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ABSTRACT 

The dystrophinopathies are a group of disorders characterised by cellular absence of 
the membrane stabilising protein, dystrophin. Duchenne muscular dystrophy is the 
most severe disorder clinically. The deficiency of dystrophin, in the muscular 
dystrophy X-linked (mdx) mouse causes an elevation in intracellular calcium in 
cardiac myocytes. Potential mechanisms contributing to increased calcium include 
enhanced influx, sarcoplasmic reticular calcium release and\or reduced sequestration 
or sarcolemmal efflux. This dissertation examined the potential mechanisms that may 
contribute to an intracellular calcium overload in a murine model of muscular 
dystrophy. The general cardiomyopathy of the mdx myocardium was evident, with the 
left atria from mdx consistently producing less force than control atria. This was 
associated with delayed relaxation. The role of the L-type calcium channels mediating 
influx was initially investigated. Dihydropyridines had a lower potency in contracting 
left atria corresponding to a reduced dihydropyridine receptor affinity in radioligand 
binding studies of mdx ventricular homogenates (P<0.05). This was associated with 
increased ventricular dihydropyridine receptor protein and mRNA levels (P<0.05). 
The function of the sarcoplasmic reticulum in terms of release and also sequestration 
of calcium via the sarco-endoplasmic reticulum ATPase were investigated. A lower 
force of contraction was evident in mdx left atria in response to a range of stimulation 
frequencies (P<0.05) and concentrations of extracellular calcium (P<0.05). However, 
in the presence of 1 nM Ryanodine to block sarcoplasmic reticular calcium release, 
increased stimulation frequency caused similar forces to those obtained in control 
mice suggesting enhanced calcium influx via L-type calcium channels in mdx. Rapid 
cooling contractures showed a reduced contracture in mdx compared to control in 
response to cooling. This suggests some dysfunction in SR storage, which may be 
associated with the delayed relaxation time. Concentration-response curves to 
inhibitors of the sarco-endoplasmic reticulum showed no difference in function of the 
enzyme responsible for calcium uptake into the sarcoplasmic reticulum. Although 
sarco-endoplasmic reticulum ATPase mRNA was upregulated, no functional benefit 
was evident. This study indicates that a deficiency of dystrophin leads to upregulation 
of L-type calcium channels that contribute to increased calcium influx, with no 
functional change in sarcoplasmic reticular sequestration. Upregulation of the influx 
pathway is a potential mechanism for the calcium overload observed in mdx cardiac 
muscle.  
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CHAPTER 1 - INTRODUCTION 
 

1.1 Dystrophinopathies 

Duchenne Muscular Dystrophy (DMD) and its allelic variant Becker Muscular 

Dystrophy (BMD) are genetic neuromuscular disorders caused by a mutation on the X 

chromosome (Xp21), a gene that encodes for the protein dystrophin. A complete loss 

of dystrophin leads to the most severe form of the muscular dystrophies, DMD, while 

a partial loss of dystrophin (the protein is either truncated or expressed partially) leads 

to the less severe BMD. Similarly, X-linked cardiomyopathy is due to a mutation at 

the same chromosomal site. Together these conditions are known as 

dystrophinopathies, since the dystrophin gene is affected in all the disorders. Several 

animal models have been identified with X-linked dystrophinopathies, including the 

mdx (Muscular dystrophy X-linked) mouse and GRMD (Golden retriever muscular 

dystrophy) dog. To date, the exact roles of dystrophin are not completely defined, but 

it is understood to be involved in cell membrane structural organisation, control of 

calcium regulation and signal transduction.  

 

The absence of dystrophin in muscle leads to impaired sarcolemmal integrity, along 

with alterations in signal transduction that lead to a loss of intracellular calcium 

homeostasis. Such a disruption in intracellular calcium homeostasis, leading to 

intracellular calcium overload, is a significant feature of dystrophin-deficiency. 

Increased intracellular calcium levels have been measured in at-risk foetuses, 

premature infants with DMD, in whom necrosis was absent (Bertorini et al., 1984; 

Emery & Burt, 1980), DMD affected individuals (Bertorini et al., 1982; Bodensteiner 

& Engel, 1978) and animal models of DMD (Mallouk et al., 2000). This calcium 
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overload is one of the earliest pathological manifestations and is generally accepted as 

a contributing factor to the pathogenesis of dystrophinopathies (Wrogemann & Pena, 

1976). This calcium overload has been implicated in activation of calcium-dependent 

proteolytic enzymes. Proteolysis leads to cellular necrosis, subsequent fatty 

infiltration and fibrosis. These processes of fatty infiltration and fibrosis contribute to 

a hypertrophy of cardiac and skeletal muscle without any functional advantage, and 

eventually loss of tissue function. 

 

The clinical features of DMD due to the absence of dystrophin, manifest 

progressively. The major clinical features of DMD include a slowed development of 

motor skills, a loss of ambulation from 10-15 years of age, and progressive skeletal, 

cardiac and smooth muscle deterioration. Death usually occurs in the early twenties 

due to cardiac or respiratory failure. The partial expression of dystrophin as in BMD, 

results in a spectrum of both skeletal and cardiac muscle involvement, ranging from 

Duchenne-like symptoms and prognosis to near normal skeletal and cardiac muscle 

function, with some BMD patients being ambulatory into their eighties. In contrast, 

patients with X-linked dilated cardiomyopathy do not usually develop skeletal muscle 

myopathy, with selective impairment of the myocardium progressing to dilated 

cardiomyopathy. 

 

1.2 The History of Duchenne Muscular 
Dystrophy 
Edward Meryon was the first to describe DMD in 1851. Meryon described eight 

affected boys in three families and detailed family trees of affected individuals, 
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tracing the condition in cousins to three sisters. Meryon observed muscle fibres 

microscopically, reporting diffuse sarcomeres and breakdown of the sarcolemma.  

 

Meryon concluded that the disease was familial and not a disease of the affected 

nervous system, but his work became overshadowed by that of Duchenne (Emery, 

1993; Hoffman, 2001).  

 

DMD was named after the after French neurologist Duchenne de Boulogne who wrote 

extensively about the disease in the mid 1800s. His studies built up a picture of the 

condition affecting muscle tissue directly, rather than as a secondary (neurogenic) 

effect of a disturbance of the nervous system. Duchenne correctly identified DMD as 

not involving the spinal cord. Duchenne correctly defined the disease as being 

progressive in terms of loss of mobility. He observed that the lower limbs were 

affected initially followed by the upper limbs. Duchenne used a needle-harpoon 

technique to take muscle biopsies from patients with Duchenne muscular dystrophy 

over many years. Studying the biopsies, Duchenne observed an increase in interstitial 

connective tissue in affected muscles with the production of fibrous and adipose 

tissues in the latter stages of the disease. Duchenne observed that the onset of the 

disease was in childhood, affected boys more often than girls, and could affect several 

members of the one family. Duchenne’s name remains eponymous with DMD, for his 

early work in identifying the pathogenesis of the disease (Emery, 1993). Extensive 

research into Duchenne muscular dystrophy has since been undertaken (Table 1.1) 

which is improving the longevity and quality of life of sufferers considerably. 
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 Table 1.1 Landmarks in the History of Duchenne Muscular Dystrophy 
 
Nineteenth century DMD recognised as a specific clinical disorder  

 
1959-60 Elevated serum creatine kinase levels reported in patients and 

female carriers (Ebashi et al., 1959; Okinaka et al., 1959).  
 

1978-82 DMD mapped to Xp21 by X/A translocations (Verellen et al., 
1978) and DNA markers (Murray et al., 1982). 
 

Early 1980s DMD shown to be allelic (Kingston et al., 1983). Prenatal 
diagnosis of DMD developed (Wassner et al., 1982). 
 

1985  Gene-specific probes (Kunkel et al., 1985). 
 

1987-88 cDNA cloned and sequenced (Koenig et al., 1987). Protein 
product (dystrophin) identified (Hoffman et al., 1987). 
Dystrophin localisation and functional studies began (Sugita et 
al., 1988). 
 

1989-90 Myoblast transfer experiments in mice (Partridge et al., 1989) 
and humans (Karpati, 1990) commenced. 
 

1990-91 Direct gene transfer (Wolff et al., 1990) attempted. 
 

1995 Adhalin has a role in DMD (Mendell et al., 1995). 
 

1996-97 Recombinant vectors deliver therapeutic genes (Petrof et al., 
1996). Cloning of the DMD gene (Davies, 1997). 
 

1997 Stem cells identified as potential therapeutics (Smith & 
Schofield, 1997). 
 

1998 Sarcoglycans (Urtasun et al., 1998) and dystroglycans 
(McDearmon et al., 1998) play a role in DMD. 
 

1999 Antisense oligonucleotides improve expression of dystrophin 
(Wilton et al., 1999) 
 

Table adapted from Emery (1993). 
 

Alterations in calcium handling are not uncommon in cardiac diseases. Given the 

aetiology of DMD, it could be expected that calcium handling will be significantly 

altered in dystrophic hearts. 
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1.3 Calcium Handling in Cardiac Tissues 

Calcium handling in cardiac tissues is considerably different to that in skeletal 

muscle. In the myocardium, calcium influx occurs via voltage gated L-type calcium 

channels while T-type calcium channels provide only a minor contribution in 

cardiomyocytes. Influx via the L-type calcium channel triggers calcium-induced-

calcium-release (CICR), a mechanism whereby inflowing calcium flows across the T-

tubule membrane and binds to ryanodine receptors on the SR membrane, causing 

them to open, thus resulting in release of calcium from the sarcoplasmic reticulum 

(SR). Calcium binds to troponin causing the actin and myosin filaments to interact 

allowing development of contractile force. Calcium is then actively sequestered back 

into the SR by the sarco-endoplasmic reticulum ATPase (SERCA). The sarcolemmal 

sodium/calcium exchanger (NCX) also assists in returning calcium to resting 

intracellular levels by extruding calcium out of the cytoplasm into the extracellular 

fluid. Mitochondrial calcium plays a minor role in the myocardium. 

 

As an intracellular calcium overload is observed in dystrophin deficient muscle, 

dysfunction of any of the calcium handling mechanisms described above may be 

implicated in the loss of calcium homeostasis. There is currently a paucity of 

knowledge regarding calcium regulation in dystrophin-deficient myocardial tissues, 

with the only available information being drawn from studies on dystrophic skeletal 

muscles and a very small number of studies using dystrophic cardiac tissues. 



Chapter 1 - Introduction 

 6

 

 

Figure 1.1 Calcium handling pathways in cardiomyocytes. Calcium flows in from the 
extracellular space through L-type calcium channels where the dihydropyridine receptors (DHP) 
act as voltage sensors. The influx of calcium triggers calcium-induced calcium release from the 
sarcoplasmic reticulum via the Ryanodine sensitive receptors. This released calcium and the 
calcium influxed via the L-type calcium channels binds to the cardiac troponin to produce 
contraction of the muscle. Calcium is then sequestered back to the SR by sarco-endoplasmic 
reticulum calcium ATP-ase (SERCA). Calcium efflux occurs simultaneously via the Na+/Ca2+ 

exchanger (NCX) and the sarcolemmal Ca2+-ATPase (SL Ca++-ATPase).  
 

1.4 Requirements for Further Study of Cardiac 

Dysfunction in Dystrophinopathies 

The improved management of the skeletal, and hence respiratory aspects of DMD, has 

caused cardiac pathophysiology to become an increasingly important determinant of 

the sufferers' functional capacity and life span (Eagle et al., 2002). Therefore research 

into cardiac implications in dystrophinopathies and particularly DMD, is becoming 

increasingly important, but as yet, is in its infancy. 

SERCA Ca2+ 

NCX 

Na+ Ca++ 

SL 
Ca++ATPase 

Ca2+

Influx 
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The therapeutic regimes currently used to treat cardiomyopathy rely on modifying 

neurohumoral activation and positive inotropes that increase intracellular calcium 

levels. Calcium channel blockers are also well established in the treatment of certain 

cardiovascular disorders including hyperplasia and arrhythmias. However, 

intracellular calcium overload is a prominent pathological feature of dystrophic 

muscle cells and is likely to have a pathogenic role in cardiac tissue necrosis in DMD. 

It would therefore appear that, theoretically, the application of conventional 

medications, such as positive inotropic drugs that enhance intracellular calcium levels, 

could be deleterious. Yet this does not appear to have been taken into account when 

treating DMD/BMD-associated cardiac manifestations, as no studies have questioned 

the suitability of the positive inotropic drugs for treatment of DMD-induced 

congestive heart failure (CHF). Furthermore, it remains unknown whether there are 

DMD-induced specific changes in the responsiveness of dystrophic hearts to agents 

that modulate intracellular calcium.  

 

There is evidence that treatment with calcium channel blockers could reduce necrosis 

in dystrophic skeletal muscle (Duarte et al., 1992; Hotchkiss et al., 1995; Yoshida et 

al., 1997) although the outcomes of clinical trials and experiments in a sarcoglycan 

deficient cardiomyopathy (Cohn et al., 2001) are inconclusive. In cardiomyocytes, the 

majority of the cardiac dystrophin has been found to be associated with the diadic 

junction region of the transverse tubule (T tubules) membrane system, which is also 

the area where the dihydropyridine receptor (DHPR) component of the L-type 

calcium channels is located (Bers, 1991). Therefore, dystrophin has been suggested as 

having a role in anchoring or modulating the activity of the cardiac DHPR. As 
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dystrophin is deficient in DMD/BMD, it is feasible that alterations of L-type calcium 

channels may contribute to the increase in intracellular calcium levels in DMD. 

However, no study has been conducted to examine the function of the cardiac L-type 

calcium channels in any model of DMD. Thus, the affinity and function of the cardiac 

L-type calcium channels need to be investigated. 

 

The sarcoplasmic reticulum as the major storage site of calcium in the cardiomyocytes 

may be implicated in dysfunctional calcium handling. Similarly, mechanisms of 

sequestration such as SERCA and the intraluminal SR calcium binding proteins, and 

the release of calcium from the SR are potential contributors to the intracellular 

calcium overload. SERCA has been implicated in cardiomyopathies where a delayed 

relaxation has been observed. A delayed relaxation has been observed in dystrophin-

deficient myocardium (Sapp et al., 1996) but as yet the mechanisms remain to be 

elucidated. The calcium binding proteins have been shown to be downregulated in 

dystrophic skeletal muscle (Culligan et al., 2002) causing a calcium leak from the SR. 

Whether the calcium binding proteins play a role in the cardiomyopathy observed in 

dystrophinopathies remains to be determined.  

 

Futile calcium cycling such as SR leak calcium cycling leads to physiological 

consequences such as altered metabolism in dystophin-deficient skeletal muscle 

(Even et al., 1994; Braun et al., 2001). It is unknown whether dystrophin-deficiency 

related alterations in calcium handling lead to altered oxygen usage in myocardium. 

 



Chapter 1 - Introduction 

 9

1.5 Aims and Objectives 

The broad objectives of this research were to characterize myocardial calcium 

handling in a murine model of dystrophin-deficiency. More specifically, the 

objectives were: 

1. To examine the electrophysiological characteristics of dystrophic myocardium in 

response to three major classes of L-type calcium channel antagonists and 

concurrently ascertain their effect on force of contraction; 

2. To determine the density and function of the dihydropyridine receptor on the L-

type calcium channel. 

3. To examine SERCA function and regulation in dystrophic myocardium.  

 

1.6 Contributions 

Preliminary experiments in our laboratory demonstrated impaired calcium regulation 

in cardiac muscle in young and old mdx from both sexes (Lu & Hoey, 2000a & 

2000b). Similarly, an altered relaxation time was observed in left atria from mdx in 

our laboratory (Lu and Hoey, 2000a & 2000b) and in another study (Sapp et al., 

1996). Experiments in the current study examined the function of the cardiac L-type 

calcium channels by utilizing three classes of calcium channel antagonists. 

Experimental results provided clear evidence of a reduced affinity of sarcolemmal L-

type calcium channels from atria of mdx mice to dihydropyridine compounds. Further 

studies examined the affinity and density of the DHPR, along with its mRNA levels. 

These studies showed a reduction in the affinity of the DHPR for [3H]-PN 200-110, 

along with an increase in receptor density in mdx ventricles, and a two-fold increase 

in mRNA for the DHPR in both atria and ventricles of mdx. These data suggest that 
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dystrophin-deficiency results in a conformational change in the DHPR, and 

upregulation of the receptor. It remains unknown, however, whether this upregulation 

is primarily a consequence of dystrophin deficiency or is secondary to the intracellular 

calcium overload. Studies that examined sequestration function revealed no change in 

the function of SERCA, even though SERCA mRNA was upregulated. The 

upregulation of the SERCA mRNA may be a consequence of intracellular calcium 

overload, but due to post-transcriptional mechanisms is not observed as a functional 

change.  

 

1.7 Significance 

The observed persistent abnormal calcium handling in both atria and ventricles of mdx 

may lend further support to the hypothesis that the mdx is a useful model for the study 

of dystrophin-deficiency-related cardiac disease. The finding that L-type calcium 

channels are upregulated could provide a further insight into the mechanisms 

underlying dysfunction of the calcium regulation in dystrophic hearts, and may offer 

alternative treatment options for delaying the onset of CHF in DMD.  
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CHAPTER 2 – LITERATURE REVIEW 
2.1 Prognosis and Development of 

Dystrophinopathies 

Duchenne muscular dystrophy is caused by a mutation on the short arm of the X 

chromosome, at the Xp21 allele. Since the gene is X-linked, transmission of DMD is 

maternal, although approximately one third of DMD cases arise as spontaneous (de 

novo) mutations. Studies have shown the incidence of DMD ranges from 

approximately 1 in 3950 live male births in the United States (Boland et al., 1996) 

and in the 1980’s at 1 in 5400 live male births in Australia (Cowan et al., 1980). The 

most common incidence quoted is 1 in 3500 live male births (Emery, 1991). 

Spontaneous mutations occur frequently at an incidence of about 1 in 12000 births 

due to the large size of the dystrophin gene (2.4 MB), and as high as 62% of cases 

may have no previous familial history (Alcantara et al., 1999). The rare X-linked 

dilated cardiomyopathy also occurs due to a mutation in the dystrophin gene at the 

Xp21 allele. Although both DMD and BMD have been recognised for more than 100 

years, the aetiology was not completely understood until the identification of the 

primary biochemical defect in 1987 (Hoffman et al., 1987). Table 2.1 presents a 

comparison of Duchenne and Becker muscular dystrophies and X-linked 

cardiomyopathies along with cardiac manifestations of these diseases. 

 

In DMD, the protein product of the dystrophin gene, also known as dystrophin, is 

absent from all muscle types – striated skeletal and cardiac, and smooth (Boland et 

al., 1996; Serio et al., 2001), as well as some neuronal cell types (Lidov et al., 1990; 

Anderson et al., 2002). Loss of dystrophin has several pathophysiological 
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consequences, and there are many independent mutations that lead to dystrophin-

deficiency in humans, dogs, cats and mice (Hoffman & Dressman, 2001). Long before  

 

Table 2.1: Etiology of Duchenne and Becker Muscular Dystrophy and X-linked dilated 
cardiomyopathy 
 
Type Incidence Protein  

defect 
Non-cardiac clinical 
features 

Heart 
block 

*Cardiac 
Arrhythmias 

Cardiomyopathy 

Duchenne 1 in 3500 
live male 
births 

Dystrophin Onset of severe 
muscle weakness, 
proximal-girdle 
distribution at 2 to 5 
y in a male; loss of 
ambulation by 11y; 
calf 
pseudohypertrophy; 
mild cognitive 
impairment; Serum 
CK 10 to 100 times 
normal; death in 
twenties 

+ + + + + 

Becker 10 times 
less 
frequent 
than 
DMDa 

Dystrophin Onset of mid-
moderate muscle 
weakness, proximal-
girdle distribution 
from childhood-
adulthood in male; 
ambulation beyond 
16; calf 
pseudohypertrophy; 
Serum CK 10 to 100 
times normal; 
normal to reduced 
lifespan 

+ + + + + 

X-linked  
dilated  
cardiomyopathy 

Very rare Cardiac 
dystrophin 
only 

No  skeletal muscle 
weakness but some 
cramping, exertional 
myalgias, 
myoglobinuria, calf 
pseudohypertrophy; 
mild myopathic 
changes may be 
present in muscle 
biopsy; Serum CK 1 
to 100 times normal 

- + + + + 

Each of these dystrophies is X-linked, with the defect localised to Xp21. a – De La Porte et al., 
1999 * Clinical significance based on prevalence and severity; +, mild, + +, moderate,  
+ + +, severe, CK – creatine kinase. Adapted from Cox and Kunkel, 1997. 
 

the visible onset of the disease, high serum creatine kinase (SCK) levels (Hoffman et 

al., 1987) and high intracellular calcium in muscle cells are present in affected 
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individuals. A study using electron microscopy revealed that the first ultrastructural 

change was dilation of the sarcoplasmic reticulum (SR) with subsequent alterations in 

myofibrils and mitochondria, concurrent with rupture of the sarcolemma in the 

skeletal muscles from DMD patients (Watkins & Cullen, 1987). Histologically, DMD 

is characterized by a progressive myopathy resulting in myofibre death, reactive 

fibrosis, fatty infiltration of muscle tissue, and ultimately, complete loss of muscle 

function.  

 

 

Figure 2.1 Muscle groups affected by DMD (Figure adapted from McCance & Huether, 1990 pg 
1376). 
 

Proximal muscle groups (See Figure 2.1 for muscle groups affected in DMD), which 

tend to contain some of the large myofibres, bear more weight and so are affected first 

in DMD. Compared with concentric types of exercise, eccentric exercise (lengthening 

contractions), where the myofibrils contract but the myofibre is extending, probably 

generate the most shear force on the membrane and cause the most damage to the 

compromised dystrophin-deficient fibres (Hoffman & Dressman, 2001). The lack of 
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dystrophin seems to be associated with a lack of intracellular calcium homeostasis. In 

skeletal muscle, sarcolemmal tears are thought to be responsible for the initial 

excessive influx of calcium, with leak channels eventually manifesting in the primary 

sarcolemmal tears. The first manifestations of the loss of dystrophin in smooth and 

cardiac muscle is as yet unknown, although a similar mechanical stabilisation role for 

dystrophin in the myocardium has been shown recently (Hainsey et al., 2003). 

 

One of the first outward clinical signs of DMD is a delayed achievement of motor 

milestones, usually evident by 18 to 20 months of age and apparent in most cases 

before the age of 5 years. Symptoms include difficulty with walking and stair 

climbing, weak reflexes, a waddling gait and toe walking. Pseudo-hypertrophy 

(enlargement) of the gastrocnemius muscle is the most obvious and consistent feature 

in the early stages of DMD, caused by muscle fibre hypertrophy and an excess of 

adipose and connective tissue (Murphy et al., 1986). Permanent muscle contractures 

occur in the legs and heels due to shortening of muscle fibres and fibrosis of the 

connective tissue, causing an inability to use those muscles. Gower's sign (from a 

prone position, the child ‘climbs' the lower extremities to stand upright) is also a 

common feature. Muscle involvement is always progressive, bilateral and 

symmetrical (Fig 2.1). Without intervention, 95% of boys with DMD are wheelchair 

bound by the age of 12 years. Once wheelchair bound, scoliosis and joint contractures 

tend to develop rapidly. Extreme muscle weakness and subsequent postural changes 

cause abnormal bone development, which causes skeletal deformities of the chest and 

other areas. Involvement of the intercostal muscles, diaphragm and cardiac muscle 

contributes to deterioration of respiratory and cardiac function respectively (Emery, 

1993). Death usually occurs before reaching 20 years of age, often from respiratory 
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failure (Newsom-Davis, 1980), while at least 30-40% of mortality can be attributed to 

cardiac failure (Radda, 1999). Intellectual impairment occurs in approximately 19% 

of boys with DMD, evidently from a loss of the smaller neuronal dystrophin in that 

subset of boys, and impairment does not worsen as the disorder progresses (Hinton et 

al., 2000).  

 

2.2 Dystrophin and the Dystrophin-Associated 

Glycoprotein Complex 

The dystrophin gene is the largest known gene at 2.4 MB consisting of 79 exons. It 

encodes the rod-shaped cytoskeletal protein dystrophin (Koenig et al., 1988) that has 

a molecular weight of 427kD, comprising 3600 amino acids, making it one of the 

largest known proteins. Dystrophin is composed of four domains: an amino-terminal 

actin-binding domain; a central rod domain that contains spectrin-like repeats; a 

cysteine-rich domain suggestive of calcium-binding motifs; and a unique carboxy-

terminal domain that penetrates the plasma membrane and interacts with dystrophin-

associated glycoproteins. Dystrophin lies along the inner surface of the plasma 

membrane in skeletal, cardiac and smooth muscle cells, and acts as a link between the 

actin cytoskeleton, the plasmalemma, and the surrounding basal lamina (Fig 2.2). In 

DMD, the complete absence of dystrophin leads to disruption of the transmembrane 

complex and a loss in the integrity of the plasmalemma (Cox & Kunkel, 1997) 

causing fibre necrosis (Ervasti & Campbell, 1993). The underlying mechanisms that 
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Figure 2.2: Schematic model of the dystrophin-glycoprotein complex as a transsarcolemmal link between the subsarcolemmal cytoskeleton and the extracellular 
matrix (From De La Porte et al., 1999). 
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lead to fibre necrosis are not well understood and seem to be specific for each muscle 

type.  

 

There are several proteins associated with dystrophin that together form the 

dystrophin-associated glycoprotein complex (DAGPC). The DAGPC aids dystrophin 

in its ability to stabilize the plasma membrane against mechanical stress (Ervasti & 

Campbell, 1993) although alternate functions (eg, the organization of membrane 

proteins, signal transduction and calcium regulation) have been proposed (Ahn & 

Kunkel, 1993). Two actin-binding proteins, dystrophin and α-actinin, are known to 

link membrane-associated elements to the cytoskeleton. Dystrophin and its associated 

proteins have also been implicated in playing a role in receptor and/or channel 

localization (Sadeghi et al., 2002). Dystrophin has further been postulated to bind the 

contractile filaments to the internal membrane system, thereby ensuring a link 

between the membranes that release calcium and the contractile proteins that are 

activated by this calcium (Slater, 1987; Hoffman et al., 1987; Tay et al., 1989). 

 

Several of these associated proteins have now been shown to underlie the 

pathogenesis of other types of muscular dystrophy. The DAGPC in striated muscle 

includes the α-, (156 kDa) and β-dystroglycan (43 kDa) and the α-, (adhalin, 50 kDa) 

β-, (43 kDa) γ-, (35 kDa) and δ-sarcoglycan (35 kDa) along with sarcospan (25 kDa; 

Crosbie et al., 1997) (De La Porte et al., 1999; Hainsey et al., 2003). The syntrophin 

complex consists of α-syntrophin (59 kDa), β1-syntrophin (59 kDa) and β2-syntrophin 
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(59 kDa) and links sodium channels of the membrane to the actin cytoskeleton (Fig 

2.3; De La Porte et al., 1999; Brown, 1997).  

 

 

Figure 2.3: The dystrophin-glycoprotein complex and muscular dystrophies that arise due to 
primary defects in different members of the complex (From Cox & Kunkel, 1997) LGMD = Limb 
Girdle Muscular Dystrophy, XLDCM = X-linked dilated cardiomyopathy, CMD = Congenital 
Muscular Dystrophy. An arrow indicates the disease state that arises from a dysfunction in that 
section of the dystrophin-glycoprotein complex. 
 

Dystrophin, the syntrophin complex, α-dystroglycan, and a muscle form of 

dystrobrevin (78 kDa) are peripheral membrane proteins, whereas the sarcoglycan 

complex and β-dystroglycan are integral membrane proteins. The sarcoglycans are a 

group of single-transmembrane proteins that form a subcomplex within the DAGPC. 

Mutations within the genes encoding α, β, γ, and δ sarcoglycans have been shown to 

possibly cause four to six known types of autosomal recessive Limb Girdle Muscular 

Dystrophies (LGMD; Fig. 2.3), while mutation of the γ-sarcoglycan is the basis 
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underlying the cardiomyopathy observed in the cardiomyopathic hamster (Sakamoto 

et al., 1997). The sarcoglycanopathies are characterized by relatively well-preserved 

dystrophin immunostaining, but a marked deficiency of the entire sarcoglycan 

subcomplex. The α-2 chain of laminin, formerly called merosin, is an extracellular 

matrix protein that directly binds to the DAGPC via the α-dystroglycan, a process that 

has been shown to be calcium dependent (McDearmon et al., 1998). A primary defect 

in the laminin α-2 chain underlies a form of congenital muscular dystrophy associated 

with leukodystrophy-like lesions in the brain that are detectable by MRI (magnetic 

resonance imaging) (Cox & Kunkel, 1997; Brown, 1997). The DAGPC has been 

shown to bind to F-actin for stabilisation (Rybakova & Ervasti, 1997) and is 

drastically reduced in patients with DMD. Loss of the DAGPC, even when truncated 

dystrophin is present, leads to severe muscular dystrophy (Matsamura et al., 1993). 

 

2.3 Cardiac Dysfunction in Dystrophinopathies 

2.3.1 Cardiac Manifestations 

Although the overt clinical symptom in DMD/BMD is skeletal muscle wasting, both 

conditions are frequently associated with myocardial impairment (Boland et al., 1996; 

Hunsaker et al., 1982; Melacini et al., 1996), manifesting predominantly as 

cardiomyopathy and congestive heart failure (CHF) (Cox & Kunkel, 1997). Primary 

cardiac involvement in the muscular dystrophies should not be surprising given that 

cardiac and skeletal muscles are both striated. The most common cause of death in 

BMD patients is heart failure (Finsterer & Stollberger, 2003). Even carriers who are 

heterozygous for a loss of dystrophin show cardiac dysfunction due to dystrophin-

deficiency. Because X-chromosome inactivation is sporadic (arbitrary) in the 
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myocardium, there is a patchwork of dystrophin positive and dystrophin negative 

cardiomyocytes. Therefore, cardiac disease in adult female carriers of the X-linked 

dystrophinopathies is often observed due to the structural abnormality in some of the 

cells (Melacini et al., 1998; Davies et al., 2001; Nolan et al., 2003). The incidence of 

cardiac abnormalities associated with this partial loss of cardiac dystrophin is quite 

high. In a study of cardiac abnormalities in 129 carriers of DMD/BMD only 38% 

showed completely normal cardiac parameters (Hoogerwaard et al., 1999). Therefore 

most carriers present with some degree of cardiac abnormality due to the sporadic loss 

of dystrophin in the myocardium. 

 

Cardiac dysfunction in DMD has been shown to be early in onset and progressive in 

its nature throughout life (Backman & Nylander, 1992). During the progression of 

DMD the incidence of cardiomyopathy becomes increasingly prevalent such that 

more than 90% of patients eventually manifest significant cardiac defects (Megeney 

et al., 1999). Dilated cardiomyopathy is a feature of DMD and BMD (Gnecchi-

Ruscone et al., 1999; Bia et al., 1999) and cardiac dysfunction is a more frequent 

cause of death in patients with BMD than patients with DMD (Melacini et al., 1993; 

Vrints et al., 1983), although progression of myocardial damage is not identical in the 

two myopathies (Saito et al., 1996). The incidence of arrhythmia has been shown to 

be higher in boys with DMD and significant decreases in heart rate variability are 

observed more often than the normal population, along with almost all DMD patients 

presenting with some degree of ECG abnormalities (Ishikawa et al., 1999). Persistent 

tachycardia is usually an early manifestation of cardiomyopathy seen in almost all 

DMD patients over 10 years of age (Gardner-Medwin, 1980), and it has been shown 

that ventricular arrhythmias correlate with the degree of myocardial dysfunction 
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(Ishikawa et al., 1999). Congestive heart failure ultimately manifests, with cardiac 

failure being a leading cause of mortality (30-50% of DMD patients die from cardiac 

failure; Ishikawa et al., 1999), along with respiratory failure.  Figure 2.4 shows the 

clinical cardiac manifestations of DMD and BMD progressing with age. 

 

It has been speculated that cardiomyopathy may be secondary to skeletal myopathy 

(Megeney et al., 1999), although this remains controversial with subsequent studies 

suggesting that cardiomyopathy is completely independent of skeletal muscle 

degeneration (Zhu et al., 2002). The cardiomyopathy in X-linked cardiomyopathy 

arises without any skeletal muscle involvement showing that an X-linked loss of 

dystrophin can directly cause cardiomyopathy. Although cardiac degeneration is 

progressive, there appears to be little correlation between its severity and skeletal 

muscle involvement, physical condition, vital capacity, respiratory status (Ishikawa et 

al., 1999) or dystrophin absence in the vasculature (Hainsey et al., 2003).  

 
Figure 2.4: Prevalence of clinical 
cardiac involvement in DMD, BMD and 
carriers according to age. Clinical 
involvement is defined as arrhythmia, 
cardiomyopathy, and regional wall 
abnormalities as determined by ECG, 
echocardiography or both (Cox & 
Kunkel, 1997). 
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2.3.2 The Role of Cardiac Dystrophin 

If cardiomyopathy is taken in its widest possible context to include both primary and 

secondary lesions of the myocardium, then this term is appropriate in dystrophin-

deficiency and recognises that muscular dystrophy is a generalised myopathy (Hunter, 

1980). The role of dystrophin in cardiac development has been studied previously. In 

the rat heart dystrophin is undetectable on the 15th embryonic day, the stage at which 

the heart is able to generate action potentials and beat spontaneously. Development of 

the first functions of the myocardium therefore does not require the presence of 

dystrophin (De La Porte et al., 1999). A small quantity is detected on the 17th 

embryonic day, a stage where cardiac work increases, and expression of dystrophin 

increases during the perinatal period. Because its expression rises before cardiac work 

begins, dystrophin may be necessary for rapid and large contractions of the 

myocardium. Adult levels of dystrophin are reached 2 weeks postnatally (Tanaka & 

Ozawa, 1990).  

 

Cardiac dystrophin is normally localised at the membrane surface of the Purkinje cells 

(Bies et al., 1992). At the ultrastructural level, the dystrophin-deficient heart exhibits 

disordered abnormalities of the Z bands, SR dilation, and changes of the nuclei 

(Wakai et al., 1988), along with an increase in the number and a change in the 

structure of mitochondria (Sapp et al., 1996). It has been shown recently that 

dystrophin plays a mechanical role in cardiomyocytes similar to its role in skeletal 

muscle by linking the submembranous actin cytoskeleton to the extracellular matrix 

through its direct interaction with the DAGPC (Hainsey et al., 2003). Earlier, Cziner 
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and Levin (1993) proposed that dystrophin was required to physically reinforce the 

sarcolemma against axial stress, and this postulation has since been supported by 

Saito et al., (1996). Dystrophin abnormality has also been observed in cardiac 

myocytes acutely injured by exposure to isoprenaline (Miyazato et al., 1997), 

showing dystrophin abnormality can occur in the absence of an X-chromosomal gene 

defect. Therefore it appears that dystrophin abnormality may occur due to mechanical 

strain resulting from high force contractions. 

