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A B S T R A C T   

Forecasting accurately suspended sediment load (SSL) in the basin is one of the most critical issues for river 
engineering, environment, and water resources management which effectively reduces flood damages. In this 
study, a new multi-criteria hybrid expert system comprised of empirical wavelet decomposition (EWT) integrated 
with Encoder-Decoder Bidirectional long short-term memory (EDBi-LSTM), supported by five feature selection 
(FS) methods was developed for the first time to forecast daily SSL at two study sites (Bamini and Ashti) of 
Godavari river basin, India. The employed FS schemes are including Boruta-Random forest (BRF), simulated 
annealing (SA), Relief algorithm, Ridge regression (RR), and Mutual information (MI) where the BRF coupled 
with EWT and EDBi-LSTM (i.e., EWT-EDBi-LSTM-Boruta) is identified as the main forecasting paradigm. Here the 
original SSL signals in the monsoon season (2001–2015) as the only input information were considered to 
forecast SSL events at a daily time scale in both study zones. The SSL signals were decomposed using the EWT 
technique considering the significant antecedent time-lagged inputs based on partial auto-correlation function 
(PACF). In the next stage, five FS strategies were addressed to specify the significant sub-sequences to reduce 
computational cost and enhance forecasting accuracy. Besides, the extreme gradient boosting (XGB) approach 
was implemented to compare the potential of the hybrid EDBi-LSTM and standalone counterpart models for both 
study sites. According to several goodness-of-fit indices and validation tools, the outcomes at the Bamini and 
Ashti sites demonstrated that the EWT-EDBi-LSTM-Boruta as the main model, achieved the best accuracy, followed 
by EWT-XGB-Boruta, EWT-EDBi-LSTM-SA, and EWT-XGB-SA, respectively. Comparing all the hybrid models showed 
that the BRF, SA, and RR strategies performed better in integration with machine learning (ML) models.   

1. Introduction 

River systems are frequently regulated for numerous reasons, such as 
flood control, navigation, irrigation, water supply, hydropower 

generation, and others (Evaristo and McDonnell, 2019). River systems 
are also employed to dispose of wastewater and rainwater from textiles, 
pharmaceuticals, and mills (Awadh and Yousif, 2021; Bhagat et al., 
2018; Bhagat and Tiyasha, 2013; Yaseen et al., 2019b). Water treatment 
using various civil structures and hydrological control systems is 
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typically required to effectively exploit a river system’s resources and 
mitigate the associated risks (Kisi et al., 2019; Yaseen et al., 2019a). An 
excessive amount of silt hampers the operation of hydraulic machinery 
in the water (Betrie et al., 2011; Walling and Collins, 2008). High 
sediment concentrations also affect the general quality of water (Tao 
et al., 2019). As a result, resolving such issues necessitates predicting 
suspended loads which account for approximately 95% of total sediment 
loads (Simons and Şentürk, 1992). Considering the complex geometry 
of a river system which governs flow turbulence structure and water 
velocity and controls the sediment-carrying capacity of water that enters 
the river system (Armanini et al., 2015), the development of a robust 
model for the prediction of suspended sediment transport (SST) is still a 
problem. 

Sediment transportation is on of the major contributor in enhancing 
environmental pollution, and tracking the erratic pattern of sediment 
transport is still lacking due to the integrated effects of known and un-
known parameters having complex behavior that influence the transport 
process (Shojaeezadeh et al., 2018). There are no accurate and complete 
theoretical equations that can capture the two-phase concepts of fluid 
and SST, hydrologic research has traditionally depended on experi-
mental-based similitude analysis. Sediment transportation in a river 
basin is related to fluid-sediment interaction and other complicated 
phenomena. In addition, the properties of flow and sediment are 
considered the essential physical parameters of sediment transport. 
Turbulence flow keeps sediment suspended due to threshold sediment 
speed. From the initial detachment of sediment particles through the 
arrival of sediment at a place of deposition, a combination of highly non- 
linear and interacting mechanisms contribute to this complexity at every 
stage of the transportation process. To calculate sediment transport 
variables, various experimental and analytical techniques have been 
developed (Li and Li, 2018). The geometric boundary and its water flow 
resistance, sediment transport rate, and sediment mass conservation 
have been described using techniques. The main aim of this paper is to 
apply the important artificial intelligence (AI)-based models developed 
to model suspended sediment in a river system. After studying the 
relevant literature on SST, the AI-based models are discussed in the next 
section. 

The operation of dams, canals, and diversions requires accurate 
prediction of suspended sediment levels in water bodies (Azamathulla 
et al., 2012; Cigizoglu, 2004; Suif et al., 2016). Erosion and sediment 
transport are the climate-induced main cutting edge environmental and 

hydrological research challenges for decades.; therefore, many studies 
have been focused on river sediments and their impact on global surface 
water resource consumption (Greig et al., 2005; Malagó et al., 2017; 
Sinha et al., 2019). Deforestation and overgrazing contribute in eroding 
the soil surface and affect the sediment transport dynamics in river basin 
systems. Considering the drawback of deterministic physical and 
analytical models, the stochastic nature of river flow, initial and 
boundary conditions, and non-stationarity, have led to the development 
of AI-based models that can handle nonlinear relationships between 
water flow and environmental parameters for easy prediction of riv-
er sediment load. Given the numerous impacting factors, we must 
approach suspended sediment prediction as a complicated and 
nonlinear process for this article (Bhagat et al., 2020). These factors can 
be generally divided into four categories based on their origin (Tao 
et al., 2021a): (i) meteorological origin, (ii) hydrological origin, (iii) 
geological origin, and (iv) watershed geomorphology. This classification 
can inform our understanding of the causal inference between SST and 
its related predictors. 

Sediment transport is still a trending topic due to its interdisciplinary 
nature with various approaches developed for its prediction in rivers 
(Williams and Berndt, 1976). Physical or deterministic methods can 
be time-consuming and inaccurate as they may incorporate initial or 
boundary conditions that differ widely for different watersheds (Afan 
et al., 2016). However, the nonlinear and intricate nature of SST in river 
bodies provides those such approaches can also be over-parameterized. 
Although such spatial data can be extracted from satellite or other 
sources (remotely sensed), it is not easy to obtain them at the correct 
level of initial condition for diverse watersheds, and as such, they may 
require calibration before being utilized as input for a physical model 
(Akay et al., 2008; Shamaei and Kaedi, 2016). Hence, understanding the 
physical processes involved in SST to water bodies is critical for the 
practical deployment and implementation of sediment mitigation tech-
niques (Adams et al., 2018; Sadeghi and Singh, 2017). The problems 
with active storage and estimating the life of a reservoir have been 
documented in studies (De Vente et al., 2005). Reservoir sedimentation 
is still a global challenge that, if solved, might have global implications. 
Another issue is that reservoir sedimentation is a complicated transport 
mechanism in general (Verstraeten et al., 2003). The simulation of the 
behavior of SSL in rivers has traditionally relied on either basic statis-
tical or numerical models (such as finite-difference approaches and 
sediment rating curves (SRC)) (Nguyen et al., 2009; Walling, 1977). 

Nomenclature 

AI Artificial intelligence 
ANN Artificial neural network 
BRF Boruta-Random forest 
DT Decision tree 
EDBi-LSTM Encoder-Decoder Bidirectional long short-term memory 
EWT Empirical wavelet transform 
FL Fuzzy logic 
FS Feature selection 
g/L Gram per litre 
GBT Gradient boosting tree 
GRB Godavari river basin 
KGE Kling-Gupta efficiency 
km Kilometre 
LSTM Long short-term memory 
m Metre 
MDA Mean decrease accuracy 
MI Mutual information 
ML Machine learning 

mm Millimetre 
NSE Nash–Sutcliffe efficiency 
oC Degree Celsius 
OOB Out-of-bag 
PACF Partial auto-correlation function 
R Correlation coefficient 
RAE Relative absolute error 
REB Residual error band 
RFS Relief feature selection 
RLU Rectified linear unit 
RMSE Root mean square error 
RNN Recurrent neural network 
RR Ridge regression 
SA Simulated annealing 
SRC Sediment rating curve 
SSL Suspended sediment load 
SST Suspended sediment transport 
SVM Support vector machines 
U95% Uncertainty coefficient with 95% confidence level 
XGB Extreme gradient boosting  
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However, AI or machine learning (ML) models have recently emerged as 
approaches that operate by combining data mining approaches and soft 
computing methods to produce good performances, particularly in 
simulating nonlinear systems associated with hydrological processes in 
a bid to address water resources problems (Khosravi et al., 2019; 
Zounemat-Kermani et al., 2018). Given recent advances in AI models 
and their applications in predicting sediment transport in river basins, it 
is vital to establish a fresh ground to build on past and current progress 
on AI-based models. Researchers have consistently (Baniya et al., 2019; 
Fadaee et al., 2020; Sharafati et al., 2021; Shiri and Kişi, 2012) used AI- 
based models for SSL prediction. For example, the prediction of SSL use 
in artificial neural networks (ANN) in Cambodia has been reported 
(Melesse et al., 2011). The implemented model’s capability was 
compared to that of some non-linear approaches, and the results showed 
satisfactory performance of the ANN model. To evaluate SSL in the 
Kaoping river basin, researchers used power regression, linear regres-
sion, ANN, and support vector machines (SVM) as the prediction models 
(Chiang and Tsai, 2011). The results demonstrated that the SVM out-
performed the ANN and other regression techniques used in the study. 
At Kasol, India, ANN, fuzzy logic (FL), and decision tree (DT) approaches 
like M5 and RepTree were employed to predict suspended sediment (SS) 
(Senthil Kumar et al., 2012). According to the findings, the M5 strategy 
performed better than the other methods used. The performance of the 
M5 DT and wavelet regression model-based model was compared to the 
performance of ANN models, and the performance of the M5 DT and 
wavelet regression model-based strategy was found to be better than 
that of ANN (Goyal, 2014). Another study reported the use of ANN 
to estimate weekly sediment load. The determined and predicted sedi-
ment load values were correlated with the results, so the study recom-
mended the ANN-based model for reliable SSL prediction (Hassan et al., 
2015). A two-stage modeling technique was used to deal with the 
Spatiotemporal variance associated with SSL (Nourani et al., 2016). The 

strategy analysis revealed that combining SVM and spatial statistics 
techniques gave better and more accurate SSL simulation and pre-
diction. More AI models for predicting sediment transport in rivers have 
been developed and their potential has been validated (Buyukyildiz and 
Kumcu, 2017; Hassanpour et al., 2019; Khosravi et al., 2018). 

