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A B S T R A C T   

Electroencephalography (EEG) signal is an important physiological signal commonly used in machine learning to 
decode brain activities, including imagined words and sentences. We aimed to develop an automated lightweight 
EEG signal-based sentence classification model using a novel dynamic-sized binary pattern (DSBP) textural 
feature extractor and iterative multi-classifiers based majority voting (IMCMV) algorithm for iterative voting of 
results calculated using different classifiers for multi-channel EEG signal inputs. A new Turkish sentence EEG 
(TSEEG) was prospectively acquired. It comprised of 15-second 14-channel EEG signals recorded when 40 
volunteers (for each dataset, we collected EEG signals from 20 participants) were either shown or read corre-
sponding to demonstration or listening modes, respectively. Hence, 20 standardized commonly used sentences 
were obtained in their native Turkish language. The developed sentence classification model extracted 5,400 
multilevel deep features from each channel EEG signal segment using the novel DSBP, statistical features, and 
multilevel discrete wavelet transform (MDWT). 512 features were then chosen using the neighborhood 
component analysis selection function. k-nearest neighbor and support vector machine classifiers were used to 
calculate two prediction vectors from the selected features using tenfold cross-validation, i.e., 28 vectors were 
generated for each 14-channel EEG recording. Finally, the best general voted results were determined for 
increasing numbers of iteratively calculated prediction vectors using the novel IMCMV algorithm. Channel-wise 
and voted results were found to be excellent for sentence classification for the TSEEG dataset in both demon-
stration and listening modes. The DSBP-IMCMV-based model attained the best general classification rates of 
98.81% and 98.19% in the demonstration and listening modes, respectively.  
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1. Introduction 

Communication is an important life skill and activity where in-
dividuals transmit information, feelings, and thoughts to other in-
dividuals using written or spoken words. Many real-world scenarios 
require non-verbal communication [1], especially in persons who have 
lost the ability to write or speak [2]. However, in afflicted individuals 
who still retain intact cognitive function [3], communication is still 
possible using non-verbal gestures, e.g., sign language. Alternatively, 
brain-computer interface devices have been developed that can be used 
to record and interpret brain activities to output the specific thought- 
generated activity signal as computer-generated text/speech fragments 
or robotics-aided physical movements [4]. These devices have been used 
in various medical applications to improve patients’ quality of life with 
speech or motor impairment [5,6] and in non-medical applications 
[2,7]. 

To get brain activities, electroencephalography (EEG) signals are 
used extensively in clinics to assess the cognitive behavior of patients [8] 
and diagnose neuropsychiatric illnesses [9]. Indeed, EEG is the essential 
tool for studying brain activity signals in brain-computer interface ap-
plications. In a 23-subject silent/imagined speech recognition study 
using EEG signals, coarse- and fine-level classification accuracy rates of 
85.20 % and 67.03 % were attained for the cognitive character, digit, or 
image classification tasks [3]. Kamble et al. [10] proposed an EEG 
classification model for imagined word recognition that combined 
decomposition processing, statistical feature extraction, Kruskal Wallis 
test-based feature selection, and classification, which they evaluated for 
binary and multiple class classification on three different datasets. 
DaSalla et al. [11] classified the imagined vowels “a” and “u” using a 
common spatial pattern for EEG signals feature extraction and support 
vector machine (SVM) classifier and reported a maximum accuracy of 
78 %. In [12], a sigmoid function-based linear extreme learning machine 
was used to classify-five imaged words from the collected EEG signals of 
eight study participants. 40.3 % accuracy was attained for multi-class 
classification. Bakhshali et al. [13] employed correntropy spectral 
density matrices, Riemann distance, and k-nearest neighbor (kNN) 
classifier in their model to classify-four words and seven phonemes/ 
syllables from EEG signals collected from eight subjects. In a similar 
study, the convolutional neural network (CNN) was combined with 
transfer learning to perform the classification of five vowels and six 
words from EEG signals collected from 15 subjects [14]. Salinas et al. 
[15] attained 68.18 % accuracy for classifying five words from EEG 
signals of 27 subjects using their proposed method. Panachakel et al. 
[16] proposed a deep learning architecture coupled with discrete 
wavelet transform (DWT) to decode imagined speech from 9-channel 
EEG signals and obtained 86.2 % accuracy. The same authors reported 
an average classification accuracy of 57.15 % using the same model on a 
different dataset [17]. In [18], two different convolutional neural net-
works, a common spatial pattern, and a linear discriminant analysis 
classifier were used to develop a new model for imagined speech 
recognition and attained maximum accuracy of 62.37 %. In addition, 
there are many studies on EEG signal classification in the biomedical 
field in the literature. Goshvarpour and Goshvarpour [19] proposed an 
epileptic seizure detection method using an EEG signal. They used two 
two-piece rose spiral curve model to detect epileptic seizures and 
attained an accuracy value of 100.0 % with SVM and kNN classifiers. 
Buriro et al. [20] used wavelet scattering transform and convolutional 
neural network to detect alcoholic EEG signals automatically. They have 
reported an accuracy of 100 % in detecting alcoholic EEG signals using 
SVM classifier using UCI dataset (EEG signals of 20 alcoholics subjects 
and 20 healthy subjects). Cherloo et al. [21] developed an EEG signal 
classification model for motor imagery. They applied ensemble regu-
larized common spatio-spectral pattern. They reported an accuracy of 
86.91 % and 82.64 % for BCI Competition III and BCI Competition IV, 
respectively. Wen et al. [22] presented a low power epilepsy detection 
approach using EEG signals. They obtained an accuracy of 91.86 % using 

