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ABSTRACT 16 
Improving safety at railway level crossings remains a priority for the rail industry internationally, as they 17 
remain a significant hazard. A high proportion of collisions occur at passive level crossings, because of 18 
their high prevalence and their lower effectiveness at mitigating the risks that road users encounter at such 19 
crossings. The unreasonable cost required to upgrade them to incorporate active warnings implies that 20 
such crossings will remain on the road, and that alternative approaches are required. Drivers tend to make 21 
errors at such crossings, and this can be related to approaching such level crossings at speeds that are too 22 
high, exhibiting reduced scanning behaviors to look for trains, and not complying with stop signs at the 23 
crossing. An alternative approach is to upgrade the advanced signage with active flashing lights activated 24 
by road vehicles, aimed at reducing looked-but-failed-to-see errors and reinforcing the behavior expected 25 
from road users at such crossings. A field trial was conducted in New Zealand, which evaluated how 26 
approach speeds and the visual scanning behavior of 27 drivers, recorded with an eye tracker, changed 27 
with such treatments. It was found that the presence of road vehicle activated advanced signage provided 28 
a range of benefits for drivers unaware of the presence of a passive crossings, such as increasing drivers’ 29 
attention to road signs through drivers fixating on signage for longer durations and reduced (slower) 30 
approach speeds. Further research is needed to evaluate whether these benefits are sustained over time, 31 
and whether this can minimize complacency due to familiarity. 32 
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INTRODUCTION 1 
Human performance and human errors have consistently been major contributors to railway 2 
accidents. After decades of safety improvements at level crossings, accident rates have 3 
decreased; however, the human factors leading to them have remained the same (1). This trend is 4 
unlikely to continue without alternative interventions. As level crossings remain a significant 5 
hazard, improving safety at level crossings remains a priority for the rail industry internationally. 6 
Between 2004 and 2013, railway level crossing incidents fell by 35% in the US (2). However, 7 
the trend has been increasing since 2009 with increased traffic volumes, with approximately 8 
2100 collisions still occurring at railway level crossings every year (2; 3). These collisions result 9 
in an average 250 fatalities every year, highlighting that motorists are 20 times more likely to die 10 
when colliding with a train as compared to a road vehicle (4). The number of injuries at level 11 
crossings has also followed a similar trend, and around 725 injuries are recorded every year. 12 
Similar trends are observed in other parts of the world, such as Australia and New Zealand (5-7). 13 

The large proportion of level crossings being passively protected (only a stop sign or give 14 
way sign), combined with their lower effectiveness in mitaging road users’ risks at passive level 15 
crossings when compared to their active counterparts (when road and rail traffic volumes are 16 
taken into account) (8) results in a high percentage of fatalities occurring at passive crossings.  17 
The current approach to reduce risk at passive level crossings is to grade separate (replace by 18 
bridge or tunnel), close the crossing, or install active warning devices. However, the cost of such 19 
approaches for level crossing with low traffic and in rural environments cannot be justified, and 20 
only a subset of level crossings has been treated given limited funding (9) . 21 

Trains cannot be stopped as easily as cars and need large distances to come to a halt. 22 
Level crossings are therefore governed by a simple rule: the road user must give way to trains. 23 
Almost all collisions are the result of the road user failing to obey this rule (10). At passive 24 
crossings, the road user is therefore expected to (i) detect the presence of the crossing, (ii) detect 25 
the presence of a train, and (iii) appropriately decide whether it is safe to proceed through the 26 
crossing by estimating the train’s speed and arrival time at the crossing. Research has shown that 27 
drivers can make errors on each of these tasks, either intentionally or unintentionally. Overall, 28 
the evidence suggests that of all the driver-related factors, unintentional errors are far more 29 
commonplace than deliberate violations (11-14).  The main factors leading to such errors are: 30 
insufficient sighting distances, or limited conspicuity of the warning signs and/or approaching 31 
train; drivers’ lack of awareness of the required response to passive crossing warning signs; 32 
drivers’ inability to correctly assess if sufficient time is available to safely complete the crossing 33 
(15), particularly due to poor ability to estimate the speed of trains as they approach (16); 34 
inattention as a result of complacency due to low expectations of encountering a train (17), or 35 
distraction (18); and the so-called “looked-but-failed-to-see” error (10), where drivers fail to 36 
identify hazards despite looking at the hazard’s source, largely due to limitations in human 37 
information processing. 38 