Even though AI models for modeling SSL transport in rivers have 
been implemented in several ways, the introduced approaches have 
several drawbacks, such as local minima entrapment, internal parame-
ters modification, model flexibility, etc. Furthermore, the stochasticity 
of the examined river’s “catchment” can add to the difficulty of the -
modeling process. Therefore, the search for novel robust, and reliable 
models is always the interest of hydrologists as such models will ensure 
better river engineering and sustainability. 

The main aim of this research is to provide state of the art multi- 
strategy hybrid expert system consisting of the EWT decomposition 
technique with five FS approaches (i.e., BRF, SA, RR, relief algorithm, 
and mutual information) and two advanced ML methods (EDBi-LSTM 
and XGB) to forecast the daily SSL (during 07/01/2001–31/10/2015) in 
two study sites of Godavari river basin, India. Unlike the previous 
literature, which focuses on the individual enhancing strategy in the 
hybrid forecasting ML-based models, we investigated several powerful 
FS approaches to evaluate the accuracy enhancement and computa-
tional cost reduction compared to the hybrid models with no FS and 
standalone counterpart models (EDBi-LSTM and XGB). The most sig-
nificant antecedent time-lagged inputs applied in the EWT decomposi-
tion procedure were extracted by the PACF method. The effectively 
filtered sub-sequences by the FS approaches were used to feed the ML 
models. The selected case study in the Godavari river concerning the 
high signal fluctuations related to sediment data in the monsoon seasons 
can appropriately prove the actual robustness of the developed fore-
casting hybrid models. 

Fig. 1. The location map of study synaptic sites on GRB, India.  
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2. Material and methods 

2.1. Study area and statistically data description 

Fig. 1 shows the location map of the Godavari river basin (GRB) 
along with the two study sites, i.e., Ashti and Bamini, selected for daily 
suspended sediment load (SSL) forecasting using the proposed hybrid 
expert system. The GRB (longitude 73◦ 24′ 00′’ to 83◦ 07′ 00′’ E, and 
latitude 16◦ 19′ to 22◦ 34′ 00′’) originates from Trimbakeshwar village 
of Nashik district of Maharashtra, India. It covers an area of 312812 km2, 
approximately 9.5% of the total catchment area, with a length of 1465 
km. The elevation of the basin ranges from 246 m to 1677 m and spreads 
over the states of Maharashtra (48.6%), Andhra Pradesh (23.4%), 
Madhya Pradesh (10.0 %), Chhattisgarh (10.9%), Orissa (5.7%), 

Karnataka (1.4%), and Puducherry (0.001%). It flows from the southeast 
direction and falls into the Bay of Bengal. The average annual rainfall in 
the entire GRB varies from 755 mm to 1531 mm. Most (84%) of it is 
received during the southwest monsoon (June–September). The mean 
minimum and maximum air temperature fluctuate from 20.63 ◦C to 
33.04 ◦C. The major tributaries of the GRB are Pranhita, Wainganga, 
Wardha, Penganga, Maner, Manjira, Pravara, Purna, Mula, Indravati, 
and Sabari. Table 1 provides information about the geographical co-
ordinates of the study sites and the length of data. 

The monsoon season daily SSL data for 15 years (July 1, 2001- 
October 31, 2015) were acquired from the India-WRIS (Water Re-
sources Information System). The available data was partitioned into 
two sets: (i) From July 1, 2001, to October 31, 2010, for training, and (ii) 
For testing the duration from July 1, 2011 to October 31, 2015 is 

Table 1 
Geographical coordinates of the two understudy stations in the Godavari river basin (GRB) and descriptive statistics of daily suspended sediment load during 
(2010–2015).  

Ashti Latitude (N) = 19◦ 41′ 04′’, Longitude (E) = 79◦ 47′ 10′’, and Elevation (m) = 141.42 
Bamini Latitude (N) = 19◦ 48′ 47′’, Longitude (E) = 79◦ 22′ 52′’, and Elevation (m) = 157.97 
Metric Ashti Bamini 

Training 
(2001–2010) 

Testing 
(2011–2015) 

Training 
(2001–2010) 

Testing 
(2011–2015) 

Minimum  0.0010  0.0150  0.000  0.020 
Maximum  3.940  1.200  4.728  2.000 
Mean  0.2536  0.1660  0.2378  0.2795 
Std. deviation  0.2911  0.1632  0.4578  0.1645 
Skewness  3.597  2.164  4.248  3.500 
Kurtosis  27.62  6.338  23.67  29.72  

Fig. 2. Real time seasonal signals of SSL for Bamini and Ashti sites.  
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selected. The seasonal variation of SSL time-series data is illustrated in 
Fig. 2, while Table 1 summarizes the data’s basic statistics during 
training and testing periods. 

2.2. Empirical wavelet decomposition (EWT) 

This paper used the Empirical Wavelet Transform (EWT) to decom-
pose a time series of suspended sediment load. According to Jerone 
Gilles’s (2013) and Hu and Wang’s (2015) EWT approach is a revolu-
tionary strategy for removing the stochastic volatility inherent in the 
original time series data (Gilles, 2013; Hu and Wang, 2015). Only the 
important components of the original suspended load series are 
retrieved during this operation. The EWT approach is based on resilient 
pre-processing of the peak frequency component followed by maxima- 
based spectrum segmentation, which constructs a matching wavelet 
filter band (Park et al., 2019). The EWT approach finds and extracts time 
series data’s inherent modes. This procedure introduces a unique way of 
constructing a family of wavelets that represents and decomposes the 
processed data signal into a finite number of modes. The algorithm for 
decomposing signals with EWT is as follows (Liu et al., 2021; Tao et al., 
2021b):  

1- Determine the Fourier spectrum F(w) of a coordinate series × by 
examining the frequency spectrum x(t) with the deformation 
simulation.  

2- The boundary of the Fourier spectrum Ω = {ωn}n=0, 1,⋯,N is 
determined by its segmentation. 

One way to decompose a Fourier spectrum [0, π] is to look at it in 
pairs of adjacent subsets (n). In this case, ω0 = 0 and ωn = π.  

3- Following that, low-pass and band-pass filters are constructed. The 
empirical scaling function On(ω) and the empirical wavelet function 
ψn(ω) are denoted by eq. (1) and (2), respectively. 

On(ω) =

⎛

⎜
⎜
⎜
⎜
⎝

1; |ω| ≤ ω1 − τ1

cos
[

π
2

β
(

1
2τ1

(|ω| − ω1 + τ1)

)]

; ω1 − τ1 ≤ |ω| ≤ ω1 + τ1

0; others
(1)   

Here, ω is the frequency, ωn is the nth border frequency, τ is the 
parameter that prevents two continuous transformations from over-
lapping, and β(x) = x4(35 − 84x+70x2 − 20x3).

4- Different modes are extracted using empirical scale and empirical 
wavelet functions, and the resultant scale coefficient is the inner product 
of the scale function and the observed data. The coefficient is depicted in 
Eq. (1). Additionally, the empirical wavelet coefficients are expressed as 
the inner product of the empirical wavelet function and the measured 
data: 

Wε
f (0, t) = 〈f ,O1〉 =

∫

f (τ)O1(τ − t)dτ = F− 1(ω)[f (ω)Ô1(ω)] (3)  

Wε
f (n, t) = 〈f ,ψn〉 =

∫

f (τ)ψn(τ − t)dτ = F− 1(ω)[f (ω)ψ̂ k(ω)] (4) 

Here, τ is the time node; O1(t) and ψn(t) are the empirical scaling and 
empirical wavelet functions, respectively; Ô1(ω) and ψ̂ k(ω) are the 
Fourier transforms of O1(t) and ψk(t), respectively; and O1(τ − t) and 
ψk(τ − t) are the conjugate complex numbers of O1(τ − t) and ψk(τ − t), 
respectively. 

Finally, the phrase for reconstructing original data is as follows: 

f (t) = W(0, t)*O1(t)+
∑K

n+1
W(n, t)*ψk(t) (5) 

Convolution is indicated by the symbol *. As a result, the EWT 
decomposition has the following IMF (intrinsic mode function): 

f0(t) = W(0, t)*O1(t) (6)  

f1(t) = W(i, t)*ψi(t) (7)  

2.3. Boruta-random forest feature selection 

The stage of optimal feature selection is critical for implementing ML 
algorithms in modeling nonlinear hydrological processes, and this issue 
has been tackled by the Boruta-random forest (BRF) algorithm for 
feature selection (Kursa et al., 2010). The BRF algorithm computes the 
Z-scores for each input predictor concentrating on the shadow property. 
The distribution of Z-score metrics exposes the basic features of the 
predictors (Kursa et al., 2010). Many successful applications of the BRF 
algorithm have been found in different domains (Ahmed et al., 2021; 
Jamei et al., 2022b; Leutner et al., 2012; Li et al., 2016; Lyu et al., 2017; 
Prasad et al., 2019). The development of the BRF algorithm involves the 
following major steps (Kursa and Rudnicki, 2010):  

1. 1 To start, it randomizes the input data set by making scrambled 
(shadow) duplicates of all features.  