lifting wavelet transform and SVM classifier. Wang et al. [23] applied 
statistical method to choose most discriminative feature using EEG sig-
nals. The main purpose of their study is to propose an effective feature 
extraction method and test the performance of the method. Their 
method obtained an accuracy of 81.99 % with SVM classifier. Baygin 
et al. [4] used collatz pattern and iterative neighborhood component 
analysis for schizophrenia detection with EEG signals. They attained 
accuracy value of 99.47 % and 93.58 % for datasets with 19 and 10 
channels, respectively. Aydemir et al. [24] proposed a quadruple sym-
metric pattern for epilepsy disease detection. They obtained an accuracy 
of 98.40 % with kNN classifier using Bonn EEG dataset. Tuncer et al. 
[25] presented an epilepsy detection method using local senary pattern. 
They used 5 classes of Bonn EEG dataset and reported an accuracy of 
93.00 % with SVM classifier. 

As can be seen in the related works, researchers proposed models to 
classify vowel/words using EEG signals. However, their models are very 
complex to translate participants’ situations. To handle this problem, we 
proposed a new methodology named EEG sentence classification. 

We were inspired by EEG keyboard studies, where sentences can be 
translated directly from EEG signals [26,27]. In addition, most of the 
published studies in the literature have focused mainly on word, sylla-
ble, or letter classification [1,28,29] but not sentence recognition. We 
were thus motivated to develop an automated sentence classification 
model for multi-channel EEG signal inputs. Moreover, in most lan-
guages, a limited number of sentences are used to meet the daily routine. 
Also, we use certain sentences more often than other sentences. There-
fore (using the frequency of individuals’ use of sentence patterns), a new 
brain-computer interaction methodology is proposed, and this meth-
odology is called EEG sentence classification. This is the first work about 
EEG sentence classification to the best of our knowledge. We chose small 
and primarily used Turkish sentences to create two EEG sentence 
datasets. Since the participants could not concentrate on thinking about 
long sentences, 20 short sentences, which are frequently used in Turkish, 
were used. Moreover, by using the selected 20 sentences, EEG obser-
vations with a small length can be used for classification. 

In this work, we try to mimic the extraction of multileveled features 
using deep models by our computationally lightweight model coupled 
with multilevel discrete wavelet transform (MDWT) [30]. The statistical 
feature extractors and a novel dynamic-sized binary pattern (DSBP) 
textural feature extraction function is to generate multilevel low- and 
high-level features from input EEG signals. Hence, a novel iterative 
multi-classifiers-based majority voting (IMCMV) model was used to 
determine the best overall results from varying numbers of prediction 
vectors calculated from multiple classifiers and EEG signal channels. As 
a result, the proposed DSBP-IMCMV-based EEG sentence classification 
model, attained over 98 % classification accuracy on the study dataset. 

The main contributions of this are given below:  

• A novel feature extractor, DSBP was proposed that used non-fixed 
size overlapping blocks to generate textural features.  

• A novel majority voting model, IMCMV, was proposed, which used 
the results of two classifiers on all channels in the EEG recording to 
generate overall performance metrics.  

• A prospective EEG sentence dataset acquired in demonstration and 
listening modes was used to develop the proposed model.  

• The generated automated DSBP-IMCMV EEG sentence classification 
model is computationally lightweight and attained over 98 % overall 
classification accuracy. 

In this paper, the dataset is given in Section 2, the dynamic-sized 
binary pattern is mentioned in Section 3, and the proposed EEG sen-
tence classification model is described in Section 4. Performance eval-
uation is presented in Section 5. Section 6 presents a discussion. Finally, 
the conclusion is given in Section 7. 
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2. Dataset 

A Turkish sentence-EEG sentence (TSEEG) dataset was recorded 
when subjects were either shown or read––demonstration or listening 
modes, respectively. Finally, 20 standardized commonly used sentences 
in their native Turkish language (Table 1) were obtained. In the 
demonstration mode, the sentences were shown via computer terminal 
screens to 20 volunteers (16 males, age range 19 to 23 years, mean age 
21.35 ± 1.20 years; 4 females, age range 19 to 23 years, mean age 20.50 
± 1.73 years); in the listening mode, the sentences were read via 

computer audio output to another 20 volunteers (17 males, age range 19 
to 24 years, mean age 21.74 ± 1.39 years; 3 females, age range 20 to 23 
years, mean age 21 ± 1.73 years). Throughout, EEG signals were ac-
quired from all the volunteers using the EMOTIV EPOC + mobile system, 
which collected 14-channel EEG signals from 16 scalp zones: AF3 (1), F7 
(2), F3 (3), FC5 (4), T7 (5), P7 (6), O1 (7), O2 (8), P8 (9), T8 (10), FC6 
(11), F4 (12), F8 (13), AF4 (14), P3 (reference zone), and P4 (reference 
zone) (Fig. 1). Each EEG signal segment lasted 15 s (sampling rate 128 
Hz, bandwidth 0.16–43 Hz) and was pre-processed on the EMOTIV 
EPOC + system before input into our EEG classification model. For 
classification in this study, each EEG recording contained 14 EEG signals 
channels. Therefore, each Turkish sentence was considered one class, i. 
e., results would be reported in either channel-wise or 20-class classifi-
cation performance. 