Driver behavior at passive level crossings has been extensively studied, particularly in 39 
Australia: a significant proportion of drivers tend to approach level crossings too quickly (19-40 
21); compliance levels tend to be considerably lower than at active crossings (19; 22) as a result 41 
of reduced driver attention towards passive warning signs; and drivers tend to exhibit limited 42 
active search for trains while approaching crossings, as suggested by the reduced amount of head 43 
movements toward rail tracks (21; 23; 24). While drivers tend to look towards the advanced 44 
signage on the approach of level crossings, no research has assessed whether the poor driver 45 
behavior observed at level crossings is a consequence of a problem of maladaptive behavior (25) 46 
with drivers not understanding what they need to do at crossings, or a looked-but-failed-to-see 47 
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error as suggested by Rudin-Brown, George and Stuart (10). Tung and Khattak (18) have also 1 
shown that distraction is prevalent at railway level crossings in the US, reaching 30% on 2 
average, and resulting in similar risky approaches at crossings. With increasing road and rail 3 
traffic volumes, of the order of 35% in recent years in New Zealand for instance (26), the trend 4 
of increasing collisions at level crossings is likely. This suggests that alternative approaches 5 
should be investigated.  6 

Transport agencies provide guidelines for signage at passive level crossings. The 7 
approach to passive level crossings is required, in most circumstances, to be equipped with static 8 
advanced warning signs (27). The Railroad-Highway Grade Crossing Handbook from the U.S. 9 
Federal Highway Administration (28) recommends that  active advance warning systems be 10 
installed where approaching drivers are unable to see the railway crossing signal until they have 11 
passed the decision point. Similar recommendations exist in Australia for road intersections (29): 12 
flashing lights, installed in conjunction with advanced warning signs, should be installed at 13 
particularly hazardous intersections.  14 

The high level of unintentional errors at passive level crossings (particularly in terms of 15 
stopping and actively looking for trains) raises the question of whether such active warnings 16 
should be used on a broader scale to attract the attention of road users as they approach level 17 
crossings, which are intersections with a significantly higher risk than road intersections. The 18 
effectiveness of such active advanced warning for road intersections suggests this. The majority 19 
of research into the effectiveness of this approach has occurred in the United States, and has 20 
focused on advanced warning at high-speed junctions. While early research conducted in rural 21 
Ohio (30) was not very positive, with higher vehicle approach speeds observed when the flashing 22 
lights were inactive, more recent work has shown reduction in severe crashes with advanced 23 
warning flashing lights on vehicle crashes at high-speed intersections in the U.S. (31; 32) and in 24 
Australia (33). The latter also highlighted a reduction of crashes involving heavy vehicles, which 25 
are known to be particularly at risk at level crossings. This is further supported by the study by 26 
Abdel-Rahim et al. (34) which has shown that increasing the conspicuity of level crossings with 27 
highly reflective warning signs resulted in fewer crashes at passive crossings, particularly at 28 
nighttime. 29 

This alternative and affordable approach is currently being considered by the rail industry 30 
in New Zealand (26), with an effort to upgrade the advanced signage of passive level crossings 31 
with active flashing lights activated by road vehicles. This aims of this approach include both (i) 32 
increasing the conspicuity of the level crossing earlier for drivers, to reduce looked-but-failed-to-33 
see errors, and (ii) indicating the behavior required by drivers, i.e. to stop and look for trains. The 34 
cost of such an approach represents a fraction of those involved in upgrading a level crossing to 35 
an active warning, as there is no need to interface this warning signal to rail signaling, and does 36 
not require the same safety integrity levels, leading to reduced redundancies in the design of the 37 
warning equipment. If effective, it can help in treating a larger number of level crossings, which 38 
would have otherwise remained with their current passive signs. Therefore, this study aimed to 39 
evaluate the changes in driver behavior with such active advanced warnings at passive level 40 
crossings. The study particularly focused on evaluating how approach speeds and gaze behaviors 41 
are modified with such treatments. 42 