2. Compute the mean decrease accuracy (MDA) for each feature trained 
using a random forest classifier on the larger data set. The MDA is 
calculated by the following eq. (Hur et al., 2017; Strobl et al., 2008): 

MDA =
1

mtree

∑mtree

m=1

∑
t∈OOBI(yt = f (xt)) −

∑
t∈OOBI

(
yt = f

(
xn

t

))

|OOB|
(8) 

In which OOB represents out-of-bag (i.e., the prediction error for 
each of the training trials aggregated by bootstrap), whereas (yt = f(xt))

and (yt = f(xt)) signify the predicted values before and after permuta-
tion, separately. Additionally, I(•) designates the indicator function. 

ψn(ω) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1; ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos
[

π
2

β
(

1
2τn+1

(|ω| − ωn+1 + τn+1)

)]

; ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
[

π
2

β
(

1
2τn

(|ω| − ωn + τn)

)]

; ωn − τn ≤ |ω| ≤ ωn + τn

0; others

(2)   
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3. Calculate the Z-score for each iteration (i.e., determines a genuine 
feature is more essential than the best of its shadow features and 
repeatedly eliminate features supposed to be very irrelevant): 

Z − score =
MDA
std

(9) 

Here, std = standard deviation of accuracy losses; after that, the 
maximum Z-score for duplicate attributes (MZSA) was computed.  

4. If Z-scores < MZSA, the inputs are tagged “unimportant” and 
disconnected permanently until inputs with Z-scores > MZSA are 
designated “Confirmed.”.  

5. To end, the method terminates when all features have been validated 
or the required number of random forest iterations has been reached. 

2.4. Relief feature selection 

Kira and Rendell (1992) discovered the concept of the relief feature 
selection (RFS) approach for eliminating redundant and irrelevant fea-
tures from the data set in simulating the classification and regression 
problems. This way reduced the computational cost, overfitting, 
complexity, and acceptable accuracy based on minimum features. Based 
on the relationship among the created model, the RFS methods are of 
three types (i) filter, (ii) wrapper, and (iii) embedded (Urbanowicz et al., 
2018). It is an iterative non-deterministic procedure that randomly picks 
a subset of training samples in the feature space to capture the degree of 
relevancy among the elected features and target. The fundamental 
concept of the RFS method is to govern the important weight of each 
nominated feature in the sampled instance to evaluate the unique ability 
among the class labels. Additionally, the more positive weights, the 
more predictive attributes (Malik and Yadav, 2021). The application of 
the RFS involves the following steps: 

Fig. 3. The internal structure of the (a) LSTM, (b) Bi-LSTM, and (c) EDBi-LSTM models. Note: ht− 1, and Ct− 1 designates the hidden state output and network memory 
unit at the previous time step (t − 1). 

M. Jamei et al.                                                                                                                                                                                                                                  



Ecological Indicators 153 (2023) 110478

7

Step-1: Start all feature weights (wi = 0). 
Step-2: Iteratively select a random set of instances from the training 
data or in each instance sample and assume the number of nearest 
neighbor samples (k). 
Step-3: Calculate the Euclidean distance between desired feature 
and target using the k-nearest neighbor for each class and display the 
allocated maximum weight. 
Step-4: Iteratively updates the weights of ith attributes in such a way 
as to find the nearest Hit (identical class) and nearest Miss (opposite 
class) instances for the examined samples as (Amjady and Keynia, 
2009): 

wi = wi +
⃒
⃒xi − nearestMissix

⃒
⃒ −

⃒
⃒xi − nearestHitix

⃒
⃒, i = 1, 2,⋯, I (10)  

where, xi = ith attributes of the selected samples x, and I = the number of 
candidate input features. 

Step-5: Standardize the weight score values, average the updated 
weights in all iterations, and attain the final weight value. As a rule of 
thumb, the value of k can be obtained based on the number of data 
under training and obtained using the following expression (Amjady 
and Keynia, 2009): 

k = Round(log2(N)) (11)  

where, Round(.) denotes a function that rounds the real number to the 
closest integer value, and N = the number of samples or training 
patterns. 

2.5. Simulated annealing (SA) feature selection 

The simulated annealing (SA) algorithm for feature selection is a 
non-deterministic population-based approach used to find a better so-
lution for an optimization problem (Jeong et al., 2016). Over time, this 
algorithm received many applications in several fields (Ali et al., 2021; 
Debuse and Rayward-Smith, 1997; Meiri and Zahavi, 2006). The 
execution of SA includes the following steps:  

1. Create an appropriate random solution in the primary state.  
2. Calculate the cost in step (1) by employing the cost function.  
3. Further, calculate a random neighboring solution.  
4. Compute the cost for the above solution in step (3).  
5. If the cost(a) > cost(b), produce a new solution; otherwise, go to step 

(6).  
6. Repeat steps (3–5) until an optimal solution is exposed. 

It should be mentioned that the main tuning parameters for this type 
of feature selection are population, maximum iteration, initial temper-
ature, temperature reduction rate, and desired feature number. 

2.6. Ridge regression (RR) feature selection 

The ridge regression (RR) method of feature selection was intro-
duced by Hoerl and Kennard (1970) to handle collinearity problems, 
which may happen in moderate, exact, complete, and severe collinearity 
amongst highly correlated regressors or predictors. Considering a set of k 
features with N observtaions, each is standardized with zero mean and 
variance of one. The cost function for RR is employed to estimate the 
robust features using the following expression (Jamei et al., 2022a): 

min(ω0 ,ω)

[
1

2N
∑N

i=1

(
yi − ω0 − xT

i ω
)2

+
λ
N

R(ω)
]

(12) 

In which, ω represents (ω1, ω2, …,ωκ) model parameters; R(ω) de-
notes a penalty term regulated by the λ; while 

∑N
i=1

(
yi − ω0 − xT

i ω
)2 

designates the square loss term. The ridge-regression penalty term (aka 
L2 norm) is written as(Shahsavar et al., 2021): 

R(ω) =
1
2
‖ω‖

2
2 =

1
2
∑κ

ρ=1
ωρ2 (13) 

The penalty term of the RR shrinks the regression coefficients size 
whereby a multidimensional sphere characterizes the constraint region; 
hence, the elliptical contours can intersect anywhere on the sphere. As a 
successor algorithm of the ordinary least squares regression, the RR 
disables the collinearity problems by penalizing the least-squares loss on 
the regression coefficients by an L2 penalty (Wu, 2020). 

2.7. Mutual information 

Mutual information is a measure of information that is used to 
quantify the shared information between two random variables. It may 
also be used to determine the correlation between two random variables. 
Mutual information is derived from the idea of information entropy. The 
information entropy of random variables measures their uncertainty 
(Kwak and Choi, 2002). The random variable X’s entropy is given as 
(Vergara and Estévez, 2014): 

S(X) = −
∑

x∈X
P(x)logP(x) (14) 

Here, P(x) denotes the probability of the variable. The entropy of 
variables is only connected to their distribution, not to the variables 
themselves. As a result, interference from noise can be avoided. The 
mutual information between two random variables X and Y is repre-
sented by their joint probability distribution, which is denoted by (Tian 
et al., 2019): 

I(X;Y) =
∑

x∈X

∑

y∈Y
P(x, y)log

P(x, y)
P(x)P(y)

(15) 

Where P(x, y) denotes the joint probability distribution of random 
variables X and Y, and P(x) and P(y) respectively represent the marginal 
probability distributions of random variables X and Y. 

2.8. Encoder decoder Bidirectional- LSTM (EDBi-LSTM) 

In the deep learning model, the LSTM (long short-term memory) 
technique recently became popular in different domains (Bhattarai 
et al., 2023; Chen et al., 2020; Feng et al., 2020; Mengel, 1993; Xiang 
et al., 2020; Yin et al., 2020). It is based on the architecture of the 
recurrent neural network (RNN), and the extension to that model is 
called bidirectional-LSTM (Hochreiter and Schmidhuber, 1997). In 
LSTM, the input data is processed based on previous information (Kim 
and Kim, 2020). The LSTM network comprises a forgetting gate, input 
gate, output gate, hidden state, and cell state (Fig. 3). In each step, LSTM 
updates the six parameters which are described (Elsayed et al., 2023; 
Livieris et al., 2020): 

ft = σ
(
wf • ht− 1xt + bf

)
(16)  

it = σ(wi • ht− 1xt + bi) (17)  

Ct = tanh(wc • ht− 1xt + bc) (18)  

Ct = ft×Ct− 1 + it × Ct (19)  

Ot = softsign(wo • ht− 1xt + b0) (20)  

ht = Ot × RLU(Ct) (21)  

here, ft, it , Ct, Ct, Ot , and ht = forget gate, input gate, new cell state 
candidate vectors, cell state, output gate, and final output. xt = input at 
time t, σ = sigmoid function of ft and it. Furthermore, wf , wi, wc, wo, and 
bf , bi, bc, and bo are weights matrix and bias vectors of ft, it, Ct, and Ot, 
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separately. The tanh (hyperbolic: − 1, 1), softsign, and ReLU (Rectified 
Linear Unit) are activation function of Ct, Ot , and ht units. 

