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A B S T R A C T

The potato crop is vital to the economy of Canada’s Maritime provinces. Prince Edward Island (PEI) and New 
Brunswick (NB) contribute significantly to Canadian potato production and gross domestic product (GDP). 
Estimating potato tuber yields helps farmers to make informed decisions for sustainable and profitable farming. 
This study investigated fluctuations in tuber yield based on 30 soil properties gathered over four seasons through 
experimental trials. An emerging eXplainable high-dimensional feature vote-based ensemble framework 
explained with SHAP (SHapley Additive exPlanations) tool was employed to estimate potato tuber yield accu
rately. In order to develop the model, the most influential feature was first filtered using the Boruta-SHAP feature 
selection. Afterwards, the most deserved combinations (four scenarios) were ascertained using the best subset 
regression (BSR) integrated with two Multi-Criteria Decision-Making (MCDM), namely Weighted Aggregated 
Sum Product Assessment (WASPAS) and Multi-Objective Optimization methods were adopted based on the Ratio 
Analysis (MOORA). To estimate potato tuber yield, we adopted a novel explainable ensemble machine learning 
model, called VOTE-LGCB, that combines voted Categorical Boosting and the Light Gradient-Boosting Machine 
framework. We evaluated our approach against Least Absolute Shrinkage and Selection Operator (LASSO) 
regression, elastic net regression, Extra Tree, classical LightGBM, and classical CatBoost baselines. Six metric 
performances such as correlation coefficient (R), root mean square error (RMSE), and reliability were imple
mented to validate the multi-process ML models. All the metrics were singularized using WASPAS and MOORA to 
determine the best input combination related to each model separately. We found that the VOTE-LGCB-Combo 3 
outperformed baseline methods (R = 0.8958, RMSE = 5088.5087, Reliability = 93.7500, WASPAS = 0.00023, 
and MOORA = 0.3788). Moisture content was identified as the most significant feature, followed by the 
Normalized Difference Vegetation Index (NDVI). The modeling framework we advance can be used as a reliable 
simulation system for various aspects of agricultural production systems that involve high-dimensional features.

1. Introduction

Potatoes rank as the fifth most significant primary agricultural 
product in Canada. In 2022, they contributed to the Canadian economy 
with an impressive1.7 billion Canadian Dollars (CAD) in farm cash re
ceipts. The export of potatoes and potato products bolstered the econ
omy with a substantial 3.4 billion CAD in the fiscal year 2022–2023 

(Canada, 2023). Prince Edward Island and New Brunswick are major po
tato (Solanum tuberosum) producing provinces in Canada, contributing 
over 38 % of the country’s total potato production (Agriculture and 
Agri-Food Canada (AAFC), 2018). Potato production in both provinces 
contributes significantly to the provincial gross domestic product (GDP) 
and provides a livelihood for many residents. Optimizing the growth and 
yield of potatoes is crucial for maintaining food stability amidst the rise 
of the world’s population (Liu et al., 2023). Prompt and efficient 
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surveillance of potatoes is essential for enhancing fertilizer utilization 
and forecasting agricultural yield (Liu et al., 2024). Conventionally, 
growers rely on their experiences, past weather, and crop yield data to 
make crucial decisions to increase long-term sustainability and short- 
term profitability (Arbuckle and Rosman, 2014). The recommended 
practices of applying crop and soil inputs such as macronutrients, 
micronutrients, organic matter, and water vary spatially with crop- 
specific requirements. Furthermore, the interaction of various soil 
properties adds complexity to this problem. Under these circumstances, 
there is a dire need to study individual factors influencing crop yield and 
their co-dependencies to predict potato crop yield accurately.