The system comprised saline wet EEG electrodes in set positions that 
could be conveniently applied to the unshaven scalps of volunteers for 
the experiments. The Turkish sentences were shown to volunteers on the 
computer screens in demonstration mode. The Turkish sentences were 
read to volunteers in listening mode over the computer audio output. For 
every Turkish sentence, one 15-second 14-channel EEG recording was 
acquired. The demonstration and listening modes of the experiments 
were conducted in separate groups of male and female volunteers. 

3. Dynamic sized binary pattern 

In this work, we have proposed a new textural feature extractor to 
improve feature extraction ability of the classical textural feature 
extractor. The DSBP is an improved version of a one-dimensional local 
binary pattern [31] which employed four overlapping blocks with 
identical centers and dynamically sized window lengths of 3, 5, 7, and 9 
to extract binary features using center symmetric and center-based 
feature extractions strategies (Fig. 2). 

The rectangles represent signal data elements of the blocks, with the 
center values shown in red. Overlapping windows with lengths of 3,5, 7, 
and 9 define the center value. A total of 30 bits were generated based on 
relationships (depicted as blue lines connecting the rectangles) of ele-
ments equidistant from the center in center symmetric feature extraction 
(10 bits generated) and relative to the center in center-based feature 
extraction (20 bits generated). 

Detailed steps of DSBP feature extraction are given below.  

1. Divide the one-dimensional signal into overlapping blocks with nine 
lengths. 

blc1 = signal(k+ l − 1), k ∈ {1, 2,⋯, len}, l ∈ {1, 2,⋯, 9} (1) 

where blc1 represents the overlapping block with a length of nine.  

2. Create sub-blocks using the blc. 

blch = blch− 1(1+ t), t ∈
{

1, 2,⋯, leng
(
blch− 1) − 2

}
, h ∈ {2, 3, 4} (2) 

Table 1 
Twenty standardized Turkish sentences were used to elicit 1,600 15-second 14- 
channel EEG signal recordings from 20 volunteers in the demonstration and 
listening modes.  

Number Turkish 
sentence 

English 
translation 

EEG segments, 
(demonstration) 

EEG 
segments 
(listening) 

1 Merhaba, hoş 
geldiniz 

Hello, 
welcome 

80 80 

2 Yine görüşürüz See you again 80 80 
3 Güle güle Bye bye 80 80 
4 Sağlik olsun Never mind 80 80 
5 Afiyet olsun Enjoy your 

meal 
80 80 

6 Neye 
bakmiştiniz? 

What are you 
looking for? 

82 82 

7 Bugün canli 
ders var mi? 

Is there any 
online lecture 
today? 

80 80 

8 Hangi 
bölümde 
okuyorsun? 

In which 
department 
are you a 
student? 

79 79 

9 Mesleğiniz 
nedir? 

What is your 
job? 

80 80 

10 Bana 
güvenebilirsin 

You can trust 
me 

80 80 

11 Sakin ol Calm down 79* 79* 
12 Defol git Get out of 

here 
80 80 

13 Kolay gelsin Good luck 80 80 
14 Haydi gidelim Let’s go 80 80 
15 Acele et Hurry up 80 80 
16 Hiç yoktan 

iyidir 
It is better 
than nothing 

80 80 

17 Rica ederim You’re 
welcome 

80 80 

18 Sen bilirsin It is your 
choice 

80 80 

19 Rezil ettiler 
bizi, rezil 
olduk 

They 
disgraced us, 
we became 
disgraced 

81 81 

20 Hiçbir şey 
bilmiyorsun 

You know 
nothing 

79 79  

Fig. 1. EEG signal collection from female (left) and male (right) volunteers using the commercial EMOTIV EPOC + mobile system wirelessly connected to the 
computer terminal. 
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where leng(.) is the length calculation function. 

3. Extract binary features using the generated non-fixed size over-
lapping blocks and signum function. The schematic depiction of the 
DSBP feature extraction function is depicted in Fig. 3. 

The bit extraction operation is shown in Algorithm 1.  
Algorithm 1. Pseudocode of DSBP-based binary feature extraction. 

