-level safety

mechanisms in marine vessels and offshore structures.

The results obtained in the Thesis are also of interest from the viewpoint of

modelling of astrophysical phenomena such as Hawking radiation. In particular,

it is rigorously shown in the Thesis that the amplitude of the scattered wave

decreases with the frequency as ω−1, whereas in the experiment [155] it was only

roughly estimated to be exponentially decreasing.

Whenever a wave passes over a bottom step, the amplitude and wave number

of the transmitted wave may be significantly increased compared to the amplitude

and wave number of the incident wave. To calculate the impact of a transmitted

wave on offshore or coastal structures, one should closely analyse and take into

account the parameters of the transmitted wave. The complex nature of these

effects requires deep analytical modelling in addition to the numerical results.

This research looked at four vital considerations: the transformation of long linear

waves in an ocean with a variable depth; long wave scattering in a canal with
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a rapidly varying cross-section; long linear surface waves on stationary currents

in a canal of constant depth and variable width; and the revision of the forced

Korteweg–de Vries equation to describe a resonant interaction of a solitary wave

with external pulse-type perturbations. White spaces in previous research will

be noted.

In Chapter 2, it was considered and calculated the transformation of long lin-

ear waves in an ocean with a variable depth. Here, the transformation coefficients

(the transmission and reflection coefficients) will be considered as the functions

of frequency and the total depth drop for three typical models of the bottom

profile: piecewise linear, piecewise quadratic and hyperbolic tangent profiles. We

compare the influence of the different bottom profiles on the wave transformation

and obtain exact analytical solutions for all three reference cases.

For all of these cases, exact solutions are obtained, analysed and graphically

illustrated, allowing us to derive the transformation coefficients in the analytic

form and compare them with the available data obtained for the particular mod-

els, either approximately or numerically. As will be shown, the results obtained

are in good agreement with energy flux conservation and Lamb’s formulae in the

limiting case of zero frequency. We also study wave transformation (scattering) on

the underwater barriers and trenches of different shapes whose slopes can be de-

scribed by the similar functions (linear, piecewise quadratic, and tanh-functions).

A comparison of the results obtained for these three cases will be presented and

analysed.

In all cases we obtained qualitatively similar results which were in agreement

with those earlier obtained by different authors for some particular cases by more

approximate methods. In the limiting case, when the wave frequency goes to

zero, we obtained the same transformation coefficients which are predicted by

Lamb’s theory (1932) [88] for a step-wise bottom.

However, some quantitative differences in the transformation coefficients for

the different bottom profiles were found.

For the wave scattering on underwater barriers or tranches it has been shown

that fewer oscillations in the transformation coefficients occur for barriers and

tranches with linear slopes in comparison with barriers and tranches with piece-

wise quadratic or tanh-slopes.

More complicated real bottom profiles can be approximated with higher ac-

curacy by the combination of linear, quadratic, and tanh-profiles similar to those

used in the paper [129], where the bottom profile was approximated by a set

of step-wise functions. The obtained results can be used, in particular, for the

protection of beaches against storm surges, swells and tsunami waves.

In Chapter 3 it will be considered the case of long wave scattering in a canal
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with a rapidly varying cross-section, where the scattering coefficients will be cal-

culated for all possible orientations of the incident wave, with respect to the

background current (downstream and upstream propagation) and current type

(subcritical, transcritical, and supercritical). It is shown that over-reflection or

over-transmission can occur and the negative energy waves can appear. A spon-

taneous wave generation can happen in a transcritical accelerating flow, when the

canal narrowing leads to the increase of the background current. This resembles

a spontaneous wave generation on the horizon of an evaporating black hole due

to the Hawking effect [27, 29, 47, 73, 126, 131, 152, 153].

In examining the classic problem of water wave transformation in a canal

of a variable cross-section, we studied the coefficients of transformation of long

linear waves in a canal of a rectangular cross-section with an abrupt change

of geometrical parameters (width and depth). The transmission and reflection

coefficients were found as functions of depth ratio and width ratio.

In the study of the subcritical and supercritical flows, we succeeded in calcu-

lating the transmission and reflection coefficients in explicit forms as functions of

the depth drop and Froude number. The conditions for over-reflection and over-

transmission have been found in terms of the relationships between the Froude

number and canal geometric parameters X and Y , where X = h2/h1 is the ratio

of the depths and Y = b2/b1 is the ratio of the widths of the duct.

In Chapter 4, we study analytically the scattering of long linear surface waves

on stationary currents in a duct of a constant depth and variable width, assuming

that the background velocity linearly increases or decreases with the longitudinal

coordinate (gradual variation of duct width). This enabled us to arrive at an

analytical solution, calculating the scattering coefficients as functions of incident

wave frequency for all possible cases (sub-, super, and trans-critical currents).

Both co-current and counter-current wave propagation in accelerating and decel-

erating currents were studied on a properly varying width to the canal, instead

of the step-wise model considered Chapter 3.

The results obtained showed that the transformation coefficients can be found

in the exact analytical forms both for co-current and counter-current wave prop-

agation in gradually accelerating and decelerating currents. The results of this

Chapter represent an interest as the hydrodynamic model of Hawking’s effect,

and are applicable to the real physical phenomena occurring in non-homogenous

ducts with a water flow, at least at relatively small Froude numbers.

All problems describe above pertain to the dispersionless case when the wave-

lengths of all waves in the scattering process are far greater than the water depth

h in the canal. However, the wavelengths can be comparable with or even less

than the characteristic length l of current inhomogeneity. In the long-wave limit,
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the scattering coefficients were expressed through the simple algebraic formulae

(in agreement with the formulae derived in the previous Chapter 2 for the case

of abrupt change of canal cross-section).

The analysis undertaken is based on the fact that wavelengths of scattered

waves drastically decrease in the vicinity of a critical point, where the speed of

water flow U(x) becomes equal to the speed of long waves: U(x) = c. Here,

either the dispersion, or dissipation, or both these effects may play an important

role. It was shown that in certain situations, viscosity can predominate over the

dispersion. The influence of dissipation on Hawking radiation was considered

in astrophysical application [132]. This chapter led to the finding of an exactly

solvable model, enabling us to construct analytical solutions and calculate the

scattering coefficients in the dispersionless limit.

In Chapter 5, it is considered the nonlinear models of waves transformation

on localised moving obstacles. The asymptotic theory developed by Grimshaw

and Pelinovsky with co-authors in the series of papers [62, 63, 64, 66, 121] is

revised. While these authors described the dynamics of solitary waves in the

KdV-like equations, their research was limited to the cases where the moving

obstacles (representing a forcing for the incoming solitary wave) where either very

narrow in comparison with the initial KdV soliton and could be approximated

by the Dirac δ-function, or where the initial KdV soliton was very narrow (and

approximated by the δ-function) in comparison with the localised forcing. In

our research it was considered an arbitrary relationship between the width of

the initial KdV soliton and external forcing. There were presented also several

examples of forced KdV equation which admit exact analytical solutions both

stationary and non-stationary.

For a small-amplitude forcing, we presented the asymptotic analysis based on

the equations derived in the aforementioned papers and showed that in many

cases solutions of approximate equations can be solved analytically, albeit the

final formulae look rather cumbersome. In the limiting cases of a very narrow

or a very wide forcing our results converge to those obtained by Grimshaw and

Pelinovsky [66], but contain additional physically interesting regimes missed in

their paper due to approximation of the soliton and forcing by the δ-function.

The results obtained are particularly important in view of their applications

to physical phenomena occurring when external perturbations generate pressure

fields capable of exciting and supporting solitary waves. Examples represent the

cases where a moving atmospheric pressure or a slow-moving ship generates waves;

where atmospheric waves are generated behind tall obstacles like a mountain ridge

or where ocean currents flow around underwater obstacles, generating surface or

internal waves. The results are also applicable to other areas of physics, such as
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plasma physics and Bose–Einstein condensate, where the highly universal forced

Korteweg–de Vries equation is also used.

Within the Project, the traditional methods of theoretical and mathematical

physics were used. They are based on the complex analysis technique, asymptotic

methods, and classical and contemporary methods of mathematical physics. The

numerical methods were used as the complementary tool to support theoretical

findings. Within these methods the standard software Fortran, Matlab, Mathcad

and Wolfram Mathematica were used.
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Chapter 2

TRANSFORMATION OF

LONG SURFACE WAVES IN

THE OCEAN WITH A

VARIABLE BATHYMETRY

In this chapter we consider transformation of long linear waves in an ocean with

a variable depth. We calculate the transformation coefficients (the coefficients

of transmission and reflection) as the functions of frequency and the total depth

drop for three typical models of bottom profile variation: (i) piecewise linear,

(ii) piecewise quadratic, and (iii) hyperbolic tangent profiles. For all these cases

exact solutions are obtained, analysed and graphically illustrated. This allows us

to derive the transformation coefficients in the analytic form and compare them

with the available data obtained for the particular models either approximately or

numerically. We show that the results obtained are in agreement with the energy

flux conservation and Lamb’s formulae in the limiting case of zero frequency.

We also study wave transformation on the underwater barriers and trenches of

different shapes and compare the results obtained. The results obtained in this

Chapter have been published in Pure and Applied Geophysics [44].
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2.1 Introduction

The problem of linear wave transformation on the bottom unevenness has a long

history. The development of rigorous mathematical methods for the description

of wave transformation in the coastal zone represents an important and topical

problem both from the academic and practical points of view, especially in appli-

cation to the protection of marine engineering constructions (platforms, gas and

oil pipelines, etc.) [13] and coastlines against hazardous impacts of large oceanic

waves including tsunami waves [48, 71]. As well-known (see, for example, [124]),

tsunami waves in the open ocean can be treated as the linear waves in a shallow

basin; their typical heights are about 0.5 m, and wavelengths are 300 – 500 km,

whereas the average ocean depth is 4 – 5 km. Therefore, scattering of such waves

on underwater mountain ranges or trenches can be studied within the framework

of linear shallow water theory.

The problem of wave propagation in the fluid with a variable bathymetry

has a general solution in two limiting cases. When the bottom smoothly varies

with the distance so that the characteristic scale of bottom variation is much

greater than the wavelength; then the traditional JWKB method can be used to

calculate wave parameters (amplitude, wavelength, and other parameters) (see,

e.g., [36, 105, 124]). In another limiting case when there is an underwater step-

wise obstacle, the solution for a wave field can be obtained on both sides from the

step and then the solution can be matched at the boundary of two homogeneous

regions. This procedure is not so trivial as may seem at first glans, because

in general one should take into account not only travelling waves, but also the

infinite series of evanescent modes (see [87] and references therein). However, in

the long-wave approximation the evanescent modes does not exist [36] and the

situation becomes much simpler.

Besides these limiting cases the problem of long wave propagation can be

solved analytically for some particular bottom profiles [31, 107] (see also [36]),

moreover for the linear bottom profile there is an exact solution of linearised

hydrodynamic equations for waves of arbitrary wavelength [142, 147]. It was

also shown that in some particular cases exact solutions can be obtained for the

reflectionless propagation of long linear and nonlinear waves in a fluid with a

special bottom profiles (see [34, 35]) and references therein).

Here we revise the problem of linear wave transformation in a shallow water

where kh1,2 � 1 with three particular bottom profiles: (i) piecewise linear, (ii)

piecewise quadratic, and (iii) hyperbolic tangent (tanh-) profiles. We show that in

these particular cases the basic equations can be solved analytically and solutions

can be presented in general in terms of hypergeometric functions, which can be
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reduced to elementary functions in the particular cases. This allows us to derive

the transformation coefficient and compare the results for all three profiles. Then

we study wave transformation over underwater obstacles/trenches of finite width,

present the results in the graphical forms and analyse them.

2.2 The piecewise linear bottom profile

Consider first long linear shallow water wave scattering when it propagates in

a water with the piecewise linear bottom profile shown in Fig. 2.1. An exact

analytical solution to this problem was obtained by Dean (1964) [31] as early as

beginning of 60th of last century (see also the book by Dingemans (1997) [36]

where other approached to this problem are described). We shall re-consider this

problem and present the results obtained in the form suitable for the comparison

with other results derived for the parabolic and tanh-profiles. In the long-wave
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Figure 2.1: A basin with the piecewise linear bottom profile.

approximation the basic hydrodynamic equations representing mass and momen-

tum conservations are [20]:

η∗t + [U(η∗ + h)]x = 0, (2.1)

η∗x + Ut + UUx = 0, (2.2)

where U is the fluid velocity, η∗ is the perturbation of a free surface, g is the

acceleration due to gravity, and h is the water depth. We assume that the water

depth is constant, h = h1 when x ≤ x1 and h = h2 when x ≥ x2; in the interval

x1 ≤ x ≤ x2 the depth changes linearly h = αx (see Fig. 2.1).
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For the further analysis it is convenient to present the set of equations (2.1)

and (2.2) in the dimensionless form using the following change of variables:

V =
U

U0

, η =
η∗

αl0
, ξ =

x

l0
, ĥ =

h

αl0
= ξ, ω̂ = ωT0, τ =

t

T0

, (2.3)

where l0 = x2 − x1 (see Fig. 2.1), T0 = l0/αg, and U0 = (αgl0)1/2

In the dimensionless variables the basic set of equations is:

ητ = −[V (η + h)]ξ, (2.4)

ηξ = −Vτ − V Vξ. (2.5)

Assuming that η � h, we obtain after linearisation and elimination of η the

following wave equation:

Vττ − (V h)ξξ = 0 (2.6)

In the intervals where the fluid depth is constant, i.e., for x < x1 and x > x2,

an elementary solution to this equation can be sought in the form V ∼ ei(ω̂τ±kξ).

However in the interval where the bottom linearly varies, i.e., when x1 < x < x2

and the depth h = ξ in the dimensionless variables, the solution should be sought

in the form: V = Ψ(ξ)eiω̂τ . After substitution this solution into Eq. (2.6) we

obtain:

ξΨξξ + 2Ψξ + ω̂2Ψ = 0 (2.7)

This is the standard Bessel equation whose solution is a linear combination of

Bessel functions. Therefore for function V (ξ, τ) we obtain:

V (ξ) =
1

ω̂
√
ξ

[
B1J1(2ω̂

√
ξ) +B2Y1(2ω̂

√
ξ)
]
eiω̂τ , (2.8)

where J1(x) and Y1(x) are Bessel functions of the first and second kinds respec-

tively. Then in the linear approximation we find from Eq. (2.4) for η = Φ(ξ)eiω̂τ ,

where

Φ(ξ) =
i

ω̂

[
B1J0(2ω̂

√
ξ) +B2Y0(2ω̂

√
ξ)
]
. (2.9)

Here J0(x) and Y0(x) are Bessel functions of the first and second kinds, but with

the zero indices. Now we can write down the general solutions for the perturbation

of a free surface in three different domains shown in Fig. 2.1:

Φl = A1e−ik1(ξ−ξ1) + A2eik1(ξ−ξ1), ξ ≤ ξ1; (2.10)

Φc =
i

ω

[
B1J0(2ω̂

√
ξ) +B2Y0(2ω̂

√
ξ)
]
, ξ1 ≤ ξ ≤ ξ2; (2.11)

Φr = C1e−ik2(ξ−ξ2) + C2eik2(ξ−ξ2), ξ ≥ ξ2. (2.12)

30



where the wavenumbers are

k1 =
ωl0√
gh1

=
ω̂√
ξ1

, k2 =
ωl0√
gh2

=
ω̂√
ξ2

(2.13)

and A1,2, B1,2, C1,2 are arbitrary constants. Note that in stationary inhomoge-

neous media a wave frequency conserves in the process of wave transformation.

Solutions (2.10)–(2.12) can be matched at the boundaries of domains 1, 2,

and 3 shown in Fig. 2.1 by means of the following boundary conditions reflecting

the continuity of function Φ(ξ) and its first derivative:

Φl(ξ1) = Φc(ξ1), Φc(ξ2) = Φr(ξ2), Φ
′

l(ξ1) = Φ
′

c(ξ1), Φ
′

c(ξ2) = Φ
′

r(ξ2). (2.14)

Using these boundary conditions, we consider below surface wave transformation

on the bottom unevenness when the incident wave arrives from the left and from

the right.

2.2.1 Wave transformation in the case of decreasing depth

This case corresponds to the situation when an incident wave arrives from the

right in Fig. 2.1. Then we set the following coefficients in the solutions (2.10)–

(2.12):

A1 = 0, A2 = Tr, C1 = R, C2 = 1, (2.15)

where C2 is the amplitude of an incident wave, R is the reflection coefficient (the

amplitude of reflected wave), and Tr is the transmission coefficient (the amplitude

of transmitted wave).

By substitution solutions (2.10)–(2.12) with the coefficients (2.15) into the

boundary conditions (2.14), we obtain for the transformation coefficients R and

T , as well as for the amplitudes of waves B1 and B2 in the transient region II

(see Fig. 2.1):

R =
1

∆

{[
J0

(
2ω̂
√
ξ2

)
− iJ1

(
2ω̂
√
ξ2

)] [
Y0

(
2ω̂
√
ξ1

)
− iY1

(
2ω̂
√
ξ1

)]
−
[
J0

(
2ω̂
√
ξ1

)
− iJ1

(
2ω̂
√
ξ1

)] [
Y0

(
2ω̂
√
ξ2

)
− iY1

(
2ω̂
√
ξ2

)]}
, (2.16)

Tr =
2 i

∆

[
J1

(
2ω̂
√
ξ1

)
Y0

(
2ω̂
√
ξ1

)
− J0

(
2ω̂
√
ξ1

)
Y1

(
2ω̂
√
ξ1

)]
, (2.17)

B1 = −2 i ω̂

∆

[
Y0

(
2ω̂
√
ξ1

)
− iY1

(
2ω̂
√
ξ1

)]
, (2.18)

B2 =
2 i ω̂

∆

[
J0

(
2ω̂
√
ξ1

)
− iJ1

(
2ω̂
√
ξ1

)]
, (2.19)
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Figure 2.2: Solutions for the free surface perturbation (2.10)–(2.12) with the
coefficients (2.16)–(2.19) in terms of |Φ(ξ)|. Line a) pertains to the case when
the incident wave arrives from the right where the depth h2 > h1, and line b)
pertains to the case when the incident wave arrives from the left where the depth
h1 > h2. The Roman numerals correspond to the domains shown in Fig. 2.1.
The plot was generated for the particular set of parameters when h1 = 1 and
h2 = 2, and wave frequency ω̂ = 5; for other parameters h1, h2, and ω̂ the plots
are similar to these.

where the determinant is:

∆ =
[
J0

(
2ω̂
√
ξ2

)
+ iJ1

(
2ω̂
√
ξ2

)] [
Y0

(
2ω̂
√
ξ1

)
− iY1

(
2ω̂
√
ξ1

)]
−
[
J0

(
2ω̂
√
ξ1

)
− iJ1

(
2ω̂
√
ξ1

)] [
Y0

(
2ω̂
√
ξ2

)
+ iY1

(
2ω̂
√
ξ2

)]
. (2.20)

Solutions (2.10)–(2.12) with the coefficients (2.16)–(2.19) are shown in Fig. 2.2

for |Φ(ξ)| (see line a). A wavy dependence of function |Φ(ξ)| in the region III is

caused by bits of incident and reflected waves, whereas in region I we have only

one transmitted sinusoidal wave of a constant amplitude. Figure 2.3a) shows the

reflection coefficient and Fig. 2.3b) the transmission coefficient as the functions

of normalised frequency ω̂.

In the limiting case ω̂ → 0 the formulae for the transformation coefficients

reduce to the well-known expressions derived by Lamb [88] for the step-wise

bottom (see also [87, 105] and references therein):

R =
1−
√
k

1 +
√
k
, T =

2

1 +
√
k
, (2.21)

where k = h1/h2. Such reduction is quite natural, because in the limit ω̂ → 0 the

wave lengths of scattered waves become much greater than the length of transient
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Figure 2.3: The reflection |R| (a) and transmission |Tr| (b) coefficients as the
functions of normalised frequency ω̂ for the fixed value of h2/h1 = 2. The plots
pertain to the case when the incident wave arrives from the right where the depth
h2 > h1.

domain l0.

The non-monotonic character of dependencies |R|(ω̂) and |T |(ω̂) is explained

by the interference of waves within the transient zone ξ1 ≤ ξ ≤ ξ2 due to the

reflections from the bottom edges at ξ1 and ξ2. However in the minima the

reflection coefficient never vanishes (see Fig. 2.3), therefore the reflectionless

propagation is impossible, although for some “quasi-resonant” frequencies the

reflected wave can be very small.

As follows from Fig. 2.3, the amplitude of transmitted wave can be greater

than the amplitude of an incident wave (T > 1); this is a usual effect when a

wave travels from a deeper region to a shallower region, herewith its wavelength

decreases and amplitude increases (no the over-transmission occurs). The energy

flux conserves in this case and results in the relationship between R, T , and

h1,2. The energy flux can be determined as the density of wave energy (which

is proportional to the squared wave amplitude) times wave speed (see, e.g., [36,

107]), which is in the dimensionless variables c(x) =
√
h(x). Therefore, the

energy flux conservation can be presented as:

c1T
2 = c2(1−R2), or

√
h1

h2

T 2 +R2 = 1. (2.22)

2.2.2 Wave transformation in the case of increasing depth

In this case when the incident wave arrives from the left we chose the coefficients

of the system (2.10)–(2.12) as follows:

A1 = 1, A2 = R, C1 = Tl, C2 = 0. (2.23)
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By substitution solutions (2.10)–(2.12) with the coefficients (2.23) into the bound-

ary conditions (2.14), we obtain again for the transformation coefficients R and

Tl, as well as for the amplitudes of waves in the transient domain 2 (see Fig. 2.1)

B1 and B2:

R =
1

∆

{[
J0(2ω̂

√
ξ2) + iJ1(2ω̂

√
ξ2)
] [
Y0(2ω̂

√
ξ1) + iY1(2ω̂

√
ξ1)
]

−
[
J0(2ω̂

√
ξ1) + iJ1(2ω̂

√
ξ1)
] [
Y0(2ω̂

√
ξ2) + iY1(2ω̂

√
ξ2)
]}

, (2.24)

Tl =
2i

∆

[
J1(2ω̂

√
ξ2)Y0(2ω̂

√
ξ2)− J0(2ω̂

√
ξ2)Y1(2ω̂

√
ξ2)
]
, (2.25)

B1 =
2ω̂i

∆

[
Y0(2ω̂

√
ξ2) + iY1(2ω̂

√
ξ2)
]
, (2.26)

B2 = −2ω̂i

∆

[
J0(2ω̂

√
ξ2) + iJ1(2ω̂

√
ξ2)
]
, (2.27)

where the determinant ∆ is the same as in Eq. (2.20).

Solutions (2.10)–(2.12) with the coefficients (2.24)–(2.27) are shown in Fig. 2.2

for |Φ(ξ)| (see line b). Graphic of the reflection coefficient for the same depth ratio

h2/h1 = 2 is the same as in Fig. 2.3a), and the graphic of transformation coeffi-

cient is similar to that shown in Fig. 2.3b), but with the additional multiplicative

factor
√
h2/h1. Now the amplitude of transmitted wave is less than the ampli-

tude of an incident wave (Tl < 1), but the energy flux still conserves and has the

same form as in Eq. (2.22) with the depth interchange: h1 ←→ h2. This is the di-

rect consequence of the reciprocity relationship derived in [107]: k2h2Tl = k1h1Tr,

where the wavenumbers k1 and k2 are determined in Eqs. (2.13).

2.3 The piecewise quadratic bottom profile

In this section we consider the case when the the bottom profile in the transient

domain between two semi-infinite intervals with a constant depth can be approx-

imated by a smooth conjugation of two quadratic functions as shown in Fig. 2.5

by line 1. A similar problem was considered by Kajiura (1961) [78] (see also

[36]) for the model when one quadratic function in the transient domain connects

two bottom levels with the discontinuities of derivatives at the boundaries (see

line 2 in Fig. 2.5). Kajiura derived the reflection coefficient by means of JWKB

method up to second order terms in the asymptotic expansion in small param-

eter (kl0)−1 � 1, where k is the wavenumber and l0 = x2 − x1 is the width of

the transient domain. It has been shown that the reflection coefficient R ∼ ω̂−1

apart from an oscillatory structure of the dependence R(ω̂). This problem was

re-considered later by Mei (1990) [107] who derived the exact solution for the

transient domain with the quadratic bottom profile and obtained the transfor-
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mation coefficients. Here we consider a similar problem, but with two quadratic

functions representing smooth connection of two bottom levels as shown in Fig.

2.5. We show that the exact solutions can be constructed and the transformation

coefficients can be derived in the analytic, although rather cumbersome form.

We assume that the bottom profile can be presented by two parabolic functions

-1 1 2 3
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-2.0

-1.5

-1.0

-0.5

Y

I II

III
1

2

Figure 2.4: A basin with the piecewise quadratic bottom profile. Line 1 pertains
to the case when two quadratic functions are conjugated at the middle of the
transient zone (γ = 0.5 – see the text) with smooth conjugation at the boundaries
shown by dashed vertical lines. Line 2 pertains to the quadratic profile connecting
two constant bottom levels as considered by Kajiura (1961) [78] and Mei (1990)
[107].

h(ξ) = aξ2 + bξ + c with different coefficients smoothly matched with each other

within the transient domain (at the point ξc) and with the constant bottom lev-

els at the edges ξ1 and ξ2 of the transient domain. This can be achieved by the

following choice of parabolic functions:

hL(ξ) = ξ1 +
(ξ − ξ1)2

γ (ξ2 − ξ1)
, ξ1 ≤ ξ ≤ ξc, (2.28)

hR(ξ) = ξ2 −
(ξ − ξ2)2

(1− γ) (ξ2 − ξ1)
, ξc ≤ ξ ≤ ξ2, (2.29)

where ξc = ξ2γ + (1 − γ)ξ1 and 0 < γ < 1. Varying the parameter γ one can

obtain a class of smooth parabolic profiles connecting two constant bottom levels

at different points; this can be treated as the spline approximation of a bottom

profile. For simplicity we show in Fig. 2.5 only one such profile with γ = 0.5 (see

line 1). To construct a solution to the linearised set of equations (2.4), (2.5) it

is convinient to reduce it to one equation for the perturbation of water surface

35



η(ξ, τ):

ηττ − (ηξh)ξ = 0 (2.30)

Substituting here a solution in the form: η(ξ, τ) = eiω̂τΦ(ξ) and the expressions

for the bottom profile (2.28), (2.29), we obtain the Legendre equation for function

Φ(ξ): (
aξ2 + bξ + c

)
Φ

′′
+ (2aξ + b) Φ

′
+ ω̂2Φ = 0, (2.31)

where a, b, and c are some real constants. Solution to this equation can be

expressed in general in terms of the linear combination of Legendre functions:

Φ(ξ) = B1P
0
ν

(
2aξ + b√
b2 − 4ac

)
+B2Q

0
ν

(
2aξ + b√
b2 − 4ac

)
, (2.32)

where P 0
ν and Q0

ν are the Legendre functions of the first and second kinds with ν =(√
1− 4ω̂2/a− 1

)
/2 (Polyanin and Zaitsev 2003), and B1 and B2 are arbitrary

constants. In the particular case when a = −ω̂2/n(n + 1), where n is a positive

integer, one of these functions reduces to the Legendre polynomial Pn(ξ). Now

solutions of Eq. (2.30) in all four domains shown in Fig. 2.5 can be presented as:

Φl(ξ) = A1e−ik1(ξ−ξ1) + A2eik1(ξ−ξ1), ξ ≤ ξ1, (2.33)

Φp1(ξ) = B1w̄1 +B2w̄2, ξ1 ≤ ξ ≤ ξc, (2.34)

Φp2(ξ) = C1w̃1 + C2w̃2, ξc ≤ ξ ≤ ξ2, (2.35)

Φr(ξ) = D1e−ik2(ξ−ξ2) +D2eik2(ξ−ξ2), ξ ≥ ξ2, (2.36)

where A1,2, B1,2, C1,2 and D1,2 are arbitrary constants,

w̄1 = P 0
ν

[
ξ − ξ1√

γξ1(ξ1 − ξ2)

]
, w̄2 = Q0

ν

[
ξ − ξ1√

γξ1(ξ1 − ξ2)

]
, (2.37)

w̃1 = P 0
µ

[
ξ − ξ2√

(1− γ) ξ2 (ξ2 − ξ1)

]
, w̃2 = Q0

µ

[
ξ − ξ2√

(1− γ) ξ2 (ξ2 − ξ1)

]
,

(2.38)

and the indeces ν and µ are:

ν =
1

2

[√
1 + 4γω̂2 (ξ1 − ξ2)− 1

]
, µ =

1

2

[√
1 + 4ω̂2 (1− γ) (ξ2 − ξ1)− 1

]
.

(2.39)

Solutions (2.33)–(2.36) can be matched at the boundaries of domains in the points

ξ = ξ1, ξc and ξ2 with the help of boundary conditions reflecting the continuity of
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function Φ(ξ) and its first derivative:

Φl(ξ1) = Φp1(ξ1), Φp1(ξc) = Φp2(ξc), Φp2(ξ2) = Φr(ξ2), (2.40)

Φ
′

l(ξ1) = Φ
′

p1
(ξ1), Φ

′

p1
(ξc) = Φ

′

p2
(ξc), Φ

′

p2
(ξ2) = Φ

′

r(ξ2). (2.41)

This gives a set of six linear algebraic equations for the coefficients A1,2, B1,2, C1,2

and D1,2 .

Using these boundary conditions, we consider below surface wave transforma-

tion on the bottom unevenness when the incident wave arrives from the left and

from the right. In the former case we set the following coefficients in the system

(2.33)–(2.36):

A1 = 0, A2 = Tl, D1 = R, D2 = 1 (2.42)

and determine than R, Tl, as well as B1,2 and C1,2. In the later case we set the

following coefficients in the system (2.33)–(2.36):

A1 = 1, A2 = R, D1 = Tr, D2 = 0 (2.43)

and determine than R, Tr, as well as B1,2 and C1,2. Omitting long and tedious

calculations, we obtain the transformation coefficients R(ω̂) and Tl,r(ω̂) which are

shown in Fig. 2.7 for three values of γ: γ = 0.1 (line 1), γ = 0.5 (line 2), and

γ = 0.9 (line 3). The reflection coefficients are again the same for the left- and

right-propagating incident waves. The transmission coefficients are different as in

the previous model with the piecewise linear bottom profile, but proportional to

each other, |Tl| = |Tr|
√
h2/h1, in accordance with the reciprocity theorem. Figure

2.7b) shows the coefficient Tr as the function of normalised wave frequency for

the same three values of γ: γ = 0.1 (line 1), γ = 0.5 (line 5), and γ = 0.9 (line 3).

We do not present here formulae for the coefficients B1,2 and C1,2, as well as the

explicit solutions (2.33)–(2.36), because they look very cumbersome. However in

Fig. 2.6 we illustrate solutions obtained in terms of |Φ(ξ)| for the particular wave

frequency and depths h1 and h2. In the limiting case ω̂ → 0 the formulae for the

transformation coefficients reduce again to the well-known Lamb formulae for the

step-wise bottom profile (2.21). The dependencies of transformation coefficients

on frequency, |R|(ω̂) and |T |(ω̂), are still non-monotonic, but much smoother than

in the former case of quasi-linear bottom profile (cf. graphics of Figs. 2.7 and 2.3),

because in this case the bottom profile is much smoother having discontinuity only

in the second derivative at the edge points ξ1 and ξ2. The energy flux conservation

in the form of Eq. (2.22) has been tested and confirmed on the derived solutions.
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Figure 2.5: A basin with the piecewise quadratic bottom profile. Line 1 pertains
to the case when quadratic functions are conjugated closer to the left edge of the
transient zone (γ = 0.1); line 2 pertains to the case when two quadratic functions
are conjugated at the middle of the transient zone (γ = 0.5 – see the text); and
line 3 pertains to the case when quadratic functions are conjugated closer to the
right edge of the transient zone (γ = 0.9).

1b

2b
3b

3a

2a

1a

-1 0 1 2 3 4 X

0.9

1.0

1.1

1.2

|Φ|

Figure 2.6: Graphics of solutions for the free surface perturbation in terms of
|Φ(ξ)|. Lines 1a, 2a, and 3a pertain to the case when the incident wave arrives
from the right where the depth h2 > h1, and lines 1b, 2b, and 3b pertain to the
case when the incident wave arrives from the left where the depth h1 > h2. The
numbers 1, 2, 3 correspond to the cases when γ = 0.1, 0.5, 0.9 respectively. The
plot was generated for the particular case when h1 = 1 and h2 = 2, and wave
frequency ω̂ = 5; for other parameters h1, h2, and ω̂ the plots are similar to these.

