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Abstract. In this paper we propose a clustering algorithm called s-Cluster for analysis of gene 

expression data based on pattern-similarity. The algorithm captures the tight clusters exhibiting strong 

similar expression patterns in Microarray data, and allows a high level of overlap among discovered 

clusters without completely grouping all genes like other algorithms. This reflects the biological fact 

that not all functions are turned on in an experiment, and that many genes are co-expressed in multiple 

groups in response to different stimuli. The experiments have demonstrated that the proposed 

algorithm successfully groups the genes with strong similar expression patterns and that the found 

clusters are interpretable. 
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1.  Introduction 
Many clustering techniques in bioinformatics have been applied to analyze gene expression data. 

Most clustering models [4, 1, 8, 10, 7, 9] are distance based clusterings such as Euclidean distance 

and cosine distance. However, these similarity functions are not always sufficient in capturing 

correlations among genes or conditions. 

 

To remedy this problem, the bicluster model [2] uses a similarity score to measure the coherence of 

genes and conditions in a sub matrix of Microarray data. Wang et al. [11] proposed an algorithm to 

find all (maximum) submatrices such that they are δ-pClusters.Liu et al. [5] introduced a u-Cluster 

model to capture the general tendency of objects across a subset of dimensions in a high dimensional 

space. In reality, errors are unavoidable in biological experiments and perfect pattern matching in 

Microarray data may not occur even among known coordinately regulated genes. In this paper, we 

will present a model which tolerates such possible errors in the data. Our proposed algorithm 

is simple, interpretable, and deterministic. The proposed algorithm is distinct from δ-p Clustering 

model in that it is a full space clustering model and allows dissimilarities, possibly caused by 

experimental errors, in clusters while δ-pClustering does not.  

 

2.  s-Clusters 
 

We define s-clusters by a threshold as the minimum proportion of conditions in which genes have the 

similar express. Our model does not cluster all genes and allows clusters to overlap. The resulting 

clusters are tight. A tight cluster is better for refining a hypothesis. 
 

2.1 Model 
 

The original gene data matrix is first normalized. Gene-condition expression data is represented as a 

n-by-p matrix where each entry xij denotes the expression level of the ith gene in the j th condition 

(where i = 1,...,n and j = 1,...,p). 

 



The new standardized data matrix Z is obtained by converting the raw values to z-scores, and it will 

be used for the following clustering analysis. The mean of z-scores in each row is zero. 

 

Definition 1. Let N be the set of genes and P be the set of conditions in a standardized data set Z. 

Given x, y ∈ N, Zx and Zy denote the vectors of the xth gene and yth gene, respectively. We define the 

sScore of two genes under the jth condition as 

 

sScorex,y,j = |zxj − zyj| (1) 

 

With two given thresholds 0 < α ≤ 1 and δ > 0, we say two genes x and y are similar, if at least in a α 

fraction of conditions, sScore ≤ δ for the two genes. 

 

Definition 2. Let S = {Z1, Z2, ...,Zk} be a set of genes, S ⊂ N. Zk denotes a vector of a gene. We say S 

forms an s-Cluster if every pair of genes in S is similar by definition 1. 

 

In the s-Cluster model, one gene can be in several different clusters. In other words, the clusters are 

not exclusive. This is very meaningful in the underlying biological processes in which many 

individual genes are co-expressed in multiple function groups in response to different stimuli. 

 

2.2 Algorithm 
 

The algorithm contains three phases: (1) preprocess the data into a normalized data matrix. The mean 

and mean absolute deviation are calculated for each row, and are then converted the raw data into z-

scores;(2) find similar gene pairs. We go through the z-scores data and identify all similar gene pairs 

according to Definition 1; (3) form all s-Clusters. construct a graph where every gene is represented as 

a vertex, and two similar genes as an edge. s-Clusters can be viewed as the cliques in this graph 

according to Definition 2. We design an algorithm similar to Bierstone’s algorithm [6] to generate all 

maximum cliques, interesting s-Clusters. 

 

In general, finding all maximal cliques in a graph is NP-complete. The algorithm can enumerate all 

maximal cliques efficiently only when the equivalent graph is sparse, i.e. edge density is low. Edge 

density of a gene graph is usually very low since there are not many genes expressing similarly across 

most conditions. Therefore, this method produces good results with high efficiency in Microarray 

data. 

 

A simple heuristic to set δ is outlined as follows. It is set high initially, and then is reduced gradually. 