 43 
METHOD 44 
Trial crossing with advance flashing lights  45 
The trial crossing, with the installation of advance flashing lights, was located at one rural 46 
passive railway crossing near Marton, New Zealand. The crossing comprised traditional 47 
advanced signage, warning drivers that they were approaching a passive railway crossing, and a 48 



Larue, Watling, Black, Wood  4 
 
set of two yellow alternate flashing lights (100 mm diameter) which were activated when road 1 
vehicles approached. A radar detected vehicle movements approaching within 60 meters of the 2 
sign, and activated the lights for 4 seconds on detection of movement, regardless of whether a 3 
train was approaching or not. This amount of time was sufficient for the lights to be activated 4 
until drivers passed the activated warning sign. Yellow lights were used to provide a warning of 5 
the presence of the level crossing, and contrasted with the red lights used at active crossings to 6 
indicate the approach of a train.” A message to ‘Expect Trains’ was also included in the advanced 7 
signage warnings. 8 
 9 
Comparison crossings 10 
Two similar railway crossings were selected as comparison sites and were located approximately 11 
two kilometers away. Similarities between the trial and control crossings included: same road 12 
signage (except for the advanced flashing lights), 90-degree intersections, reduced visibility 13 
during the approach, and with one side having a long, straight approach, and the other side a 14 
short approach (due to the proximity of a T intersection). 15 
 16 
Experimental design 17 
The field testing used a repeated measures design with all participants completing the daylight 18 
condition, and one third of participants also completing the night-time condition. Two within-19 
subject factors were considered:  20 
 21 

1. Level crossing type: standard passive level crossing with a stop sign (control), and a 22 
passive crossing with advanced flashing lights activated by the approach of a road vehicle 23 
(trial); and 24 

2. Lighting condition: day (27 participants) and nighttime (11 participants).  25 

Driving route 26 
A one-hour driving route was created (see Figure 1). This route started and ended at the Marton 27 
public library. The route first headed East, to allow participants to become familiar with the vehicle 28 
and the equipment. They drove through a variety of roads and intersections within and outside of 29 
the town of Marton, including roundabouts, stop intersections, give way intersections and active 30 
level crossings. Participants generally approached the first trial crossing around 20 minutes after 31 
starting the drive. The route involved travel through the control and trial crossings four times, twice 32 
in each direction.  33 
 34 
Participants 35 
Participants were healthy adults who were regular licensed drivers. They were recruited from the 36 
general public in the Palmerston North area. 37 

Recruitment was stratified to obtain a sample with equal gender split and a range of ages 38 
and driving experiences. However, due to the small sample size, no direct comparisons were 39 
made between demographic groups.  All participants completed a vision screening to ensure that 40 
they met the minimum vision requirements to hold a private driving license. 41 

Ethical clearance was obtained from the QUT Ethics Committee (clearance number 42 
1600000946). 43 

 44 
Materials 45 
Vehicle 46 
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A dual-control vehicle was used to drive the route, with an accredited driving instructor seated in 1 
the passenger seat to monitor safety of the vehicle at all times. The vehicle was an automatic 2 
2007 Hyundai Accent dual control car. A pre-programmed GPS (DriveSmart 60; Garmin) 3 
provided directions to drivers to ensure consistency in the route. 4 
 5 
Eye tracker 6 
The ASL Mobile Eye-XG eye tracker was used to record participant’s gaze behavior while 7 
driving. This eye tracker consists of lightweight goggles, and comprises two cameras each 8 
sampling at 30 Hz: a forward-facing scene camera and an eye camera that captures the infrared 9 
corneal reflection and pupil position of the right eye. A calibration procedure, which determines 10 
where gaze is located within the scene, was performed at the beginning of each drive. The eye 11 
tracker provides highly accurate points of gaze position to identify what participants fixate on or 12 
gaze at in the environment, with a tracking accuracy of 0.5 to 1.0° (35). 13 
 14 
Smartphone 15 
The vehicle was instrumented with a GPS (Samsung S4 smartphone) to obtain the position and 16 
speed of the vehicle every second during the driving task.  An app was developed to record the 17 
details of the drive and to send the information from the GPS to a laptop synchronized with the 18 
eye tracker. 19 
 20 
Synchronization interface 21 
The software RTmaps version 3.4.10 was installed on the computer that was linked to the eye 22 
tracker. This software was used to ensure a unique recording time for the different devices.  23 
 24 
Procedure 25 
In the first session, participants completed the consent form and demographic survey. A vision 26 
screening was performed, assessing visual acuity and contrast sensitivity, to ensure participants 27 
had normal vision, using their habitual optical correction for driving, if required and met the 28 
visual standards for driving. Participants were not informed of the location of the study until they 29 
attended their driving assessment sessions and were not informed of the purpose of the study 30 
until after they had completed the study. 31 