In LSTM, when backpropagation is carried out, the gradient explo-
sion and information morphing drawbacks are exposed (Yin et al., 
2020). All these issues were tackled by the Bi-LSTM model and effec-
tively processed the sequential data composed of time instances (Graves 
and Schmidhuber, 2005; Hu and Zhang, 2018). However, in many cases, 
it is necessary to know the impact of SSL on previous time steps other 
than the SSL at the current time step of prediction. Thus, this study 
utilized the encoder-decoder bidirectional-LSTM (EDBi-LSTM) model 
for predicting daily SSL on Ashti and Bamini sites. The concept of EDBi- 
LSTM was proposed by Cho et al. (2014) to recognize models on 
different input and output time stages. Fig. 3 illustrates the typical 
structure of the EDBi-LSTM model, which is composed of two distinct 
parts (i) one part for reading the input information of the sequence, and 
encoding the fixed-length vector, and (ii) a second part for decoding the 
vector and outputting the forecasted sequence. The final vector gener-
ated from the encoded LSTM with m time steps is stored in the cell state 
and acts as input for the decoder LSTM with n time steps. Thus, it can be 
said that during each update, the decoder feeds the model so that the 
output from the previous update is used as the input of the current up-
date because this sequence-to-sequence network solves the time-step 
issue (Bian et al., 2020; Xiang et al., 2020; Zhang et al., 2021). 

2.9. Extreme learning gradient boosting (XGB) 

The XGB (extreme gradient boosting machine) is a supervised 
learning algorithm used to optimize the regression and classification 

problems introduced by Chen and Guestrin (2016). It is the extended 
form of the GBT (gradient boosting tree) algorithm (Abba et al., 2020; 
Tao et al., 2022), and has become popular in many fields (Feigl et al., 
2021; Ferreira and da Cunha, 2020; Sikorska-Senoner and Quilty, 2021). 
Trees in the XGB algorithm are created by implementing the three major 
steps: (i) the whole training data subgroup is fitted with a decision tree, 
(ii) the residuals of the model tree are fitted with a loss function, and (iii) 
add the loss function and model tree for generating the next tree (Brédy 
et al., 2020). 

Additionally, the XGB algorithm is less prone to overfitting due to 
Taylor expansion and a regularization term (Guo et al., 2020). Fig. 4 
illustrates the typical network of the XGB algorithm (x represents input 
vectors, and βk denotes independent and identically distributed random 
vectors). The output of the XGB is written as (Chen and Guestrin, 2016; 
Ni et al., 2020): 

ŷ =
∑k

k=1
fk(xi), fk∊F (22) 

In which, fk denotes separate regression tree, k represents many 
regression functions, and F signifies regression tree space. Similarly, xi 

and ŷ indicates input and predicted values. Furthermore, the minimized 
regularized objective to learn the set of functions used in the model is 
expressed as: 

δ =
∑

i
l(ŷi , yi)+

∑

k
μ(fk) (23) 

Here, l labels differentiable convex loss function, μ designates 

Fig. 4. Schematic flowchart of XGB model.  
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regularization term and is calculated as μ(f) = γT + 1/2λ‖ω‖
2, where γ 

is each leaf complexity, T is the number of leaves in a decision tree, λ 
denotes the regularization hyper-parameter, and ω is the leaves score 
vector. Moreover, yi represents observed value, ŷi indicates predicted 
value, and δ is regularized objective function. Tables 2 and 3 outline the 
optimized values of all the hyperparameters (i.e., the maximum tree 
depth, learning rate, minimum sum of instance weight needed in child, 
and the number of estimators) of the XGB model used daily SSL pre-
diction at Ashti and Bamini sites. 

2.10. Goodness-of-fit metrics 

Five statistical indices including correlation coefficient (R), root 
mean square error (RMSE), relative absolute error (RAE), Kling-Gupta 

efficiency (KGE) (Gupta et al., 2009; Jamei et al., 2023b), 
Nash–Sutcliffe efficiency (NSE) (McCuen et al., 2006; Nash and Sutcliffe, 
1970), and uncertainty coefficient with 95% confidence level (U95%) 
(Patino and Ferreira, 2015) were utilized to assess the efficacy and ac-
curacy of the models for SSL forecasting: 

R =

∑N
i=1

(
SSLo,i − SSLo

) (
SSLf ,i − SSLf

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(

SSLo,i − SSLo)
2 ∑N

i=1

(

SSLf ,i − SSLf
)2

√ (24)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
SSLo,i − SSLf ,i

)2

√
√
√
√ (25)  

Table 2 
Tuning the hyperparameters of ML models and outcomes of each FS strategy for the Ashti site.  

Model ML (EDBi-LSTM and XGB) setting Pre-processing setting 

EWT-EDBi-LSTM Number of Layers: 2, Neurons number: 200, Learning Rate: 0.0008 Training Algorithm: Adam, Epochs: 80 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
27 
Reduction percentage: 
0% 

EWT-EDBi-LSTM- 
Boruta 

Number of Layers: 2, Neurons number: 200, Learning Rate: 0.01 Training Algorithm: Adam, Epochs: 70 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
17 
Reduction percentage: 
37% 

EWT-EDBi-LSTM-MI Number of Layers: 2, Neurons number: 200, Learning Rate: 0.005 Training Algorithm: Adam, Epochs: 80 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
14 
Reduction percentage: 
48% 

EWT-EDBi-LSTM-RR Number of Layers: 2, Neurons number: 200, Learning Rate: 0.007 Training Algorithm: Adam, Epochs: 70 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
13 
Reduction percentage: 
52% 

EWT-EDBi-LSTM-SA Number of Layers: 2, Neurons number: 200, Learning Rate: 0.007 Training Algorithm: Adam, Epochs: 80 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
15 
Reduction percentage: 
44% 

EWT-EDBi-LSTM- 
Relief 

Number of Layers: 2, Neurons number: 250, Learning Rate: 0.00075 Training Algorithm: Adam, Epochs: 80 Dropout: 0, 
activation=’relu’, Batch Size: 16 

Sub-sequences number: 
15 
Reduction percentage: 
44% 

EDBi-LSTM Number of Layers: 2, Neurons number: 200, Learning Rate: 0.0003 Training Algorithm: Adam, Epochs: 90 Dropout: 0, 
activation=’relu’, Batch Size: 16 

Sub-sequences number: 
3 
Reduction percentage: 
0% 

EWT-XGB Learning rate: 0.025, N_Estimatiors: 200, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
27 
Reduction percentage: 
0% 

EWT-XGB-Boruta Learning rate: 0.1, N_Estimatiors: 250, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
17 
Reduction percentage: 
37% 

EWT-XGB-MI Learning rate: 0.04, N_Estimatiors: 250, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
14 
Reduction percentage: 
48% 

EWT-XGB-RR Learning rate: 0.050, N_Estimatiors: 250, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
13 
Reduction percentage: 
52% 

EWT-XGB-SA Learning rate: 0.060, N_Estimatiors: 300, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
15 
Reduction percentage: 
44% 

EWT-XGB-Relief Learning rate: 0.20, N_Estimatiors: 200, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
15 
Reduction percentage: 
44% 

XGB Learning rate: 0.050, N_Estimatiors: 60, Max-Depth:7, min_child_weight = 4 Sub-sequences number: 
3 
Reduction percentage: 
0%  
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RAE =

[∑N
i=1

(
SSLf ,i − SSLo,i

)2
]1/2

[∑N
i=1

(
SSLo,i

)2
]1/2 (26)  

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R − 1)2
+
(
StDf

/
StDo − 1

)2
+
(
SSLf

/
SSLo − 1

)2
√

(27)  

NSE = 1 −
∑N

i=1

(
SSLo,i − SSLf ,i

)2

∑N
i=1

(
SSLo,i − SSLo

)2 (28)  

U95% = 1.96
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SDe2 + RMSE2

√
(29)  

where SSLf ,i denotes forecasted suspended sediment load and SSLo,i 

denotes actual suspended sediment load. SSLf is the forecasted result’s 
average and SDe denotes the standard deviation of error values. SSLo is 
the average of the observed values of the suspended load. N signifies the 
total number of total samples. The standard deviation of observed and 
forecasted values are denoted by StDo and StDf , respectively. A perfect 

model’s Nash–Sutcliffe Efficiency (NSE) is one (NSE = 1). NSE = 0 im-
plies that the model’s forecasting performance is identical to the time 
series mean. When the observed mean is greater than the forecast of the 
model, the efficiency is less than zero (NSE < 0) (McCuen et al., 2006). 
The model performs well when the RMSE value is near zero and R, KGE, 
and IA values are close to unity. 

3. Model development and configuration 

Several researchers have been devoted to predict the SSL in rivers 
using metrological and hydrometric parameters in recent years. There is 
limited research on forecasting using the actual time series of SSL during 
times based on decomposition oriented ML models. Here a new com-
plementary hybrid expert system comprised of EWT decomposition 
coupled with five feature selection methods (BRF, SA, RR, relief, and MI) 
and the state of the art ML approaches (EDBi-LSTM and XGB) to forecast 
daily SSL at two-zones during monsoon season (07/01/2001–31/10/ 
2015) in Godavari river basin, India. In this research work, 12 hybrid-
ized models namely EWT-EDBi-LSTM, EWT-XGB, EWT-EDBi-LSTM-Boruta, 

Table 3 
Tuning the hyperparameters of ML models and outcomes related to each FS strategy for the Bamini site.  