Various techniques have been used to understand the relationship 
between crop inputs, soil properties, and crop yield. Multiple linear 
regression was evaluated by Kravchenko & Bullock (2000) and Kbakural 
et al. (1999). However, the results are unsatisfactory due to collinear
ities among some predictor variables. Machine learning (ML) has 
emerged as a powerful tool for crop yield prediction, providing 
improved crop yield predictions by learning valuable patterns and re
lationships from input data. ML algorithms have been applied to predict 
crop yields with more encouraging results (Klompenburg et al., 2020). A 
study by Kuradusenge et al. (2023) applied ML techniques to predict 
crop yield based on weather data for Musanze District, Rwanda. The 
study found that a random forest model was the best model for early 
yield prediction. Another study by Das et al. (2023) introduced a novel 
hybrid approach, combining ML algorithms with feature selection, for 
efficient modeling and forecasting of crop yield. The proposed ML 
hybrid models outperformed the individual models.

Recent developments in explainable artificial intelligence (XAI) have 
demonstrated encouraging applications in processing agricultural data. 
A thorough review by (Ahmed et al., 2025) demonstrated that XAI ap
proaches, including SHAP and LIME, are increasingly utilized for spec
troscopic agricultural quality evaluation, enhancing the transparency 
and reliability of predictive models. Likewise, (Liu et al., 2025) illus
trated that UAV-based hyperspectral remote sensing, in conjunction 
with agronomic characteristics, can proficiently monitor potato growth 

and precisely estimate yield, highlighting the significance of amalgam
ating spectral and soil-related data. Furthermore, (Paudel et al., 2023) 
underscored the importance of interpretability in deep learning models 
for crop yield forecasting, proposing that transparent and elucidative 
models improve decision-making in precision agriculture. These studies 
collectively highlight the necessity for precise and interpretable models, 
prompting our emphasis on the SHAP-driven Vote-LGCB framework for 
predicting potato yield in the Maritime provinces of Canada. Multiple 
soil, environmental, and agronomic factors all affect potato tuber yield. 
Climatic variables, including temperature (Ezekeil, 1997), humidity 
(Pereira et al., 2009), and precipitation (Wurr et al., 2001), delineate the 
climatic conditions for potato cultivation, directly influencing tuber 
size, quality, and overall production. In addition to climate, biotic 
stresses such as pests and diseases (Hernandez Nopsa et al., 2014) can 
significantly diminish yield and crop health if inadequately handled. 
Soil parameters, including moisture content, pH, organic matter, and 
cation exchange capacity, are equally vital, since they affect nutrient 
availability, water retention, and plant growth during the growing 
season. Although significant, the influence of soil parameters on yield 
prediction has been insufficiently highlighted in current predictive 
modeling research, which frequently depends predominantly on satellite 
or meteorological data. This work systematically analyzes soil variables 
alongside explainable machine learning algorithms to enhance the 
interpretability and accuracy of yield estimates.

However, in this study we aim to model potato tuber yield in relation 
to soil properties and assess how variations in soil composition, such as 
nutrient levels, pH, and texture, interact with climatic conditions to 
influence overall yield performance. Several studies on potato yield 
modeling suggested the importance of soil fertility and soil moisture 
(Abbas et al., 2020). Ensign (1935) suggested that soil moisture and 
temperature influence potato yield. However, the effect of individual 
factors and their co-dependence needs to be investigated for specific 
regions and crops. Yield modeling is a complex procedure with multiple 
variables influencing the response, causing challenges in studying these 
responses. Both belowground and above-ground factors influence crop 

Nomenclature

List of abbreviations and symbols used.
(PC) Amemiyas’s prediction criterion index
(BSR) Best-subset regression
(Ca) Calcium
(CatBoost) Categorical boosting
(CatBoost) Categorical boosting
(CEC) Cation exchange capacity
Ad-R2 Adjusted R2

(CV) Coefficient of variance
(ENET) Elastic Net
(ELNET) elastic net regression
(GIS) Geographic information system
(GS + ) Geostatistics for environmental sciences
(GPS) Global positioning systems
(GDP) Gross domestic product
(HCP) Horizontal coplanar geometry
(IDW) Inverse distance weighting iron
(KGE) Kling–gupta efficiency
(LASSO) Lasso regression
(LightGBM) Light gradient-boosting
(LI) Lime Index
(LOI) Loss on ignition
(ML) Machine learning
(Cp) Mallow’s factor
(MZs) Management zones