 

The function of α-actinin is to anchor parallel filaments of F-actin throughout the 

cytoskeleton in all tissue types, as well as to anchor antiparallel actin filaments in 

muscle tissue, forming the Z line in skeletal and cardiac muscle and the cytoplasmic-

dense bodies in smooth muscle. An early abnormality in dystrophin-deficient mice is 

the scattered focal streaming of Z lines (Torres & Duchen, 1987). Several types of ion 

channels may also associate with α-actinin (Sadeghi et al., 2002). Within adult mouse 

cardiac tissue, the L-type calcium channel was found to colocalise with dystrophin at 

both the Z and M lines, whereas α-actinin was found to colocalise with the channel 

only over regions of the Z line. Together, these data suggest a regulatory role for the 

actin binding proteins α-actinin and dystrophin, acting on the calcium channel by 

either direct or indirect interactions (Sadeghi et al., 2002). Approximately 40% of 

dystrophin is tightly bound to the contractile apparatus (Braun et al., 2001). The loss 

of that particular dystrophin fraction appears to be causative in the development of 

cardiac insufficiency. Another group has identified that cardiac dystrophin is 

distributed between two distinct pools, a soluble cytoplasmic pool and a membrane 

bound pool (Peri et al., 1994) however they do not speculate on the roles of these 



Chapter 2 – Literature Review 

 24

pools. The authors speculate that the distinct properties of cardiac dystyrophin suggest 

unique roles for the protein in cardiac versus skeletal muscle (Peri et al., 1994). 

 

A highly significant correlation between dystrophin and other calcium regulating 

proteins has been recognised (Gurusinghe et al., 1991). In particular, a major portion 

of the dystrophin sequence has been found to contain repeating units of approximately 

100 amino acid residues. These repeating units were found to exhibit significant 

homology to troponin I (Gurusinghe et al., 1991). Troponin I binds to the calcium 

binding proteins calmodulin and troponin C. The regions of highest homology were 

characterised by patterns of high localisation of charged amino acids and thus could 

represent a possible calmodulin or troponin C surface accessible binding site 

(Gurusinghe et al., 1991). The expression of cardiac troponin has been found to be 

unchanged in both patients with DMD and mdx mice (Hammerer-Lercher et al., 

2001). Subcellular localisation studies have indicated that dystrophin is associated 

with the diadic junction, providing further support that dystrophin could be involved 

in controlling intracellular calcium homeostasis (Hoffman et al., 1987).  

 

2.4 Animal Models of Dystrophinopathies and Related 

Conditions 

There are a number of animal models that have been identified to examine the 

progressive pathophysiology of Duchenne muscular dystrophy and experimental 

therapeutics for the disease. The mdx (muscular dystrophy X-linked) mouse has 

become the most popular animal model due to its relative inexpensiveness, its short 

gestation period and small size. Cats and mice show a more benign disease than 
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humans, with muscular hypertrophy as one of the more obvious symptoms (Hoffman 

& Dressman, 2001). The golden retriever or GRMD dog (Kornegay et al., 1988) is 

probably the best model of DMD in terms of its similarity to the pathophysiology 

observed in the human male (Cooper et al., 1988). However this model is quite 

expensive, has considerable variability in its phenotype and controversy surrounds the 

use of dogs for medical research. Various other species of animals with muscle 

weakness exist and have been studied, including the hamster, cat (Ytterberg, 1991), 

chicken (Dawson, 1966), sheep (Paulson et al., 1966), mink (Hegreberg et al., 1974), 

duck (Rigdon, 1964), cow (Poukka, 1966), and even a zebra fish (Bolanos-Jimenez et 

al., 2001), but none of these have been shown to be strictly comparable to human 

muscular dystrophy.  

 

2.4.1 The GRMD Dog 

The GRMD dog was first described by Kornegay et al., in 1988. Creatine kinase 

levels are elevated from the first week of life onwards, but symptoms usually manifest 

at approximately 8 weeks when muscular weakness develops and then worsens 

progressively over subsequent months. As in humans, muscular weakness is 

paralleled by a progressive loss of muscle tissue and development of fibrosis. 

Dystrophin-deficiency affects the entire musculature and in particular there is a 

reduction in respiratory capacity. As in DMD, the muscle necrosis is inadequately 

compensated by regeneration and the resulting loss of muscle mass is accompanied by 

fibrous and fatty infiltration and diffuse calcification of the muscles, matched by rapid 

development of clinical muscle weakness and contractures during the first few months 

of life (Partridge, 1991). Cardiomyopathy is a significant feature of dystrophin-

deficiency in the GRMD dog (Moise et al., 1991) and death usually occurs around 
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one year of age (Valentine et al., 1992; De La Porte et al., 1999). 

 

2.4.2 The mdx Mouse  

The mdx is a naturally occurring mutation that was found in a colony of C57BL10 

ScSn mice (Bulfield et al., 1984); hence these mice (C57) have become the control for 

mdx. The mdx mouse mutation is a premature stop codon at exon 23 of the dystrophin 

gene and hence it resembles the genetic defect of boys with DMD quite closely. 

Muscle fibres in old mdx show variation in size with many atrophied and split 

(Pastoret & Sebille, 1995). Progressive and degenerative changes observed in mdx 

resemble DMD closely and imply that there are basic pathological similarities 

between the murine and human diseases (Pasoret & Sebille, 1995; Lefaucher et al., 

1995). The female mdx in breeding colonies are homozygous, so that inbred strains of 

the mdx continually exhibit the Xp21 mutation and subsequent dystrophin-deficiency. 

Bulfield et al., (1984) initially reported the mdx mouse mutation and provided 

evidence for dilation of the SR as an early change in affected myofibrils, a change 

similar to those observed in boys with DMD. They also observed the development of 

electron-dense bodies in the mitochondria and disruption of the plasmalemma and 

basal lamina, which again mimics the pathophysiology observed in boys with DMD. 

The pathology of skeletal muscle in mdx shows necrosis, regeneration and the 

persistence of central nuclei (Torres & Duchen, 1987). However, after marked 

necrosis from 21 days of age (McGeachie et al., 1993) the mdx shows skeletal muscle 

recovery from approximately 40 days of age due to the upregulation of a dystrophin-

related protein, utrophin, which effectively prolongs the life span of these mice and 

decreases skeletal muscle atrophy. Utrophin is a close homologue of dystrophin (69% 

across 3500 amino acids) (Keep et al., 1999), so there is speculation that upregulation 
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of utrophin may be able to functionally compensate for the lack of dystrophin (Fisher 

et al., 2001). Utrophin upregulation thus far has not been shown to be able to prevent 

life-threatening myocardial dysfunction (Fanin et al., 1999) although further studies 

are warranted as this study examined one DMD and one BMD case only. Utrophin 

shares sequence similarity with dystrophin but instead is localised to neuromuscular 

and myotendinous junctions in mature skeletal muscle and to intercalated discs and 

microvasculature smooth muscle in the heart (Sewry et al., 2001). Due to changes 

such as these, there is consideration of the similarity of the pathogenesis of dystrophy 

in mdx compared to DMD, with some authors suggesting that mdx is not an 

appropriate model to study skeletal muscle myopathy (Rouger et al., 2002).  

 

Mice deficient in dystrophin have significant tachycardia, decreased heart rate 

variability, and altered autonomic heart rate modulation in comparison to wild-type 

control mice, findings consistent with clinical observations of autonomic dysfunction 

in DMD (Gnecchi-Ruscone et al., 1999; Chu et al., 2002). Mdx mice display 

abnormal electrocardiograms (ECGs) (Bia et al., 1999), decreased atrioventricular 

conduction time and impaired baroreceptor reflex control in conscious animals that is 

consistent with observations in DMD patients (Chu et al., 2002). Conduction 

abnormalities in mdx are associated with morphological changes, including multifocal 

areas of fibrosis, vacuolization and fatty infiltration throughout the entire conduction 

system (Bia et al., 1999). Mdx heart also develops hypertrophy that does not 

contribute to greater contractile force by 6 months of age (Bia et al., 1999).  

 

At 12-14 weeks of age the pathophysiology of the mdx myocardium is evident by 

altered contractile function (Sapp et al., 1996). Cardiomyocytes from 8-10 week old 
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mdx mice have been reported to have a reduced threshold for the development of 

sarcolemmal injury under mechanical stress (Danialou et al., 2001). Mdx myocardium 

exhibit myocardial lesions, characterised by necrosis, macrophage infiltration and 

inflammation along with a diminished number of functional myocardial fibres which 

are replaced with connective tissue (Bia et al., 1999). The mdx mouse therefore shows 

significant similarity in cardiac dysfunction to that observed in boys with DMD. The 

mdx mouse is therefore an appropriate model to study dystrophin-deficient 

cardiomyopathy. 

 

2.4.3 Other Animal Models of Muscular Dystrophy 

2.4.3.1 Feline X-linked muscular dystrophy 

Dystrophin deficiency has also been described in the feline X-linked muscular 

dystrophy (FXMD) cat. It is characterised by muscle hypertrophy and resembles 

DMD in displaying accumulation of calcium, but differs in showing no fatty 

infiltration with only moderate fibrosis, no loss of muscle fibres, and no progressive 

muscle weakness (De La Porte et al., 1999). This model is rarely used in the research 

of dystrophinopathies. 

 

2.4.3.2 Dystrophic Syrian Hamster 

The dystrophic Syrian hamster is known to have δ-sarcoglycan deficiency, thus, it is 

recognised as a good model for clarification of the pathogenesis of 

sarcoglycanopathy. In Syrian hamsters, the muscle lesions closely resemble those of 

the mdx, and the hamsters also have increased resting intracellular calcium levels 

(Camacho et al., 1988). Although signs of skeletal muscle dysfunction are mild, 
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cardiac muscle is preferentially involved, leading to fatal cardiac insufficiency around 

one year of age (Nonaka, 1998).  

 

2.4.3.3 The Cardiomyopathic Hamster 

The cardiomyopathic hamster has a γ-sarcoglycan deficiency that leads to a 

dysfunctional DAGPC and subsequent cardiomyopathy. More heart research has been 

dedicated to this model of cardiomyopathy than the mdx mouse, so this model may 

lend some insight into the cardiac dysfunction observed due to a loss of the DAGPC. 

The lack of membrane proteins in the cardiomyopathic hamster is directly related to 

increased sarcolemmal permeability and subsequent cell rupture (Ikeda et al., 2000).  

An altered calcium homeostasis leading to an intracellular calcium overload plays a 

primary role in the development of necrosis in the cardiomyopathic hamster (Palmieri 

et al., 1981). Initially calcium influx was implicated as a major contributor to the 

cardiac dysfunction. Kuo et al., (2002) observed increased DHPRs in radioligand 

binding, although Howlett & Gordon (1987) observed no increase in the density of the 

DHPRs. Another major calcium transporter, SERCA, was also expressed in normal 

levels in the cardiomyopathic hamster heart (Kuo et al., 2002), while recently an 

abnormal activation and high levels of the mitochondrial sodium/calcium exchanger 

were reported (Kuo et al., 2002). The effects of increased cytosolic calcium have been 

associated with a loss of matrix calcium, resulting in impaired oxidative 

phosphorylation and thus a loss of mitochondrial metabolism, which may be a 

contributor to altered metabolism (Kuo et al., 2002). The elevation in calcium also 

induces opening of mitochondrial permeability pores that in turn lead to caspase 

activation and cell death (Kuo et al., 2002). In conclusion, it would appear that a loss 
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of γ-sarcoglycan alone may lead to a loss of calcium homeostasis in the myocardium 

that may be similar to the pathogenesis in mdx. 

 

2.5 Current Research and Therapeutic Strategies 

Experimental therapeutics of the muscular dystrophies has made impressive advances 

on several fronts. Muscle gene delivery has been successful in rodent models, 

correction of the dystrophin gene mutation has been reported in dog, and several 

reports of progress on myogenic stem cell characterisation are highlighting cell 

transplantation as a possible therapeutic approach. Bone marrow transplantation has 

been shown to regenerate cardiomyocyte dystrophin (Bittner et al., 1999). The 

consequences of primary dystrophin-deficiency are being continually advanced and 

drugs targeting specific biochemical pathways are being tested in several animal 

models. Drug discoveries are continually being implemented in human clinical trials 

(Hoffman & Dressman, 2001). Physical management has long been an approach used 

to increase longevity in human males with Duchenne muscular dystrophy (Dubowitz 

& Heckmatt, 1980) and survival is now significantly prolonged with the use of 

physical medical interventions, therefore the prevention of cardiac complications 

takes on ever-increasing importance (Ishikawa et al., 1995). 

 

2.5.1 Myoblast Transfer 

With rapid advances in the molecular genetics of DMD, myoblast transfer (cell 

transplantation) and gene therapy have both been proposed as potential treatments. 

Myoblasts are muscle precursor cells capable of migrating to the site of muscle 
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damage, fusing with other myoblasts and thus regenerating the muscle. The aim of 

myoblast transfer is to incorporate donor myoblasts (containing dystrophin) into 

dystrophin-deficient tissue. Initial experiments in mdx mice were promising, but 

efficient transfer of myoblasts into human muscles has not yet been successful. The 

major problem is a reduced replicating ability after the age of 2 years (Miller & 

Hoffman, 1994). Also, as with any other transplantation, the injected material is often 

rejected by the recipient. The final difficulty is that such an approach would also not 

influence the brain for the approximately 19% of boys with intellectual impairment.  

 

2.5.2 Gene Therapy 

Successful gene therapy will require the efficient delivery of a dystrophin expression 

vector to the muscles of the body (Chamberlain, 2002). The process of gene therapy 

has been thwarted by the enormous size (2.4MB) and complexity of the dystrophin 

gene. Therefore the generation of mini-genes that can express therapeutic levels of 

functional protein may alleviate part of the problem. This has involved isolating the 

dystrophin gene from DNA and identifying the gene promoter, a sequence of DNA 

that ensures that the gene is ‘turned on’ in the appropriate tissue. The promoter and 

associated gene are then cloned, a process whereby a microorganism such as a virus is 

induced to synthesize millions of copies (hence viral vector). An appropriate delivery 

vector must also be identified, an organism that does not produce an immunological 

or toxic response (Chamberlain, 2002). Results from animal experiments have shown 

that direct injection of the cloned mini-dystrophin gene itself is not efficient, with 

only a low level of expression (Miller & Hoffman, 1994). The rod structure, and its 

length have been shown to be crucial determinants for the function of micro-

dystrophin (Sakamoto et al., 2002). The muscle isoform of dystrophin is encoded on a 
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14Kb mRNA, and cDNA produced has prevented dystrophy in mdx muscles (Cox et 

al., 1993). New adenovirus-based gene delivery systems are being developed, along 

with retroviruses, adeno-associated viruses and plasmids (Chamberlain, 2002). 

However, delivery of the gene to muscle continues to be problematic for the following 

reasons. Firstly, in order to obtain the maximum therapeutic effect, a large proportion 

of myofibres must be formed, yet with muscle as such a large target tissue (30% of 

the body mass), with a unique cellular structure, it is difficult to successfully infiltrate 

the target adequately. Secondly, there is an aggressive immune attack against infected 

cells. Thirdly, adenovirus can only infect neonatal muscle and has not been successful 

at inducing gene expression in more mature tissues (Hoffman et al., 1997).  

 

Even when solutions for systemic delivery and efficiency are found, transgenic gene 

therapy will still suffer from the major shortcoming of being preventive rather than 

curative of existing damage, because it is unlikely to reverse the physiological and 

anatomical lesions at all sites, or be effective at any stage of the disorder. 

Furthermore, neural defects and secondary complications (such as joint contracture 

and scoliosis) will not be rectified (Kakulas, 1997). Recently Yue et al., (2003) used 

adeno-associated virus-mediated microdystrophin gene therapy in the mdx mouse 

heart with successful restoration of the dystrophin-glycoprotein complex achieved 

when tested 10 months after the procedure. This procedure was also able to improve 

the sarcolemma integrity in the mdx heart. These procedures hold promise for future 

therapeutic value, although their implementation in boys with DMD is still in the 

distant future. 
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2.5.3 Exon Skipping 

Mann et al., (2001) reported an antisense-induced exon skipping mechanism that was 

able to produce functional dystrophin in the mdx. These antisense oligonucleotides 

modify processing of the dystrophin at the pre-mRNA level, so that exons are skipped 

and a shorter version of dystrophin is produced in the muscle. The group have since 

refined their technique by identifying sensitive regions of the gene to induce skipping, 

and by reducing the size of the antisense oligonucleotide. This has produced increased 

function of the skeletal muscle of mdx (Lu et al., 2003) and demonstrated increasing 

feasibility of an antisense-oligonucleotide based therapy for the treatment of DMD 

(Mann et al., 2002). 

 

2.5.4 Utrophin Upregulation 

An alternative approach may lie in the identification of proteins similar in tissue 

distribution and function to dystrophin. Upregulation of utrophin has shown beneficial 

effects in animal models (Deconinck et al., 1997; Gillis & Deconinck, 1998; Rafael et 

al., 1998). It has been hoped that the administration of pharmacological agents to 

stimulate transcription and thus increase the specific expression of utrophin may 

compensate for the loss of dystrophin and assist in overcoming the dystrophin 

deficiency. However, research has indicated that upregulation of utrophin in 

dystrophin-deficient cardiomyocytes is unable to prevent the development of life-

threatening myocardial dysfunction in humans (Fanin et al., 1999).  

 

Although these therapies hold tremendous promise and are the future for treating 

dystrophin-deficient conditions, understanding the pathogenesis of the disease is still 

of vital importance. Also, these therapies are still many years from human therapeutic 
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use, so drug therapy to increase life quality and quantity are important. Gene therapies 

will probably not completely correct the loss of dystrophin, with most therapies 

improving prognosis to BMD-like pathology, with partial expression of dystrophin. 

Therefore drug therapy will likely continue to be required to treat dystrophin-deficient 

conditions. 

 

2.5.5 Drug therapy 

DMD is a progressive disease, with patients largely symptom free before five years of 

age. Although the complete correction of the biochemical defect is the clear goal in 

therapeutics for DMD, it should be equally viable to slow or ideally halt disease 

progression with the use of drug therapy aimed at correcting a well-defined 

pathogenesis of the disease with further research.  

 

2.5.5.1 Glucocorticoids 

The pharmacological agents that have shown the greatest success in slowing the 

progression of DMD are the corticosteroids such as prednisone and deflazacort 

(Dubrovsky et al., 1998). The exact mechanism of their beneficial effects remains 

unknown, although it has been reported that prednisone stimulates myogenesis in 

human and rat muscle cells and increases the expression of dystrophin-associated 

proteins (Vandebrouck et al., 1999). Deflazacort has been shown to promote 

myogenic repair and stimulate fibre growth in mdx skeletal muscle (Anderson et al., 

1996), as well as decreasing myocardial lesions and preventing cardiomyopathy in 

mdx (Skrabek & Anderson, 2001). Part of the beneficial effect of the glucocorticoids 

in DMD patients could be attributed to a reduction in calcium influx (Reilly et al., 

1996) and in the size of calcium pools in dystrophic muscle fibres (De La Porte et al., 
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1999), hence reducing calcium-induced tissue injury. The antiinflammatory effects of 

the corticosteroids are also of benefit since chronic inflammation has been shown to 

be associated with dystrophin-deficient skeletal muscle (Porter et al., 2002). Clinical 

trials of glucocorticoids have documented benefits in palliation of DMD (Burrow et 

al., 1991). Kissel et al., (1991) suggest that glucocorticoids improve strength in DMD 

through primarily immunologic mechanisms involving T lymphocytes. In contrast to 

normal muscle where glucocorticoids promote muscle proteolysis, Rifai et al., (1995) 

alternatively proposed that improved strength of dystrophic muscle was mediated by 

inhibition of muscle proteolysis rather than stimulating muscle protein synthesis. 

Glucocorticoids may enhance muscle strength and function for up to two years (Khan, 

1993) and are at present the only valid muscle-sustaining treatment, though some 

patients experience side effects such as Cushingoid symptoms and are advised to 

discontinue treatment.  

 

2.5.5.2 β-Adrenergic Agents 

It was initially speculated that muscular dystrophy was due to a defect in sympathetic 

innervation of skeletal muscle (Dubowitz & Heckmatt, 1980), so sympathomimetics 

were some of the first treatments aimed at rectifying the pathogenesis of muscular 

dystrophy. The β-adrenergic agonists have recently been nominated to potentially 

improve skeletal muscle strength in dystrophinopathies, although it appears that such 

a strategy could have deleterious effects by increasing the mechanical workload on 

the heart and the risk of further myocardial injury (Danialou et al., 2001). Conversely, 

the use of pharmacological interventions that reduce cardiac workload, such as β-

blockers could be beneficial in not only treating established cardiomyopathy, but also 
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preventing the onset of cardiomyopathy in these patients if instituted sufficiently early 

in life.  

 

2.5.6 Summary of Current and Future Therapeutics 

Although gene therapy and stem cells show promise and hope for the future abolition 

of Duchenne muscular dystrophy, at least in its current prognosis, these experimental 

therapeutics remain somewhat distant clinically. The glucocorticoids currently 

provide the best therapeutic strategy, but their exact mechanism of action remains 

unknown, and side effects may be too severe for the continuation of treatment for 

some DMD patients. Therefore, other strategies to inhibit the progression of this 

disease are still required. 

 

The presence of a high concentration of calcium is considered a major pathological 

contributor to muscle necrosis in dystrophic skeletal muscle. The role of calcium is of 

utmost importance in the myocardium. Calcium is involved in the electrical signalling 

of the pacemaker and it is the ion that is released from the sarcoplasmic reticulum to 

bind to the contractile proteins of the myocardium to produce the contraction of the 

cardiac muscle. Calcium is also a very important contributor to arrythmogenesis, an 

affliction that occurs frequently in the cardiomyopathy associated with DMD. 

Intracellular calcium has been shown to be elevated in dystrophic myocardium, 

although the mechanisms responsible remain to be elucidated. To better understand 

the mechanisms contributing to this intracellular calcium overload and therefore the 

potential to direct therapies towards this, there remains a need for further research on 

the regulation of calcium in the myocardium. 
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2.6 Cardiac Calcium Cycling 

Calcium ions are second messengers in signalling pathways in a variety of cell types. 

Calcium regulates muscle contraction, the electrical signals which determine the 

cardiac rhythm; and cell growth pathways in the heart (Marks, 2001). In cardiac 

excitation-contraction coupling at the cellular level action potentials pass over the 

surface membrane and activate voltage sensitive calcium channels that open rapidly, 

allowing extracellular calcium to flow into the cytoplasm (Lamb, 2000). The calcium 

enters the cell and binds to and opens specialised calcium release channels (type 2 

ryanodine receptors; RyR) in the nearby sarcoplasmic reticulum (SR) membrane. The 

calcium flows out of the SR and activates other RyR release channels, thereby 

reinforcing calcium release. This phenomenon is known as calcium induced calcium 

release (CICR) (Fabiato & Fabiato, 1975). SR calcium release is controlled by the L-

type calcium current because independent, elementary events of SR calcium release 

are “recruited” by calcium flowing through single L-type channels, and not by the 

average concentration of calcium within the cell (Wier & Balke, 1999). The rapid rise 

in cytoplasmic calcium concentration activates the contractile apparatus, which 

produces force, before the calcium is subsequently taken up into the SR by the sarco-

endoplasmic reticulum calcium ATPase (SERCA). Calcium is also removed from the 

cytoplasm by the sodium/calcium exchanger (NCX) and the membrane bound 

sarcolemmal Ca2+-ATPase. Both these processes remove calcium from the 

intracellular space to the extracellular space.  

 

With little known about calcium handling in dystrophin-deficient cardiomyocytes, 

each mechanism that involves the movement of calcium is a potential source that may 
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contribute to the intracellular overload. Each of these mechanisms will be discussed 

further in the following sections. 

 

2.6.1 The Action Potential 

The cardiac action potential is characterised by the movement of three predominating 

ions; sodium, calcium and potassium. The upstroke of the action potential (Fig 2.5) is 

due to sodium influx and is known as the depolarising current and is followed by 

calcium influx, responsible for the plateau phase of the action potential in human 

myocardium. However its contribution to a plateau in murine myocardium is rather 

insignificant. Finally the repolarising current or inward rectifier is due to the efflux of 

potassium ions. The only study to observe the ventricular cardiac action potential in a 

model of DMD was Pacioretty et al., (1994) who studied the Xmd (GRMD) dog 

cardiac action potential. Pacioretty et al., (1994) observed a reduction in the transient 

outward current, which should produce delayed repolarisation of the action potential, 

however it must be acknowledged that the canine cardiac action potential is quite 

different from the murine cardiac action potential. Pacioretty et al., (1992) published 

an abstract on the Xmd and mdx action potential characteristics obtained from isolated 

myocytes. The mdx ventricular action potential duration was unchanged in animals 

less than 6 months of age, while the action potential duration is significantly shorter in 

older animals. The abstract does not elucidate on actual ages or methods of cell 

isolation or recordings. The abstract did however speculate that the transient outward 

current may be increased, and the inward calcium current decreased in DMD, without 

providing any evidence to support the speculations. The cellular cytoskeleton 

contributes to the regulation of both voltage- and ligand-gated ion channels, and L-

type calcium channels in cardiac and smooth muscle have been reported as being 
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regulated by actin filament organization (Sasaki et al., 1987). This is important in 

dystrophin-deficiency, as actin filament organisation may be disrupted. 
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Figure 2.5 A comparison of human and murine action potentials. A A human ventricular cardiac 
action potential. 4) Resting membrane potential is set by a large K+ permeability due to a 
combination of the leak K+ channel and a voltage-gated K+ channel (called the inward rectifier 
K+ channel) that is open at rest 0) The rising phase of the action potential is due to the cardiac 
voltage-gated Na+ channel. 1-2) As the voltage-gated Na+ channels produce the rising phase and 
then start to inactivate two channels will now be opening, the delayed rectifier K+ channel and 
the L-type Ca2+ channel. This plateau is a balance between the open Ca2+ channels and the open 
K+ channels. 3) Finally the L-type Ca2+ channels inactive and the voltage-gated K+ channels will 
now dominate and the membrane potential will repolarise to resting membrane potential.  Then 
the voltage-gated K+ channels will close, the voltage-gated Na+ channels will switch from the 
inactive to the closed state and the membrane is set back at 4) ready to fire again. B A 
representative murine atrial action potential from a C57 mouse in the absence of drug for 
comparison. The dominant ion channels are still represented, although the contribution of the L-
type calcium channel to the plateau phase is negligible. 

 

2.6.1.1 L-type Calcium Channels 

The mechanism mediating the majority of calcium influx in adult mammalian 

myocardium is the specific voltage-sensitive L-type channel which is often called the 

dihydropyridine receptor after the specific, high affinity blocking agent (Schramm et 

al., 1983). T-type or fast current via the T-type calcium channels is negligible in most 

ventricular cardiomyocytes (Bers, 2002), although it is somewhat more important in 

A 
B 



Chapter 2 – Literature Review 

 40

skeletal muscle. The L-type Ca2+ channel is the most sophisticated of all surface 

membrane channels consisting of a functional main unit (α1) containing four domains, 

each with six spans, a voltage sensor and a pore loop. It contains at least three other 

subunits and a number of phosphorylation sites at the C-terminal (Fig 2.6).  

 

Figure 2.6 The subunits of the L-type calcium channel. The structure consists of four subunits 
each with six transmembrane spans and a pore loop. From 
http://medweb.bham.ac.uk/research/calcium/SupportFiles/subunit3.htm 

 

Thus it is a voltage – and at the same time receptor-operated channel. Drugs may bind 

to the L-type calcium channel and induce increased opening of the channel. L-type 

calcium channels are located primarily at the sarcolemmal SR junctions where the 

RyR exist. Opening of the channel is usually voltage activated, with depolarisations to 

-40mV causing opening of the L-type calcium channels. Channel inactivation can be 

mediated by voltage or chemical mechanisms. Normally repolarisation of the 

myocytes initiates inactivation so prolongation of the APD (ie delayed repolarisation) 

will delay inactivation, therefore the channels remain open for a longer period of time. 

During excitation-contraction coupling, SR calcium release also contributes to 

inactivation of the current through the L-type calcium channels by a negative 
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feedback mechanism. The total calcium influx through the L-type calcium channel is 

reduced by about 50% when SR calcium release occurs (Bers, 2002). Thus SR 

calcium release and the L-type current can create local negative feedbacks on calcium 

influx (Bers, 2002). When there is high calcium influx or release, further influx of 

calcium is turned off (Bers, 2002). Increased calcium influx through L-type calcium 

channels can in turn produce an increase in SR calcium content that may induce 

arrhythmia (Tweedie et al., 2000).  

 

Because of their central role in excitation-contraction coupling, L-type calcium 

channels are a key target of the therapeutic class of drugs known as L-type calcium 

channel blockers used to regulate chronotropic and inotropic actions. L-type calcium 

channel blockers, a group of organic substances that bind to specific sites at the 

calcium channels, are now well established in the treatment of angina pectoris, arterial 

hypertension and supraventricular arrhythmias. They are not only important 

therapeutics, but are also valuable tools for the study of the function of L-type 

calcium channels. Based on their pharmacological profile they can be divided into 

three classes: (1) dihydropyridines (eg. nifedipine), (2) phenylalkylamines (eg. 

verapamil) and (3) benzothiazepines (eg. diltiazem). Pharmacological observations 

suggested that the three antagonists bind to three separate receptor sites on the α1-

subunit of L-type calcium channels that are allosterically linked (Hockerman et al., 

1997; Nakayama & Kuniyasu, 1996). The three classes differ in their pharmacological 

profile and safety, with differences in their tissue selectivity. Although all these 

compounds exhibit negative inotropic effects, they exhibit different chronotropic 

effects due to different influences on neuro-hormonal activity (Hjemdahl & Wallen, 

1997; Noll et al., 1998). 
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2.6.1.1.1 Dihydropyridines 

The L-type calcium channel represents the major entry pathway of extracellular 

calcium. The DHPR agonist and antagonist molecules interact with distinct sites on 

the α1-subunit of the L-type calcium channel (Tang et al., 1993). Nifedipine is a 

commonly used representative of dihydropyridines (Table 2.2). It selectively inhibits 

the transmembrane influx of calcium ions into cardiac muscle and vascular smooth 

muscle. As a consequence, nifedipine dilates major coronary arteries and arterioles in 

normal and ischaemic regions, inhibits coronary artery spasm, reduces myocardial 

oxygen requirements and decreases peripheral vascular resistance.  

 

Dihydropyridine binding is voltage dependent, and this may explain the higher 

selectivity of this class of drugs for vascular smooth muscle, as it is more depolarised 

and can undergo a more sustained depolarisation than cardiac muscle (Bers & Perez-

Reyes, 1999). Vascularly selective dihydropyridines usually elicit increases in heart 

rate in vivo by a vasodilatation-triggered, baroreceptor-mediated reflex increase in 

sympathetic tone, renin release and elevated plasma catecholamines, resulting in 

indirect cardiostimulation (Hjemdahl & Wallen, 1997; Scholz et al., 1997). The 

radiolabelled [3H]-PN 200-110 acts similarly to nifedipine by blocking the 

dihydropyridine site to block the L-type calcium channel, but is used for ligand-

receptor binding studies.  

 

2.6.1.1.2 Phenylalkylamines  

Verapamil, a representative of phenylalkylamines binds at an internal site on the α1- 

component of the L-type calcium channel (Table 2.2). Its binding is facilitated by the 

repetitive depolarisation of cardiac tissue, a phenomenon described as use-
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dependence. The distinction between voltage- and use-dependence may explain why 

this drug is not as highly selective as nifedipine (its activity increases with a 

maintained level of depolarisation), instead being equipotent for both the myocardium 

and the vasculature (Ferrari et al., 1994). The mechanism of the anti-anginal and 

antiarrhythmic effects of verapamil is related to its specific cellular action of 

selectively inhibiting transmembrane influx of calcium in cardiac muscle and in cells 

of the sinoatrial (SA) and atrioventricular (AV) nodes. Verapamil is also a potent 

smooth muscle relaxant. Its vasodilatory and myocardial contractility depressant 

properties are largely independent of autonomic influences and this is evident by 

normal plasma noradrenaline measurements after verapamil administration.  

 

2.6.1.1.3 Benzothiazepines 

Diltiazem, a benzothiazepine is also a calcium ion influx inhibitor (Table 2.2). Like 

verapamil, diltiazem is prominently frequency-dependent. This largely contributes to 

its anti-arrhythmic and cardiac depressant action (Triggle, 1999). It also decreases 

sinoatrial and atrioventricular conduction in isolated tissues and has a negative 

inotropic effect in isolated myocardial preparations. It is used for the treatment of 

hypertension and angina as it dilates epicardial and subendocardial arteries.  

 

Furthermore, an inhibitory effect on the mitochondrial Na+/Ca2+ exchange (NCE) has 

been claimed for diltiazem that is unique among calcium channel antagonists (Vaghy 

et al., 1982; Schwartz, 1992). This effect may, in turn, decrease oxidative 

phosphorylation and the production of high-energy phosphates (Cox & Matlib, 1993). 
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2.6.2 The Sarcoplasmic Reticulum 

2.6.2.1 SR Calcium Release 

Calcium is released from the intracellular store by release channels located in the 

junctional part of the reticulum adjacent to the T-tubules. They have a tetrameric 

structure with huge cytoplasmic domains, which include associated intraluminal 

calcium binding proteins such as calsequestrin. It is now called the Ryanodine 

receptor (RyR) after the experimentally used channel blocking alkaloid. During each 

contraction cycle the SR is loaded partly by calcium ions entering the cell but mainly 

by calcium ions that have just been released from the actomyosin interaction. 

Reduced SR function is described in various forms of cardiac hypertrophy and heart 

failure (Meyer et al., 2001).  

 

Dysfunction in a small number of SR Ca2+ release channels has been shown to 

profoundly affect cardiac function (Meyer et al., 2001). The cardiac ryanodine 

calcium release channel is stimulated to release calcium by calcium influx via the L-

type calcium channels. In cardiac muscle, calcium release from the SR is stimulated 

by caffeine (mM range), by ryanodine (nM range) and by calcium (µM range), and 

inhibited by higher concentrations of ryanodine (µM range) and ruthenium red 

(Marks, 2001; Ehrlich et al., 1994). Caffeine has a dual action on calcium flow, by 

inhibiting SERCA and inducing opening of the ryanodine receptor (Ritter et al., 

2000). Caffeine also has an effect of increasing myofilament sensitivity to calcium 

(Wendt & Stephenson, 1983). 