Model ML (EDBi-LSTM and XGB) setting Pre-processing setting 

EWT-EDBi-LSTM Number of Layers: 3, Neurons number: 250, Learning Rate: 0.005 Training Algorithm: Adam, Epochs: 90 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
36 
Reduction percentage: 0% 

EWT-EDBi-LSTM- 
Boruta 

Number of Layers: 2, Neurons number: 250, Learning Rate: 0.0003 Training Algorithm: Adam, Epochs: 90 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
12 
Reduction percentage: 
67.5% 

EWT-EDBi-LSTM-MI Number of Layers: 2, Neurons number: 200, Learning Rate: 0.005 Training Algorithm: Adam, Epochs: 90 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
12 
Reduction percentage: 
67.5% 

EWT-EDBi-LSTM-RR Number of Layers: 2, Neurons number: 250, Learning Rate: 0.001 Training Algorithm: Adam, Epochs: 90 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
15 
Reduction percentage: 
58% 

EWT-EDBi-LSTM-SA Number of Layers: 2, Neurons number: 250, Learning Rate: 0.006 Training Algorithm: Adam, Epochs: 90 Dropout: 0, 
activation=’relu’, Batch Size: 128 

Sub-sequences number: 
18 
Reduction percentage: 
50% 

EWT-EDBi-LSTM- 
Relief 

Number of Layers: 3, Neurons number: 250, Learning Rate: 0.0005 Training Algorithm: Adam, Epochs: 80 Dropout: 0, 
activation=’relu’, Batch Size: 16 

Sub-sequences number: 
27 
Reduction percentage: 
25% 

EDBi-LSTM Number of Layers: 2, Neurons number: 200, Learning Rate: 0.0005 Training Algorithm: Adam, Epochs: 80 Dropout: 0, 
activation=’relu’, Batch Size: 16 

Sub-sequences number: 3 
Reduction percentage: 0% 

EWT-XGB Learning rate: 0.03, N_Estimatiors: 150, Max-Depth:5, min_child_weight = 3 Sub-sequences number: 
36 
Reduction percentage: 0% 

EWT-XGB-Boruta Learning rate: 0.1, N_Estimatiors:150, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
12 
Reduction percentage: 
67.5% 

EWT-XGB-MI Learning rate: 0.1, N_Estimatiors: 250, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
12 
Reduction percentage: 
67.5% 

EWT-XGB-RR Learning rate: 0.080, N_Estimatiors: 250, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
15 
Reduction percentage: 
58% 

EWT-XGB-SA Learning rate: 0.060, N_Estimatiors: 300, Max-Depth:5, min_child_weight = 4 Sub-sequences number: 
18 
Reduction percentage: 
50% 

EWT-XGB-Relief Learning rate: 0.12, N_Estimatiors: 250, Max-Depth:6, min_child_weight = 4 Sub-sequences number: 
27 
Reduction percentage: 
25% 

XGB Learning rate: 0.050, N_Estimatiors: 70, Max-Depth:7, min_child_weight = 4 Sub-sequences number: 3 
Reduction percentage: 0%  
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Fig. 5. Workflow of forecasting the daily SSL using the multi-strategy decomposition-based expert systems and standalone counterpart.  

Fig. 6. Partial auto-correlation function of SSL signals for both Bamini and Ashi sites.  
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Fig. 7. Signal decomposition using the EWT technique into sub-signals for both sites.  

M. Jamei et al.                                                                                                                                                                                                                                  



Ecological Indicators 153 (2023) 110478

13

EWT-XGB-Boruta, EWT-EDBi-LSTM-SA, EWT-XGB-SA, EWT-EDBi-LSTM-RR, 
EWT-XGB-RR, EWT-EDBi-LSTM-Relief, EWT-XGB-Relief, EWT-EDBi-LSTM-MI, 
and EWT-XGB-MI were constructed to forecast daily SSL in Bamini, and 
Ashti stations, India. All models were produced in MATLAB R2019a and 
Python environments. It is noteworthy that the XGB and EDBi-LSTM 
models were designed in Python 3.8 using the XGB and Tensorflow 
open-source software libraries. 

Besides, the RR, MI, and BRF approaches were created in the Python 
platform based on the Scikit-learn (Pedregosa et al., 2011) and Boruta 
open-source libraries. In contrast, the relief and SA approaches were 
constructed in the Matlab environment. Execution of all the models was 
carried out by Intel (R) Core (TM) i7-6700 CPU @ 3.20 GHz computer 
system. Fig. 5 shows the workflow of the proposed hybrid approaches to 
forecast daily SSL in the two sites. The following steps of hybrid models 
are described in detail: 

Step 1: Significant antecedent information gaining. 
Since the only antecedent information associated with previous days 

of suspended sediment in both sites is used to forecast daily SSL, it is 
necessary to identify significant time delays. In this study, the PACF 
technique (Deo et al., 2016; Malik et al., 2019; Tiwari and Adamowski, 
2013) is used to identify the significant lags which are reflected in Fig. 6. 
For the Bamini and Ashti sites, three antecedent time-lagged inputs (SSL 
(t-1), SSL(t-2), and SSL(t-4)) and (SSL(t-1), SSL(t-2), and SSL(t-3)) were 
identified as the most significant previous days information to design the 
hybrid models. 

Step 2: Signals decomposition pre-processing. 
This step is the most critical preprocessing procedure for the main 

signals using the EWT technique. In this step, first, the original time 
series is automatically decomposed into the sub-sequences (IMFs + re-
sidual). The number of IMFs depends on the time series characteristics. 
Then the antecedent information (time-lagged values) obtained from the 
previous step is applied to the following sub-sequences. For the EWT 
decomposition, the “Sig2” type of signal, “global trend 

removal”=“none”, “polynomial interpolation degree”=6, and 
“maximum number of bands”=3 as the decomposition adjustment was 
employed, which are recommended in the literature (Hu et al., 2015; 
Jamei et al., 2023a; Liu et al., 2018). As shown in Fig. 7, the number of 
IMFs components for the Bamini and Ashti sites were 12 and 7 respec-
tively. Besides, all the sub-sequences obtained before the filtering stage 
for the mentioned sites were computed as 36 and 27 respectively. 

Step 3: Determining the influential sub-sequences of FS schemes. 
Feature selection (FS) methods in predictive models based on AI are 

generally used to aim for accuracy enhancement and to reduce the cost 
of computing. Feature selection methods have been frequently used in 
predicting engineering phenomena due to their special mechanism and 
handling of the uncertainty in the datasets. The effectiveness of these 
methods is still under study (Acikgoz, 2022). This research employs five 
well-known non-linear FS approaches to assess their potential in 
filtering the redundant decomposed sub-sequences used in ML methods 
for prediction. 

First, the Baruta random forest (BRF) method was used to designate 
the hybrid forecasting models. In this method, the feature importance of 
each sub-sequence was determined by the logic presented in the meth-
odology section and compared with the max_shadow benchmark value. 
Then, the redundant sub-sequences with less feature importance than 
the max_shadow benchmark value were excluded. Fig. 8 presents the 
results of the Boruta method containing the mean value and standard 
deviation of feature importance in both sites. RR, relief, and MI tech-
niques are examined to filter the candidate inputs based on the impor-
tance factor criterion. In this regard, the sub-sequences with a higher 
importance factor than the corresponding value of cumulative frequency 
of 50% could be allocated to feed the ML approaches. As the last FS, the 
SA approach was adopted due to its ability to prevent trapping locally, 
enhance the population’s diversity, and quickly converge to the global 
optimum (Ali et al., 2021). In the SA method, all the sub-sequences are 
ranked based on the best fitness, and the pre-defined number of sub- 

Fig. 8. Boruta- random forest outcomes to exploring the significant decomposed components (IMFs) to forecast the daily SSL in seasonal rivers of Bamini and 
Ashti sites. 
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sequences are selected to feed the ML models. For this purpose, we 
adjusted the following settings: Maximum iteration = 15, Population =
10, Initial temperature = 10, Temperature reduction rate = 0.99, and 
desired feature number = 15. Fig. 9 illustrates the outcomes of RR, relief, 
MI, and SA methods. According to the results of filtering the sub- 
sequences listed in Tables 2 and 3 in the site Ashti, the RR, MI, relief, 
SA, and BRF removed 52% and 48%, 44%, 44%, and 37% of the whole 
candidate sub-sequences respectively. In contrast in the Bamini site, the 
BRF, MI, RR, SA, and relief excluded 67.5% and 67.5%, 58%, 50%, and 
20% of the sub-sequences respectively. 

Step 4: Models feeding and configuration. 
In this section, all the filtered decomposed components resulted from 

FS methods directly employed in the ML models. Here, 75% of whole 
datasets were allocated for training the models, and the rest of the 
datasets (25% of entire datasets) were used independently for the 
testing. Besides, normalization and denormalization procedures were 
implemented before feeding into the ML approaches to unite the data 
scale and enhance the convergence process in the training and testing 
stages (Ali et al., 2021). To examine the standalone EDBi-LSTM and XGB 
models, the second and third stages can be ignored, and only the ante-
cedent time-lagged values of SSL for each site are employed to feed the 
ML models. 

3.1. Setting of machine learning approaches 

Optimal adjustment of ML models is very important in modeling 
engineering problems because the potential of different techniques can 
be adequately assessed (Rehamnia et al., 2020). Recently, there are 
common optimization approaches to gain the optimal setting hyper-
parameters of the model such as LSTM and XGB, which can be intro-
duced as grid search (Shahsavar et al., 2021), random search, and trial 
integration with the metaheuristic optimization algorithms (Jamei et al., 
2021). This research employed the grid search technique to optimize the 
implemented ML approaches to forecast the daily SSL in two selected 
sites. Previous literature shows that the most important setting hyper-
parameters for EDBi-LSTM (Bian et al., 2020; Zhang et al., 2021) and 
XGB (Singh et al., 2022; Zheng et al., 2017) are (Number of Layers, 
Neurons number in each layer, Learning Rate, Training Algorithm, 
Epochs value, Activation, and Batch Size) and (Max-Depth, Learning 
rate, and child_weight, N_Estimatiors) respectively. Tables 2 and 3 listed 
the optimal values of all the setting parameters of ML models in hybrid 
and standalone counterpart techniques in Bamini and Ashti respectively. 

4. Application results and analysis 

The forecasting of daily river suspended sediment load in the Bamini 
and Ashti sites, the performance accuracy of EDBi-LSTM and its hybrid 
version, i.e., EWT-EDBi-LSTM, EWT-EDBi-LSTM-Boruta, EWT-EDBi-LSTM- 

Fig. 9. Filtered decomposed sub-sequences using RR, MI, Relief, and SA feature selection techniques for Bamini and Ashti sites to feed the ML models.  
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Boruta, EWT-EDBi-LSTM-MI, EWT-EDBi-LSTM-RR, EWT-EDBi-LSTM-SA, 
EWT-EDBi-LSTM-Relief and XGB with its hybrid models EWT-XGB, EWT-XGB- 
Boruta, EWT-XGB-MI, EWT-XGB-RR, EWT-XGB-SA, and EWT-XGB-Relief are 
examined for both the training and testing period to determine their 
forecasting capacity based on R, RMSE, RAE, NSE, KGE, and U95%. 