2.4 Hyperbolic tangent bottom profile

In this section we consider the bottom spatial variation that can be described

by the tanh-function so that the fluid depth is: h(ξ) = a tanh(ξ) + b, where

a = (h2 − h1)/2 and b = (h2 + h1)/2. Figure 2.8 illustrates the tanh bottom
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Figure 2.7: The reflection R (frame a) and transmission Tr (frame b) coefficients
as the functions of normalised frequency ω̂ for the fixed value of h2/h1 = 2 and
ω̂ = 5. Line 1 pertains to γ = 0.5, line 2 – to γ = 0.1, and line 3 – to γ = 0.9
(for the definition of γ see the text).

profile (line 1) in comparison with the quadratic profile (line 2) and linear profile

(dashed line) considered in the previous sections. By substitution the depth
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Figure 2.8: The tanh bottom profile (line 1), combined quadratic profile (line 2)
and linear profile (line 3). In the domains I and III the bottom quickly becomes
constant, whereas in the domain II the bottom profile experiences a significant
transition from one level to another level.

profile into the equation for the velocity (2.6) we obtain:

[a tanh(ξ) + b] Ψξξ + 2a sech2(ξ)Ψξ +
[
ω̂2 − 2a sech2(ξ) tanh(ξ)

]
Ψ = 0. (2.44)

Solution to this equation can be presented in terms of hyper-geometric functions:

Ψ =
(k2 − 1)

(
1 + e2ξ

)
2 (1 + e2ξk2)

eiω̃(ξ−iπ/2)×
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{
C1 · 2F1

[
i (k − 1) ω̃

2
,− i (k + 1) ω̃

2
, 1− iω̃,−e−2ξ

k2

]
+ C2

(
e−ξ+iπ/2

−k2

)iω̃

×

2F1

[
− i (k − 1) ω̃

2
,
i (k + 1) ω̃

2
, 1 + iω̃,−e−2ξ

k2

]}
, (2.45)

where k =
√
h2/h1, ω̃ = ω̂/

√
h2 Substituting this solution into the equation (2.5),

we obtain a solution for the perturbation of a free surface:

Φ(ξ) =

√
h1 (k2 − 1) eπ/2

2

(
C1

{
2F1

[
i (k − 1) ω̃

2
,− i (k + 1) ω̃

2
, 1− iω̃,−e−2ξ

k2

]
− k + 1

k
2F1

[
i (k − 1) ω̃

2
, 1− i (k + 1) ω̃

2
, 1− iω̃,−e−2ξ

k2

]}
eiω̃ξ

− C2k
−2iω̃

{
2F1

[
− i (k − 1) ω̃

2
,
i (k + 1) ω̃

2
, 1 + iω̃,−e−2ξ

k2

]
− k + 1

k
2F1

[
− i (k − 1) ω̃

2
, 1 +

i (k + 1) ω̃

2
, 1 + iω̃,−e−2ξ

k2

]}
e−iω̃ξ

)
. (2.46)

The asymptotics of this solution when ξ → ±∞ are: (1) ξ → +∞:

Φ(ξ) =

√
h1 (k2 − 1)

2k

[
−C1eiω̃(ξ−iπ/2) + C2k

−2iω̃e−iω̃(ξ−3iπ/2)
]
, (2.47)

(2) ξ → −∞:

Φ(ξ) = ki(k−1)ω̃
√
h1Γ (−ikω̃)

C2 (k + 1)
Γ (iω̃)

Γ2
[
− i(k−1)ω̃

2

]
− C1 (k − 1) e2πω̃ Γ (−iω̃)

Γ2
[
− i(k+1)ω̃

2

]
 eiω̃(kξ+3iπ/2)

+ k−i(k+1)ω̃
√
h1

C2 (k − 1)
Γ (iω̃) Γ (ikω̃)

Γ2
[

i(1+k)ω̃
2

]
− C1e2πω̃ k

2 − 1

2k

Γ (−iω̃) Γ (1 + ikω̃)

Γ
[

i(k−1)ω̃
2

]
Γ
[
1 + i(k−1)ω̃

2

]
 e−iω̃(kξ−3iπ/2). (2.48)

Thus, one can see that asymptotically solution (2.46) represents oppositely trav-

elling waves which can be presented in the form:

Φ (ξ) = A1eiω̃ξ + A2e−iω̃ξ, ξ → +∞ (2.49)

Φ (ξ) = B1eikω̃ξ +B2e−ikω̃ξ, ξ → −∞, (2.50)
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where A1,2 and B1,2 are the coefficients in front of corresponding exponential

functions in Eqs. (2.47) and (2.48). Then, we can obtain the transformation

coefficients of surface waves passing over such bottom unevenness. If an incident

wave arrives from the right (from the deeper region as shown in Fig. 2.8), then

we set:

A1 = 1, A2 = Rr, B1 = Tr, B2 = 0 (2.51)

and readily derive from Eqs. (2.47) and (2.48) the transformation coefficients:

Rr = −k−2iω̃ k + 1

k − 1

Γ (−iω̃) Γ2
[

1
2
i (k + 1) ω̃

]
Γ (iω̃) Γ2

[
1
2
i (k − 1) ω̃

] , (2.52)

Tr = ki(k−1)ω̃ 2k

k + 1

Γ (−iω̃) Γ (−ikω̃)

Γ2
[
−1

2
i (1 + k) ω̃

] sinh (πω̃) sinh (kπω̃)

sech2
[

1
2

(1 + k) πω̃
] , (2.53)

C1 =
−2e−πω̃/2k√
h1 (k2 − 1)

, C2 =
−2e3πω̃/2k
√
h1 (k − 1)2

Γ (−iω̃) Γ2
[

1
2
i (k + 1) ω̃

]
Γ (iω̃) Γ2

[
1
2
i (k − 1) ω̃

] . (2.54)

If an incident wave arrives from the left (from the shallower region), then we set:

A1 = 0, A2 = Tl, B1 = Rl, B2 = 1 (2.55)

and readily derive again from Eqs. (2.47) and (2.48) the transformation coeffi-

cients:

Rl = −k4iω̃Rr, Tl = ki(k−1)ω̃ k + 1

2k

Γ2
[

1
2
i (1 + k) ω̃

]
Γ (iω̃) Γ (ikω̃)

, (2.56)

C1 = 0, C2 =
e

3πω̃
2 ki(1+k)ω̃Γ2

[
1
2
i (1 + k) ω̃

]
√
h1 (−1 + k) Γ (iω̃) Γ (ikω̃)

. (2.57)

Figure 2.9 illustrates solution (2.46) for the incident wave arriving from the right

(line 1a) and from the left (line 1b) in comparison with the solutions derived for

the piecewise quadratic bottom profile (lines 2a and 2b correspondingly). As one

can see from this figure, the spatial periods of bits are shorter in the case of tanh

bottom profile, whereas their amplitudes are a slightly greater then in the case

of piece-parabolic bottom profile.

The moduli of transformation coefficients |Rr| and |Tr| are shown in Fig. 2.10

for the same two bottom profiles and for the case when the incident wave arrives

from the right. In the case when the incident wave arrives from the left the

modulus of reflection coefficient is the same as in the former case: |Rl| = |Rr|,
and the transmission coefficient |Tl| is related with the transmission coefficient

|Tr| by the reciprocity relationship: |Tl| = |Tr|
√
h2/h1.

The general conclusion which follows from the comparison of transformation

coefficients for all three cases of piecewise linear, piecewise quadratic, and tanh
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bottom profiles is that the smoother the profile, the smaller oscillations in the

dependencies of |R(ω̂)| and |T (ω̂)| (cf. lines 1 and 2 in Fig. 2.10 with the lines in

Fig. 2.3). There are no oscillations in the dependencies |R(ω̂)| and |T (ω̂)| in the

case of tanh-profile (see lines 1 in Fig. 2.10). In the case of piecewise quadratic

bottom profile the oscillations in such dependencies are very small and almost

invisible (see lines 2 in Fig. 2.10), whereas in the case of piecewise linear profile

the oscillations are very well pronounced Fig. 2.3).

The conservation of energy flux in the form of Eq. (2.22) holds again, as

expected. Having solutions for the wave propagation over uneven bottom with

the piecewise linear, piecewise quadratic, and tanh bottom profiles, we can solve

problems with the more complicated bottom profiles approximating them by sets

of such functions for which exact solutions exist in the analytic forms. Below we

present solutions for underwater trenches and barriers of different shapes. Similar

problem was considered by Tokano (1960) [149], Newman (1965) [113], Kirby &

Dalrymple (1983) [81], Devillard et al. (1988) [33] for a submerged rectangular

bar and trench (see also (Massel 1989 [105]) and (Dingemans 1997 [36]) and

references therein). In the paper by Rey et al. (1992) [129] this problem was

studied experimentally in the laboratory wave tank.
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Figure 2.9: Graphics of solutions for the free surface perturbation in terms of
|Φ(ξ)| for the tanh bottom profile (lines 1a and 1b) and for the piecewise quadratic
bottom profile (lines 2a and 2b). Lines 1a and 2a pertain to incident waves
arriving from the right, and lines 1b and 2b pertain to incident waves arrives
from the left. The plot was generated for the particular case when h1 = 1 and
h2 = 2, and wave frequency ω̂ = 5; for other parameters h1, h2, and ω̂ the plots
are similar to these.
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Figure 2.10: The reflection (frame a) and transmission (frame b) coefficients for
the tanh-profile (lines 1) and piecewise quadratic (lines 2) bottom profile for the
cases when the incident waves arrives from the right. The plots were generated
for the particular case when h1 = 1 and h2 = 2, and wave frequency ω̂ = 5.

2.5 Wave scattering on an underwater trench

and barrier with the linear slopes

Consider the bottom profiles shown in Fig. 2.11, which can be described by a set

of linear functions h(x) = ax+ b with different parameters a and b. The left and

right slopes of the trench/barrier can be described by the following parameters

(see Fig. 2.11):

a1 =
h2 − h1

x2 − x1

, a2 =
h2 − h1

x3 − x4

, b1 =
h1x2 − h2x1

x2 − x1

, b2 =
h1x3 − h2x4

x3 − x4

. (2.58)

Solutions in the each interval of the piecewise linear bottom profile is:

-2 2 4 6 8 10
X

-2.0

-1.5

-1.0

-0.5

Y

-2 2 4 6 8 10
X

-2.0

-1.5

-1.0

-0.5

Y

a) b)

Figure 2.11: Bottom profiles in the form of underwater trench (frame a) and
barrier (frame b) with the linear slopes.
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ΦL = A1e
−ik1(x−x1) + A2e

ik1(x−x1), −∞ < x < x1, (2.59)

ΦSL = B1I0

(
2iω

a1

√
a1x+ b1

)
+B2K0

(
2iω

a1

√
a1x+ b1

)
, x1 < x < x2, (2.60)

ΦC = C1e
−ik2x + C2e

ik2x, x2 < x < x3, (2.61)

ΦSR = D1I0

(
2iω

a2

√
a2x+ b2

)
+D2K0

(
2iω

a2

√
a2x+ b2

)
, x3 < x < x4,

(2.62)

ΦR = E1e
−ik1(x−x4) + E2e

ik1(x−x4), x4 < x <∞. (2.63)

When the incident wave propagates from the left to right in the geometry shown

in Fig. 2.11, then we set the following coefficients A1,2 and E1,2:

A1 = 1, A2 = R, E1 = T, E2 = 0. (2.64)

To match solutions (2.59)–(2.63) at the points x1, x2, x3, and x4, we use eight

boundary conditions which reflect continuations of function Φ(ξ) and its first

derivative:

ΦL (x1) = ΦSL (x1) , Φ′L (x1) = Φ′SL (x1) , (2.65)

ΦSL (x2) = ΦC (x2) , Φ′SL (x2) = Φ′C (x2) , (2.66)

ΦC (x3) = ΦSR (x3) , Φ′C (x3) = Φ′SR (x3) , (2.67)

ΦSR (x4) = ΦR (x4) , Φ′SR (x4) = Φ′R (x4) . (2.68)

This leads to the set of eight linear algebraic equations for eight unknown coef-

ficients R, T , B1,2, C1,2, and E1,2. The set can be readily solved, but solution

looks very cumbersome, therefore we present below only a graphical illustration

for the particular choices of parameters h1, h2, and ω̂ = 5. Figure 2.12 shows

wave filed amplitude |Φ(x)| for the trench with h2/h1 = 2 (frame a) and barrier

with h1/h2 = 2 (frame b). In the both cases it is supposed that the incident

wave arrives from the left. Figures 2.13 and 2.14 show the moduli of reflection

and transmission coefficients respectively for the trench with h2/h1 = 2 (frames

a) and barrier with h1/h2 = 2 (frames b). The oscillatory character of transfor-

mation coefficients as functions of wave frequency is the well-known phenomenon

which has been noticed in many publications (see, e.g., [36, 78, 105, 107]). The

reason of this is the interference of standing waves within the trench or barrier.

In this section we have considered wave scattering on a symmetric trench or

barrier; similarly one can consider a scattering on non-symmetric obstacles with

the linear slopes or even more complicated piecewise linear slopes.
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Figure 2.12: Amplitude of surface wave field when an incident wave arrives from
the left and scatters on the underwater trench h1 = 1, h2 = 2 (frame a) and
barrier h1 = 2, h2 = 1 (frame b) with the linear slopes. In both cases the
dimensionless frequency is ω̂ = 5.
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Figure 2.13: The moduli of reflection coefficients for a surface wave of dimension-
less frequency ω̂ = 5 scattering at the underwater trench (frames a) and barrier
(frames b) with the linear slopes shown in Fig. 2.11.

0 2 4 6 8 10 12
ω0.94

0.96

0.98

1.

|Tr|

0 2 4 6 8 10 12
ω0.94

0.96

0.98

1.

|Tr|

a) b)

Figure 2.14: The moduli of transmission coefficients for a surface wave of di-
mensionless frequency ω̂ = 5 scattering at the underwater trench (frames a) and
barrier (frames b) with the linear slopes shown in Fig. 2.11.

2.6 Wave scattering on an underwater trench

and barrier with the piecewise quadratic slopes

Consider now a wave scattering on the underwater obstacles (trench or barrier)

when the left and right slopes can be described by a smooth conjugation of
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quadratic functions. The water depth over the uneven bottom in this case can be

presented as h(ξ) = aξ2 + bξ + c (see Fig. 2.15). The basic differential equation

for the free surface perturbation over the uneven bottom is:

(
aξ2 + bξ + c

)
Φ′′(ξ) + (2aξ + b)Φ′(ξ) + ω2Φ(ξ) = 0. (2.69)
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Figure 2.15: Bottom profiles in the form of underwater trench (frame a) and
barrier (frame b) with the piecewise quadratic slopes.

For the symmetric obstacles shown in Fig. 2.15 the coefficients of quadratic

functions are:

a1 =
h2 − h1

(ξ2 − ξ1)2
γ
, b1 =

2 (h1 − h2) ξ1

(ξ2 − ξ1)2
γ
, c1 = h1 +

(h2 − h1) ξ2
1

(ξ2 − ξ1)2
γ
,

a2 =
h2 − h1

(ξ2 − ξ1)2 (γ− 1)
, b2 =

2 (h1 − h2) ξ2

(ξ2 − ξ1)2 (γ− 1)
, c2 = h2 +

(h2 − h1) ξ2
2

(ξ2 − ξ1)2 (γ− 1)
,

a3 =
h1 − h2

(ξ3 − ξ4)2
γ
, b3 =

2 (h2 − h1) ξ3

(ξ3 − ξ4)2
γ
, c3 = h2 +

(h1 − h2) ξ2
3

(ξ3 − ξ4)2
γ
,

a4 =
h1 − h2

(ξ3 − ξ4)2 (γ− 1)
, b4 =

2 (h2 − h1) ξ4

(ξ3 − ξ4)2 (γ− 1)
, c4 = h1 +

(h1 − h2) ξ2
4

(ξ3 − ξ4)2 (γ− 1)
.

Here the parameter γ determines the positions of conjugation of quadratic func-

tions in each slope:

ξc1 = ξ1 + γ (ξ2 − ξ1) , ξc2 = ξ3 + γ (ξ4 − ξ3) . (2.70)

Solutions to Eq. (2.69) can be presented in the dimensionless variables in terms

of the Legendre polynomials Pν(ξ) and Qν(ξ) (see Eqs. (2.34), (2.35)):

Φ(ξ) = B1Pν

(
2aξ + b√
b2 − 4ac

)
+B2Qν

(
2aξ + b√
b2 − 4ac

)
, (2.71)

where ν =
(√

1− 4ω̂2/a− 1
)
/2. Wave perturbations in the each interval of

ξ corresponding to different domains of bottom profile (see Fig. 2.15) can be
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presented as follows:

ΦL(ξ) = A1e
−ik1(ξ−ξ1) + A2e

ik1(ξ−ξ1), −∞ < ξ < ξ1,

ΦSL1(ξ) = B1P (a1, b1, c1) +B2Q (a1, b1, c1) , ξ1 < ξ < ξc1,

ΦSL2(ξ) = C1P (a2, b2, c2) + C2Q (a2, b2, c2) , ξc1 < ξ < ξ2,

ΦC(ξ) = D1e
−ik2ξ +D2e

ik2ξ, ξ2 < ξ < ξ3,

ΦSR1(ξ) = E1P (a3, b3, c3) + E2Q (a3, b3, c3) , ξ3 < ξ < ξc2,

ΦSR2(ξ) = F1P (a4, b4, c4) + F2Q (a4, b4, c4) , ξc2 < ξ < ξ4,

ΦR(ξ) = G1e
−ik1(ξ−ξ4) +G2e

ik1(ξ−ξ4), ξ4 < ξ <∞.

To match smoothly these functions we use the boundary conditions of continuity

of function Φ(ξ) and its first derivatives at the boundaries of intervals like in Eqs.

(2.14) above. As a result, we obtain a set of sixteen linear algebraic equations for

the coefficients A1,2, B1,2, ..., G1,2 that can be readily solved. Figure 2.16 shows

wave filed amplitude |Φ(x)| for the trench with h2/h1 = 2 (frame a) and barrier

with h1/h2 = 2 (frame b). In the both cases it is supposed that the incident

wave arrives from the left. Figures 2.17 and 2.18 show the moduli of reflection
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Figure 2.16: Amplitude of surface wave field when an incident wave arrives from
the left and scatters on the underwater trench h1 = 1, h2 = 2 (frame a) and barrier
h1 = 2, h2 = 1 (frame b) with the piecewise quadratic slopes (each pieces consist
of two different parabolic slopes). In both cases the dimensionless frequency is
ω̂ = 5.

and transmission coefficients respectively for the trench with h2/h1 = 2 (frames

a) and barrier with h1/h2 = 2 (frames b). It is interesting that in the case of

an obstacle with the piecewise quadratic slopes the number of resonances in the

low-frequency domain is greater than in the case of an obstacle of the same width,

but with the linear slopes (cf. Figs. 2.13, 2.14 and Figs. 2.17, 2.18). The basic

features of transmission coefficients including maxima of reflection coefficients

are similar in both cases. In this section we considered again wave scattering

on a symmetric trench or barrier; similarly one can consider a scattering on non-
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Figure 2.17: The moduli of reflection coefficients for a surface wave of dimension-
less frequency ω̂ = 5 scattering at the underwater trench (frames a) and barrier
(frames b) with the piecewise quadratic slopes shown in Fig. 2.15.
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Figure 2.18: The moduli of transmission coefficients for a surface wave of di-
mensionless frequency ω̂ = 5 scattering at the underwater trench (frames a) and
barrier (frames b) with the piecewise quadratic slopes shown in Fig. 2.15.

symmetric obstacles with the piecewise quadratic slopes or even more complicated

combination of piecewise linear and piecewise quadratic slopes. This opens a wide

possibilities to approximate real bottom profiles with the set of such functions.

2.7 Wave scattering on an underwater trench

and barrier with the hyperbolic tangent pro-

files

In this section we consider wave transformation on the underwater obstacles with

the slopes describing by tanh-functions. We assume that the characteristic width

of each slope l0 is much less than the distance L between them. The bottom

profiles for the trench and barrier are very similar to those shown in Fig. 2.15; they

are practically indistinguishable from their counterparts described by piecewise

quadratic functions. When the obstacle slopes are far enough from each other

so that L � l0, then the wave fields at the big distances from the slopes can be
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considered in the form of travelling waves in a fluid of constant depth. (Note

that in the considered case, the characteristic width of function tanh(ξ) is one –

see the beginning of Section 2.4.) For the left slopes of obstacles centred around

ξ = 0, a solution to the wave equation has the following asymptotics:

Φ0 (ξ) = w1e
ikω̂ξ + w2e

−ikω̂ξ, ξ → −∞,

Φ0 (ξ) = w̃1e
iω̂ξ + w̃2e

−iω̂ξ, ξ → +∞

where,

w1 = e−πω̂/2
√
h1k

i(k−1)ω̂Γ(−ikω̂)×{
A1
eπω̂(1− k)Γ(−iω̂)

Γ2
[
−1

2
i(k + 1)ω̂

] + A2
e−πω̂(1 + k)Γ(iω̂)

Γ2
[
−1

2
i(k − 1)ω̂

]} ,
w2 = e−πω̂/2

√
h1k

−i(k+1)ω̂Γ(ikω̂)×{
−A1

eπω̂(1 + k)Γ(−iω̂)

Γ2
[

1
2
i(k − 1)ω̂

] + A2
e−πω̂(k − 1)Γ(iω̂)

Γ2
[

1
2
i(1 + k)ω̂

] } ,
w̃1 = −A1

2k

√
h1

(
k2 − 1

)
eπω̂/2,

w̃2 =
A2

2

√
h1k

−1−2iω̂
(
k2 − 1

)
e−3πω̂/2.

The asymptotics of a solution to the wave equation for the second slope centred

around ξ = L is:

Φ0 (ξ) = ŵ1e
iω̂ξ + ŵ2e

−iω̂ξ, ξ → −∞,

Φ0 (ξ) = w̆1e
ikω̂ξ + w̆2e

−ikω̂ξ, ξ → +∞

where

w̆1 = e−iLω̂−kπω̂/2
√
h1k

i(k−1)ω̂Γ(−iω̂)×{
B1
ekπω̂(k − 1)Γ(−ikω̂)

Γ2
[
−1

2
i(k + 1)ω̂

] +B2
e−kπω̂(k + 1)Γ(ikω̂)

Γ2
[

1
2
i(k − 1)ω̂

] }
,

w̆2 =
1

2
eiLω̂−kπω̂/2

√
h1k

i(k+1)ω̂(k − 1)×{
B1

ekπω̂(k + 1)Γ(1 + iω̂)Γ(−ikω̂)

Γ
[
−1

2
i(k − 1)ω̂

]
Γ
[
1− 1

2
i(k − 1)ω̂

] −B2
2e−kπω̂Γ(iω̂)Γ(ikω̂)

Γ2
[

1
2
i(k + 1)ω̂

] }
,

ŵ1 =
1

2
B1e

k(−iL+π/2)ω̂
√
h1

(
k2 − 1

)
,

ŵ2 = −1

2
B2e

ikLω̂−3kπω̂/2
√
h1k

2ikω̂
(
k2 − 1

)
.
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For the incident wave arriving from the left we set the following coefficients:

w2 = 1, w1 = R, w̃1 = w̆1, w̃2 = w̆2, ŵ1 = 0, ŵ2 = T. (2.72)

Then we can solve the set of equations for R, T , as well as w̃1, w̃1 and obtain:

R =
4π2

∆1

k2ikω̂Γ(−ikω̂)×
{
e2iLω̂(k − 1)2ki(k+3)ω̂Γ2(iω̂)Γ4 [i(k − 1)ω̂/2]

sech2 [(k + 1)πω̂/2]

− ki(k−1)ω̂(k + 1)2 Γ2(−iω̂)Γ4 [i(k + 1)ω̂/2]

sech2 [(k − 1)πω̂/2]

}
, (2.73)

T =
(k2 − 1)

2

∆2

ei(k+1)Lω̂k2i(k+1)ω̂−1Γ4

[
i

2
(k − 1)ω̂

]
Γ4

[
i

2
(k + 1)ω̂

]
, (2.74)

where

∆1 = kiω̂
(
k2 − 1

)
eiLω̂ω̂2Γ(ikω̂)Γ2

[
− i

2
(k − 1)ω̂

]
Γ2

[
− i

2
(k + 1)ω̂

]
×{

ki(k+2)ω̂(k − 1)2eiLω̂Γ2(iω̂)Γ4

[
i

2
(k − 1)ω̂

]
− ki(k−2)ω̂(k + 1)2e−iLω̂Γ2(−iω̂)Γ4

[
i

2
(k + 1)ω̂

]}
∆2 = 4k2iω̂eiLω̂Γ2(ikω̂)

{
k2iω̂eiLω̂(k − 1)2Γ2(iω̂)Γ4

[
i

2
(k − 1)ω̂

]
− k−2iω̂e−iLω̂(k + 1)2Γ2(−iω̂)Γ4

[
i

2
(k + 1)ω̂

]}
. (2.75)

In Figs. 2.19 and 2.20 we show by lines 1 the moduli of reflection and transmission

coefficients respectively for the trench with h2/h1 = 2 (frames a) and barrier

with h1/h2 = 2 (frames b). For the comparison we show also by lines 2 similar

coefficients derived in the previous section 2.7 for the trench an barrier with the

piecewise quadratic slopes. As one can see from these figures, the qualitative

character of dependencies of transformation coefficients on frequency are similar.

Moreover, even the maximum and minimum vales of transformation coefficients

are the same. However, there are some differences. In particular, the number

of significant maxima and minima in the low-frequency domain is greater in the

case of obstacles with the tanh-slopes. And in this case the maxima of reflection

coefficients decay slower with the frequency.
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Figure 2.19: The moduli of reflection coefficients for a surface wave of dimension-
less frequency ω̂ = 5 scattering at the underwater trench (frames a) and barrier
(frames b). Lines 1 pertain to the obstacles with the tanh-slopes, and lines 2 –
to the obstacles with the piecewise quadratic slopes shown in Fig. 2.15.
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Figure 2.20: The moduli of transmission coefficients for a surface wave of di-
mensionless frequency ω̂ = 5 scattering at the underwater trench (frames a) and
barrier (frames b). Lines 1 pertain to the obstacles with the tanh-slopes, and
lines 2 – to the obstacles with the piecewise quadratic slopes shown in Fig. 2.15.

2.8 Conclusion

Thus, in this chapter we have studied surface wave transformation on bottom un-

evenness in a shallow basin. We have obtained exact analytical solutions for three

reference cases of (i) linearly increasing or decreasing bottom on a finite spatial

interval, (ii) piecewise quadratic transient bottom profile between two constant

values, and (iii) a transient bottom profile described by the tanh-function. We

have studied also wave scattering on underwater barriers and trenches whose

slopes can be described by the similar functions (linear, piecewise quadratic, and

tanh-functions). In all cases we obtained qualitatively similar results which are in

agreement with the early obtained by different authors for some particular cases

basically by approximate methods. In the limiting case when the wave frequency

goes to zero we obtained the same transformation coefficients which are predicted

by Lamb’s theory (1932) [88] for step-wise bottom.

In the meantime, there are some quantitative differences in the transformation
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coefficients for the different bottom profiles. In particular, the smoother the

bottom profile is, the smoother the dependencies of transformation coefficients

on frequency – cf. Fig. 2.3 for the piecewise linear profile with Fig. 2.7 for the

piecewise quadratic (line 2) and tanh (line 1) profiles. There are several well-

pronounced oscillations in the dependence of |R(ω̂)| in Fig. 2.3. In particular,

one can see that the reflection coefficient at some frequencies drops up to nearly

zero. This provides almost reflectionless propagation [34, 35] of an incident wave

at the corresponding frequencies.

The situation is opposite for the wave scattering on underwater barriers or

tranches. In particular, one can see less oscillations in the transformation coeffi-

cients shown in Figs. 2.13 and 2.14 for the barriers and tranches with the linear

slopes in comparison with the barriers and tranches with the piecewise quadratic

or tanh-slopes (cf. with Figs. 2.19 and 2.20).

More complicated real bottom profiles can be approximated with the higher

accuracy by the combination of considered here linear, quadratic, and tanh-

profiles similar to what was used in [129], where the bottom profile was ap-

proximated by a set of step-wise functions. The results obtained can be used, in

particular, for the protection of beaches against storm surges, swells, and tsunami

waves.
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Chapter 3

SCATTERING OF LONG

WATER WAVES IN A CANAL

WITH RAPIDLY VARYING

CROSS-SECTION IN THE

PRESENCE OF A CURRENT

In this Chapter we study analytically a long wave scattering in a canal with

a rapidly varying cross-section. It is assumed that waves propagate on a sta-

tionary current with a given flow rate. Due to the fixed flow rate, the current

speed is different in the different sections of the canal, upstream and downstream.

The scattering coefficients (the transmission and reflection coefficients) are calcu-

lated for all possible orientations of incident wave with respect to the background

current (downstream and upstream propagation) and for all possible regimes of

current (subcritical, transcritical, and supercritical). It is shown that in some

cases negative energy waves can appear in the process of waves scattering. The

conditions are found when the over-reflection and over-transmission phenomena

occur. In particular, it is shown that a spontaneous wave generation can arise in a

transcritical accelerating flow, when the background current enhances due to the

canal narrowing. This resembles a spontaneous wave generation on the horizon

of an evaporating black hole due to the Hawking effect. The results obtained in

this Chapter have been published in Physical Review Fluids [24].
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3.1 Introduction

The problem of water wave transformation in a canal of a variable cross-section

is one of the classic problems of theoretical and applied hydrodynamics. It has

been studied in many books, reports, and journal papers starting from the first

edition (1879) of the famous monograph by H. Lamb, Hydrodynamics (see the

last lifetime publication [88]). In particular, the coefficients of transformation of

long linear waves in a canal of a rectangular cross-section with an abrupt change

of geometrical parameters (width and depth) were presented. The transmission

and reflection coefficients were found as functions of depth ratio X = h2/h1 and

width ratio Y = b2/b1, where h1 and b1 are the canal depth and width at that

side from which the incident wave arrives, and h2 and b2 are the corresponding

canal parameters at the opposite side where the transmitted wave goes to (see

Fig. 3.1). The parameters X and Y can be both less than 1, and greater than

1. As explained in Ref. [88], the canal cross-section can vary smoothly, but if

the wavelengths of all scattered waves are much greater than the characteristic

scale of variation of the canal cross-section, then the canal model with the abrupt

change of parameters is valid.

x

b1

b2

ki

kt
h2

h1

U

Figure 3.1: Sketch of a canal consisting of two sections of different rectangular
cross-sections. The wavenumber of incident wave is ki, and the wavenumber of
transmitted wave is kt (a reflected wave is not shown). Water flow U is co-directed
with the x-axis.

The Lamb model has been further generalised for waves of arbitrary wave-

lengths and applied to many practical problems. One of the typical applications

of such a model is in the problem of oceanic wave transformation in the shelf

zone; the numerous references can be found in the books and reviews [36, 86,

105]. In such applications the canal width is assumed to be either constant or

infinitely long and only the water depth abruptly changes.
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A similar problem was studied also in application to internal waves, but ana-

lytical results were obtained only for the transformation coefficients of long waves

in a two-layer fluid [65], whereas for waves of arbitrary wavelength only the nu-

merical results were obtained and the approximative formulae were suggested

[22].

All aforementioned problems of wave transformation were studied for cases

when there is no background current. However, there are many situations when

there is a flow over an underwater step or in the canals or rivers with variable

cross-sections. The presence of a current can dramatically affect the transfor-

mation coefficients due to the specific wave-current interaction (see, e.g., Ref.

[12] and references therein). The amplitudes and energies of reflected and trans-

mitted waves can significantly exceed the amplitude and energy of an incident

wave. Such over-reflection and over-transmission phenomena are known in hy-

drodynamics and plasma physics (see, e.g., Ref. [77]); the wave energy in such

cases can be extracted from the mean flow. Apparently, due to complexity of

wave scattering problem in the presence of a background flow, no results were

obtained thus far even for a relatively weak flow and small flow variation in a

canal. There are, however, a number of works devoted to wave-current interac-

tions and, in particular, wave scattering in spatially varying flows mainly on deep

water (see, for instance, Refs. [12, 140, 146, 151] and references therein). In Ref.

[12] the authors considered the surface wave scattering in two-dimensional geom-

etry in (x, y)-plane for the various models of underwater obstacles and currents

including vortices. In particular, they studied numerically wave passage over an

underwater step in the shoaling zone in the presence of a current. However, the

transformation coefficients were not obtained even in the plane geometry.

Here we study the problem of long wave scattering analytically for all pos-

sible configurations of the background flow and incident wave (downstream and

upstream propagation) in the narrowing or widening canal (accelerating or de-

celerating flow) for the subcritical, transcritical, and supercritical regimes when

the current speed is less or greater than the typical wave speed c0 =
√
gh in calm

water in the corresponding canal section (g is the acceleration due to gravity,

and h is the canal depth). Because we consider a limiting model case of very

long waves when the variation of canal geometry is abrupt, the wave blocking

phenomenon here has a specific character of reflection. Such a phenomenon has

been studied in shallow-water limit in Ref. [140], but transformation coefficients

were not obtained.