The driving instructor provided his dual brake automatic vehicle, which was driven by all 32 
participants. At the start of each session, researchers met participants and the driving instructor in 33 
Palmerston North. 34 

Day sessions commenced at 10am or 2pm. Travel time to Marton required approximately 35 
50 minutes of driving each way (driven by the driver instructor and one researcher). On arrival in 36 
Marton, one participant prepared for the first driving session and the other was informed that 37 
they were required to meet in one hour for their driving session.  38 

Night sessions included one participant, with the research team and the driving instructor 39 
travelling together in the driving instructor’s vehicle from Palmerston North to Marton. The first 40 
week of sessions commenced at 7:30pm and the second week at 8:30pm to ensure sufficient 41 
darkness with changing sunset times. Each night session was timed so that it was dark soon after 42 
arrival in Marton so that the night-time driving session could commence as soon after arrival as 43 
possible.   44 

After arrival at the set-up location in Marton, the participant put on the eye tracking 45 
glasses and the eye tracking equipment was calibrated using a five-point calibration board held in 46 
front of the car by a researcher with the other researcher adjusting the eye tracking glasses. The 47 
smartphone with the GPS, and the synchronization between equipment were then started. 48 
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At the commencement of each driving session the participant was informed to drive as 1 
they normally would and that any traffic infringements resulting in fines would be required to be 2 
paid by themselves.  3 

All driving sessions followed the same route which took a period of approximately one 4 
hour.  During the drive the driving instructor was seated in the passenger seat and could use the 5 
dual brake pedal if required for safety and the two researchers were seated in the rear seats of the 6 
vehicle with the equipment. While the presence of researchers may have influenced participants’ 7 
behavior, this approach was necessary for the safety of the participant. Importantly, participants 8 
were aware that the purpose of the research was not to assess their driving ability and researchers 9 
were present for all of the crossings, so the effect is likely to have had a limited impact on their 10 
behavior when approaching the various crossings.” 11 

Before each intersection, participants were informed to turn left/right or drive straight 12 
ahead. The instruction was provided 500 meters in advance of the intersection. The GPS was 13 
used by one researcher in the rear of the vehicle to ensure that each directional instruction was 14 
provided in an accurate and consistent manner for all participants.  15 

The study route started and finished at the same location. At the end of the driving 16 
session, the researchers assisted the participant with removal of the eye tracking equipment. The 17 
same protocol was followed with the second participant during the day sessions. Participants 18 
who undertook a night and day drive completed the survey after their second drive only. 19 

At the end of their participation, drivers were thanked, paid a NZD120 incentive and 20 
signed the receipt form. Participants and the research team then returned to Palmerston North. 21 
They were also asked to keep the nature of the study confidential until the conclusion of the data 22 
collection. 23 

 24 
Data analysis 25 
Measurements related to the level crossing included the approach speed of the vehicle (km/h), 26 
the distance to the crossing (m), and the amount of time stopped at the crossing (s).  27 
The following aspects of participants’ eye tracking and gaze were recorded: number of fixations 28 
and total time spent fixating the relevant signs; time to first fixate relevant signs when 29 
approaching the level crossing; and the number of times and duration spent actively looking for 30 
trains (i.e. gazes at the rail tracks), and at what moment (during the approach, while stopped at 31 
the crossing, or while traversing the crossing). 32 