Input: Blocks (blc) with lengths of 3,5,7,9. 
Output: Binary features (bit) with a length of 30. 
01: cnt = 1;
// Center symmetric bit extraction 
02: for k=1 to 4 do 

03: for i=1 to 
⌊
length

(
blck)

2

⌋

do 

04: bit(cnt)= ρ(blck(i),blck( length
(
blck)+1 − i

)
;

05: cnt = cnt + 1;
06: end for i 
07: end for k 
// Center-based bit extraction 
08: for k = 1 to 4 do 

09: center =
⌈
length

(
blck)

2

⌉

; // Assign center value. 

10: for i = 1 to length
(
blck) do 

11: if i! = center then 
12: bit(cnt)= ρ(blck(i),blck(center);
13: cnt = cnt + 1;
14: end if 

(continued on next column)  

(continued ) 

Algorithm 1. Pseudocode of DSBP-based binary feature extraction. 

15: end for i 
16: end for k  

In Algorithm 1, cnt represents counter; length(.), length calculation 
function; ρ(.), signum function, which is mathematically defined as: 

ρ(a, b) =
{

0, a − b < 0
1, a − b ≥ 0 (3) 

where a, b represent the input parameters.  

4. Divide the 30 generated bits into five non-overlapping bit groups, 
each with six bits. 

bgt(i) = bit(i+ 6 × (t − 1) ), i ∈ {1, 2,⋯, 6}, t ∈ {1, 2,⋯, 5} (4) 

where bgt is tth bit group.  

5. Calculate five map signals using the five generated 6-bit groups. 

mt(i) =
∑6

j=1
bgt(j) × 26− j (5) 

where binary to decimal conversion/transformation was performed, 
and mt defines tth map signal.  

6. Generate histograms of the calculated map signals. The length of 
each histogram was 64 (=26).  

7. Merge the generated histograms to obtain the feature vector of the 
DSBP. 

x(j) = ht(j+ 64 × (t − 1) ), j ∈ {1, 2,⋯, 64}, t ∈ {1, 2,⋯, 5} (6) 

where x represents the generated feature vector with a length of 320; 
and ht , histogram of the tth map signal. 

Equations (1) to (6) define the proposed DSBP feature generation 
function (δ(.)). 

Fig. 2. DSBP-based center symmetric and center-based feature extraction.  

Fig. 3. The graphical denotation of the presented DSBP feature extractor.  
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4. Proposed EEG sentence classification model 

The one-dimensional signal classification model comprised four 
phases: (i) hybrid feature extraction using DSBP, statistics [32], and 
MDWT [33]; (ii) selection of top features using neighborhood compo-
nent analysis (NCA) [34]; (iii) signal classification of each channel using 
kNN [35] and SVM [36]; and voting of general results from all channels 
using IMCMV algorithm (Fig. 4). 

A 7-level MDWT was used to calculate high-pass and low-pass filter 
subbands of EEG signal segments from all 14 channels that constitute 
each 15-second EEG recording acquired in response to shown or read 
Turkish sentences. DSBP and statistical generator functions were used to 
extract 320 and 40 features, respectively, from each of the 14 MDWT- 
derived subbands and the original input EEG signal of the channel. 
The 15 feature vectors (f) each of length 360 generated for each EEG 
signal segment were merged to form a large feature vector of length 
5,400 (=15 × 260), from which the top 512 features were chosen using 
the NCA selector. SVM, and kNN with tenfold cross-validation were used 
to calculate two validation prediction vectors for each channel, i.e., 28 
predicted vectors were calculated for each 14-channel EEG recording. 
Finally, IMCMV algorithm was used to determine the best general 
classification result for all EEG signal inputs per channel. 

Our proposed feature engineering model consists of four main pha-
ses. These phases are (i) hybrid and multilevel feature extraction with 
MDWT and two feature selection function (DSBP and statistics), (ii) 
NCA-based the most informative features selection, (iii) classification 
with two shallow classifiers (kNN and SVM), (iv) majority voting for the 

best results selection. Furthermore, detailed steps of the DSBP-IMCMV- 
based model are given below phase-by-phase. 

4.1. Feature extraction 

We have proposed a hand-crafted feature engineering model. Thus, 
the most important phase of this model is feature extraction. In this 
phase, we have used MDWT to generate a multileveled feature extrac-
tion method. Moreover, the handcrafted feature extraction contains two 
main methodologies: (i) statistical and (ii) textural. Therefore, we have 
used 20 well-known linear and nonlinear statistical moments to generate 
statistical features, and a new feature generation function (DSBP) has 
been proposed to extract textural features. 

Step 1: Read each EEG signal segment input (sampling rate 128 Hz, 
duration 15 s) from individual channels. The length of each signal 
segment was 1,920 (=128 × 15). 
Step 2: Decomposed EEG signal into subbands (b) using MDWT 
transform (Fig. 3). Here, MDWT with seven levels was used. The 
number of levels was calculated using the following formula: 

lev =
⌊

log2

(
len
lb

)⌋

(7) 

where lev represents the number of levels; len, the length of EEG 
signal; and lb, the maximum length of the deployed overlapping blocks. , 
The schematic expression of the MDWT, is demonstrated in Fig. 5. 