Notice also that in the last decade the problem of wave-current interaction in

water with a spatially varying flow has attracted a great deal of attention from

researchers due to application to the modelling of Hawking’s radiation emitted by
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evaporating black holes [152] (see also Refs. [47, 73, 153]). Recent experiments

in a water tank [45] have confirmed the main features of the Hawking radiation;

however many interesting and important issues are still under investigation. In

particular, it is topical to calculate the transformation coefficients of all possi-

ble modes generated in the process of incident mode conversion in the spatially

varying flow. Several papers have been devoted to this problem both for the

subcritical [29, 131] and transcritical [28, 130] flows. However, in all these papers

the influence of wave dispersion was important, whereas there is no dispersion

in the problem of black hole radiation. Our results for the dispersionless wave

transformation can shed light on the problem of mode conversion in the relatively

simple model considered in this Chapter.

3.2 Problem statement and dispersion relation

Consider a long surface gravity wave propagating on the background current in a

canal consisting of two portions of different cross-section each as shown in Fig. 3.1.

A similar problem with a minor modification can be considered for internal waves

in two-layer fluid, but we focus here on the simplest model to gain an insight in

the complex problem of wave-current interaction. We assume that both the canal

width and depth abruptly change at the same place, at the juncture of two canal

portions. The current is assumed to be uniform across the canal cross-section

and flows from left to right accelerating, if the canal cross-section decreases, or

decelerating, if it increases. In the presence of a current the water surface does

not remain plane even if the canal depth is unchanged, but the width changes.

According to the Bernoulli law, when the current accelerates due to the canal

narrowing, the pressure in the water decreases and, as a result, the level of the

free surface reduces. Therefore, asymptotically, when x → ∞, the portion of

canal cross-section occupied by water is S2 = b2h2. A similar variation in the

water surface occurs in any case when the current accelerates due to decrease of

the canal cross-section in general; this is shown schematically in Fig. 3.2 (this

figure is presented not in scale, just for the sake of a vivid explanation of the wave

scattering, whereas in fact, we consider periodic waves with the wavelengths much

greater than the fluid depth).

The relationship between the water depth h2, which asymptotically onsets

at the infinity, and variations of canal width and depth at the juncture point is

nontrivial. In particular, even in the case when the canal width is unchanged,

and the canal cross-section changes only due to the presence of a bottom step of

a height d, the water depth h2 at the infinity is not equal to the difference h1− d
(see, e.g., Ref. [49]). As shown in the cited paper, variation of a free surface
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Figure 3.2: The side view of a flow in a canal with a variable cross-section. Wave
1 schematically represents an incident wave, wave 2 – a reflected wave, and wave
3 – a transmitted wave. The water surface slightly lowers when the background
flow increases as shown schematically by thin line.

due to increase of water flow is smooth even in the case of abruptly changed

depth, but in the long-wave approximation it can be considered as abrupt. In

any case, we will parameterize the formulas for the transformation coefficients in

terms of the real depth ratio at plus and minus infinity X = h2/h1 and canal

width aspect ratio Y = b2/b1. The long-wave approximation allows us to neglect

the dispersion assuming that the wavelength λ of any wave participating in the

scattering is much greater than the canal depth h in the corresponding section.

In the linear approximation the main set of hydrodynamic equations for

shallow-water waves in a perfect incompressible fluid is (see, e.g., Ref. [88]):

∂u

∂t
+ U

∂u

∂x
=− g ∂η

∂x
, (3.1)

∂η

∂t
+ U

∂η

∂x
=− h∂u

∂x
. (3.2)

Here u(x, t) is a wave induced perturbation of a horizontal velocity, U is the

velocity of background flow which is equal to U1 at minus infinity and U2 at plus

infinity, η(x, t) is the perturbation of a free surface due to the wave motion, and

h is the canal depth which is equal to h1 at minus infinity and h2 at plus infinity

– see Fig. 3.2.

For the incident harmonic wave of the form ∼ ei(ωt−kx) co-propagating with

the background flow we obtain from Eq. (3.2)

(ω − U1ki) ηi = h1kiui, (3.3)

where index i pertains to incident wave (in what follows indices t and r will be

used for the transmitted and reflected waves respectively).

Combining this with Eq. (3.1), we derive the dispersion relation for the inci-
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dent wave

ω = (U1 + c01) ki, (3.4)

where c01 =
√
gh1.

Similarly for the transmitted wave we have (ω − U2kt) ηt = h2ktut and the

dispersion relation ω = (U2 + c02) kt, where c02 =
√
gh2. Notice that the wave

frequency remains unchanged in the process of wave transformation in a sta-

tionary, but spatially varying medium. Then, equating the frequencies for the

incident and transmitted waves, we obtain kt/ki = (U1 + c01) / (U2 + c02).

From the mass conservation for the background flow we have U1h1b1 = U2h2b2

or U1/U2 = XY . Using this relationship, we obtain for the wavenumber of the

transmitted wave
kt
ki

= XY
1 + Fr

X3/2Y + Fr
, (3.5)

where Fr = U1/c01 is the Froude number. The relationship between the wavenum-
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Figure 3.3: The dependence of wavenumber ratio on the depth drop X = h2/h1

for different Froude numbers and Y = 1. Line 1 pertains to the reference case
when Fr = 0, lines 2 and 2′ – to Fr = 0.1, lines 3 and 3′ – to Fr = 0.5, line 4 and
4′ – to Fr = 1. Dashed vertical lines 5 and 6 show the boundaries between the
subcritical and supercritical regimes in the downstream domain for Fr = 0.1, line
5, and Fr = 0.5, line 6.

bers of incident and transmitted waves as functions of the depth drop X is shown

in Fig. 3.3 for several values of Fr and Y = 1. As one can see, the ratio

of wavenumbers kt/ki non-monotonically depends on X; it has a maximum at

Xm = (2Fr/Y )2/3. The maximum value (kt/ki)max = 3
√

4Y (1 + Fr) /
(

3 3
√

Fr
)

is also a non-monotonic function of the Froude number; it has a minimum at

58



Fr = 0.5 where (kt/ki)max = 3
√
Y . In the limiting case, when there is no current

(Fr = 0), kt/ki = X−1/2 independently of Y (see line 1 in Fig. 3.3). The current

with the Froude number Fr < 1 remains subcritical in the downstream domain,

if X > (Fr/Y )2/3. Otherwise it becomes supercritical. Dashed lines 5 and 6 in

Fig. 3.3 show the boundaries between the subcritical and supercritical regimes

in the downstream domains for two values of the Froude number, Fr = 0.1 and

Fr = 0.5 respectively.

For the upstream propagating reflected wave the harmonic dependencies of

free surface and velocity perturbations are {η, u} ∼ ei(ωt+krx). Then from Eq.

(3.2) we obtain (ω + U1kr) ηr = −h1krur, and combining this with Eq. (3.1), we

derive the dispersion relation for the reflected wave with kr < 0

ω = (c01 − U1) |kr|. (3.6)

Equating the frequencies of the incident and reflected waves, we obtain from

the dispersion relations the relationship between the wavenumbers:

|kr|
ki

=
1 + Fr

1− Fr
. (3.7)

Notice that the ratio of wavenumbers |kr|/ki depends only on Fr, but does not

depend on X and Y . The dispersion relations for long surface waves on a constant
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Figure 3.4: Qualitative sketch of dispersion lines for long surface waves on a
uniform background flow in a canal. For details see the text.

current are shown in Fig. 3.4. Lines 1 and 2 show the dispersion dependencies for

the downstream and upstream propagating waves, respectively, in the upstream

domain, if the background current is subcritical, i.e., when Fr < 1. Lines 3 and 4
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show the dispersion dependencies for the downstream and upstream propagating

waves, respectively, which can potentially exist in the downstream domain, if the

background current remains subcritical in this domain too, i.e. when U2/c02 ≡
Fr/

(
X3/2Y

)
< 1. If there is a source generating an incident wave of frequency ω

and wavenumber ki at minus infinity, then after scattering at the canal juncture

the reflected wave appears in the upstream domain with the same frequency and

wavenumber kr. Dashed horizontal line 7 in Fig. 3.4 shows the given frequency

ω. In the downstream domain with a subcritical flow the incident wave generates

only one transmitted wave with the wavenumber kt. If the flow in one of the

domains becomes faster and faster so that Fr → 1−, then the dispersion line

corresponding to the upstream propagating waves tilts to the negative portion

of horizontal axis k in Fig. 3.4 (cf. lines 2 and 4), and its intersection with the

horizontal dashed line 7 shifts to the minus infinity. In the case of a supercritical

flow, Fr > 1, the dispersion line corresponding to the upstream propagating waves

is line 6 in Fig. 3.4. Its intersection with the horizontal dashed line 7 originates

at the plus infinity (as the continuation of the intersection point of line 4 with line

7 disappeared at the minus infinity) and moves to the left when the flow velocity

increases. The speeds of such waves in a calm water are smaller than the speed

of a current, therefore despite the waves propagate counter current, the current

traps them and pulls downstream. In the immovable laboratory coordinate frame

they look like waves propagating to the right jointly with the current. As shown

in Refs. [46, 98], such waves possess a negative energy. This means that the total

energy of a medium when waves are excited is less then the energy of a medium

without waves. Obviously, this can occur only in the non-equilibrium media, for

example, in hydrodynamical flows possessing kinetic energy. In the equilibrium

media, wave excitation makes the total energy greater than the energy of the non-

perturbed media (more detailed discussion of the negative energy concept one can

find in the citations presented above and references therein). In Appendix 6.2 we

present the direct calculation of wave energy for the dispersionless case considered

here and show when it become negative. With the help of dispersion relations, the

links between the perturbations of fluid velocity and free surface in the incident,

reflected and transmitted waves can be presented as

ui = c01ηi/h1; ur = −c01ηr/h1; ut = c02ηt/h2. (3.8)

Using these relationships, we calculate in the next sections the transformation

coefficients for all possible flow regimes and wave-current configurations.
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3.3 Subcritical flow in both the upstream and

downstream domains

3.3.1 Downstream propagating incident wave

Consider first the case when the current is co-directed with the x-axis (see Fig.

3.2) and the incident wave travels in the same direction. Then, the transmitted

wave is also co-directed with the current, but the reflected wave travels against

the current. We assume that the current is subcritical in both left domain and

right domains, i.e. its speed U1 < c01 and U2 < c02. This can be presented

alternatively in terms of the Froude number and canal specific ratios, viz Fr < 1

and Fr < X3/2Y .

To derive the transformation coefficients, we use the boundary conditions at

the juncture point x = 0. These conditions physically imply the continuity of

pressure and continuity of horizontal mass flux induced by a surface wave. The

total pressure in the moving fluid consists of hydrostatic pressure ρg(h + η) and

kinetic pressure ρ(U + u)2/2. The condition of pressure continuity in the linear

approximation reduces to

gη1 + U1u1 = gη2 + U2u2, (3.9)

where indices 1 and 2 pertain to the left and right domains respectively far enough

from the juncture point x = 0. In the left domain we have {η1, u1} = {ηi+ηr, ui+
ur}, whereas in the right domain {η2, u2} = {ηt, ut}.

Using the relationships between ui,r,t and ηi,r,t as per Eq. (3.8) and assuming

that the incident wave has a unit amplitude in terms of η, we obtain from Eq.

(3.9)

g (1 +Rη) + U1
c01

h1

(1−Rη) = gTη + U2
c02

h2

Tη, (3.10)

where Rη and Tη are amplitudes of reflected and transmitted waves respectively.

In the dimensionless form this equations reads

1 + Fr + (1− Fr)Rη = Tη

(
1 +

Fr

X3/2Y

)
. (3.11)

The condition of mass flux continuity leads to the equation

ρb1 (h1 + η1) (U1 + u1) = ρb2 (h2 + η2) (U2 + u2) . (3.12)

61



In the linear approximation and dimensionless form this gives:

1 + Fr− (1− Fr)Rη = Tη
√
XY

(
1 +

Fr

X3/2Y

)
. (3.13)

After that we derive the transformation coefficients Rη and Tη from Eqs.

(3.11) and (3.13):

Rη =
1 + Fr

1− Fr

1−
√
XY

1 +
√
XY

, Tη =
1 + Fr

X3/2Y + Fr

2X3/2Y

1 +
√
XY

. (3.14)

These formulas naturally reduce to the well-known Lamb formulas [88] when

Fr → 0. Graphics of Tη and Rη as functions of depth drop X are shown in Fig.

3.5 for the particular value of Froude number Fr = 0.5 and Y = 1.
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Figure 3.5: The transformation coefficients of surface waves on a uniform sub-
critical current in a canal with flat walls, Y = 1, as functions of the depth drop
X. Line 1 for Tη and line 1′ for Rη pertain to the reference case given by the
Lamb formulas with Fr = 0; lines 2 (for Tη) and 2′ (for Rη) pertain to the flow
with Fr = 0.5.

As follows from the formula for Rη, the reflection coefficient increases uni-

formly in absolute value, when the Froude number increases from 0 to 1, provided

that
√
XY 6= 1. It is important to notice that the reflectionless propagation can

occur in the case, when
√
XY = 1, whereas neither X, nor Y are equal to one.

The transmission coefficient in this case Tη = (1 + Fr) / (1 + Y 2Fr) 6= 1 in gen-

eral, except the case when Fr = 0. The reflection coefficient is negative when√
XY > 1, which means that the reflected wave is in anti-phase with respect to

the incident wave.
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The dependence of Tη on the Froude number is more complicated and non-

monotonic in X. However, in general Tη → 0 in two limiting cases, when X → 0,

then Tη ≈ 2X3/2Y (1 + 1/Fr), and when X →∞, then Tη ≈ 2 (1 + Fr) /
(√

XY
)

(see Fig. 3.5).

It is appropriate to mention here the nature of singularity of the reflection

coefficient Rη and wavenumber kr of the reflected wave as per Eq. (3.7) when

Fr → 1. In such case, the dispersion line 2 in Fig. 3.4 approaches negative half-

axis of k, and the point of intersection of line 2 with the dashed horizontal line

7 shifts to the minus infinity, i.e. kr → −∞, and the wavelength of reflected

wave λr = 2π/|kr| → 0. Thus, we see that when Fr → 1, then the amplitude of

the reflected wave Rη infinitely increases, and its wavelength vanishes. It will be

shown below that the wave energy flux associated with the reflected wave remains

finite even when Fr = 1.

The results obtained for the transformation coefficients are in consistency with

the wave energy flux conservation in an inhomogeneous stationary moving fluid

(see, e.g., Ref. [93]), W ≡ VgE = const., where Vg ≡ dω/dk is the group speed in

the moving fluid, and E is the density of wave energy. In the case of long waves

in shallow water we have (Vg)1,2 = (c0)1,2 ± U1,2. As shown in Appendix 6.2 (see

also Refs. [41, 98]), the period-averaged energy density in the long-wave limit is

E = gA2b (1± Fr) /2, where A is the amplitude of free surface perturbation, b is

the canal width, sign plus pertains to waves co-propagating with the background

flow, and sign minus – to waves propagating against the flow. Taking into account

that the energy fluxes in the incident and transmitted waves are directed to the

right, and the energy flux in the reflected wave is directed to the left, we obtain

(1 + Fr)2 − (1− Fr)2R2
η =
√
XY

(
1 +

Fr

X3/2Y

)2

T 2
η , (3.15)

where the factor
√
XY accounts for the change of the cross-sectional area of the

canal.

Substituting here the expressions for the transformation coefficients Eq. (3.14),

we confirm that Eq. (3.15) reduces to the identity. Notice that the second term

in the left-hand side of Eq. (3.15), which represents the energy flux induced by

the reflected wave, remains finite even at Fr = 1.

The gain of energy densities in the reflected and transmitted waves can be

presented as the ratios Er/Ei and Et/Ei. Using the formulas for the transforma-

tion coefficients and expression for the wave energy in a moving fluid (see above),
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we obtain

Er
Ei

=
1 + Fr

1− Fr

(
1−
√
XY

1 +
√
XY

)2

,
Et
Ei

=
4Y(

1 +
√
XY

)2

1 + Fr

1 + Fr/X3/2Y
. (3.16)
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Figure 3.6: The gain of energy density in the transmitted wave for several Froude
numbers and Y = 1 as functions of the depth drop X. Line 1 pertains to the
reference case when Fr = 0; lines 2 and 3 pertain to the downstream propagating
waves in the subcritical flows with Fr = 0.1 and 0.5 respectively; and lines 5 and
6 pertain to the upstream propagating waves in the same flows. Line 4 shows the
typical dependence of energy density gain in the upstream propagating reflected
wave with Fr = 0.5. Lines 7 and 8 show the boundaries of subcritical regimes for
Fr = 0.1 and 0.5 respectively.

As follows from the first of these expressions, the density of wave energy in

the reflected wave is enhanced uniformly by the current at any Froude number

ranging from 0 to 1 regardless of X and Y , whereas the density of wave energy in

the transmitted wave can be slightly enhanced by the current only if X3/2Y > 1;

otherwise, it is less than that in the incident wave. Figure 3.6 illustrates the

gain of energy density in the transmitted wave for several Froude numbers and

Y = 1. Line 4 in that figure shows the typical dependence of Er/Ei on X for

Fr = 0.5 and Y = 1. When Fr→ 1 the gain of wave energy in the reflected wave

infinitely increases within the framework of a linear model considered here (in

reality the nonlinear, viscous, or dispersive effects can restrict infinite growth).

In this case the typical over-reflection phenomenon [77] occurs in the scattering

of downstream propagating wave, when the energy density in the reflected wave

becomes greater than the energy density in the incident wave. This can occur
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due to the wave energy extraction from the mean flow.

3.3.2 Upstream propagating incident wave

Consider now the case when the current is still co-directed with the x axis (see

Fig. 3.2) and the incident wave travels in the opposite direction from plus infinity.

Then, the transmitted wave in the left domain propagates counter current, and

the reflected wave in the right domain is co-directed with the current. In the

dispersion diagram shown in Fig. 3.4 the incident wave now corresponds to the

intersection of line 2 with the dashed horizontal line 7 (with the wavenumber kr

replaced by ki), the reflected wave corresponds to intersection of line 1 with line 7

(with the wavenumber ki replaced by kr), and the transmitted wave corresponds

to the intersection of line 4 with line 7 (not visible in the figure).

To derive the transformation coefficients, we use the same boundary conditions

at the juncture point x = 0 and after simple manipulations similar to those

presented in the previous subsection we obtain essentially the same formulas

for the wave numbers of transmitted and reflected waves as in Eqs. (3.5) and

(3.7), as well as the transformation coefficients as in Eqs. (3.14) with the only

difference that the sign of the Froude number should be changed everywhere to

the opposite, Fr → −Fr. However, the change of sign in the Froude number

leads to singularities in both the wavenumber of the transmitted wave and the

transmission coefficient. Therefore for the wave numbers of scattered waves we

obtain:
kr
ki

=
1− Fr

1 + Fr
,

kt
ki

= XY
1− Fr

X3/2Y − Fr
. (3.17)

In Fig. 3.7, lines 1 – 3 show the dependencies of normalized wavenumbers

of transmitted waves on the depth drop X for Y = 1 and several particular

values of the Froude number. Line 1 pertains to the reference case studied by [88]

when there is no flow (Fr = 0). As one can see, when the depth drop decreases

and approaches the critical value, X → Xc = (Fr/Y )2/3, the wavenumber of

the transmitted wave becomes infinitely big (and the corresponding wavelength

vanishes). This means that the current in the left domain becomes very strong and

supercritical; the transmitted wave cannot propagate against it and the blocking

phenomenon occurs (see, e.g., Refs. [10, 99] and references therein).

The transformation coefficients for this case are

Rη =
1− Fr

1 + Fr

1−
√
XY

1 +
√
XY

, Tη =
1− Fr

X3/2Y − Fr

2X3/2Y

1 +
√
XY

. (3.18)

They are as shown in Fig. 3.8 in the domains where the subcritical regime
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Figure 3.7: The dependencies of normalized wave numbers of transmitted waves
on the depth drop X for Y = 1 and several particular values of the Froude
number. Line 1 pertains to the reference case when there is no flow (Fr = 0);
other lines pertain to the subcritical cases (line 2 – Fr = 0.1; line 3 – Fr = 0.5)
and supercritical cases (line 2′ – Fr = 0.1; line 3′ – Fr = 0.5). Dashed vertical
lines 4 and 5 show the boundaries between the subcritical and supercritical cases
for Fr = 0.1 and 0.5, respectively.

occurs, X > (Fr/Y )2/3 as the functions of depth drop X for Y = 1 and two

values of the Froude number. When depth drop decreases and approaches the

critical value Xc, the transmission coefficient infinitely increases, and the over-

transmission phenomenon occurs. However, it can be readily shown that the

energy flux remains finite, and the law of energy flux conservation Eq. (3.15)

with Fr→ −Fr holds true in this case too.

The gain of energy densities in the reflected and transmitted waves follows

from Eq. (3.16) if we replace Fr by −Fr (see lines 4 and 5 in Fig. 3.6):

Er
Ei

=
1− Fr

1 + Fr

(
1−
√
XY

1 +
√
XY

)2

,
Et
Ei

=
4Y(

1 +
√
XY

)2

1− Fr

1− Fr/X3/2Y
. (3.19)

The presence of a subcritical current leads to uniform decrease of wave energy

density in the reflected wave regardless of X and Y . Moreover, the wave density

in this wave vanishes when Fr→ 1. However, in the transmitted wave the density

of wave energy quickly increases when X → Xc being greater than Xc (see lines 5

and 6 in Fig. 3.6). Thus, the typical over-transmission phenomenon occurs in the

scattering of upstream propagating wave (cf. with the over-reflection phenomenon

66



X

1

,T R 

2

1

2

3

3

Figure 3.8: The transformation coefficients for the upstream propagating incident
waves in a canal with flat walls, Y = 1, as functions of depth drop X. Line 1 for
Tη and line 1′ for Rη pertain to the reference case when Fr = 0; lines 2 (for Tη)
and 2′ (for Rη) pertain to Fr = 0.1, and lines 3 (for Tη) and 3′ (for Rη) pertain
to Fr = 0.5.

described at the end of the previous subsection).

3.4 Subcritical flow in the upstream domain,

but supercritical in the downstream domain

In such a case an incident wave can propagate only along the current. In the

downstream domain where the current is supercritical no one wave can propa-

gate against it. Therefore, we consider here a scattering of only a downstream

propagating incident wave which arrives from minus infinity in Fig. 3.1. We

assume that the Froude number and geometric parameters of a canal are such

that X3/2Y < Fr < 1.

In the upstream domain two waves of frequency ω can propagate in the sub-

critical flow. One of them is an incident wave with the unit amplitude and

wavenumber ki = ω/(c01 + U1) and another one is the reflected wave with the

amplitude Rη and wavenumber kr = ω/(c01 − U1). In the downstream domain

two waves can exist too. One of them is the transmitted wave of positive energy

with the amplitude Tp and wavenumber kt1 = ω/(U2 + c02) and another one is

the transmitted wave of negative energy (see the Appendix) with the amplitude

Tn and wavenumber kt2 = ω/(U2 − c02).

The relationships between the wavenumbers of scattered waves follows from
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the frequency conservation. For the transmitted wave of positive energy and

reflected wave we obtain the same formulas as in Eqs. (3.5) and (3.7), whereas

for the transmitted wave of negative energy we obtain

kt2
ki

= XY
Fr + 1

Fr−X3/2Y
. (3.20)

As follows from this formula, the wavenumber kt2 infinitely increases when

X → Xc being less than Xc. The dependencies of kt1/ki are shown in Fig. 3.3 by

lines 2′, 3′, and 4′ for Fr = 0.1, 0.5, and 1, respectively, whereas the dependencies

of kt2/ki are shown in Fig. 3.7 by lines 2′ and 3′ for Fr = 0.1 and 0.5 respectively.

To find the transformation coefficients we use the same boundary conditions

as in Eqs. (3.10) and (3.12), but now they provide the following set of equations:

1 + Fr + (1− Fr)Rη = Tp

(
1 +

Fr

X3/2Y

)
+ Tn

(
1− Fr

X3/2Y

)
, (3.21)

1 + Fr− (1− Fr)Rη =
√
XY

[
Tp

(
1 +

Fr

X3/2Y

)
− Tn

(
1− Fr

X3/2Y

)]
. (3.22)

This set relates three unknown quantities, Rη, Tp, and Tn. We can express, for

example, amplitudes of transmitted waves Tp and Tn in terms of unit amplitude

of incident wave and amplitude of reflected wave Rη:

Tp =
X

2 (X3/2Y + Fr)

[
(1 + Fr)

(√
XY + 1

)
+ (1− Fr)

(√
XY − 1

)
Rη

]
,

(3.23)

Tn =
X

2 (X3/2Y − Fr)

[
(1 + Fr)

(√
XY − 1

)
+ (1− Fr)

(√
XY + 1

)
Rη

]
,

(3.24)

whereas the reflection coefficient Rη remains unknown.

It can be noticed a particular case when the background flow could, probably,

spontaneously generate waves to the both sides of a juncture where the back-

ground flow abruptly changes from the subcritical to supercritical value. Bearing

in mind that the transformation coefficients are normalized on the amplitude of

an incident wave, Rη ≡ Ar/Ai, Tp ≡ Ap/Ai, Tn ≡ An/Ai, and considering a limit

when Ai → 0, we obtain from Eqs. (3.23) and (3.24):

Ar
Ap

=
2

X (1− Fr)

X3/2 + Fr√
XY − 1

,
An
Ap

=

√
XY + 1√
XY − 1

X3/2 + Fr

X3/2 − Fr
. (3.25)
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The conservation of wave energy flux in general is

(1 + Fr)2 − (1− Fr)2R2
η =

1

X5/2Y

[(
X3/2Y + Fr

)2
T 2
p −

(
X3/2Y − Fr

)2
T 2
n

]
.

(3.26)

After substitution here of the transmission coefficients Eqs. (3.23) and (3.24)

we obtain the identity regardless of Rη. In the case of spontaneous wave gener-

ation when there is no incident wave, Eq. (3.26) turns to the identity too after

its re-normalization and substitution of Eqs. (3.25). This resembles a sponta-

neous wave generation due to Hawking’s effect [47, 152, 153]) at the horizon of

an evaporating black hole, when a positive energy wave propagates towards our

space (the upstream propagating wave Ar in our case), whereas a negative energy

wave together with a positive energy wave propagates towards the black hole (the

downstream propagating waves An and Ap).

Thus, within the model with an abrupt change of canal cross-section the com-

plete solution for the wave scattering cannot be obtained in general. One needs to

discard from the approximation when the current speed abruptly increases at the

juncture and consider a smooth current transition from one value U1 to another

one U2 (this problem was recently studied in Ref. [23]).

3.5 Supercritical flow in both the upstream and

downstream domains

Now let us consider a wave scattering in the case when the flow is supercritical

both in upstream and downstream domain, U1 > c01 and U2 > c02. In terms of

the Froude number we have Fr > 1 and Fr > X3/2Y . It is clear that in such

a situation, similar to the previous subsection, only a downstream propagating

incident wave can be considered.

In the upstream supercritical flow there is no reflected wave. In the dispersion

diagram of Fig. 3.4 the downstream propagating incident wave of frequency ω can

be either the wave on the intersection of line 5 with the dashed horizontal line, or

on the intersection of line 6 with the dashed horizontal line (the intersection point

is off the figure), or even both. The former wave is the wave of positive energy

and has the wavenumber ki1 = ω/(U1 + c01), whereas the latter is the wave of

negative energy (see the Appendix) and has the wavenumber ki2 = ω/(U1 − c01).

In the downstream domain where we assume that the flow is supercritical too,

two waves appear as the result of scattering of incident waves. As in the upstream

domain, one of the transmitted waves has positive energy and the wavenumber

kt1 = ω/(U2 + c02), and the other has negative energy and the wavenumber
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kt2 = ω/(U2 − c02).

Let us assume that there is a wavemaker at minus infinity that generates

a sinusoidal surface perturbation of frequency ω. Then, two waves of positive

and negative energies with the amplitudes Ap and An, respectively, can jointly

propagate. In the process of wave scattering at the canal juncture two transmitted

waves with opposite energies will appear with the amplitudes Tp and Tn. Their

amplitudes can be found from the boundary conditions Eqs. (3.10) and (3.12).

Then, after simple manipulations similar to those in Secs. 3.3 and 3.4 we obtain:

Tp =
X

2 (X3/2Y + Fr)

[
(Fr + 1)

(√
XY + 1

)
Ap − (Fr− 1)

(√
XY − 1

)
An

]
,

(3.27)

Tn =
X

2 (X3/2Y − Fr)

[
(Fr + 1)

(√
XY − 1

)
Ap − (Fr− 1)

(√
XY + 1

)
An

]
.

(3.28)

At certain relationships between the amplitudes Ap and An it may happen

that there is only one transmitted wave, either of positive energy (Tn = 0), when

An = Ap
Fr + 1

Fr− 1

√
XY − 1√
XY + 1

, (3.29)

or of negative energy (Tp = 0), when

An = Ap
Fr + 1

Fr− 1

√
XY + 1√
XY − 1

. (3.30)

From the law of wave energy flux conservation we obtain

(Fr + 1)2A2
p − (Fr− 1)2A2

n =
√
XY

[(
Fr

X3/2Y
+ 1

)2

T 2
p −

(
Fr

X3/2Y
− 1

)2

T 2
n

]
.

(3.31)

Substituting here the expressions for Tp and Tn as per Eqs. (3.27) and (3.28),

we see that Eq. (3.31) becomes an identity regardless of amplitudes of incoming

waves Ap and An, including the cases when they are related by Eqs. (3.29) or

(3.30). In the particular cases one of the incident waves can be suppressed, ether

the wave of negative energy or wave of positive energy. In the former case we set

An = 0 and Ap = 1, and in the latter case we set Ap = 0 and An = 1.

When there is only one incident wave of positive energy with the amplitude

Ap = 1 and there is no wave of negative energy (An = 0), then the transmission

coefficients Eqs. (3.27) and (3.28) reduce to

Tp =
X

2

Fr + 1

Fr +X3/2Y

(
1 +
√
XY

)
, Tn =

X

2

Fr + 1

Fr−X3/2Y

(
1−
√
XY

)
. (3.32)
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Recall that these formulas are valid for supercritical flows when Fr > 1 and

Fr > X3/2Y . In the limiting case when X → 0 and Y = const., we obtain

Tp ≈ Tn ≈ X
Fr + 1

2Fr
. (3.33)

In another limiting case when X3/2Y → Fr the transmission coefficient for

the positive energy wave remains constant, whereas the transmission coefficient

for the negative energy wave within the framework of linear theory goes to plus

or minus infinity depending on the value of Y . Figure 3.9(a) illustrates the

transmission coefficients Tp and Tn as functions of X for Y = 1 and two particular

values of the Froude number.
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Figure 3.9: The transmission coefficients for the downstream propagating incident
waves of positive energy (frame a) and negative energy (frame b) in a canal with
the flat walls, Y = 1, as functions of the depth drop X. Line 1 for Tp and line 1′

for Tn pertain to Fr = 1.5, and lines 2 (for Tp) and 2′ (for Tn) pertain to Fr = 2.5.
Data for lines 1 and 2 in frame (b) were multiplied by a factor of ten to make the
graphics clearly visible.

When there is only one incident wave of negative energy with the amplitude

An = 1 and there is no wave of positive energy (Ap = 0), then the transmission

coefficients Eqs. (3.27) and (3.28) reduce to

Tp =
X

2

Fr− 1

Fr +X3/2Y

(
1−
√
XY

)
, Tn =

X

2

Fr− 1

Fr−X3/2Y

(
1 +
√
XY

)
. (3.34)

In the limiting case when X → 0, and Y = const., we obtain

Tp ≈ Tn ≈ X
Fr− 1

2Fr
. (3.35)

In another limiting case when X3/2Y → Fr, the transmission coefficient for the
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positive energy wave remains finite, whereas, the transmission coefficient for the

negative energy wave within the framework of linear theory goes to plus infinity.

Figure 3.9(b) shows the transmission coefficients Tp and Tn as functions of X for

Y = 1 for two particular values of the Froude number.

3.6 Supercritical flow in the upstream and sub-

critical in the downstream domain

Let us consider, at last, the case when the flow is supercritical in the upstream

domain, where U1 > c01, but due to canal widening becomes subcritical in the

downstream domain, where U2 < c02. Thus, the flow is decelerating and in terms

of the Froude number we have 1 < Fr < X3/2Y . Assume first that the incident

wave propagates downstream.

3.6.1 Downstream propagating incident wave

As was mentioned in the previous section, two waves with the amplitudes Ap and

An can propagate simultaneously from minus infinity, if they are generated by the

same wavemaker with the frequency ω. In the downstream domain potentially two

waves of positive energy can exist, but only one of them propagating downstream

can appear as the transmitted wave with the amplitude Tη as the result of wave

scattering at the juncture.