Generalized Linear/Additive Mixed Models were used to analyze the data from this 33 
repeated measures design, using the R system for statistical computing (version 3.3.2). The 34 
analyses assessed the effect of the crossing (advanced flashing lights vs. control) and lighting 35 
condition (daytime vs. nighttime) on gaze and level crossing approach behaviors. The level of 36 
significance chosen for the study was set at α=0.05. The participant sample size was chosen to 37 
reach a 0.9 power for large effect sizes. 38 
 39 
RESULTS 40 
Participant demographics and visual acuity 41 
Twenty-seven participants (14 females, 42.7 ± 13.0 years old) completed the study. One 42 
participant failed to stop at the first encountered level crossing, thus the driver instructor was 43 
required to provide feedback to this participant that they needed to stop at the following 44 
crossings. Given that this participant was provided feedback on their driving behavior by the 45 
driver instructor (which was not the case for the other participants), it was considered invalid to 46 
evaluate the effects of the trialed signage for this participant, who was therefore not included in 47 
the analysis. 48 
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Participants had normal binocular visual acuity, better than 6/6 Snellen equivalent (mean 1 
-0.07 (0.08) logMAR), and had normal levels of contrast sensitivity (mean 1.96 (0.12) logCS). 2 

When wearing the eye tracking glasses, participants did not experience vision restrictions 3 
when driving and only two participants reported minor discomfort when wearing the glasses for 4 
an extended period. 5 

 6 
Distance to the advanced signage at first fixation 7 
The distances from the approach sign where drivers first fixated the crossing signs are reported 8 
in Table 1 for the control and trial level crossings for the 26 participants who completed the field-9 
based component of the study appropriately.  10 

Statistical analysis showed that drivers first looked at the approach signage closer to the 11 
sign when they approached the crossing from the short road section (47.5 versus 132.2 m; t=-12 
6.36, df=46, p<.001). Drivers were also found to look at the sign later the second time they 13 
approached a particular crossing during day time (89.1 versus 132.2 m; t=-2.95, df=46, p=.005), 14 
but earlier at night (145.6 versus 132.2 m; t=-2.56, df=46, p=.014). No significant differences 15 
were found overall in the distance at which drivers first fixated the control and trial signage 16 
(189.8 versus 219.0 m; t=-1.70, df=45, p=.096). 17 

 18 
Total amount of time spent looking at the advanced signage 19 
The total duration of the fixations on the approach sign is reported in Table 1. This duration was 20 
0.78s on average for the control approach signage, and 1.60s for the active advanced signage 21 
trialed, representing a statistically significant increase by 0.84s (t=3.93, df=134, p<.001). There 22 
were no effects found for time of day, approach section type, the repetition of driving through the 23 
same level crossing, or any of the first order interactions between factors. 24 
 25 
Duration of longest gaze at the advanced signage 26 
The duration of the longest single gaze on the approach signage is reported in Table 1. The 27 
longest gaze on the approach signs was 0.52s on average for the control signage, and 1.0s for the 28 
trial signage, which is 0.51s longer (or double) compared to the control (t=1.77, df=134, p<.001). 29 
There were no effects found for time of day, approach section type, the repetition of driving 30 
through the same level crossing, or any of the first order interactions between factors. 31 
 32 
Slowing down behavior 33 
Approach speed profiles were obtained for each level crossing and each time of day condition 34 
(see Figure 2), and modelled using Generalized Additive Mixed Models (GAMMs). The 35 
parametric analysis of the GAMMs showed that drivers approached level crossings on average 36 
1.5 km/h slower under night-time conditions for the control crossings (t=-4.04, p<.01), but 2.7 37 
km/h faster at night with the trial active signage (t=2.66, p<.01). The second time they 38 
approached a stop sign crossing, their speed was on average 1.5 km/h slower (t=-6.14, p<.01), an 39 
effect which was not observed for the trial signage.  40 

The smooth terms part of the GAMMs analysis showed that there were interaction effects 41 
between the distance to the crossing and the ‘Expect Trains’ (trial) signage (p<.01), the short 42 
approach section (p<.01), the long approach section (p<.01), and the night-time condition 43 
(p<.01). The model explained 94.8% (adjusted R squared) of the variance of the approach speed 44 
profile. It should be noted that the short approach was longer in the case of the trial site; 45 
however, approach speed 100 meters to the crossing were similar, allowing a fair comparison. 46 