In the literature, generally, multilevel wavelet transformation has 

Fig. 4. Block diagram of the proposed DSBP-IMCMV model with input TSEEG dataset.  
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been used to generate wavelet coefficients to generate features in the 
frequency domain, but most researchers have used low-pass filter sub-
bands to generate features. We have used a hybrid approximation since 
we want to benefit from the feature generation ability of the high-pass 
filter subbands. Thus, we have used high-pass filter subbands to 
generate features like wavelet packet decomposition [37,38]. Further-
more, we have used the symlet4 filter. This filter has generally used for 
signal denoising. Thus, we have used this function. The subband gen-
eration using the MDWT model is mathematically explained below. 

[L1,H1] = Ψ(EEG, sym4) (8)  

[
Lg,Hg

]
= Ψ

(
Lg− 1, sym4

)
, g ∈ {2, 3,⋯, 7} (9) 

where L and H represent low-pass and high-pass filter coefficients, 
respectively; and Ψ(., .), the discrete wavelet transform function, and it 
takes two parameters: input signal and wavelet filter. Here, symlet 4 
(sym4) filter was used. Using the generated subbands (L and H), the 
model’s band data structure was created (Fig. 2). 

b2k− 1 = Lk, k ∈ {1, 2,⋯, 7} (10)  

b2k = Hk (11)   

Step 3: Generate feature vectors from b and the original EEG signal 
using statistical and DSBP feature extractors. 

f1 = γ(ϖ(EEG), δ(EEG) ) (12)  

fj+1 = γ
(
ϖ
(
bj
)
, δ(bj)

)
, j ∈ {2, 3,⋯, 14} (13) 

where f are feature vectors; γ(.), concatenation/merging function; 
ϖ(.), statistical feature extractor; and δ(.) is DSBP feature extractor. 
Details of ϖ(.) and δ(.), which extracted 40 and 320 features, 

respectively, from each subband or input EEG signal, are given below. 
The used statistical feature extraction has been explained below. 

Statistical feature extraction is a fast and effective method [39]. In 
this paper, twenty commonly used statistical moments were applied to 
each one-dimensional signal and its absolute value to extract 40 features 
from each one-dimensional signal. The statistical feature extraction used 
in this study includes both linear (median, maximum, minimum, mode, 
variance, skewness, standard deviation, kurtosis, average, range, Higu-
chi, largest Lyapunov exponent) and nonlinear (energy, Renyi, Shannon, 
Kolmogorov-Sinai, Fuzzy, Tsallis, Wavelet and Permutation entropy) 
methods [40]. 

We used textural and statistical features to generate a fused feature 
vector. 

Step 4: Concatenate the generated feature vectors. 

X(j) = f l(q+ 64 × (l − 1) ), q ∈ {1, 2,⋯, 360}, l ∈ {1, 2,⋯, 15} (14) 

where X represents the calculated final/united feature vector with a 
length of 5,400 (=360 × 15). 

Steps 1 to 4 above define the proposed multilevel hybrid feature 
extraction process. 

4.2. Feature selection 

In this work, we have used a simple feature selection function, which 
is a distance-based function. This function is NCA and NCA is a selection 
version of the kNN. NCA generates nonnegative weights for features, 
which have been used to choose the most informative features (high 
weights assign the distinctive features and low weights define the 
redundant features). Thus, the generated weights have been sorted by 
descending to obtain the qualified indexes of the features. The most 
informative/valuable features can be selected using the computed 

Fig. 5. Illustration of MDWT with seven levels. Symlet 4 mother wavelet function was used to generate subbands b, each containing low-pass (L) and high-pass (H) 
filter coefficients. 
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indexes. Furthermore, NCA is both a simple and effective feature se-
lection function. Thus, we selected NCA as a feature selector. In this 
research, the most valuable 512 features have been selected. 

Step 5: Choose the most valuable/important 512 features using the 
NCA feature selector. 

NCA, the feature selection counterpart of the kNN, is a simple 
selector that is widely used in the literature. 

4.3. Classification 

To demonstrate the high classification ability of the generated fea-
tures using the proposed feature extraction method and NCA, we have 
used two shallow classifiers: kNN and SVM. MATLAB classification 
learner tool was used to choose the most suitable classifiers. Per the 
calculated test results, the best two classifiers are kNN and SVM. Thus, 
we used these classifiers as validation prediction vector generators. 

Step 6: Calculate validation prediction vectors using kNN and SVM 
with 10-fold cross-validation. Two predicted vectors were created for 
each channel’s EEG signal segment, which was the first step of the 
proposed IMCMV. 

p2c− 1 = K(sfc, y, 10), c ∈ {1, 2,⋯, 14} (15)  

p2c = Φ(sfc, y, 10) (16) 

where p represents the predicted vectors; sf , features selected by 
NCA; y, actual output; the value “10”, 10-fold cross-validation; K(.), 
kNN classifier; and Φ(.), SVM classifier. Hyperparameters of the classi-
fiers are given below: 

k-nearest neighbor (kNN) [35]: 
k was 1, city block (L1-norm) distance metric was used, and there 

was no voting. 
Support vector machine (SVM) [36]: 
A second-degree polynomial kernel was used, the box constraint 

level was one, and coding was chosen as 1-vs-1. 