The amplitudes of scattered waves can be found from the boundary conditions

Eqs. (3.10) and (3.12). This gives, after simple manipulations:

(1 + Fr)Ap + (1− Fr)An =Tη

(
1 +

Fr

X3/2Y

)
, (3.36)

(1 + Fr)Ap − (1− Fr)An =
√
XY Tη

(
1 +

Fr

X3/2Y

)
. (3.37)

This set of equations provides a unique solution for the transmission coefficient

Tη only in the case when the amplitudes of incoming waves are related:

An =
1 + Fr

1− Fr

1−
√
XY

1 +
√
XY

Ap, Tη =
1 + Fr

X3/2Y + Fr

2X3/2Y

1 +
√
XY

Ap. (3.38)

If one of the incident waves is absent (An = 0 or Ap = 0) or amplitudes of

incoming waves are not related by Eq. (3.38), then the set of Eqs. (3.36) and

(3.37) is inconsistent. In such cases the problem of wave scattering in the canal

does not have a solution within the framework of a model with a sharp change of

the cross-section.
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If the amplitudes of incident waves Ap and An are related by Eq. (3.38), then

the conservation of wave energy flux holds and takes the form

(Fr + 1)2A2
p − (Fr− 1)2A2

n =
√
XY

(
Fr

X3/2Y
+ 1

)2

T 2
η . (3.39)

Substituting here An and Tη from Eq. (3.38), we see that it becomes just the

identity.

3.6.2 Upstream propagating incident wave

For the incident wave arriving from the plus infinity and propagating upstream

in the subcritical domain of the flow, the problem of wave scattering within

the model with a sharp change of a current is undefined. The incoming wave

cannot penetrate from the domain with a subcritical flow into the domain with

a supercritical flow, therefore one can say that formally the reflection coefficient

in this case Rη = 1, and the transmission coefficients Tη = 0. However such a

problem should be considered within a more complicated model with a smooth

transcritical flow; this has been done in Ref. [23].

3.7 Conclusion

In this Chapter within the linear approximation we have studied a scattering

of long surface waves at the canal juncture when its width and depth abruptly

change at a certain place. We have calculated the transformation coefficients for

the reflected and transmitted waves in the presence of a background flow whose

speed changes from U1 to U2 in accordance with the mass flux conservation.

The calculated coefficients represent the effectiveness of the conversion of the

incident wave into the other wave modes – reflected and transmitted of either

positive or negative energy. Our consideration generalizes the classical problem

studied by Ref. [88] when the background flow is absent. It was assumed that the

characteristic scale of current variation in space is much less than the wavelengths

of scattered waves. Such a simplified model allows one to gain insight into the

complex problem of wave-current interaction and find the conditions for the over-

reflection and over-transmission of water waves. We have analyzed all possible

orientations of the incident wave with respect to flow and studied all possible

regimes of water flow (subcritical, supercritical, and transcritical).

In the study of the subcritical and supercritical flows (see Secs. 3.3 and 3.5)

we have succeeded in calculating the transmission and reflection coefficients in

the explicit forms as functions of the depth drop X = h2/h1, specific width ratio
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Y = b2/b1, and Froude number Fr. Based on these, the conditions for the over-

reflection and over-transmission have been found in terms of the relationships

between the Froude number and canal geometric parameters X and Y . It appears

that it is not possible to do the same for the transcritical flows, at least within the

framework of the simplified model considered in this Chapter (see Secs. 3.4 and

3.6). The reason for that is in the critical point where Fr = 1 which appears in the

smooth transient domain between two portions of a canal with the different cross-

sections. The transition through the critical point is a rather complex problem

which was recently studied on the basis of a model with a continuously varying

flow speed in a duct of smoothly varying width [23]. The summary of results

obtained is presented in Table I.

The problem studied can be further generalized for waves of arbitrary length

taking into account the effect of dispersion. Similar works in this direction were

published recently for relatively smooth current variation in the canal with the

finite-length bottom obstacles [29, 131]. It is worthwhile to notice that in the

dispersive case for purely gravity waves there is always one wave of negative

energy for which the flow is supercritical. This negative energy mode smoothly

transforms into the dispersionless mode when the flow increases. In such cases

two other upstream propagating modes disappear, and the dispersion relations

reduces to one of considered in this Chapter. It will be a challenge to compare the

theoretical results obtained in this Chapter with the numerical and experimental

data; this may be a matter of future study.
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Table 3.1: The summary of considered cases.

A cocurrent propagating incident waves is denoted by ki ↑↑ U , whereas a

countercurrent propagating incident waves is denoted by ki ↓↑ U . The acronyms

PEW and NEW pertain to positive and negative energy waves, correspondingly.
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Chapter 4

WAVE SCATTERING IN

SPATIALLY

INHOMOGENEOUS

CURRENTS

In this Chapter we study analytically a scattering of long linear surface waves on

stationary currents in a duct (canal) of a constant depth and variable width. It

is assumed that the background velocity linearly increases or decreases with the

longitudinal coordinate due to the gradual variation of duct width. Such a model

admits analytical solution of the problem in hand, and we calculate the scattering

coefficients as functions of incident wave frequency for all possible cases of sub-,

super, and trans-critical currents. For completeness we study both co-current and

counter-current wave propagation in accelerating and decelerating currents. The

results obtained are analysed in application to recent analog gravity experiments

[45, 135, 136, 155] and can shed light on the problem of hydrodynamic modelling

of Hawking radiation. The results obtained in this Chapter have been published

in Physical Review D [23].

4.1 Introduction

Since 1981 when Unruh established the analogy in wave transformation occurring

at the horizon of a black hole and at a critical point of a hydrodynamic flow [152]

there have been many attempts to calculate the transformation coefficients and

find the analytical expression for the excitation coefficient of a negative energy

mode (see, for instance, [27, 29, 126, 131] and references therein). In parallel

with theoretical study there were several attempts to model the wave scattering
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in spatially inhomogeneous currents experimentally and determine this coefficient

through the measurement data [45, 155] (similar experiments were performed or

suggested in other media, for example, in the atomic Bose—Einstein condensate

– see [143] and numerous references therein). In particular, the dependence of

amplitude of a negative energy mode on frequency of incident wave in a water

tank was determined experimentally [155]; however several aspects of the results

obtained in this paper were subject to criticism.

The problem of water wave transformation in spatially inhomogeneous cur-

rents is of significant interest itself and there is a vast number of publications

devoted to theoretical and experimental study of this problem. However in ap-

plying to the modelling of Hawking’s effect, the majority of these publications

suffer a drawback which is related to the parasitic effect of dispersion, whereas

the dispersion is absent in the pure gravitational Hawking effect.

Below we consider a model which describes a propagation of small-amplitude

long surface water waves in a duct (canal) of constant depth but variable width.

The dispersion is absent, and the model is relevant to the analytical study of the

Hawking effect. We show that the transformation coefficients can be found in the

exact analytical forms both for co-current and counter-current wave propagation

in gradually accelerating and decelerating currents.

We believe that the results obtained can be of wider interest, not only as

a model of Hawking’s effect, but in application to real physical phenomena oc-

curring in currents in non-homogenous ducts, at least at relatively small Froude

numbers. We consider all possible configurations of the background current and

incident wave.

4.2 Derivation of the Governing Equation

Let us consider the set of equations for water waves on the surface of a perfect

fluid of a constant density ρ and depth h. Assume that the water moves along

the x-axis with a stationary velocity U(x) which can be either an increasing or a

decreasing function of x. Physically such a current can be thought as a model of

water flow in a horizontal duct with a properly varying width b(x). We will bear

in mind such a model, although we do not pretend here to consider a current in

a real duct, but rather to investigate an idealized hydrodynamic model which is

described by the equation analogous to that appearing in the context of black

hole evaporation due to Hocking radiation [27, 29, 47, 73, 126, 131, 152, 153].

In contrast to other papers also dealing with the surface waves on a spatially

varying current (see, e.g., [27, 29, 126, 131]), we consider here the case of shallow-

water waves when there is no dispersion, assuming that the wavelengths λ� h.
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In the hydrostatic approximation, which is relevant to long waves in shallow

water [89], the pressure can be presented in the form p = p0 +ρg(η− z), where p0

is the atmospheric pressure, g is the acceleration due to gravity, z is the vertical

coordinate, and η(x, t) is the perturbation of free surface (−h ≤ z ≤ η). Then the

linearized Euler equation for small perturbations having also only one velocity

component u(x, t) takes the form:

∂u

∂t
+
∂(Uu)

∂x
= −g ∂η

∂x
. (4.1)

The second equation is the continuity equation which is equivalent to the mass

conservation equation for shallow-water waves:

∂S

∂t
+

∂

∂x
[S (U + u)] = 0, (4.2)

where S(x, t) is the portion of the cross-section of a duct occupied by water,

S(x, t) = b(x)[h+ η(x, t)], where b(x) is the width of the duct.

For the background current Eq. (4.2) gives the mass flux conservation Q ≡
ρU(x)S(x) = ρU(x)b(x)h = const. Inasmuch as h = const, we have U(x)b(x) =

Q/ρh = const, and Eq. (4.2) in the linear approximation reduces to:

b(x)
∂η

∂t
+

∂

∂x
[b(x) (Uη + uh)] = 0. (4.3)

Thus, the complete set of equations for shallow water waves in a duct of a

variable width consists of Eqs. (4.1) and (4.3). This set can be reduced to one

equation of the second order. To this end let us divide first Eq. (4.3) by b(x) and

rewrite it in the equivalent form:

∂η

∂t
+ U

∂η

∂x
= −hU ∂

∂x

u

U
. (4.4)

Expressing now the velocity component u in terms of the velocity potential

ϕ, u = ∂ϕ/∂x, and combining Eqs. (4.1) and (4.4), we derive(
∂

∂t
+ U

∂

∂x

)(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
= c2

0U
∂

∂x

(
1

U

∂ϕ

∂x

)
, (4.5)

where c0 =
√
gh is the speed of linear long waves in shallow water without a

background current.

As this equation describes wave propagation on the stationary moving current

of perfect fluid, it provides the law of wave energy conservation which can be
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presented in the form (its derivation is given in Appendix 6.2):

∂E
∂t

+
∂J

∂x
= 0, (4.6)

where

E =
i

U

[
ϕ

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
− ϕ

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)]
, J = EU − i c2

0

U

(
ϕ
∂ϕ

∂x
− ϕ∂ϕ

∂x

)
,

and the over-bar denotes complex conjugation.

Solution of the linear equation (4.5) can be sought in the form ϕ(x, t) =

Φ(x)e−iωt, then it reduces to the ODE for the function Φ(x):(
−iω + U

d

dx

)(
−iωΦ + U

dΦ

dx

)
= c2

0U
d

dx

(
1

U

dΦ

dx

)
. (4.7)

If we normalize the variables such that U/c0 = V , x/L = ξ, and ωL/c0 = ω̂,

where L is the characteristic spatial scale of the basic current, then we can present

the main equation in the final form:

V
(
1− V 2

) d2Φ

dξ2
−
[(

1 + V 2
)
V ′ − 2 i ω̂V 2

] dΦ

dξ
+ V ω̂2Φ = 0, (4.8)

where the prime stands for here and below differentiation with respect to the

entire function argument (in this particular case with respect to ξ). If the pertur-

bations are monochromatic in time, as above, then the wave energy E and energy

flux J do not depend on time, therefore, as follows from Eq. (4.6), the energy

flux does not depend on x too, so J = const.

For the concrete calculations we chose the piecewise linear velocity profile,

assuming that the current varies linearly within a finite interval of x and remains

constant out of this interval (see Fig. 4.1):

Va(ξ) =


V1 ≡ ξ1, ξ ≤ ξ1,

ξ, 0 < ξ1 < ξ < ξ2,

V2 ≡ ξ2, ξ ≥ ξ2;

Vd(ξ) =


V1 ≡ −ξ1, ξ ≤ ξ1,

−ξ, ξ1 < ξ < ξ2 < 0,

V2 ≡ −ξ2, ξ ≥ ξ2,

(4.9)

where Va(ξ) pertains to the accelerating current, and Vd(ξ) – to the decelerating

current. To simplify further calculations, we have chosen, without the loss of

generality, the origin of the coordinate frame such that the velocity profile is

directly proportional to ±ξ in the interval ξ1 ≤ ξ ≤ ξ2 as shown in Fig. 4.1). For
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such velocity configurations it is convenient to set L = (x2 − x1)c0/(U2 − U1) =

(x2 − x1)/|V2 − V1|. The choice of piecewise linear velocity profile allows us to

reduce the governing equation (4.8) to the analytically solvable equation and

obtain exact solutions. The corresponding water flow can be realized in a duct

with a variable width, which is constant, b = b1, when ξ ≤ ξ1, then gradually

varies along the ξ-axis as b(ξ) = b1ξ1/ξ in the interval ξ1 ≤ ξ ≤ ξ2, and after

that remains constant again, b2 = b1ξ1/ξ2 when ξ ≥ ξ2. Schematically the sketch

of a duct with gradually decreasing width that provides an accelerating current

is shown in Fig. 4.2. Equation (4.8) should be augmented by the boundary

a)

b)

Figure 4.1: Sketch of accelerating (a) and decelerating (b) background currents.

Figure 4.2: The sketch of a duct with the decreasing width that provides spatially
accelerating background current.

conditions at ξ → ±∞ which specify the scattering problem, as well as by the
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matching conditions at ξ = ξ1 and ξ = ξ2. The latter conditions reduce to the

continuity of the function Φ(ξ) and its derivative Φ′(ξ) (see Appendix 6.2 for the

derivation):

Φ(ξ1,2 + 0) = Φ(ξ1,2 − 0), Φ′(ξ1,2 + 0) = Φ′(ξ1,2 − 0). (4.10)

On the basis of Eq. (4.8) and matching conditions (4.10), we are able to study

analytically all possible cases of orientation of an incident wave and a current,

assuming that the current can be sub-critical (V1,2 < 1), trans-critical (V1 > 1,

V2 < 1 or vice versa V1 < 1, V2 > 1), or super-critical (V1,2 > 1).

4.3 Qualitative analysis of the problem based on

the JWKB approximation

Before the construction of an exact solution for wave scattering in currents with

the piecewise linear velocity profiles, it seems reasonable to consider the problem

qualitatively to reveal its specific features which will help in the interpretation of

results obtained.

Consider first a long sinusoidal wave propagating on a current with constant

U . Assume, in accordance with the shallow-water approximation, that the wave-

length λ� h. The dispersion relation for such waves is

(ω − kU)2 = c2
0k

2, (4.11)

where k = (k, 0, 0) is a wave vector related with a wavelength λ = 2π/|k|.
A graphic of the dispersion relation is shown in Fig. 4.3 for two values of the

current speed, sub-critical, U < c0, and super-critical, U > c0. Since we consider

dispersionless shallow-water waves, graphics of the dependencies ω(k) are straight

lines formally extending from minus to plus infinity. We suppose, however, that

the frequency ω is a non-negative quantity which is inversely proportional to the

wave period; therefore, without loss of generality, we can ignore those portions

of dispersion lines which correspond to negative frequencies (in Fig. 4.3 they are

shown by inclined dashed lines). The dashed horizontal line in Fig. 4.3 shows a

particular fixed frequency of all waves participating in the scattering process. For

co-current propagating waves with kkk ↑↑ U the dispersion relation (4.11) reduces

to ω = (U + c0)|k|, whereas for counter-current propagating waves with kkk ↓↑ U

it is ω = |U − c0||k|. Thus, the dispersion lines for surface waves on a current are

not symmetrical with respect to the vertical axis k = 0. When the current speed

U increases, the right branch 1 turns toward the vertical axis (cf. lines 1 and
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Figure 4.3: The dispersion dependencies for surface waves on uniformly moving
shallow water. Lines 1 and 2 pertain to co-current and counter-current propagat-
ing waves respectively in a sub-critical current (U < c0). Lines 3 and 4 pertain
to positive- and negative-energy waves respectively in a super-critical current
(U > c0) both propagating downstream.

3 in Fig. 4.3). The left branch 2 in this case tilts toward the negative half-axis

k; coincides with it when U = c0, and then, when U > c0, it goes to the lower

half-plane and becomes negative. However, its negative portion 2′ goes up, passes

through the axis k and appears in the upper half-plane as the dispersion line 4.

Thus, waves corresponding to lines 3 and 4 are downstream propagating waves,

whereas there are no upstream propagating waves, if U > c0. From the physical

point of view this means that the current is so strong that it pulls downstream

even counter-current propagating waves. As was shown, for instance, in Refs.

[24, 46, 98], in a such strong current, waves on branch 3 have positive energy,

whereas waves on branch 4 have negative energy.

To consider wave propagation on a spatially variable current when it acceler-

ates or decelerates along x-axis, let us use the JWKB method, which physically

presumes that the wavelengths are much less than the characteristic scale of

inhomogeneity, λ � L (whereas still λ � h and the shallow-water approxima-

tion is valid). This condition can be presented in the form L/λ = L/(c0T ) =

Lω/(2πc0) = ω̂/2π � 1 (where T = 2π/ω is the wave period) and if it is fulfilled,

the JWKB solution of Eq. (4.8) can be sought in the form (see, e.g., [37, 117]):

Φ(ξ) = exp

[
i ω̂

∫
q(ξ) dξ

]
, q(ξ) = q0(ξ) + ω̂−1q1(ξ) + ω̂−2q2(ξ) + . . . (4.12)

Substitution of these expressions into Eq. (4.8) gives two linearly independent

solutions:

Φ(±)(ξ) =
√
V (ξ) exp

[
i ω̂

∫
dξ

V (ξ)± 1
+O(ω̂−1)

]
, (4.13)
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and the general solution of Eq. (4.8) is the linear combination of these two par-

ticular solutions:

Φ(x) = AF Φ(+)(x) + AB Φ(−)(x), (4.14)

where AF and AB are amplitudes of co-current propagating F-wave and counter-

current propagating B-wave, respectively.

In the current with a spatially varying velocity V (ξ), wave propagation and

transformation has a regular character, if V (ξ) 6= 1 (i.e., if U(x) 6= c0); then

Eq. (4.8) does not contain critical points.

In sub-critical currents, when 0 < V1,2 < 1 everywhere, an incident wave

arriving from the left (F-wave) or from the right (B-wave) partially transmits

through the domain of inhomogeneity and partially transforms into the reflected

wave of B- or F-type respectively. Notice that in this case waves of both types

have positive energy.

In super-critical currents, when V1,2 > 1 is everywhere, as was mentioned

above, both F-wave and B-wave can propagate only in the direction of the current;

however F-wave has positive energy whereas B-wave has negative energy. An

incident wave of any type propagating from left to right partially transforms into

the wave of another type, so that at the infinity, ξ → ∞, waves of both types

appear.

In contrast to these cases, in a trans-critical current there is a critical point

where V (ξ) = 1. The existence of such a point has only a minor influence on the

co-current propagating F-wave, but exerts a crucial action on the B-wave, because

its “wave number” q
(−)
0 → ∞ when V (ξ) → 1. Due to this, an arbitrarily small

but finite viscosity leads to dissipation of a B-wave that attains a neighborhood

of the critical point. As the result of this the energy flux J does not conserve, in

general, when waves pass through this critical point. However, as will be shown

below, the energy flux conserves in spatially accelerating trans-critical currents,

but does not conserve in decelerating currents.

Indeed, in an accelerating current where 0 < V1 < 1 < V2, an incident wave

can arrive only from the left as the F-type wave only. In the sub-critical domain

(ξ < 1) it transforms into the B-wave that runs backwards, towards ξ = −∞.

After passing the critical point, being in the supercritical domain (ξ > 1) it

transforms into the B-wave that runs forward towards ξ = +∞. As a result,

there is no B-wave that attains the critical point; hence, there is no dissipation,

and energy flux conserves. On the contrary, in decelerating currents (where V1 >

1 > V2 > 0) B-waves, no matter incident or “reflected”, run to the critical point

and dissipate there; therefore the energy flux does not conserve in this case.

A specific situation occurs when the incident B-wave propagates from plus
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infinity in the sub-critical current towards the critical point and generates an

F-wave on the current inhomogeneity. If the current is super-critical on the left

of the critical point, then no one wave can penetrate into that domain. Thus,

the wave energy of incident B-wave partially converts into a reflected F-wave

and partially absorbs in the vicinity of the critical point due to vanishingly small

viscosity. We will come to the discussion of these issues in Section 4.5 when we

construct exact solutions of scattering problem for Eq. (4.8) where it is possible.

A qualitative analysis presented above demonstrates that the most interesting

results can be obtained for the trans-critical currents and that the critical points

play a crucial role in such currents. However, in the vicinity of a critical point

the velocity of arbitrary type U(x) can be generally approximated by a linear

function, U(x) ∼ x. This makes an additional argument in favor of studying

wave scattering in currents with piecewise linear velocity profiles.

4.4 Wave scattering in inhomogeneous currents

with a piecewise linear velocity profile

Consider now exact solutions of the problem on surface wave scattering in inho-

mogeneous currents with piecewise linear velocity profiles described by Eqs. (4.9)

and shown in Fig. 4.1. The basic equation (4.8) has constant coefficients out of

the interval ξ1 < ξ < ξ2, where the current velocity linearly varies with ξ (either

increasing or decreasing). Therefore out of this interval, solutions to this equa-

tion can be presented in terms of exponential functions with the purely imaginary

exponents describing sinusoidal travelling waves.

Within the interval ξ1 < ξ < ξ2 Eq. (4.8) with the help of change of variable

ζ = ξ2 reduces to one of the hypergeometric equations:

ζ(1− ζ)
d2Φ

dζ2
− (1∓ i ω̂)ζ

dΦ

dζ
+
ω̂2

4
Φ = 0, (4.15)

where upper sign pertains to the case of accelerating current, and lower sign – to

the case of decelerating current.

The matching conditions at ξ = ξ1 and ξ = ξ2 are given by Eqs. (4.10).

4.4.1 Wave transformation in sub-critical currents

Assume first that an incident wave propagates from left to right parallel to the

main current which is sub-critical in all domains, V1 < V2 < 1. As mentioned

above, in the left (ξ < ξ1) and right (ξ > ξ2) domains Eq. (4.8) has constant

coefficients, and in the intermediate domain (ξ1 < ξ < ξ2), where V (ξ) = ξ, this
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equation reduces to one of hypergeometric equations (4.15). These equations are

regular in the sub-critical case, and their coefficients do not turn to zero. Two

linearly independent solutions can be expressed in terms of Gauss hypergeomet-

ric function 2F1(a, b; c; ζ) (see §6.4 in book [95]). Thus, the general solution of

Eq. (4.8) for the accelerating current in three different domains can be presented

as follows:

Φ(ξ) =A1eiκ1(ξ−ξ1) + A2e−iκ2(ξ−ξ1), ξ ≤ ξ1, (4.16)

Φ(ξ) =B1w2(ξ2) +B2w3(ξ2), ξ1 ≤ ξ ≤ ξ2, (4.17)

Φ(ξ) =C1eiκ3(ξ−ξ2) + C2e−iκ4(ξ−ξ2), ξ ≥ ξ2, (4.18)

where κ1 = ω̂/(1 + V1), κ2 = ω̂/(1− V1), κ3 = ω̂/(1 + V2), κ4 = ω̂/(1− V2), A1,2,

B1,2, C1,2 are arbitrary constants, and

w2(ζ) = ζ 2F1(1−i ω̂/2, 1−i ω̂/2; 2; ζ), w3(ζ) = 2F1(−iω̂/2,−i ω̂/2; 1−i ω̂; 1−ζ).

(4.19)

The Wronskian of these linearly independent functions is [95]:

W = w′2(ζ)w3(ζ)− w2(ζ)w′3(ζ) =
Γ(1− i ω̂)

Γ2(1− i ω̂/2)
(1− ζ)i ω̂−1. (4.20)

Similarly the general solution of Eq. (4.8) for the decelerating current can be

presented. In the domains ξ < ξ1 and ξ > ξ2 solutions are the same as above,

whereas in the intermediate domain ξ1 < ξ < ξ2 the general solution is:

Φ(ξ) = B1w̃2(ξ2) +B2w̃3(ξ2), (4.21)

where the linearly independent functions are

w̃2(ζ) = ζ 2F1(1 + i ω̂/2, 1 + i ω̂/2; 2; ζ), w̃3(ζ) = 2F1(iω̂/2, i ω̂/2; 1 + i ω̂; 1− ζ).

(4.22)

with the Wronskian:

W̃ = w̃′2(ζ)w̃3(ζ)− w̃2(ζ)w̃′3(ζ) =
Γ(1 + i ω̂)

Γ2(1 + i ω̂/2)
(1− ζ)−i ω̂−1. (4.23)

4.4.1.1 Accelerating currents. Transformation of downstream propa-

gating incident wave

Assume that the incident wave has a unit amplitude A1 = 1 and calculate the

transformation coefficients, setting C2 = 0 and denoting the amplitudes of the re-

flected wave by R ≡ A2 and the transmitted wave by T ≡ C1 (R and T play a role
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of transformation coefficients, as they are usually determined in hydrodynamics

– see, e.g. [86, 105] and references therein).

Using the matching conditions at the boundaries of domains (see Appendix

6.2), we find:

B1w2(V 2
1 ) +B2w3(V 2

1 ) =R + 1, (4.24)

B1w
′
2(V 2

1 ) +B2w
′
3(V 2

1 ) =
i ω̂

2V1

(
1

1 + V1

− R

1− V1

)
, (4.25)

B1w2(V 2
2 ) +B2w3(V 2

2 ) =T, (4.26)

B1w
′
2(V 2

2 ) +B2w
′
3(V 2

2 ) =
i ω̂

2V2

T

1 + V2

. (4.27)

From these equations we derive the transformation coefficients:

R =
1

∆

{
ω̂2 [w2(V 2

1 )w3(V 2
2 )− w2(V 2

2 )w3(V 2
1 )]

4V1V2(1 + V1)(1 + V2)
− w′2(V 2

1 )w′3(V 2
2 ) +

w′2(V 2
2 )w′3(V 2

1 ) +
i ω̂

2

[
w2(V 2

1 )w′3(V 2
2 )− w′2(V 2

2 )w3(V 2
1 )

V1(1 + V1)
−

w2(V 2
2 )w′3(V 2

1 )− w′2(V 2
1 )w3(V 2

2 )

V2(1 + V2)

]}
, (4.28)

T =− i ω̂

∆

(1− V 2
2 )i ω̂−1

V1(1− V 2
1 )

Γ(1− i ω̂)

Γ2(1− i ω̂/2)
, (4.29)

B1 =− i ω̂

∆

1

V1(1− V 2
1 )

[
i ω̂

2V2(1 + V2)
w3(V 2

2 )− w′3(V 2
2 )

]
, (4.30)

B2 =
i ω̂

∆

1

V1(1− V 2
1 )

[
i ω̂

2V2(1 + V2)
w2(V 2

2 )− w′2(V 2
2 )

]
, (4.31)

where

∆ =w′2(V 2
1 )w′3(V 2

2 )− w′2(V 2
2 )w′3(V 2

1 ) +
ω̂2 [w2(V 2

1 )w3(V 2
2 )− w2(V 2

2 )w3(V 2
1 )]

4V1V2(1− V1)(1 + V2)

i ω̂

2

[
w2(V 2

1 )w′3(V 2
2 )− w′2(V 2

2 )w3(V 2
1 )

V1(1− V1)
+
w2(V 2

2 )w′3(V 2
1 )− w′2(V 2

1 )w3(V 2
2 )

V2(1 + V2)

]
.

(4.32)

The modules of transformation coefficients |T | and |R|, as well as modules of

intermediate coefficients of wave excitation in the transient domain, |B1| and |B2|,
are shown in Fig. 4.4 as functions of dimensionless frequency ω̂ for the particular

values of V1 = 0.1 and V2 = 0.9. Qualitatively similar graphics were obtained

for other values of V1 and V2. In the long-wave approximation, when ω̂ → 0, the

hypergeometric function 2F1(a, b; c; d) degenerates (see Appendix 6.2), then the
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Figure 4.4: Modules of transformation coefficient as functions of dimensionless
frequency ω̂ for V1 = 0.1, V2 = 0.9. Line 1 – |T |, line 2 – |R|, line 3 – |B1|,
line 4 – |B2| Dashed line 5 represents the asymptotic for the reflection coefficient
R ∼ ω̂−1.

transformation coefficients reduce to

R =
1− V1/V2

1 + V1/V2

, T = 1 +R =
2

1 + V1/V2

. (4.33)

These values are purely real and agree with the transformation coefficients

derived in Ref. [24] for surface waves in a duct with the stepwise change of cross-

section and velocity profile, and such an agreement takes place also for other wave-

current configurations considered below. Notice only that here the transformation

coefficients are presented in terms of velocity potential ϕ, whereas in Ref. [24]

they are presented in terms of free surface elevation η. The relationship between

these quantities is given in the end of Appendix 6.2).

In Fig. 4.5a) we present the graphic of |Φ(ξ)| (see line 1) as per Eqs. (4.16)–

(4.18) with A1 = 1 and other determined transformation coefficients A2 = R as

per Eq. (4.28), C1 = T as per Eq. (4.29), and C2 = 0. Coefficients B1 and B2

are given by Eqs. (4.30) and (4.31). The plot was generated for the particular

value of ω̂ = 1; for other values of ω̂ the graphics are qualitatively similar. The

solution obtained should be in consistency with the energy flux conservation [24,

98], which is derived in Appendix 6.2 in terms of the velocity potential ϕ:

V2

(
1− |R|2

)
= V1|T |2. (4.34)

Substituting here the transformation coefficients R and T from Eqs. (4.28)

and (4.29), we confirm that Eq. (4.34) reduces to the identity.
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Figure 4.5: Modules of function Φ(ξ) for wave scattering in accelerating (a) and
decelerating (b) sub-critical currents with V1 = 0.1 and V2 = 0.9 in the former
case and V1 = 0.9 and V2 = 0.1 in the latter case. Line 1 in each frame pertains
to the co-current propagating incident wave, and line 2 – to the counter-current
propagating incident wave. Dashed vertical lines show the boundaries of the
transient domain ξ1 and ξ2 where the speed of the background current linearly
changes.

To characterize the rate of energy flux transmission, one can introduce the

energy transmission factor

KT =
V1

V2

|T |2 ω̂ → 0−→ 4V1/V2

(1 + V1/V2)2 . (4.35)
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Then one can see that although the modulus of the transmission coefficient is

greater than one (see line 1 in Fig. 4.4) the total energy flux (4.34) through the

duct cross-section conserves because the cross-section decreases in the transition

from the left to right domain, and the transmitted energy flux is less than the

incident one (KT < 1).

4.4.1.2 Accelerating currents. Transformation of upstream propagat-

ing incident wave

If the incident wave arrives from plus infinity, then we set in Eqs. (4.16) and

(4.18) its amplitude C2 = 1, the amplitude of reflected wave C1 = R, and the

amplitude of transmitted wave A2 = T , whereas A1 = 0. Then from the matching

conditions we obtain

B1w2(V 2
1 ) +B2w3(V 2

1 ) =T, (4.36)

B1w
′
2(V 2

1 ) +B2w
′
3(V 2

1 ) =− i ω̂

2V1

T

1− V1

, (4.37)

B1w2(V 2
2 ) +B2w3(V 2

2 ) =1 +R, (4.38)

B1w
′
2(V 2

2 ) +B2w
′
3(V 2

2 ) =− i ω̂

2V2

(
1

1− V2

− R

1 + V2

)
. (4.39)

Solution of this set of equations is:

R =
1

∆

{
ω̂2 [w2(V 2

1 )w3(V 2
2 )− w2(V 2

2 )w3(V 2
1 )]

4V1V2(1− V1)(1− V2)
− w′2(V 2

1 )w′3(V 2
2 ) +

w′2(V 2
2 )w′3(V 2

1 )− i ω̂

2

[
w2(V 2

1 )w′3(V 2
2 )− w′2(V 2

2 )w3(V 2
1 )

V1(1− V1)
−

w2(V 2
2 )w′3(V 2

1 )− w′2(V 2
1 )w3(V 2

2 )

V2(1− V2)

]}
, (4.40)

T =− i ω̂

∆

(1− V 2
1 )i ω̂−1

V2(1− V 2
2 )

Γ(1− i ω̂)

Γ2(1− i ω̂/2)
, (4.41)

B1 =
i ω̂

∆

1

V2(1− V 2
2 )

[
i ω̂

2V1(1− V1)
w3(V 2

1 ) + w′3(V 2
1 )

]
, (4.42)

B2 =− i ω̂

∆

1

V2(1− V 2
2 )

[
i ω̂

2V1(1− V1)
w2(V 2

1 ) + w′2(V 2
1 )

]
, (4.43)

where ∆ is the same as in Eq. (4.32).

In the long-wave approximation, ω̂ → 0, we obtain the limiting values of

transformation coefficients

R =
1− V2/V1

1 + V2/V1

, T = 1 +R =
2

1 + V2/V1

. (4.44)
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These values again are purely real and agree with the transformation coeffi-

cients derived in Ref. [24] for surface waves in a duct with the stepwise change

of cross-section and velocity profile.

This solution is also in consistency with the energy flux conservation, which

now takes the form:

V1

(
1− |R|2

)
= V2|T |2. (4.45)

Substituting here the expressions for the transformation coefficients, (4.40)

and (4.41), we confirm that Eq. (4.45) reduces to the identity. The energy trans-

mission factor KT in the limit ω̂ → 0 remains the same as in Eq. (4.35).