The main effect of the active advanced (trial) signage was an early deceleration during 47 
the long approach in the day. The magnitude of this early speed reduction during the approach 48 
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can be seen in Figure 2, which compares the control and trial level crossings. Night-time driving 1 
resulted in speed reduction of a smaller magnitude. 2 

 3 
Amount of time stopped at crossing 4 
Changes in stopping behavior at the railway crossing were evaluated through the length of time 5 
drivers stopped; this duration is reported in Table 1. Given that all participants stopped, except 6 
for the participant for whom the driver instructor intervened given the risk posed by such 7 
behavior (and who was excluded from the analysis), stopping compliance was not considered. 8 

Statistical analysis with GLMMs showed that, when considering the correlation between 9 
participants’ level crossing approaches, drivers stopped at the trial level crossing for a shorter 10 
time than at the control (2.15 vs 2.51s; t=-2.47, df=228, p=0.014). This corresponds to a decrease 11 
of 0.36s. The analysis also revealed that participants were stopping for shorter times further into 12 
the drive. The amount of time stopped was found to decrease by 12 milliseconds for every 13 
minute of driving in this experiment (t=-1.98, df=228, p=0.049). Towards the end of the drive 14 
(after an hour of driving), participants stopped at the level crossings 0.72 seconds less than at the 15 
start of their drive. There were no effects found for the time of day, the length of the approach 16 
road, the repetition of going through the same level crossing, or any of the first order interactions 17 
between factors. 18 

 19 
Amount of time looking for trains 20 
The amount of time drivers spent looking for trains is reported in Table 1. This metric has been 21 
extracted for two predefined zones: during the approach to the crossing (where the visibility of 22 
the track may be reduced, and the sighting distance might not be appropriate for taking an 23 
informed decision about the presence of a train), and at the crossing (where the sighting distance 24 
is appropriate for detecting the presence of an approaching train).  25 

Statistical analysis with GLMMs showed that the amount of time drivers spent looking 26 
towards the rail tracks for trains when approaching the crossing, was on average 1.8s for the 27 
control site with the long approach. Compared to this condition, participants looked for trains for 28 
a longer duration in the case of the short approach to the control signage, with a 0.9s increase 29 
(t=3.94, df=173, p<.001). This effect was less pronounced with the trial signage, with a smaller 30 
increase of 0.2s (t=3.06, df=173, p=.003). At night, they looked for trains for a shorter duration, 31 
with an overall reduction of 0.6s (t=3.94, df=173, p<.001). No other effects of the trialed signage 32 
were found during the approach of the crossing. 33 

The analysis of the amount of time drivers spent looking for trains when at the crossing 34 
shows that drivers were looking toward the rail tracks 4.2s on average at the control crossing. 35 
The introduction of the active trial signage resulted in a 0.3s increase in this duration (t=1.95, 36 
df=218, p=.052). While this did not strictly reach statistical significance, this result shows a trend 37 
for longer time spent looking for trains when at the crossing with active signage. There were no 38 
statistically significant effects found for the time of day, approach section type, the repetition of 39 
going through the same level crossing, or any of the first order interactions between factors. 40 
 41 
DISCUSSION 42 
In this on-road study that involved the analysis of 26 drivers’ behavior, the effects of an advanced 43 
trial signage activated by road vehicles during their approach of a passive railway crossing were 44 
evaluated. Effects on drivers’ gaze at the sign itself and toward the rail tracks while at the 45 
crossing, as well as driving behavior in terms of speed and stopping were considered.  46 

The findings showed that drivers first looked at the advanced (trial) flashing lights from a 47 
similar distance as the standard advanced signage at the control crossings. However, the first 48 
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time they encountered the trial sign, they looked at it from a longer distance than the control. The 1 
sign was positioned before any other cue regarding the presence of the level crossing ahead was 2 
evident, and this suggests that drivers were attracted to the trial signage at an early stage of their 3 
approach to the crossing. This is a positive outcome, as it may have resulted in drivers preparing 4 
to stop at the crossing earlier. This finding was not observed for the short approach, but this 5 
could be due to the difference in the length of approach between the trial and control sites. 6 