4.1. Bamini site results analysis 

This section offers a comprehensive assessment and evaluation in the 
Bamini site of the respective performances of the hybrid version as well 
as standalone models to forecast daily suspended sediment load. Table 4 
describes that the hybrid EWT-EDBi-LSTM-Boruta model was out-
performed against all other benchmarking comparing models to obtain 
the highest R, NSE, KGE, and lowest RMSE, RAE, and U95% for the 
Bamini site to forecast daily suspended sediment load. The acquired 
magnitudes are EWT-EDBi-LSTM-Boruta [R = 0.9951, RMSE = 0.0448, 
RAE = 0.1027, NSE = 0.9899, KGE = 0.9753, U95% = 0.1240]-train and 
[R = 0.9953, RMSE = 0.0171, RAE = 0.1088, NSE = 0.9905, KGE =
0.9893, U95% =0.0473]-test period to forecast daily suspended sediment 
load. The second best model appeared to be EWT-XGB-Boruta, followed 

by EWT-EDBi-LSTM-SA, EWT-XGB-SA, EWT-EDBi-LSTM-RR, and EWT-XGB- 
SA (see; Table 4). The EWT-EDBi-LSTM-MI, EWT-EDBi-LSTM-Relief, EWT- 
EDBi-LSTM, EWT-XGB-MI, EWT-XGB-Relief, EWT-XGB models efficiency are 
reasonably good (see; Table 4) in both training and testing periods but 
could not exceed than the performance of the proposed EWT-EDBi-LSTM- 
Boruta model. Furthermore, the standalone EDBi-LSTM and XGB models 
accuracy is poor compared to the performance of their hybrid version of 
the models. Overall, the performance of the EWT-EDBi-LSTM-Boruta 
model confirmed its suitability and applicability in terms of daily sus-
pended sediment load forecasting against the benchmarking comparing 
models for the Bamini site. 

Fig. 10 shows the robustness of all the designed models for the 
Bamini site in terms of uncertainty variation (i.e., U95%) and KGE met-
rics during the daily suspended sediment load forecasting. It is clearly 
visible that the EWT-EDBI-LSTM-Boruta model exhibited lower U95% 
values while higher KGE values in the daily forecasting scenario as 
compared to EWT-EDBi-LSTM, EWT-EDBi-LSTM-MI, EWT-EDBi-LSTM-RR, 
EWT-EDBi-LSTM-SA, EWT-EDBi-LSTM-Relief, EWT-EDBi-LSTM, EDBi-LSTM, 
EWT-XGB, EWT-XGB-Boruta, EWT-XGB-MI, EWT-XGB-RR, EWT-XGB-SA, EWT- 
XGB-Relief, and XGB models. The EWT-EDBI-LSTM-Boruta model for 

Table 4 
Performance of the models for daily suspended sediment load forecasting in the Bamini site.  

Model Mode R RMSE RAE NSE KGE U95% 

EWT-EDBi-LSTM Training  0.9638  0.1188  0.2636  0.9286  0.9376  0.3293 
Testing  0.9212  0.0699  0.4039  0.8415  0.9029  0.1924 

EWT-EDBi-LSTM-Boruta Training  0.9951  0.0448  0.1027  0.9899  0.9753  0.1240 
Testing  0.9953  0.0171  0.1088  0.9905  0.9893  0.0473 

EWT-EDBi-LSTM-MI Training  0.9787  0.0915  0.2091  0.9577  0.9597  0.2537 
Testing  0.9283  0.0660  0.3836  0.8587  0.9057  0.1823 

EWT-EDBi-LSTM-RR Training  0.9642  0.1188  0.2569  0.9287  0.9496  0.3288 
Testing  0.9532  0.0546  0.3337  0.9034  0.9463  0.1514 

EWT-EDBi-LSTM-SA Training  0.9879  0.0696  0.1853  0.9755  0.9609  0.1926 
Testing  0.9586  0.0506  0.3334  0.9169  0.9572  0.1403 

EWT-EDBi-LSTM-Relief Training  0.9579  0.1284  0.2878  0.9166  0.9197  0.3549 
Testing  0.9369  0.0635  0.3742  0.8692  0.9235  0.1747 

EDBi-LSTM Training  0.7384  0.3000  0.4636  0.5449  0.6307  0.8315 
Testing  0.7707  0.1142  0.4252  0.5772  0.7460  0.3164 

EWT-XGB Training  0.9878  0.0806  0.2042  0.9672  0.8946  0.2233 
Testing  0.9372  0.0661  0.3984  0.8582  0.8315  0.1785 

EWT-XGB-Boruta Training  0.9954  0.0484  0.0773  0.9881  0.9425  0.1342 
Testing  0.9933  0.0217  0.1127  0.9847  0.9495  0.0601 

EWT-XGB-MI Training  0.9933  0.0526  0.1320  0.9860  0.9687  0.1458 
Testing  0.9156  0.0718  0.3938  0.8329  0.8439  0.1980 

EWT-XGB-RR Training  0.9922  0.0570  0.1467  0.9836  0.9613  0.1581 
Testing  0.9377  0.0619  0.3632  0.8757  0.8992  0.1705 

EWT-XGB-SA Training  0.9955  0.0430  0.1154  0.9906  0.9755  0.1193 
Testing  0.9541  0.0552  0.3509  0.9012  0.8962  0.1498 

EWT-XGB-Relief Training  0.9970  0.0349  0.0965  0.9938  0.9843  0.0968 
Testing  0.9435  0.0593  0.3705  0.8861  0.9020  0.1630 

XGB Training  0.8847  0.2231  0.4120  0.7482  0.6762  0.6183 
Testing  0.7540  0.1243  0.5250  0.4993  0.7501  0.3439  

Fig. 10. Metric of KGE and U95% to assess the robustness of all the forecasting models in the Bamini site.  
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Fig. 11. Performance evaluating all the forecasting models in the form of scatter plots for the testing phase in Bamini site.  
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example displays the values of KGE and U95% = 0.99, 0.05%; followed 
by the EWT-XGB-Boruta model (2nd best) with KGE and U95% = 0.95, 
0.06% and so on. Again, the standalone models acquired relatively 
lower accuracy in terms of KGE and U95% values as compared to hybrid 
models. Overall, Fig. 10 confirmed the superiority of the EWT-EDBI- 
LSTM-Boruta model against benchmark comparing models to forecast 
daily suspended sediment load for the Bamini site. 

In the next Fig. 11, a scatter plot was drawn to show the better ac-
curacy of the EWT-EDBI-LSTM-Boruta model over other comparable 
models between the daily measured and forecasted SSL. The scatter plot 
demonstrates the correlation between the forecasted and the measured 
suspended sediment load (i.e., SSL) using the coefficient of determina-
tion (R) in the training and testing period for the daily forecasting sce-
nario in Bamini site. The EWT-EDBI-LSTM-Boruta model is giving 
reasonably good preciseness by generating a higher magnitude of RTrn 
and RTst with respect to the benchmark hybrid comparing models EWT- 
EDBi-LSTM, EDBi-LSTM, EWT-EDBi-LSTM-RR for daily suspended sediment 
lo forecasting. When comparing the EWT-EDBI-LSTM-Boruta model 

against the standalone EDBi-LSTM and XGB models, Fig. 11 confirmed 
that the precision exhibited by the EWT-EDBI-LSTM-Boruta model is 
significantly better between th measured and forecasted SLL in terms of 
RTrn and RTst Baminin site. 

4.2. Ashti site results analysis 

In this Table 5, the daily suspended sediment load forecasting for the 
Ashti site has been discussed and analyzed in detail. Here the precision 
of the EWT-EDBI-LSTM-Boruta and EWT-XGB-Boruta models are very close 
in both the training and testing period but the EWT-EDBI-LSTM-Boruta 
model is slightly better to achieve higher R, NSE, KGE and lower RMSE, 
RAE and U95%. For the training period, we refer to Table 5. While the 
acquired magnitudes of the hybrid version and the standalone models 
for testing periods are: EWT-EDBi-LSTM-Boruta [R = 0.9981, RMSE =
0.0112, RAE = 0.0801, NSE = 0.9951, KGE = 0.9649, U95% = 0.0293] as 
compared to the EWT-XGB-Boruta, EWT-EDBi-LSTM-SA, EWT-XGB-SA, EWT- 
EDBi-LSTM-MI, EWT-XGB-MI, EWT-EDBi-LSTM-RR, EWT-XGB-RR, EWT-EDBi- 

Table 5 
Performance of the models for daily suspended sediment load forecasting in Ashti site.  