4.4. Majority voting 

In this work, we have proposed a new majority voting algorithm. 
This majority voting model uses a loop to generate more than one voted 
vector, and we have used predicted vectors of two classifiers. Thus this 
model is named iterative multi-classifiers-based majority voting 
(IMCMV). The graphical summarization of this phase is given in Fig. 6. 

Steps of this phase are given below. 

Step 7: Compute the accuracy of each channel using p and y. 
Step 8: Apply iterative (loop-based) mode-based majority voting to 
calculate general results.   

Algorithm 2. Pseudocode of IMCMV. 

Input: Predictions (p), accuracies (oa). 
Output: Voted predictions (vp). 
01: Calculate indexes sorted (idx) using the calculated acc. 
02: for g = 3 to 28 do // Iterative voting 
03: for i = 1 to length(y) do 
04: for j = 1 to g do 
05: arr(j) = pidx(j)(i);
06: end for j 
07: vpg− 2(i) = M (arr); // M (.) is mode function. 
08: end for i 
09: end for h   

Step 9: Calculate accuracies voted using vp and y. 
Step 10: Choose the best result. 

5. Performance evaluation 

The proposed DSBP-IMCMV-based EEG classification model was 
programmed using MATLAB2021a on a personal computer with 32 GB 
memory, Intel i9-9900 processor, and Windows 10.1 ultimate operating 
system without executing parallel processes or needing graphical or 
tensor processing units. 

5.1. Classification measurements 

Standard performance metrics––accuracy (Oa), precision (Pr), recall 
(Rc), and F1-score (F1) [41,42]––were used to calculate channel-wise 
and voted results to evaluate the proposed model. Mathematical 
formulae of the metrics are listed below. 

Rc =
TP

TP+ FN
(17)  

Pr =
TP

TP+ FP
(18)  

Oa =
TP+ TN

TP+ FP+ TN + FN
(19)  

F1 = 2
Rc× Pr
Rc+ PR

(20) 

where TP, FP,TN, and FN are true positives, false positives, true 
negatives, and false negatives, respectively. 

Fig. 6. The used IMCMV algorithm to get the best classification result.  
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5.2. Demonstration mode results 

The model attained good to excellent channel-wise results using kNN 
and SVM classifiers, with the best performance seen in Channel 8. 
(Table 2). The overall classification accuracy rates across all channels 
were 89.82 %±2.79 % and 90.72 %±1.62 % using kNN and SVM clas-
sifiers, respectively. 

Using IMCMV algorithm, 26 more voted results with corresponding 
accuracies were iteratively calculated. By deploying IMCMV, the model 
achieved (worst) an accuracy of 96.19 % using the minimum of three 
predicted vectors and the best accuracy of 98.81 % using all 28 predicted 
vectors (Fig. 7). 

The confusion matrix of the model obtained using TSEEG signals 
acquired in demonstration mode shows low misclassification rates 
(Fig. 8). In the worst case, Turkish sentence Number 9 “Mesleğiniz 
nedir?” (“What is your job?”) in the demonstration mode was 

misclassified eight times as Turkish Sentence Number 17 “Rica ederim” 
(“You’re welcome”) (Table 1). 

5.3. Listening mode results 

The model attained good to excellent channel-wise results, with the 
best performance obtained for Channels 7 and 10 for the kNN and SVM 
classifiers, respectively (Table 3). The overall classification accuracy 
rates across all channels were 92.48 %±2.61 % and 92.27 %±1.94 % 
using kNN and SVM classifiers, respectively. 

By deploying IMCMV, the model achieved an accuracy result of 
96.56 % using the minimum of three predicted vectors and the best 
accuracy result of 98.19 % using 15 predicted vectors (Fig. 9). 

The confusion matrix of the model for TSEEG signals acquired in 
listening mode shows low misclassification rates (Fig. 10). In the worst 
case, Turkish sentence Number 3 “Güle güle” (“Bye bye”), in the 

Table 2 
Channel-wise results (%) obtained using our proposed model on TSEEG signals acquired in demonstration mode stratified by kNN and SVM classifiers.  

Ch. No kNN SVM  

Oa(%) Rc(%) Pr(%) F1(%) Oa(%) Rc(%) Pr(%) F1(%) 

1 88.38  88.38  88.48 88.43 91.31 91.32  91.65  91.48 
2 91.06  91.06  91.15 91.11 90.75 90.75  90.89  90.82 
3 89  89.01  88.99 89 90.50 90.51  90.70  90.60 
4 87.75  87.74  87.84 87.79 90 90  90.48  90.24 
5 89.50  89.46  89.56 89.51 90.88 90.85  91.01  90.93 
6 90.25  90.24  90.29 90.26 88.88 88.87  89.27  89.07 
7 89.75  89.72  90.04 89.88 90.38 90.36  90.81  90.59 
8 94.69  94.69  94.83 94.76 93.69 93.69  93.98  93.83 
9 92.13  92.11  92.30 92.20 92.06 92.06  92.52  92.29 
10 92.38  92.37  92.49 92.43 92.63 92.62  92.85  92.73 
11 92.31  92.32  92.43 92.37 91.81 91.82  92.17  91.99 
12 86.44  86.43  86.64 86.53 88.69 88.68  89.23  88.95 
13 83.56  83.58  83.65 83.62 87.56 87.56  87.88  87.72 
14 90.31  90.32  90.36 90.34 91 91  91.22  91.11  

Fig. 7. Plot of voted accuracies versus the number of prediction vectors used on TSEEG signals acquired in demonstration mode.  
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Fig. 8. Confusion matrix of the voted results for TSEEG signals acquired in demonstration mode. Each enumerated true class corresponds to the enumerated Turkish 
sentence listed in Table 1. 