(MZSA) Maximum Z-score
(MSE) mean square error
(θ) Moisture content
(MCDM) Multi-criteria decision-making
(MOORA) Multi-objective optimization method based on ratio 

analysis
(rNIR) Near-infrared
(NDVI) Normalized difference vegetation index
(N/S) Nugget-to-sill ratio
(P) Phosphorous
(K) Potassium
(PA) Precision agriculture
(PEI) Prince Edward Island
(RTK-GPS) Real-time kinematic global positioning system
(RLR) Red-light reflectance
(RSS) Residual sum of squares
(RMSE) Root mean square error
(SHAP) Shapley additive explanation
(SMSMP) Slightly modified shoemaker-McLean-pratt
SOMC Soil organic matter content
SD Standard deviation
(TS) Target Statistics

Time domain reflectometry
VOTE-LGCB Voting-based super ensemble model,
(WASPAS) Weighted aggregated sum product assessment
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yields. Notable research by Liu et al., 2024, and Liu et al. 2022 inves
tigated the aboveground biomass of potatoes across various growth 
stages, revealing a unique pattern compared to other crops such as 
wheat and maize. Unlike these crops, potato biomass initially increases 
during growth but subsequently decreases. This distinct trend un
derscores the critical role of the vegetative growth stage in developing 
yield prediction models for potatoes. In the current study, below and 
aboveground data were integrated, with readily accessible soil test re
ports and proximal sensor measurements being leveraged to provide 
detailed yield estimates over the growing season.

Feature selection is an accurate and precise method to estimate crop 
yield within a given dataset by filtering out the most relevant data in 
large databases. It helps reduce redundancy, remove irrelevant data, 
increase learning accuracy, and improve result comprehensibility 
(Anukrishna and Paul, 2017). Different feature selection methods have 
been developed and applied in various fields (Parmar and Bhatt, 2022). 
These methods have evolved to cope with the challenges posed by the 
advent of big data and the increasing dimensionality of datasets (Ray 
et al., 2021). High-dimensional feature filtering using a multi-level 
ensemble approach is an advanced ML and data analysis method. This 
approach is particularly effective in dealing with high-dimensional data, 
where traditional methods may struggle due to the curse of dimen
sionality (Ben Brahim and Limam, 2018). The multi-level ensemble 
approach combines independent feature subsets to better approximate 
the optimal subset of features. It aims to provide unique and stable 
feature selection without compromising predictive accuracy (Kumar and 
Minz, 2016). Recently, several studies used Shapley Additive Explana
tion (SHAP) (Parsa et al., 2020; Wieland et al., 2021) to understand and 
interpret ML models. Shapley (1953) introduced SHAP to provide in
sights into individual and combined feature contributions in model 
predictions. Lundberg & Lee (2017) developed a visualisation-based 
Python package implementation of SHAP to aid human intuition in 
model interpretation and predictions. For a particular prediction, a 
specific value is assigned to each feature by SHAP (Lundberg and Lee, 
2017). The SHAP values identify a new class of feature importance 
measures and determines a theoretical unique solution with desirable 
feature properties.

This research first conducted a comprehensive field investigation to 
measure fluctuations in tuber yield based on 30 soil physical properties 
(such as soil moisture, electrical conductivity, and slope) and chemical 
properties (including micronutrients, pH level, and organic matter). 
Potato fields were divided into 36 to 40 spatial grids in Prince Edward 
Island (PEI) and New Brunswick (NB), Canadian provinces. To model 
potato yield, based on ratio analysis (MOORA), we employed a novel 
eXplainable high-dimensional feature vote-based ensemble framework 
coupled with two multi-criteria Decision-Making (MCDM) methods, 
namely weighted aggregated sum product assessment (WASPAS) and 
multi-objective optimisation methods. To do this, Boruta-SHAP feature 
selection, best subset regression (BSR), and WASPAS & MOORA schemes 
were incorporated to indicate the best input combination among 30 
features. Here, a novel explainable ensemble model entailing voted 
CatBoost and LightGBM, called (VOTE-LGCB), has been developed to 
estimate potato tuber yield accurately. The ELNET, LASSO, Extra Tree, 
LightGBM, and CatBoost were considered comparative models to vali
date the robustness of the main model. Also, the SHAP tool was adopted 
to explain the influence of each feature during the training process. We 
used statistical indices, graphical investigations, and diagnostic analyses 
to validate and assess the accuracy of the various procedures.