 

Ryanodine has been shown not to interfere with SR sequestration (Bers & Bridge, 

1989). Dantrolene acts to inhibit calcium release via the Ryanodine receptors on the 
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SR (Table 2.2). Dantrolene is used clinically in the treatment of malignant 

hyperthermia (Bertorini et al., 1991). In malignant hyperthermia, like DMD, there is a 

defective influx and efflux of calcium from the SR. Dantrolene has undergone clinical 

trials in DMD patients over a two-year period with a reduction in serum creatine 

kinase observed (Bertorini et al., 1991). The authors also observed a trend towards a 

“lessening of muscle deterioration” (Bertorini et al., 1991) during the dantrolene trial. 

Therefore drugs that decrease intracellular calcium levels may be of therapeutic value 

in DMD, although more extensive trials need to elucidate mechanisms of action and 

effectiveness in reducing the intracellular calcium overload associated with 

dystrophin-deficiency.  

 

2.6.2.2 SR Calcium Sequestration 

Cytosolic calcium removal is essential for relaxation of the myocardium. The onset of 

relaxation is synchronised with repolarisation. This feature is important 

physiologically because frequency-dependent shortening of the action potential 

abbreviates not only the refractory period but also the contraction-relaxation cycle and 

in turn causes a relative prolongation of ventricular filling time. In rats and mice, 

which have a high level of activity of SERCA and a relatively high [Na+]i, NCX is 

responsible for approximately 10% of relaxation (Barry, 2000). Contributions of each 

of the calcium removal pathways in rodent heart are as follows: 92% of calcium 

sequestration and/or extrusion by the SERCA, 7-10% by the NCX and approximately 

1% by the slow systems (sarcolemmal Ca2+-ATPase and the mitochondrial calcium 

uniporter) (Bers, 2002). SERCA therefore plays the major role in relaxation of the 

myocardium and is regulated by an associated inhibitory protein, phospholamban 
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Table 2.2 Pharmacological agents that affect calcium handling in cardiac myocytes. 
 
 Calcium influx modulators SR calcium flux 

modulators 
1. L-type calcium channel 
modulators 

Stimulators Blockers  

a) Dihydropyridines Bay K 8644 Nifedipene  
b) Phenylalkylamines  Verapamil  
c) Benzothiazepines  Diltiazem  
    
2. SR calcium pump inhibitors   Caffeine, 

Cyclopiazonic Acid 
    
3. RyR stimulators, SR 
calcium channel release 
promoter 

  Ryanodine,  
Caffeine 

    
4. SR calcium channel release 
inhibitor 

  Dantrolene 

 

(PLB). Decreases in the levels of PLB or increases in its phosphorylation status result 

in an increase in the apparent calcium affinity of SERCA, and augment cardiac 

contractile parameters (Sato et al., 2001). The ratio of PLB/SERCA has been accepted 

as a major determinant of lusitropy (Mirit et al., 2000). SERCA regulation is of vital 

importance, as overexpression of SERCA and a higher accumulation of SR calcium 

have been linked with an acceleration of spontaneous cell death caused by protease-

induced apoptosis (Culligan & Ohlendieck, 2002). Alternatively, an underexpression 

or dysfunction of SERCA will lead to an accumulation of cytosolic calcium, a 

dysfunctional SR and a lengthened relaxation time. Relaxation time has also been 

determined to be impaired at higher stimulation frequencies, and when intracellular 

calcium is elevated (Maier et al., 1998).  

 

Specific inhibitors of calcium removal mechanisms are important pharmacological 

tools that may help to elucidate functional differences between normal and 
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dystrophin-deficient cardiac tissues. Cyclopiazonic acid (CPA) is able to inhibit 

SERCA from functioning so that uptake of calcium to the SR is abolished. 

Thapsigargan is a selective inhibitor of SERCA in cardiac muscle. Concentrations 

higher than 50µM of thapsigargin and CPA are required in multicellular preparations 

of rat and rabbit heart to induce significant inhibition of SERCA (Baudet et al., 1993; 

Pery-Man et al., 1993). Both thapsigargin (Nario & Satoh, 1996) and CPA (Pery-Man 

et al., 1993) have been shown to decrease force of contraction, decrease time to peak 

force, attenuate the force-frequency relationship and significantly delay relaxation 

time (Kocic et al., 1998).  

 

2.6.3 Regulation of Responsiveness to Calcium in the Heart 

Cardiac calcium cycling involves movement of calcium ions from the extracellular 

space through L-type calcium channels to the cytosol. This movement of calcium ions 

initiates calcium-induced calcium release (CICR). CICR initiates a massive outflow 

of calcium from the intracellular store, the sarcoplasmic reticulum (SR). All calcium 

ions in the cytosol are able to bind to the contractile proteins to produce shortening of 

the myocardial fibres. Finally removal of calcium to produce relaxation involves 

extrusion of ions to the extracellular space by the sodium-calcium exchanger (NCX) 

and sequestration of calcium back into the SR by the sarco-endoplasmic reticulum 

ATPase (SERCA).  

 

Three features of cardiac calcium handling are unique. First, the voltage sensitivity of 

the RyR is dwarfed by the sensitivity to calcium ions entering the cell through the 

membrane channels. Therefore CICR becomes the major influence in SR calcium 

release. Second, the amount of calcium release and hence the force of contraction 
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depends on autonomic heart rate variability and variations in the availability of 

reticular calcium that account for the force-frequency relationship of the myocardium. 

Third, an increased sarcomere length increases the sensitivity of troponin C to 

calcium, partly accounting for the Starling principle (Metzger et al., 1989). There are 

also differential interactions of calmodulin with the RyR channels that may contribute 

to differences in the calcium dependence of SR calcium release in cardiac muscle 

(Fruen et al., 2000).  

 

Importantly in the pathophysiology of high intracellular calcium and in normal 

conditions, high intracellular calcium favours calcium efflux, whereas positive 

membrane potentials and high intracellular sodium favour the NCX operating in 

reverse mode. The NCX has a reversal potential that depends on the electrochemical 

gradients for both calcium and sodium. At rest, this reversal potential is around -

40mV (Niggli, 1999). A depolarisation of the cell membrane beyond the reversal 

potential is expected to activate calcium influx via the NCX, for example, early 

during the action potential, immediately before the intracellular calcium concentration 

starts to rise. Later during the action potential, the elevation of intracellular calcium 

shifts the reversal potential of the NCX to more positive potentials and the NCX starts 

to remove calcium from the cytosol (Niggli, 1999).  

 

2.7 Potential Sites of Dysfunctional Calcium Handling 

in Dystrophic Hearts 

Calcium homeostasis in cardiomyocytes is maintained via precise control of 

intracellular calcium concentrations in a range from ~ 100nM during diastole to a 
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peak of ~ 1000nM in systole (Marks, 2001). In failing myocardium, cardiac force may 

be insufficient due to modification of the calcium sensitivity of the myofilaments, 

and/or a deterioration of the calcium signals due to dysfunction in one of the calcium 

handling proteins (Niggli, 1999). Studies on failing hearts have found resting 

intracellular calcium to be slightly elevated whereas calcium transients were reduced 

in amplitude and exhibited a slower decay (Niggli, 1999). For efficient excitation-

contraction coupling and relaxation, the cycling of intracellular calcium must be 

rigidly linked to sarcolemmal depolarisation during the action potential (Bers, 2002). 

Thus, a longer opening of L-type calcium channels or an increase in their density, or 

SR calcium overload would therefore produce a greater intracellular calcium 

concentration which should theoretically produce action potential duration 

prolongation (APD). Sustained depolarisation of the cardiomyocyte plasma 

membrane decreases the rate of extrusion of calcium by the NCX. In general, less 

calcium is extruded by the NCX at more positive potentials. This voltage-dependence 

of the NCX is such that a prolonged APD leads to higher intracellular calcium levels 

and decreased calcium extrusion (Marks, 2001). Therefore a dysfunction in one 

mechanism of calcium handling may alter other processes involved in calcium 

regulation causing a cascade effect. 

 

It is not clear yet whether alterations of cardiac calcium signalling are pathogenic to a 

particular disease or an adaptive consequence of deteriorated cardiac function (Niggli, 

1999). It appears probable that calcium channel abnormalities play a role in the 

potential for arrhythmias in DMD (Sadeghi et al., 2002). SR calcium overload has 

also been proposed as a contributing factor to the development of aberrant calcium 

fluxes due to calcium influx via the L-type calcium channel. Thus both the L-type 
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calcium channel and the RyR have been implicated in the dysregulation of calcium 

signalling that may contribute to cardiac arrhythmias (Marks, 2001). In other studies 

of cardiac dysfunction, changes were observed in the expression of calcium handling 

proteins and/or their mRNA and often these changes were paralleled by alterations of 

transport function. In yet other studies, changes of calcium signalling appeared to 

result from a functional modification of a particular transporter and not from a change 

in the amount of expressed protein (Niggli, 1999). Therefore both protein and mRNA 

expression and function should be investigated concurrently to correctly ascertain the 

basis for dysfunctional calcium handling. 

 

Given that a calcium overload of all muscle types seems to be associated with 

myopathy in dystrophin-deficiency, there is a requirement for further study to 

disseminate potential mechanisms of the calcium overload. 

 

2.7.1 The L-type Calcium Channel 

The DHPR are a point of contention in research into dystrophin-deficiency and other 

myopathies associated with a loss of the DAGPC. Studies have shown either no 

change or an increase in DHPR, dependent on the model of dystrophin-deficiency 

used and the age of the experimental animals. Two studies have evaluated the L-type 

calcium channel in mdx. Alloatti et al., (1995) studied currents from the L-type 

calcium channel and Sadeghi et al., (2002) determined interaction of the mdx cardiac 

L-type calcium channel with actinin and dystrophin-binding proteins. Neither study 

showed conclusive evidence for changes in L-type calcium channels in mdx. Sadeghi 

et al., (2002) showed that inactivation was delayed in the cardiac L-type calcium 

channel in mdx neonatal cardiomyocytes. How this related to activity of adult mdx 
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myocytes that exhibit myopathy is unclear. Influx mechanisms as the main source for 

calcium entry into the cell remain a potential cause for intracellular calcium overload 

in dystrophin-deficient conditions.  

 

In cardiac myocytes from mdx mice, inactivation of the L-type calcium channel was 

reduced by a positive shift in the voltage dependence of activation, a likely allosteric 

change in channel conformation that made it more sensitive to stimulation by the β-

adrenergic agonist l-isoproterenol and the dihydropyridine agonist l-Bay K 8644 

(Sadeghi et al., 2002). 

 

Verapamil has been reported to reduce heart lesion in dogs and dystrophic hamsters 

(Reimer et al., 1977; Wrogemann & Pena, 1976; Jasmin et al., 1979), inhibit the 

protein degradation in mdx myotubes (Kamper & Rodemann, 1992), and also inhibit 

calcium-induced efflux of CK (Anand & Emery, 1982) and it thus may be useful in 

treatment of DMD-associated cardiovascular disorders. 

 

2.7.2 SR Mechanisms 

Uptake mechanisms such as SERCA have been shown to be altered in conditions 

where an abnormality of calcium handing is already present. This along with a 

delayed relaxation time exhibited in mdx tissues previously (Alloatti et al., 1995) 

suggests that there may be a role in the cardiac dysfunction for SERCA. A recent 

report indicated a downregulation of SERCA in mdx heart in 5 month old mice 

(Rohman et al., 2003). It is unclear whether SERCA is altered at 12-14 weeks in mdx 

myocardium, and whether potential alterations contribute to cardiomyopathy observed 

in dystrophin-deficiency. Sapp et al., (1996) observed decreased force in mdx left 
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atria compared to control, especially at long test intervals. The authors suggest that 

there may be a leaky SR or dysfunctional SERCA. Since relaxation time has also been 

shown to be delayed in both mdx atria (Sapp et al., 1996) and DMD ventricles, there 

is a possibility that dystrophin-deficiency leads to a dysfunctional SERCA.  

 

2.7.2.1 The Ryanodine Calcium Release Channel 

The ryanodine receptor as the release channel for calcium from the SR remains a 

candidate for dysfunctional calcium handling. Two reports have described cardiac 

ryanodine receptors in dystrophic cardiac tissue. Both studies observed a 

downregultion of the ryanodine receptor as measured by binding sites for 3H-

ryanodine in cardiomyopathic hamsters (Lachnit et al., 1994) and decreased levels of 

ryanodine receptor mRNA in mdx (Rohman et al., 2003). Rohman et al., (2003) used 

5 month old mdx mice for their study, it is unknown whether levels of the ryanodine 

receptor are altered at 12-14 weeks when the cardiomyopathy is first observed, or 

when the changes observed in their study are manifested. 

 

2.7.3 Calcium Leak 

The possibility of an SR calcium leak cannot be discounted in mdx cardiomyocytes. 

Studies have shown that SR calcium stores in ryanodine-treated animals can be 

depleted during prolonged rest periods (Meyer et al., 2001). The leak-induced 

reduction in SR calcium load was associated with a prolongation of relaxation and a 

slower rate of contraction. Cardiac hypertrophy was also evident in the study, and 

atrial natriuretic factor mRNA was increased while SERCA mRNA was decreased 

(Meyer et al., 2001). In dystrophin-deficient conditions a delayed relaxation of the 

myocardium has been observed, but rate of contraction is usually normal. Since 
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Meyer et. al. (2001) showed that an SR leak can lead to contractile dysfunction and 

altered SERCA it is important to determine whether such a SR leak develops in 

dystrophic hearts. 

 

2.7.4 Calcium Binding and Associated Proteins 

Several calcium-related signalling molecules, such as calcineurin, calmodulin (CaM)-

kinase, and calcium-dependent protein kinase C (PKC) have been suggested to play 

key roles in myocardial hypertrophic responses (Sato et al., 2001). Calcium regulatory 

proteins such as calcineurin have been shown to be involved in the hypertrophic 

response that precedes heart failure (Marks, 2001). The RyR is a macromolecular 

signalling complex in which signalling proteins, including kinases, phosphatases and 

adaptor or anchoring proteins, are bound to specific binding domains on the 

cytoplasmic portion of the channel (Marx et al., 2000). The RyR is phosphorylated by 

PKA, PKC, PKG and CamKII (Witcher et al., 1992; Takasago et al., 1989; 

Hohenegger & Suko, 1993; Hain et al., 1995). Defective regulation of the RyR in 

heart failure is associated with PKA hyperphosphorylation resulting in increased 

sensitivity to calcium-dependent activation (Marks, 2001). PKA phosphorylation 

affects at least three important targets that regulate cardiac excitation-contraction 

coupling: the L-type channel, phospholamban which regulates SERCA activity and 

the RyR. In failing hearts, PKA mediated phosphorylation of RyR is over-stimulated 

and pathological consequences could include depletion of SR calcium stores required 

for EC coupling as well as aberrant release of SR calcium during diastole which may 

serve as triggers for fatal cardiac arrhythmias (Marx et al., 2000). Calcineurin and p38 

mitogen-activated protein kinase (MAPK) are up-regulated in the hearts of mdx mice 

(Nakamura et al., 2002). Phosphorylated p38 MAPK, phosphorylated extracellular 
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signal-regulated kinase 1/2 and calcineurin are up-regulated in exercised mdx hearts 

compared to exercised C57 or non-exercised mdx hearts. These data suggest that 

physical exercise accelerates the dystrophic process through activation of intracellular 

signalling molecules in dystrophin-deficient hearts (Nakamura et al., 2002). The SR 

calcium load and subsequent release are regulated by calsequestrin, a luminal SR 

protein, with high capacity and low affinity for calcium (Sato et al., 2001). Transgenic 

mice overexpressing calsequestrin show disturbed calcium handling associated with 

cardiac hypertrophy (Meyer et al., 2001).  

 

Skeletal muscle studies in mdx have shown that the calcium binding proteins are 

altered, and not in as great an abundance as in normal skeletal muscle (Culligan et al., 

2002). There is a possible role for dysfunctional SR calcium binding in the 

cardiomyopathy associated with dystrophin-deficiency. 

 

2.7.5 Calcium Efflux 

Finally, efflux of calcium may be affected in dystrophin-deficient myocardium, since 

the primary cause of the cardiomyopathy is a loss of structural integrity of the 

sarcolemma. The NCX may be reduced, dysfunctional, or contributing to the calcium 

overload by operating in reverse mode.  

 

2.8 Insights From Skeletal Muscle 

Dystrophin-deficient skeletal muscle has been studied extensively. The major findings 

in regard to calcium regulation in mdx may offer some insight into the dysfunction in 

cardiac muscle. Dystrophin-deficient skeletal muscles undergo a characteristic pattern 
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of myocyte necrosis and regeneration (Cullen & Mastaglia 1980; Torres & Duchen, 

1987). Structurally, the T-tubules from mdx mice have been examined using electron 

microscopy and shown to be abnormal (Lucas-Heron et al., 1987), and mdx myotubes 

have a depressed SR and/or SERCA function (Bakker et al., 1993). Mdx skeletal 

muscles produce less force than control, and this force decrement was not simply due 

to fibre necrosis (Coulton et al., 1988). Skeletal muscle myotubes (Bakker et al., 

1993) and fibres (Turner et al., 1991; Ruegg & Gillis, 1999; Mallouk et al., 2000) 

have been shown to have a higher resting intracellular calcium than control, although 

some reports have provided evidence against dystrophin-deficiency leading to an 

intracellular calcium overload (Head, 1993; Pressmar et al., 1994; Gillis, 1996; Collet 

et al., 1999). Reports have shown that reducing extracellular calcium can improve 

longevity of mdx myofibres (De Backer et al., 2002). Mdx skeletal muscles are less 

able to regulate intracellular calcium levels in the region near the sarcolemma (Turner 

et al., 1991). This elevation of intracellular free calcium is thought to stimulate the 

breakdown of muscle proteins by activating cellular proteases (Haws & Lansman 

1991; Ruegg & Gillis, 1999).  

 

Mechanosensitive calcium channels (leak calcium channels) are more active in mdx 

skeletal muscles compared to control (Turner 1991; Franco & Laansman 1990; Fong 

et al., 1990), although other reports suggest that leak calcium channels are not 

responsibly for the entirety of the elevated intracellular calcium (Pressmar et al., 

1994). Haws and Lansman (1991) examined mechano-sensitive Ca2+ channel activity 

in mdx skeletal muscle fibres using cell-attached membrane patches at different stages 

of postnatal development. They revealed very high levels of activity in mdx patches, 

and observed that channel density decreased in normal fibres, whereas it remained 
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relatively constant in mdx fibres, as if channels are down-regulated in normal, but not 

mdx fibres during postnatal development (Haws & Lansman, 1991). They suggest that 

an early step in the dystrophic process in skeletal muscle may be an alteration of the 

mechanisms that regulate the expression of functional channels.  

 

Calcium leakage in dystrophic muscle may also be produced by unusual physical 

interactions between acetylcholine receptors and the dystrophic cytoskeleton during 

processes associated with localisation and stabilisation of acetylcholine receptors 

(Carlson & Officer, 1996; Xu & Salpeter, 1997). It is possible that dystrophin is 

required for anchorage of other membrane-associated channels. Dystrophin deficient 

skeletal muscle membranes succumb to exercise-induced membrane ruptures more 

frequently than those of normal fibres (Stevens & Faulkner, 2000). However Dupont-

Versteegden et al., (1994) observed a training effect in soleus from mdx, a finding that 

suggested that exercise is not deleterious to mdx skeletal muscle. A study that allowed 

voluntary exercise in mdx showed that the dystrophin-deficient mice lacked endurance 

compared to control mice (Hara et al., 2002). Overall, the weight of data suggests that 

dystrophin-deficient muscles are less able to continue exercise, and that sarcolemma 

tears originate from exercise-induced contractions. Ruptures of the skeletal muscle 

allow for the insertion of calcium leak channels into the sarcolemma during the 

natural processes of cell membrane resealing. Ion leak channels give rise to localised 

calcium elevations, contributing to a cycle of enhanced protease activity and leak 

channel activation (Culligan & Ohlendieck 2002). Recently the leak channels have 

been suggested to be store-operated transient receptor potential channels 

(Vandebrouck et al., 2002).  

 



Chapter 2 – Literature Review 

 57

Finally, Dangain & Neering, (1993) suggested that the developmental changes in 

myofilament sensitivity affect the contractile activity of dystrophic skeletal muscle, 

rather than an alteration in the calcium handling of the muscle. This postulation is in 

question, as Divet & Huchet-Cadiou (2002) found no difference between the calcium 

sensitivity of the contractile apparatus in mdx compared to control, even though the 

mdx maximum calcium-induced tension was significantly smaller. 

 

2.8.1 Calcium Influx in Dystrophin-Deficient Skeletal Muscle 

Although dystrophic skeletal muscle shows a two to three-fold increase in calcium 

influx, according to Ruegg and Gillis (1999) the voltage sensitive calcium channels 

play no role in the intracellular calcium overload. However, both the density of DHPR 

and the current density were shown to be higher in a DMD cell line than normal cells 

by Caviedes et al., (1994) although this finding has not been replicated. Therefore 

current reports in skeletal muscle are contradictory. The cardiac isoform of the DHPR 

mRNA was upregulated in skeletal muscle from transgenic mice following acute 

injury (Pereon et al., 1997) but an increase in protein of the DHPR in skeletal muscle 

has not been shown. The authors attributed this to proteolysis, although it is difficult 

to determine what mechanism is responsible. Insertion of a cDNA plasmid containing 

dystrophin has been shown to correct the defect in calcium homeostasis in mdx 

skeletal muscles (McCarter et al., 1997). 
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2.8.2 Sequestration Mechanisms in Dystrophin-Deficient 

Skeletal Muscle 

Lucas-Heron et al., (1987) observed a decrease in SERCA levels in skeletal muscle of 

mdx compared to C57, and this has since been supported by Divet & Huchet-Cadiou 

(2002) who observed significantly slower SR calcium uptake following exposure to 

caffeine. Lucas-Heron et al., (1987) also observed a decreased level of cardiac 

SERCA when compared to the skeletal muscle of the same species, but no differences 

in SERCA between dystrophin-deficient and normal mice. SR calcium quantity has 

been shown to be equivalent between mdx and normal mice (Divet & Huchet-Cadiou, 

2002). A longer decay time of the calcium transient has been observed mdx adult 

fibres (Gordon & Stein, 1985) and is due to either defective regulation of energy 

metabolism or by functionally altered SR calcium pumps (Tutdibi et al., 1999). 

Alternatively, Turner et al., (1991) suggest that calcium sequestration mechanisms are 

not altered in dystrophin-deficient muscle but are slowed by the higher resting 

calcium. It is probable that the calcium sequestering mechanisms in mdx are 

continually coping with a calcium overload (Tutdibi et al., 1999). Loss of 

calsequestrin-like proteins has also been observed (Culligan et al., 2002). Skeletal 

muscle of mdx has also shown decreased oxidative phosphorylation probably as a 

result of calcium overload of the muscle fibres (Kuznetsov et al., 1998). 

 

2.8.3 Activation of Calcium-Dependent Proteolytic Enzymes 

The marked elevation of calcium in dystrophic muscle may contribute to activation of 

calcium-dependent proteases such as skeletal muscle specific calpains (Culligan & 

Ohlendieck 2002). Alderton and Steinhardt (2000) suggest that “calcium influx 
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through calcium leak channels is responsible for the elevated levels of calcium-

dependent proteolysis in dystrophic myotubes”. Several authors have found an 

increase in the activity of calpains (Spencer et al., 1995; Nagy & Samaha, 1986) that 

have been implicated in the proteolysis of calcium leak channels, constitutively 

activating these channels (Culligan & Ohlendieck 2002). Conversely, protease 

inhibitors have been shown to reduce calcium-induced protein degradation in mdx, 

suggesting that an increase in intracellular calcium mediates this process (Turner et 

al., 1993). 

 

2.9 Requirements for Further Studies 

The current study aimed to determine whether the reported changes in intracellular 

calcium concentration were due to defective calcium handling mechanisms in the 

cardiac muscle of the mouse model of Duchenne muscular dystrophy. The study 

initially examined the function of the L-type calcium channel by measuring the 

potency and affinity of drugs that bind to the α1-subunit of the L-type calcium 

channel of mdx myocardium. The action potential characteristics of mdx were then 

examined, and contractile and repolarisation characteristics in response to drugs that 

act at the L-type calcium channel. 

 

The density and affinity of the DHPR was then measured, to confirm functional 

changes observed in the L-type calcium channel. The mRNA for the DHPR was also 

measured to determine whether regulation factors were altered. 
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The force-frequency relationship was determined in mdx myocardium to ascertain 

whether the ryanodine receptor or SR mechanisms were altered. The force-frequency 

relationship was also determined in the presence of ryanodine, dantrolene and 

caffeine. Rapid cooling contractures measured SR content and active mechanisms 

involved in sequestering calcium. The response of mdx myocardium to an inhibitor of 

SERCA was measured to determine whether sequestration mechanisms were altered 

in dystrophic myocardium. The mRNA of SERCA was also measured to determine 

whether regulation of SERCA was altered in response to dysfunctional calcium 

handling. 



Chapter 3 – Materials and Methods 

 61

CHAPTER 3 – MATERIALS AND METHODS  

3.1 Ethical Considerations 

All animal experimentation conformed to NHMRC Animal Ethics guidelines and was 

approved by the University of Southern Queensland (USQ) Animal Ethics committee 

before the commencement of any experimentation. 

 

3.2 Experimental Animals 

Male C57BL/10ScSn (C57) mice and mutant C57BL/10ScSn mdx (mdx) mice were 

used. Mice were used in the age range of 12-14 weeks, and were age matched for all 

comparisons. Where possible, experiments alternated the use of mdx and C57 to avoid 

systematic bias in data acquisition. Mdx mice were obtained either from the USQ 

breeding colony or from the Animal Resource Centre, Nedlands, Western Australia. 

Since the two colonies were initiated from the same breeding stock, genetic variation 

was minimal. All C57 mice were purchased from the Animal Resource Centre. 

Animals were fed standard mouse chow with water ad libitum and housed at 21-24°C 

under a 12 hour light-dark cycle (6am-6pm).  

 

3.3 Apparatus Calibration and Protocol Optimisation 

Throughout all experimentation any apparatus that required calibration was calibrated 

prior to the commencement of the experimentation. For tissue bath experiments where 

force transducers were utilised, the transducers were calibrated with 1, 2 and 10mN 

weights to ensure accuracy. Before experimentation in the radioligand binding 

studies, the beta radiation-counter and pipettes used were calibrated. Tissue baths 

were cleaned thoroughly with concentrated nitric acid prior to the commencement of a 
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new protocol, and cleaned after every experiment utilising contaminant drugs. Nitric 

acid residues were thoroughly washed out with water purified by reverse osmosis (Ro 

water). Tissue and perfusion baths were also washed and scrubbed daily with Ro 

water.  

 

Where a protocol had not been undertaken previously in our laboratory, extensive 

literature searches were undertaken initially, then the protocol was developed and 

optimised with and without preliminary use of animals as required. 

 

3.4 Dissection of Cardiac Tissues 

After being weighed, mice were anaesthetised by CO2 inhalation and then euthanased 

by exsanguination (except where otherwise indicated). The heart was removed and the 

left and right atria were rapidly dissected free while beating in cold (4°C) pre-

carbogenated (95% O2:5% CO2) Tyrode physiological salt solution (TPSS) (mM: 

NaCl 136.9, KCl 5.4, MgCl2.H2O 1.0, NaH2PO4.2H2O 0.4, NaHCO3 22.6, CaCl2.2H2O 

1.8, glucose 5.5, ascorbic acid 0.3, Na2EDTA 0.05).  

 

The ventricular chambers were then separated if required, and either prepared for 

homogenisation, placed in RNAlater™ or blotted and weighed if not used further. 

Ventricular tissue was either frozen at –70°C and later used for the radioligand 

binding protocol, or placed in RNAlater™ and stored at –20°C for RT-PCR. Atrial 

tissues, when dissected free, were either immediately utilised for the functional 

studies (ie the tissue bath studies, microelectrode studies, the oxygen consumption 

experiments), or placed in RNAlater™ and stored at –20°C for subsequent RT-PCR 

experiments. 
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3.4.1 Papillary Muscles 

Attempts were made to use mdx papillary muscles in functional protocols, but their 

higher incidence of contracture or arrhythmias relative to atrial preparations prevented 

their continued use. These difficulties are presumably due to elevated intracellular 

calcium exacerbated by cutting injury occurring during dissection. Calcium chelators 

and butanedione monoxime (BDM) were also trialled in the dissection medium to 

reduce calcium-induced tissue injury, but mdx papillary muscles, which contracted 

initially, became non-functional before experimentation could be completed. In 

contrast, our laboratory found that C57 papillary muscles worked quite reliably and 

consistently, providing further evidence that the inherent calcium overload in mdx 

may be the causative factor. No reports using multicellular isolated mdx ventricular 

preparations have been published thus far. In contrast, several publications have 

reported significant findings using mdx atrial preparations (Lu & Hoey 2000a & b, 

Sapp et al., 1996). 

 

3.5 Tissue Bath Experiments 

Tissue baths (25mL double jacketed) were used for several studies, including the 

concentration-response curves to Bay K 8644 and nifedipine, the force-frequency 

studies, and the experiments utilising rapid cooling contractures. Initially the same 

protocol was used for each of these procedures as follows. A stainless steel hook was 

placed in one end of each atrium to connect the atrium to the tissue holder made from 

a length of stainless steel (right atria) or plastic with electrode leads attached (left 

atria). A silk thread was tied to the other end of the atrium to connect it to a force 

transducer (FT-102, CB Sciences, Milford, MA, USA) to measure force of 
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contraction. Atria were subsequently suspended in warm (35±1°C), carbogenated 

TPSS in tissue baths. Data were recorded via a PowerLab system (AD Instruments) 

using Chart 3.5.6. Left atria were field stimulated by placing the atria between two 

platinum electrodes on the tissue holder (AMPI Master 8 stimulator; 1 Hz, 5 ms 

duration, 20% above threshold) and maintained under optimal preload, the length of 

tissue which produces the maximal contractile force. Tissues were allowed 45 min to 

equilibrate with repetitive washes by draining and refilling the bath; before the advent 

of the relevant test protocol. At the completion of all experiments, the atria were 

removed, blotted and weighed.  

 

3.5.1 Concentration Response Curves for L-type Calcium 

Channel Drugs 

Concentration-response curves were obtained by cumulative addition of the test 

compounds. Concentration-response curves were generated to calcium chloride to 

determine the maximum force of contraction attainable by the tissue. The tissues were 

then washed repetitively over 30 min to return the contractility to normal. 

Subsequently a concentration-response curve to the DHP antagonist nifedipine or 

agonist Bay K 8644 was generated.  Similarly concentration-response curves were 

generated to diltiazem and verapamil. 

 

As DHP drugs are sensitive to light with wavelengths below 450nm, all handling and 

experiments with Bay K 8644 and nifedipine were carried out under protection from 

light. In order to avoid indirect receptor-mediated effects of endogenous noradrenaline 

possibly released by Bay K 8644, tissues were incubated with the β-adrenoceptor 

blocker (±)-propranolol and α-adrenoceptor blocker prazosin for 30 min before the 



Chapter 3 – Materials and Methods 

 65

concentration-response curve to Bay K 8644 was generated. After experiments with 

Bay K 8644, the tissue baths were cleaned with nitric acid to eliminate contamination 

of glassware and then flushed repeatedly with distilled water. 

 

3.5.2 Rapid Cooling Contracture Experiments 

3.5.2.1 Preliminary Studies 

Preliminary studies for the rapid cooling protocol evaluated the response of the left 

atria to rapidly exchanging warm TPSS with ice-cold calcium-free TPSS. The 

solution was exchanged by draining the warm TPSS and replacing TPSS at 0°C with a 

syringe. Each rapid change elicited a contracture as expected. Temperature was 

monitored continuously through the preliminary studies to determine the time-course 

of the rapid cooling effect, that the temperature reached 0°C in the tissue bath, and the 

time-course of the return of the TPSS in the tissue bath to 35°C. The preliminary 

studies also evaluated the capability of the myocardium to return to normal force after 

each rapid cooling contracture (RCC) and evaluated the responsiveness of the tissue 

to subsequent exposure to cyclopiazonic acid. 

 

3.5.2.2 Comparison of mdx and C57 left atria 

The left atria were suspended in a 5mL tissue bath maintained at 35±0.5°C and fresh 

TPSS was exchanged every 10 min while the tissue equilibrated. The atria were field 

stimulated (5-10V, 0.5ms duration, 1Hz). RCCs were undertaken by cessation of 

stimulation, rapidly exchanging warm TPSS with ice-cold calcium-free TPSS (as per 

TPSS without calcium). The tissue was then rewarmed to 35˚C over a 3 min period by 

replacing with warm TPSS. After 3 min, this procedure was repeated a second and 

third time with each RCC labelled as RCC1, RCC2 and RCC3 respectively. The 
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tissue was rewarmed after RCC3 and stimulated to contract for a period of 2 min 

during which the twitch force returned to normal. This entire protocol was then 

repeated 2 more times. The RCC1 for the 1st, 2nd and 3rd replicate was averaged, and 

similarly with RCC2 and RCC3 to give an average for each RCC (see Fig. 3.1). After 

completion of the third replicate, the tissue was allowed to equilibrate again until 

force of contraction returned to values measured prior to the RCC protocol. A 

concentration response curve (0.5 - 40mM) to the SERCA-specific inhibitor 

cyclopiazonic acid (CPA) was then undertaken. 

Stim

RCC1 RCC2

RCC3

Rewarm Rewarm

Replicate 1

1m
N * *

*

3 min

 

Figure 3.1: Rapid Cooling Contracture Protocol. Three rapid cooling contractures were elicited 
(RCC1, RCC2 & RCC3) per replicate. Between each RCC the atria was rewarmed over 3min. A 
wash is indicated by *. 

 

3.5.3 Force-Frequency Experiments 

The tissues were maintained under physiological conditions in 25mL water-jacketed 

tissue baths (35±0.5°C) at optimum preload, and allowed 30 min to equilibrate with 
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washes every 10 min. In preliminary control experiments, after the equilibration 

period a force-frequency curve was elicited (5 min at each of 0.05, 0.2, 1, 2 and 5 Hz 

with 1Hz between each change to restore force to control values; see Figure 3.2 for an 

example). This was repeated a second and third time to determine the extent of decay 

of force without the effects of any drug. Having confirmed no difference between the 

first, second and third force-frequency curves, subsequent experiments were 

conducted with the second and third curves being generated in the presence of 

increasing concentrations of the drug of interest (no more than two concentrations per 

tissue). The tissues were removed from the tissue baths, blotted and weighed.  