Participants looked at the trial sign for twice as long as they did the approach signage at 7 
the control sites. This demonstrates that drivers were paying more attention to this sign, and that 8 
the sign was successful at attracting drivers’ attention. It is not possible to ascertain from this 9 
study whether this increased time was due to the sign itself (attraction to the sign from the 10 
flashing lights) or its novelty (drivers looking at the sign for longer to extract information). This 11 
could have been due to drivers needing more time to read the sign in order to extract meaningful 12 
information from it. However, the fact that similar fixation durations were found when 13 
participants approached the crossing subsequently, suggests that this difference could be largely 14 
due to the sign itself. It is difficult to evaluate whether the sign itself or its activation resulted in 15 
this increased fixation duration.  16 

The analysis of the longest gaze duration at the active approach sign showed that, while 17 
drivers looked at the sign for longer, they still spent less than two seconds fixating on the sign at 18 
each gaze, suggesting that the sign does not create distraction from the main driving task of 19 
scanning the road ahead. 20 

As drivers approached the level crossings, they looked for trains for longer periods of 21 
time during the short compared to the longer approaches. However, this finding was less 22 
pronounced when the active (trial) signage was present. This is likely to be due to the higher 23 
visibility of the tracks when travelling southward, and the fact that the approach was very short 24 
at this site and drivers were more focused on fixating on the active (trial) signage. 25 

The study also showed that the advanced activated (trial) signage for level crossings did 26 
not result in drivers increasing their checking for trains during the approach to the crossing 27 
(where the sighting distance may not have been optimal) during either daytime and night-time 28 
conditions. Rather, the study suggests that drivers spent more time looking for trains when at the 29 
crossing, which is the location where sighting distance is optimal, to make an informed decision, 30 
with this latter finding almost reaching significance. This difference was found for both daytime 31 
and night-time conditions. This change, while positive, appears to be limited, and this highlights 32 
the importance of education for such advanced warning signs to convey, not only the presence of 33 
the crossing ahead, but also the need to look for trains while stopped at the crossing. 34 

Drivers slowed down significantly earlier with the activated advanced (trial) signage in 35 
the case of the long road approach. However, while they slowed down earlier, their deceleration 36 
stopped in the middle of the approach, with the final approach speed at the trial crossing being 37 
similar to that of the control crossings. This suggests that drivers prepared to stop earlier at the 38 
trial level crossing, and conducted their preliminary search for trains at a slower speed during the 39 
approach to the crossing. This also suggests that they were able to assess the situation in a 40 
slower, and hence safer way, having more opportunity to stop the vehicle if needed. 41 

In general, drivers completely stopped at all of the control passive crossings encountered 42 
in this on-road study. This can be explained by the reduced visibility of the rail tracks as drivers 43 
approached the crossings, and hence their limited ability to evaluate whether a train was 44 
approaching prior to them arriving at the crossing. Drivers tended to stop for shorter periods each 45 
time they drove through all of the passive (control) level crossings as the experiment progressed. 46 
This shows that drivers spent less time looking for trains while being completely stopped at the 47 
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crossing. In fact complacency, due to the reduced likelihood of encountering a train, developed 1 
in participants quite rapidly, even though participants were unfamiliar with the control and trial 2 
locations, and were being monitored in the vehicle throughout the experiment. This negative 3 
effect was found to be stronger with the trial activated advanced signage, suggesting that this 4 
new sign might not be effective at reducing complacency when it is installed over a longer period 5 
of time. Indeed, while the current study focused on short-term effects, further research is 6 
imperative to evaluate whether the beneficial effects of such advanced warning signs are 7 
maintained over extended periods of time. 8 

The eye tracking data suggested that drivers did look at the trialed signage for a longer 9 
period of time compared with the control advanced sign. Such longer gaze duration suggests that 10 
the new signage did atract the drivers’ attention, given that longer gaze durations relate to 11 
increased attention (36; 37). Such signage could therefore be effective at attracting the attention 12 
of drivers, and this could mitigate the effects of distracted driving at railway level crossings. 13 
However, drivers’ attention to road signs has been shown to depend on a range of factors, 14 
including age and driving experience, thus further research is required to confirm whether such 15 
effects are dependent on drivers’ demographics. Indeed, it is important to ensure that the positive 16 
effects observed for the drivers in this study are also extended to those who are the most likely to 17 
make errors or to be complacent at level crossings. 18 