This research presents a novel approach for predicting potato tuber 
yields by employing a comprehensive field investigation of physical and 
chemical soil properties across extensive spatial grids with an eXplain
able high-dimensional feature-based ensemble framework and an 
explainable ensemble model. The potato tuber yield models will provide 
a valuable tool for optimising crop management and enhancing food 
production efficiency.

2. Material and methods

2.1. Study area and filed investigation description

Physicochemical property data were gathered from three fields in 
PEI and three in NB over the growing seasons of 2019 and 2020, 
respectively (Table 1). Soil samples were collected from each field 
following a grid plan. Approximately 36 to 40 30-meter-by-30-meter 
grids were generated utilizing a Topcon Positioning System Inc. Differ
ential Global Positioning System (Topcon Positioning Systems, Inc., 
Livermore, USA). During the summer seasons of 2019 and 2020, four 
data collection events occurred: the initial sampling occurred in late 
May when seeds were planted; the second sampling occurred in mid-late 
June when plants emerged; the third sampling occurred in late July, 
over the eighty-day period, and the fourth sampling occurring in late 
August. The various samplings were performed during the growing 
season to get insight into the seasonal variations of chosen variables. In 
each year, one dataset was compiled from each province’s three fields 
(Fig. 1) to represent the variation across many fields inside a single 
dataset. Every field was planted with the potato variety of Russet Bur
bank. The cut seeds were seeded during the 2019 and 2020 growing 
seasons, and the selected fields were harvested in early October, 
respectively. The research fields were comprised of sandy loam soil 
(Orthic Humo-Ferric Podzol). Over the previous decade, traditional 
agronomic procedures were maintained in all fields for various crop 
cycles, including the potato as a primary rotation crop (Farooque et al., 
2019). Inter-row spacing was 0.9 m, whilst the gap between plants was 
0.3 m.

2.2. Proximal sensors data

Physiochemical characteristics of the fields were assessed at each 
sampling date for both years using sensors to quantify the following 
parameters: slope, normalized difference vegetation index (NDVI), and 
volumetric moisture content; soil electrical conductivity parameters 
(specifically HCP and PRP arrays (Taylor, n.d.). A DualEM-2 sensor 
(DualEM Inc., Milton, Canada) was manually positioned alongside po
tato furrows to obtain HCP and PRP measurements, ensuring no metallic 
items encountered the instrument. Five readings were recorded at each 
grid within a two-meter radius. Near the locations where HCP/PRP 
measurements were recorded, five random volumetric moisture content 
values at 15 cm depths were obtained using a FieldScout TDR 350 
(Spectrum Technologies, Aurora, USA). Using a portable slope meter 
(Mastercraft Torpedo Level, Vonore, USA), the field slope was measured 
three times in a parallel direction to the plant furrows at each position. 
At 0.5 m from the potato plants, the FieldScout CM 1000 NDVI Meter 
(Spectrum Technologies, Aurora, USA) was used to determine the NDVI, 
representing plant growth. Certain NDVI measurements were excluded 
during the planting phase in the absence of vegetation. A representative 

Table 1 
Details about research sites, years, datasets, ML algorithm training and testing 
data, and potato fields utilized for data collecting.

Province Year Dataset 
name

Training 
points

Testing 
points

Fields 
location

Prince Edward 
Island

2019 PE-2019 80 40 Field 1
Field 2
Field 3

2020 PE-2020 80 40 Field 1
Field 2
Field 3

New Brunswick 2019 NB-2019 80 40 Field 1
Field 2
Field 3

2020 NB-2020 80 40 Field 1
Field 2
Field 3
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measurement for all sensor data was calculated by averaging five 
readings at each site.