 

1m
N

5 min

0.05Hz

1Hz 1Hz 1Hz 1Hz 2Hz 1Hz 5Hz

0.2Hz

 
Figure 3.2 A typical force-frequency chart in the absence of drug. Each frequency was tested for 
5min, with the tissue being stimulated at 1Hz in between the test frequencies until force returned 
to basal. 
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3.6 Microelectrode and Contractility Experiments 

Left atria were dissected as described above in section 3.4. Tissues were placed in 

warm, carbogenated TPSS (35±1ºC) in a 1 mL chamber perfused at 3 mL/min, field 

stimulated (Grass SD9 isolated stimulator; 1 Hz, 0.5 ms duration, 20% above 

threshold) and allowed to equilibrate for 45 min. Force of contraction was recorded by 

a modified AE-801 SensoNor element. Tissues were impaled concurrently with a 3 M 

KCl filled microelectrode (resistance 2.5-20 MΩ) to record electrophysiological 

activity using a World Precision Instruments Cyto 721. All data was acquired at 

1000Hz and analysed via a PowerLab system (AD Instruments) using Chart 3.5.6. 

 

The tissues were initially exposed to the IC50 concentration of a calcium channel 

antagonist (as determined in the tissue bath studies) until the equilibrium response 

was attained and then exposed to the concentration of antagonist required to produce 

the maximum effect. The time interval for drug additions for all three calcium 

antagonists tested was 30 min and was sufficient to obtain an equilibrium response. 

As nifedipine and verapamil are sensitive to light, all handling and experiments with 

these agents were carried out under protection from light. 

 

3.7 Radioligand Binding Experiments 

3.7.1 Assay Development 

Since this assay had not been used previously in our laboratory, several preliminary 

experiments were undertaken to optimize the protocol. Initially the incubation 

temperature was tested at 20°C and 35°C. Secondly, the optimal amount of incubation 

time was determined by removing incubation tubes at 0, 5, 15, 30, 60, 90, 120 and 
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150 min. Third, nifedipine was tested for displacement of the [3H]-PN 200-110, and 

the optimal concentration to determine non-specific binding. The saturation 

concentration of [3H]-PN 200-110 was also trialled, with 10nM being the highest 

concentration used in the trials, and 2nM determined to be high enough for saturation. 

Filters were tested for filtration of the membranes after incubation with and without 

pre-wetting. Similarly, the number of washes of the filters was trialled at 2, 5 and 10 

washes. A 50mM Tris, a 50mM HEPES buffer, a 10mM Tris, and a 10mM HEPES 

(all with in mM EGTA 5, EDTA 1, MgCl2 4, Ascorbic Acid 1) buffer were trialled for 

incubation of the homogenate with the radioligand (all made to pH 7.4 with NaOH). 

Various dilutions of membrane protein were also trialled. Finally, fresh tissues and 

frozen ventricles were compared to confirm that receptor affinity and density were not 

significantly altered by freezing and storing the tissues.  

 

3.7.2 Experimental Protocol 

For each experiment two ventricles were pooled to obtain sufficient membrane for 

five points on a saturation curve. Two ventricles were thawed and then homogenized 

at 24 000 rpm by a Heidolph DIAX 600 in modified Tris incubation buffer (in mM 

Tris HCl 50, EGTA 5, EDTA 1, MgCl2 4, Ascorbic Acid 1, Trizma Base 50; pH 7.4 

adjusted with NaOH). The homogenate was centrifuged at 1000g, and pellet 

discarded. The supernatant was centrifuged at 10 000g and the supernatant discarded. 

After resuspension in Tris incubation buffer, the membrane protein content was 

determined by Bradford assay using bovine serum albumin as the standard. The 

membrane was then diluted to 1mg/mL protein. Membrane (200µg) was incubated 

with increasing concentrations of [3H]-PN 200 110 (0.1-2nM) and non-specific 

binding was determined by the addition of 0.1mM nifedipine. Samples were incubated 



Chapter 3 – Materials and Methods 

 70

for 60 min at 35°C, and halted with the addition of 4mL ice-cold Tris incubation 

buffer. Samples were vacuum filtered over Whatman GFB filters and washed four 

times with ice-cold Tris wash buffer (in mM Tris 50, pH 7.4). Filters were incubated 

overnight with scintillant and counted the next morning. Prism was used to calculate 

non-linear curve fits and scatchard analyses of the data. Bmax was calculated using 

Prism and is defined as the density of the ligand receptor. Kd was also calculated 

using Prism and is defined as the affinity of the ligand [3H]-PN 200 110 for the 

DHPR. 

 

3.8 Reverse Transcriptase Polymerase Chain Reaction 

(RT-PCR) Experiments 

3.8.1 Preliminary Experiments 

Preliminary experiments were undertaken with each primer used in the study to 

determine whether the mRNA would be amplified. The assay was run as per the 

protocol below, but the solutions were run through a maximum number of 

amplification cycles to check for primer dimers and successful amplification of the 

bands (size of the band was checked against the ladder to ensure the correct location). 

Once each primer had successfully amplified the mRNA, the procedure was repeated 

until 20 cycles, then the solutions removed every 2 cycles to determine the optimal 

number of cycles. 

 

3.8.2 Experimental Protocol 

Animals were euthanased with an overdose of sodium pentobarbitone and the hearts 

rapidly excised. The ventricles were dissected free in cold TPSS and placed in 
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RNAlater™ (Ambion) RNA stabilisation reagent for storage at -20 °C. RNA 

extraction was performed with the QIAGEN RNeasy® Mini Kit, utilising no more 

than 30 mg of tissue per sample obtained from the apex of the left ventricle. The 

tissue was lysed using a polytron rotor-stator homogeniser in a proprietary buffer 

containing guanidinium thiocyanate to liberate RNA prior to the extraction procedure. 

Lysates were then incubated with QIAGEN Proteinase K (>60 mAU/mL) for 10 min 

at 55 °C to ensure sample disruption was complete. RNA was consequently isolated 

via binding to a silica-gel-based membrane during a number of centrifugation 

procedures as recommended by the manufacturer’s instruction. Total RNA samples 

were then stored at -80 °C in 2 µL aliquots until RT-PCR could be performed. 

 

RT-PCR was performed by the two-tube method using QIAGEN Omniscript™ 

Reverse Transcriptase and QIAGEN HotStarTaq™ DNA Polymerase. Total RNA 

samples were thawed on ice and added to a reverse transcription reaction mixture, 

with a final volume of 20 µL and comprised of: 1x Buffer RT (supplied by QIAGEN); 

0.5 mM dATP; 0.5 mM dCTP; 0.5 mM dGTP; 0.5 mM dTTP; 1 µM oligo dT(15); 10 

units RNAsin® RNAse inhibitor (Promega); and 4 units Omniscript™ Reverse 

Transcriptase. Tubes containing the reaction mixture were incubated in a 

thermocycler (Corbett Research PC-960C) for 60 min at 37 °C to facilitate cDNA 

synthesis, followed by an inactivation step of 5 min at 93 °C and subsequent rapid 

cooling on ice. PCR reaction mixtures were consequently prepared using 2 µL of the 

reverse transcription product as template, with a final volume of 50 µL and comprised 

of: 1x PCR buffer (supplied by QIAGEN); 200 µM dATP; 200 µM dCTP; 200 µM 

dGTP; 200 µM dTTP; 0.2 µM each DHPR primer (TCC AGT TTA TAC TAC TTT 

GGC TGG T sense; ACT GAG GGC TCA TGT TTT GG antisense), SERCA 
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primer (GGT GCT GAA AAT CTC CTT GC sense; CTT TTC CCC AAC CTC AGT 

CA antisense), GAPDH primer (TTA GCA CCC CTG GCC AAG G sense; CTT 

ACT CCT TGG AGG CCA TG antisense) or β-Actin (AGC CAT GTA CGT AGC 

CAT CC sense; TCT CAG CTG TGG TGG TGA AG antisense); and 2.5 units 

HotStarTaq™ DNA Polymerase. All reactions were performed with 1.5 mM MgCl2 

contained in the 1x PCR buffer. Using the thermocycler, tubes were incubated 

initially for 15 min at 95°C to activate the HotStarTaqTM DNA Polymerase. Reaction 

tubes initially underwent 40 cycles to determine effectiveness of the primer. 

Subsequently, new reaction tubes underwent a number of cycles of amplification 

(empirically determined to be within the linear range of amplification), consisting of 

15 s at 94 °C, 30 s at 55 °C and 60 s at 72 °C. A final program of 10 min at 72 °C was 

conducted to ensure all amplified product was fully extended. PCR product was 

visualised following gel electrophoresis by ethidium bromide staining and UV 

transillumination in an AlphaImager 2200 MultiImage cabinet. Spot densitometry was 

performed using the supplied software and the ratio of SERCA or DHPR band 

intensity to GAPDH band intensity for each sample calculated to allow a semi-

quantitative comparison. The ubiquitous β-actin was also used as a housekeeper gene. 

 

3.8.3 Primer Design 

Where possible, primers were obtained from previously published articles. The 

primers were then tested using BLAST on the pubmed website. If primers were not 

obtained from published articles, the RNA gene sequence was identified using Entrez 

Nucleotide (http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide), and 

run through a primer design program. The designed primers were tested for binding 

accuracy using BLAST (http://www.ncbi.nlm.nih.gov:80/BLAST/). Primers were 
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ordered from Invitrogen Life Technologies (Musgrave, Victoria, Australia), were 

desalted purity and had a 55% GC content. 

 

3.9 Data Analysis 

Raw data was first compiled in Microsoft Excel 97, collated and any mathematical 

transformations applied to the data. Final results were expressed as mean ± SEM. 

Means and SEM were transferred to a data plotting program (Sigma Plot or Prism) 

used for graphical purposes or further analyses. Either a two-tailed, unpaired 

Student’s t-test was used for statistical comparisons, or a two-way ANOVA where 

indicated. A P level of <0.05 was considered to be statistically significant. For 

contractile and action potential data, a single stimuli was used from each dosage or 

time point to obtain this data. An EC50 or IC50 was calculated as the concentration that 

produces 50 % of the maximal response (EC for a positive inotropic response, IC for a 

negative inotropic response). A pD2 was calculated as the negative log of the EC50 or 

IC50. The strain potency used to compare potencies and affinities of drugs in both 

strains was calculated by dividing the EC50, IC50, Kd, Bmax or pixel intensity/unit 

area for mdx mice by the corresponding C57 value. 

 

3.10 Drugs and Chemicals 

All laboratory chemicals were purchased from Sigma Chemical Company, St. Louis, 

MO, USA except where otherwise indicated. Bay K 8644 (Bayer, Leverkusen) was 

dissolved in 100% ethanol at a stock concentration of 10-2 M and diluted once further 

in 50% ethanol and subsequently in milliQ water. Nifedipine was dissolved in 100% 

DMSO at a stock concentration of 10-2 M, and diluted once further in 50% DMSO 
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and subsequently in milliQ water. (±)−Verapamil hydrochloride and diltiazem 

hydrochloride were dissolved in milliQ water. Hot [3H] PN 200-110 (Amersham 

Pharmacia Biotech, Buckingham Shire, England) had an activity of 71 Ci/mMol 

which was taken into account when expressing counts per minute as fmol/mg. 

Cyclopiazonic Acid was dissolved in DMSO as a 10mM solution, and further 

dilutions made in milliQ water. Ryanodine was dissolved in ethanol as a 1µM stock 

and further dilutions made in milliQ water; Caffeine was dissolved 0.1M HCl as a 

0.5M solution and further dilutions made in milliQ water; Dantrolene was dissolved in 

milliQ water in a stock concentration of 1µM and further dilutions made with milliQ 

water from this stock. All RT-PCR reagents were purchased from Qiagen.  
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CHAPTER 4 – RESULTS 

4.1 Morphometry 

Whole mouse mass was significantly higher in C57, which is not surprising given the 

nature of the myopathy in mdx. Left atrial mass was not significantly different 

between the strains, but ventricular mass was heavier in C57 (P<0.001). Masses of 

tissues were still significantly higher when normalised for body mass.  Ventricular 

tissues were used only for radioligand or molecular biology experiments. In the 

radioligand experiments, the amount of protein was standardised, so consideration of 

the difference in weight was not necessary. Similarly, for RT-PCR experiments 

mRNA was normalised to a housekeeper gene. The number of mdx used in the current 

study is much higher than C57, because mdx tissues were routinely used for assay 

development since the mdx were more readily available. Table 4.1 shows numbers of 

each species of mass and associated body and heart masses. 

 

Table 4.1 Number and masses of mice used throughout the dissertation 

 n Whole mouse 

mass (g) 

Left atrial 

mass (mg) 

Ventricle 

mass (g) 

mdx 215 25.0±0.3 18.5±0.9 0.135±0.002 

C57 138 26.1±0.3* 19.1±0.8 0.157±0.003** 

*P<0.01; **P<0.001 mdx compared to C57 
 

4.2 Calcium Influx Mechanisms 

In this section the mechanisms of calcium influx into the myocardium in mdx were 

examined through a series of microelectrode and contractility experiments. These 
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experiments examined the action potentials in mdx and C57 and contractile responses 

to the L-type calcium channel drugs that act at the dihydropyridine, phenylalkylamine 

and benzothiazepine receptors. A series of radioligand experiments were undertaken 

to determine the affinity of a radiolabelled DHPR antagonist for its receptor and the 

number of DHPRs present. Finally RT-PCR experiments were utilised to determine 

DHPR mRNA expression. 

 

4.2.1 Calcium Channel Agonist and Antagonist Concentration-

Response Curves 

4.2.1.1 Basal Measurements 

Figure 4.1 shows an indicative recording of a single contraction in the absence of any 

drug. In mdx left atria, the basal force of contraction was lower in mdx 

(1.50±0.17mN) compared to C57 (1.91±0.18mN; P<0.05) with a subsequent 

concentration-response curve to calcium chloride revealing a reduced efficacy (mdx 

3.44±0.21 mN, C57 4.11±0.3 mN; P<0.005 Fig 4.2A) and potency (pD2 values mdx 

3.40±0.08, C57 3.15±0.10; P<0.05). A longer relaxation time (Time to 90% 

relaxation; TR90) was also evident in left atria from mdx mice (mdx 45.3±1.6ms 

(n=24); C57 39.0±1.7ms (n=24): Table 4.2 P<0.01), with no difference in time to 

peak force and dF/dt observed between mdx and C57 mice at basal forces.  
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1mN

0.02s

Figure 4.1 An indicative contraction from a C57 mouse. Mdx contractions had the same shape 
and approximate timecourse. 
 

4.2.1.2 Response to the Calcium Channel Antagonists 

All calcium channel antagonists reduced the force of contraction in left atria as 

expected. Nifedipine reduced the force of contraction similarly in left atria from both 

mdx and C57 but the potency was significantly reduced in left atria from mdx (pD2 

values: mdx 7.46±0.07; C57 7.75±0.10, P<0.05 Fig. 4.2). As expected the reduction in 

force was associated with a significant reduction in dF/dt upon exposure to the 

maximum concentration of nifedipine (mdx Basal 11.45±1.68 mN/s; max. effect 

3.83±0.72 mN/s, P<0.01: C57 Basal 8.74±1.35 mN/s; max. effect 3.24±0.67 mN/s, 

P<0.05) without affecting the time to peak force. Nifedipine caused a further delay in 

relaxation in mdx only (Table 4.2). A strain potency ratio was calculated by dividing 

the potency of mdx by the potency for C57. The strain potency ratio for nifedipine 

was 1.9. 
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Figure 4.2 The effects of nifedipine on left atria, and the effects of extracellular calcium. A 
Response to extracellular calcium (n=24). B Effect of nifedipine on left atria contractile force. 
Basal force of contraction for mdx 1.50±0.17mN (n=10); for C57 1.91±0.18mN (n=8) measured 
prior to the CRC to nifedipine.  
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Figure 4.3 The effects of verapamil on left atria, and the effects of extracellular calcium. A 
Response to extracellular calcium (n=24). B Effect of verapamil on left atria contractile force. 
Basal force of contraction for mdx 1.84±0.07mN (n=10); for C57 1.76±0.09mN (n=8) measured 
prior to the CRC to verapamil.  
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Figure 4.4 The effects of diltiazem on left atria, and the effects of extracellular calcium. A 
Response to extracellular calcium (n=24). B Effect of diltiazem on left atria contractile force. 
Basal force of contraction for mdx 1.37±0.09mN (n=5); for C57 1.49±0.12mN (n=8) measured 
prior to the CRC to diltiazem.  
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In contrast, there was an increase in sensitivity for verapamil in left atria from mdx 

compared to C57 (pD2 mdx 7.50±0.10, pD2 C57 7.03±0.08; P<0.05), with no 

difference in efficacy (Fig. 4.3). This increase in potency is due to a significant 

difference at only one concentration in the concentration-response curve that occurred 

at 50% of the maximum effect. The reduction in force was associated with a reduction 

in dF/dt upon exposure to the maximum concentration of verapamil, without any 

affect on relaxation time. In comparison, no difference in potency was observed for 

diltiazem in left atria between mdx and C57 (pD2 mdx 7.11±0.35, pD2 C57 

6.71±0.20), although a lower efficacy was evident (Figure 4.4). Diltiazem produced a 

significant reduction in force that was associated with a reduction in dF/dt upon 

exposure to the maximum concentration, and a significant prolongation of relaxation 

time (Table 4.2). 

 
 

-9 -8 -7 -6 -5 -4
0

50

100

150

mdx
C57

Log [Bay K 8644 (M)]
 

Figure 4.5 Response to Bay K 8644 in isolated mdx ( ) and C57 ( ) left atria. Concentration-
response curve to Bay K 8644 in left atria (n=8) as a change in force of contraction. pD2 for mdx 
6.10±0.03, pD2 for C57 6.53±0.05 (P<0.05). See text for basal forces.  
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Table 4.2 Effect of L-type calcium channel antagonists on Time to 90% Relaxation (TR90 in ms) 
in the tissue bath studies. 

 C57 mdx 

 Basal Antagonist Basal Antagonist 

Nifedipine 39.8±2.1 44.9±1.7 41.9±1.7 49.9±3.8* 

Diltiazem 38.6±1.8a 49.2±4.1* 46.8±1.3 55.8±2.1* 

Verapamil 38.7±1.2b 41.8±2.5 47.2±1.8 47.6±1.8 

* P<0.05 antagonist vs. basal within strain, a P<0.05 mdx vs. C57 basal, b P<0.01 mdx vs. C57 
basal; n=6-8. Antagonists values are shown at their maximally effective concentrations, with 
respect to inhibition of force of contraction. 
 

4.2.1.3 Response to Bay K 8644 

Bay K 8644 elicited a strong positive inotropic effect in both strains producing a 

similar efficacy to calcium. Although the efficacy (as a percent of calcium chloride) 

was not different between the two strains, a reduced potency (pD2 values mdx 

6.10±0.03; C57 6.53±0.05, P<0.05 Fig 4.5) was again evident in mdx. The strain 

potency ratio for Bay K 8644 was 2.7, which is similar to the ratio obtained for 

nifedipine. Importantly, a similar potency difference was evident if the positive 

inotropic response was not normalised as a percentage of calcium chloride. The TR90, 

time to peak force & dF/dt at the maximum concentration of Bay K 8644 were not 

significantly different (Table 4.3) between the strains. At the maximum concentration 

of Bay K 8644, mdx time to peak force was significantly longer (P<0.05). Time to 

peak force in C57 left atria was unaffected by the maximum concentration of Bay K 

8644. Relaxation time in the presence of the highest concentration of Bay K 8644 was 

not significantly different to relaxation time in the absence of drug in either strain, 

despite a trend towards this parameter being longer in mdx with Bay K 8644 present. 

The solvent ethanol elicited a weak negative inotropic effect at the maximum solvent 
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concentration, but this was overcome completely by the pronounced positive inotropic 

effect of Bay K 8644. 

 

4.2.2 Microelectrode and Contractility Experiments 

4.2.2.1 Basal Measurements 

There was no significant difference in basal force of contraction in left atria between 

mdx and C57 mice in the microelectrode and contractility series of experiments. 

While no difference was evident in time to peak force and dF/dt (data not shown), a 

longer relaxation time (measured as time to 90% relaxation) was evident in left atria 

from mdx mice (C57 39.0±1.7ms (n=24); mdx 45.3±1.6ms (n=24): P<0.01). 

 

Table 4.3 Contractile parameters in response to Bay K 8644 1x10-4.5M. 
 TR90 (ms) TTPF (ms) 

 Basal Max Basal Max 

mdx 28.8±0.7 31.4±1.6 30.4±0.6 32.9±0.8a 

C57 28.3±1.0 28.1±0.9 30.5±1.1 31.4±1.4 

No parameters were significantly different between the strains (n=8 for both mdx and C57). 
aTTPF (Time to peak force) was significantly prolonged by the maximum concentration of Bay K 
8644 in mdx only. 
 

Prior to the administration of drugs, there was no difference between mdx and C57 in 

the amplitude of the action potentials or the resting membrane potential (Table 4.4). 

The action potential duration (APD) at 20% (APD20) and 50% (APD50) repolarisation 

were not significantly different between mdx and C57 left atria, although at 90% 

(APD90) repolarisation action potentials were shorter in the mdx left atria in the 

diltiazem group only (P<0.05). 
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4.2.2.2 Response to the Calcium Channel Antagonists 

All calcium channel antagonists reduced force of contraction in a concentration and 

time-dependent manner (Fig 4.6, 4.7, 4.8) as expected. This was associated with a 

significant reduction in dF/dt upon exposure to the maximum concentration of drug 

tested (Table 4.2). 

 

The reduction in force of contraction was statistically significant (P<0.01) for the 

concentration of antagonist required to produce the maximum negative inotropic 

effect for all three antagonists. None of the antagonists, at either the equipotent IC50 

or concentration for maximum response, produced significantly different negative 

inotropic responses between mdx and C57 left atria when expressed as a percentage 

reduction in force of contraction. Diltiazem delayed relaxation in mdx and C57 mice, 

evident by an increased TR90 (P<0.05), whereas nifedipine delayed relaxation in mdx 

only (P<0.05) (Table 4.2). None of the antagonists affected time to peak force (Table 

4.5) in either mdx or C57 mice at any concentration. 

 

Nifedipine decreased APD20 in C57 but not mdx (P<0.05), however APD50 and APD90 

remained unaltered in mdx and C57 (Fig. 4.6). The reduction in APD20 was only 1 ms 

and so can not be clearly observed in Fig. 4.6 due to the current line thickness. The 

reproducibility of the data resulted in such a small difference reaching statistical 

significance. Verapamil did not significantly alter APD20, APD50 or APD90 in either 

mdx or C57 (Fig. 4.7), whereas diltiazem prolonged the APD at 20, 50 and 90% of 

repolarisation in both strains (P<0.05), with no difference evident between the strains 

(Fig. 4.8). 
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Figure 4.6 The effects of nifedipine on left atrial force of contraction and action potential 
duration. AB Reduction of force as percent of basal (n=6-8). CD Action potential duration at 20, 
50 and 90% repolarisation. EF Original recording of a representative action potential during 
control period and 20 min after initial exposure to the concentration for maximum effect (*). 
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Figure 4.7 The effects of verapamil on left atrial force of contraction and action potential 
duration. AB Reduction of force as percent of basal (n=6-8). CD Action potential duration at 20, 
50 and 90% repolarisation. EF Original recording of a representative action potential during 
control period and 20 min after initial exposure to the concentration for maximum effect (*). 
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Figure 4.8 The effects of diltiazem on left atrial force of contraction and action potential 
duration. AB Reduction of force as percent of basal (n=6-8). CD Action potential duration at 20, 
50 and 90% repolarisation. EF Original recording of a representative action potential during 
control period and 20 min after initial exposure to the concentration for maximum effect (*). 
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Table 4.4 Basal electrophysiological parameters 
 RMP (mV) APA (mV) Force (mN) dF/dt (mN/ms) TTPF (ms) 

mdx -73.7±0.5 91.8±0.9 0.9±0.1 8.7±0.7 40.9±0.3 

C57 -74.9±0.5 93.3±1.1 1.1±0.1 9.0±0.6 38.9±0.3 

 
 
 
Table 4.5 Comparison of Ca2+ channel antagonist effects on contraction time course parameters 
in mdx and C57 left atria 

 dF/dt (mN/ms) TTPF (ms) 

 Mdx C57 Mdx C57

NFD IC50 8.04±1.21 7.00±1.65 38.00±1.68 38.00±1.93

NFD Max 3.83±0.72** 3.24±0.67* 38.43±1.57 36.29±1.02

DTZ IC50 10.57±2.19 9.44±2.59 43.00±1.45 42.83±3.14

DTZ Max 4.09±0.96** 4.80±1.13* 42.67±1.26 39.67±1.58

VRL IC50 6.29±1.22* 11.93±2.18 40.17±1.46 40.14±1.32

VRL Max 4.93±0.42** 7.91±1.19* 37.00±0.69* 40.57±1.85

Control mean 11.49±1.36 11.74±1.51 40.19±0.69 38.79±1.00

n=6-8 *P<0.05, **P<0.01 basal vs. Maximum effect 
 
 

4.2.3 Radioligand Binding Experiments 

4.2.3.1 Assay Development 

Since the radioligand assay had not been previously undertaken in our laboratory, a 

series of preliminary experiments were undertaken to optimise the assay. Incubation 

time was the first parameter evaluated. Tissues were incubated with a constant 

amount of radioligand (2nM [3H]-PN 200 110 ± nifedipine for non-specific binding), 

and tubes removed at selected time intervals and counted (Fig 4.9). An incubation 

period of 60 min was determined to be sufficient as equilibrium was evident at 30 min 
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and remained relatively stable up to 150 min. Nifedipine was evaluated 
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Incubation Time (Min)
Figure 4.9 Determination of incubation time (2 separate counts from n=2). A constant 

concentration of [3H]-PN 200 110 (2nM) was used for each of the time periods. An incubation 

time of 60min was determined to be sufficient to obtain a clear equilibrium response. 

 

NFD 1mM NFD 0.1mM NFD 10µM
0

500

1000

1500

Figure 4.10 Determination of antagonist concentration for non-specific binding. Specific Binding 
in response to decreasing concentrations of nifedipine used to displace [3H]-PN 200 110 (2 
separate counts from n=2). 
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for displacement of the radioligand for non-specific binding (Fig 4.10) by two 

experiments using three different concentrations of nifedipine to displace the [3H]-PN 

200 110. A final concentration of 0.1mM nifedipine was determined to be the optimal 

concentration to displace the non-specifically bound radioligand. The temperature of 

incubation was evaluated. Room temperature (25°C) was compared to approximate 

physiological temperature (35°C) for an incubation period of 1hr (Fig 4.11). The 

specific binding was much higher at 35°C, so this temperature was used for further 

studies. Overnight incubation with scintillant was also considered, the trial revealing 

that overnight incubation greatly improved penetration of the scintillant into the filter, 

and higher counts of the radioligand. The amount of final membrane protein used in 

the incubation was also trialled, with 1mg/mL determined to be optimal protein for 

the final protocol. 

0.0 0.5 1.0 1.5 2.0 2.5
-250
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[[3H]-PN 200 110] (nM)
Figure 4.11 Determination of incubation temperature. Specific Binding at 25°C (ν) compared to 
35°C (σ) n=4. Specific binding was much greater at 35°C with higher concentrations of PN200-
110, so this temperature was used for incubation. 
 



 91

4.2.3.2 Comparison of mdx and C57 Ventricular Homogenates 

Radioligand binding experiments revealed a significantly greater number of DHPRs 

in mdx (Bmax 99.2±7.0 fmol/mg) compared to C57 (Bmax 74.5±9.4 fmol/mg; Fig. 4.12, 

P<0.05) with a strain ratio (Bmax mdx /Bmax C57) of 1.3. The affinity of [3H]-PN 200 

110 was also significantly reduced in mdx (Kd 0.3897±0.07nM) compared to C57 (Kd 

0.2572±0.09nM) (Fig. 4.12, P<0.05). The strain potency ratio (Kd mdx /Kd C57) was 

2.0, a similar ratio to that observed in the functional tissue bath studies utilising 

nifedipine and Bay K 8644 (Table 4.6). 
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Figure 4.12 Saturation binding curve showing the mean of all experiments from mdx and C57 
ventricular homogenates in response to increasing concentrations of [3H]-PN 200 110 (0.1-2nM). 
Non-specific binding was determined by the addition of 0.1M nifedipine. Inset: Scatchard 
analysis of the saturation curve revealed a Bmax of 107.4±6.5 fmol/mg and a Kd of 0.3897±0.07 
nM (n = 15 experiments; 30 ventricles) for mdx and a Bmax of 78.6±10.6 fmol/mg and a Kd of 
0.2572±0.09 nM (n = 19 experiments; 38 ventricles) for C57. There is a significant difference 
between mdx and C57 in both Bmax (P<0.05) and Kd (P<0.05). 



 92

0.0

0.5

1.0
mdx
C57

0

50

100

150

*

*

 

Figure 4.13 Kd and Bmax from the scatchard plots in Figure 4.11. Both Kd and Bmax were 
significantly different between mdx and C57. 
 

4.2.4 RT-PCR 

4.2.4.1 Comparison of mdx and C57 Dihydropyridine mRNA 

Ventricular DHPR mRNA was significantly higher (P<0.005) in mdx compared to 

C57 (Fig. 4.14) when corrected for the amount of total mRNA by using the GAPDH 

samples. The original gel photos are presented in figures 4.15 and 4.16. The strain 

ratio for ventricular mRNA was 2.3 (Table 4.6). The left atrial DHPR mRNA was 

also higher in mdx compared to C57, although this did not quite reach statistical 

significance (P=0.07). The strain ratio for atrial mRNA for DHPRs was 2.0. The 

ubiquitous β-Actin was also used as a housekeeper gene and produced qualitatively 

similar data. The mRNA for DHPR was not statistically different between mdx atria 

and ventricles nor C57 atria and ventricles. 
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Figure 4.14 RT-PCR results from mdx (open; n=4) and C57 (filled; n=4) dihydropyridine 
receptor mRNA from ventricles and left atria. Band intensity was normalised to the amount of 
mRNA present by comparing each DHPR sample to its corresponding GAPDH sample. 
Ventricular mRNA was significantly higher in mdx (P<0.05) compared to C57. Analysis by two-
way ANOVA revealed the mdx data set to be significantly different (P<0.05) to the C57 data set. 
 

 

Figure 4.15 Max and linear range gel electrophoresis photos inverted so that mRNA bands are 
black. A Primers after 40 cycles to test binding to RNA. Primers shown are ladder, GAPDH and 
SERCA. B Linear range gel for DHPR. A linear range was undertaken with a combination of 
mdx and C57 samples mixed, so that a number of cycles could be determined where differences 
in expression could be detected. 

B A 
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Figure 4.16 DHPR gel electrophoresis with colours inverted so bands are black. A DHPR mRNA 
in ventricles. B DHPR mRNA from mdx and C57 atria.  
 

Table 4.6 Strain Potency Ratios for L-type calcium channel data 
 Tissue  Mdx/C57 

Potency Atrial NFD EC50 1.9 

 Atrial Bay K 8644 EC50 2.7 

 Ventricular RLB Kd 1.5 

Density Ventricular RLB Bmax 1.3 

 Atria DHPR RT-PCR  2.0 

 Ventricular DHPR RT-PCR  2.3 

The strain potency ratio was calculated by dividing the mdx EC50, Kd, Bmax or total mRNA by 
the C57 EC50, Kd, Bmax or total mRNA respectively. The strain ratio shows that each of the 
indicators of DHPR regulation is increased in mdx. 
 

 4.3 SR Calcium Release 

To determine the role of the SR and active sequestration and extrusion mechanisms in 

dystrophin-deficient myocardium, rapid cooling contractures were undertaken. The 

rapid cooling contracture experiments evaluated SR function, SERCA function and 

NCX extrusion from dystrophin-deficient atria and compared that to control atria. A 

concentration-response curve was also undertaken to cyclopiazonic acid, a compound 

that blocks the activity of SERCA. A series of force-frequency experiments examined 

the function of the RyR and the SR in mdx compared to C57. 

A B 

C57 mdx 
C57 mdx 
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Figure 4.17 Rapid Cooling Contractures from left atria of mdx and C57. A Rapid cooling 
contractures as a percentage of normal twitch force. The calcium content of the SR was released 
by rapidly exchanging warm TPPS with ice-cold calcium free TPPS. The C57 ( ; n=10) data set 
was significantly different to mdx ( ; n=9: P<0.05) using two-way ANOVA. The RCC data set 
was highly significant (P<0.0001) using two-way ANOVA. B RCC2 and RCC3 are presented as a 
percentage of the RCC1, thus providing a. measure of SERCA function. RCC3 is non-
significantly higher in mdx (n=10), compared to C57 (n=9; P=0.06).  
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4.3.1 Rapid Cooling Contractures 

4.3.1.1 Basal Measurements 

All basal measurements were recorded at the commencement of the experiment, 

before the rapid cooling contractures and in the absence of any drug. Basal 

contractility was lower in mdx (1.33±0.08mN) relative to C57 (1.56±0.16mN; 

P=0.05). Basal time to 90% relaxation (TR90) was not significantly different between 

mdx (44.8±3.0ms) and C57 (41.5±3.0ms), although a higher mean TR90 was observed 

in mdx.  
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Figure 4.18 Basal contractility of mdx and C57 left atria at increasing frequencies (data pooled 
from control experiments and is shown in Fig 4.19, 4.20, 4.21). Contractility was measured at 
0.05, 0.2, 1, 2 and 5 Hz. Mdx (n=21) consistently showed a significant reduction in force 
production compared to C57 (n=31) left atria. ***=P<0.001, **=P<0.01. 
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4.3.1.2 Rapid Cooling Contractures 

The first rapid cooling contracture (RCC) was significantly smaller in mdx 

(1.53±0.26mN) compared to C57 (2.21±0.24mN: P<0.01) as shown in Figure 4.17 as 

a percentage of basal twitch force. The second RCC was not significantly different 

between the strains (Figure 4.17), but the third RCC when taken as a percentage of the 

first (therefore a measure of SERCA function) was larger in mdx. 