The graphic of |Φ(ξ)| is presented in Fig. 4.5a) by line 2. The plot was

generated on the basis of solution (4.16)–(4.18) with C2 = 1, A1 = 0 and other

determined transformation coefficients C1 = R as per Eq. (4.40) and A2 = T as

per Eq. (4.41). Coefficients B1 and B2 are given by Eqs. (4.42) and (4.43).

4.4.1.3 Wave transformation in a decelerating sub-critical current

The decelerating current can occur, for example, in a widening duct. To calculate

the transformation coefficients of waves in a decelerating current with a piecewise

linear profile it is convenient to choose the origin of coordinate frame such as

shown in Fig. 4.1b).

The general solutions of the basic equation (4.8) in the left and right domains

beyond the interval ξ1 < ξ < ξ2 are the same as in Eqs. (4.16) and (4.18), whereas

in the transient domain the solution is given by Eq. (4.21).

To calculate the transformation coefficients one can repeat the simple, but

tedious calculations similar to the presented above. The result shows that the

expressions for the transformation coefficients remain the same as in Eqs. (4.28)–

(4.32) for the co-current propagating incident wave and Eqs. (4.40)–(4.43), and

(4.32) for the counter-current propagating incident wave, but in both these cases

ω̂ should be replaced by −ω̂ and wi by w̃i. The energy flux Eq. (4.34) for the

co-current propagating incident wave or Eq. (4.45) for the counter-current prop-

agating incident wave conserves in these cases too.

The graphics of |Φ(ξ)| are presented in Fig. 4.5b) by line 1 for co-current

propagating incident wave, and by line 2 for counter-current propagating incident

wave.

4.4.2 Wave transformation in a super-critical current

Assume now that the main current is super-critical everywhere, V2 > V1 > 1.

In this case, there are no upstream propagating waves. Indeed in such strong

current even waves propagating with the speed −c0 in the frame moving with the
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water are pulled downstream by the current whose speed U > c0, therefore in

the immovable laboratory frame the speed of such “counter-current” propagating

waves is U − c0 > 0. Such waves possess a negative energy (see, for instance, [24,

46, 98]). Thus, the problem statement can contain an incident sinusoidal wave

propagating only downstream from the ξ < ξ1 domain; the wave can be of either

positive energy with ω̂ = (V1 +1)κ1 or negative energy with ω̂ = (V1−1)κ2. After

transformation on the inhomogeneous current in the interval ξ1 < ξ < ξ2 these

waves produce two transmitted waves in the right domain, ξ > ξ2 one of positive

energy and another of negative energy. Below we consider such transformation

in detail.

In the super-critical case the basic equation (4.8) is also regular and its coeffi-

cients do not turn to zero. To construct its solutions in the intermediate domain

ξ1 ≤ ξ ≤ ξ2 it is convenient to re-write the equation in slightly different form:

η(1− η)
d2Ψ

dη2
+ [1− (2∓ i ω̂)η]

dΨ

dη
± i ω̂

2

(
1∓ i ω̂

2

)
Ψ = 0, (4.46)

where η = 1/ζ, Ψ(η) = η±i ω̂/2Φ, upper signs pertain to the accelerating current,

and lower signs – to the decelerating currents.

Solutions of Eq. (4.8) in the domains where the current speed is constant are

Φ(ξ) =A1eiκ1(ξ−ξ1) + A2eiκ2(ξ−ξ1), ξ ≤ ξ1, (4.47)

Φ(ξ) =C1eiκ3(ξ−ξ2) + C2eiκ4(ξ−ξ2), ξ ≥ ξ2, (4.48)

were κ1 = ω̂/(V1 + 1), κ2 = ω̂/(V1 − 1), κ3 = ω̂/(V2 + 1), κ4 = ω̂/(V2 − 1).

In the intermediate domain ξ1 ≤ ξ ≤ ξ2 the solution of hypergeometric

Eq. (4.46) in the case of accelerating current is

Φ(ξ) = ξi ω̂
[
B1w̆1

(
ξ−2
)

+B2w̆3

(
ξ−2
)]
, (4.49)

where two linearly independent solutions of Eq. (4.46) can be chosen in the form

(see §6.4 in the book [95]):

w̆1(η) = 2F1(−i ω̂/2, 1−i ω̂/2; 1; η), w̆3(η) = 2F1(−iω̂/2, 1−i ω̂/2; 1−i ω̂; 1−η)

(4.50)

with the Wronskian

W̆ = w̆′1(η)w̆3(η)− w̆1(η)w̆′3(η) =
(1− η)i ω̂−1

η

Γ(1− i ω̂)

Γ(−i ω̂/2)Γ(1− i ω̂/2)
. (4.51)

In the case of decelerating current the solution of hypergeometric Eq. (4.46)
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is

Φ(ξ) = (−ξ)−i ω̂
[
B1ŵ1

(
ξ−2
)

+B2ŵ3

(
ξ−2
)]
, (4.52)

and linearly independent solutions can be chosen in the form:

ŵ1(η) = 2F1(i ω̂/2, 1 + i ω̂/2; 1; η), ŵ3(η) = 2F1(iω̂/2, 1 + i ω̂/2; 1 + i ω̂; 1− η)

(4.53)

with the Wronskian

Ŵ = ŵ′1(η)ŵ3(η)− ŵ1(η)ŵ′3(η) =
(1− η)−i ω̂−1

η

Γ(1 + i ω̂)

Γ(i ω̂/2)Γ(1 + i ω̂/2)
. (4.54)

4.4.2.1 Transformation of a positive-energy wave in an accelerating

current

Consider first transformation of a positive energy incident wave (see line 3 in

Fig. 4.3) with the unit amplitude (A1 = 1, A2 = 0). Matching the solutions in

different current domains and using the chain rule d/dξ = −2ξ−3d/dη, we obtain

at ξ = ξ1:

B1 w̆1(V −2
1 ) +B2 w̆3(V −2

1 ) =V −i ω̂
1 , (4.55)

B1 w̆
′
1(V −2

1 ) +B2 w̆
′
3(V −2

1 ) =
i ω̂

2

V 2−i ω̂
1

V1 + 1
, (4.56)

where prime stands for a derivative of a corresponding function with respect to

its entire argument.

Similarly from the matching conditions at ξ = ξ2 we obtain:

C1 + C2 = V i ω̂
2

[
B1 w̆1(V −2

2 ) +B2 w̆3(V −2
2 )
]
, (4.57)

(V2−1)C1−(V2 +1)C2 = −2i

ω̂
V i ω̂−2

2 (V 2
2 −1)

[
B1 w̆

′
1(V −2

2 ) +B2 w̆
′
3(V −2

2 )
]
. (4.58)

From Eqs. (4.55) and (4.56) we find

B1 = −Γ(−i ω̂/2) Γ(1− i ω̂/2)

Γ(1− i ω̂)
V i ω̂−2

1

(
V 2

1 − 1
)1−i ω̂

[
w̆′3(V −2

1 )

V 2
1

− i ω̂ w̆3(V −2
1 )

2(V1 + 1)

]
,

(4.59)

B2 =
Γ(−i ω̂/2) Γ(1− i ω̂/2)

Γ(1− i ω̂)
V i ω̂−2

1

(
V 2

1 − 1
)1−i ω̂

[
w̆′1(V −2

1 )

V 2
1

− i ω̂ w̆1(V −2
1 )

2(V1 + 1)

]
.

(4.60)

Substituting these in Eqs. (4.57) and (4.58), we find the transmission coeffi-

92



cients for the positive energy mode Tp ≡ C1 and negative energy mode Tn ≡ C2:

Tp = −Γ2(−i ω̂/2)

2Γ(1− i ω̂)
V i ω̂−2

1 V i ω̂−1
2

(
V 2

1 − 1
)1−i ω̂(

V 2
2 − 1

)
×

{
w̆′1(V −2

1 )w̆′3(V −2
2 )−w̆′1(V −2

2 )w̆′3(V −2
1 )

V 2
1 V

2
2

+
ω̂2

4

w̆1(V −2
1 )w̆3(V −2

2 )−w̆1(V −2
2 )w̆3(V −2

1 )

(V1 + 1)(V2 − 1)
+

i ω̂

2

[
w̆′1(V −2

1 )w̆3(V −2
2 )−w̆1(V −2

2 )w̆′3(V −2
1 )

V 2
1 (V2 − 1)

− w̆1(V −2
1 )w̆′3(V −2

2 )−w̆′1(V −2
2 )w̆3(V −2

1 )

V 2
2 (V1 + 1)

]}
,

(4.61)

Tn =
Γ2(−i ω̂/2)

2Γ(1− i ω̂)
V i ω̂−2

1 V i ω̂−1
2

(
V 2

1 − 1
)1−i ω̂(

V 2
2 − 1

)
×{

w̆′1(V −2
1 )w̆′3(V −2

2 )−w̆′1(V −2
2 )w̆′3(V −2

1 )

V 2
1 V

2
2

− ω̂
2

4

w̆1(V −2
1 )w̆3(V −2

2 )−w̆1(V −2
2 )w̆3(V −2

1 )

(V1 + 1)(V2 + 1)
−

i ω̂

2

[
w̆′1(V −2

1 )w̆3(V −2
2 )−w̆1(V −2

2 )w̆′3(V −2
1 )

V 2
1 (V2 + 1)

+
w̆1(V −2

1 )w̆′3(V −2
2 )−w̆′1(V −2

2 )w̆3(V −2
1 )

V 2
2 (V1 + 1)

]}
.

(4.62)

The modules of transformation coefficients |Tp| and |Tn| together with the

intermediate coefficients of wave excitation in the transient zone |B1| and |B2|
are shown below in Fig. 4.6a) as functions of dimensionless frequency ω̂ for the

particular values of V1 = 1.1 and V2 = 1.9. Qualitatively similar graphics were

obtained for other values of V1 and V2. In Fig. 4.7a) we present graphics of |Φ(ξ)|
as per Eqs. (4.47)–(4.49) for A1 = 1, A2 = 0, C1 = Tp as per Eq. (4.61), and

C2 = Tn as per Eq. (4.62). Coefficients B1 and B2 are given by Eqs. (4.59) and

(4.60). The plot was generated for two particular values of frequency, ω̂ = 1 (line

1), and ω̂ = 100 (line 2). The transmission coefficients are in consistency with

the energy flux conservation law which has the following form:

J =
2ω̂

V1

=
2ω̂

V2

(
|Tp|2 − |Tn|2

)
or |Tp|2 − |Tn|2 =

V2

V1

. (4.63)

If we introduce two energy transmission factors, for positive- and negative-

energy waves,

KTp =
V1

V2

|Tp|2 and KTn =
V1

V2

|Tn|2, (4.64)

then we can see that both waves grow in such a manner that KTp − KTn = 1.

This means that the positive-energy wave not only dominates in the right domain

(cf. lines 1 and 2 in Fig. 4.6a), but it also carries a greater energy flux than the

incident one. Moreover, with a proper choice of V1 and V2 even the energy flux

of negative-energy wave can become greater by modulus than that of incident

wave, KTn > 1. Then we have KTp > KTn > 1. Figure 4.8 illustrates the
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Figure 4.6: Modules of transformation coefficient as functions of dimensionless
frequency ω̂ when a positive energy wave scatters (panel a) and negative energy
wave scatters (panel b) in the current with V1 = 1.1, V2 = 1.9. Line 1 – |Tp|, line
2 – |Tn|, line 3 – |B1|, line 4 – |B2|. Dashed lines 5 represent the asymptotics for
|Tn| ∼ ω̂−1 in panel a) and for |Tp| ∼ ω̂−1 in panel b).

dependencies of energy transmission factors on the frequency for relatively small

increase of current speed (V1 = 1.1, V2 = 1.9) and big increase of current speed

(V1 = 1.1, V2 = 8.0). In the latter case both KTp and KTn are greater than 1 in

a certain range of frequencies ω̂ < ω̂c. In the long-wave approximation, ω̂ → 0

(see Appendix 6.2) we obtain (cf. [24]):

Tp =
1 + V1/V2

2V1/V2

, Tn = −1− V1/V2

2V1/V2

, KTp =
(1 + V1/V2)2

4V1/V2

, KTn =
(1− V1/V2)2

4V1/V2

.

(4.65)
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Figure 4.7: Module of function Φ(ξ) for the scattering of positive- and negative-
energy waves in accelerating with V1 = 1.1 and V2 = 1.9 (frame a) and decelerat-
ing with V1 = 1.9 and V2 = 1.1 (frame b) super-critical currents for two particular
values of frequency, ω̂ = 1 (line 1), and ω̂ = 100 (line 2).

4.4.2.2 Transformation of negative-energy wave in an accelerating

current

Consider now transformation of a negative energy incident wave (see line 4 in

Fig. 4.3) with unit amplitude (A1 = 0, A2 = 1). From the matching conditions
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Figure 4.8: The dependencies of energy transmission factors KTp and KTn on the
frequency for a relatively small increase of current speed (V1 = 1.1, V2 = 1.9), lines
1 and 2 respectively, and a large increase of current speed (V1 = 1.1, V2 = 8.0),
lines 3 and 4 respectively. Inclined dashed lines show the asymptotic dependencies
KTn ∼ ω̂−2.

at ξ = ξ1 we obtain:

B1 w̆1(V −2
1 ) +B2 w̆3(V −2

1 ) =V −i ω̂
1 , (4.66)

B1 w̆
′
1(V −2

1 ) +B2 w̆
′
3(V −2

1 ) =− i ω̂

2

V 2−i ω̂
1

V1 − 1
. (4.67)

The matching conditions at ξ = ξ2 remain the same as in Eqs. (4.57) and (4.58).

From Eqs. (4.66) and (4.67) we find

B1 = −Γ(−i ω̂/2) Γ(1− i ω̂/2)

Γ(1− i ω̂)
V i ω̂−2

1

(
V 2

1 − 1
)1−i ω̂

[
w̆′3(V −2

1 )

V 2
1

+
i ω̂ w̆3(V −2

1 )

2(V1 − 1)

]
,

(4.68)

B2 =
Γ(−i ω̂/2) Γ(1− i ω̂/2)

Γ(1− i ω̂)
V i ω̂−2

1

(
V 2

1 − 1
)1−i ω̂

[
w̆′1(V −2

1 )

V 2
1

+
i ω̂ w̆1(V −2

1 )

2(V1 − 1)

]
.

(4.69)

Substituting these in Eqs. (4.57) and (4.58), we find the transmission coeffi-

cients for the positive energy mode Tp ≡ C1 and negative energy mode Tn ≡ C2:

Tp = −Γ2(−i ω̂/2)

2Γ(1− i ω̂)
V i ω̂−2

1 V i ω̂−1
2

(
V 2

1 − 1
)1−i ω̂(

V 2
2 − 1

)
×

{
w̆′1(V −2

1 )w̆′3(V −2
2 )−w̆′1(V −2

2 )w̆′3(V −2
1 )

V 2
1 V

2
2

− ω̂
2

4

w̆1(V −2
1 )w̆3(V −2

2 )−w̆1(V −2
2 )w̆3(V −2

1 )

(V1 − 1)(V2 − 1)
+

i ω̂

2

[
w̆′1(V −2

1 )w̆3(V −2
2 )−w̆1(V −2

2 )w̆′3(V −2
1 )

V 2
1 (V2 − 1)

+
w̆1(V −2

1 )w̆′3(V −2
2 )−w̆′1(V −2

2 )w̆3(V −2
1 )

V 2
2 (V1 − 1)

]}
,

(4.70)
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Tn =
Γ2(−i ω̂/2)

2Γ(1− i ω̂)
V i ω̂−2

1 V i ω̂−1
2

(
V 2

1 − 1
)1−i ω̂(

V 2
2 − 1

)
×{

w̆′1(V −2
1 )w̆′3(V −2

2 )−w̆′1(V −2
2 )w̆′3(V −2

1 )

V 2
1 V

2
2

+
ω̂2

4

w̆1(V −2
1 )w̆3(V −2

2 )−w̆1(V −2
2 )w̆3(V −2

1 )

(V1 − 1)(V2 + 1)
−

i ω̂

2

[
w̆′1(V −2

1 )w̆3(V −2
2 )−w̆1(V −2

2 )w̆′3(V −2
1 )

V 2
1 (V2 + 1)

− w̆1(V −2
1 )w̆′3(V −2

2 )−w̆′1(V −2
2 )w̆3(V −2

1 )

V 2
2 (V1 − 1)

]}
.

(4.71)

The modules of transformation coefficients |Tp| and |Tn| together with the

intermediate coefficients of wave excitation in the transient zone |B1| and |B2|
are shown in Fig. 4.6b) as functions of dimensionless frequency ω̂ for the particular

values of V1 = 1.1 and V2 = 1.9. Qualitatively similar graphics were obtained for

other values of V1 and V2. The graphic of |Φ(ξ)| is the same as the graphic shown

in Fig. 4.7a) for the case of scattering of positive-energy incident wave.

The transmission coefficients are again in consistency with the energy flux

conservation law which now has the following form:

J = −2ω̂

V1

= −2ω̂

V2

(
|Tn|2 − |Tp|2

)
or |Tn|2 − |Tp|2 =

V2

V1

. (4.72)

As follows from this equation, the energy flux J is negative everywhere, and

the negative energy wave dominates in the right domain (cf. lines 1 and 2 in

Fig. 4.6b). Both transmitted waves grow in a such manner that the energy

transmission factors (see Eq. (4.64)) obey the equality KTn−KTp = 1. Thus, the

negative-energy wave not only dominates in the right domain, but also carries a

greater energy flux than the incident wave. At a certain relationship between V1

and V2 the energy fluxes of positive- and negative-energy waves can be greater

on absolute value than that of incident wave, then we have KTn > KTp > 1.

In the long-wave approximation, ω̂ → 0, we obtain (see Appendix 6.2):

Tp = −1− V1/V2

2V1/V2

, Tn =
1 + V1/V2

2V1/V2

, KTp =
(1− V1/V2)2

4V1/V2

, KTn =
(1 + V1/V2)2

4V1/V2

,

(4.73)

i.e., in comparison with Eqs. (4.65), the energy transmission factors are inter-

changed. The values of transmission coefficients are purely real, but now Tp < 0

and Tn > 0; they are in agreement with results derived in Ref. [24].

4.4.2.3 Wave transformation in a decelerating super-critical current

In the case of decelerating super-critical current (V1 > V2 > 1) the configuration

of the incident wave and current is the same as above in this subsection. Again

there is no reflected wave in the left domain ξ < ξ1 and there are two transmitted
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waves in the right domain ξ > ξ2.

The main equation describing wave propagation is the same as Eq. (4.46)

with only formal replacement of ω̂ by −ω̂. The general solutions of the basic

equation (4.8) in the left and right domains beyond the interval ξ1 < ξ < ξ2

are the same as in Eqs. (4.47) and (4.48), whereas in the transient domain the

solution is given by Eq. (4.52).

To calculate the transformation coefficients one can repeat the simple, but

tedious calculations similar to those presented above. The result shows that the

expressions for the transformation coefficients remain the same as in Eqs. (4.61)

and (4.62) for the incident wave of positive energy and Eqs. (4.70) and (4.71) for

the incident wave of negative energy, but in both these cases ω̂ should be replaced

by −ω̂ and w̆i by ŵi. The corresponding energy fluxes for the incident waves of

positive and negative energies conserve, and Eqs. (4.63) and Eq. (4.72) remain

the same in these cases too.

The graphics of |Φ(ξ)| for the scattering of positive- and negative-energy waves

are also the same in the decelerating currents. They are shown in Fig. 4.7b) in

the subsubsection 4.4.2.1 for two particular values of frequency, ω̂ = 1 (line 1),

and ω̂ = 100 (line 2).

4.4.3 Wave transformation in trans-critical accelerating

currents 0 < V1 < 1 < V2

The specific feature of a trans-critical current is the transition of the background

current speed U(x) through the critical wave speed c0. In this case the basic

equation (4.8) contains a singular point where V = 1, therefore the behavior of

solutions in the vicinity of this point should be thoroughly investigated.

The general solution of Eq. (4.8) in different intervals of ξ-axis can be pre-

sented in the form:

Φ(ξ) =A1e
iκ1(ξ−ξ1) + A2e

−iκ2(ξ−ξ1), ξ < ξ1, (4.74)

Φ(ξ) =B1w2(ξ2) +B2w3(ξ2), ξ1 < ξ < 1, (4.75)

Φ(ξ) =ξi ω̂
[
B̆1 w̆1(ξ−2) + B̆2 w̆3(ξ−2)

]
, 1 < ξ < ξ2, (4.76)

Φ(ξ) =C1 e
iκ3(ξ−ξ2) + C2 e

−iκ4(ξ−ξ2), ξ > ξ2, (4.77)

where κ1 = ω̂/(1 + V1), κ2 = ω̂/(1− V1), κ3 = ω̂/(V2 + 1), and κ4 = ω̂/(V2 − 1).

To pass through the singular point where V (ξ) = 1, let us consider asymptotic

behavior of solution Φ(ξ) in the vicinity of the point ξ = 1. To this end we use

98



the formula valid for | arg(1− x)| < π (see [52], formula 9.131.2.):

2F1(a, b; c;x) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− x)+ (4.78)

Γ(c) Γ(a+ b− c)
Γ(a) Γ(b)

(1− x)c−a−b 2F1(c− a, c− b; c− a− b+ 1; 1− x).

(4.79)

With the help of this formula let us present the asymptotic expansion of

functions (4.75) and (4.76), keeping only the leading terms:

Φ(ξ) = B2 +
Γ(i ω̂)B1

Γ2(1 + i ω̂/2)
+

Γ(−i ω̂)B1

Γ2(1− i ω̂/2)
(1− ξ2)i ω̂ +O(1− ξ2), ξ2 → 1−0,

(4.80)

Φ(ξ) = B̆2 +
Γ(1 + i ω̂) B̆1

2Γ2(1 + i ω̂/2)
+

Γ(1− i ω̂) B̆1

2Γ2(1− i ω̂/2)
(ξ2 − 1)i ω̂ +O(ξ2 − 1), ξ2 → 1+0.

(4.81)

As one can see from these formulae, for real ω̂ solutions contain fast oscillating

functions from both sides of a singular point ξ2 = 1, which correspond to B-

waves, propagating against the current; these functions, however, remain finite.

To match the solutions across the singular point let us take into consideration a

small viscosity in Eq. (4.1):

∂u

∂t
+
∂(Uu)

∂x
= −g ∂η

∂x
+ ν

∂2u

∂x2
, (4.82)

where ν is the coefficient of kinematic viscosity.

Due to this correction to Eq. (4.1) we obtain the modified Eq. (4.8) for Φ(ξ):

νV 2d
3Φ

dξ3
+ V

(
1− V 2 − i νω̂

) d2Φ

dξ2
−
[(

1 + V 2
)
V ′ − 2 i ω̂V 2

] dΦ

dξ
+ V ω̂2Φ = 0.

(4.83)

Introducing a new variable ζ = ξ2 and bearing in mind that V (ξ) = ξ for the

accelerating current, we re-write Eq. (4.83):

2νζ2d
3Φ

dζ3
+ζ [1− ζ + (3− i ω̂) ν]

d2Φ

dζ2
−
[

i νω̂

2
+ (1− i ω̂) ζ

]
dΦ

dζ
+
ω̂2

4
Φ = 0. (4.84)

From this equation one can see that in the vicinity of the critical point, where

|ζ−1| ∼ ε� 1, the viscosity plays an important role, if ν ∼ ε2. Setting ν = ε2/2
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and ζ = 1 + εz, we obtain an equation containing the terms up to ε2:

(1 + εz)2 d
3Φ

dz3
− (1 + εz)

(
z − 3− i ω̂

2
ε

)
d2Φ

dz2
−[

(1− i ω̂)(1 + εz) +
i ω̂

4
ε2

]
dΦ

dz
+
εω̂2

4
Φ = 0. (4.85)

Looking for a solution to this equation in the form of asymptotic series with

respect to parameter ε, Φ(z) = Φ0(z) + εΦ1(z) + . . ., we obtain in the leading

order
d

dz

(
d2Φ0

dz2
− zdΦ0

dz
+ i ω̂Φ0

)
= 0. (4.86)

Integration of this equation gives the second order equation

d2Φ0

dz2
− z dΦ0

dz
+ i ω̂ (Φ0 −D0) = 0, (4.87)

where D0 is a constant of integration.

This equation reduces to the equation of a parabolic cylinder with the help of

ansatz Φ0(z) = ez
2/4G(z) +D0:

d2G

dz2
+

(
i ω̂ +

1

2
− z2

4

)
G = 0. (4.88)

Two linearly independent solutions of this equation can be constructed from

the following four functions Di ω̂(±z) and D−i ω̂−1(±iz) (see [52], 9.255.1). Thus,

in the vicinity of the critical point ξ = 1 the solution can be presented in the

form

Φ0(z) = D0 + ez
2/4 [D1Di ω̂(z) +D2Di ω̂(−z)] , (4.89)

where D0, D1, and D2 are arbitrary constants.

This solution should be matched with the asymptotic expansions (4.80) and

(4.81) using the following asymptotics of functions of the parabolic cylinder when

|s| � 1 (see [52], 9.246):

Dp(s) ∼ sp e−s
2/4

2F0

(
−p

2
,
1− p

2
;− 2

s2

)
, | arg s| < 3π

4
, (4.90)

Dp(s) ∼ spe−s
2/4

2F0

(
−p

2
,
1− p

2
;− 2

s2

)
−
√

2πeiπp

Γ(−p)
s−p−1es

2/4
2F0

(
p

2
,
1 + p

2
;

2

s2

)
,

(4.91)

Dp(s) ∼ spe−s
2/4

2F0

(
−p

2
,
1− p

2
;− 2

s2

)
−
√

2πe−iπp

Γ(−p)
s−p−1es

2/4
2F0

(
p

2
,
1 + p

2
;

2

s2

)
(4.92)
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where Eq. (4.91) is valid for π/4 < arg s < 5π/4, and Eq. (4.92) is valid for

−5π/4 < arg s < −π/4.

With the help of these formulae it is easy to see that the oscillating terms

in expansions (4.80) and (4.81) should be matched with the last two terms in

Eq. (4.89) which, however, grow infinitely (the former grows, when z → −∞,

and the latter, when z → +∞). To remove infinitely growing terms from the

solution, we need to set D1 = D2 = 0 in Eq. (4.89), then after the matching, we

obtain in Eqs. (4.80), (4.81) and (4.75), (4.76)

B1 = B̆1 = 0, and B2 = B̆2 = D0. (4.93)

Notice that from the physical point of view the former equality, B1 = B̆1 = 0,

is just a consequence of the fact mentioned in Sec. 4.3 that in the trans-critical

accelerating current the B-waves (i.e., counter-current propagating waves on the

left of critical point and negative-energy waves on the right of it) cannot reach

the critical point.

After that assuming that the incident wave arriving from minus infinity has

a unit amplitude A1 = 1, using matching conditions (4.10) and putting Tp ≡ C1,

Tn ≡ C2, we obtain

B2w3

(
V 2

1

)
=R + 1, (4.94)

B2w
′
3(V 2

1 ) =
−i ω̂R

2V1(1− V1)
+

i ω̂

2V1(1 + V1)
, (4.95)

Tn + Tp =V i ω̂
2 w̆3

(
V −2

2

)
B̆2, (4.96)

(V2 + 1)Tn − (V2 − 1)Tp =
2i

ω̂
V i ω̂−2

2

(
V 2

2 − 1
)
w̆′3
(
V −2

2

)
B̆2. (4.97)

This set can be readily solved yielding the following transformation coeffi-

cients:

R =−
w′3 (V 2

1 )− i ω̂ w3 (V 2
1 )

2V1(1 + V1)

w′3 (V 2
1 ) +

i ω̂ w3 (V 2
1 )

2V1(1− V1)

, (4.98)

B2 =B̆2 =
R + 1

w3 (V 2
1 )
, (4.99)

Tn =
i

ω̂
V i ω̂−1

2

(
V 2

2 − 1
) [w̆′3 (V −2

2

)
V 2

2

− i ω̂

2

w̆3

(
V −2

2

)
V2 + 1

]
B2, (4.100)

Tp =− i

ω̂
V i ω̂−1

2

(
V 2

2 − 1
) [w̆′3 (V −2

2

)
V 2

2

+
i ω̂

2

w̆3

(
V −2

2

)
V2 − 1

]
B2. (4.101)
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In the long-wave approximation, ω̂ → 0, we obtain (see Appendix 6.2):

R =
1− V1

1 + V1

, Tp =
V2 + 1

V1 + 1
, Tn = −V2 − 1

V1 + 1
, KTp, n =

V1

V2

(
V2 ± 1

V1 + 1

)2

,

(4.102)

where in the last formula sign plus pertains to the positive- and sign minus – to

the negative-energy transmitted wave.

These values are purely real, R > 0 and Tp > 0, whereas Tn < 0. The

problem of surface wave transformation in a duct with the stepwise change of

cross-section and velocity profile is undetermined for such current, therefore in

Ref. [24] one of the parameters, Rη – the reflection coefficient in terms of free

surface perturbation, was undefined. Now from Eq. (4.102) it follows that the

transformation coefficients in terms of free surface perturbation in Ref. [24] are

Rη = Tpη = −Tnη = 1 (for the relationships between the transformation coeffi-

cients in terms of velocity potential and free surface perturbation see Appendix

6.2).

Because of the relationships between the coefficients (4.93), the solution in

the domain ξ1 < ξ < ξ2 is described by the same analytical function w3 (ξ2) ≡
ξi ω̂w̆3 (ξ−2) (see Eqs. (9) and (11) in §6.4 of the book [95]). In the result, the

energy flux is still conserved despite a small viscosity in the vicinity of the critical

point ξ = 1:

J =
2ω̂

V1

(
1− |R|2

)
=

2ω̂

V2

(
|Tp|2 − |Tn|2

)
> 0 or V2

(
1− |R|2

)
= V1

(
|Tp|2 − |Tn|2

)
.

(4.103)

As one can see from these expressions, the energy flux in the reflected wave

by modulus is always less than in the incident wave, therefore over-reflection here

is not possible. In the meantime the energy transmission factors KTp,n can be

greater than 1; this implies that the over-transmission can occur with respect to

both positive- and negative-energy waves.

The transformation coefficients |R|, |Tp| and |Tn| together with the intermedi-

ate coefficients of wave excitation in the transient zone, |B2| = |B̆2|, are presented

in Fig. 4.9 as functions of dimensionless frequency ω̂ for the particular values of

speed, V1 = 0.1 and V2 = 1.9. Qualitatively similar graphics were obtained for

other values of V1 and V2. Notice that both the transmission coefficient of nega-

tive energy wave |Tn| and reflection coefficient of positive energy wave |R| decay

asymptotically with the same rate ∼ ω̂−1.

Figure 4.10 illustrates the dependencies of energy transmission factors on the

frequency for two cases: (i) when both KTp,n < 1 (V1 = 0.1, V2 = 1.9) and

(ii) when both KTp,n > 1 in a certain range of frequencies ω̂ < ω̂c (V1 = 0.9,

V2 = 8.0). In Fig. 4.11 we present graphics of |Φ(ξ)| as per Eqs. (4.74)–(4.77)
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Figure 4.9: Modules of the transformation coefficient as functions of dimensionless
frequency ω̂ for V1 = 0.1, V2 = 1.9. Line 1 – |Tp|, line 2 – |Tn|, line 3 – |R|, line 4

– |B2| = |B̆2|. Dashed line 5 represents the asymptotic for |Tn| ∼ ω̂−1.
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Figure 4.10: The dependencies of energy transmission factors on the frequency
(i) when both KTp < 1 (line 1) and KTn < 1 (line 2) (here V1 = 0.1, V2 = 1.9);
and (ii) when both KTp > 1 (line 3) and KTn > 1 (line 4) in a certain range of
frequencies ω̂ < ω̂c (here V1 = 0.9, V2 = 8.0). Inclined dashed lines show the
asymptotic dependencies KTn ∼ ω̂−2.

for A1 = 1, A2 = R as per Eq. (4.98), D1 = Tn as per Eq. (4.100), and D2 = Tp

as per Eq. (4.101). Coefficients B1 = B̆1 = 0 as per Eq. (4.93), and B2 = B̆2

are given by Eq. (4.99). Line 1 in this figure pertains to the case when V1 = 0.1,

V2 = 1.9, and line 2 – to the case when V1 = 0.9, V2 = 8.0.

103



0 2 4 6 8

1

2

3

4



2

1



3 4

5 6

Figure 4.11: Modules of function Φ(ξ) for wave scattering in accelerating trans-
critical current with V1 = 0.1 and V2 = 1.9 (line 1) and V1 = 0.9 and V2 = 8.0
(line 2). Dashed vertical lines 3 and 4 show the transition zone where the current
accelerates from V1 = 0.1 to V2 = 1.9, and dashed vertical lines 5 and 6 show the
transition zone where the current accelerates from V1 = 0.9 to V2 = 8.0. The plot
was generated for ω̂ = 1.