Table 3 
Channel-wise results (%) obtained using our proposed model on TSEEG signals acquired in listening mode stratified by kNN and SVM classifiers.  

Ch. No kNN SVM  

Oa(%) Rc(%) Pr(%) F1(%) Oa(%) Rc(%) Pr(%) F1(%) 

1  91.94  91.92  91.98  91.95  92.56  92.54  92.75  92.65 
2  93.38  93.36  93.45  93.41  92.38  92.36  92.47  92.42 
3  90.13  90.12  90.23  90.18  90.13  90.11  90.60  90.35 
4  93.75  93.75  93.80  93.77  92.50  92.49  92.67  92.58 
5  92.94  92.93  93.13  93.03  93.69  93.69  93.95  93.82 
6  93.50  93.49  93.71  93.60  92.94  92.94  93.12  93.03 
7  95.25  95.24  95.39  95.32  94.31  94.31  94.48  94.40 
8  95.06  95.06  95.09  95.08  93.75  93.73  93.96  93.85 
9  95.06  95.06  95.13  95.09  93.81  93.80  93.98  93.89 
10  94.25  94.24  94.34  94.29  94.63  94.62  94.74  94.68 
11  92.63  92.62  92.76  92.69  92.44  92.43  92.51  92.47 
12  89.19  89.17  89.40  89.29  89.75  89.73  90.09  89.91 
13  85.88  85.86  85.88  85.87  87.81  87.80  88.33  88.07 
14  91.81  91.80  91.80  91.80  91.13  91.11  91.27  91.19  
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listening mode, was misclassified twelve times as Turkish Sentence 
Number 13 “Kolay gelsin” (“Good luck”) (Table 1). 

6. Discussion 

In this work, an EEG sentence classification model was developed 
using a prospective EEG dataset, TSEEG, which was acquired from two 
different sets of twenty volunteers who were either shown or read-
––demonstration and listening modes, respectively––twenty standard-
ized Turkish sentences in their native language. The study of the two 
distinct modes and the use of separate groups of volunteers for the 
demonstration and listening modes were essential considerations in the 
experimental setup. The visual and auditory neural pathways in the 
brain are distinct. Their processing of sentence recognition and the 
induced EEG signals will be different. Hence, the need for separate ex-
periments and separate groups of volunteers for the experiments to 
preempt potential signal contamination from repeat exposure. 

A new lightweight classification model, which employed novel DSBP 
and IMCMV methods, was trained and tested on the TSEEG dataset to 
develop an accurate EEG sentence classification system. DSBP and sta-
tistical feature extractors were deployed to extract local textural features 
and low-level statistical features. However, the MDWT decomposes the 
EEG signals into low- and high-pass subbands. Hence, it feeds the DSBP 
and statistical feature extractors, both low- and high-level features 
generated at multiple levels. 5,400 features were generated per input 
EEG segment, and NCA selector was used to choose the top 512 features. 
In the classification phase, kNN and SVM classifiers were employed to 
generate two prediction vectors per EEG signal channel. In the demon-
stration mode, the best channel-wise results were obtained from Chan-
nel 8 (O2), which collected surface EEG signals near one of the occipital 
lobes in the brain. This observation supports the occipital lobes’ 

essential role in processing visual information, as exemplified by sen-
tences shown to respondents on a computer terminal screen in the 
demonstration mode of the study experiments. 

In contrast, the channel-wise results in the listening mode are 
different, with the best performance observed in Channels 7 (O1) and 10 
(T8), with kNN and SVM classifiers, respectively. The temporal lobe has 
a critical role in auditory management, and the occipital lobe manages 
the brain’s visual system. In our experiment, we collected EEG signals 
using listening and demonstrating. Moreover, we said to participants, 
“please only think about this sentence”. Therefore, these lobes were 
activated in the data collection phase, and we obtained the best results 
from these channels 7,8, and 10. 