 

4.3.2 Force-Frequency Relationships 

At all frequencies tested, in the absence of any drug, the mdx left atria produced 

significantly less force than the C57 left atria (P<0.01; Fig. 4.18). However, addition 

of increasing concentrations of ryanodine progressively eliminated any difference in 

force between the mdx and C57s over all of the frequencies tested. With the blockade 

of sarcoplasmic reticulum calcium release by the addition of 1nM ryanodine, a 

positive staircase developed, with no difference in force production between strains 

(Fig. 4.19), in spite of a normally lowered efficacy and potency to calcium in mdx 

(see Fig. 4.2). The forces produced in the presence of ryanodine are quite low, 

indicating that the drug is successfully blocking SR release, as expected. The force 

frequency curve in the presence of dantrolene (Fig. 4.20) always maintained a 

negative staircase. The significantly lower force of contraction by the mdx 

myocardium in the absence of dantrolene, was maintained with the addition of 

dantrolene 0.1, 1 and 10µM at 0.05 and 0.20Hz. However, at the higher frequencies 

(1, 2 and 5Hz) this significant difference was lost. 
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Figure 4.19 Force-
frequency relationship in 
the presence of 
ryanodine. A force-
frequency relationship in 
the absence of any drug 
mdx n=21, C57 n=31. 
***=P<0.001; **=P<0.01. 
B Force-frequency in the 
presence of 0.1nM 
ryanodine. The mdx data 
set is significantly 
different to the C57 data 
set (P<0.005) using two-
way ANOVA. C Force-
frequency in the 
presence of 0.5nM 
ryanodine. D Force-
frequency in the 
presence of 1nM 
ryanodine.  
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 Figure 4.20 Force-frequency 
relationship in the presence of 
dantrolene. A is in the absence of 
any drug. In the presence of 
dantrolene 0.1 (B), 1 (C) and 10µM 
(D), both 0.05 and 0.2Hz were 
significantly different between mdx 
(n=8) and C57 (n=8). *P<0.05, 
**P<0.005, ***P<0.001. 
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 Figure 4.21 Force-frequency relationship in the presence of caffeine. The only significant difference between mdx (n=6) and C57 (n=8) in the presence of caffeine 
was at 5Hz with 3mM caffeine present. A negative staircase was observed at all concentrations of caffeine applied, although the staircase began to plateau at 10mM 
caffeine. B In the presence of 0.3mM caffeine the mdx data set is significantly different to the C57 data set using two-way ANOVA (P<0.005). C In the presence of 
1mM caffeine the mdx data set is significantly different to the C57 data set using two-way ANOVA (P<0.005). D In the presence of 3mM caffeine the mdx data set is 
significantly different to the C57 data set using two-way ANOVA (P<0.0001). E In the presence of 10mM caffeine the mdx data set was significantly different to the 
C57 data set using two-way ANOVA (P<0.0005). 
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Force of contraction was reduced in the presence of higher concentrations of caffeine 

(Fig. 4.21), indicating that caffeine was blocking SR release and/or uptake. The 

negative staircase property of the left atria was maintained with all the concentrations 

of caffeine, although at 10mM caffeine, the force was not significantly different at 

0.05Hz compared to 5Hz in either strain. Interestingly, there was a trend for the mdx 

to produce higher force than the C57 with caffeine present. This became significant at 

5Hz with 3mM caffeine present. 

 

4.4 Calcium Sequestration and/or Reuptake 

4.4.1 Cyclopiazonic Acid  

The efficacy of CPA was not significantly different between the strains (Fig. 4.22A) 

while the mdx showed a non-significant decrease in potency (EC50s: mdx 

12.3±3.1mM, C57 6.8±2.0mM; P=0.08). CPA significantly lengthened relaxation 

time in both mdx and C57, as was expected due to its inhibition of SERCA. Time to 

90% relaxation (TR90) was significantly greater in mdx (45.5±0.3ms) compared to 

C57 (38.5±0.3ms) at the lowest concentrations of CPA tested (P<0.05), but this effect 

disappeared at higher concentrations as inhibition of SERCA prolonged relaxation in 

both mdx and C57 (Fig. 4.22B). 
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Figure 4.22 Left atrial force of contraction and time to 90% relaxation in response to 
cyclopiazonic acid. A Mdx ( , n=10) response was reduced compared to C57 ( , n=9), although 
the difference was not significant. Potency and efficacy were not significantly different between 
the two strains, although CPA tended towards a lower potency in mdx. B Time to 90% relaxation 
in response to CPA. Due to an inhibition of SERCA, relaxation time was prolonged and this was 
particularly evident in mdx ( , n=10) at 0.3, 1 and 5 mM CPA compared to C57 ( , n=9) 
(P<0.05). The mdx data set are significantly different to the C57 data set using two-way ANOVA 
(P<0.0005). 
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4.4.2 SERCA RT-PCR 

RT-PCR experiments from ventricle revealed a significantly higher expression of 

SERCA mRNA in dystrophic tissue (mdx 2.47±0.3 intensity/pixel unit area; n=5; C57 

1.15±0.05 intensity/pixel unit area; n=5: P<0.05 see Figure 4.23). The original gel 

photos are shown in Figure 4.24. 
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Figure 4.23 SERCA mRNA expression as pixel intensity per unit area. The intensities were 
normalised to GAPDH protein levels for each sample. The intensities were also normalised to be 
per pixel, so that variations in band size were taken into account. The mRNA for SERCA in mdx 
(n=5) is upregulated compared to control mice (n=5) P<0.05. 
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Figure 4.24 SERCA gel electrophoresis of mRNA with colours inverted so that bands are black. 
A GAPDH expression. B SERCA mRNA expression.  
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CHAPTER 5 – DISCUSSION 

5.1 Functional differences between mdx and C57 

cardiac tissues 

At the completion of the equilibration period for each experiment basal measurements 

were taken to compare drug responses to those in the absence of drug. This allowed 

basal measurements of the myopathy of mdx at 12-14 weeks of age to be assessed. In 

the tissue bath experiments a calcium concentration-response curve was undertaken 

immediately after the equilibration period, so that the maximum force production for 

each atrium could be determined. These experiments revealed that the initial basal 

force of contraction and the potency of and efficacy to calcium were reduced in left 

atria of mdx mice, in spite of an elevation of intracellular calcium (Dunn & Radda, 

1991). This reduction in myocardial contractile force has been shown previously in 

our laboratory (Lu & Hoey 2000a) and in others (Sapp et al., 1996). A possible 

mechanism for the reduction in potency and capacity to generate force in response to 

extracellular calcium represents a reduction in myofilament sensitivity to calcium. 

Such weakness may be a protective mechanism against the weaker sarcolemmal 

membrane (Kanai et al., 2001), since dystrophin has now been shown to play a 

mechanical stabilization role in cardiomyocytes (Hainsey et al., 2003) similar to its 

established role in skeletal muscle. Chronically elevated calcium, to a similar level as 

that observed in dystrophic cardiomyocytes, can cause a significant reduction in 

myofilament sensitivity (Holt & Christensen, 1997), although this has not yet been 

shown for dystrophin-deficient cardiomyocytes. 
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Action potentials of mdx are reported as being shorter in mdx mice (Pacioretty et al., 

1992; Perloff et al., 1984), however the current study was unable to verify this 

phenomena. Differences in experimental methodologies such as the horizontal 

placement of the atria in the microelectrode apparatus may contribute to this finding.  

The resting membrane potential, action potential amplitude and maximum upstroke 

velocity were unaffected by a lack of dystrophin. A shorter action potential indicates 

that either the calcium channels are unlikely to remain open for a longer period of 

time, or that repolarisation is markedly increased. The shorter cardiac action potential 

has been attributed to activation of a large transient outward potassium current 

(Alloatti et al., 1995). The mechanisms underlying such a large transient outward 

current are unclear, although an increase in resting intracellular calcium may cause a 

larger transient K+ current, which in turn may promote premature repolarisation of the 

action potential, leading to earlier inactivation of the voltage dependent L-type 

calcium channel (Sperelakis et al., 1996).  

 

A delayed relaxation of the mdx left atria has been observed in the current study and 

previously (Sapp et al., 1996). This prolonged relaxation may be due to an increase in 

intracellular calcium due to dysfunctional sequestration, or extrusion of calcium from 

the cytosol. However, delayed relaxation time and the longer action potential duration 

that are usually seen but not observed in mdx may be linked, as K+ channels may play 

a role in both of these observations (Cingolani et al., 1990).  
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5.2 Contractility and Microelectrode Studies 

The tissue bath studies examined the left atria of mdx and C57, their force of 

contraction, and their responses to drugs that alter L-type calcium channel function. 

The tissue bath protocols were well established in our laboratory, and data generated 

by these protocols had been published previously (Lu and Hoey, 2000a and b) 

indicating the reliability and suitability of these methods. 

 

In the microelectrode studies the contractility of mdx and C57 left atria, along with the 

action potential characteristics were measured concurrently. Three different classes of 

calcium channel antagonists and one class of agonist were tested to determine their 

effect on the cardiac action potential in the mdx model of dystrophin-deficiency. 

 

5.2.1 Concentration-Response Curve to Bay K 8644 

Bay K 8644 exerts positive inotropic actions by binding to the cardiac DHPR of the 

L-type calcium channel to enhance sarcolemmal calcium influx that in turn triggers 

greater CICR (Schramm et al., 1983). In the current study a marked positive inotropic 

effect was observed in response to Bay K 8644 in both mdx and C57, indicating that 

the drug was effective in depolarising the L-type calcium channel. Bay K 8644 

produced a similar efficacy to extracellular calcium in both mdx and C57, showing 

that it is an efficient positive inotrope.  

 

Although the efficacy as a percentage of calcium chloride was not different between 

mdx and C57, the left atria from mdx were less sensitive to Bay K 8644 compared to 

C57. There was also a significantly lower potency observed in mdx. This was the first 

indication that there may have been a conformational change in the DHPR that 
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affected its affinity for DHPR drugs. The strain potency ratio was 2.7, indicating a 

change in affinity of the drug for the receptor. This potency shift was also observed 

when the positive inotropic response was not normalised as a percent of calcium (ie 

absolute force), indicating that this potency change was due to modification of the 

DHPR, and not the lowered force production in mdx. Time to peak force was 

significantly longer in mdx in the presence of Bay K 8644 than the time to peak force 

without the drug present. This is merely a reflection of the larger force production in 

the cardiac tissue with the positive inotrope present. The time to peak force was not 

significantly longer in the presence of Bay K 8644 in C57 than without the drug being 

present, despite a trend towards this occurring. 

 

One study has used Bay K 8644 previously in dystrophic myocardium (Sadeghi et al., 

2002). Sadeghi (2002) measured Ca2+ currents from neonatal cardiomyocytes and 

observed  that calcium channels in mdx myocytes were stimulated 2.3-fold more by 

Bay K 8644 than channels in control myocytes. The authors suggest that this increase 

is due to allosteric changes in the channel (Sadeghi et al., 2002) allowing the channel 

to be open longer. This increase is similar to the potency change observed in the 

current study and suggestive of a conformational change of the DHPR. 

 

5.2.2 Effects of the Calcium Channel Antagonists 

The L-type calcium channel antagonists reduce the influx of calcium by blocking the 

α1-subunit of the channel. The calcium channel antagonists were effective in reducing 

the influx of calcium via the L-type calcium channel. This is demonstrated by a 

negative inotropic response to each of the calcium channel antagonists, in a time- and 

dose-dependent manner. The tissue bath studies revealed differences in potency and 
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efficacy for the calcium channel antagonists in left atria between mdx and C57 mice. 

In the microelectrode studies, the drugs were tested at equipotent doses, the IC50s 

were calculated from the tissue bath studies and used to determine the effects of these 

drugs on the action potential in mdx cardiac tissue. The concentration that produced 

the maximum effects in the tissue bath studies was also used. Therefore, for all of the 

drugs used in the microelectrode study, higher doses were used for mdx left atria 

compared to C57. When these equipotent doses were administered, there was no 

difference in action potential attributes (except for diltiazem), or the negative 

inotropic effect of the calcium channel antagonists.  

 

In the tissue baths, the left atria displayed a decrease in sensitivity to the DHPR 

antagonist nifedipine that was similar to the reduction in potency to the DHPR agonist 

Bay K 8644. There are various explanations for this effect, such as: i) modulation of 

the DHPR results from the long-term exposure to an intracellular calcium overload 

(Dunn & Radda, 1991), or ii) in response to nifedipine there is an increase in activity 

of a putative sarcolemmal leak channel as has been observed in skeletal muscle 

(Turner et al., 1991). If sarcolemmal leak channels are present in cardiomyocytes, and 

if these channels behave similarly, it is possible that influx of calcium via these 

channels may cause earlier inactivation of the L-type channels. Sadeghi et al., (2002) 

observed that inactivation of the L-type calcium channel from mdx neonatal 

cardiomyocytes was delayed. This therefore suggests that the first hypothesis is more 

probable, however the physiological behaviour of neonatal cardiomyocytes may not 

necessarily mimic adult cardiomyocytes. Nifedipine also caused a further delay in 

relaxation of the mdx left atria. This effect cannot be accounted for via the effect on 

the L-type calcium channel, as blockade of the channel reduces intracellular calcium 
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levels, therefore relaxation should occur earlier. This effect may be due to an 

influence on the potassium channels. Another DHPR antagonist nicardipine has been 

shown to inhibit the repolarising potassium current and the Na+/Ca2+ exchange that 

extrudes calcium from the cell post-contraction (Richard et al., 1988). Since the 

structure of nifedipine closely resembles nicardipine, it is possible that it affected 

these mechanisms similarly.   

 

There was an increase in sensitivity to verapamil in the left atria from mdx compared 

to C57, although this was only due to one point on the curve, so it is of questionable 

physiological significance. There was no parallel dextral shift of the curve to signify a 

change in potency of the phenylalkylamine receptor. It is known that nifedipine can 

block the calcium current regardless of whether the channel is in the open or the 

inactivated state (steady depolarisation, without requiring pulses), and as such is 

considered more voltage-dependent than use-dependent (Bers & Perez-Reyes, 1999). 

Verapamil, on the other hand, appears to block the channel preferentially in the open 

state (ie requiring depolarising pulse) and as such is use-dependent. Thus, these 

differences in mechanism may also explain the observed differences in response to the 

two agents. 

 

Although the binding sites for all three classes of calcium channel antagonists are 

found on the α1-subunit of the L-type calcium channel (Catterall & Striessnig, 1992), 

the DHPR seems to be exclusively extracellular (Kass & Arena, 1989; Kass et al., 

1991) whilst the phenylalkylamine and benzothiazepine sites have both intracellular 

(Hescheler et al., 1982) and extracellular (Wegener & Nawrath, 1995; Adachi-

Akahane et al., 1993) components in ventricular myocytes and functional interaction 
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has been reported between sites (Kanda et al., 1998). It is also possible that a 

difference in receptor location on the L-type calcium channel in mdx myocardium 

may explain the lowered potency for nifedipine.  

 

The marked increase in APD observed in response to diltiazem may be due to an 

action of the drug on K+ channels. While the APD is shortened by diltiazem in rabbit 

ventricular tissues that naturally have a longer APD (Miyazaki et al., 1996), no 

reports could be found on its electrophysiological effects in mouse or rat cardiac 

tissues that have a much shorter APD. In contrast, phenylalkylamines have been 

shown to inhibit the cardiac delayed rectifier potassium current and the sodium-

activated potassium current, which would provide a basis for prolongation of the APD 

(Waldegger et al., 1999; Berger et al., 1991; Mori et al., 1998), although only slight 

prolongation was evident in response to verapamil in our studies. This prolongation 

may be due to an inhibition of NCE (mitochondrial sodium/potassium exchange), 

which would reduce the ATP available for SERCA for relaxation of the myocardium 

(Schwartz, 1992). Diltiazem is unique in the calcium channel antagonists in inhibiting 

the NCE in this manner. Kuo et al., (2002) have shown improvement in 

cardiomyopathy by blocking overactive NCE in the cardiomyopathic hamster. The 

function of the NCE in mdx is unknown. 

 

 An in vivo study to determine the efficacies of nifedipine, diltiazem and verapamil in 

γ-sarcoglycan deficient dystrophic hamsters observed that only diltiazem halted 

morbidity and mortality associated with dystrophic pathobiology (Johnson & 

Bhattacharya, 1993). In the same study, diltiazem effectively reduced the intracellular 

calcium overload in cardiac tissues, although effects on contractility or action 



Chapter 5 - Discussion 

  112

potential duration of myocardium were not examined. A reduction in calcium deposits 

in dystrophic hamster myocardium post treatment with diltiazem has also been 

observed histologically (Bhattacharya et al., 1982). It is probable that this protection 

is due to an effect on the NCE as well as the reduction in calcium influx through 

blockade of the L-type calcium channel. Therefore there may be therapeutic potential 

from administration of calcium channel antagonists in conditions of calcium overload, 

including the dystrophinopathies. 

 

5.3 Radioligand Binding Studies 

To date, no previous studies have measured DHPR density or affinity in mdx 

myocardium. Given the change in potency in the tissue bath studies to the DHPR 

drugs, it was an important set of experiments to determine whether this change was 

due to a change in the density of the channels, or a conformational change of the 

receptor, or both. In the radioligand studies, the mdx mice showed a significant 

increase in DHPRs, which could account for an increased influx of calcium into the 

cell, although the functionality of the receptors remains to be determined. The mdx 

mouse had a significantly reduced affinity for the DHPR agonist [3H]-PN 200 110. 

These results are clearly consistent with a reduced potency of nifedipine and Bay K 

8644 in the organ bath experiments, and suggest that both upregulation of the 

receptors occurs, and a conformational change of the receptor reducing its affinity for 

DHPR drugs. 

 

Receptor regulation is a commonly observed phenomenon in cardiovascular disease 

states. For example, congestive heart failure is associated with a reduction in β-
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adrenoceptor affinity, concurrent with β-adrenoceptor downregulation, as evidenced 

by an increased Kd and lower Bmax measured in radioligand binding studies (Brodde, 

1991). Similarly, regulation of the L-type calcium channel occurs in response to other 

disease processes. Hyperthyroidism has been shown to downregulate the L-type 

calcium channel (Watanabe et al., 2003), and electrical remodelling involving the L-

type calcium channel is an early manifestation of arrhythmia (Bosch et al., 2003). The 

DHPRs have been shown to downregulate in end stage heart failure (Takahashi et al., 

1992). As radioligand binding studies utilizing antagonists are not dependent on 

receptor stimulus and agonist efficacy, the Kd is determined solely by receptor affinity 

and is unaffected by the receptor density (Bmax). The increased Kd observed with [3H]-

PN200 110 in the current study shows a lowered receptor affinity and thus 

presumably altered conformation that would explain the lowered potency observed 

with Bay K 8644 and nifedipine. 

 

A possible mechanism that could affect the affinity of DHPRs is changes in the cell 

membrane potential, with depolarisation of the cardiac resting membrane potential 

causing an increase in DHPR affinity and thus presumably hyperpolarisation causing 

a decrease in DHPR affinity (Bean, 1984). However, microelectrode studies in left 

atria of mdx and C57 mice utilising the same conditions as those in the tissue bath 

studies, did not show any difference in resting membrane potential, eliminating this as 

a basis for the difference in DHPR affinity in the tissue bath studies. Furthermore, the 

difference in receptor affinity was maintained in the radioligand binding studies, 

where the influence of the membrane potential is eliminated. This provides clear 

evidence that a change in receptor affinity is not due to changes in membrane 

potential. 
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Another influence affecting DHPR affinity is the concentration of free calcium. Using 

[3H]-PN 200 110 in radioligand binding studies, Peterson and Catterall (1995) showed 

that divalent ions cause a biphasic effect on the affinity of DHPRs, with a low free 

calcium causing an increase in affinity, while a high free calcium causes a significant 

decrease in affinity. It is therefore, highly feasible that the calcium overload observed 

in mdx myocytes is a mediator responsible for the lowered affinity state of the DHPRs 

observed in the atrial contractility studies. However, in DHPR radioligand binding 

studies, calcium is not added to the incubation buffer and chelators such as EGTA are 

also present. This then eliminates any acute effects of calcium on modifying the 

affinity state of the DHPRs within such studies. Given that a lowered affinity for [3H]-

PN 200 110 was still observed, this may suggest that the chronic in vivo elevation of 

intracellular calcium and/or the primary lack of dystrophin may cause a more rigid 

conformational change in DHPRs, that is subsequently maintained in isolated 

membranes.  

 

5.4 Dihydropyridine Receptor RT-PCR 

Given the increase in DHPR density shown in radioligand binding studies, it is 

important to measure mRNA levels of the DHPR. These experiments showed a 2 fold 

and a 2.3 fold increase in atria and ventricles respectively, which supports the 

radioligand binding data. DHPRs have been shown to become upregulated in other 

conditions, including chronic adrenergic stimulation (Maki et al., 1996). While a 

comparison to previous values in mdx myocardium is not possible, Pereon et al., 

(1997) showed an elevation in DHPR mRNA expression in mdx diaphragm, however, 
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this was not associated with an elevation in DHPR protein expression measured by 

[3H]-PN 200-110 binding. This anomaly was explained by elevated protein 

degradation in mdx diaphragm, a muscle that shows marked deterioration (Stedman et 

al., 1991). In comparison, adult rat ventricular myocytes incubated in the presence of 

high intracellular calcium showed a two-fold increase in DHPR mRNA, providing 

evidence that a dystrophin-deficiency mediated increase in intracellular calcium could 

be the basis for the increased DHPR expression (Davidoff et al., 1997). 

 

5.5 Upregulation of the L-type Calcium Channel  

This dissertation provides strong evidence for upregulation of the L-type calcium 

channel, resulting in an increase in channel density. This change is associated with a 

conformational change of the receptor that lowers its affinity for DHPR drugs. An 

increase in L-type calcium current has been shown in mdx smooth muscle, where this 

increase is responsible for sustained tone in mdx colon (Mule & Serio, 2001). In other 

models of cardiomyopathy that are not due to dystrophin-deficiency (myocardial 

infarction induced by left coronary artery ligation), an elevation of intracellular 

calcium and an increased number of L-type calcium channels has been observed 

(Gopalakrishnan et al., 1991). Furthermore, in the presence of an intracellular calcium 

overload, mRNA for the channel subunit containing the DHPR binding site has been 

reported to increase twofold (Davidoff et al., 1997). Like the mdx mouse, heart failure 

in the γ-sarcoglycan deficient cardiomyopathic hamster is due to a loss of the 

dystrophin associated glycoprotein complex (Palmieri et al., 1981) and intracellular 

calcium is also elevated (Wagner et al., 1989), further indicating a causal relationship 

between dystrophin dysfunction and an intracellular calcium overload. Studies on the 
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hamster, however, are divided on whether there is a change in the affinity or density 

of cardiac L-type calcium channels. An increase in numbers of DHPR and 

phenylalkylamine binding sites has been reported (Wagner et al., 1989), although 

contrasting reports (Howlett & Gordon 1987; Sen et al., 1990) observe no change in 

density or affinity of these sites. The data for the influence of the L-type calcium 

channel in the pathogenesis of the cardiomyopathic hamster remain divided. 

 

The current study is the first to show a decrease in the affinity of the DHPR binding 

site, along with a significant increase in DHPR binding sites in mdx cardiomyocytes, 

both of which may explain the accompanying functional data which revealed a 

decrease in potency to nifedipine and Bay K 8644 in isolated atria. While indirect 

consequences of dystrophin deficiency causing an intracellular calcium overload may 

explain the alteration in DHPR affinity and density, it is also possible that the 

dystrophin deficiency may result directly in altered receptor conformation. Brand et. 

al. (1985) showed that DHPRs are located in transverse tubules (T tubules) of the 

myocyte, which is also the site where the majority of the cardiac dystrophin is located 

(Bers, 1991; Peri et al., 1994). Furthermore, dystrophin has been suggested to play a 

role in anchoring cardiac DHPRs, or modulating their activity (Meng et al., 1996). 

Therefore, the deficiency of dystrophin could result in a direct defect in the DHPR 

that in turn may contribute to the observed reduction of potency of DHP drugs in mdx 

cardiac tissues and a compensatory increase in DHPRs. Davidoff et al., (1997) 

observed a direct relationship between an intracellular calcium overload in rat 

cardiomyocytes, and an increase in DHPRs. Those experiments showed that elevated 

extracellular calcium in the incubation medium of the cardiomyocytes, caused a 

marked increase in DHPR mRNA, binding sites for [3H]-PN 200 110, an increased 
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Kd, and an increase in L-type calcium current after three days of intracellular calcium 

overload (Davidoff et al., 1997). These findings mirror those of the current study, of a 

reported intracellular calcium overload leading to an increase in DHPR mRNA, 

binding sites for [3H]-PN 200 110, an increased Kd, along with further functional 

changes. It therefore seems logical to hypothesise that a lack of dystrophin leads to 

intracellular calcium overload as an initiating event for the observed changes in the 

current study.  

 

Clearly, if an elevation of DHPRs is evident, then an alteration in the L-type calcium 

current should occur concurrently. It has already been shown that cultured neonatal 

cardiac myocytes from 1 to 4 day old mdx mice show a reduction in inactivation of 

the L-type calcium current, a change that could potentially elevate intracellular 

calcium, although no difference in peak current was evident in that particular study 

(Sadeghi et al., 2002). However, there are significant differences in T-tubule 

development and ion channel function between cultured neonatal cardiomyocytes and 

adult myocytes (Nuss & Marban, 1994), and such differences could be further 

exacerbated in mdx mice, as the mdx do not show significant pathology until about 21 

days of age (McArdle et al., 1995). To date only Alloatti et al., (1995) has published 

details on the adult mdx cardiac L-type calcium current, in which no significant 

differences in current were observed, however the authors did not provide details on 

perfusion or pipette solutions to indicate if the concentration of intracellular calcium 

was regulated during the experiment, yet this can have a major impact on current 

(Xiao et al., 1994).  
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Following a moderate increase in calcium bound to the calcium-binding protein 

calmodulin, the association between the inhibitory domain of the L-type channel and 

the catalytic subunit is disrupted to allow the catalytic subunit to phosphorylate a wide 

range of substrates. Also elevation of intracellular calcium causes the L-type calcium 

channel β-subunit (Jahn et al., 1988) to be phosphorylated by the calcium-

/calmodulin-dependent protein kinase II (CaM kinase) which results in an increased 

influx of calcium through the channel (Armstrong et al., 1988). Through these 

processes the calcium current can be increased by small increases in intracellular 

calcium, but at greater levels of increased resting intracellular calcium such as those 

observed in DMD, inhibition of influx predominates. Thus the calcium current can be 

differentially regulated depending on the level to which intracellular calcium is 

elevated. Furthermore, when intracellular calcium is elevated, calcium entry via the L-

type calcium channel will be further reduced largely due to a decrease in the 

electrochemical driving force for calcium entry (Sperelakis et al., 1996). Further study 

is required to elucidate the L-type calcium channel kinetics of mature mdx mice and 

how this may affect both APD and intracellular calcium levels.  

 

5.6 Differences in calcium handling between ventricles 

and atria 

Dystrophic ventricular tissue shows hypertrophy whereas atria either do not show 

enlargement or there are scant reports to support these kinds of changes. The atria 

workload is minimal compared to ventricular as they are only required to pump blood 

to the ventricles. Any systemic disease state that affects the volume or pressure of 

circulation will have an affect on the ventricular tissue, but not necessarily atria.  
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In comparison with ventricular cardiomyocytes, atrial cells are characterised by the 

absence of a t-tubular system (Minajeva et al., 1997). They contain only peripheral 

junctional SR connected to the sarcolemma and a higher proportion of corbular SR 

within the cytoplasm. Because corbular SR is not connected to the sarcolemmal 

membrane, calcium release from these stores must be triggered by a diffusible agent 

(Minajeva et al., 1997). Atrial and ventricular fibres do, however, exhibit the same 

sensitivity to calcium (Minajeva et al., 1997), and although they exhibit a lower 

density of ryanodine receptors, atrial cells have a very similar Kd and IC50 for 

ryanodine, and EC50 for calcium (Cote et al., 2000). A 30% higher level of SERCA 

mRNA has been observed in atria (Minajeva et al., 1997) compared to ventricle, and a 

lower expression of phospholamban. However, the structures necessitated by a 

functional SR network are present: Cl- selective channels, Ca2+-Mg2+-ATPase and 

other calcium regulating proteins (Cote et al., 2000). Both atria and ventricles of mdx 

exhibit fibrosis, focal degeneration and fatty infiltration (Bridges, 1986).  

 

5.7 Function of the Sarcoplasmic Reticulum 

The sarcoplasmic reticulum as the major store of calcium in the cardiomyocyte may 

contribute to the intracellular calcium overload. The rapid cooling contracture 

experiments enable comparison of SR calcium between dystrophic and normal tissues 

via the relative size of the contracture produced.  
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5.7.1 Altered Relaxation  

The reduced contractility of mdx isolated cardiac muscle appears to be in some part 

due to defective intracellular calcium homeostasis (Alloatti et al., 1995). The mdx left 

atria displayed a longer relaxation time in this study as previously reported (Sapp et 

al., 1996), which is indicative of a reduction in calcium sequestration, storage and/or 

extrusion from the cell. The two main pathways for removal of calcium are SERCA 

and the NCX. In the cardiomyopathic hamster, which exhibits a cardiac sarcoglycan 

deficiency, the NCX is increased secondary to the intracellular calcium overload 

(Wagner et al., 1989). Theoretically this would increase calcium extrusion at the 

resting membrane potential, and thus cannot be the basis for the elevation of 

intracellular calcium that is observed in mdx. A delayed relaxation is often associated 

with delayed repolarisation, however in mdx tissues, relaxation is delayed in spite of a 

shorter action potential.  

 

5.8 Force-Frequency Experiments 

At lower frequencies of stimulation, SR sequestration and function can be examined. 

As frequency is increased, active sequestration mechanisms have less time to restore 

calcium to the SR, but the voltage-dependent calcium channels are stimulated more 

frequently causing greater opening of the L-type calcium channels and hence greater 

net calcium influx. A negative staircase was observed in the murine myocardium with 

an impaired capacity to generate force being observed in mdx over a range of 

stimulation frequencies in the force-frequency experiments. Previously Alloatti et al., 

(1996) demonstrated a decline in force of contraction in response to increasing 

frequencies that was more marked in mdx compared to C57 left atria. The current 
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study showed a similar relationship in mdx, with the left atria unable to produce 

similar forces to C57 atria over a range of frequencies. A similar negative staircase in 

rat cardiac tissue is related to a myofilament desensitisation mechanism (Morii et al., 

1996). Possible mechanisms to explain this include a reduced time for SR calcium 

loading or a loss of myofilament sensitivity to calcium as reported in rat cardiac tissue 

(Morii et al., 1996). Mechanisms for a loss of myofilament sensitivity include altered 

responsiveness due to effects of ions and chemicals such as Mg2+, H+, 

phosphocreatine and inorganic phosphate (Donaldson, et al., 1978; Fabiato & Fabiato, 

1978; Kentish, 1986). In particular, an increase in stimulation frequency may cause an 

decrease in intracellular pH (Bountra et al., 1988).  

 

5.8.1 Response to Ryanodine 

When low concentrations of ryanodine were applied to the tissues, no difference in 

force of contraction relative to basal for each strain was evident, suggesting no 

difference in calcium release. When high doses of ryanodine were applied, SR release 

of calcium was inhibited, as evident by lower forces produced by the left atria. In this 

situation, L-type calcium current becomes that major pathway for calcium to activate 

the contractile apparatus. Under these conditions the L-type calcium current can be 

observed by the contractile properties of the tissue, because L-type calcium current is 

the only source of calcium available to the cell. In ryanodine treated animals where 

the cardiac tissue was stimulated at low frequencies, calcium from the SR has been 

shown to leak from the SR back into the cytoplasm from where it is extruded via 

NCX, which results in lower steady-state forces (Meyer et al., 2001). This 

phenomenon was observed in the current study. In species with a negative force-

frequency relationship such as mouse, ryanodine has been shown to convert the force-
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frequency relationship to a positive staircase, indicating that unmasking the 

sarcolemma contribution to the force-frequency relationship isolates a positive force-

frequency relationship in all species (Prabhu, 1998). Thus, on the addition of 

ryanodine, force-frequency relationship amplification is consistent with an increased 

importance of sarcolemmal calcium influx (Prabhu, 1998). 

 

When 1nM Ryanodine was added to the tissue bath to remove the contribution of the 

SR in releasing calcium for contractions, the force-frequency curve shows a positive 

staircase, indicative of L-type calcium influx becoming the predominant pathway to 

elevate cytosolic calcium. Low force of contraction is also observed in the presence of 

1nM Ryanodine, as there is no SR contribution to contractility of the myocardium. 

Force in the presence of 1nM Ryanodine was restored to equivalent of C57, indicating 

a greater influx of calcium via the L-type calcium channels in mdx, since the mdx 

myocardium cannot contract with similar force at the same level of cytosolic calcium. 

This functional finding once again lends support to the notion that the L-type calcium 

channels are upregulated in mdx myocardium. 

 

5.8.2 Response to Caffeine 

Caffeine was effective in inhibiting calcium release from the SR, as is evident from a 

decreased contractile force in both the control and mdx tissues. On the addition of 

caffeine, SR calcium release was inhibited, therefore L-type calcium current became 

the predominant source of calcium for contraction of the left atria. On the addition of 

the lowest concentration of caffeine, the mdx began to produce forces similar to those 

in C57, despite a normally reduced response to extracellular calcium. This is 

indicative of a greater flow of calcium through the L-type calcium channels. Because 
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caffeine is a methylxanthine, it also inhibits the enzyme phosphodiesterase allowing 

accumulation of cyclic AMP. Cyclic AMP increases the open time of the L-type 

calcium channels, thereby increasing sarcolemmal influx, as well as inhibiting SR 

calcium release. This effect is observed at the highest concentration of caffeine used 

where there is a trend for the mdx to produce greater force than the C57. This provides 

further functional data to support that mdx have a greater density of L-type calcium 

channels.  

 

5.8.3 Response to Dantrolene 

The force of contraction produced in both mdx and C57 with dantrolene present is 

indicative of the compound not blocking SR calcium release. Forces are maintained at 

levels observed in the absence of any drug, even in the presence of the highest 

concentration of dantrolene. A negative staircase remained, suggesting that L-type 

influx is not necessarily predominating at higher frequencies. There is a similar force-

frequency relationship in the presence of the highest concentration of dantrolene to 

the force-frequency relationship in the absence of drug, indicating that dantrolene did 

not block SR release. In other studies, dantrolene has been shown to be ineffective in 

blocking the cardiac ryanodine receptor (Zhao et al., 2002), but concentrations five 

times higher than the concentration used in the current study have shown a mild 

negative inotropic effect (Meissner et al., 1996). In rat myocardium dantrolene has 

been shown to produce a negative inotropic response in a low extracellular calcium 

solution, but not in high calcium (Fratea et al., 1997). The high calcium levels in 

dystrophic myocardium may thus be affecting the response to dantrolene. Dantrolene 

did not alter the force-frequency effect in rat myocardium or any SR calcium 

modulation mechanisms (uptake, release, postrest recovery) (Fratea et al., 1997). It is 
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plausible that a similar lack of effect was observed in the current study. The only 

study that observed the effects of dantrolene on murine myocardium showed that 

dantrolene was not effective in suppressing arrhythmia in a murine model (Brooks et 

al., 1989) which may suggest that dantrolene is not effective in blocking SR calcium 

release in murine myocardium. 