2.3. Soil sampling

In each growing season, soil samples were collected at each grid 
point within selected fields during the first and third samplings. Using a 
soil auger, three soil samples were extracted from a depth of 15 cm at 
each sampling position. Soil cores were mixed to create a representative 
sample from each sampled grid point. Protocol-compliant procedures 
were used to analyze the soil samples at the PEI Analytical Laboratory 
(Charlottetown, Canada). The degradation of organic matter (SOM), 
cation exchange capacity (CEC), and soil pH were accomplished using 
established methodologies, such as titration with a PC titration instru
ment (ManSci Inc., Orlando, USA) (Taylor, n.d.), the loss-on-ignition 
technique (Condie, 1993) employing a Combustion Analyzer model 
CN628 (LECO Corporation, St. Joseph, USA), and the Sodium Acetate 
Method (Carter and Gregorich, 2007). Soil macro and micronutrients 
were analyzed using standard methods at the analytical laboratory.

2.4. Tuber yield data collection

During the harvesting season, tuber yield samples from each grid 
were collected manually to explain the role of soil variables in fluctu
ating crop yield. The yield samples were collected in early October each 
year. A designated area of 2.7 m2 was marked out within each grid to 
collect tuber yield samples. This area was used to dig potato furrows and 

collect tuber yield samples. The collected samples were placed in 
separate plastic buckets, and the weight of the samples was recorded in 
kilograms (kg) using a computerized field weighing balance. After 
weighing and recording the weights, the dug potato tubers were put 
back in the soil for harvesting.

2.5. Data Description

Table 2 lists descriptive statistics for tilled potato soil properties 
according to several statistical indices. The maximum kurtosis and 
skewness are related to slope4 and slope1 (1.99 and 1.14), and minimum 
kurtosis and skewness are related to the NDVI2 and BS1 (− 1.53 and 
0.01), respectively. 

• HCP (horizontal co-planar) represents the configuration in dual-EM 
instruments, where the coils are aligned horizontally on the same 
plane, capturing shallow subsurface electrical conductivity. PRP 
(Perpendicular Co-Planar) denotes the perpendicular alignment of 
the coils, measuring electrical conductivity at greater depths and 
providing complementary insights into soil properties. MC (Moisture 
Content) denotes the volumetric water content of the soil. Slope 
(Terrain Slope) indicates the gradient of the land surface recorded 
from a handheld slope sensor. NDVI (Normalized Difference Vege
tation Index) is derived from a handheld sensor to assess vegetation 
health. OM (Organic Matter) represents the percentage of decom
posed plant and animal residues in the soil. PH (Soil pH) measures 
soil acidity or alkalinity. The phosphorus-to-aluminium (PAL) ratio 

Fig. 1. The field investigation geographically to assess the tuber potato yield in Atlantic Canada.
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evaluates the relationship between available phosphorus (P) in the 
soil and extractable aluminium (AL), which can influence phos
phorus availability in plants. CEC (Cation Exchange Capacity, like 
calcium, magnesium, and potassium) reflects the soil’s ability to 
retain and exchange positively charged ions. BS (Base Saturation) is 
the portion of the cation exchange capacity occupied by basic cations 
such as calcium, magnesium, potassium, and sodium. It should be 
mentioned that the unit of yield is Kg/ha.

• Data sampling seasonal stages: 1: May; 2: July; 3: August; 4: 
September.

They reveal that the leptokurtic distribution is between (− 3 and 3) 
due to kurtosis. At the same time, the remaining datasets, due to falling 
into the allowable range of kurtosis (− 3 and 3) (Jamei et al., 2021c), are 
taken into account as the mesokurtic (near 3) and platykurtic (less than 
3) distributions. Fig. 2 (above) demonstrates the normalized values of all 
the datasets used for predicting potato tuber yield utilising a novel, 
explainable, intelligent expert system. Furthermore, Fig. 2 (bottom) il
lustrates the relationship between 30 input features and the goal vari
able (yield). An accurate evaluation of the Pearson correlation 
coefficient indicates that the highest values among the inputs are 0.62 
(MC3) and 0.6 (MC2), highlighting the low linearity and complexity of 
the datasets. A straightforward analysis indicates the need for a robust 
high non-linear feature identifier to eliminate redundant features.