As each EEG recording contained 14 channels, 28 prediction vectors 
were generated for each of the 1,600 EEG recording samples from the 
TSEEG dataset. IMCMV was used to calculate voted results and select the 
best overall results among all the channels of individual EEG recordings. 
Based on results voted using increasing numbers of iteratively generated 
prediction vectors, the optimal number of prediction vectors was not 
always the maximum number of 28 (Figs. 5 and 7). Using IMCMV, the 
best overall accuracy, recall, precision, and F1 score were found to be 
98.81 %, 98.81 %, 98.88 %, and 98.84 %, respectively, with 28 pre-
diction vectors in the demonstration mode; and 98.19 %, 98.19 %, 
98.28 %, and 98.23 %, respectively, with 15 prediction vectors in the 
listening mode. Twenty commonly used Turkish sentences had been 
arbitrarily chosen in the experiments, and it could not be ascertained a 
priori that all sentences were suitable for training and testing the model. 
Accordingly, it was essential to evaluate the model’s class-wise classi-
fication results to ascertain minimum satisfactory performance for all 
classes (i.e., Turkish sentences) used in the experiments. Class-wise ac-
curacy rates of all 1,600 recording samples in the dataset were excellent 
(Fig. 11). Twelve and nine classes attained 100 % class-wise accuracy 

Fig. 9. Plot of voted accuracies versus the number of prediction vectors used in listening mode.  
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rates in the demonstration and listening modes, respectively. The worst 
accuracy rates were observed in Classes 9 (90 %) and 3 (85 %) in the 
demonstration and listening modes, respectively. In addition, the find-
ings of the confusion matrices (Figs. 8 and 10) illustrate this situation. 
However, these results can be considered satisfactory for study 
experiments. 

To get comparative results, we selected the best accurate channels 
for demonstration and listening datasets. For the demonstration-based 
EEG dataset, the best accurate channel is the 8th channel and the 7th 
channel is the best for the listening-based EEG dataset. Thus, we applied 
tests on these channels. The used models for comparisons are (i) statis-
tics, (ii) local binary pattern, (iii) ternary pattern, (iv) Hamsi pattern 
[43] and (v) Twine-shuffle pattern [30]. The calculated classification 
accuracies have been tabulated in Table 4. 

As seen from Table 4, our proposal attained the best classification 
accuracy among these models and demonstrated the superiority of the 
proposed DSBP-IMCMV-based EEG classification model. Furthermore, 
Table 4 highlighted that the multilevel and hybrid feature extraction 
increased classification performance. 

The advantages and limitations of the proposed model are listed 
below. 

Advantages:  

• In separate groups of volunteers, a new EEG sentence dataset was 
prospectively acquired in two modes––demonstration and liste-
ning––to develop the model.  

• DSBP, an improved version of the one-dimensional local binary 
pattern [31], was deployed to extract textural features, including 
high-level features from subbands of EEG signals decomposed by 
MDWT.  

• A new voting model, IMCMV, was proposed to select the best overall 
results from multiple classifiers and multiple EEG signal channels 
from iteratively voted results using increasing numbers of calculated 
prediction vectors.  

• The proposed DSBP-IMCMV-based model is simple and robust.  
• The model attained over 98 % classification accuracy rates for one- 

dimensional EEG signals using the TSEEG dataset for both demon-
stration and listening modes. Therefore, we expect the model to also 
be used to classify other one-dimensional signals. 

Limitations: 

Fig. 10. Confusion matrix of the voted results for TSEEG signals acquired in listening mode. Each enumerated true class corresponds to the enumerated Turkish 
sentence listed in Table 1. 
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• The TSEEG dataset consists of twenty Turkish sentences, which is the 
native language of the volunteers. Therefore, the experiments may 
need to be duplicated using sentences collected in other languages.  

• We used pre-determined hyperparameter settings for the kNN and 
SVM classifiers used in the model. These hyperparameters can be 
further refined to optimize the classification results. 

7. Conclusions 

The majority of EEG datasets for text and speech recognition are not 
publicly available, and there is a shortage of EEG sentence datasets in 
the literature. This study acquired the TSEEG dataset to develop our 
model and classify sentences from EEG signals. The dataset acquired 
from a group of volunteers is automatically distinguished with very high 
performance using our proposed method with demonstration and 
listening modes. Our classification model is computationally lightweight 
and has two new methods––DSBP and IMCMV for textural feature 
extraction and iterative result voting. The model attained 98.81 % and 
98.19 % overall accuracy rates in the demonstration and listening 
modes, respectively, with the TSEEG dataset. These favorable results 
indicate that our proposed DSBP-IMCMV-based EEG signal classification 
model may be implemented for sentence classification for brain- 

computer interface applications. In future works, we intend to validate 
our results using larger datasets in multiple languages. Furthermore, this 
work will facilitate the development of EEG-based communication de-
vices, improving non-verbal communication for persons with speech or 
sensory disabilities. Also, our model’s DSBP-based feature engineering 
and IMCMV based voted result generation are highly versatile and can 
be applied to the classification of other physiological signals. 
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Table 4 
Channel-wise accuracies (%) of the proposed model and other methods.  

Method Demonstration-based EEG 
dataset (Channel 8) 

Listening-based EEG 
dataset (Channel 7) 

Statistics  85.34 78 
Local Binary 

Pattern  
50.70 54.13 

Local Ternary 
Pattern  

51.99 53.98 

Hamsi Pattern  71.76 75.98 
Twine Shuffle 

Pattern  
73.01 80.97 

Proposed Model  94.69 95.25  
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