 

Dantrolene has been used in a clinical trial in boys with DMD. No cardiac changes 

were observed, however dantrolene reduced serum creatine kinase in the trial 

(Bertorini et al., 1991). The skeletal muscles showed a trend towards “a lessening of 

muscle deterioration” however no statistical differences were observed (Bertorini et 

al., 1991). The trial used only 7 patients with varying ages from 6 to 13 years of age, 

and one concentration of dantrolene was used. The study used 2 years prior to 

treatment as control. This study may have provided more clear evidence had the trial 

been placebo based and blinded. 

 

5.9 Rapid Cooling Contractures 

The amplitude of RCCs is a useful indicator of releasable SR calcium in intact cardiac 

muscle (Bers & Bridge, 1989). The first RCC in mdx is significantly smaller than 

control, when expressed in absolute force (mN), and when expressed as a percentage 

of normal twitch force. This indicates that either: i) the SR in mdx is releasing less 

calcium, ii) that the SR is leaky and/or cannot sequester and store calcium effectively, 

or iii) that the myocardium is unable to contract in response to a similar amount of 

calcium released as the C57. The tissue bath experiments in the current study have 

shown that the third hypothesis is most probable, as mdx left atria are unable to 
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contract with similar forces to control in response to extracellular calcium. RCC2 and 

RCC3 are smaller than RCC1 in both mdx and C57, but not significantly different 

between the strains. Using the SERCA specific inhibitor, the potency of CPA was not 

significantly different between the strains suggesting that SERCA function is 

comparable between the dystrophic and normal left atria. Therefore sequestration 

does not appear to be dysfunctional in mdx left atria. The difference between RCC1 

and RCC2 is attributed to the activity of the NCX (Bers & Bridge, 1989). In the 

current study, the percent change between mdx and C57 is almost identical when the 

decreased force production of mdx is taken into consideration. This suggests that 

NCX is functioning normally in mdx left atria.  

 

5.10 CPA Concentration-Response Curve 

Relaxation time is increased in mdx atria (Sapp et al., 1996) and DMD ventricles 

(Kovick et al., 1975; Goldberg et al., 1980). The current study showed no functional 

change in the level of SERCA, therefore the increased relaxation time may be 

attributed to changes in sarcolemmal calcium extrusion, or calcium binding proteins. 

Interestingly, Kargacin & Kargacin (1996) found no change in SERCA or the 

sensitivity of SERCA for calcium in skeletal muscle of mdx mice. They did, however, 

suggest that some SERCA units may be non-functional in dystrophic muscle. This 

could occur if some of the pump protein is partially degraded in the face of elevated 

calcium levels in dystrophin-deficient muscle or the continual degeneration and 

regeneration of dystrophic muscle causes expression of immature non-functional 

protein to be expressed in the SR membrane (Kargacin & Kargacin, 1996). Mule & 
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Serio (2001) observed no differences in SERCA by CPA-induced inhibition in colon 

of mdx.  

 

Phospholamban has been shown to significantly lengthen relaxation time in 

cardiomyocytes (Zvaritch et al., 2000) and to decrease SERCA affinity for calcium 

(Kimura et al., 1996). The level of expression of the intraluminal SR calcium binding 

proteins is altered in mdx myocardium. In mdx skeletal muscle SR, Culligan et al., 

(2002) observed a 20% reduction in the calcium binding capacity due to a reduction in 

calsequestrin-like binding proteins. Thus it is plausible that the lusitropic effect 

observed in mdx cardiac tissues may be due to changes in intraluminal SR calcium 

binding proteins. While active sequestration by SERCA appears to be functioning 

normally in mdx myocardium, if the binding proteins were not retaining the calcium in 

the SR, this calcium may contribute to the calcium overload and loss of sensitivity of 

the contractile proteins. 

 

5.11 SERCA RT-PCR 

SERCA in cardiac muscle of the laminin deficient dystrophic (dy/dy C57BL6J) 

mouse has been shown to be unchanged compared to control cardiomyocytes (Lucas-

Heron et al., 1987). Where SERCA mRNA has been successfully upregulated in 

mouse overexpression models, protein level was only moderately changed above the 

endogenous expression (Periasamy & Huke, 2001). The authors suggest that there 

may be powerful post-transcriptional mechanisms working to maintain a 

physiological SERCA level. In the current study, SERCA mRNA was increased, 
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although no functional evidence supported this change. It appears that mRNA changes 

observed in mdx SERCA are not translated into functional changes. 

 

In mdx heart, a study has shown decreased SERCA mRNA in 5 month old mice 

(Rohman et al., 2003). Given that changes in intracellular calcium lead to regulation 

of calcium handling proteins (Davidoff et al., 1997), it is not surprising that changes 

such as these are observed. SERCA mRNA levels have been shown to be increased 

(De Boer et al., 2001) and decreased (Mittman et al., 1998) in various models of 

cardiomyopathy, but protein levels in failing myocardium have been shown to be 

unchanged (Schwinger et al., 1995; Munch et al., 1998). The current study using mdx 

at 12-14 weeks of age showed an increase in SERCA mRNA but no functional 

change. It is postulated that mRNA is increased in response to the high intracellular 

calcium at this age, but protein levels remain unchanged. 
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CHAPTER 6 – IMPLICATIONS AND 

CONCLUSIONS 

6.1 Conclusions From the Current Study 

The current study aimed to elucidate potential mechanisms for the intracellular 

calcium overload that contributes to the pathogenesis of the myocardium in 

dystrophin-deficient conditions. The major findings from the current study were 

alterations in the potency, affinity and density of the DHPRs in mdx. Drugs active at 

the DHPR were approximately 2-fold less potent in mdx myocardium. In contracting 

left atrial preparations using both a DHPR agonist and antagonist, a potency 

difference of 2.7 and 1.9 respectively was evident. This finding was reinforced in 

purified ventricular membranes using radioligand binding studies which gave a 

similar potency difference of 2.0 and indicated an upregulation of DHPRs by 1.3 fold. 

RT-PCR studies provided further supportive evidence of receptor upregulation by 

increased mRNA expression in both atria and ventricles by 2.0 and 2.3 fold 

respectively. At various levels of complexity, utilising a range of techniques, clear 

evidence is provided to show that dystrophin deficiency in the mdx mouse results in 

DHPR upregulation in the myocardium and a reduction in receptor affinity. 

 

It is postulated that this increase in calcium channels is a contributor to the calcium 

overload in dystrophic myocardium. Yet the major calcium regulating mechanism, 

sequestration of calcium into the SR, appears to be unaffected in mdx. This is an 

interesting finding considering the delayed relaxation observed in this study and 

others (Sapp et al., 1996). A shorter action potential in mdx previously (Alloatti et al., 
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1995) would suggest that prolonged L-type Ca2+ influx is not responsible for delayed 

relaxation either. Therefore it is probable that this effect is due to alternate 

mechanisms, such as SR storage. Since the calcium binding proteins of the SR have 

been shown to be dysfunctional in dystrophic skeletal muscle, future cardiac studies 

should examine these particular proteins. SERCA mRNA was shown to be 

upregulated, a finding that was not supported with any functional changes. There was 

a trend towards there being a greater amount of SERCA in the CRC to CPA, but this 

was not statistically significant. The RCCs suggested that SERCA function was 

equivalent in mdx to that in C57. The consensus of data supports mdx SERCA levels 

being equivalent to C57 in the heart. It is probable that mRNA changes are not 

translated to protein. 

 

Interestingly, the potency of calcium is also lowered when conducting a 

concentration-response curve to extracellular calcium. This reduction in potency to 

calcium and capacity to generate force is indicative of a reduced sensitivity of the 

contractile proteins to calcium. One possible explanation for this is that a chronically 

elevated intracellular calcium such as that observed in dystrophic muscles could cause 

a significant reduction in myofilament sensitivity (Holt & Christensen, 1997). 

 

6.2 Implications of the Findings 

The current study has shown a significant defect in myocardial calcium handling that 

could contribute significantly to the pathogenesis of dystrophin-deficient disorders. 

The L-type calcium channels are upregulated in mdx myocardium, and as such 

represent a pathway for calcium overload which contributes to necrosis of 
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cardiomyocytes. The study has also shown a potency shift to DHP compounds due to 

a proposed conformational change in the dihydropyridine receptor. Thus treatment 

protocols need to be adjusted according to these findings.  

 

Currently boys with DMD are routinely administered positive inotropic drugs to 

increase cardiac output. Based on the findings of the current study indicating inherent 

calcium overload, this practice may be detrimental to the patient. Skeletal myopathy 

is the overt clinical sign in DMD, yet cardiac and respiratory insufficiency account for 

almost all mortality associated with the disease. The current study would suggest that 

administration of a calcium channel antagonist when cardiomyopathy is first apparent, 

or even earlier may be of some benefit in reducing calcium-dependent pathogenesis. 

Similarly, the calcium channel antagonists have the added advantage of reducing the 

incidence of arrhythmias, which may become life-threatening in DMD. A reduction in 

intracellular calcium may also be of advantage in terms of skeletal muscle myopathy, 

since an increase in intracellular calcium seems to be an important step in the 

pathogenesis associated with the development of the myopathy. Previously, an in vivo 

trial of diltiazem improved dysfunctional calcium handling in a mouse model of 

hypertrophic cardiomyopathy due to a disruption of the sarcomere (Semsarian et al., 

2002). Early administration of diltiazem restored calcium handling protein levels to 

normal and prevented development of pathology (Semsarian et al., 2002). Therefore 

the early administration of drugs that reduce intracellular calcium overload may have 

therapeutic potential in dystrophin-deficient conditions.   

 

Administration of a calcium channel blocker prior to cardiomyopathy may be able to 

inhibit the observed increase in density of the DHPR. Further studies are warranted to 
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determine whether this event can be inhibited, and at what age these changes occur. 

Similarly, a reduction in intracellular calcium may be linked with prevention of 

apoptosis and cellular necrosis. The potential for prevention of the pathogenesis in 

DMD needs to be elucidated. 

 

6.3 Future Research Directions 

6.3.1 Longitudinal Study 

A longitudinal study needs to be undertaken in mdx to confirm the age at which 

cardiac changes are observed, and to correlate these changes with alterations in 

calcium handling. The current study has observed a particular pathobiology at one age 

only. It is unknown when the onset of these changes occur, and whether these changes 

are maintained as the animal ages. Similarly, it remains unknown whether the primary 

defect of a lack of dystrophin causes changes in the L-type calcium channels, or 

whether these changes are secondary to other changes that lead to an intracellular 

accumulation of calcium. The lack of sarcolemmal integrity associated with the loss 

of dystrophin must lead to mechanical changes of the myocardium. It is unknown at 

what age the mdx begins to manifest cardiomyopathy associated with dystrophin-

deficiency. Similarly, it is unknown to what extent utrophin is able to upregulate in 

mdx cardiac tissues, and to what degree of function utrophin is able to compensate. 

The mdx mouse remains a poorly understood model of dystrophin-deficiency, 

especially in terms of pathogenesis of cardiac abnormalities. 
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6.3.2 Calcium Channel Antagonists 

Future work should entail a controlled drug trial of the calcium channel antagonists in 

the mdx model of dystrophin-deficiency. With the observed upregulation of the L-

type calcium channel in mdx, it is expected that an antagonist to this channel would be 

beneficial in reducing the calcium dependent proteolysis in the myocardium. Calcium 

channel blockers have further advantages in reducing the possibility of arrhythmia in 

boys with DMD, and reducing cardiac workload, thus delaying heart failure 

associated with dystrophin-deficiency and respiratory insufficiency. Since the current 

study has observed an upregulation of the DHPR utilising several different techniques 

and at different levels of complexity, it is hypothesised that an in vivo controlled drug 

trial of a DHPR antagonist would reduce the intracellular calcium overload associated 

with dystrophin-deficiency. Given that this in turn may restore sensitivity of the 

contractile proteins, a marked reduction in contractility caused by the calcium channel 

antagonists may not occur. Similarly, since calcium overload is an initiating event in 

terms of cellular necrosis and apoptosis, a reduction in this calcium may have the 

potential to reverse or at least delay this pathogenesis. 

 

6.3.3 Patch Clamp and L-type Calcium Current 

Patch clamp data needs to be obtained for mdx and C57 cardiomyocytes at 12-14 

weeks of age to confirm that the L-type current is increased compared to normal at 

this age. This study attempted to obtain L-type calcium currents by patch clamping 

dystrophin-deficient and normal cardiomyocytes (see Appendix) but was 

unsuccessful. Future work should examine the current magnitude from mdx and C57 

cardiomyocytes for comparison and examine open probability, conductance and 
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inactivation of the L-type calcium channel. An antagonist to the DHPR should also be 

tested, to determine the potency of these drugs in reducing the L-type current. Based 

on the observations of the current study, it is hypothesised that the L-type current is 

larger in mdx compared to C57, and that a higher concentration of DHPR antagonist 

would be required to reduce the current in mdx by a similar extent to that observed in 

C57 cardiomyoctes. It would also be interesting to combine the longitudinal study 

with a patch clamp study, to observe changes in L-type current by age. 

 

6.3.4 The Sodium/calcium Exchanger as a Potential 

Contributor to Calcium Overload 

The role of the sodium/calcium exchanger in dystrophic myocardium is as yet 

unknown. As the primary mechanism mediating calcium efflux from the cytoplasm, it 

deserves attention as a potential contributor to calcium overload in dystrophin-

deficient myocardium. Also, since the protein is located on the sarcolemma, where 

dystrophin is absent, there is potential for dysfunction of the NCX in the absence of 

dystrophin. Similarly, in the presence of an intracellular calcium overload, there is a 

potential for changes in expression of the NCX in an attempt to maintain homeostasis. 

 

6.3.5 Calcium Binding Proteins 

In mdx skeletal muscle, the calcium sequestration proteins of the SR have been shown 

to be dysfunctional (Culligan et al., 2002). The function of the calcium sequestration 

proteins in cardiac SR has not been reported. Data from the current study support 

functional SERCA, and a leaky SR. A study needs to evaluate the function of the 

cardiac SR calcium binding proteins.  
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6.3.6 Myofilament Sensitivity to Calcium 

The current study and previous studies (Lu & Hoey 2000 a & b; Sapp et al., 1996) 

have observed a decrease in force production by the myocardium of dystrophin-

deficient mice. This reduced ability to produce force exists despite an increased 

intracellular calcium concentration. It is hypothesised that a chronic calcium overload 

produces conformational changes in Troponin to reduce the sensitivity of the 

myofilaments to calcium. A study of skinned cardiac myofilaments could determine 

whether or not the myofilaments are desensitised.  

 

6.4 Conclusion 

The current study has shown substantial evidence to support both a decrease in 

affinity of the DHPR in mdx due to a conformational change of the DHPR, and an 

increase in DHPR density. The decrease in affinity is supported by tissue bath data 

using an agonist and antagonist at the DHPR, and radioligand binding studies using 

[3H]-PN 200 110. An increase in receptor density is supported by radioligand binding 

studies, and DHPR mRNA levels. Both of these changes are also supported in 

functional data, whereby blocking SR calcium release and causing L-type calcium 

current to become the primary source of intracellular calcium caused a restoration of 

force in mdx atria, despite a usually impaired force of contraction.  

 

A decrease in affinity of the DHPR may be due to a conformational change due to an 

interaction with the DAGPC. Alternatively, a loss of sarcolemmal integrity due to the 

absence of dystrophin may be the primary cause of intracellular calcium overload, and 
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an increase in DHPRs occurs secondary to this calcium overload. A conformational 

change of the DHPR could represent a calcium-induced change due to initial calcium 

overload. If this hypothesis is correct, the lack of dystrophin may be the initial event 

in a cycle of abnormal calcium handling, whereby the myocardium attempts to 

maintain intracellular calcium homeostasis by increasing L-type calcium channels, 

however this leads to further dysfunctional calcium handling. Eventually calcium-

dependent proteolytic enzymes are activated and cellular necrosis begins to diminish 

the function of the myocardium. 

 

The reduced force of contraction observed in mdx myocardium may represent a 

diminished calcium sensitivity of the myofilaments, caused by chronic calcium 

overload, a hypothesis that needs to be tested. 

 

The delayed relaxation observed in mdx can not be attributed to dysfunctional 

SERCA. The current study has shown a trend towards the upregulation of SERCA, 

rather than a downregulation which could account for a delayed relaxation. The 

potential mechanisms for this observation remain a loss of the SR calcium binding 

proteins, a mechanism that has been observed in skeletal muscle, a leaky SR or a 

leaky sarcolemma which is also feasible given the location of dystrophin. 

 

Regardless of the basis for the delayed relaxation, the use of calcium channel 

antagonists in treating dystrophinopathy-related cardiomyopathy requires further 

research. Calcium influx via the calcium channels in mdx appears to be a substantial 

contributor to the lack of calcium homeostasis and resultant calcium overload. 



 136

REFERENCES 
 
Adachi-Akahane S, Amano Y, Okuyama R & Nagao T (1993) Quaternary diltiazem 
can act from both sides of the membrane in ventricular myocytes. Jpn J Pharmacol 61 
263-266. 
 
Ahn AH & Kunkel LM (1993) The structural and functional diversity of dystrophin. 
Nat Genet 3 (4) 283-291. 
 
Alcantara MA, Villarreal MT, Del Castillo V, Gutierrez G, Saldana Y, Maulen I, Lee 
R, Macias M & Orozco L (1999) High frequency of de novo deletions in Mexican 
Duchenne and Becker muscular dystrophy patients. Implications for genetic 
counseling. Clin Genet 55 (5) 376-380. 
 
Alderton JM & Steinhardt RA (2000) Calcium influx through calcium leak channels 
is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic 
myotubes. J Biol Chem 275 (13) 9452-9460. 
 
Alloatti G, Pia Gallo M, Penna C & Levi RC (1995) Properties of cardiac cells from 
dystrophic mouse. J Mol Cell Cardiol 27 1775-1779. 
 
Anand R & Emery AE (1982) Verapamil and calcium-stimulated enzyme efflux from 
skeletal muscle. Clin Chem 28 (7) 1482-1484.  
 
Anderson JE, McIntosh LM & Poettcker R (1996) Deflazacort but not prednisone 
improves both muscle repair and fiber growth in diaphragm and limb muscle in vivo 
in the mdx dystrophic mouse. Muscle Nerve 19 (12) 1576-1585.  
 
Anderson JL, Head SI, Rae C & Morley JW (2002) Brain function in Duchenne 
muscular dystrophy. Brain 125 (1) 4-10. 
 
Armstrong D, Erxleben C, Kalman D, Lai Y, Nairn A & Greengard P (1988) 
Intracellular calcium controls the activity of DHP-sensitive calcium channels through 
protein phosphorylation and its removal. J Gen Physiol 92, 10a. 
 
Backman E & Nylander E (1992) The heart in Duchenne muscular dystrophy: a non-
invasive longitudinal study. European Heart Journal 13 1239-1244. 
 
Bakker AJ, Head SL, Williams DA & Stephenson DG (1993) Ca2+ levels in myotubes 
grown from skeletal muscle of dystrophic (mdx) and normal mice. J Physiol 460 1-13. 
 
Barry WH (2000) Na+- Ca2+ exchange in failing myocardium: Friend or foe? Circ Res 
87 529-531.  
 
Baudet S, Shaoulian R & Bers DM (1993) Effects of thapsigargin and cyclopiazonic 
acid on twitch force and sarcoplasmic reticulum Ca2+ content of rabbit ventricular 
muscle. Circ Res 73 813-819. 
 



 137

Bean BP (1984) Nitrendipine block of cardiac calcium channels: high affinity binding 
to the inactivated state. Proc Nat Acad Sci 81 6388-6392. 
 
Berger F, Borchard U, Hafner D, Kammer T & Weis T (1991) Inhibition of potassium 
outward currents and pacemaker current in sheep cardiac Purkinje fibres by the 
verapamil derivative YS 035. Naunyn-Schmiedebergs Arch Pharmacol 344 (6) 653-
661. 
 
Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415 198-205. 
 
Bers DM (1991) Excitation-contraction coupling and cardiac contractile force. In: 
Symposium CF, editor. The physiological basis of Starling's law of the heart. Kluwer 
Academic Publisher 17-32. 
 
Bers DM & Bridge JHB (1989) Relaxation of rabbit ventricular muscle by Na-Ca 
exchange and sarcoplasmic reticulum calcium pump. Circ Res 65, 334-342. 
 
Bers DM & Perez-Reyes E (1999) Ca channels in cardiac myocytes: structure and 
function in Ca influx and intracellular Ca release. Cardiovasc Res 42 (2) 339-360.  
 
Bertorini TE, Bhattacharya SK, Palmieri GMA, Chesney CM, Pifer D & Baker B 
(1982) Muscle calcium and magnesium content in Duchenne muscular dystrophy. 
Neurology 32 1088-1092.  
 
Bertorini TE, Cornelio F, Bhattacharya SK, Palmieri GM, Dones I, Dworzak F & 
Brambati B (1984) Calcium and magnesium content in fetuses at risk and prenecrotic 
Duchenne muscular dystrophy. Neurology 34 (11) 1436-1440.  
 
Bertorini TE, Palmieri GMA, Griffin JW, Igarashi M, Hinton A & Karas JG (1991) 
Effect of dantrolene in Duchenne muscular dystrophy. Muscle Nerve 14 503-507.  
 
Bhattacharya SK, Palmieri GM, Bertorini TE & Nutting DF (1982) The effects of 
diltiazem in dystrophic hamsters. Muscle Nerve 5 (1) 73-78.  
 
Bia BL, Cassidy PL, Young ME, Rafael JA, Leighton B, Davies KE, Radda GK & 
Clarke Kieran (1999) Decreased myocardial nNOS, increased iNOS and Abnormal 
ECGs in mouse models of Duchenne muscular dystrophy. J Mol Cell Cardiol 31 
1857-1862.  
 
Bies RD, Friedman D, Roberts R, Perryman MB & Caskey CT (1992) Expression and 
localization of dystrophin in human cardiac Purkinje fibers. Circulation 86 (1) 147-
153.  
 
 
Bittner RE, Schofer C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E, 
Freilinger M, Hoger H, Elbe-Burger A & Wachtler F (1999) Recruitment of bone-
marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. 
Anat Embryl 199 391-396. 
 
Bodensteiner JB & Engel AG (1978) Intracellular calcium accumulation in Duchenne 



 138

dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. 
Neurology 28 (5) 439-446. 
 
Boland BJ, Silbert PL, Groover RV, Wollan PC & Silverstein MD (1996) Skeletal, 
cardiac and smooth muscle failure in Duchenne muscular dystrophy. Paediatric 
Neurology 14 (1) 7-12. 
 
Bolanos-Jimenez F, Bordais A, Behra M, Strahle U, Sahel J & Rendon A (2001) 
Dystrophin and Dp71, two products of the DMD gene, show a different pattern of 
expression during embryonic development in zebrafish. Mech Dev 102 (1-2) 239-241. 
 
Bosch RF, Scherer CR, Rub N, Wohrl S, Steinmeyer K, Haase H, Busch AE, Seipel L 
& Kuhlkamp V (2003) Molecular mechanisms of early electrical remodeling: 
transcriptional downregulation of ion channel subunits reduces ICa,L and Ito in rapid 
atrial pacing in rabbits. J Am Coll Cardiol 41 (5) 858-869.  
 
Bountra C, Kaila K & Vaughan-Jones RD (1988) Effect of repetitive activity upon 
intracellular pH, sodium and contraction in sheep cardiac Purkinje fibres. J Physiol 
Lond 398 341-360. 
 
Brandt NR, Kawamoto RM & Caswell AH (1985) Dihydropyridine binding sites on 
transverse tubules isolated from triads of rabbit skeletal muscle. J Recept Res 5 (2-
3)155-170.  
 
Braun U, Paju K, Eimre M, Seppet E, Orlova E, Kadaja L, Trumbeckaite S, Gellerich 
FN, Zierz S, Jocjush H & Seppet EK (2001) Lack of dystrophin is associated with 
altered integration of the mitochondria and ATPases in slow-twitch muscle cells of 
mdx mice. BBA 1505 258-270.  
 
Bridges LR (1986) The association of cardiac muscle necrosis and inflammation with 
the degenerative and persistent myopathy of mdx mice J Neurol Sci 72 (2-3) 147-57. 
 
Brodde O-E (1991) β1 and β2-adrenoceptors in the human heart: properties, function, 
and alterations in chronic heart failure. Pharmacol Rev 43 203-242. 
 
Brooks RR, Carpenter JF, Jones SM & Gregory CM (1989) Effects of dantrolene 
sodium in rodent models of cardiac arrhythmia. Eur J Pharmacol 164 (3) 521-530. 
 
Brown RH (1997) Dystrophin-associated proteins and the muscular dystrophies. Annu 
Rev Med 48 457-466. 
 
Bulfield G, Siller WG, Wight PAL & Moore KJ (1984) X chromosome-linked 
muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81 1189-1192. 
 
Burrow KL, Coovert DD, Klein CJ, Bulman DE, Kissel JT, Rammohan KW, Burghes 
AH & Mendell JR (1991) Dystrophin expression and somatic reversion in prednisone-
treated and untreated Duchenne dystrophy. CIDD Study Group. Neurology 41 (5) 
661-666.  



 139

Camacho SA, Wikman-Coffelt J, Wu ST, Watters TA, Botvinick EH, Sievers R, 
James TL, Jasmin G & Parmley WW (1988) Improvement in myocardial performance 
without a decrease in high-energy phosphate metabolites after isoproterenol in Syrian 
cardiomyopathic hamsters. Circulation 77 (3) 712-719. 
 
Carlson CG & Officer T (1996) Single channel evidence for a cytoskeletal defect 
involving acetylcholine receptors and calcium influx in cultured dystrophic (mdx) 
myotubes. Muscle Nerve 19 (9) 1116-1126. 
 
Catterall WA & Striessnig J (1992) Receptor sites for Ca2+ channel antagonists. 
Trends Pharmacol Sci 13 256-262. 
 
Caviedes R, Caviedes P, Liberona JL & Jaimovich E (1994) Ion channels in a skeletal 
muscle cell line from a Duchenne muscular dystrophy patient. Muscle Nerve 17 1021-
1028. 
 
Chamberlain JS (2002) Gene therapy of muscular dystrophy. Hum Mol Genet 11 (20) 
2355-2362. 
 
Chen F, Spicher K, Jiang M, Birnbaumer L & Wetzel GT (2001) Lack of muscarinic 
regulation of Ca2+ channels in Gi2 alpha gene knockout mouse hearts. Am J Physiol 
280 (5) H1989-H1995. 
 
Chu V, Otero JM, Lopez O, Sullivan MS, Morgan JP, Amende I & Hampton TG 
(2002) Electrocardiographic findings in mdx mice: A cardiac phenotype of Duchenne 
muscular dystrophy. Muscle Nerve 26 513-519. 
 
Cingolani HE, Wiedmann RT, Lynch JJ, Wenger HC, Scott AL, Siegl PKS & Stein 
RB (1990) Negative Lusitropic effect of DPI 201-106 and E4031. Possible role of 
prolonging actions potential duration. J Moll Cell Cardiol 22 1025-1034. 
 
Cohn RD, Durbeej M, Moore SA, Coral-Vazquez R, Prouty S & Campbell KP (2001) 
Prevention of cardiomyopathy in mouse models lacking the smooth muscle 
sarcoglycan-sarcospan complex. J Clin Invest 107 (2) R1-R7.  
 
Collet C, Allard B, Tourneur Y & Jacquemond V (1999) Intracellular calcium signals 
measured with indo-1 in isolated skeletal muscle fibres from control and mdx mice. J 
Physiol 520 (2) 417-429. 
 
Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM, Scott 
MO, Fischbeck KH, Kornegay JN, Avery RJ, Williams JR, Schmickel RD & 
Sylvester JE (1988) The homologue of the Duchenne locus is defective in X-linked 
muscular dystrophy of dogs. Nature 334 (6178) 154-156. 
 
Cooper PJ, Ward M-L, Hanley PJ, Denyer GR & Loiselle DS (2001) Metabolic 
consequences of a species difference in Gibbs free energy of Na+ /Ca2+ exchange: rat 
versus guinea pig. Am J Physiol 280 R1221-R1229. 
 



 140

Cote K, Proteau S, Teijeira J & Rousseau E (2000) Characterization of the 
sarcoplasmic reticulum K+ and Ca2+ - release channel-ryanodine receptor – in human 
atrial cells. J Moll Cell Cardiol 32 1-13. 
 
Coulton GR, Curtin NA, Morgan JE & Partridge TA (1988) The mdx mouse skeletal 
muscle myopathy: II. Contractile properties. Neuropathology and Applied 
Neurobiology 14 299-314. 
 
Cowan J, MacDessi J, Stark A & Morgan G (1980) Incidence of Duchenne muscular 
dystrophy in New South Wales and Australian Capital Territory. J Med Genet 17 245-
249. 
 
Cox GA, Cole NM, Matsumura K, Phelps SF, Hauschka SD, Campbell KP, Faulkner 
JA & Chamberlain JS (1993) Overexpression of dystrophin in transgenic mdx mice 
eliminates dystrophic symptoms without toxicity. Nature 364 (6439) 725-729.  
 
Cox GF & Kunkel LM (1997) Dystrophies and heart disease. Current opinions in 
Cardiology 12 329-343. 
 
Cox DA & Matlib MA (1993) A role for the mitochondrial Na+-Ca2+ exchanger in the 
regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem 
15 268 (2) 938-947. 
 
Crosbie RH, Heighway J, Venzke DP, Lee JC & Campbell KP (1997) Sarcospan, the 
25-kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol 
Chem 272 31221-31224. 
 
Cullen MJ & Mastaglia FL (1980) Morphological changes in dystrophic muscle. Br 
Med Bull 36 (2) 145-152. 
 
Culligan K, Banville N, Dowling P & Ohlendieck K (2002) Drastic reduction of 
calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle. J 
Appl Physiol 92  435-345. 
 
Culligan K & Ohlendieck K (2002) Abnormal calcium handling in muscular 
dystrophy. Basic Appl Myol 12 (4) 147-157.  
 
Cziner DG & Levin RI (1993) The cardiomyopathy of Duchenne’s muscular 
dystrophy and the function of dystrophin. Med Hypotheses 40 169-173. 
 
Dangain J & Neering IR (1993) Effect of caffeine and high potassium on normal and 
dystrophic mouse EDL muscles at various developmental stages. Muscle Nerve 16 (1) 
33-42. 
 
Danilou G, Comtois AS, Dudley R, Karpati G, Vincent G, Des Rosiers C & Petrof BJ 
(2001) Dystrophin-deficient cardiomyocytes are abnormally vulnerable to mechanical 
stress-induced contractile failure and injury. FASEB J 15 1655-1657. 
 



 141

Davidoff AJ, Maki TM, Ellingsen O & Marsh JD (1997) Expression of calcium 
channels in adult cardiac myocytes is regulated by calcium. J Mol Cell Cardiol 29 (7) 
1791-1803. 
 
Davies KE (1997) Challenges in Duchenne muscular dystrophy. Neuromuscul Disord 
7 (8) 482-486.  
 
Davies JE, Winokur TS, Aaron MF, Benza RL, Foley BA & Holman WL (2001) 
Cardiomyopathy in a carrier of Duchenne’s muscular dystrophy. J Heart Lung 
Transplant 20 781-784. 
 
Dawson DM (1966) Leakage of enzymes from denervated and dystrophic chicken 
muscle. Arch Neurol 14 (3) 321-325. 
 
De Backer F, Vandebrouck C, Gailly P & Gillis JM (2002) Long-term study of Ca2+ 
homeostasis and of survival in collagenase-isolated muscle fibres from normal and 
mdx mice. J Physiol 542.3 855-865. 
 
De Boer RA, Henning RH, Suurmeijer AJ, Pinto YM, Olthof E, Kirkels JH, van Gilst 
WH, Crijns HJ & van Veldhuisen DJ (2001) Early expression of natriuretic peptides 
and SERCA in mild heart failure: association with severity of the disease. Int J 
Cardiol 78 (1) 5-12. 
 
Deconinck N, Tinsley J, De Backer F, Fisher R, Kahn D, Phelps S, Davies K & Gillis 
JM (1997) Expression of truncated utrophin leads to major functional improvements 
in dystrophin-deficient muscles of mice. Nat Med 3 (11) 1216-1221. 
 
De La Porte S, Morin S & Koenig J (1999) Characteristics of skeletal muscle in mdx 
mutant mice. Int Rev Cytol 191 99-148. 
 
De Paoli P, Cerbai E, Koidl B, Kirchengast M, Sartiani L & Mugelli A (2002) 
Selectivity of different calcium antagonists on T- and L-type calcium currents in 
guinea-pig ventricular myocytes. Pharmacol Res 46 (6) 491-497.  
 
Divet A & Huchet-Cadiou C (2002) Sarcoplasmic reticulum function in slow- and 
fast-twitch skeletal muscles from mdx mice. Pflugers Arch 444 634-643. 
 
Donaldson SK, Best PM & Kerrick GL (1978) Characterization of the effects of Mg2+ 
on Ca2+ and Sr2+-activated tension generation of skinned rat cardiac fibers. J Gen 
Physiol 71 645-655. 
 
Duarte JA, Soares JM & Appell HJ (1992) Nifedipine diminishes exercise-induced 
muscle damage in mouse. Int J Sports Med 13 (3) 274-277. 
 
DuBell WH, Gigena MS, Guatimosim S, Long X, Lederer WJ & Rogers TB (2002) 
Effects of PP1/PP2A inhibitor calyculin A on the E-C coupling cascade in murine 
ventricular myocytes. Am J Physiol 282 (1) H38-48.  
 
Dubowitz V & Heckmatt J (1980) Management of muscular dystrophy: 
Pharmacological and physical aspects. Br Med Bull 36 (2) 139-144. 



 142

 
Dubrovsky AL, Angelini C, Bonifati DM, Pegoraro E & Mesa L (1998) Steroids in 
muscular dystrophy: where do we stand? Neuromuscul Disord 8 (6) 380-384. 
 
Dunn JF & Radda GK (1991) Total ion of skeletal and cardiac muscle in the mdx 
mouse dystrophy: Ca2+ is elevated at all ages. J Neurol Sci 103 226-231. 
 
Dupont-Versteegden E, McCarter RJ & Katz MS (1994) Voluntary exercise decreases 
progression of muscular dystrophy in diaphragm of mdx mice. J Appl Physiol 77 (4) 
1736-1741. 
 
Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R & Bushby K (2002) 
Survival in Duchenne muscular dystrophy: improvements in life expectancy since 
1967 and the impact of home nocturnal ventilation. Neuromuscul Disord 12 (10) 926-
929.  
 
Ebashi S, Toyokura Y, Momoi H & Sugita H (1959) High creatine phosphokinase 
activity in sera of progressive muscular dystrophy. J. Biochem 46 103-104. 
 
Ehrlich BE, Kaftan E, Bezprozvannaya S & Bezprozvanny I (1994) The 
pharmacology of intracellular Ca2+-release channels. Trends Pharmacol Sci 15 (5) 
145-149. 
 
Emery AE. (1991) Population frequencies of inherited neuromuscular diseases a 
world survey. Neuromuscul Disord 1 19-29. 
 
Emery AEH. (1993) Duchenne muscular dystrophy 2nd Edn. Oxford medical 
publications, Oxford. 
 
Emery AE & Burt D (1980) Intracellular calcium and pathogenesis and antenatal 
diagnosis of Duchenne muscular dystrophy. Br Med J 280 (6211) 355-357. 
 
Ervasti JM & Campbell KP (1993) Dystrophin-associated glycoproteins: their 
possible roles in the pathogenesis of Duchenne muscular dystrophy. Mol Cell Biol 
Hum Dis Ser 3 139-166. 
 
Even PC, Decrouy A & Chinet A (1994) Defective regulation of energy metabolism 
in mdx-mouse skeletal muscles. Biochem J 304 649-654. 
 
Fabiato A & Fabiato F (1975) Contractions induced by a calcium-triggered release of 
calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 
249 (3) 469-495.  
 
Fabiato A & Fabiato F (1978) Effects of pH on the myofilaments and the 
sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 
Lond 276 233-255. 
 
Fanin M, Melacini P, Angelini C & Danieli GA (1999) Could utrophin rescue the 
myocardium of patients with dystrophin gene mutations? J Mol Cell Cardiol 31 1501-
1508.  



 143

 
Ferrari R, Cucchini F, Bolognesi R, Bachetti T, Boraso A, Bernocchi P, Gaia G & 
Visioli O (1994) How do calcium antagonists differ in clinical practice? Cardiovasc 
Drugs Ther 8 Suppl 3 565-575. 
 
Finsterer J & Stollberger C (2003) The heart in human dystrophinopathies. 
Cardiology 99 (1) 1-19. 
 
Fiolet JWT, Baartscheer A & Schumacher CA (1995) Intracellular [Ca2+] and VO2 
after manipulation of the free-energy of the Na+/Ca2+-exchanger in isolated rat 
ventricular myocytes. J Mol Cell Cardiol 27 1513-1525. 
 
Fisher R, Tinsley JM, Phelps SR, Squire SE, Townsend ER, Martin JE & Davies KE 
(2001) Non-toxic ubiquitous over-expression of utrophin in the mdx mouse. 
Neuromusc Disord 11 713-721. 
 
Fong PY, Turner PR, Denetclaw WF & Steinhardt RA (1990) Increased activity of 
calcium leak channels in myotubes of Duchenne human and mdx mouse origin. 
Science 250 (4981) 673-676. 
 
Franco A Jr & Lansman JB (1990) Calcium entry through stretch-inactivated ion 
channels in mdx myotubes. Nature 344 (6267) 670-673.  
 
Fratea S, Langeron O, Lecarpentier Y, Coriat P & Riou B (1997) In vitro effects of 
dantrolene on rat myocardium. Anesthesiology 86 (1) 205-215. 
 
Fruen BR, Bardy JM, Byrem TM, Strasburg GM & Louis CF (2000) Differential Ca2+ 
sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of 
calmodulin. Am J Physiol 279 (3) C724-C733.  
 
Gardener-Medwin D (1980) Clinical features and classification of the muscular 
dystrophies. Br Med Bull 36 (2) 109-115. 
 
Gillis JM (1996) Membrane abnormalities and Ca2+ homeostasis in muscles of the 
mdx mouse, an animal model of the Duchenne muscular dystrophy: a review. Acta 
Physiol Scand 156 397-406. 
 
Gillis JM & Deconinck N (1998) The physiological evaluation of gene therapies of 
dystrophin-deficient muscles. Adv Exp Med Biol 453 411-417. 
 
Gnecchi-Ruscone T, Taylor J, Mercuri E, Peternostro G, Pocue R, Bushby K, Sewry 
C, Muntoni F & Camici PG (1999) Cardimyopathy in Duchenne, Becker and 
Sarcoglycanopathies: A role for coronary dysfunction? Muscle Nerve 22 2549-2556. 
 
Goldberg SJ, Feldman L, Reinecke C, Stern LZ, Sahn DJ & Allen HD (1980) 
Echocardiographic determination of contraction and relaxation measurements of the 
left ventricular wall in normal subjects and patients with muscular dystrophy. 
Circulation 62 (5) 1061-1069.  
 



 144

Gopalakrishnan M, Triggle DJ, Rutledge A, Yong WK, Bauer JA & Ho-Lueng F 
(1991) Regulation of K+ and Ca2+ channels in experimental cardiac failure. Am J 
Physiol 261 H1979-H1987. 
 
Gordon T & Stein RB (1985) Temperature effects on the kinetics of force generation 
in normal and dystrophic mouse muscles. Experimental Neurology 89 348-360. 
 
Gurusinghe AD, Wilce MC, Austin L & Hearn MT (1991) Duchenne muscular 
dystrophy and dystrophin: sequence homology observations. Neurochem Res 16 (6) 
681-686. 
 
Hain J, Onoue H, Mayrleitner M, Fleischer S & Schindler H (1995) Phosphorylation 
modulates the function of the calcium release channel of sarcoplasmic reticulum from 
cardiac muscle. J Biol Chem 270 2074-2081. 
 
Hainsey TA, Senapi S, Kuhn DE & Rafael JA (2003) Cardiomyopathy features 
associated with muscular dystrophy are independent of dystrophin absence in 
cardiovasculature. Neuromusc Disord 13 294-302. 
 
Hammerer-Lercher A, Erlacher P, Bittner R, Korinthenberg R, Skladal D, Sorichter S, 
Sperl W, Puschendorf B & Mair J (2001) Clinical and experimental results on cardiac 
troponin expression in Duchenne muscular dystrophy. Clin Chem 47 (3) 451-458. 
 
Hamplova-Peichlova J, Krusek J, Paclt I, Slavicek J, Lisa V & Vyskocil F (2002) 
Citalopram inhibits L-type calcium channel current in rat cardiomyocytes in culture. 
Physiol Res 51 (3) 317-21.  
 
Hara H, Nolan PM, Scott MO, Bucan M, Wakayama Y & Fishbeck KH (2002) 
Running endurance abnormality in mdx mice. Muscle Nerve 25 207-211. 
 
Haws CM & Lansman JB (1991) Developmental regulation of mechanosensitive 
calcium channels in skeletal muscle from normal and mdx mice. Proc R Soc Lon 245 
173 –177. 
 
Head SI (1993) Membrane potential, resting calcium and calcium transients in 
isolated fibres from normal and dystrophic mice. J Physiol 469 11-19. 
 
Hegreberg GA, Camacho Z & Gorham JR (1974) Histopathologic description of 
muscular dystrophy of mink. Arch Pathol 97 (4) 225-229. 
 
Hescheler J, Pelzer D, Trube G & Trautwein W (1982) Does the organic calcium 
channel blocker D600 act from inside or outside on the cardiac cell membrane? 
Pflugers Arch Eur J Physiol 393 287-291. 
 
Hinton VJ, De Vivo DC, Nereo NE, Goldstein E & Stern Y (2000) Poor verbal 
working memory across intellectual level in boys with Duchenne dystrophy. 
Neurology. 54 (11) 2127-2132. 
 
Hjemdahl P & Wallen NH (1997) Calcium antagonist treatment, sympathetic activity 
and platelet function. Eur Heart J 18 Suppl A 36-50.  



 145

 
Hockerman GH, Peterson BZ, Sharp E, Tanada TN, Scheuer T& Catterall WA (1997) 
Construction of a high-affinity receptor site for dihydropyridine agonists and 
antagonists by single amino acid substitutions in a non-L-type Ca2+ channel. PNAS 
USA 94 (26) 14906-14911.  
 
Hoffman, EP (2001) Dystrophinopathies Research Centre for Genetic Medicine, 
Washington. 
 
Hoffman EP, Brown RJ & Kunkel LM (1987) Dystrophin: the protein product of the 
Duchenne muscular dystrophy locus. Cell 51 919-928. 
 
Hoffman LM, Maguire AM & Bennett J (1997) Cell-mediated immune response and 
stability of intraocular transgene expression after adenovirus-mediated delivery. 
Invest Ophthalmol Vis Sci 38 (11) 2224-2233. 
 
Hoffman EP & Dressman D (2001) Molecular pathophysiology and targeted 
therapeutics for muscular dystrophy. Trends Pharmacol Sci 22 (9) 465-470.  
 
Hohenegger M & Suko J (1993) Phosphorylation of the purified cardiac ryanodine 
receptor by exogenous and endogenous protein kinases. Biochem J 296 303-308. 
 
Holt E & Christensen G (1997) Transient Ca2+ overload alters Ca2+ handling in rat 
cardiomyocytes: effects on shortening and relaxation. Am J Physiol 273 (2 Pt 2) 
H573-H582. 
 
Hoogerwaard EM, van der Wouw PA, Wilde AAM, Bakker ER, Ippel PF, Oosterwijk 
JC, Majoor-Krakauer DF, van Essen AJ, Leschot NJ & deVisser M (1999) Cardiac 
involvement in carriers of Duchenne and Becker muscular dystrophy. Neromuscul 
Disord 9 347-351. 
 
Hotchkiss RS, Osborne DF, Lappas GD & Karl IE (1995) Calcium antagonists 
decrease plasma and tissue concentrations of tumor necrosis factor-alpha, interleukin-
1 beta, and interleukin-1 alpha in a mouse model of endotoxin. Shock 3 (5) 337-342. 
 
Howlett SE & Gordon T (1987) Calcium channels in normal and dystrophic hamster 
muscle: [3H]nitrendipine binding studies. Biochem Pharm 36 2653-2659. 
 
Hunsaker RH, Fulkerson PK, Barry FJ, Lewis RP, Leier CV & Unverferth DV (1982) 
Cardiac function in Duchenne's muscular dystrophy. Results of 10-year follow-up 
study and noninvasive tests. Am J Med 73 (2) 235-238. 
 
Hunter S (1980) The heart in muscular dystrophy. Br Med Bull 36 (2) 133-134. 
 
Ikeda Y, Martone M, Gu Y, Hoshijima M, Thor A, Oh SS, Peterson KL & Ross J 
(2000) Altered membrane proteins and permeability correlate with cardiac 
dysfunction in cardiomyopathic hamsters. Am J Physiol 278 H1362-H1370. 
 
Ishikawa Yuka, Bach JR, Ishikawa Yukitoshi & Minami R (1995) A management 
trial for Duchenne cardiomyopathy. Am J Phys Med Rehabil 74 435-350.  



 146

 
Ishikawa Y, Bach JR & Minami R (1999) Cardioprotection for Duchenne's muscular 
dystrophy. Am Heart J 137 (5) 895-902.  
 
Jahn H, Nastainczyk W, Rohrkasten A, Schneider T & Hoffman F (1988) Site-
specific phosphorylation of the purified receptor for calcium-channel blockers by 
cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-
dependent protein kinase II. Eur J Biochem 178 535-542. 
 
Jasmin G, Solymoss B & Proschek L (1979) Therapeutic trials in hamster dystrophy.  
Ann N Y Acad Sci 317 338-348. 
 
Johnson PJ & Bhattacharya SK (1993) Regulation of membrane-mediated chronic 
muscle degerneration in dystrophic hamsters by calcium-channel blockers: diltiazem, 
nifedipine and verapamil. J Neurol Sci 115 (1) 76-90. 
 
Kakulas BA (1997) Problems and potential for gene therapy in Duchenne muscular 
dystrophy. Neuromuscul Disord 7 (5) 319-324. 
 
Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, de Groat 
WC & Peterson J (2001) Identification of a neuronal nitric oxide synthase in isolated 
cardiac mitochondria using electrochemical detection. PNAS USA 98 (24) 14126-
14131. 
 
Kamper A & Rodemann HP (1992) Alterations of protein degradation and 2-D 
protein pattern in muscle cells of mdx and DMD origin. Biochem Biophys Res 
Commun 189 (3) 1484-1490.  
 
Kanda S, Adachi-Akahane S & Nagao T (1998) Functional interaction between 
benzothiazepine- and dihydropyridine binding sites of cardiac L-type Ca2+ channels. 
Eur J Pharm 358 277-287. 
 
Kargacin ME & Kargacin GJ (1996) The sarcoplasmic reticulum calcium pump is 
functionally altered in dystrophic mice. BBA 1290 4-8. 
 
Karpati G (1990) The principles and practice of myoblast transfer. Adv Exp Med Biol 
280 69-74. 
 
Kass RS & Arena JP (1989) Influence of pHo on calcium channel block by 
amlodipine, a charged DHP compound: Implications for location of the DHP receptor. 
J Gen Physiol 93 1109-1127. 
 
Kass RS, Arena JP & Chin S (1991) Block of L-type calcium channels by charged 
DHPs: Sensitivity to side of application and calcium. J Gen Physiol 98 63-75. 
 
Keep NH, Norwood FLM, Moores CA, Winder SJ & Kendric-Jones J (1999) The 2.0 
a structure of the second calponin homology domain from the actin-binding region of 
the dystrophin homologue utophin. JMB 285 1257-1264.  
 



 147

Kentish JC (1986) The effects of inorganic phosphate and creatine phosphate on force 
production in skinned muscles from rat ventricle. J Physiol Lond 370 585-604. 
 
Khan MA (1993) Corticosteroid therapy in Duchenne muscular dystrophy. J Neurol 
Sci 120 (1) 8-14.  
 
Kimura Y, Kurzydlowski K, Tada M & MacLennan DH (1996) Phospholamban 
regulates the Ca2+-ATPase through intramembrane interactions. J Biol Chem 271, 
21726-21731. 
 
Kingston HM, Harper PS, Pearson PL, Davies KE, Williamson R & Page D (1983) 
Localisation of gene for Becker muscular dystrophy. Lancet 2 (8360) 1200. 
 
Kissel JT, Burrow KL, Rammohan KW & Mendell JR (1991) Mononuclear cell 
analysis of muscle biopsies in prednisone-treated and untreated Duchenne muscular 
dystrophy. CIDD Study Group. Neurology 41 (5) 667-672. 
 
Kocic I, Dworakowska D & Dworakowski R (1998) Different aspects of the effects of 
thapsigargin on automatism, contractility and responsiveness to phenylephrine in 
cardiac preparations from rats and guinea pigs. Pharm Res 37 (4) 273-280.  
 
Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C & Kunkel LM (1987) 
Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and 
preliminary genomic organization of the DMD gene in normal and affected 
individuals. Cell 50 (3) 509-517. 
 
Koenig M, Monaco AP & Kunkel LM (1988) The complete sequence of dystrophin 
predicts a rod-shaped cytoskeletal protein. Cell 53 (2) 219-222. 
 
Kornegay JN, Tuler SM, Miller DM & Levesque DC (1988) Muscular dystrophy in a 
litter of golden retriever dogs. Muscle Nerve 11 1056-1064. 
 
Kovick RB, Fogelman AM, Abbasi AD, Peter JB & Pearce ML (1975) 
Echocardiographic evaluation of posterior left ventricular wall motion in muscular 
dystrophy. Circulation 52 (3) 447-454. 
 
Kunkel L, Burns G, Aldrige J & Latt S (1985) Genetic analysis of Duchenne 
dystrophy. Adv Exp Med Biol 182 287-294. 
 
Kuo TA, Zhu L, Golden K, Marsh JD, Bhattacharya SK & Liu B-F (2002) Altered 
Ca2+ homeostatsis and impaired mitochondrial function in cardiomyopathy. Mol Cell 
Biochem 283 119-127. 
 
Kuznetsov AV, Winkler K, Wiedermann FR, von Bossanyi P, Dietzmann K & Kunz 
WS (1998) Impaired mitochondrial oxidative phosphorylation in skeletal muscle of 
the dystrophin-deficient mdx mouse. Molecular and Cellular Biology 183 87-96. 
 
Lachnit WG. Phillips M, Gayman KJ & Pessah IN (1994) Ryanodine and 
dihydropyridine binding patterns and ryanodine receptor mRNA level in myopathic 
hamster heart. Am J Physiol 267 H1205-H1213. 



 148

 
Lamb GD (2000) Excitation-contraction coupling in skeletal muscle: comparisons 
with cardiac muscle. Clin Exp Pharmacol Physiol 27 (3) 216-224. 
 
Lidov HG, Byers TJ, Watkins SC & Kunkel LM (1990) Localization of dystrophin to 
postsynaptic regions of central nervous system cortical neurons. Nature 348 (6303) 
725-728. 
 
Loiselle DS (1987) Cardiac basal and activation metabolism. Basic Res Cardiol 82 
37-50. 
 
Lu S & Hoey A (2000a) Changes in function of cardiac receptors mediating the 
effects of the autonomic nervous system in the muscular dystrophy (mdx) mouse. J 
Mol Cell Cardiol 32 143-152.  
 
Lu S & Hoey A (2000b) Age- and sex-associated changes in cardiac β1-adrenoceptors 
from the muscular dystrophy (mdx) mouse. J Mol Cell Cardiol 32 1661-1668. 
 
Lu QL, Mann CJ, Lou F, Bou-Gharios G, Morris GE, Xue SA, Fletcher S, Partridge 
TA & Wilton SD (2003) Functional amounts of dystrophin produced by skipping the 
mutated exon in the mdx dystrophic mouse. Nat Med 9 (8) 1009-1014. 
 
Lucas-Heron B (1996) Absence of a calmitine-specific protease inhibitor in skeletal 
muscle mitochondria of patients with Duchenne’s muscular dystrophy. Biochem 
Biophys Res Comm 225 701-704. 
 
Lucas-Heron B, Loirat MJ, Ollivier B & Leoty C (1987) Calcium-related defects in 
cardiac and skeletal muscles of dystrophic mice. Comp Biochem Physiol 86B: 295-
301. 
 
Maier LS, Brandes R, Pieske B & Bers DM (1998) Effects of left vetricular 
hypertrophy on force Ca2+ handling in isolated rat myocardium. Am J Physiol 274 
H1361-H1370.  
 
Maki T, Gruver EJ, Davidoff AJ, Izzo N, Toupin D, Colucci W, Marks AR & Marsh 
JD (1996) Regulation of calcium channel expression in neonatal myocytes by 
catecholamines. J Clin Invest 97 (3) 656-663. 
 
Mallouk N, Jacquemond V & Allard B (2000) Elevated subsarcolemmanl Ca2+ in mdx 
mouse skeletal muscle fibres detected with Ca2+-activated K+ channels. PNAS 97 (9) 
4950-4955. 
 
Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S, Morgan JE, Partridge 
TA & Wilton SD (2001) Antisense-induces exon skipping and synthesis of dystrophin 
in the mdx mouse. PNAS 98 42-47. 
 
Mann CJ, Honeyman K, McClorey G, Fletcher S & Wilton SD (2002) Improved 
antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular 
dystophy. J Gene Med 4 644-654. 
 



 149

Marks AR (2001) Ryanodine receptors/calcium release channels in heart failure and 
sudden cardiac death. J Mol Cell Cardiol 33 (4) 615-624. 
 
Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N & Marks 
AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release 
channel (ryanodine receptor): defective regulation in failing hearts. Cell 101 365-376. 
 
Matsumura K, Tome FMS, Ionasescu V, Ervasti JM, Anderson RD, Romero NB, 
Simon D, Recan D, Kaplan J-C, Fardeau M & Campbell KP (1993) Deficiency of 
dystrophin-associated proteins in Duchenne muscular dystrophy patients lacking 
COOH-terminal domains of dystrophin. J Clin Invest 92 866-871. 
 
McArdle A, Edwards RHT & Jackson MJ (1995) How does dystrophin deficiency 
lead to muscle degeneration? Evidence from the mdx mouse. Neuromuscul Disord 5 
445-456. 
 
McCance KL & Huether SE (1990) Pathophysiology: The biological basis for disease 
in adults and children. Mosby, St. Louis. 
 
McCarter GC, Dentclaw WF, Reddy P & Steinhardt RA (1997) Lipofection of a 
cDNA plasmid containing the dystrophin gene lowers intracellular free calcium and 
calcium leak channel activity in mdx myotubes. Gene Therapy 4 483-487.  
 
McDearmon EL, Burwell AL, Combs AC, Renley BA, Sdano MT & McEvasti JM 
(1998) Differential heparin sensitivity of alpha-dystroglycan binding to laminins 
expressed in normal and dy/dy mouse skeletal muscle. J Biol Chem 273 (37) 24139-
24144.  
 
McGeachie JK, Grounds MD, Partridge TA & Morgan JE (1993) Age-related changes 
in replication of myogenic cells in mdx mice: quantitative autoradiographic studies. J 
Neurol Sci 119 (2) 169-179.  
 
Megeney LA, Kablar B, Perry RLS, Ying C, May L & Rudnicki MA (1999) Severe 
cardiomyopathy in mice lacking dystrophin and MyoD. PNAS USA 96 220-225. 
 
Meissner A, Szymanska G & Morgan JP (1996) Effects of dantrolene sodium on 
intracellular Ca2+-handling in normal and Ca2+-overloaded cardiac muscle. Eur J 
Pharmacol 316 (2-3) 333-342. 
 
Melacini P, Fanin M, Danieli GA, Fasoli G, Villanova C, Angelini C, Vitiello L, 
Miorelli M, Buja GF & Mostacciuolo ML (1993) Cardiac involvement in Becker 
muscular dystrophy. J Am Coll Cardiol 22 (7) 1927-1934. 
 
Melacini P, Vianello A, Villanova C, Fanin M, Miorin M, Angelini C & Dalla Volta S 
(1996) Cardiac and respiratory involvement in advanced stage Duchenne muscular 
dystrophy. Neuromuscul Disord 6 (5) 367-376.  
 
Melacini P, Fanin M, Angelini A, Pegoraro E, Livi U, Danieli GA, Hoffman EP, 
Thiene G, Dalla Volta S & Angelini C (1998) Cardiac transplnatation in Duchenne 
muscular dystrophy carrier. Neuromuscul Disord 8 585-590. 



 150

 
Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson 
S, McAndrew PE & Rice R (1995) Myoblast transfer in the treatment of Duchenne's 
muscular dystrophy. N Engl J Med 333 (13) 832-838.  
 
Meng H, Leddy JJ, Frank J, Holland P & Tuana BS (1996) The association of cardiac 
dystrophin with myofibrils/Z-disc regions in cardiac muscle suggests a novel role in 
the contractile apparatus. J Biol Chem 271 (21) 12364-12371. 
 
Metzger JM, Greaser ML & Moss RL (1989) Variations in cross-bridge attachment 
rate and tension with phosphorylation of myosin in mammalian skinned skeletal 
muscle fibers. Implications for twitch potentiation in intact muscle. J Gen Physiol 93 
(5) 855-883.  
 
Meyer M, Trost SY, Bluhm WF, Knot HJ, Swamson E & Dillmann WH (2001) 
Impaired sacroplasmic reticulum function leads to contractile dysfunction and cardiac 
hypertrophy. Am J Physiol 280 H2046-H2050. 
 
Miller RG & Hoffman EP (1994) Molecular diagnosis and modern management of 
Duchenne muscular dystrophy. Neurol Clin 12 (4) 699-725. 
 
Minajeva A, Kaasik A, Paju K, Seppet E, Lompre AM, Veksler V & Ventura-Clapier 
R (1997) Sarcoplasmic reticulum function in determining atrioventricular contractile 
differences in rat heart. Am J Physiol 273 (5 Pt 2) H2498-H2507. 
 
Mittmann C, Munstermann U, Weil J, Bohm M, Herzig S, Nienaber C & 
Eschenhagen T (1998) Analysis of gene expression patterns in small amounts of 
human ventricular myocardium by a multiplex RNase protection assay. J Mol Med 76 
(2) 133-140.  
 
Mirit E, Gross C, Hasin Y, Palmon A & Horowitz M (2000) Changes in cardiac 
mechanics with heat acclimation: adrenergic signaling and SR-Ca regulatory proteins. 
Am J Physiol 279 R77-R85. 
 
Miyazaki K, Adaniya H, Sawanobori T & Hiraoka M (1996) Electrophysiological 
effects of clentiazem, a new Ca2+ antagonist, on rabbit hearts. J Cardiovasc 
Pharmacol 27 (5) 612-621. 
 
Miyazato H, Biro S, Setoguchui M, Maeda M, Tashiro T, Nakao S & Tanaka H 
(1997) Abnormal immunostaining for dystrophin in isoproterenol-induced acute 
myocardial injury in rats: Evidence for change in dystrophin in the absence of genetic 
defect. J Mol Cell Cardiol 29 1217-223.  
 
Moise NS, Valentine BA, Brown CA, Erb HN, Beck KA, Cooper BJ & Gilmour RF 
(1991) Duchenne's cardiomyopathy in a canine model: electrocardiographic and 
echocardiographic studies. J Am Coll Cardiol 17 (3) 812-820. 
 
Mori K, Kobayashi S, Saito T, Masuda Y & Nakaya H (1998) Inhibitory effects of 
class I and IV antiarrhythmic drugs in the Na+-activated K+ channel current in guinea 
pig ventricular cells. Naunyn-Schmiedebergs Arch Pharmacol 358 (6) 641-648. 



 151

 
Morii I, Kilhara Y, Konishi T, Inubushi T & Sasayama S (1996) Mechanism of the 
negative force-frequency relationship in physiologically intact rat ventricular 
myocardium: Studies by intracellular Ca2+ monitor with indo-1 and 31P-Nuclear 
magnetic resonance spectroscopy. Jpn Circ J 60 593-603. 
 
Mule F & Serio R (2001) Increased calcium influx is responsible for the sustained 
mechanical tone in colon from dystrophic (mdx) mice. Gastroenterology 120 (6) 
1430-1437. 
 
Munch G, Bolck B, Hoischen S, Brixius K, Bloch W, Reuter H & Schwinger RH 
(1998) Unchanged protein expression of sarcoplasmic reticulum Ca2+-ATPase, 
phospholamban, and calsequestrin in terminally failing human myocardium. J Mol 
Med 76 (6) 434-441.  
 
Murphy WA, Totty WG & Carroll JE (1986) MRI of normal and pathologic skeletal 
muscle. AJR Am J Roentgenol 146 (3) 565-574.  
 
Murray JM, Davies KE, Harper PS, Meredith L, Mueller CR & Williamson R (1982) 
Linkage relationship of a cloned DNA sequence on the short arm of the X 
chromosome to Duchenne Muscular Dystrophy. Nature 300 69-71. 
 
Nakamura A, Yoshida K, Takeda S, Dohi N & Ikeda S (2002) Progression of 
dystrophic features and activation of mitogen-activated protein kinases and 
calcineurin by physical exercise, in hearts of mdx mice. FEBS Lett 520 (1-3) 18-24. 
 
Nakayama H & Kuniyasu A (1996) Identification of binding sites for calcium channel 
antagonists. Jpn Heart J 37 (5) 643-650. 
  
Nagy B & Samaha FJ (1986) Membrane defects in Duchenne dystrophy: protease 
affecting sarcoplasmic reticulum. Ann Neurol 20 (1) 50-56.  
 
Nario K & Satoh H (1996) Cardiac mechanical and electrophysiologic modulations of 
guinea-pig by caffeine and thapsigargin. Gen Pharmacol 27 (7) 1227-1235. 
 
Newsom-Davis J (1980) The respiratory system in muscular dystrophy. Br Med Bull 
36 (2) 135-138. 
 
NHMRC (National Health and Medical Research Council) 1995, Australian Code of 
Practice for the Care and Use of Animals for Scientific Purposes, Australian 
Government Publishing Service, Canberra. 
 
Niggli E (1999) Localized intracellular calcium signaling in muscle: calcium sparks 
and calcium quarks. Annu Rev Physiol 61 311-335.  
 
Nolan MA, Jones ODH, Pedersen RL & Johnston HM (2003) Cardiac assessment in 
childhood carriers of Duchenne and Becker muscular dystrophies. Neuromuscul 
Disord 13 129-132. 
 
Noll G, Wenzel RR, Shaw S & Luscher TF (1998) Calcium antagonists and 



 152

sympathetic nerve activation: are there differences between classes? J Hypertens 
Suppl 16 (1) S17-24. 
 
Nonaka I (1998) Animal models of muscular dystrophies. Lab Anim Sci 48 (1) 8-17. 
 
Nuss HB & Marban E (1994) Electrophysiological properties of neonatal mouse 
cardiac myocytes in primary culture.  J Physiol 479 265-277. 
 
Okinaka S, Sugita H, Momoi H, Toyokura Y, Kumagai H, Ebashi S & Fujie Y (1959) 
Serum creatine phosphokinase and aldolase activity in neuromuscular disorders. 
Trans Am Neurol Assoc 84 62-64. 
 
Pacioretty LM, Cooper BJ & Gilmour RF (1992) Cellular electrophysiology of 
murine and canine cardiac muscle in Duchenne muscular dystrophy. Biophys J 61 
A306-A307 
 
Pacioretty LM, Cooper BJ & Gilmour RF (1994) Reduction of the transient outward 
potassium current in canine X-linked muscular dystrophy. Circulation 90 (3) 1350-
1356. 
 
Palmieri GMA, Nutting DF, Bhattacharya SK, Bertorini TE & Williams JC (1981) 
Parathyroid ablation in dystrophic hamsters. J Clin Invest 68 646-654. 
 
Partridge T (1991) Animal models of muscular dystrophy – what can they teach us? 
Neuropathology and Applied Neurobiology 17 353-363. 
 
Partridge TA, Morgan JE, Coulton GR, Hoffman EP & Kunkel LM (1989) 
Conversion of mdx myofibres from dystrophin-negative to –positive by injection of 
normal myoblasts. Nature 337 176-179. 
 
Pastoret C & Sebille A (1995) mdx mice show progressive weakness and muscle 
deterioration with age. J Neurol Sci 129 97-105. 
 
Paulson GD, Pope AL & Baumann CA (1966) Lactic dehydrogenase isoenzymes in 
tissues and serum of normal and dystrophic lambs. Proc Soc Exp Biol Med 122 (2) 
321-324. 
 
Pereon Y, Dettbarn C, Navarro J, Noireaud J & Palade PT (1997) Dihydropyridine 
receptor gene expression in skeletal muscle from mdx and control mice. Biochim 
Biophys Acta 1362 201-207. 
 
Peri V, Ajdukovic B, Holland P & Tuana B (1994) Dystrophin predominantly 
localizes to the transverse tubule/Z-line regions of single ventricular myocytes and 
exhibits distinct associations with the membrane. Mol Cell Biochem 130 57-65. 
 
Periasamy M & Huke S (2001). SERCA pump level is a critical determinant of Ca2+ 
homeostasis and cardiac contractility. J Mol Cell Cardiol 33 1053-1063. 
 



 153

Perloff JK, Henze E & Schelbert HR (1984) Alterations in regional myocardial 
metabolism, perfusion, and wall motion in Duchenne muscular dystrophy studied by 
radionuclide imaging. Circulation 69 (1) 33-42. 
 
Pery-Man N, Chemla D, Coirault C, Suard I, Riou B & Lecarpentier Y (1993) A 
comparison of cyclopiazonic acid and ryanodine effects on cardiac muscle relaxation. 
Am J Physiol 265 H1364-1372. 
 
Peterson BZ & Catterall WA (1995) Calcium binding in the pore of L-type calcium 
channels modulates high affinity dihydropyridine binding. J Biol Chem 270 18201-
18204. 
 
Petrof BJ, Lochmuller H, Massie B, Yang L, Macmillan C, Zhao JE, Nalbantoglu J & 
Karpati G (1996) Impairment of force generation after adenovirus-mediated gene 
transfer to muscle is alleviated by adenoviral gene inactivation and host  CD8+ T cell 
deficiency. Hum Gene Ther 7 (15) 1813-1826. 
 
Ponce-Hornos JE, Bonazzola P & Taquini AC (1987) The role of extracellular sodium 
on heart muscle energetics. Pflugers Arch 409 163-168. 
 
Ponce-Hornos JE, Parker JM & Langer GA (1990) Heat production in isolated heart 
mycoytes: differences among species. Am J Physiol 258 H880-H886. 
 
Ponce-Hornos JE, Marquez MT & Bonazzola P (1992) Influence of extracellular 
potassium on energetics of resting heart muscle. Am J Physiol 262 H1081-H1087. 
 
Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, 
Li J, Guo W & Andrade FH (2002) A chronic inflammatory response dominates the 
skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Gen 
11 (3) 263-272. 
 
Poukka R (1966) Tissue lipids in calves suffering from muscular dystrophy. Br J Nutr 
20 (2) 245-256. 
 
Prabhu SD (1998) Ryanodine and the left ventricular force-interval and relaxation-
interval relations in closed-chest dogs: insights on calcium handling. Cardiovascular 
Research 40 483-491.  
 
Pressmar J, Brinkmeier H, Seewald MJ, Naumann T & Rudel R (1994) Intracellular 
Ca2+ concentrations are not elevated in resting cultured muscle from Duchenne 
(DMD) patients and in mdx mouse muscle fibres. Pflugers Arch 426 499-505. 
 
Radda GK (1999) Of mice and men: from early NMR studies of the heart to 
physiological genomics. Biochem Biophys Res Commun 266 (3) 723-728. 
 
Rafael JA, Tinsley JM, Potter AC, Deconinck AE & Davies KE (1998) Skeletal 
muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin 
deficient mice. Nat Genet 19 (1) 79-82. 
 



 154

Reilly AM, Williams DA & Dusting GJ (1996) Dexamethasone inhibits endotoxin-
induced changes in calcium and contractility in rat isolated papillary muscle. Cell 
Calcium 26 1-8. 
 
Reimer KA, Lowe JE & Jennings RB (1977) Effect of the calcium antagonist 
verapamil on necrosis following temporary coronary artery occlusion in dogs. 
Circulation 55 (4) 581-587.  
 
Richard S, Charnet P, Ouadid H, Tiaho F & Nargeot J (1988) Effects of the Ca-
antagonist nicardipine on K+ currents and Na+-Ca2+ exchange in frog atrial fibres. J 
Mol Cell Cardiol 20 (12) 1133-1140.  
 