3. Soft computing methods and data analysis techniques 
description

The current research will use feature selection techniques and ma
chine learning methods to predict potato tuber yield in Atlantic Canada. 
Two different multi-objective optimisation techniques were used in 
feature selection. In Section 3, these techniques, methods, the SHAP 
explainer tool, and evaluation metrics will be introduced and discussed 
briefly.

3.1. Feature selection techniques

3.1.1. Boruta SHAP feature selection
The present study employed the Boruta algorithm to identify sig

nificant variables for predicting potato yield. The Boruta method is a 
feature selection approach that uses the random forest (RF) algorithm, 
which is known for its robustness (Kursa et al., 2010). There are five 
steps in the Boruta algorithm technique (Ba-Alawi et al., 2023; Gholami 
et al., 2021). Initially, all features in the dataset are duplicated. Second, 
to remove the correlations with the target factor, create shadow features 
by rearranging the values of the duplicated features. Third, Z-scores are 
calculated by running the RF algorithm over the expanded dataset. 
Fourth, the maximum Z-score (MZSA) among the shadow attributes is 
found, and the significance of the characteristic is contrasted with it. If 
the feature’s relevance is less than MZSA, it is permanently eliminated 
from the dataset. If not, the characteristic is retained in the dataset. After 
the fifth phase of eliminating shadow characteristics, all preceding 
procedures are carried out again until all unnecessary variables are 
eliminated from the dataset.

3.1.2. Best subset regression
The Best-subset Regression (BSR) model, sometimes referred to as 

the “all possible models” technique and “all possible regression,” is a 
significant strategy, particularly when selecting more prevalent vari
ables (Jamei et al., 2021c; Singh et al., 2022). This method of model 
selection involves examining each conceivable combination of predictor 
variables. The optimal model is then selected using a predefined sta
tistical criterion, such as Akaike’s information criterion (AIC), adjusted 
coefficient of determination (Ad-R2), mean square error (MSE), Mal
lows’ Cp, or Amemiya’s Prediction Criterion index (PC) (Jamei et al., 
2021c). The explanations for the formulations of the criteria are as 
follows: 

Cp =
RSSk

MSEJ
+2M − N, J > M (1) 

Table 2 
Statistical properties of all the field features gathered from the PEI and NB potato fields.

Index Minimum Maximum Mean Std Dev Cov Skewness Kurtosis

HCP1 1.66 13.10 5.91 1.98 33.56 % 0.84 0.90
PRP1 0.90 11.18 4.30 1.75 40.80 % 0.78 0.83
MC1 3.20 41.62 13.60 6.68 49.11 % 0.70 − 0.24
Slope1 0.10 8.74 2.29 1.35 59.08 % 1.14 1.99
NDVI1 0.00 0.43 0.07 0.08 111.9 % 0.72 0.10
OM1 0.50 7.00 2.98 1.03 34.51 % 0.87 0.80
PH1 4.80 7.30 5.92 0.38 6.341 % 0.35 0.91
PAl1 1.51 32.67 12.37 4.29 34.65 % 0.84 2.29
CEC1 3.00 17.00 8.67 3.02 34.86 % 0.55 0.05
BS1 17.30 99.60 66.89 19.52 29.19 % 0.01 − 0.60
HCP2 2.12 12.80 6.69 2.07 30.88 % 0.25 − 0.31
PRP2 1.05 13.00 5.07 1.98 39.01 % 0.73 0.41
MC2 3.80 38.66 14.22 5.74 40.39 % 0.59 0.31
Slope2 0.10 7.90 2.41 1.33 55.25 % 0.80 0.79
NDVI2 0.10 0.89 0.53 0.28 51.53 % − 0.49 − 1.53
HCP3 1.72 15.28 6.73 2.29 34.06 % 0.41 0.41
PRP3 0.83 12.18 5.24 2.05 39.18 % 0.32 − 0.28
MC3 3.11 36.42 13.98 5.94 42.50 % 0.87 1.04
Slope3 0.10 8.54 2.43 1.39 57.24 % 0.91 0.98
NDVI3 0.41 0.99 0.82 0.09 11.33 % − 1.05 2.24
OM3 0.80 6.80 3.02 0.95 31.39 % 0.79 0.68
PH3 4.25 7.10 5.37 0.46 8.489 % 0.56 0.65
PAl3 0.05 36.90 15.06 5.70 37.82 % 0.72 0.93
CEC3 5.00 21.00 12.01 3.10 25.84 % 0.27 − 0.56
BS3 19.00 110.00 55.17 18.21 33.01 % 0.67 − 0.17
HCP4 1.51 12.80 5.67 1.92 33.86 % 0.50 0.16
PRP4 0.56 9.90 4.20 1.67 39.69 % 0.57 0.64
MC4 0.65 26.33 9.59 5.34 55.71 % 0.09 − 0.33
Slope4 0.10 10.48 2.35 1.38 58.54 % 1.10 2.36
NDVI4 0.62 1.00 0.86 0.07 8.187 % − 0.81 − 0.01
Yield 6.10 23.20 13.08 3.08 23.55 % 0.43 0.16
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AIC = 2k+Nln