4.4.4 Wave transformation in trans-critical decelerating

currents V1 > 1 > V2 > 0

In this subsection we consider the wave transformation in gradually decelerating

background current assuming that the current is super-critical in the left domain

and sub-critical in the right domain. For the sake of simplification of hypergeo-

metric functions used below we chose again the coordinate frame such as shown

in Fig. 4.1b). In such a current the transition through the critical point, where

V (ξ) = 1, occurs at ξ = −1.

In the left domain, where the current is super-critical, only downstream prop-

agating waves can exist, with the positive or negative energy. In contrast to that,

in the right domain, where the background current is sub-critical, two waves of

positive energy can coexist; one of them is co-current propagating and another

one is counter-current propagating.

The general solution of Eq. (4.8) in the different domains can be formally
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presented with the help of functions w̃ as per Eq. (4.22) and ŵ as per Eq. (4.53):

Φ(ξ) =A1e
iκ1(ξ−ξ1) + A2e

iκ2(ξ−ξ1), ξ < ξ1, (4.104)

Φ(ξ) =(−ξ)−i ω̂
[
B̂1 ŵ1

(
ξ−2
)

+ B̂2 ŵ3

(
ξ−2
)]
, ξ1 < ξ < −1, (4.105)

Φ(ξ) =B1 w̃2

(
ξ2
)

+B2 w̃3

(
ξ2
)
, − 1 < ξ < ξ2 < 0, (4.106)

Φ(ξ) =C1 e
iκ3(ξ−ξ2) + C2 e

−iκ4(ξ−ξ2), ξ > ξ2, (4.107)

where κ1 = ω̂/(V1 + 1), κ2 = ω̂/(V1 − 1), κ3 = ω̂/(1 + V2), κ4 = ω̂/(1− V2).

The matching conditions at ξ = ξ1 provide (cf. Eqs. (4.55)and (4.56)):

A1 + A2 =V −i ω̂
1

[
B̂1 ŵ1

(
V −2

1

)
+ B̂2 ŵ3

(
V −2

1

)]
, (4.108)

(V1 − 1)A1 − (V1 + 1)A2 =
2i

ω̂
V −i ω̂−2

1

(
V 2

1 − 1
) [
B̂1 ŵ

′
1

(
V −2

1

)
+ B̂2 ŵ

′
3

(
V −2

1

)]
,

(4.109)

And similarly the matching conditions at ξ = ξ2 provide:

C1 + C2 =B1 w̃2

(
V 2

2

)
+B2 w̃3

(
V 2

2

)
, (4.110)

(1− V2)C1 − (1 + V2)C2 =
2i

ω̂
V2

(
1− V 2

2

) [
B1 w̃

′
2

(
V 2

2

)
+B2 w̃

′
3

(
V 2

2

)]
.

(4.111)

With the help of Eq. (4.79) we find the asymptotic expansions when ξ → −1±0

Φ(ξ) =B̂2 +
Γ(1− iω̂)B̂1

2Γ2(1− iω̂/2)
+

Γ(1 + iω̂)B̂1

2Γ2(1 + iω̂/2)

(
ξ2 − 1

)−iω̂
+O

(
ξ2 − 1

)
, ξ → −1−0,

(4.112)

Φ(ξ) =B2 +
Γ(−iω̂)B1

Γ2(1− iω̂/2)
+

Γ (iω̂)B1

Γ2(1 + iω̂/2)

(
1− ξ2

)−iω̂
+O

(
1− ξ2

)
, ξ → −1+0.

(4.113)

which are similar to Eqs. (4.80) and (4.81), and contain fast oscillating terms

corresponding to counter-current propagating B-waves as well.

To match solutions in the vicinity of critical point ξ = −1, we again take

into consideration a small viscosity. Bearing in mind that V (ξ) = −ξ (see Fig.

4.1b)) and setting ζ = ξ2 = 1 + εz, ν = ε2/2, we arrive at the equation similar to
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Eq. (4.85):

(1 + εz)2 d
3Φ

dz3
+ (1 + εz)

(
z +

3 + i ω̂

2
ε

)
d2Φ

dz2
+[

(1 + i ω̂)(1 + εz) +
i ω̂

4
ε2

]
dΦ

dz
− εω̂2

4
Φ = 0. (4.114)

This equation in the leading order on the small parameter ε � 1 reduces to

(cf. Eq. (4.86)):
d

dz

(
d2Φ0

dz2
+ z

dΦ0

dz
+ i ω̂Φ0

)
= 0. (4.115)

Integrating this equation and substituting Φ0(z) = D0 +e−z
2/4G(z), we obtain

again the equation of a parabolic cylinder in the form (cf. Eq. (4.116)):

d2G

dz2
+

(
i ω̂ − 1

2
− z2

4

)
G = 0. (4.116)

Thus, the general solution to Eq. (4.115) in the vicinity of critical point ξ = −1

can be presented as:

Φ0(z) = D0 + e−z
2/4 [D1Di ω̂−1(z) +D2Di ω̂−1(−z)] ,

where D0, D1 and D2 are arbitrary constants.

The asymptotic expansions (4.90)–(4.92) show that this solution remains lim-

ited for any arbitrary constants. Moreover, the oscillatory terms in Eqs. (4.112)

and (4.113) become exponentially small after transition through the critical point

ξ = −1. As was explained in Sec. 4.3, this means that the B-waves running to-

ward the critical point both from the left (negative-energy waves) and from the

right (counter-current propagating positive-energy waves) dissipate in the vicin-

ity of the critical point. For this reason the wave energy flux does not conserve

in the decelerating trans-critical currents (see Eqs. (4.128) and (4.135) below).

Taking this fact into account, one can match solutions (4.112) and (4.113):

D0 =
Γ(−i ω̂)

Γ2(1− i ω̂/2)
B1 +B2 =

Γ(1− i ω̂)

2Γ2(1− i ω̂/2)
B̂1 + B̂2. (4.117)

After that using the identity Γ(x)Γ(1−x) = π/ sin πx, we find for the constants

D1 and D2 the following expressions:

D1 =
−i
√
π/2

Γ2(1 + iω̂/2)

e−iω̂ ln ε

sinhπω̂
B1, D2 =

ω̂
√
π/2

2Γ2(1 + iω̂/2)

e−iω̂ ln ε

sinhπω̂
B̂1. (4.118)

Using the prepared formulae we can now calculate the transformation coef-
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ficients for incident waves of either positive or negative energy travelling in the

duct from the minus to plus infinity.

4.4.4.1 Transformation of downstream propagating positive-energy

wave

Assume first that the incident wave of unit amplitude has positive energy and let

us set in Eqs. (4.104) and (4.107) A1 = 1, A2 = 0, C1 ≡ T1, and C2 = 0. Then

from Eqs. (4.108) and (4.109) we obtain (cf. Eqs. (4.55) and (4.56)):

B̂1 ŵ1

(
V −2

1

)
+ B̂2 ŵ3

(
V −2

1

)
=V i ω̂

1 , (4.119)

B̂1 ŵ
′
1

(
V −2

1

)
+ B̂2 ŵ

′
3

(
V −2

1

)
=− i ω̂

2

V i ω̂+2
1

V1 + 1
. (4.120)

From this set of equations using the Wronskian (4.54), one can find

B̂1 =− Γ(i ω̂/2) Γ(1 + i ω̂/2)

Γ(1 + i ω̂)
V −i ω̂−2

1

(
V 2

1 − 1
)i ω̂+1

[
ŵ′3
(
V −2

1

)
V 2

1

+
i ω̂

2

ŵ3

(
V −2

1

)
V1 + 1

]
,

(4.121)

B̂2 =
Γ(i ω̂/2) Γ(1 + i ω̂/2)

Γ(1 + i ω̂)
V −i ω̂−2

1

(
V 2

1 − 1
)i ω̂+1

[
ŵ′1
(
V −2

1

)
V 2

1

+
i ω̂

2

ŵ1

(
V −2

1

)
V1 + 1

]
.

(4.122)

Similarly from the matching conditions (4.110) and (4.111) we obtain

B1 w̃2

(
V 2

2

)
+B2 w̃3

(
V 2

2

)
=T1, (4.123)

B1 w̃
′
2

(
V 2

2

)
+B2 w̃

′
3

(
V 2

2

)
=
−i ω̂T1

2V2(1 + V2)
. (4.124)

Using the Wronskian (4.23), we derive from these equations

B1 =− Γ2(1 + i ω̂/2)

Γ(1 + i ω̂)

(
1− V 2

2

)i ω̂+1
[
w̃′3
(
V 2

2

)
+

i ω̂

2

w̃3 (V 2
2 )

V2(1 + V2)

]
T1, (4.125)

B2 =
Γ2(1 + i ω̂/2)

Γ(1 + i ω̂)

(
1− V 2

2

)i ω̂+1
[
w̃′2
(
V 2

2

)
+

i ω̂

2

w̃2 (V 2
2 )

V2(1 + V2)

]
T1. (4.126)

Substituting B1 and B2, as well as B̂1 and B̂2, in Eq. (4.117), we obtain the

transmission coefficient

T1 = −2i

ω̂
V −i ω̂−2

1

(
V 2

1 − 1

1− V 2
2

)i ω̂+1

×
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ŵ′1
(
V −2

1

)
V 2

1

+
i ω̂

2

ŵ1

(
V −2

1

)
V1 + 1

− Γ(1− i ω̂)

2Γ2(1− i ω̂/2)

[
ŵ′3(V −2

1 )

V 2
1

+
i ω̂

2

ŵ3

(
V −2

1

)
V1 + 1

]

w̃′2
(
V 2

2

)
+

i ω̂

2

w̃2 (V 2
2 )

V2(1 + V2)
− Γ(−i ω̂)

Γ2(1− i ω̂/2)

[
w̃′3
(
V 2

2

)
+

i ω̂

2

w̃3 (V 2
2 )

V2(1 + V2)

] . (4.127)

Calculations of the energy fluxes on each side of the transient domain show

that they are both positive, but generally different, i.e., the energy flux does not

conserve,

J1 = J(ξ < −1) =
2ω̂

V1

6= J2 = J(ξ > −1) =
2ω̂

V2

|T1|2. (4.128)

This interesting fact can be explained by the partial wave absorption in the

critical point due to viscosity. The detailed explanation of this is given in Section

4.5. The difference in the energy flux in the incident and transmitted waves is

independent of the viscosity, when ν → 0:

∆J ≡ J1 − J2 = 2ω̂
(
1/V1 − |T1|2/V2

) ω̂ → 0−→ 1− V1V2

V1(1 + V2)2
(V1 − V2)J1, (4.129)

and it is easily seen that it can be both positive and negative.

In Fig. 4.12a) we present the transmission coefficient |T1| together with the

intermediate coefficients of wave excitation in the transient domain, |B1|, |B2|,
|B̂1|, and |B̂2|, as functions of dimensionless frequency ω̂ for the particular values

of current speed V1 = 1.9 and V2 = 0.1. As one can see from this figure, the

transmission coefficient gradually increases with the frequency.

The graphic of |Φ(ξ)| is shown in Fig. 4.13 by lines 1 and 2. The plot was

generated for ω̂ = 1 on the basis of solution Eqs. (4.104)–(4.107) with A1 = 1,

A2 = 0, D1 = T1 as per Eq. (4.127), and D2 = 0. Coefficients B1 and B2 are given

by Eqs. (4.125) and (4.126), and coefficients B̂1 and B̂2 are given by Eqs. (4.121)

and (4.122). The module of function Φ(ξ) is discontinuous only in the critical

point ξ = −1, and the phase of function Φ(ξ) quickly changes in the small vicinity

of this point.

4.4.4.2 Transformation of downstream propagating negative-energy

wave

Assume now that the incident wave is a unit amplitude wave of negative energy

and correspondingly set A1 = 0, A2 = 1, C1 = 0, and C2 ≡ T2. Then from Eqs.
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Figure 4.12: Modules of the transmission coefficients |T1| (line 1 in panel a) and
|T2| (line 1 in panel b), as well as coefficients of wave excitation in the transient
domain, |B1| (line 2), |B2| (line 3), |B̂1| (line 4), and |B̂2| (line 5), for the scattering
of positive energy wave (panel a) and negative energy wave (panel b) as functions
of dimensionless frequency ω̂ for V1 = 1.9, V2 = 0.1. Dashed line 6 in panel (b)
represents the high-frequency asymptotic for |T2| ∼ ω̂−1.

(4.108) and (4.109) we obtain:

B̂1 ŵ1

(
V −2

1

)
+ B̂2 ŵ3

(
V −2

1

)
=V i ω̂

1 , (4.130)

B̂1 ŵ
′
1

(
V −2

1

)
+ B̂2 ŵ

′
3

(
V −2

1

)
=

i ω̂

2

V i ω̂+2
1

V1 − 1
. (4.131)

109



2 1.5 1 0.5 0

0.5

1

1.5

2 1.5 1 0.5 0

2

2


3

1



2

Figure 4.13: Modules of function Φ(ξ) for wave scattering in decelerating trans-
critical current with V1 = 1.9 and V2 = 0.1 for ω̂ = 1. Lines 1 and 2 pertain to
the scattering of a positive-energy incident wave, and lines 1 and 3 pertain to the
scattering of a negative-energy incident wave (line 1 is the same both for positive-
and negative-energy waves).

From this set we find

B̂1 =− Γ(i ω̂/2) Γ(1 + i ω̂/2)

Γ(1 + i ω̂)
V −i ω̂−2

1

(
V 2

1 − 1
)i ω̂+1

[
ŵ′3
(
V −2

1

)
V 2

1

− i ω̂

2

ŵ3

(
V −2

1

)
V1 − 1)

]
,

(4.132)

B̂2 =
Γ(i ω̂/2) Γ(1 + i ω̂/2)

Γ(1 + i ω̂)
V −i ω̂−2

1

(
V 2

1 − 1
)i ω̂+1

[
ŵ′1
(
V −2

1

)
V 2

1

− i ω̂

2

ŵ1

(
V −2

1

)
V1 − 1)

]
.

(4.133)

From the matching conditions at ξ = ξ2 (see Eqs. (4.110) and (4.111)) we

obtain the similar expressions for the coefficients B1 and B2 as in Eqs. (4.125)

and (4.126) with the only replacement of T1 by T2. Substituting then all four co-

efficients B1, B2, B̂1, and B̂2 in Eq. (4.117), we obtain the transmission coefficient

T2:

T2 = −2i

ω̂
V −i ω̂−2

1

(
V 2

1 − 1

1− V 2
2

)i ω̂+1

×

ŵ′1
(
V −2

1

)
V 2

1

− i ω̂

2

ŵ1

(
V −2

1

)
V1 − 1

− Γ(1− i ω̂)

2Γ2(1− i ω̂/2)

[
ŵ′3(V −2

1 )

V 2
1

−
i ω̂ ŵ3

(
V −2

1

)
2(V1 − 1)

]

w̃′2
(
V 2

2

)
+

i ω̂

2

w̃2 (V 2
2 )

V2(1 + V2)
− Γ(−i ω̂)

Γ2(1− i ω̂/2)

[
w̃′3
(
V 2

2

)
+

i ω̂ w̃3 (V 2
2 )

2V2(1 + V2)

] . (4.134)

Calculations of the energy fluxes on each side of the transient domain show

that they are not equal again, moreover, they have opposite signs in the left and
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right domains:

J1 = J(ξ < −1) = −2ω̂

V1

< 0, J2 = J(ξ > −1) =
2ω̂

V2

|T2|2 > 0. (4.135)

The wave of negative energy in the left domain propagates to the right, its

group velocity Vg is positive, but because it has a negative energy E, its energy

flux, J = EVg is negative.

In the long-wave approximation, ω̂ → 0 we obtain (see Appendix 6.2):

T1 =
V2(V1 + 1)

V1(V2 + 1)
, T2 =

V2(V1 − 1)

V1(V2 + 1)
, KT1,T2 =

V2

V1

(
V1 ± 1

V2 + 1

)2

, (4.136)

where in the last formula sign plus pertains to the positive- and sign minus – to

the negative-energy wave. As one can see, the transmission coefficients are purely

real and positive, T1,2 > 0, in both cases.

The problem of surface wave transformation in a duct with the stepwise change

of cross-section and velocity profile is undetermined for such current too; however

from the results obtained it follows that in terms of free surface perturbation the

transformation coefficients are

T1η =
V2

V1

(
V1 + 1

V2 + 1

)2

, T2η =
V2

V1

V 2
1 − 1

(V2 + 1)2 (4.137)

(for the relationships between the transformation coefficients in terms of velocity

potential and free surface perturbation see Appendix 6.2).

In Fig. 4.12b) we present the transmission coefficient |T2| together with the

coefficients of wave excitation in the intermediate domain, |B1|, |B2|, |B̂1|, and

|B̂2|, as functions of dimensionless frequency ω̂ for the particular values of current

speed V1 = 1.9 and V2 = 0.1. As one can see from this figure, the transmission

coefficient remains almost constant for small frequencies when ω̂ < 1, then it

decreases with the frequency and asymptotically vanishes as |T2| ∼ ω̂−1 when

ω̂ →∞.

The graphic of |Φ(ξ)| is shown in Fig. 4.13 by lines 1 and 3 (the left branch of

function |Φ(ξ)| for the incident negative- and positive-energy waves are the same).

The plot was generated for ω̂ = 1 on the basis of solution Eqs. (4.104)–(4.107)

with A1 = 0, A2 = 1, D1 = 0, and D2 = T2 as per Eq. (4.134). Coefficients

B1 and B2 are given by Eqs. (4.125) and (4.126), and coefficients B̂1 and B̂2 are

given by Eqs. (4.132) and (4.133). The module of function Φ(ξ) is discontinuous

only in the critical point ξ = −1, but the phase of function Φ(ξ) quickly changes

in the small vicinity of this point.
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4.4.4.3 Transformation of a counter-current propagating wave

Consider now the case when the incident wave propagates against the mean cur-

rent in the spatially variable current from the right domain where the background

current is sub-critical. There are no waves capable to propagate against in the

ξ < −1 domain where V > 1, therefore there is no transmitted wave in this

case. However, the incident wave can propagate against the current and even

penetrate into the transient zone ξ1 < ξ < ξ2 up to the critical point ξ = −1 until

the current remains subcritical.

Because there are no waves in the domain ξ < −1, we should set in Eqs. (4.104)–

(4.107) A1 = A2 = B̂1 = B̂2 = 0, C1 ≡ R, and C2 = 1. Then the matching

condition (4.117) yields

B2 = − Γ(−i ω̂)

Γ2(1− i ω̂/2)
B1, (4.138)

and from Eqs. (4.110) and (4.111) we obtain for the reflection coefficient

R = −
w̃′2
(
V 2

2

)
− i ω̂

2

w̃2 (V 2
2 )

V2(1− V2)
− Γ(−i ω̂)

Γ2(1− i ω̂/2)

[
w̃′3(V 2

2 )− i ω̂

2

w̃3 (V 2
2 )

V2(1− V2)

]
w̃′2
(
V 2

2

)
+

i ω̂

2

w̃2 (V 2
2 )

V2(1 + V2)
− Γ(−i ω̂)

Γ2(1− i ω̂/2)

[
w̃′3
(
V 2

2

)
+

i ω̂

2

w̃3 (V 2
2 )

V2(1 + V2)

] .
(4.139)

Then, from Eqs. (4.110) and (4.138) we find B1 and B2; in particular for B1

we obtain:

B1 =
1 +R

w̃2

(
V 2

2

)
− Γ(−i ω̂)

Γ2(1− i ω̂/2)
w̃3

(
V 2

2

) . (4.140)

Graphics of modulus of reflection coefficient |R| as well as coefficients |B1| and |B2|
are shown in Fig. 4.14 as functions of dimensionless frequency ω̂ for the particular

values of V1 = 1.9 and V2 = 0.1. In the long-wave approximation, ω̂ → 0, using

the asymptotics of hypergeometric function 2F1(a, b; c; d) (see Appendix 6.2), we

obtain the limiting value of the reflection coefficient

R =
1− V2

1 + V2

. (4.141)

In terms of free surface perturbation this value corresponds to Rη = 1 (for the

relationships between the transformation coefficients in terms of velocity potential

and free surface perturbation see Appendix 6.2). This formally agrees with the

solution found in Ref. [24].

In Fig. 4.15 we present graphics of |Φ(ξ)| as per Eqs. (4.104)–(4.107) for

A1 = A2 = 0, D1 = 1, and D2 = R as per Eq. (4.139). Coefficients B1 and B2
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Figure 4.14: Modulus of the reflection coefficients |R| (line 1) and coefficients
of wave excitation in the transient domain, |B1| (line 2) and |B2| (line 3), as
functions of dimensionless frequency ω̂ for V1 = 1.9, V2 = 0.1. Dashed line 4
represents the high-frequency asymptotic for |R| ∼ ω̂−1.

are given by Eqs. (4.140) and (4.138), and coefficients B̂1 = B̂2 = 0. A plot was

generated for three dimensionless frequencies: line 1 – for ω̂ = 0.1, line 2 – for

ω̂ = 1, and line 3 – for ω̂ = 100. The phase of function Φ(ξ) infinitely increases

when the incident wave approaches the critical point ξ = −1. The energy fluxes
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Figure 4.15: Module of function Φ(ξ) for a counter-current propagating incident
wave which scatters in the decelerating trans-critical current with V1 = 1.9 and
V2 = 0.1 for the particular values of ω̂: line 1 – ω̂ = 0.1, line 2 – ω̂ = 1, and line
3 – ω̂ = 100.

in the incident Ji and reflected Jr waves in the right domain (ξ > ξ2) are

Ji = −2ω̂

V2

< 0, Jr =
2ω̂

V2

|R|2 > 0. (4.142)
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Thus, the total energy flux in the right domain ∆J ≡ Ji−Jr = − (2ω̂/V2) (1− |R|2) <

0 is negative; it transfers towards the critical point, where it is absorbed by the

viscosity.

4.5 Discussion and conclusion

In this Chapter we have calculated the transformation coefficients of shallow wa-

ter gravity waves propagating on a longitudinally varying quasi-one-dimensional

current. Owing to the choice of a piecewise linear velocity profile U(x) (or, in the

dimensionless variables, V (ξ), see Fig. 4.1) we were able to calculate analytically

the scattering coefficients as functions of incident wave frequency ω̂ for acceler-

ating and decelerating sub-, super-, and trans-critical currents, as well as for all

possible types of incident wave.

Presented analysis pertains to the dispersionless case when the wavelengths of

all waves participating in the scattering process are much greater than the water

depth in the canal. However, the wavelengths λ can be comparable with or even

less than the characteristic length of current inhomogeneity L. In the long-wave

limit λ� L, the scattering coefficients are expressed through the simple algebraic

formulae which are in agreement with the formulae derived in [24] for the case of

abrupt change of canal cross-section.

The most important property of scattering processes in sub-, super-, and

accelerating trans-critical currents is that the wave energy flux conserves, J =

const, (see Eq. (4.6) and the text below Eq. (4.8)). This law provides a highly

convenient and physically transparent basis for the analysis of wave scattering.

In the simplest case of sub-critical currents (U(x) < c0, or V (ξ) < 1), both

accelerating and decelerating, all participating waves possess a positive energy,

and the energy flux of the unit amplitude incident wave (no matter whether run-

ning from the left or from the right) is divided between reflected and transmitted

waves in a such manner that |R|2 + KT = 1 (see Eqs. (4.34) and (4.33) for the

wave running from the left, and Eqs. (4.45) and (4.44) for the wave running from

the right).

In super-critical currents (V (ξ) > 1) there are positive- and negative-energy

waves both propagating downstream but carrying energy fluxes of opposite signs.

Propagating through the inhomogeneity domain ξ1 < ξ < ξ2, they transform into

each other in a such way that the energy flux of each wave grows in absolute

value to the greater extent the greater the velocity ratio is. As a result, at ξ > ξ2

the energy flux of each transmitted wave can become greater (in absolute value)

than that of the incident wave (see Fig. 4.8). Quantitatively the increase of wave-

energy fluxes can be easily estimated in the low-frequency limit using Eqs. (4.65)
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and (4.73).

The scattering process in accelerating trans-critical currents (V1 < 1 < V2)

looks like a hybrid with respect to those in sub- and super-critical currents. The

incident wave can be the only co-current propagating wave of positive energy.

Initially, at ξ < ξ1, its energy flux (at unit amplitude) J0 = 2ω̂/V1, but in the

domain ξ1 < ξ < 1 it partially transforms into the counter-current propagating

reflected wave, and at ξ = 1 its energy flux is only J0(1− |R|2) (see Eq. (4.103)).

Further, in the super-critical domain 1 < ξ < ξ2, it generates a negative-energy

wave, and the energy fluxes of both waves grow in absolute value to the greater

extent the greater V2 is. And again this process can be better understand in the

low-frequency limit by means of Eqs. (4.102).

The most interesting scattering processes takes place in decelerating trans-

critical currents (V1 > 1 > V2) where B-waves (which are either counter-current

propagating positive-energy waves or downstream propagating negative energy

waves, see Sec. 4.3) run to the critical point (where V (ξ) = 1) and become highly-

oscillating in its vicinity. For this reason we are forced to give up the model of

ideal fluid and to take into account an infinitesimal viscosity in the neighborhood

of the critical point. As a result, the energy flux continues to conserve on the left

and right of the critical point, but changes in its small vicinity. Let us illuminate

the details of this phenomenon.

Consider first an incident positive-energy F-wave arriving from the left. In the

transient domain ξ1 < ξ < −1 it partially transforms into the negative-energy B-

wave. The total wave flux conserves, whereas the energy flux of each individual

wave increases in absolute value up to the critical point (to the more greater

extent the greater V1 is). As follows from the qualitative consideration on the

basis of JWKB method (see Section 4.3) and from exact analytical solutions (see

Subsection 4.4.4), near the critical point the B-wave becomes highly oscillating

in space. This causes its absorption due to viscosity; as will be shown below,

the absorption is proportional to ν/λ2. In contrast to that, the wavelength of

the co-current propagating F-wave does not change significantly in the process

of transition through the critical point (see Section 4.3), therefore the effect of

viscosity onto this wave is negligible. After transition this wave runs through

the non-unform subcritical domain −1 < ξ < ξ2 and partially transforms into

another B-wave – a counter-current propagating wave of positive energy. This

wave approaching the critical point also becomes highly oscillating and therefore

absorbs in the vicinity of that point. The energy flux of transmitted F-wave

decreases proportional to V2. The total change of energy flux in transition from

the incident to the transmitted wave is described by Eqs. (4.129), and in the limit

ω̂ → 0 is determined by the product V1V2.
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If the incident wave arriving from minus infinity is the B-wave of negative

energy carrying a negative energy flux (see J1 in Eq. (4.135)), then in the transient

zone, ξ1 < ξ < −1, it generates due to scattering on inhomogeneous current the

F-wave of positive energy, so that the wave fluxes of both waves grow in absolute

value. The B-wave absorbs due to viscosity in the vicinity of the critical point

ξ = −1, whereas the F-wave freely passes through this point with an insignificant

change of its wavelength. After passing through the critical point the F-wave

generates in the domain −1 < ξ < ξ2 a new B-wave of positive energy, which

propagates a counter-current towards the critical point and absorbs in its vicinity

due to viscosity. Therefore, the energy flux of the F-wave increases first from

zero at ξ = ξ1 up to some maximal value at ξ = −1, then it decreases due to

transformation of wave energy into the B-wave to some value at ξ = ξ2 (see J2 in

Eq. (4.135)), and then remains constant. In the long-wave approximation, ω̂ → 0,

we obtain

∆J ≡|J2| − |J1| =
(
V1

V2

|T2|2 − 1

)
|J1| =

V2 |J1|
V1(1 + V2)2

[
V 2

1 − V1

(
4 + V2 +

1

V2

)
+ 1

]
. (4.143)

Analysis of this expression shows that because V2 +1/V2 ≥ 2, then ∆J can be

positive (i.e., the energy flux of transmitted wave can be greater than the energy

flux of incident wave by absolute value), if V1 > 3 + 2
√

2 ≈ 5.83.

If there are two incident waves arriving simultaneously from minus infinity so

that one of them has positive energy and another one – negative energy, then

at some relationships between their amplitudes and phases it may happen that

in the transient zone in front of the critical point the superposition of these

waves and scattered waves generated by them can annihilate either the positive-

energy F-wave or negative-energy B-wave. In the former case it will not be a

transmitted wave behind the critical point, because the B-wave in its vicinity

completely absorbs (the “opacity” phenomena occurs). In the latter case there

is no negative-energy B-wave on the left of the critical point and therefore there

is nothing to absorb, and the F-wave passes through this point without loss of

energy (we assume that the viscosity is negligible). Further, the F-wave spends

some portion of its energy transforming into the counter-current propagating B-

wave of positive energy which ultimately dissipates in the vicinity of the critical

point. Nevertheless, the residual energy flux of transmitted wave at ξ > ξ2 turns

to be equal to the total energy flux of two incident waves at ξ < ξ1, and in such

a very particular case the energy flux conserves.

Finally, if an incident B-wave of positive energy arrives from plus infinity, then
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in the inhomogeneous zone, −1 < ξ < ξ2, it generates a co-current propagating

F-wave of positive energy. The energy fluxes of both these waves have opposite

signs and decrease in absolute value as one approaches the critical point. In the

critical point the energy flux of F-wave vanishes, and the remainder of the B-wave

absorbs. In this case the less the V2 the higher the reflection coefficient |R| is,

and this is especially clear in the low-frequency approximation, see Eq. (4.141).

The analysis presented above is based on the fact that the wavelengths of scat-

tered waves drastically decrease in the vicinity of a critical point, where V (ξ) = 1.

In such case either the dispersion, or dissipation, or both these effects may enter

into play. We will show here that at certain situations the viscosity can predom-

inate over the dispersion. Considering the harmonic solution ∼ eiκξ of Eq. (4.83)

in the vicinity of a critical point and neglecting the term ∼ V ′, we obtain the

dispersion relation extending (4.11). In the dimensional form it is:

(ω − kU)2 = c2
0k

2 − iνk2 (ω − kU) . (4.144)

The solution to this equation for small a viscosity νk � c0 is

ω = |c0 ± U ||k| − iνk2/2. (4.145)

The viscosity effect becomes significant when the imaginary and real parts of

frequency become of the same order of magnitude. This gives |k| ∼ 2|c0 ± U |/ν.

Multiplying both sides of this relationship by h, we obtain |k|h ∼ 2h|c0 ± U |/ν.

For the counter-current propagating B-wave |c0 − U | → 0, therefore the product

|k|h can be small despite of smallness on ν. So, the condition |k|h ∼ 2h|c0 −
U |/ν � 1 allows us to consider the influence of viscosity in the vicinity of a

critical point, whereas the dispersion remains negligibly small. In the meantime,

the wavelength of co-current propagating F-wave does not change dramatically

in the process of transition through the critical point (see Section 4.3). For such

wave the viscosity is significant when |k|h ∼ 2h(c0 +U)/ν � 1 which corresponds

to the deep-water approximation.

Notice in the conclusion that the wave-current interaction in recent years be-

came a very hot topic due to applications both to the natural processes occurring

in the oceans and as a model of physical phenomena closely related with the

Hawking radiation in astrophysics [27, 29, 47, 73, 126, 131, 152, 153]. The influ-

ence of high-momentum dissipation on the Hawking radiation was considered in

astrophysical application [132] (see also [2] where the dissipative fields in de Sitter

and black hole spacetimes metrics were studied with application to the quantum

entanglement due to pair production and dissipation). The peculiarity of this

Chapter is in the finding of exactly solvable model which enabled us to construct
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analytical solutions and calculate the scattering coefficients in the dispersionless

limit. We have shown, in particular, that in the case of accelerating trans-critical

current both the reflection coefficient of positive-energy wave and transmission

coefficient of negative-energy wave decrease asymptotically with the frequency

as |R| ∼ Tn ∼ ω̂−1. This can be presented in terms of the Hawking tempera-

ture TH = (1/2π)(dU/dx) (see, e.g., [131, 153]) and dimensional frequency ω as

|R| ∼ Tn ∼ 2πTH/ω.
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Chapter 5

SOLITON INTERACTION

WITH EXTERNAL FORCING

WITHIN THE KORTEWEG–DE

VRIES EQUATION

In this Chapter we revise the solutions of the forced Korteweg–de Vries equa-

tion describing a resonant interaction of a solitary wave with external pulse-type

perturbations. In contrast to previous works where only the limiting cases of

a very narrow forcing in comparison with the initial soliton or a very narrow

soliton in comparison with the width of external perturbation were studied, we

consider here an arbitrary relationship between the widths of soliton and exter-

nal perturbation of a relatively small amplitude. In many particular cases, exact

solutions of the forced Korteweg–de Vries equation can be obtained for the spe-

cific forcings of arbitrary amplitude. We use the earlier developed asymptotic

method to derive an approximate set of equations up to the second-order on a

small parameter characterising the amplitude of external force. The analysis of

exact solutions of the derived equations is presented and illustrated graphically.