In addition to the evaluation of this particular warning signage for passive level crossings, 19 
this study has developed a novel approach using eye tracking technology to evaluate the 20 
effectiveness of road signs, and could be used by road agencies as a criterion when evaluating 21 
new road signs. This methodology could also assist with the identification of road signs that are 22 
ineffective and should be removed, as well as evaluating new road signs before they are included 23 
in the MUTCD.  24 

 25 
CONCLUSION 26 
Road vehicle activated advanced signage can provide a range of benefits at level crossings for 27 
drivers unaware of the presence of a passive level crossing, such as attraction of drivers’ 28 
attention to road signs, gaze behavior and speed choices. This was observed even though the 29 
level crossings selected already had high compliance rates. The positive effects of the signage 30 
might be even larger at level crossings with low road rule compliance. This study only focused 31 
on the short-term effects of the active signage, involving drivers who were unfamiliar to the 32 
presence of the control crossing and the trial signage. Further research is imperative to evaluate 33 
whether the beneficial effects of such advanced warning signage are maintained over extended 34 
periods of time. If so, such signage could help in reducing complacency at level crossings, factor 35 
known to contribute to crashes. If the activated sign was shown not to be effective as a long-term 36 
intervention, it would still have value in being installed as a short-term intervention that could be 37 
relocated between sites of interest, to attract the attention of drivers unfamiliar with a level 38 
crossing or distracted while approaching the crossing, or to remind complacent drivers of the 39 
potential arrival of trains.  40 
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Figure 1: Trial site (Marton, New Zealand) and itinerary (Yellow stars: control level crossings; Green star: trial 1 
level crossing, Orange arrow: start and end of the itinerary)     2 

Figure 2: Approach speed profile  3 

 4 
Table 1: Effects of the active advanced (trial) signage compared to the traditional (control) sign (Standard 5 
Deviation in brackets) 6 

 
Long road approach Short road 

approach  
Day Night Day Night 

Distance to the advanced signage at 
first fixation (m) 

Control 98.4 
(63.5) 

189.7 
(75.0) 

51.9 
(24.5) 

96.3 
(75.7) 

Trial sign 119.5 
(50.1) 

95.0 
(62.4) 

24.8 
(24.8) 

24.3 
(24.4) 

Total amount of time spent looking 
at the advanced signage (s) 

Control 0.66  
(0.6) 

1.17  
(1.0) 

0.68 
(0.9) 

0.92 
(0.8) 

Trial sign 1.59  
(1.6) 

2.03 
 (1.4) 

1.67 
(1.6) 

1.44 
(1.0) 

Duration of longest gaze at the 
advanced signage (s) 

Control 0.39  
(0.2) 

0.76  
(0.7) 

0.62 
(0.9) 

0.55 
(0.4) 

Trial sign 1.06  
(1.3) 

1.14  
(0.6) 

1.03 
(0.9) 

0.96 
(0.6) 

Amount of time stopped at the 
crossing (s) 

Control 2.3 
 (1.5) 

2.4 
 (1.5) 

1.9 
 (1.2) 

2.2 
 (1.3) 

Trial sign 1.6 
 (1.2) 

1.9 
 (1.1) 

2.0 
 (1.7) 

1.7 
 (1.2) 

Amount of time looking for trains - 
During approach (s) 

Control 1.68 
(0.91) 

2.1  
(1.32) 

2.83 
(1.93) 

1.95 
(1.04) 

Trial sign 1.33 
(0.58) 

1.35 
(0.86) 

1.32 
(0.21) 

1.71 
(0.73) 

Amount of time looking for trains - 
At crossing (s) 

Control 4.05 
(1.66) 

4.21 
(1.67) 

4.00 
(1.72) 

4.54 
(1.68) 

Trial sign 4.54 
(1.66) 

4.30 
(1.65) 

4.42 
(1.65) 

4.25 
(1.68) 
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