Model Mode R RMSE RAE NSE KGE U95% 

EWT-EDBi-LSTM Training  0.9643  0.0756  0.2453  0.9298  0.9473  0.2095 
Testing  0.9492  0.0505  0.3119  0.9001  0.9237  0.1397 

EWT-EDBi-LSTM-Boruta Training  0.9983  0.0176  0.0613  0.9962  0.9790  0.0478 
Testing  0.9981  0.0112  0.0801  0.9951  0.9649  0.0293 

EWT-EDBi-LSTM-MI Training  0.9910  0.0387  0.1246  0.9816  0.9657  0.1074 
Testing  0.9485  0.0509  0.3088  0.8983  0.8994  0.1412 

EWT-EDBi-LSTM-RR Training  0.9702  0.0691  0.2323  0.9413  0.9574  0.1916 
Testing  0.9560  0.0478  0.3026  0.9104  0.8879  0.1326 

EWT-EDBi-LSTM-SA Training  0.9812  0.0590  0.2022  0.9572  0.9290  0.1609 
Testing  0.9714  0.0390  0.2507  0.9402  0.9503  0.1077 

EWT-EDBi-LSTM-Relief Training  0.9381  0.1004  0.3067  0.8761  0.8612  0.2783 
Testing  0.9124  0.0664  0.3609  0.8269  0.8199  0.1839 

EDBi-LSTM Training  0.8095  0.1678  0.3467  0.6538  0.7277  0.4647 
Testing  0.7961  0.0994  0.4151  0.6126  0.7879  0.2756 

EWT-XGB Training  0.9812  0.0593  0.1730  0.9567  0.9017  0.1644 
Testing  0.9406  0.0553  0.3285  0.8800  0.8593  0.1534 

EWT-XGB-Boruta Training  0.9953  0.0280  0.0373  0.9904  0.9770  0.0776 
Testing  0.9967  0.0143  0.0833  0.9920  0.9653  0.0396 

EWT-XGB-MI Training  0.9839  0.0525  0.1652  0.9661  0.9371  0.1456 
Testing  0.9381  0.0560  0.3262  0.8770  0.8694  0.1552 

EWT-XGB-RR Training  0.9867  0.0475  0.1463  0.9722  0.9478  0.1318 
Testing  0.9480  0.0515  0.2918  0.8960  0.8855  0.1427 

EWT-XGB-SA Training  0.9855  0.0505  0.1494  0.9686  0.9332  0.1401 
Testing  0.9580  0.0465  0.2803  0.9152  0.9002  0.1288 

EWT-XGB-Relief Training  0.9906  0.0398  0.1280  0.9805  0.9613  0.1103 
Testing  0.9477  0.0511  0.2961  0.8976  0.9076  0.1417 

XGB Training  0.9137  0.1237  0.3353  0.8119  0.7476  0.3422 
Testing  0.7836  0.1026  0.5730  0.5867  0.6583  0.2800  

Fig. 12. KGE and U95% metrics to assess the robustness of all the forecasting models in the Ashti site.  
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LSTM-Relief, EWT-XGB-Relief models. The good-of-fitness metrics 
confirmed that the EWT-EDBI-LSTM-Boruta model acquired better preci-
sion in relation to all other hybrid versions of the models to forecast 
daily SSL for the Ashti site. Furthermore, the hybrid version of the 
models is better in achieving a higher degree of accuracy as compared to 
the standalone counterpart models. There is an increase in the accuracy 

of approximately 20% to 30% in the hybrid models as compared to the 
standalone models. Overall, the EWT-EDBI-LSTM-Boruta model is the 
most precise and accurate model to forecast daily SSL for Ashti site. 

The hybrid EWT-EDBi-LSTM is better than the EWT-XGB model but 
could not exceed the EWT-EDBI-LSTM-Boruta model to forecast daily 
suspended sediment load for the Ashti site (see; Table 5). The standalone 

Fig. 13. Performance of all the forecasting models in training and testing phase for Ashti site.  
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EDBi-LSTM and XGB models are again showing poor performance in terms 
of R, RMSE, RAE, NSE, KGE, and U95% assessment metrics. By analyzing 
Table 5, it is cleared that the proposed EWT-EDBI-LSTM-Boruta model for 
the Ashti site portrays better performance as compared to the other 
models in this study. 

The KGE and U95% metrics to evaluate the robust performance of 
EWT-EDBI-LSTM-Boruta vs. comparing models for the Ashti site in Fig. 12 
shows to forecast daily suspended sediment load. Based on U95% criteria, 
the EWT-EDBI-LSTM-Boruta model revealed lower values U95% = 0.03 in 
comparison with EWT-XGB-Boruta model (U95% = 0.04). On the other 
hand, a slightly higher KGE (0.97) value was acquired by EWT-XGB- 
Boruta against EWT-EDBI-LSTM-Boruta (0.96) model in the daily sus-
pended sediment load forecasting. The values of KGE and U95% for other 
comparing models can be seen in Fig. 12, confirming that the EWT-EDBI- 
LSTM-Boruta and EWT-XGB-Boruta models are better to forecast daily 
suspended sediment load for the Ashti site. 

While the scatter plot (Fig. 13) again validated that the accuracy of 
the EWT-EDBI-LSTM-Boruta model is slightly higher than the EWT-XGB- 
Boruta model and other comparable models for the Ashti site in the 
training and testing period based on R for daily forecasting horizon. The 
EWT-EDBI-LSTM-Boruta (RTrn = 0.9983, RTst = 0.9981) model is giving 
reasonably good preciseness with respect to the benchmark comparing 
models EWT-XGB-Boruta (RTrn = 0.9953, RTst = 0.9967) and so on. 
Overall, Fig. 13 confirmed that the performance of the EWT-EDBI-LSTM- 

Boruta model is better than all other compared models. 
Further, assess the comparison of measured vs. forecasted SSL 

generated by the EWT-EDBI-LSTM-Boruta and other benchmarking 
models in the violin plots in Fig. 14 for the Bamini and Ashti sites. It 
revealed an obvious distinction between the distributions of forecasted 
and measured SSL for daily forecasting scenarios. The comparison be-
tween the maximum and minimum quartile, first quartile (Q25) and 
third quartile (Q75), and median (Q50) of forecasted vs. measured SSL is 
given, which established that the EWT-EDBI-LSTM-Boruta model is 
ranked at 1st place. In contrast, the EWT-XGB-Boruta model is placed at 
2nd rank, followed by other comparing models for the Bamini site. 
Equally, the EWT-EDBI-LSTM-Boruta and EWT-XGB-Boruta models ranked 
1st and 2nd places for the Ashti site compared to other daily suspended 
sediment load (SSL) forecasting. 

4.3. Discussion and diagnostic assessment 

The Kernel-based residual error distribution and residual error band 
(REB) of the EWT-EDBI-LSTM-Boruta, EWT-EDBi-LSTM, EWT-EDBi-LSTM- 
MI, EWT-EDBi-LSTM-RR, EWT-EDBi-LSTM-SA, EWT-EDBi-LSTM-Relief, EWT- 
EDBi-LSTM, EDBi-LSTM, EWT-XGB, EWT-XGB-Boruta, EWT-XGB-MI, EWT-XGB- 
RR, EWT-XGB-SA, EWT-XGB-Relief, and XGB models are represented in 
Fig. 15 for the Bamini and Ashti sites in the testing period. The EWT-EDBI- 
LSTM-Boruta model appeared to be the most accurate model in the 

Fig. 14. Comparison of the forecasted vs. measured SSL for the testing phase in Bamini and Ashti sites.  
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Bamini site by exhibiting the lower value of REB = 0.108, followed by, 
EWT-XGB-Boruta (REB = 0.318), EWT-EDBi-LSTM-SA (REB = 0.342), EWT- 
XGB-SA (REB = 0.417), EWT-XGB-Relief (REB = 0.482), EWT-EDBi-LSTM-RR 
(REB = 0.488), EWT-XGB (REB = 0.606), and so on. 

Similarly, the EWT-EDBI-LSTM-Boruta model shows better accuracy 
than other comparing models for the Ashti site (see; Fig. 15) by 
acquiring the smallest values as EWT-EDBI-LSTM-Boruta (REB = 0.097). 
The second-best model was EWT-XGB-Boruta (REB = 0.189), followed by 
EWT-EDBi-LSTM-SA (REB = 0.286), EWT-EDBi-LSTM-RR (REB = 0.412), 
EWT-XGB-SA (REB = 0.482), EWT-EDBi-LSTM-MI (REB = 0.509) and so on 
(Fig. 15). In general, the EDBI-LSTM-Boruta model surpassed other 
benchmarking models for both Bamini and Ashti sites in daily suspended 

sediment load forecasting by obtaining the lowest values of REB error 
distribution. 

Fig. 16 describes the time-series plots of forecasted suspended sedi-
ment load (i.e., SSL) of the best four models EDBI-LSTM-Boruta, EWT-XGB- 
Boruta, EWT-EDBi-LSTM-SA, and EWT-XGB-SA against the measured daily 
SSL for the duration of 17/01/2013 to 10/23/2015 for both sites Bamini 
and Ashti to draw a direct comparison among the models. The forecast 
generated by the EDBI-LSTM-Boruta model (red color) appears to be 
more stable with the measured SSL than EWT-XGB-Boruta EWT-EDBi- 
LSTM-SA and EWT-XGB-SA models in both Bamini and Ashti sites. Even 
for the significant fluctuation/spike of measured daily SSL in the periods 
between 09/13/2015 – 10/03/2015 (Bamini site) and 08/04/2015 – 

Fig. 15. Kernel-based residual error distribution and residual error band (REB) of all the hybrid models in the testing phase of both sites to daily forecasting of the 
SSL load in seasonal rivers. 
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Fig. 16. Trend plot of the superior models to forecast the daily SSL values in Bamini and Ashti sites for the testing period.  
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08/24/2015 (Ashit site), the EDBI-LSTM-Boruta model followed more 
stability (i.e., accurateness) against the other three benchmarking 
models. Overall, the EDBI-LSTM-Boruta model achieves better accuracy 
in terms of time-series plots. 