It is shown that the theoretical outcomes obtained by asymptotic method are in a

good agreement with the results of direct numerical modelling within the frame-

work of forced Korteweg–de Vries equation. The results obtained in this Chapter

have been published in Chaos: An Interdisciplinary Journal of Nonlinear Science

[43].
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5.1 Introduction

The forced Korteweg–de Vries (fKdV) equation is a canonical model for the de-

scription of resonant excitation of weakly nonlinear waves by moving perturba-

tions. Such an equation was derived by many authors for atmospheric internal

waves over a local topography [14, 120], surface and internal water waves gen-

erated by moving atmospheric perturbations or in a flow over bottom obstacles

[3, 25, 26, 38, 58, 67, 69, 75, 79, 80, 82, 83, 90, 109, 112, 116, 125, 137, 141,

157], internal waves in a rotating fluid with a current over an obstacle [57]. The

number of publications on this topic is so huge that it is impossible to mention

all of them in this thesis. In addition to the papers mentioned above we will only

add a review paper [59] and relatively recent publication [60] where a reader can

find some more references.

An effective method of asymptotic analysis of fKdV equation, when the am-

plitude of external force acting on a KdV soliton is relatively small, was developed

in the series of papers by Grimshaw and Pelinovsky with co-authors [62, 63, 64,

66, 121]. Two limiting cases were analysed in those papers: (i) when the width of

external force is very small in comparison with the width of a soliton and can be

approximated by the Dirac delta-function and (ii) when a soliton width is very

small in comparison with the width of external perturbation. Similar approach

was used in Ref. [100] where the forcing term was approximated by the derivative

of Dirac delta-function.

In the meantime, in the natural conditions a relationship between the widths

of solitary wave and external forcing can be arbitrary, therefore it is of interest

to generalise the analysis of those authors and consider a resonance between the

solitary waves and external forces of arbitrary width. For such arrangements we

have found few physically interesting regimes, which were missed in the previous

studies. In addition to that, we show that for some special external forces exact

solutions of fKdV equation can be obtained even when the amplitude of external

force is not small. We compare our solutions derived by means of asymptotic

method with the results of direct numerical modelling within the framework of

fKdV equation and show that there is a good agreement between two approaches.

In the meantime, the numerical simulation demonstrates that there are some

effects, which are not caught by the asymptotic theory.

Below we briefly describe the basic model and asymptotic method developed

in the papers [62, 63, 64, 66, 121] for the analysis of soliton interaction with

external forcing, and then we apply the basic set of approximate equations to

the particular cases of stationary and periodic forcing. In Sect. 5.7 we present

the results of numerical modelling and comparison of theoretical outcomes with

120



the numerical data. In the Conclusion, we discuss the results obtained in this

Chapter.

5.2 The basic model equation and perturbation

scheme

In this Chapter we follow the asymptotic method developed in the aforementioned

papers [62, 63, 64, 66, 121] and apply it to the fKdV equation in the form:

∂u

∂t
+ c

∂u

∂x
+ αu

∂u

∂x
+ β

∂3u

∂x3
= ε

∂f

∂x
, (5.1)

where c, α and β are constant coefficients, and f(x, t) describes the external

perturbation of amplitude ε moving with the constant speed V .

Introducing new variables x̂ = x − V t, t̂ = t, we can transform Eq. (5.1) to

the following form (the symbolˆis further omitted):

∂u

∂t
+ (c− V )

∂u

∂x
+ αu

∂u

∂x
+ β

∂3u

∂x3
= ε

∂f

∂x
. (5.2)

This form corresponds to the moving coordinate frame where the external force

is stationary and depends only on spatial coordinate x.

In the absence of external force, i.e., when f(x, t) ≡ 0, Eq. (5.2) reduces to the

well-known KdV equation which has stationary solutions in the form of periodic

and solitary waves. We study here the dynamics of a solitary wave under the

action of an external force of small amplitude ε � 1 assuming that in the zero

approximation (when ε = V = 0) the solution is

u0 = A0 sech2(γ0Φ), (5.3)

where the inverse half-width of a soliton γ0 =
√
αA0/12β and its speed υ0 =

c+αA0/3 depend on the amplitude A0, Φ = x−x0−υ0t is the total phase of the

soliton, and x0 is an arbitrary constant determining the initial soliton position at

t = 0.

In the presence of external force of a small amplitude the solitary wave solution

(5.3) is no longer valid, but one can assume that under the action of external

perturbation it will gradually vary so that its amplitude and other parameters
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can be considered as functions of “slow time” T = εt, so that

υ(T) = c− V +
αA(T)

3
, (5.4)

Ψ(T) = x0 +
1

ε

T∫
0

υ(τ) dτ. (5.5)

Now we have to define functions A(T) and υ(T). This can be done by means

of the asymptotic method developed, in particular, in Refs. [61, 66]. Following

these papers, we seek for a solution of the perturbed KdV equation (5.2) in the

form of the expansion series:

u = u0 + εu1 + ε2u2 + . . .

υ = υ0 + ευ1 + ε2υ2 + . . .
(5.6)

In the leading order of perturbation method (in the zero approximation), when

ε = 0, we obtain the solitary wave solution (5.3) for u0 and υ0. In the next

approximation we obtain the same solution, but with slowly varying parameters

in time. The dependence of soliton amplitude A on T can be found from the

energy balance equation [66], which follows from Eq. (5.2) after multiplication

by u(x, t) and integration over x:

d

dT

∞∫
−∞

u2(Φ)

2
dΦ =

∞∫
−∞

u(Φ)
df(Φ)

dΦ
dΦ. (5.7)

Substituting here solution (5.3), we obtain the equations for A(T):

dA

dT
= γ

∞∫
−∞

sech2 (γΦ)
df(Φ + Ψ)

dΦ
dΦ, (5.8)

The second equation for Ψ(T ) in this approximation represents just a kinematic

condition: the time derivative of soliton phase is equal to the instant soliton speed

in the moving coordinate frame:

dΨ

dT
= ∆V +

αA(T)

3
, (5.9)

where ∆V = c− V .

In the second order of asymptotic theory, a correction to the wave speed υ1

(see Eq. (5.6)) should be taken into account. Leaving aside the derivation of the

corrected equation (5.9) (the details can be found in [66]), we present here the
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final equation:

dΨ

dT
= ∆V +

αA(T)

3
+

εα

24βγ2

∞∫
−∞

[
tanh γΦ + (γΦ− 1) sech2 γΦ

] ∂f(Φ + Ψ)

∂Φ
dΦ.

(5.10)

Thus, the set of equations in the first approximation consists of Eqs. (5.8) and

(5.9), whereas in the second approximation it consists of Eqs. (5.8) and (5.10).

However, as has been shown in Ref. [66], the last term in Eq. (5.10) containing

small parameter ε dramatically changes the behaviour of the system and makes

the result realistic, whereas Eq. (5.9) provides just a rough approximation to the

real solution valid at fairly small time interval in the vicinity of a forcing. This

difference between the solutions in the first and second approximations will be

illustrated in the next Section, and then we will analyse only solutions corre-

sponding to the second approximation described by Eqs. (5.8) and (5.10) for

different kinds of external force f(x).

5.3 The KdV-type forcing

Let us consider first the case when

f(x) = sech2 x

∆f

, V = c+
4β

∆2
f

−
εα∆2

f

12β
, (5.11)

where ∆f is a free parameter characterising the half-width of external force.

With this function f(x) one can find an exact solution of Eq. (5.2) in the form

of a KdV soliton (5.3) synchronously moving with the external force, υs = V , and

having the amplitude As = 12β/α∆2
f and half-width γ−1

s = ∆f . This solution

represents a particular case of a family of exact solutions to the class of forced

generalised KdV equations constructed in Ref. [92]. Note that here the parameters

ε and ∆f are arbitrary, and the amplitude As of a soliton is determined only by

the width of external force ∆f , whereas the soliton speed V is determined both

by the width ∆f and amplitude ε of external force.

Let us assume now that the parameter ε is small, and we have the initial

condition for Eq. (5.2) in the form of KdV soliton shifted from the centre of

forcing and moving with its own velocity υ0 with the initial amplitude A0 6= As.

By substitution of function f(x) from Eq. (5.11) in Eq. (5.8), we obtain for the

parameter γ(T) the following equation:

dγ

dT
= −2εα

3β
e2θ

∞∫
0

qK

(e2θ + qK)2

q − 1

(q + 1)3dq, (5.12)
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where q = exp (2Φ/∆f ), θ = γΨ, and K = γ0∆f is the ratio of half-widths

of external force and initial soliton. The parameter K can be also presented

in terms of the half-distance Df between the extrema of forcing function f(x):

K = 2γ0Df/ ln (2 +
√

3) (see the distance between maximum and minimum of f ′x

in Fig. 5.1).

Equation (5.9) of the first approximation in terms of θ = γΨ reads (cf. [66]):

dθ

dT
= ∆V γ + 4βγ3. (5.13)

According to the asymptotic theory, soliton velocity should be close to the forcing

velocity. If we assume that at the initial instant of time they are equal, υ0 = V ,

then we obtain that the forcing amplitude ε is linked with the initial soliton

amplitude A0 through the formula:

ε =
αA2

0 (1−K2)

3K4
. (5.14)

This formula shows that the polarity of forcing depends on the sign of its am-

plitude ε and is determined by the parameter K: it is positive, if K < 1, and

negative otherwise.

Dividing Eq. (5.12) by Eq. (5.13), we obtain:

dγ

dθ
= − 2εαe2θ

3βγ (∆V + 4βγ2)

∞∫
0

qK

(e2θ + qK)2

q − 1

(q + 1)3dq. (5.15)

This is the first-order separable equation whose general solution can be presented

in the form:

Γ 2 + 2Γ = 32
K2 − 1

K4

∫ ∞∫
0

[
qK

(e2θ + qK)2

q − 1

(q + 1)3dq

]
e2θdθ + C, (5.16)

where Γ = A/A0 is the dimensionless amplitude of a solitary wave, and C is a

constant of integration.

The integrals in the right-hand side of Eq. (5.16) can be evaluated analyti-

cally; however we do not present here the results of integration as they are very

cumbersome. After evaluation of the integrals in Eq. (5.16), the phase portrait

of the dynamical system (5.12)–(5.13) in terms of the dependence Γ(θ) can be

plotted for any value of the parameter K.

In the case when the width of initial solitary wave is the same as the width

of external force, i.e., K = 1, we obtain Γ = 1 and C = 3.

When K varies in the range 0 < K < 1, then the forcing is positive, εf(x) >
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a) b)

Figure 5.1: The shape and polarity of forcing function f(x) (green lines 1) as
per Eqs. (5.11) and (5.14) for K = 0.75 (a) and K = 2 (b), red lines 2 repre-
sent the derivatives f ′x(x), and blue lines 3 show the initial KdV solitons of unit
amplitudes.
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Figure 5.2: The phase portraits of the dynamical system (5.12)–(5.13) as per
Eq. (5.16) in the first approximation on the parameter ε for K = 0.75 (a) and
K = 2 (b).

0 (see Fig. 5.1a), and the right-hand side of Eq. (5.16) is positive too; then

the equilibrium state with Γ = 1 and θ = 0 is of the centre-type in the phase

plane. Therefore, if soliton parameters are such that it is slightly shifted from

the equilibrium position, then it will oscillate around this position as shown in

the phase plane of Fig. 5.2a). This formally corresponds to the trapping regime

when a solitary wave is trapped in the neighbourhood of centre of external force.

If the amplitude and speed of initial soliton are big enough, then the soliton

simply passes through the external perturbation and moves away. Such a regime

of motion corresponds to the transient trajectories shown in the phase plane

of (Fig. 5.2b) above the separatrix (the line dividing trapped and transient

125



-6 -4 -2 0 2 4 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Θ

Γ

-10 -5 0 5 10
0.0

0.5

1.0

1.5

2.0

Θ

Γ

a) b)

Figure 5.3: The phase portraits of the dynamical system (5.12), (5.17) in the
second approximation on the parameter ε for K = 0.75 (a) and K = 2 (b).

trajectories).

There are also trajectories in the lower part of the phase plane which either

bury into the horizontal axes with Γ = 0, or originate from this axis. Such tra-

jectories correspond to decay of solitons of certain amplitudes or birth of solitons

from small perturbations, which however appear for a while, but then decay. Some

of these trajectory types, which appear within the separatrix, correspond to the

“virtual solitons” (see unclosed trajectories within the separatrix in Fig. 5.2a).

The “virtual solitons” are generated in the neighbourhood of forcing maximum,

then increase, but after a while completely disappear.

When K > 1, then the forcing is negative, εf(x) < 0 (see Fig. 5.1b), the right-

hand side of Eq. (5.16) is negative too, and the equilibrium state with Γ = 1 and

θ = 0 is of the saddle-type, as shown in Fig. 5.2b). In this case there are repulsive

regimes, where solitary waves approach the forcing either from the left or from

the right and bounce back. There are also the transient regimes above and below

separatrices, where solitons of big or small amplitudes simply pass through the

forcing. There are regimes corresponding to the “virtual solitons”, which arise

for a while from small perturbations and then disappear (see the trajectories

originating at the line Γ = 0 in Fig. 5.2b).

In this approximation our results are qualitatively similar to the results ob-

tained in Ref. [66], but in contrast to that paper, as well as subsequent papers

[62, 63, 64, 121], we do not use here the approximation of soliton or forcing by

the Dirac delta-function. In the limiting cases, when the width of one of these

entities becomes very small, our results completely reduce to those derived in

Ref. [66].
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As was already noted in Ref. [66], asymptotic equations of the first approxima-

tion actually do not provide physically realistic description of soliton dynamics.

Only in the second approximation the dynamical system for Γ and θ reflects a

realistic description. In this approximation, Eq. (5.12) remains the same, and

Eq. (5.13) should be replaced by a more complex equation, which follows from

Eq. (5.10) and in terms of function θ reads:

dθ

dT
= ∆V γ + 4βγ3 − ∆V 2

βγ

K2 − 1

K4

∞∫
0

e2θ (1 + 2θ −K ln q)− qK

(e2θ + qK)2

q − 1

(q + 1)3 q
Kdq.

(5.17)

The integral on the right-hand side of this equation can be calculated analytically,

but the result is very cumbersome. Combining Eq. (5.17) with Eq. (5.12), one

can plot the improved phase portrait of the dynamical system; it is shown in

Fig. 5.3. It is evident that the phase portrait in the second approximation

dramatically differs from the phase portrait of the first approximation. First of all,

the equilibrium state of the centre-type in Fig. 5.2a) maps into the unstable focus,

alias spiral (see Fig. 5.3a); this has been noticed already in Ref. [66]. Secondly,

the equilibrium amplitude Γ in the second approximation is greater than in the

first approximation. Thirdly, on the transient trajectories of Fig. 5.3a) soliton

amplitudes do not return back to their initial values (cf. asymptotics of transient

trajectories above the focus, when θ → ±∞). There are some other important

features which were missed in Ref. [66] because of additional approximation of

soliton or forcing by the Dirac delta-function. In particular, when K < 1, there is

a repulsive regime clearly visible in the right lower corner of Fig. 5.3a). Similarly,

there are differences in the phase portraits of first and second approximation when

K > 1. In particular, a new equilibrium state of a stable focus appears below the

saddle (which is not visible in Fig. 5.3b) due to rarefaction of trajectories, but

clearly implied as a separator between the transient and captured trajectories).

Note that in Ref. [66] the focus was mistakenly identified with the centre-type

equilibrium state. This equilibrium state corresponds to the small-amplitude

soliton trapped by the negative forcing shown in 5.1b). Meanwhile, it is clear

from the physical point of view and confirmed through the analysis of dynamical

system in the second approximation that a positive forcing, such as shown in Fig.

5.1a), cannot trap and confine a soliton.
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5.4 The KdVB-type forcing

In this section we consider Eq. (5.2) with the different and non-symmetric forcing

function of the form:

f (x) =

(
±1− tanh

x

∆f

)
sech2 x

∆f

. (5.18)

Equation (5.2) with this forcing function can be derived from the Korteweg–de

Vries–Burgers (KdVB) equation and has the exact solution for any parameter ∆f

in the form of a shock wave [154]:

u (x) = ε∆f

(
1± tanh

x

∆f

+
1

2
sech2 x

∆f

)
, (5.19)

whereas the forcing amplitude ε and speed V are determined by the forcing width

∆f :

ε =
24β

α∆3
f

; V = c+
24β2

∆2
f

.

The forcing function (5.18) and its derivative f ′x are shown in Fig. 5.4. In the
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Figure 5.4: The forcing function with K = 2. Frame (a) pertains to the upper
sign in Eq. (5.18), and frame (b) – to the lower sign. Green lines (1) illustrate
forcing functions f(x), red lines (2) – its derivatives f ′(x), blue lines 3 represent
the KdV solitons at the initial instant of time, and black lines 4 represent the
exact solutions of KdVB equation (5.19) in the forms of shock wave (in frame a)
and “anti-shock wave” (in frame b).

same figure one can see the exact solutions (5.19) for the shock wave (black line in

frame a) and “anti-shock wave” (black line in frame b). As follows from the exact

solutions, a localised external force can produce a non-localised perturbation for

u(x) in the fKdV equation (5.1). Two different forcing functions corresponding

to the upper and lower signs in Eq. (5.18) are mirror symmetric with respect to

the vertical axis, therefore we illustrate below the solutions generated by only

one of them shown in Fig. 5.4a), but for the sake of generality, below we present
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solutions for both signs in Eq. (5.18). Note that the forcing function (5.18) of any

sign always represents only a negative potential shifted from the centre either to

the right or to the left (see green lines 1 in the figure). If the initial perturbation

is chosen in the form of a KdV soliton (5.3) and the amplitude of external force is

small, ε � 1, then we can apply again the asymptotic theory presented in Sect.

5.2 to describe the evolution of a soliton under the influence of external force

(5.18). In this case Eq. (5.8) after substitution soliton solution and the forcing

function (5.18) reduces to the following equation:

d

dT

(
2A2

3γ

)
= ±10βε

∆2
f

∞∫
−∞

A sech2(γΦ) sech4

(
Φ + Ψ

∆f

)[
2− e±

2(Φ+Ψ)
∆f

]
dΦ. (5.20)

Introducing the parameters q = e2Φ/∆f and K = 2γ0Df/ ln [(7 +
√

33)/4], where

Df as above, is the half-distance between the extrema of forcing derivative f ′x

(see Fig. 5.4) and skipping Eq. (5.9) of the first approximation, we present the

set of equations (5.8) and (5.10) in the second approximation on the parameter

ε as:

dγ

dT
= ∓320β

∆4
f

e2θ

∞∫
0

qK+1

(e2θ + qK)2

q±1 − 2

(q + 1)4dq, (5.21)

dθ

dT
= ∆V γ + 4βγ3 ∓ 10∆V 2

27βγK4

∞∫
0

e2θ (1 + 2θ −K ln q)− qK

(e2θ + qK)2

q±1 − 2

(q + 1)4 q
K+1 dq,

(5.22)

where the upper and lower signs correspond to the upper and lower signs in the

forcing function (5.18). The set of equations (5.21) and (5.22) does not have

equilibrium states for relatively small width of the forcing K ≤ 3 as shown in

Fig. 5.5a). In the phase plane there are either transient trajectories or bouncing

trajectories in this case. If the forcing width increases and becomes greater than

K > 3, then the equilibrium state of a stable focus appears, which corresponds to

the trapped KdV soliton of a small amplitude within the potential well as shown

in Fig. 5.5b). But when the forcing width further increases and becomes greater

than K > 5, then the equilibrium state disappears again, and the phase portrait

of the system (5.21) and (5.22) becomes qualitatively similar to that shown in

Fig. 5.2b).
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Figure 5.5: The phase portraits of the dynamical system (5.21) and (5.22) with
K = 2 (frame a) and K = 3.5 (frame b).

5.5 The Gardner-type forcing

Consider now the forcing function in the form:

f(x) =
1

[1 +B cosh (x/∆f )]
3 , (5.23)

where B, and ∆f are constant parameters. Its derivative is:

f ′x(x) = −3B(1 +B)3 sinh (x/∆f )

∆f [1 +B cosh (x/∆f )]
4 , (5.24)

For any parameters ε and ∆f this forcing provides the exact solution to the fKdV

Eq. (5.2) in the form of Gardner soliton (see, e.g., Ref. [118]):

u (x) =
Af

1 +B cosh (x/∆f )
, (5.25)

where Af = 6β/α∆2
f , V = c + β/∆2

f . The parameters B and ∆f determine the

amplitude of external force ε by means of the formula:

ε = − 12β2(B − 1)

α(B + 1)2∆f
4 . (5.26)

Real nonsingular soliton solutions exist only for B > 0 and B < −1. When B

ranges from 0 to 1, we have a family of solitons varying from a KdV soliton, when

B → 1−, to a table-top soliton, when B → 0+. When 1 ≤ B < ∞, we obtain a
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family of bell-shaped solitons of positive polarity, and when −∞ < B < −1, –

a family of bell-shaped solitons of negative polarity (see, e.g., Ref. [118]). The

half-width of forcing (5.23), i.e. half-distance between the extrema of function

f ′x, is determined by the parameter B:

Df = ∆f ln

[
1±R±

√
2 (R +R2 − 42B2)

6B

]
, (5.27)

where R =
√

1 + 48B2, upper signs pertain to B > 0, and lower signs – to B < 0.

Figure 5.6 shows the parameter K = γ0Df as the function of B.

B

K

1

3

2

4

Figure 5.6: The dependence of parameter K characterising the relative width of
forcing (5.23) as function of parameter B. Horizontal line 4 shows the asymptotic
value of K = ln 3/4 ≈ 0.275 when B → ±∞.

In the interval −∞ < B < −1 the forcing is narrow, K < 1 (see line 1 in Fig.

5.6), and function f(x) is positive (see green line 1 in Fig. 5.7a). In the interval

1 < B < ∞ the forcing is narrow too (see line 3 in Fig. 5.6), but function f(x)

is negative (see green line 1 in Fig. 5.11a). In the interval 0 < B < 1 (see line 2

in Fig. 5.6) the forcing can be both wide, K > 1, when B is very close to zero,

and narrow, K < 1, in the rest of this interval; the forcing function is positive

within the entire interval 0 < B ≤ 1 (see green lines 1 in Fig. 5.9. Note that

as follows from Eq. (5.26), the amplitude of forcing vanishes when B → ±∞,
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and we have a KdV soliton of arbitrary amplitude freely moving without external

action. When B → −1−, the forcing width becomes zero, but its amplitude goes

to infinity; the forcing looks like the Dirac δ-function.
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Figure 5.7: Green lines 1 represent the forcing function f(x) as per Eq. (5.23),
red lines 2 represent its derivatives f ′(x), and blue lines 3 show the initial KdV
soliton (5.3). In frame a) K = 0.274, B = −221.23; in frame b) K = 0.25,
B = −6.08.
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Figure 5.8: Phase portraits of the dynamical system (5.28) and (5.29) for K =
0.274 (frame a); and K = 0.25 (frame b).

When B → 0+, the forcing becomes infinitely wide. These two limiting cases

have been studied in Ref. [66], and our purpose here is to study the situations

when K is of the order of unity.

Assume again that the amplitude of external force is small ε � 1 and the

initial perturbation has the form of KdV soliton (5.3) moving with the initial

velocity υ0 = V . This gives γ0∆f = 1/2. After substitution of function f ′x(x)
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Figure 5.9: Green lines 1 represent the forcing function f(x) as per Eq. (5.23),
red lines 2 are its derivatives f ′(x), and blue lines 3 are the initial KdV soliton
(5.3). In frame a) K = 2, B = 0.012; in frame b) K = 0.5, B = 0.49.
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Figure 5.10: Phase portraits of the dynamical system (5.28) and (5.29) for K = 2
(frame a); and K = 0.5 (frame b).

from Eq. (5.24) and soliton solution (5.3) into Eqs. (5.8) and (5.10) and denoting

p = eΦ/∆f , we obtain in the second approximation the following set of equations:

dγ

dT
=

48(B2 − 1)∆V 2

βB3
e2θ

∞∫
0

p3 (p2 − 1) dp

(e2θ + p)2 (p2 + 2p/B + 1)4 , (5.28)

dθ

dT
= ∆V γ + 4βγ3 − 24∆V 2

βγ

B2 − 1

B3

∞∫
0

e2θ (1 + 2θ − ln p)− p
(e2θ + p)2

p3 (p2 − 1) dp

(p2 + 2p/B + 1)4 .

(5.29)
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Figure 5.11: Green lines 1 are the forcing functions f(x) as per Eq. (5.23), red
lines 2 are their derivatives f ′(x), and blue lines 3 are the initial KdV solitons
(5.3). In frame a) K = 0.3, B = 5.5; in frame b) K = 0.283, B = 17.
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Figure 5.12: Phase portraits of the system (5.28) and (5.29) in the different
interval of parameter B ≥ 1 corresponding to the narrow forcing (0.275 < K <
0.397), of a negative polarity. The portraits were generated for the following
parameters: frame a): B = 1.05, K = 0.392; frame b): B = 1.2, K = 0.379;
frame c): B = 3, K = 0.32; frame d): B = 12.5, K = 0.288; frame e): B = 60,
K = 0.277.

Below we describe the changes in the phase portraits of the dynamical system

(5.28) and (5.29) when the parameter B varies from minus to plus infinity. When

this parameter is negative, −∞ < B < −1, the forcing is narrow K < 1 and

positive (see lines 1 in Fig. 5.7). Such forcing with a hump cannot trap a

soliton, therefore there is only one equilibrium state, the unstable focus (alias

the unstable spiral), which implies that a soliton placed at this state escapes

it under the action of infinitely small perturbations (see Fig. 5.8). The only

difference between the portraits shown in Figs. 5.8a) and 5.8b) is that there

are no transient trajectories in the latter figure below the equilibrium point, but

instead the bouncing trajectories appear in the right lower corner.

When the parameter B varies in the range 0 < B ≤ 1, the forcing can

be both wide, K > 1, and narrow, K < 1, but in both cases the potential

function is positive (see lines 1 in Fig. 5.9). Again, due to the positive hump-

type forcing incapable to trap a soliton, the only one equilibrium state on the
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phase plane is possible, the unstable focus. The typical phase portraits in this

case are qualitatively similar both for the wide and narrow forcing (cf. Figs.

5.10a) and 5.10b) for K = 2, B = 0.012 and K = 0.5, B = 0.49 respectively).

When B > 1, the forcing is narrow 0.275 < K < 1, but now negative (see

lines 1 in Fig. 5.11). Such forcing with a well can trap a soliton of a very small

amplitude in the certain intervals of parameter B. In the interval 1 ≤ B < B1(≈
1.06), there is only one unstable equilibrium state of a saddle type; the typical

phase portrait is shown in Fig. 5.12a). Then, in the interval B1 < B < B2(≈ 1.5)

there is an equilibrium state of the stable focus type; the corresponding phase

portrait is shown in frame b). In the next interval B2 ≤ B < B3(≈ 7) the

equilibrium state disappears, and the typical phase portrait is shown in frame c).

In the interval B3 < B < B4(≈ 55) an equilibrium state of the stable focus type

appears again; the corresponding phase portrait is shown in frame d). And at

last, in the interval B > B4 the unstable equilibrium state of a saddle type like

in the frame a) arises again (see frame e). In the latter case forcing amplitude

becomes very small (it asymptotically vanishes when B → ∞), therefore it is

incapable to retain a soliton.

5.6 A periodic forcing

Consider now soliton dynamics in the nonstationary external field periodically

varying in time and space. A similar problem has been studied in Refs. [19, 30,

64, 68]. As has been shown in those papers, a periodic forcing can lead to both

dynamic and chaotic regimes of wave motion. Here we consider a model of forcing

which generalises the model studied in Ref. [64] and admits exact solutions. In

contrast with the Ref. [64], we do not use here again the approximation of either

soliton or external forcing by the Dirac delta-function and study only the dynamic

behaviour of a soliton in a periodically varying forcing.

Let us assume that in Eq. (5.1) the forcing function has the form:

f(x, t) = σF (t) sech2

[
x−

∫
S(t)dt

∆f

]
, (5.30)

where F (t) and S(t) are arbitrary functions of their argument, and σ is a real

parameter.

As has been shown in Ref. [92], the fKdV equation (5.1) with such forcing

function has the exact solution for any parameters ε and ∆f in the form of a
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soliton moving with the variable velocity S(t):

u(x, t) =
12β

α∆2
f

sech2

[
x−

∫
S(t)dt

∆f

]
, (5.31)

where σ = 12β/
(
εα∆2

f

)
, and S(t) = c+ 4β/∆2

f − F (t).

Let us choose, in particular,

F (t) =
εα

12β
∆2
f

(
1 + Ṽ sin εωt

)
, (5.32)

where Ṽ and ω are arbitrary real parameters; then solution (5.31) represents

a soliton moving with the mean velocity V as per Eq. (5.11) and periodically

varying component proportional to Ṽ cos (εωt):

Vtot = c+
4β

∆2
f

−
εα∆2

f

12β

(
1 + Ṽ sin εωt

)
. (5.33)

With the choice of F (t) as above, the forcing function has the same shape as in

Fig. 5.1, but now the amplitude of forcing function f(x, t) periodically varies in

time and the forcing moves with periodically varying speed. Note that in Ref.

[64] the authors considered variation of only forcing phase, whereas in our case

both the forcing amplitude and phase vary in time.

If ε � 1 is a small parameter as above and the initial perturbation has

the form of a KdV soliton (5.3), then from the slightly modified asymptotic

theory described in Section 5.3 we obtain very similar equations for the first- and

second-order approximations. To show this, let us make the transformation of

independent variables in Eq. (5.1) x̂ = x−
∫
S(t)dt, t̂ = t, then Eq. (5.1) reduces

to the form similar to Eq. (5.2) (the symbol ˆ is further omitted):

∂u

∂t
+ [c− S(t)]

∂u

∂x
+ αu

∂u

∂x
+ β

∂3u

∂x3
= ε

df(x)

dx
. (5.34)

In the presence of small external perturbation solitary wave solution (5.3) gradu-

ally varies, and its amplitude, half-width γ−1, and velocity become slow functions

of time T = εt, so that the soliton phase can be determined as in Section 5.2:

Φ = x− Ψ(T ) (cf. Eq. (5.4)), but with the periodically varying speed:

υ(T ) =
αA(T )

3
− 4β

∆2
f

+
εα

12β
∆2
f

(
1 + Ṽ sinωT

)
. (5.35)

The time dependence of soliton amplitude follows from the energy balance equa-

tion (5.7). Then carrying out the asymptotic analysis up to the second order on

the parameter ε, we eventually obtain the set of equations similar to Eqs. (5.12)
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and (5.17) with the only modifications caused by the periodic factor in front of

integrals:

a) b)

Figure 5.13: The phase space θ, Γ , T of the non-stationary dynamical system
(5.36), (5.37).

dγ

dT
=

2εα

3β

(
1 + Ṽ sinωT

)
e2θ

∞∫
0

qK

(e2θ + qK)2

q − 1

(q + 1)3dq, (5.36)

dθ

dT
= ∆V (T )γ + 4βγ3 − εα

3βγ

(
1 + Ṽ sinωT

)
·

∞∫
0

e2θ (1 + 2θ −K ln q)− qK

(e2θ + qK)2

q − 1

(q + 1)3 q
Kdq, (5.37)

where now

∆V (T ) = c− Vtot = − 4β

∆2
f

+
εα

12β
∆2
f

(
1 + Ṽ sinωT

)
.

There are no analytical solutions to this set of equations, but it can be solved

numerically, and a qualitative character of solutions can be illustrated by means

of three-dimensional phase space, where the third coordinate is the T -axis. Few

typical phase trajectories are shown in Fig. 5.13 for the positive and negative

forcing functions (cf. with the phase plane shown in Fig. 5.3). Due to oscillations

of forcing functions, the phase trajectories revolve around the unstable (frame a)

or stable (frame b) focus-type equilibria and displace along the T -axis. Trajec-

tories in frame (a) eventually become parallel to the T -axis; this corresponds to

solitary waves escaping from the forcing and uniformly moving with the constant

amplitudes and speeds. Trajectories in frame (b), in contrast, eventually con-
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verge to the equilibrium point corresponding to the solitary wave trapped by the

negative forcing. Such solitary wave ultimately moves synchronously with the

forcing having periodically varying amplitude and speed.

5.7 Results of numerical study

To validate the theoretical results obtained on the basis of asymptotic theory, we

undertook direct numerical calculations within the framework of original forced

KdV equation (5.1) with the different shapes of forcing f(x, t). Below we present

the most typical examples for the Gardner-type forcing considered in Section

5.5. In other cases the results obtained were qualitatively similar to presented

here. Numerical solutions were obtained by means of the finite-difference code

described in [115] and realised in Fortran.

First of all, it was confirmed that in all cases when the forcing is of positive

polarity, there is no trapped soliton moving synchronously with the forcing. Even

when a KdV soliton was placed initially at the centre of the hump-type forcing,

it eventually escaped from the forcing and moved independently. A hump-type

narrow forcing was capable to retain a KdV soliton only for while in agreement

with the analytical prediction – see the phase planes shown in Figs. 5.3a), 5.8,

and 5.10b). In the case of a wide forcing the situation becomes more complicated

and leads to the permanent generation of solitary waves at the rear slope of the

forcing. Below we describe in detail soliton interaction with the wide and narrow

forcing using as an example the Gardner-type forcing.