Rifai Z, Welle S, Moxley RT, Lorenson M & Griggs RC (1995) Effect of prednisone 
on protein metabolism in Duchenne dystrophy. Am J Physiol 268 (1 Pt 1) E67-74.  
 
Rigdon RH (1964) Spontaneous occurring muscular dystrophy in the white Peking 
duck. Tex Rep Biol Med 22 Suppl 1 930-939. 
 
Ritter M, Su Zz, Spitzer KW, Ishida H & Barry WH (2000) Caffeine-induced Ca2+ 
sparks in mouse ventricle myocytes. Am J Phys 278 H666-H669. 
 
Robert V, Massimino ML, Tosello V, Marsault R, Cantini M, Sorrentino V & Pozzan 
T (2001) Alteration in calcium handling at the subcellular level in mdx myotubes. J 
Biol Chem 276 (7) 4647-4651. 
 
Rohman MS, Emoto N, Takeshima Y, Yokoyama M & Matsuo M (2003) Decreased 
mAKAP, ryanodine receptor, and SERCA2a gene expression in mdx hearts. Biochem 
Biophys Res Commun 310 (1) 228-235.  
 
Rouger K, Le Cunff M, Steenman M, Potier MC, Gibelin N, Dechesne CA & Leger JJ 
(2002) Global/temporal gene expression in diaphragm and hindlimb muscles of 
dystrophin-deficient (mdx) mice. Am J Phys 253 C773-C784. 
 
Ruegg UT & Gillis J-M (1999) Calcium homeostasis in dystrophic muscle. Trends 
Pharmacol Sci 20 351-352. 
 
Rybakova IN & Ervasti JM (1997) Dystrophin-glycoprotein complex is monomeric 
and stabilizes actin filaments in vitro through a lateral association. J Biol Chem 272 
(45) 28771-28778. 
 
Sadeghi A, Doyle AD & Johnson BD (2002) Regulation of the cardiac L-type Ca2+ 
channel by the actin-binding proteins α-actinin and dystrophin. Am J Phys 282 
C1502-C1511. 
 
Saito M, Kawai H, Akaike M, Adachi K, Nishida Y & Saito S (1996) Cardiac 
dysfunction with Becker muscular dystrophy. Am Heart J 132 642-647. 
 
Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y, Masaki T, Toyo-oka T 
& Hanaoka F (1997) Both hypertrophic and dilated cardiomyopathies are caused by 
mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of 



 155

disrupted dystrophin-associated glycoprotein complex. PNAS USA 94 (25) 13873-
13878. 
 
Sakamoto M, Yuasa K, Yoshimura M, Yokota T, Ikemoto T, Suzuki M, Dickson G, 
Miyagoe-Suzuki Y & Takeda S (2002) Micro-dystrophin cDNA ameliorates 
dystrophic phenotypes when introduces to mdx mice as a transgene. BBRC 293 1265-
1272.  
 
Sapp JL, Bobet J & Howlett SE (1996) Contractile properties of myocardium are 
altered in dystrophin-deficient mdx mice. J Neurol Sci 142 17-24. 
 
Sasaki Y, Sasaki Y, Kanno K & Hidaka H (1987) Disorganization by calcium 
antagonists of actin microfilament in aortic smooth muscle cells. Am J Physiol 253 (1 
Pt 1) C71-78. 
 
Sato Y, Kiriazis H, Yatani A, Schmidt AG, Hahn H, Ferguson DG, Sako H, Mitarai S, 
Honda R, Mesnard-Rouiller L, Frank KF, Beyermann B, Wu G, Fujimori K, Dorn 
GW & Kranias EG (2001) Rescue of contractile parameters and myocyte hypertrophy 
in calsequestrin overexpressing myocardium by phospholamban ablation. J Biol Chem 
276 (12) 9392-9329. 
 
Scholz GH, Vieweg S, Uhlig M, Thormann M, Klossek P, Goldmann S & Hofmann 
HJ (1997) Inhibition of thyroid hormone uptake by calcium antagonists of the 
dihydropyridine class. J Med Chem 40 (10) 1530-1538. 
 
Schramm M, Klieber HG & Daut J (1994) The energy expenditure of actomyosin-
ATPase, Ca2+-ATPase and Na+,K+-ATPase in guinea-pig cardiac ventricular muscle. 
J Physiol (Lond) 481 647-662. 
 
Schramm M, Thomas G, Towart R & Franckowiak G (1983) Novel dihydropyridines 
with positive inotropic action through activation of Ca2+ channels. Nature 303 (5917) 
535-537. 
 
Schwartz A (1992) Molecular and cellular aspects of calcium channel antagonism. Am 
J Cardiol 70 (16) 6F-8F. 
 
Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause 
EG & Erdmann E (1995) Unchanged protein levels of SERCA II and phospholamban 
but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum 
from dilated cardiomyopathy patients compared with patients with nonfailing hearts. 
Circulation 92 (11) 3220-3228.  
 
Semsarian C, Ahmad I, Giewat M, Georgakapoulos D, Schmitt JP, McConnell BK, 
Reiken S, Mende U, Marks AR, Kass DA, Seidman CE & Seidman JG (2002) The L-
Type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model 
J Clin Invest 109-8 1031-1020. 
 
Sen LY, O'Neill M, Marsh JD & Smith TW (1990) Inotropic and calcium kinetic 
effects of calcium channel agonist and antagonist in isolated cardiac myocytes from 
cardiomyopathic hamsters. Circ Res 67 (3) 599-608. 



 156

 
Serio R, Bonvissuto F & Mule F (2001) Altered electrical activity in colonic smooth 
muscle cells from dystrophic (mdx) mice. Neurogastroenterology and Motility 13 (2) 
169-175. 
 
Sewry CA, Man NT, Lynch T & Morris GE (2001) Absence of utrophin in 
intercalated discs of human cardiac muscle. Histochem J 33 (1) 9-12. 
 
Skrabek RQ & Anderson JE (2001) Metabolic shifts and myocyte hypertrophy in 
deflazacort treatment of mdx mouse cardiomyopathy. Muscle Nerve 24 192-202. 
 
Slater CR (1987) Muscular dystophy. The missing link in DMD? Nature 330 693-
694. 
 
Smith J & Schofield PN (1997) Stable integration of an mdx skeletal muscle cell line 
into dystrophic (mdx) skeletal muscle: evidence for stem cell status. Cell Growth 
Differ 8 (8) 927-934. 
 
Spencer MJ, Croall DE & Tidball JG (1995) Calpains are activated in necrotic fibers 
from mdx dystrophic mice. J Biol Chem 18 10909-10914. 
 
Sperelakis N, Katsube Y, Yokoshiki H, Sada H & Sumii K (1996). Regulation of slow 
Ca2+ channels of myocardial cells. Mol Cell Biochem 163/164 85-98. 
 
Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, 
Narusawa M, Leferovich JM, Sladky JT & Kelly AM (1991) The mdx mouse 
diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. 
Nature 352 (6335) 536-539.  
 
Stevens ED & Faulkner JA (2000) The capacity of mdx diaphragm muscle to do 
oscillatory work. J Physiol 522 (3) 457-466. 
 
Sugita H, Arahata K & Ishiguro T (1988) Negative immunostaining of Duchenne 
muscular dystrophy (DMD) and mdx muscle surface membrane with antibody against 
synthetic peptide fragment predicted from DMD cDNA. Proceedings of the Japan 
Academy 64 37-39. 
 
Takasago T, Imagawa T & Shigekawa M (1989) Phosphorylation of the cardiac 
ryanodine receptor by cAMP-dependent protein kinase. J Biochem (Tokyo) 106 872-
877. 
 
Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, Grossman W, 
Marsh JD & Izumo S (1992) Expression of dihydropyridine receptor (Ca2+ channel) 
and calsequestrin genes in the myocardium of patients with end-stage heart failure. J 
Clin Invest 90 (3) 927-935. 
 
Tanaka H & Ozawa E (1990) Expression of dystrophin mRNA and the protein in the 
developing rat heart. Biochem Biophys Res Commun 172 (2) 824-829. 
 
Tang S, Yatani A, Bahinski A, Mori Y & Schwartz A (1993) Molecular localization 



 157

of regions in the L-type calcium channel critical for dihydropyridine action. Neuron 
11 (6) 1013-1021.  
 
Tay JSH, Low PS, Lee WL, Lai PS & Gan GC (1989) Dystrophin function: calcium-
related rather than mechanical. Lancet 335 983. 
 
Torres LFB & Duchen LW (1987) Myopathy in the mouse: morphological studies of 
nerves, muscles and end-plates. Brain 110 269-299. 
 
Triggle DJ (1999) The pharmacology of ion channels: with particular reference to 
voltage-gated Ca2+ channels. Eur J Pharmacol 375 (1-3) 311-325. 
 
Turner PR (1991) Increased calcium influx in dystrophic muscle. J Cell Biol 115 
1701-1712. 
 
Turner PR, Fong P, Denetclaw WF & Steinhardt (1991) Increased calcium influx in 
dystrophic muscle. J Cell Biol 115 (6) 1701-1712.  
 
Turner PR, Schultz R, Ganguly B & Steinhardt RA (1993) Proteolysis results in 
altered leak channel kinetics and elevated free calcium in mdx muscle. J Membrane 
Biol 133 245-251. 
 
Tutdibi O, Brinkhmeier H, Rüdel R & Föhr KJ (1999) Increased calcium entry into 
dystrophin-deficient muscle fibres of mdx and adr-mdx mice is reduced by ion 
channel blockers. J Physiol 515 (3) 859-868.  
 
Tweedie D, Harding SE & MacLeod KT (2000) Sarcoplasmic reticulum Ca content, 
sarcolemmal Ca influx and the genesis of arrhythmias in isolated guinea-pig 
cardiomyocytes. J Mol Cell Cardiol 32 (2) 261-272. 
 
Urtasun M, Poza JJ, Gallano P, Lasa A, Saenz A, Cobo AM, Leturcq F, Lopez de 
Munain A & Garcia-Bragado F (1998) Muscular dystrophy due to a mutation in the 
gene of alpha-sarcoglycan subunit of dystrophin associated protein complex. Med 
Clin 110 (14) 538-542. 
 
Vaghy PL, Johnson JD, Matlib MA, Wang T & Schwartz A (1982) Selective 
inhibition of Na-induced Ca release from heart mitochondria by diltiazem and certain 
other Ca antagonist drugs. J Biol Chem 257 6000-6002. 
 
Valentine BA, Winand NJ, Pradhan D, Moise NS, de Lahunta A, Kornegay JN & 
Cooper BJ (1992) Canine X-linked muscular dystrophy as an animal model of 
Duchenne muscular dystrophy: a review. Am J Med Genet 42 (3) 352-356. 
 
Vandebrouck C, Imbert N, Dupont G, Cognard C & Raymond G (1999) The effect of 
methylprednisolone on intracellular calcium of the normal and dystrophic human 
skeletal muscle cells. Neurosci Lett 269 110-114.  
 
Vandebrouk C, Martin D, Colson-Van Schoor M, Debaix H & Gailly P (2002) 
Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) 
mouse skeletal muscle fibres. J Cell Biol 158 (6) 1089-1096. 



 158

 
Vandecasteele G, Verde I, Rucker-Martin C, Donzeau-Gouge P, Fischmeister R 
(2001) Cyclic GMP regulation of the L-type Ca2+ channel current in human atrial 
myocytes. J Physiol 533 (Pt 2) 329-340.  
 
Verellen C, Markovic V, De Meyer R, Freund M, Laterre C & Worton R (1978) 
Expression of an x-linked recessive disease in female due to non-random inactivation 
of the x chromosome. Am J Hum Gen 30 97A. 
 
Vrints C, Mercelis R, Vanagt E, Snoeck J & Martin JJ (1983) Manifestations of 
Becker-type muscular dystrophy. Acta Cardiologica 38 479-486. 
 
Wagner JA, Weisman HF, Snowman AM, Reynolds IJ, Weisfeldt M & Snyder SH 
(1989) Alterations in calcium antagonist receptors and sodium-calcium exchange in 
cardiomyopathic hamster tissues. Circ Res 65 205-214. 
 
Wakai S, Minami R, Kameda K, Okabe M, Nagaoka M, Annaka S, Higashidate Y, 
Tomita H & Tachi N (1988) Electron microscopic study of the biopsied cardiac 
muscle in Duchenne muscular dystrophy. J Neurol Sci 84 (2-3) 167-175. 
 
Waldegger S, Niemeyer G, Morike K, Wagner CA, Suessbrich H, Busch AE, Lang F 
& Eichelbaum M (1999) Effect of verapamil enantiomers and metabolites on cardiac 
K+ channels expressed in Xenopus oocytes. Cell Physiol Biochem 9 (2) 81-89. 
 
Watanabe H, Ma M, Washizuka T, Komura S, Yoshida T, Hosaka Y, Hatada K, 
Chinushi M, Yamamoto T, Watanabe K & Aizawa Y (2003) Thyroid hormone 
regulates mRNA expression and currents of ion channels in rat atrium. Biochem 
Biophys Res Commun 308 (3) 439-444. 
 
Watkins SC & Cullen MJ (1987) A qualitative and quantitative study of the 
ultrastructure of regenerating muscle fibres in Duchenne muscular dystrophy and 
polymyositis. J Neurol Sci 82 (1-3) 181-192.  
 
Wassner SJ, Li JB, Ladda RL, Lorenz RP & Emery AE (1982) Prenatal diagnosis of 
Duchenne muscular dystrophy: failure of amniotic fluid and maternal serum N tau-
methylhistidine analyses to detect affected fetuses. Am J Obstet Gynecol 143 (2) 216-
219 
 
Wegener JW & Nawrath H (1995) Extracellular site of action of phenylalkylamines 
on L-type calcium current in rat ventricular myocytes. Naunyn-Schmiedebergs Arch 
Pharmacol 352 322-330. 
 
Wendt IR & Stephenson DG (1983) Effects of caffeine on Ca2+-activated force 
production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch 398 
210-216. 
 
Wier WG & Balke CW (1999) Ca2+ release mechanisms, Ca2+ sparks, and local 
control of excitation-contraction coupling in normal heart muscle. Circ Res 85 (9) 
770-776. 
 



 159

Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S & Kole R 
(1999) Specific removal of the nonsense mutation from the mdx dystrophin mRNA 
using antisense oligonucleotides. Neuromuscul Disord 9 (5) 330-338. 
 
Witcher DR, Strifler BA & Jones LR (1992) Cardiac-specific phosphorylation site for 
multifunctional Ca2+/calmodulin-dependent protein kinase is conserved in brain 
ryanodine receptor. J Biol Chem 267 4963-4967. 
 
Wolff JA, Malone RW & Williams P (1990) Direct gene transfer into mouse muscle 
in vivo. Science 247 1465-1468. 
 
Wrogemann K & Pena SD (1976) Mitochondrial calcium overload: A general 
mechanism for cell-necrosis in muscle diseases. Lancet 1 (7961) 672-674.  
 
Xiao RP, Cheng H, Lederer WJ, Suzuki T & Lakatta G (1994) Dual regulation of 
Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium 
influx. PNAS USA 91 9659-6963. 
 
Xu R & Salpeter MM (1997) Acetylcholine receptors in innervated muscles of 
dystrophic mdx mice degrade as asfter denervation. J Neurosci 17(21) 8194-8200. 
 
Yoshida M, Matsuzaki T, Date M & Wada K (1997) Skeletal muscle fiber 
degeneration in mdx mice induced by electrical stimulation. Muscle Nerve 20 (11) 
1422-1432.  
 
Ytterberg SR (1991) Animal models of myopathy. Curr Opin Rheumatol 3 (6) 934-
940. 
 
 
Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS & Duan D (2003) 
Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein 
complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 108 
(13) 1626-1632. 
 
Zhao F, Li P, Chen SRW, Louis CF & Fruen BR (2002) Dantrolene inhibition of 
ryanodine calcium release channels. J Biol Chem 276 (17) 13810-13816. 
 
Zhu X, Wheeler MT, Hadhazy M, Lam M-YJ, & McNally EM (2002) 
Cardiomyopathy is independent of skeletal muscle disease in muscular dystrophy. 
FASEB J 16 (9) 1096-1098. 
 
Zvaritch E, Backx PH, Jirik F, Kimura Y, de Leon S, Schmidt AG, Hoit BD,  
Lester JW, Kranias EG & MacLennan DH (2000) The transgenic expression of highly 
inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac 
contractility. J Biol Chem 275, 14985-14991. 
 



 160

APPENDICES 

Appendix A – Oxygen Consumption Assay and 

Apparatus Development  

A series of oxygen consumption experiments were undertaken to determine whether 

potential futile calcium handling led to metabolic changes in the myocardium of mdx. 

However, these experiments were variable due to the small left atrial tissue size and 

the sensitivity of the oxygen consumption apparatus. 

 

The Requirement For Oxygen Usage Studies 

Dysfunctional calcium handling should be observed metabolically by changes in 

oxygen consumption. A series of oxygen consumption experiments evaluated energy 

usage in the mdx compared to C57 mice. 

 

During quiescence of the cardiac muscle, energy expenditure is related to 

extracellular ionic composition (Ponce-Hornos et al., 1987; 1990; 1992). The 

SERCA, along with the NCX contribute significantly to basal metabolism and are the 

active processes required for relaxation of the myocardium. SERCA expends energy 

directly at the rate of 1 ATP/2 calcium, and NCX indirectly and at twice the metabolic 

cost of 1 ATP/1 calcium (reflecting the 3:1 and 3:2 ionic stoichiometries of the NCX 

and Na+-K+ pump, respectively) (Cooper et al., 2001). SERCA contributes 

approximately 30% of oxygen consumption (Loiselle, 1987), whereas the Na+/K+ 

pump contributes less than 10% to cardiac resting metabolism (Schramm et al, 1994). 

During contraction, actomyosin ATPase activity of cross-bridges contributes to 

energy usage (Cooper et al., 2001). Cardiac energy demand increases in response to 
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increasing intracellular calcium concentrations (Fiolet et al., 1995). Calcium is also an 

important regulator of mitochondrial function. Impaired oxidative phosphorylation 

has been observed in dystrophin-deficient muscle cells (Even et al., 1994; Braun et 

al., 2001), although no mitochondrial abnormalities have been observed in cardiac 

muscle from 4-6 month old female mdx (Kuznetsov et al., 1998). At this age skinned 

mdx cardiac fibres have almost identical respiratory parameters as control in several 

different substrates (Kuznetsov et al., 1998). Kanai et al., (2001) proposed that 

elevated calcium activated mitochondrial NOS production, increasing local 

mitochondrial NO production, which inhibits mitochondrial ATP synthesis to inhibit 

contractility. Two studies of mitochondrial activity in DMD patients observed 

mitochondrial calcium overload due to the activity of proteolytic enzymes, and a 

decrease in ATP synthesis (Lucas-Heron 1996). Robert et al., (2001) observed that 

the mitochondria in skeletal muscle of mdx are responsible for both the apoptosis and 

impaired calcium homeostasis. 

 

Energy usage in dystrophin-deficient skeletal muscle is altered. It is unknown whether 

energy usage of the myocardium is unchanged, and whether changes in calcium 

handling contribute to altered metabolism of the myocardium.  

 

Oxygen Consumption Methodology 

A small stainless steel hook was placed in one end of the left atria, and a length of 

thread that was subsequently attached to the ergometer, (Model 300B, Aurora 

Scientific Inc., Canada) was attached to the other. The atrium was progressively 

stretched to the optimum preload and allowed 30 min to equilibrate in a 1.5mL 

chamber in 35±0.5°C TPSS saturated with carbogen. Oxygen consumption was 

continually monitored by an electrode in the base of the chamber while the TPSS was 
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constantly mixed by a magnetic stirrer (Dual Digital Model 20, Rank Brothers LTD). 

Initial experiments revealed that oxygen consumption was stabilised after 30 min. 

 

The left atrium was field stimulated (1Hz, 10V, 5ms duration; Grass SD9 isolated 

stimulator) for four sets of 10 min periods, with cessation of stimulation for three 30 

min periods for quiescent measurements. Subsequently 40mM KCl TPSS (as for 

TPSS except in mM: NaCl 102.3, KCl 40) was added for one 30 min period (Fig 

A.1). Oxygen consumption and contractility were measured concurrently for the 

duration of the experiment. Prior to each exchange of TPSS the solution was aerated 

with carbogen until saturation. All data was recorded using Chart 4.0 on a 

Powerlab/4SP (AD Instruments, Australia) and captured on an Apple iMac. The 

oxygen electrode was calibrated by measuring 100% dissolved oxygen, 20% 

dissolved oxygen (compressed air) and 0% dissolved oxygen by the addition of 

sodium dithionite. A linear plot was constructed and values for oxygen consumption 

calculated back from the plot (personal communication from the manufacturer 

indicated linearity of the oxygen electrode). Atria were blotted and weighed. Oxygen 

consumption was normalised as per tissue weight.  

 

 

 

Figure A.1 Oxygen consumption protocol. 1,2,3,4 are 10 min stimulation equilibration periods, 
ABC are 30min periods of quiescence. Subsequent to quiescence 40mM KCl was added for a 30 
min period. 
 

Depolarisation and L-type Calcium Channel Blockade 

At the conclusion of the stimulation period, the myocardium was depolarised by the 

addition of 40mM KCl for a 30 min period. Subsequently, nifedipine was added in 

40mM KCl TPSS to remove the effect of L-type calcium influx on the oxygen 

1 2 3 4 A B C KCl 
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consumption of the tissue. Depolarisation and addition of the dihydropyridine drug 

produced unusually high results, so diltiazem was used as an alternative L-type 

calcium channel blocker. However, diltiazem produced similarly high values. Finally, 

experiments were undertaken without tissue present to determine whether the KCl 

and/or the L-type calcium channel antagonists were affecting the oxygen electrode. 

 

Oxygen consumption data 

Preliminary Experiments 

Since oxygen consumption in cardiac tissue had not been previously undertaken in 

our laboratory, preliminary experiments focussed on evaluating the methodology. The 

oxygen electrode consumes oxygen, so experiments were conducted without tissue 

(Fig A.2) to measure the amount of oxygen consumed for the duration of the 

experimental protocol. Preliminary experiments also evaluated the oxygen 

consumption from immediately subsequent to dissection to determine when oxygen 

consumption stabilised (Fig A.2). Since oxygen consumption changed markedly for 

the first 10 – 20min, only the final 10min of the 40 min stimulated equilibration 

period was used for data comparison. A 30min period was determined to be optimal 

for the quiescent experiments, since oxygen consumption by the myocardium during 

quiescence is much lower. Finally, the effects of KCl, nifedipine and diltiazem on the 

oxygen electrode were evaluated (Fig. A.3). Oxygen consumption was increased 

markedly without tissue present, in the presence of the L-type Ca2+ channel 

antagonists. The drugs were made up in the final required concentration in TPSS to 

remove the effect of the solvent on the electrode. The oxygen consumption continued 

to be high. Because the drugs interfered with the oxygen electrode, they could not be 

used for any further experiments. 
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Comparison of Oxygen Consumption in mdx and C57 

Whole mouse mass was not significantly different between mdx (25.3±0.5g, n=14) 

and C57 (26.4±0.8g, n=8). Left atrial mass was not significantly different between 

mdx (22.8±1.2mg, n=14) and C57 (21.9±1.5mg, n=8). Force of contraction during the 

stimulation period was significantly smaller (P<0.05) in mdx (0.89±0.12) compared to 

C57 (1.28±0.17; Fig A.4). The oxygen usage data was unreliable, with quiescent 

periods sometimes using more oxygen than stimulation periods. Based on this finding 

the data was not used further. The variability in the oxygen usage data was 

presumably due to the small size of the murine atria using too little oxygen for the 

sensitivity of the apparatus. Hence, this data did not have sufficient rigour and was 

not included in the main thesis dissertation. 
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Figure A.2 Determination of oxygen consumption in the absence of tissue. A The oxygen 
consumption electrode uses oxygen from the solution, so to determine the amount of oxygen used 
during each experiment, control experiments were conducted without tissue. The data for the 10 
minute stimulation periods and the 30 minute quiescent periods are presented here. Due to the 
nature of the curve, final oxygen consumption for the stimulation period was taken only from the 
final 10min (n=5 for tissue, n=3 for no tissue). 
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Figure A.3 Comparison of the effects of KCl, nifedipine and diltiazem on oxygen consumption 
with and without tissue. Preliminary studies examined the effect of KCl (n=3 with and without 
tissue), nifedipine (NFD; n=4 with tissue, n=1 without tissue) and diltiazem (DTZ; n=4 with 
tissue, n=2 without tissue) on oxygen consumption in left atrial tissue, and in the absence of any 
tissue. Because nifedipine and diltiazem greatly increased oxygen consumption in the absence of 
any tissue, the drugs were not used in further studies.  
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Figure A.4 Contractility of mdx (n=9) and C57 (n=8) mice for all of the oxygen consumption 
experiments. 
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Appendix B - Patch Clamp Assay and Apparatus 

Development in our Laboratory 

The patch clamp apparatus and protocol had not been used previously in our 

laboratory, therefore considerable time was spent on development of apparatus, a 

myocyte isolation protocol and patch methodology. 

 

Initially assay development focussed on isolating functional murine cardiomyocytes. 

The mouse was euthanased by excess inhalation of carbon dioxide, and the heart 

rapidly excised and placed into cold, carbogenated TPSS. The aorta was placed on a 

canula (modified from a 26 gauge needle), with the use of a micro vessel clip (0.75 x 

4mm; SSR Cat No. 17-4000) to hold the aorta in place until a length of thread was 

tied around the aorta and canula. The canula was scarred approximately 2mm from 

the tip so that the aorta did not slip. The canula was then attached directly to the 

perfusion apparatus without further handling of the aorta or heart.  

 

A Gilson peristaltic pump was used to deliver carbogenated (95% O2, 5% CO2) TPSS 

(mM: NaCl 136.9, KCl 5.4, MgCl2.H2O 1.0, NaH2PO4.2H2O 0.4, NaHCO3 22.6, 

CaCl2.2H2O 1.8, glucose 5.5, ascorbic acid 0.3, Na2EDTA 0.05) through a water-

jacketed column at 3mL/min prior to mounting of the heart on the apparatus. The 

temperature of the perfusate was maintained at 37±0.5°C. Once attached to the 

apparatus, TPSS was perfused for 2 min to ensure appropriate perfusion and the heart 

was contracting normally. If the perfusion was satisfactory, the excess blood in the 

coronary vessels of the heart was removed causing the heart to change to a more 

pinkish colour, and the heart would beat consistently. The TPSS was then changed to 

a calcium free solution (in mM: NaCl 120, KCl 4.7, KH2PO4 1.2, MgSO4.7H2O 1.2, 

Glucose 15, NaHCO3 25, EDTA 0.5) for 10 min. Finally, collagenase (Life 
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Technologies Collagenase Type I, lypholized, 220 units/mg) was perfused through the 

heart for 10 min. The ventricles were then cut free from the atria and minced with 

scissors. A number of cells would be examined under the microscope at this point, 

and a small portion of the cells stored. The remaining cardiac tissue was placed in 

fresh collagenase and put in a 37±0.5°C shaking water bath (2Hz) for 10 min, before a 

fraction of cells was removed and collagenase added. This was repeated once more 

for a third fraction of cells. Each of the fractions were diluted in calcium-free solution 

(with 0.4mM CaCl2 added) containing BSA (1mg/mL) for 10 min. After the cells 

settled to the bottom of the tube, the supernatant was removed and replaced with a 

calcium-free solution (with 0.8mM CaCl2 added) containing BSA (1mg/mL). This 

was repeated another time with calcium-free solution (with 1.2mM CaCl2 added) 

containing BSA (1mg/mL).  

 

Initial cell yields from the isolation were poor, but provided cells with normal 

morphology. However, the myocytes were not calcium tolerant, and contracted when 

the patch pipette contacted them. To improve cell yield and stability for patches 

several alterations to the isolation protocol were trialled. 

 

The first alteration to the protocol was to lengthen the time that the myocardium was 

exposed to collagenase. Initially the time was extended to 15 min perfusion, however 

cell morphology became abnormal when exposed to collagenase for this extended 

period of time. Therefore the time the cardiomyocytes were exposed to collagenase in 

the perfusion was reduced to 5 min. The cell yields were improved, however the cells 

were not stable in the bath solution, nor when contacted by the patch pipette. This led 

to the use of several different extracellular (bath) and intracellular (pipette) solutions. 
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Glucose in the calcium free solutions was reduced from 15 to 5mM, and sodium 

bicarbonate was reduced from 50 to 25mM, in case the calcium free solution may be 

hyperosmotic. Intracellular solutions that were trialled include: ICa Solution 1 in mM: 

CaCl2 1.0, CsCl 120, EGTA 10, MgCl2 6, Na2ATP 5; Solution 2 in mM: CsCl 140, 

EGTA 10, MgCl2.6H2O 4, Hepes 10, ATP-Na2 4. The bath solution (in mM KCl 4.7, 

NaCl 120, KH2PO4 1.2, MgSO4.7H2O 1.2, Glucose 15, NaHCO3 25, EDTA 0.5, 

CaCl2 1.75) was calculated to be 303.4 mOsm, and the intracellular solution 1 (as 

above) calculated to be 289 mOsm. At this point a glass pipette was used to titrate the 

cells from the cardiac tissue. While the cell yield was improved, cells continued to 

contract on application of the patch pipette. 

 

A cleaning solution (0.1M HCl, 0.1M EDTA, pH 7.0 with KOH) was used for the 

isolation apparatus, and all containers that had solutions for the perfusion, or used for 

cells. All solutions were made with MilliQ water to reduce the possibility of 

contaminants affecting the perfusion. A 0.45 µM Millex HA filter was used in line to 

filter all solutions. 

 

Several different protocols were also used to produce pipettes, usually with a 

resistance of 1-20MΩ. Pippettes with a resistance higher than 10MΩ were discarded 

and only pipettes with a resistance of 1-2MΩ were used on the cardiomyocytes. A fire 

polisher was designed and made in our laboratory to polish the tips of the pipettes. 

 

A report by Sadeghi et al., (2002) was published at this point, a paper that 

successfully recorded L-type currents from mdx neonatal cardiomyocytes. Their 

solutions were trialled: extracellular (in mM TEA-Cl 145, BaCl2 10, MgCl2 1, 

HEPES, 10; pH 7.4) and intracellular (in mM N-methyl-D-glucamine 130, EGTA 10, 

HEPES 60, MgATP 2, MgCl 1; MSA to adjust pH 7.3). Another intracellular solution 
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was also trialled (in mM Na2ATP 3, EGTA 10, CsCl 120, HEPES 10, MgCl2 2; pH 

7.3). 

 

Rat cells were also used, to observe whether yield and contracture problems 

continued. The yield was much greater with rat heart (possibly due to more tissue and 

the absence of calcium overload), and cells were more stable, but a gigaseal was not 

obtained.  

 

Protease (0.12mg/mL) was used in the isolation in the collagenase solution. Also a 

portion of the cells was centrifuged in 1.2mM Ca2+ and the cells removed from the 

BSA albumin to ensure that the BSA was not affecting the gigaseal. 

 

A gigaseal was still not obtained, so the amount and time in collagenase was reduced. 

Colleagues who routinely patch murine cardiomyocytes were contacted for assistance 

and correspondence continued for several weeks. 

 

A simple intracellular solution containing EGTA, CsCl, MgCl2 and HEPES was used. 

The rate of the perfusion was tested, and trialled at two different rates. The pH of all 

solutions was observed throughout the perfusion and oxygen and carbogen were both 

tried and compared for pH changes to the solutions.  

 

Temperature was also measured as a potential source of the problem. The earth 

electrode was also re-chlorided.  

 



 171

Appendix C - Patch Clamp Assay and Apparatus 

Development at the University of Adelaide 

External expertise in patch clamping cardiomyocytes was sought since the protocol 

was unsuccessful in our laboratory. At the University of Adelaide, rat cardiomyocytes 

were routinely patch clamped.  

 

Initially perfusion was ineffective, so a soft plastic canula was made, similar to 

canula’s used in their laboratory for rat, except of a smaller diameter. The first 

extracellular solution used consisted of in mM: TEA-Cl 145, MgCl2 1, BaCl2 10, 

HEPES 10, adjusted to pH 7.4 with CsOH; and the first intracellular solution in mM: 

CsCl2 130, EDTA 10, HEPES 60, MgCl2 3, K2ATP 2, adjusted to pH 7.3 with CsOH. 

The collagenase used for the isolation was Type 1 from Gibco-BRL (220 units/mg), 

and was successful in isolating rat cardiomyocytes previously. The mouse was given 

an injection of heparin five minutes prior to euthanasia. Sodium currents were 

obtained from these murine cardiomyocytes, but not calcium currents. The 

extracellular solution caused crystals and the cells contracted spontaneously and then 

burst. Several different solutions were sought from the literature to produce L-type 

currents in heart cells (Hamplova-Peichlova et al., 2002; Vandecasteele et al., 2001; 

De Paoli et al., 2002; DuBell et al., 2002; Chen et al., 2001). Following this a simple 

extracellular solution was made consisting of in mM Tris 140, BaCl2 10. Cells still 

contracted spontaneously and imploded on contact with the pipette.  

 

A heavily buffered intracellular solution with low free calcium was attempted, as 

follows in mM: CsCl 130, EGTA 20, HEPES 60, K2ATP 2, MgCl2 3, pH 7.4 with 

CsOH. A rat heart was used since mice numbers were becoming low. Calcium 

currents were obtained from this rat that was injected with heparin prior to euthanasia. 
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The heart was placed on the plastic canula and a 1.5 mM calcium Tyrodes solution 

bubbled with O2 was run through the heart at 3mL/min for 5min. The Ca2+-free 

tyrodes was circulated through the heart for 20min, and then collagenase (Type 1 

Gibco-BRL 220 units/mg) was circulated for 20min and the heart removed, abrased 

with scissors tearing the ventricular tissue and placed into a BSA storage solution. 

The cells were then put through a series of Ca2+-containing solutions to raise the Ca2+ 

tolerance.  

 

25 ms

Figure C.1 Superimposed current records from mdx cardiomyocytes. Each current was elicited 
by voltage-clamp steps from a holding potential from –40mV to potentials between –40 and 
+120mV (in 5mV increments). 
 

The calcium currents produced by the rat cardiomyocytes were completely abolished 

on the addition of diltiazem, proving that these currents were from the L-type calcium 

channels.  
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The next mdx mouse produced a good yield of healthy looking cells. The heart was 

digested for 10min, and extracellular Calcium brought up to 0.5mM over 20min. 

Calcium currents were produced by these cardiomyocytes, though the seals were 

leaky, and the cells often died immediately after a calcium current was produced. 

After the completion of these studies an n of 2 for mdx and 0 for C57 were obtained. 
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Figure C.2 A calcium current IV curve from a 12 week old mdx. 