When the visual inspection of similarity of gene expression patterns in clusters is unacceptable, the 

process stops. The setting of α is straightforward since its meanings is clear. 

 

The definition of similarity in this model is more strict than that in most other clustering models. As a 

result, the clusters of this model are usually very tight, including much fewer genes than clusters from 

other models. We do not intend to find regular clusters to group all genes, but to find small groups of 

genes that exhibit strong similar expression patterns. We find that these clusters are very interpretable. 

 

3 Experiments 
 

We apply the s-Cluster algorithm to yeast Saccharomyces cerevisiae cell cycle expression data from 

Cho et al. [3]. The yeast data contains expression levels of 2,884 genes under 17 conditions. The data 

set is organized in a matrix where each row corresponds to a gene and each column represents a 

condition.  

 

 

 

 



 

Gene  System  Name   Description 

58  YAR007C   69 kDa subunit of the heterotrimeric RPA (RF-A) singlestranded 

DNA binding protein, binds URS1 and CAR1 

216  YBR088C   Profilerating cell nuclear antigen (PCNA) accessory factor for 

DNA polymerase delta, mRNA increases in G1, peaks in S in 

mitosis, and increases prior to DNA synthesis in meiosis” 

217  YBR089W   Unknown 

448  YDL003W   Unknown 

526  YDL164C  DNA ligase 

616  YDR097C   Homolog of the human GTBP protein, forms a complex with 

Msh2p to repair both single-base and insertion-deletion mispairs, 

redundant with Msh3p in repair of insertion-deletion mispairs” 

1022  YFL008W   Coiled-coil protein involved in chromosome structure or segregation 

1184  YGR152C   GTP-binding protein of the ras superfamily involved 

in bud site selection 

1286  YHR154W   Establishes Silent omatin 

1795  YLR103C   Omosomal DNA replication initiation protein 

1836  YLR183C   Unknown 

2278  YNL102W   DNA polymerase I alpha subunit, p180 

2375  YNL312W   1-7, 116-930” subunit 2 of replication factor RF-A 29% 

 identical to the human p34 subunit of RF-A 

2538  YOR074C   Thymidylate synthase 

2725  YPL153C   Protein kinase, Mec1p and Tel1p regulate rad53p phosphorylation” 

 

Fig. 1. A list of genes in s-Cluster #111. 12 genes are related to DNA synthesis and replication and 3 

are unknown. This raises the possibility that the 3 genes are also DNA synthesis and replication 

related. 

 

Each entry represents the relative abundance values (percentage of the mRNA for the gene 

in all mRNA) of the mRNA of a gene under a specific condition, which is scaled into an integer in the 

range of 0 and 600. We conducted the experiment with the parameters of δ = 0.8 and α = 0.8. A total 

of 1764 s-Clusters with a minimum size of 5 was generated by the algorithm. Clusters of four or fewer 

genes were ignored. The 1764 s-Clusters covered 453 genes, or 15.7% of the 2884 genes. This 

method only groups some interesting genes, which express coherently with other genes. All clusters 

are highly overlapping, and this captures a biological fact that some genes participate in a number of 

functions. 

 

There are 15 members in the s-cluster #111 in Figure 1, 12 genes of which are related to DNA 

synthesis and replication, and 3 genes (YBR089W, YDL003W, ULR183C) are unknown. This raises 

the possibility that the 3 genes are also related to DNA synthesis and replication. Figure 1 shows 

genes in this s-Cluster in details. 

 

Our findings are interesting when compared with those of Tavazoie et al. [8]. Our 15 members in s-

Cluster #111 are all in the cluster #2 discovered by Tavazoie et al.. Their cluster #2 contains 186 

genes which are related to four functions: DNA synthesis and replication, cell cycle control and 

mitosis, recombination and DNA repair, and nuclear organization. Our approach successfully 

subcategorized Tavazoie’s cluster #2 into several smaller sized s-Clusters containing genes which are 

clearly related to one of the four functional categories. This indicates that the s-Clusters are more 

tightly grouped and more interpretable than the clusters from the alternative analysis approach. 

 

 

 

 



4 Conclusions 
 

We have proposed a new pattern-similarity clustering model called s-Cluster to capture some tight 

clusters containing groups of genes with strong coherent expression patterns.Our experimental results 

show that the proposed algorithm can successfully group genes with similar expression patterns. 

When compared with the clustering results from a conventional method [8], the clusters found by our 

algorithm are tighter and more interpretable. 
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