(
1
N
∑N

i=1
ê2

i

)

(2) 

PC =
1

(N − k)
∑N

i=1
ê2

i

(

1 +
k
N

)

(3) 

In the above equations, M represents the total number of variables, N 
signifies the total number of samples, MSEJ represents the mean square 

error, RSSk denotes the residual sum of squares utilized in the regression 
models, and ê represents the ith residual value. The minimum values of 
MSE, Cp, PC, and AIC are preferred (Wang et al., 2001).

3.2. Multi-objective optimizing methods

3.2.1. Multi-Objective Optimization method on the basis of ratio analysis 
(MOORA)

Multi-objective optimisation simultaneously optimises two or more 

Fig. 2. Statistically exploring the trend of normalized data gathered from the fields to simulate the yield values (Above); Correlogram associate with all excisting 
features and yiled (bottom).
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competing criteria (objectives) while adhering to specific constraints. 
The multi-objective optimisation based on ratio analysis (MOORA) 
method ranks or selects one or more alternatives from a set of available 
options, taking into account both advantageous and disadvantageous 
objectives (criteria) (Brauers et al., 2010; Chakraborty, 2011). This 
approach initiates with a decision matrix that illustrates the perfor
mance of various alternatives for various criteria. Subsequently, the 
decision matrix is normalized to eliminate all dimensions and ensure 

that every element is comparable. The normalisation procedure is a ratio 
system where the performance of one alternative concerning a particular 
criterion is compared to a denominator that serves as a representative 
value for all other options. The following equation has been proposed for 
normalisation (Karande and Chakraborty, 2012): 

x*
ij = xij

/[
∑m

i=1
xij

]

(j = 1,2,⋯, n) (4) 

Fig. 3. A) CatBoost Structure – B) Leaf-wise and level-wise generation strategy.
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where xij represents the i th alternative’s performance measure on the j 
th criterion. The number of criteria is n, and the number of other options 
is m. The normalized performances for beneficial criteria are added to 
the MOORA method, while those for non-beneficial criteria are sub
tracted in the manner specified in the expression below: 

yi =
∑g

j=1
x*

ij −
∑n

j=g+1
x*

ij (5) 

where yi is the assessment value of the ith alternative about all criteria, g 
is the number of criteria to be maximized, and n − g is the number of 
criteria to be minimized. The option with the highest assessment value is 
best when arranged in descending order.

3.2.2. WASPAS MCDM (weighted aggregated sum product assessment)
The “WASPAS technique” is a novel utility theory-based model 

proposed by Zavadskas et al. (2012). This approach has been widely 
implemented for a variety of objectives. This method has the following 
steps (Debnath et al., 2023):

In the first stage, the alternative (Ai) and criteria 
(
Cj
)

are chosen for 
evaluation. In the given set i = 1,⋯⋯m and j = 1,⋯⋯n.

In the second step, one of the MCDM methodologies is utilized to 
compute the weights of the criteria. SWARA was employed to quantify 
the weights of the criteria in this investigation.