A Taylor diagram is applied to provide A systematic and detailed 
valuation of the four best models’ (EDBI-LSTM-Boruta, EWT-XGB-Boruta, 
EWT-EDBi-LSTM-SA, and EWT-XGB-SA) competence and performance is 
described in Taylor diagram (Xu et al., 2016). Fig. 17 demonstrates a 
more consistent and conclusive relationship between the forecasted and 
measured/reference SSL using correlation coefficient and standard de-
viation. The EDBI-LSTM-Boruta model was positioned closely with the 
reference SSL ranging from 0.95 to 0.99, slightly in proximity with the 
measured/real SSL EWT-EDBi-LSTM-SA, EWT-XGB-Boruta, and EWT-XGB- 
SA for the case of Bamini site. Similarly, the EDBI-LSTM-Boruta model 
appeared to lie more closely with the reference SSL, followed by EWT- 
XGB-Boruta, EWT-EDBi-LSTM-SA, and EWT-XGB-SA for the Ashti site. This 
shows that the forecasting accuracy of the EDBI-LSTM-Boruta model was 
precise at all the sites. 

Fig. 18 illustrates the Enhancement accuracy of the feature selection- 
based hybrid models such as EWT-EDBI-LSTM-Boruta, EWT-EDBi-LSTM-MI, 
EWT-EDBi-LSTM-RR, EWT-EDBi-LSTM-SA, EWT-EDBi-LSTM-Relief, EWT-XGB- 
Boruta, EWT-XGB-MI, EWT-XGB-RR, EWT-XGB-SA, and EWT-XGB-Relief 
models for Bamini and Ashti sites. The EWT-EDBI-LSTM-Boruta 
(75.5365%-Bamini; 77.8096%-Ashti) is the most precise approach based 
on Enhancement accuracy, followed by EWT-XGB-Boruta (67.1710%- 
Bamini; 74.1183%-Ashti), EWT-EDBi-LSTM-SA (27.6109%-Bamini; 

22.6430%-Ashti) and so on. The Enhancement accuracy in Fig. 18 
further ascertains that the feature selection-based EWT-EDBI-LSTM-Bor-
uta model is superior to other feature selection-based models due to the 
Boruta feature selection technique, which reveals that the best features 
were selected to acquire optimum accuracy. 

5. Conclusion and remarks 

The major contribution of this study provides a key and important 
aspect of determining the best feature selection methods such as Boruta- 
random forest (Boruta), Relief feature selection (Relief), Mutual infor-
mation (MI), ridge regression (RR), and Simulated annealing (SA) that 
can help to improve the forecasting accuracy of the proposed model. 
Secondly, this research work is aimed by constructing and evaluating a 
hybridized Empirical Wavelet Decomposition (EWT) technique inte-
grated with the aforementioned feature selection methods (Boruta, Re-
lief, MI, RR, SA) and Encoder decoder Bidirectional-LSTM (EDBi-LSTM), 
and Extreme learning gradient boosting (XGB) to design the EWT-EDBI- 
LSTM-Boruta, EWT-EDBi-LSTM-MI, EWT-EDBi-LSTM-RR, EWT-EDBi-LSTM- 
SA, EWT-EDBi-LSTM-Relief, EWT-XGB-Boruta, EWT-XGB-MI, EWT-XGB-RR, 
EWT-XGB-SA, and EWT-XGB-Relief algorithms for daily suspended sediment 
load (SSL) forecasting in Bamini and Ashti sites, India. The goodness-of- 
fit metrics and visual inspection plots were utilized to verify the accu-
racy of the proposed AI models for both standalone & hybrid. Assess-
ment of results based on the goodness-of-fit indicators shows that the 
EWT-EDBI-LSTM-Boruta model outperformed the comparing models for 

Fig. 17. Taylor diagrams of both sites in the testing phase for the superior models.  
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Fig. 18. Enhancement accuracy of all the feature selection-based hybrid models in comparison with the situation containing all decomposed components for both 
understudy sites. 
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both the candidate study locations to forecast daily suspended sediment 
load. Additionally, better outcomes of the hybrid models were found as 
compared to the standalone version of the models, where a significant 
reduction in the accuracy of EDBi-LSTM and XGB models was noted 
during the forecasting. Furthermore, the Boruta feature selection tech-
nique was more convincing to determine the best features, which 
significantly improved the forecasting performance of the EWT-EDBI- 
LSTM-Boruta model and EWT-XGB-Boruta model in comparison with 
other benchmarking models. But overall, the EWT-EDBI-LSTM-Boruta 
model was the top forecasting model in both Bamini and Ashti sites to 
forecast daily suspended sediment load. Systematically, the outcomes of 
this work are enormously important and meaningful to design a smart 
data intelligent model which can accurately perform daily suspended 
sediment load (SSL) forecasting to monitor water sources, river water 
quality, irrigation activities, and reservoir operations. 
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Vergara, J.R., Estévez, P.A., 2014. A review of feature selection methods based on mutual 
information. Neural Comput. Appl. 24 (1), 175–186. 

Verstraeten, G., Poesen, J., de Vente, J., Koninckx, X., 2003. Sediment yield variability in 
Spain: a quantitative and semiqualitative analysis using reservoir sedimentation 
rates. Geomorphology 50 (4), 327–348. 

Walling, D.E., 1977. Assessing the accuracy of suspended sediment rating curves for a 
small basin. Water Resour. Res. 13, 531–538. https://doi.org/10.1029/ 
wr013i003p00531. 

Walling, D.E., Collins, A.L., 2008. The catchment sediment budget as a management tool. 
Environ. Sci. Policy 11 (2), 136–143. 

Williams, J.R., Berndt, H.D., 1976. Sediment yield prediction based on watershed 
hydrology. American Society of Agricultural Engineering. 

Wu, Y., 2020. Can’t Ridge Regression Perform Variable Selection? Technometrics 63, 
263–271. https://doi.org/10.1080/00401706.2020.1791254. 

Xiang, Z., Yan, J., Demir, I., 2020. A Rainfall-Runoff Model With LSTM-Based Sequence- 
to-Sequence Learning. Water Resour. Res. 56 https://doi.org/10.1029/ 
2019WR025326. 

Xu, Z., Hou, Z., Han, Y., Guo, W., 2016. A diagram for evaluating multiple aspects of 
model performance in simulating vector fields. Geosci. Model Dev. 9, 4365–4380. 
https://doi.org/10.5194/gmd-9-4365-2016. 

Yaseen, Z.M., Mohtar, W.H.M.W., Ameen, A.M.S., Ebtehaj, I., Razali, S.F.M., 
Bonakdari, H., Salih, S.Q., Al-Ansari, N., Shahid, S., 2019a. Implementation of 
univariate paradigm for streamflow simulation using hybrid data-driven model: Case 
study in tropical region. IEEE Access 7, 74471–74481. 

Yaseen, Z.M., Zigale, T.T., Kumar, R., Salih, S.Q., Awasthi, S., Tung, T.M., Al-Ansari, N., 
Bhagat, S.K., 2019b. Laundry wastewater treatment using a combination of sand 
filter, bio-char and teff straw media. Sci. Rep. 9, 1–11. 

Yin, J., Deng, Z., Ines, A.V.M., Wu, J., Rasu, E., 2020. Forecast of short-term daily 
reference evapotranspiration under limited meteorological variables using a hybrid 
bi-directional long short-term memory model (Bi-LSTM). Agric. Water Manag. 242, 
106386 https://doi.org/10.1016/j.agwat.2020.106386. 

Zhang, B., Zou, G., Qin, D., Lu, Y., Jin, Y., Wang, H., 2021. A novel Encoder-Decoder 
model based on read-first LSTM for air pollutant prediction. Sci. Total Environ. 765, 
144507 https://doi.org/10.1016/j.scitotenv.2020.144507. 

Zheng, H., Yuan, J., Chen, L., 2017. Short-Term Load Forecasting Using EMD-LSTM 
neural networks with a xgboost algorithm for feature importance evaluation. 
Energies 10 (8), 1168. 

Zounemat-Kermani, M., Meymand, A.M., Ahmadipour, M., 2018. Estimating incipient 
motion velocity of bed sediments using different data-driven methods. Appl. Soft 
Comput. 69, 165–176. 

M. Jamei et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1470-160X(23)00620-9/h0470
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0470
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0475
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0475
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0475
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0480
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0480
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0480
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0490
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0490
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0490
https://doi.org/10.1007/s11269-019-02378-6
https://doi.org/10.1080/19942060.2021.1984992
https://doi.org/10.1080/19942060.2021.1984992
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0505
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0505
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0510
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0510
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0510
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0510
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0510
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0515
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0515
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0515
https://doi.org/10.1002/wrcr.20517
https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1016/j.jbi.2018.07.014
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0530
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0530
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0535
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0535
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0535
https://doi.org/10.1029/wr013i003p00531
https://doi.org/10.1029/wr013i003p00531
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0545
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0545
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0550
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0550
https://doi.org/10.1080/00401706.2020.1791254
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1029/2019WR025326
https://doi.org/10.5194/gmd-9-4365-2016
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0570
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0570
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0570
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0570
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0575
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0575
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0575
https://doi.org/10.1016/j.agwat.2020.106386
https://doi.org/10.1016/j.scitotenv.2020.144507
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0590
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0590
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0590
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0595
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0595
http://refhub.elsevier.com/S1470-160X(23)00620-9/h0595

	Designing a decomposition-based multi-phase pre-processing strategy coupled with EDBi-LSTM deep learning approach for sedim ...
	1 Introduction
	2 Material and methods
	2.1 Study area and statistically data description
	2.2 Empirical wavelet decomposition (EWT)
	2.3 Boruta-random forest feature selection
	2.4 Relief feature selection
	2.5 Simulated annealing (SA) feature selection
	2.6 Ridge regression (RR) feature selection
	2.7 Mutual information
	2.8 Encoder decoder Bidirectional- LSTM (EDBi-LSTM)
	2.9 Extreme learning gradient boosting (XGB)
	2.10 Goodness-of-fit metrics

	3 Model development and configuration
	3.1 Setting of machine learning approaches

	4 Application results and analysis
	4.1 Bamini site results analysis
	4.2 Ashti site results analysis
	4.3 Discussion and diagnostic assessment

	5 Conclusion and remarks
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