We considered solutions for B > 0 starting from small B = 0.012 when

the forcing represents a Π-shaped pulse as shown in Fig. 5.9a). According to

the asymptotic theory, such forcing leads to the unstable node/spiral on the

phase plane (see Fig. 5.10a), which corresponds to the generation of solitons

escaping from the forcing zone and moving to the right. However, when a soliton

emerging from a small perturbation escapes from the forcing zone, another soliton

is created, and the process is repeated many times. Moreover, because the forcing

is wide for such parameter B, several solitons can coexist within the forcing zone;

then some of them leave this zone while new solitons are generated on the left slope

of the forcing function. This was indeed observed, and results obtained are shown

in Fig. 5.14. As one can see from this figure, the initial small-amplitude bell-

shaped soliton at t = 0 starts to grow, but at the same time another perturbation

generates on the left slope of the forcing function. Very quickly the number of

solitons within the forcing reaches three, then one of them leaves the forcing zone

at t = 140 and simultaneously one more small soliton is generated at the left

slope of forcing. Then the second soliton leaves the forcing zone at t = 280 and
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Figure 5.14: Generation of solitons (blue lines) by wide forcing (red lines) in
the case of Gardner-type forcing (only a fragment of the spatial domain of total
length 4000 is shown). The numerical solution of Eq. 5.1 was obtained with the
following parameters α = 1, α1 = −0.5, β = 6, B = 0.012.

the process repeats. Thus, the forcing acts as a generator of infinite series of

random-amplitude solitons. The details of this and all subsequent processes can

been seen in the videos available at the website [42]. The analysis of the analytical
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Fig. 5.10a) and numerical results shown in Fig. 5.14 has been carried out. It was

confirmed that the range of the amplitudes of the numerically generated solitons

agrees well with the theoretically predicted, from A0 to 3.2 A0

When the forcing is relatively narrow, it can retain for a while only one soliton,

which after a few oscillations within the forcing zone, eventually escapes and

freely moves ahead. This is illustrated by Fig. 5.15. In this figure one can see

at t = 0 the KdV soliton (blue line) and the forcing (slightly taller pulse shown

by red line). In the coordinate frame where the forcing is in the rest, the KdV

soliton moves to the left first attaining the maximal deviation from the centre

at t ≈ 60; then it moves to the right attaining the maximal deviation from the

centre at t ≈ 280; then it moves again to the left, and so on. However, after

three oscillations back and force, it leaves the forcing zone after t = 1040 and

freely moves further as shown in the figure at t = 2400. These 3 oscillations and

the amplitude of the detached soliton are predicted theoretically and depicted

in Fig. 5.10b). It corresponds to the one of the curves on the phase plane

which describes a radiation from the soliton This situation is different when
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Figure 5.15: Three oscillations of initial KdV soliton (blue line at t = 0) and
its subsequent separation from the forcing zone at t > 1040. The Gardner-type
forcing is shown by red line at t = 0; dashed vertical line shows the position
of forcing maximum. The numerical solution was obtained with the following
parameters of Eq. 5.1 α = 1, α1 = −0.125, β = 6, B = 0.85, and L = 4000.

B > 1 and the forcing is negative (see Fig. 5.12). Among numerous situations
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Figure 5.16: Generation of a soliton (blue lines) by the negative forcing (red lines)
from a random numerical noise.

arising in this case we shall describe here the most typical scenarios occurring

at B = 12.5 and corresponding to the phase plane shown in Fig. 5.12d). In

this case there is a stable equilibrium state of the node type, which means that

a soliton can emerge from small perturbations under the influence of a forcing.

This was observed in numerical study with the zero initial condition as shown in

Fig. 5.16 at t = 0 (all subsequent numerical calculations were obtained with the

following parameters in Eq. (5.1): α = 6, α1 = 465.75, β = 1, B = 12.5, and

the total length of computational domain L = 1500). From a random numerical

noise a perturbation grows within the forcing zone and becomes well visible at

t = 0.1. Then it continues growing and developing into a soliton; this process is

accompanied by emission of a quasi-linear wave train. Ultimately the wave train

disappears, moving to the left and dispersing, whereas a soliton remains stable

after being captured at the centre of the forcing in accordance with the theoretical
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prediction shown in Fig. 5.12d) The amplitude of the generated soliton agrees

well with the amplitude in the stable focus point in the phase plane.

A similar situation occurs when, for the initial condition, a small-amplitude

soliton is placed within the forcing well. The soliton quickly evolves into the

stationary soliton captured in the centre of forcing and emits a quasi-linear dis-

persive wave train (see Fig. 5.17).

700 720 740 760 780

0.1

0.1

x

u

0t 

150t 

Figure 5.17: Formation of a stationary soliton (blue line at t = 150) by the
negative forcing (red lines) from a small-amplitude KdV soliton at t = 0. The
initial soliton was slightly shifted to the right from the centre of forcing well.

If, however, the amplitude of the initial soliton placed within the forcing zone is

big, then the soliton splits under the action of forcing, so that one of its portions

evolves into the stationary soliton captured in the centre of the forcing well,

whereas another portion forms a soliton with different parameters freely moving

with its own speed outside of the forcing zone. This process is accompanied by a

quasi-linear dispersive wave train (see Fig. 5.18). Such splitting and forming of a

secondary soliton is beyond the range of applicability of the asymptotic theory.

In the case when a KdV soliton was placed initially outside of the forcing zone, we

observed in numerical study both the reflection from the forcing and transition

trough the forcing, as the asymptotic theory predicts for the moderate and big

amplitude KdV solitons. Figure 5.19 illustrates the process of soliton reflection

when it approaches the forcing from the right; this corresponds to the reflecting

regime shown in Fig. 5.12d) on the right of the node. Because the forcing is

attractive, it generates a stationary soliton from a noise, as was described above

and shown in Fig. 5.16. Therefore the external soliton shown in Fig. 5.19

actually interacts with the forcing carrying a trapped stationary soliton. It is

clearly seen in this figure that while the external soliton approaches the forcing,
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Figure 5.18: Formation of the stationary soliton (blue line at t = 150) by the
negative forcing (red lines) from the big-amplitude KdV soliton at t = 0. The
initial soliton was slightly shifted to the right from the forcing centre.

a small-amplitude trapped soliton forms by t = 10. Then the external soliton

interacts with the forcing and soliton inside it and reflects back with a greater

amplitude.

A similar phenomenon occurs when a soliton approaches the forcing from the

left as shown in Fig. 5.20. In this figure one can see again that a stationary soliton

emerges within the forcing from a noise while the external soliton approaches the

forcing. Then the external soliton interacts with the forcing carrying the trapped

stationary soliton and reflects back with a smaller amplitude emitting a small-

amplitude wave in front of it. This corresponds to the reflecting regime shown in

the phase plane of Fig. 5.12d) – see the phase trajectories on the left of the node.

If the amplitude of external soliton is relatively big, then after reflection from the

forcing it breaks into several solitons as shown in Fig. 5.21. The amplitudes of se-

condary solitons are noticeably less than the amplitude of the initial soliton; this

agrees with the phase trajectories shown on the left from the node in the phase

plane of Fig. 5.12d). The process of soliton breakdown onto secondary solitary

waves after reflection from the forcing is not described by the asymptotic theory
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Figure 5.19: Interaction of external KdV soliton approaching from the right with
the negative forcing (red lines).

in its current form. When the amplitude of external KdV soliton is too big, then

the soliton simply passes through the forcing zone containing a stationary soliton

and emits quasi-linear wave train. After that the soliton freely moves ahead as

shown in Fig. 5.22. This agrees with the transient phase trajectories shown above

the node in the phase plane of Fig. 5.12d).
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Figure 5.20: Interaction of external KdV soliton approaching from the left with
the negative forcing (red lines).

5.8 Conclusion

In this Chapter we have revised the asymptotic theory developed by Grimshaw

and Pelinovsky with co-authors in the series of papers [62, 63, 64, 66, 121] to

describe the dynamics of solitary waves in the KdV-like equations. In those papers

only limiting cases were studied, either when the forcing is infinitely narrow in

comparison with the initial KdV soliton and can be approximated by the Dirac δ-

function, or vice versa, when the initial KdV soliton is very narrow (approximated

by the δ-function) in comparison with the forcing of KdV-soliton shape. In this

Chapter we consider an arbitrary relationship between the width of initial KdV
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Figure 5.21: Breakdown of an incident external KdV soliton into three solitons
after reflection from the negative forcing (red lines).

soliton and external forcing. We present several examples of forced KdV equation

which admit exact analytical solutions both stationary and non-stationary.

In the case of small-amplitude forcing we have presented the asymptotic anal-

ysis based on equations derived in the papers cited above and have shown that in

many cases solutions of approximate equations can be solved analytically, albeit

the solutions look very cumbersome. In the limiting cases of very narrow or very

wide forcing our results converge to those obtained in the papers by Grimshaw

and Pelinovsky[66]. In the meantime, we show that there are some physically

interesting regimes which were missed in their papers due to approximations of

soliton and forcing by the δ-function. In particular, the equilibrium state of

a stable focus in Fig. 5.3b) was mistakenly identified as a centre. Physically

this implies that a soliton could oscillate with an arbitrary amplitude around

the centre whereas in fact, the soliton quickly approaches a stable state moving

synchronously with the forcing. Secondly, the repulsive regimes, when external

solitary waves reflect from the forcing, were missed in that paper. Such regimes

are clearly seen in the right lower corners of phase plane shown in Figs. 5.3a),

5.8b), and 5.10a),b), as well as illustrated in Figs. 5.19 and 5.20. One of the

most interesting regimes discovered in this Chapter is the permanent generation

of solitary waves with a random amplitudes on a rear slope of a wide forcing as
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Figure 5.22: Transition of incident external KdV soliton through the negative
forcing (red lines).

shown in Fig. 5.14. This effect deserves further study which will undertaken in

the nearest future.

The results obtained are important in view of their applications to physical

phenomena occurring when external perturbations generate pressure fields capa-

ble of exciting and supporting solitary waves. This may happen, for example,

when moving atmospheric pressure generates surface waves, or a slow-moving

ship generates internal waves, or when atmospheric waves are generated behind

high obstacles (for example, mountain ridges or other elevations). A similar phe-

147



nomena can occur in the oceans when currents flow around underwater obstacles

and generate surface and internal waves. The results obtained are applicable to

other areas of physics, such as plasma physics and Bose–Einstein condensate,

where the highly universal forced Korteweg–de Vries equation is used.
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Chapter 6

CONCLUSION AND FUTURE

WORK

6.1 Research outcomes

The objective of this research was to study, investigate and develop new exact

solutions for classical problems in fluid mechanics, in particular the theories of

shallow water waves and solitons. Traditional methods of theoretical and mathe-

matical physics were used, based on the complex analysis technique, asymptotic

methods, classical and contemporary methods of mathematical physics, manip-

ulations with special functions. The numerical programs were adapted from the

known finite-difference algorithms [115] and implemented in Fortran, Matlab and

Wolfram Mathematica.

In Chapter 1, we studied the history of the problems under consideration and

reviewed the existing solutions and methods. Calculating the transformation of

surface waves over varying obstacles is a long-term problem that has grown more

pressing due to increasing technological and societal demands. Development of

advanced models to describe the influences of depth variations of the ocean or

of particular cross-sections of canals, and the effect of current speed on wave

transformation has many applications, from protecting coastlines or natural trea-

sures such as the Great Barrier Reef to the introduction of higher-level safety

mechanisms to marine vessels and offshore structures.

The results obtained in the Thesis are also of interest from the viewpoint of

modelling of astrophysical phenomena such as the Hawking radiation. In partic-

ular, it was rigorously shown in the Thesis that the amplitude of the scattered

wave decreases with the frequency as ω−1, whereas in the experiment [155] it was

only roughly estimated to be exponentially decreasing.

Whenever a wave passes over a surface, the amplitude and wavenumber of the
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transmitted wave may be significantly increased compared to the amplitude and

wavenumber of the incident wave. To calculate the impact of a transmitted wave

on offshore or coastal structures, one must closely analyse and take into account

the parameters of the transmitted wave. The complex nature of these effects

requires deep analytical modelling in addition to the numerical results. This

research looked at four vital considerations – the transformation of long linear

waves in an ocean with a variable depth; long wave scattering in a canal with

a rapidly varying cross-section; long linear surface waves on stationary currents

in a canal of constant depth and variable width; and the revision of the forced

Korteweg–de Vries equation to describe a resonant interaction of a solitary wave

with external pulse-type perturbations. White spaces in previous research were

noted.

In Chapter 2, it was considered and calculated the transformation of long

linear waves in an ocean with a variable depth. Here, the transformation coeffi-

cients (transmission and reflection) were considered as the functions of frequency

and the total depth drop for three typical models of bottom profile variation:

piecewise linear, piecewise quadratic and hyperbolic tangent profiles. We com-

pared the influence of the different bottom profiles on the wave transformation

and obtained exact analytical solutions for all three reference cases.

For all of these cases exact solutions were obtained, analysed and graphically

illustrated, allowing us to derive the transformation coefficients in the analytic

form and compare with the available data obtained for the particular models

either approximately or numerically. The results obtained were in agreement

with the energy flux conservation and Lamb’s formulae in the limiting case of zero

frequency. We also studied wave transformation (scattering) on the underwater

barriers and trenches of different shapes whose slopes can be described by the

similar functions (linear, piecewise quadratic, and tanh-functions) and compared

the obtained results.

In all cases we obtained qualitatively similar results which were in agreement

with those earlier obtained by different authors for some particular cases by the

approximate methods. In the limiting case, when the wave frequency goes to

zero, we obtained the same transformation coefficients which are predicted by

Lamb’s theory (1932) [88] for a step-wise bottom.

However, some quantitative differences in the transformation coefficients for

the different bottom profiles were found.

For wave scattering on underwater barriers or tranches it has been shown

that fewer oscillations in the transformation coefficients occur for the barriers

and tranches with linear slopes in comparison to the barriers and tranches with

the piecewise quadratic or tanh-slopes.

150



More complicated real bottom profiles can be approximated with higher ac-

curacy by the combination of linear, quadratic, and tanh-profiles similar to those

used in [129], where the bottom profile was approximated by a set of step-wise

functions. These results can be used, in particular, for the protection of beaches

against storm surges, swells and tsunami waves.

In Chapter 3 it was considered the case of long wave scattering in a canal with

a rapidly varying cross-section, where the scattering coefficients (transmission and

reflection) were calculated for all possible orientations of incident wave, including

background current (downstream and upstream propagation) and current type

(subcritical, transcritical, and supercritical). Sometimes, the over-reflection or

over-transmission can occur and the negative energy waves can appear. A spon-

taneous wave generation can happen in a transcritical accelerating flow, when the

canal narrowing leads to the increase of the background current. This resembles

a spontaneous wave generation on the horizon of an evaporating black hole due

to the Hawking effect.

In examining the classic problem of water wave transformation in a canal

of a variable cross-section, we studied the coefficients of transformation of long

linear waves in a canal of a rectangular cross-section with an abrupt change

of geometrical parameters (width and depth). The transmission and reflection

coefficients were found as functions of depth ratio and width ratio.

In the study of the subcritical and supercritical flows, we succeeded in calculat-

ing the transmission and reflection coefficients in the explicit forms as functions

of the depth drop and Froude number. The conditions for the over-reflection

and over-transmission have been found in terms of the relationships between the

Froude number and canal geometric parameters X and Y . It appears that it is

not possible to do the same for transcritical flows, at least within the framework

of the simplified model considered in this chapter, because of the complexities of

the transition through the critical point.

In Chapter 4, we analytically studied a scattering of long linear surface waves

on stationary currents in a duct of constant depth and variable width, assuming

that the background velocity linearly increases or decreases with the longitudinal

coordinate (gradual variation of duct width). This enabled an analytical solution,

calculating the scattering coefficients as functions of incident wave frequency for

all possible cases (sub-, super, and trans-critical currents). Both co-current and

counter-current wave propagation in accelerating and decelerating currents were

studied on a properly varying width to the canal, instead of the step-wise model

considered chapter 3.

The results obtained showed that the transformation coefficients can be found

in the exact analytical forms both for the co-current and counter-current wave
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propagation in gradually accelerating and decelerating currents, affecting not only

as a model of Hawking’s effect, but in application to real physical phenomena oc-

curring in currents in non-homogenous ducts, at least at relatively small Froude

numbers. When calculating the transformation coefficients of shallow water grav-

ity waves propagating on a longitudinally varying quasi-one-dimensional current,

we calculated analytically the scattering coefficients as functions of incident wave

frequency for accelerating and decelerating sub-, super-, and trans-critical cur-

rents, and all possible incident wave types.

Presented analysis pertains to the dispersionless case when the wavelengths of

all waves in the scattering process are far greater than water depth in the canal.

However, the wavelengths can be comparable with or even less than the charac-

teristic length of current inhomogeneity. In the long-wave limit, the scattering

coefficients were expressed through the simple algebraic formulae (in agreement

with the formulae derived in the previous chapter for the case of abrupt change

of canal cross-section).

The analysis was based on the fact that wavelengths of scattered waves drasti-

cally decrease in the vicinity of a critical point, where V (ξ) = 1. Here, either the

dispersion, or dissipation, or both these effects may play an important role. We

showed that in certain situations, viscosity can predominate over the dispersion.

Wave-current interaction is a contentious issue due to applications including the

natural processes occurring in oceans and as a model of physical phenomena re-

lating to the Hawking radiation in astrophysics [27, 29, 47, 73, 126, 131, 152,

153]. The influence of high-momentum dissipation on the Hawking radiation was

considered in astrophysical application [132]. This chapter led to the finding of

exactly solvable model, enabling us to construct analytical solutions and calculate

the scattering coefficients in the dispersionless limit.

In Chapter 5, we considered the nonlinear models of waves transformation and

revised the asymptotic theory developed by Grimshaw and Pelinovsky with co-

authors in the series of papers [62, 63, 64, 66, 121]. While these authors described

the dynamics of solitary waves in the KdV-like equations, their research was lim-

ited to when the forcing was infinitely narrow in comparison with the initial KdV

soliton and could be approximated by the Dirac δ-function, or when the initial

KdV soliton was very narrow (and approximated by the δ-function) in compari-

son with the forcing of KdV-soliton shape. In our research it was considered an

arbitrary relationship between the width of initial KdV soliton and external forc-

ing. There were presented also several examples of forced KdV equation which

admit exact analytical solutions both stationary and non-stationary.

For a small-amplitude forcing, we presented the asymptotic analysis based

on equations derived in the already mentioned papers and showed that in many
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cases solutions of approximate equations can be solved analytically, albeit cum-

bersomely. In the limiting cases of very narrow or very wide forcing our results

converge with those obtained by Grimshaw and Pelinovsky [66], but show some

physically interesting regimes missed in their paper due to approximation of the

soliton and forcing by the δ-function.

The results obtained are important in view of their applications to physical

phenomena occurring when external perturbations generate pressure fields capa-

ble of exciting and supporting solitary waves. Examples include when moving

atmospheric pressure or a slow-moving ship generates waves; when atmospheric

waves are generated behind high obstacles like a mountain ridge or when ocean

currents flow around underwater obstacles, generating various waves. The re-

sults are also applicable to other areas of physics, such as plasma physics and

Bose–Einstein condensate, where the highly universal forced Korteweg–de Vries

equation is used.

6.2 Future directions

Solving the questions raised in this research has created many new questions,

opening up great potential for future research that will have a tangible impact

on the physical world.

Regarding Chapter 2, more research is needed to validate and explore the

numerical models, but it is also vital that we apply this modelling to real-life

scenarios, especially in relation to dependence of wave transmission/reflection on

the parameters of the model.

The problems studied in chapters 3 and 4 need to be further generalized for

waves of arbitrary length taking into account the effect of dispersion, especially

for purely gravity waves where there is always one wave of negative energy for

which the flow is supercritical. This negative energy mode smoothly transforms

into the dispersionless mode when the flow increases. In such cases two other

upstream propagating modes disappear, and the dispersion relations reduce to

one. For the current study, it was too difficult to compare theoretical results of

this Chapter with the numerical and experimental data and this certainly requires

detailed analysis and comparison in the future.

One of the most interesting regimes discovered for the nonlinear modelling

and described in Chapter 5 was the permanent generation of solitary waves with

a random amplitudes on a rear slope of a wide forcing, which certainly deserves

further study in the near future.

In general this Thesis opens new perspectives for further research in funda-

mental and applied sciences, including study of a gravitational laser (wave am-
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plification in the vicinity of black holes), wave transformation in a nonuniform

ocean covered by ice, and solitary wave generation in a deep ocean by moving

sources, etc.
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APPENDICES

Appendix A: Derivation of time-averaged wave-

energy density for gravity waves on a background

flow

Here we present the derivation of the time averaged wave energy density of trav-

eling gravity surface wave on a background flow in shallow water when there is no

dispersion. In the linear approximation on wave amplitude the depth integrated

density of wave energy (“pseudo-energy” according to the terminology suggested

by [106]) can be defined as the difference between the total energy density of

water flow in the presence of a wave and in the absence of a wave (we remind the

reader that in such approximation the wave energy density is proportional to the

squared wave amplitude):

E =

〈 η∫
0

ρgz dz +
ρ

2

η∫
−h

(U + u)2 dz

− ρ

2

0∫
−h

U2 dz,

〉
, (6.1)

where the angular brackets stand for the averaging over a period. The first two

terms in the square brackets represent the sum of potential and total kinetic

energies, whereas the negative terms in the angular brackets represent the kinetic

energy density of a current per se. Removing the brackets and retaining only the

quadratic terms, we obtain (the linear terms disappear after the averaging over

time, whereas the cubic and higher-order terms are omitted as they are beyond

the accuracy in the linear approximation):

E =

〈
ρg

2
η2 +

ρ

2

0∫
−h

(U + u)2 dz +
ρ

2

η∫
−h

2Uudz − ρ

2

0∫
−h

U2 dz

〉

=
ρg

2

〈
η2
〉

+
ρh

2

〈
u2
〉

+

〈
ρU

0∫
−h

u dz + ρU

η∫
0

u dz

〉
. (6.2)
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In the last angular brackets the first integral disappears after averaging over a

period of sinusoidal wave, and the last integral for perturbations of infinitesimal

amplitude can be presented in accordance with the “mean value theorem for

integrals” as the product uη. Then, the energy density reads:

E =
ρg

2

〈
η2
〉

+
ρh

2

〈
u2
〉

+ ρU 〈uη〉 . (6.3)

Eliminating u with the help of Eq. (3.8), we obtain for the downstream and

upstream propagating waves

E =

(
ρg

2
+

ρ

2h
c2

0 ±
ρUc0

h

)〈
η2
〉

= ρg (1± Fr)
〈
η2
〉
, (6.4)

where sign plus pertains to the downstream propagating wave and sign minus –

to the upstream propagating wave.

Thus, we see that the wave energy density is negative when Fr > 1, i.e., when

a wave propagates against the current. In the meantime, the dispersion relation

in a shallow water can be presented as ω = c0|k|+U ·k, so that for the cocurrent

propagating wave with k > 0 we have ω = (c0 + U)k = c0k(1 + Fr), whereas

for the countercurrent propagating waves with k < 0 we have ω = (c0 − U)|k| =
c0k(Fr− 1) (see Eq. (3.6) and explanation of Fig. 3.4). Then the group velocity

Vg = dω/dk = c0(Fr − 1) is positive if Fr > 1 and negative if Fr < 1. Hence,

the wave energy flux for the negative energy waves in the supercritical case with

Fr > 1 is W ≡ EVg < 0 and directed against the group velocity.

Notice in the conclusion that the relationship between the wave energy and

frequency follows directly from the conservation of wave action density N (see

Ref. [98] and references therein):

N =
E

ω −U · k
=
E0

ω
, (6.5)

where E is the density of wave energy in the immovable coordinate frame (6.4)

where the water flows with the constant speed U, and E0 and ω = c0|k| are the

density of wave energy and frequency in the coordinate frame moving with the

water.
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Appendix B: Energy flux conservation

Let us multiply equation (4.5) by the complex-conjugate function ϕ and subtract

from the result complex-conjugate equation:

ϕ

(
∂

∂t
+ U

∂

∂x

)(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
− ϕ

(
∂

∂t
+ U

∂

∂x

)(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
=

c2
0U

[
ϕ
∂

∂x

(
1

U

∂ϕ

∂x

)
− ϕ ∂

∂x

(
1

U

∂ϕ

∂x

)]
. (6.6)

Dividing this equation by U and rearranging the terms we present this equation

in the form:

∂

∂t

[
ϕ

U

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
− ϕ

U

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)]
+

∂

∂x

[
ϕ

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
− ϕ

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
− c2

0

U

(
ϕ
∂ϕ

∂x
− ϕ∂ϕ

∂x

)]
= 0. (6.7)

If we denote

E =
i

U

[
ϕ̄

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
− ϕ

(
∂ϕ̄

∂t
+ U

∂ϕ̄

∂x

)]
, (6.8)

J =EU − i
c2

0

U

(
ϕ̄
∂ϕ

∂x
− ϕ∂ϕ̄

∂x

)
, (6.9)

then Eq. (6.7) can be presented in the form of the conservation law

∂E
∂t

+
∂J

∂x
= 0, (6.10)

For the waves harmonic in time, ϕ = Φ(x)e−iωt, both E and J do not depend on

time, and Eq. (6.10) reduces to J = const. Substituting in Eq. (6.9) written in

the dimensionless form solution (4.16) for ξ < ξ1 and solution (4.18) for ξ > ξ2,

after simple manipulations we obtain

J =
2ω̂

V1

(
1− |R|2

)
, ξ < ξ1; (6.11)

J =
2ω̂

V2

|T |2, ξ > ξ2. (6.12)

Equating J calculated in Eqs. (6.11) and (6.12), we obtain the relationship

between the transformation coefficients presented in Eq. (4.34).
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Using then solution (4.17) for ξ1 < ξ < ξ2, we obtain

J =2ω̂
∣∣B1w2(ξ2) +B2w3(ξ2)

∣∣2 − 2i(1− ξ2)
{
|B1|2

[
w′2(ξ2)w2(ξ2)−

w′2(ξ2)w2(ξ2)
]

+ |B2|2
[
w′3(ξ2)w3(ξ2)− w′3(ξ2)w3(ξ2)

]
+

B1B2

[
w′2(ξ2)w3(ξ2)− w2(ξ2)w′3(ξ2)

]
−

B1B2

[
w′2(ξ2)w3(ξ2)− w2(ξ2)w′3(ξ2)

]}
= const. (6.13)

It was confirmed by direct calculations with the solutions (4.16)–(4.18) that J is

indeed independent of ξ for given other parameters.

In a similar way, for the super-critical accelerating current one can obtain in

the intermediate interval ξ1 < ξ < ξ2

J =
2ω̂

ξ2

∣∣B1w̆1(ξ−2) +B2w̆3(ξ−2)
∣∣2 − 2i (ξ2 − 1)

ξ4

{
|B1|2

[
w̆′1(ξ−2)w̆1(ξ−2)−

w̆′1(ξ−2)w̆1(ξ−2)
]

+ |B2|2
[
w̆′3(ξ−2)w̆3(ξ−2)− w̆′3(ξ−2)w̆3(ξ−2)

]
+

B1B2

[
w̆′1(ξ−2)w̆3(ξ−2)− w̆1(ξ−2)w̆′3(ξ−2)

]
−

B1B2

[
w̆′1(ξ−2)w̆3(ξ−2)− w̆1(ξ−2)w̆′3(ξ−2)

]}
= const. (6.14)

Here the coefficients B1 and B2 should be taken either from Eqs. (4.59) and (4.60)

for the scattering of positive energy wave or from Eqs. (4.68) and (4.69) for the

scattering of negative energy wave.

The transformation coefficients R and T were derived in this Chapter in terms

of the velocity potential ϕ. But they can be also presented in terms of elevation

of a free surface η. Using Eq. (4.4) for x < x1 and definition of ϕ just after that

equation we obtain for a wave sinusoidal in space

(ω − k ·U1)η = khu = ihk2ϕ. (6.15)

Bearing in mind that according to the dispersion relation ω − k ·U1 = c0|k|,
we find from Eq. (6.15)

ϕ = −i
c0

h|k|
η = −i

c0(c0 ± U1)

hω
η, (6.16)

where sign plus pertains to co-current propagating incident wave and sign minus

– to counter-current propagating reflected wave.

Similarly for the transmitted wave for x > x2 we derive

ϕ = −i
c0(c0 + U2)

hω
η. (6.17)

Substitute expressions (6.16) and (6.17) for incident, reflected and transmitted
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waves into Eq. (4.34) and bear in mind that R ≡ ϕr/ϕi, T ≡ ϕt/ϕi, and ω and

c0 are constant parameters:

V2

[
(1 + V1)2 − (1− V1)2 |Rη|2

]
= V1 (1 + V2)2 |Tη|2, (6.18)

where

Rη ≡
ηr
ηi

=
1 + V1

1− V1

R, and Tη ≡
ηt
ηi

=
1 + V1

1 + V2

T. (6.19)

In such form Eq. (4.34) represents exactly the conservation of energy flux (see

[24, 98]).

Appendix C: Derivation of matching conditions

for equation (4.8)

To derive the matching conditions in the point ξ1, let us present Eq. (4.8) in two

equivalent forms:[(
V − 1

V

)
Φ

]′′
−
[(

1 +
1

V 2

)
V ′Φ

]′
− 2 i ω̂Φ′ − ω̂2

V
Φ = 0. (6.20)

[(
V − 1

V

)
Φ′
]′
− 2 i ω̂Φ′ − ω̂2

V
Φ = 0, (6.21)

Let us multiply now Eq. (6.21) by ζ = ξ−ξ1 and integrate it by parts with respect

to ζ from −ε to ε:{
ζ
[(
V − 1

V

)
Φ′ − 2 i ω̂Φ

]
−
(
V − 1

V

)
Φ
}∣∣ε
−ε +

ε∫
−ε

[(
1 + 1

V 2

)
V ′ + 2 i ω̂ − ω̂2

V
ζ
]
Φ dζ = 0.

(6.22)

In accordance with our assumption about the velocity, function V (ζ) is piecewise

linear, and its derivative is piece-constant. Assuming that function Φ(ζ) is limited

on the entire ζ-axis, |Φ| ≤ M , where M < ∞ is a constant, we see that the

integral term vanishes when ε→ 0. The very first term, which contains ζ in front

of the curly brackets {. . .}, also vanishes when ε→ 0, and we have[(
V − 1

V

)
Φ

]∣∣∣∣ε
−ε

= 0. (6.23)

This implies that Φ(ζ) is a continuous function in the point ζ = ζ1.

If we integrate then Eq. (6.20) with respect to ζ in the same limits as above,

159



we obtain: [(
V − 1

V

)
Φ′ − 2 i ω̂Φ

]∣∣∣∣ε
−ε
− ω̂2

ε∫
−ε

Φ(ζ)

V (ζ)
dζ = 0. (6.24)

Under the same assumptions about functions V (ζ) and Φ(ζ), the integral

term here vanishes when ε→ 0 and we obtain:[(
V − 1

V

)
Φ′ − 2 i ω̂Φ

]
−ε

=

[(
V − 1

V

)
Φ′ − 2 i ω̂Φ

]
ε

. (6.25)

Due to continuity of functions V (ζ) and Φ(ζ) in the point ζ = ζ1, we conclude

that the derivative Φ′(ζ) is a continuous function in this point too. The same

matching conditions can be derived for the point ξ2 as well.

Appendix D: The transformation coefficients in

the long-wave limit

The long-wave approximation in the dispresionless case considered here corre-

sponds to the limit ω → 0. In such a case the wavelength of each wave is much

greater than the length of the transient domain, λ � L, so that the current

speed transition from the left domain ξ < ξ1 to the right domain ξ > ξ2 can be

considered as sharp and stepwise. Then using the relationships (see [95])

2F1(a, b; b; s) = (1− s)−a and s 2F1(1, 1; 2; s) = − ln (1− s),

we can calculate functions (4.19) and (4.22), as well as (4.50) and (4.53), and

their derivatives and obtain in the leading order in ω̂ the following asymptotic

expressions (bearing in mind that ζ = ξ2 and η = ξ−2):

w2(ζ) = − ln (1− ζ), w′2(ζ) =
1

1− ζ
, w3(ζ) = 1, w′3(ζ) = O(ω̂2),

w̃2(ζ) = − ln (1− ζ), w̃′2(ζ) =
1

1− ζ
, w̃3(ζ) = 1, w̃′3(ζ) = O(ω̂2),

w̆1(η) = 1, w̆′1(η) = − i ω̂

2

1

1− η
, w̆3(η) = 1, w̆′3(η) =

iω̂

2η
,

ŵ1(η) = 1, ŵ′1(η) =
i ω̂

2

1

1− η
, ŵ3(η) = 1, ŵ′3(η) = − iω̂

2η
.

Using these formulae, one can readily calculate the limiting values of trans-

formation coefficients in the long-wave approximation when ω̂ → 0. Their values

are presented in the corresponding subsections.
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