Using Eqs. (6) and (7), the decision matrix is normalized in Step 3. In 
order to maximize the benefit (beneficiary), 

Xij = Xij
/
maxXij (6) 

For minimum optimum value (non-beneficiary) 

Xij = minXij
/
Xij (7) 

In the fourth stage, the “Weighted Sum Model” is implemented to 
calculate the initial total relative significance value 

(
Q(1)

i
)

using Eq. (8). 

Q(1)
i =

∑n

j=1
XijWj (8) 

Step 5: Using Equation (9), the “Weighted Product Model (WPM)” is 
implemented to calculate the second total relative significance value 
(
Q(2)

i
)
. 

Q(2)
i =

∏n

j=1

(
Xij
)Wj (9) 

Eq. (10) is used in Step 6 to calculate the aggregate total relative sig
nificance value (Qi), where λ denotes the coefficient value of Qi: 

Qi = λQ(1)
i +(1 − λ)Q(2)

i (10) 

3.3. Machine learning techniques

3.3.1. Categorical boosting (CatBoost)
Prokhorenkova et al. (2018) have suggested the novel gradient 

boosting technique Categorical Boosting (CatBoost). The technique 
handles categorical features with minimal loss. Fig. 3-A shows a flow
chart for the CatBoost model. In the flowchart, the initial N samples and 
M features are explicitly designated. Subsequently, a sequential con
struction of T regression trees (CART) are undertaken by integrating 
their respective characteristics. Ultimately, a prediction is determined 
through the computation of the weighted average aggregate of all pre
dictors (Huang et al., 2019). Moreover, utilising the K-Fold cross- 
validation procedure during network training is a preventive measure 
against overfitting.

Consider a dataset of observations, denoted as D = {Xi,Yi}i = 1,⋯,

n. If we have a permutation θ = (σ1, σ2,⋯, σn)
T
n , it can be modified using 

the method proposed by Prokhorenkova et al. (2018): 

xσp,k =

∑p− 1
j=1

[
xσj,k = xσp,k

]
× Yσj + β × P

∑p− 1
j=1

[
xσj,k = xσp,k

]
+ β

(11) 

In this context, the symbol β represents the weight assigned to the prior, 
whereas P denotes the prior value. Within the dataset, the prior refers to 
the mean value of the labels, to mitigate the presence of noise associated 
with categories that occur infrequently.

3.3.2. Light gradient-boosting (LightGBM)
LightGBM is an ML framework designed to implement gradient- 

boosting algorithms (Ke et al., 2017). This approach’s use of a histo
gram technique and leaf-wise growth strategy results in reduced mem
ory consumption and enhanced data separation (Fan et al., 2019). The 
LightGBM methodology uses a leaf-wise strategy to identify and split the 
leaf with the maximum scattering gain among all the current leaves, as 
depicted in Fig. 3-B. LightGBM employs a leaf-wise growth strategy 
combined with a maximum depth constraint to optimize computational 
efficiency and mitigate the risk of overfitting. The level-wise tree 
development technique involves the cultivation of trees in a hierarchical 
manner, with each level representing a distinct stage of growth. This 
strategy consists of dividing information by each node, focusing on the 
nodes closest to the root of the tree (Shakeel et al., 2023).

3.3.3. Lasso regression (LASSO)
Robert Tibshirani introduced the acronym LASSO (Shrinkage, 2016). 

The resilient method completes two fundamental objectives: feature 
selection and regularization. Particularly in models with high- 
dimensional predictors, including a penalty item in linear regression 
can significantly minimize the variance of the model by effectively 
reducing the size of the estimated coefficients (Zhang et al., 2021). The 
following describes the optimized goal function of LASSO Regression 
(LASSO-Reg): 

∑n

i=1

(

yi − λ0 −
∑p

j=1
λjxij

)2

+ τ
∑p

j=1

⃒
⃒λj
⃒
⃒ (12) 

The symbol λ0 represents the LASSO-Reg shift, whereas λj represents the 
xij coefficients. Within this context, the parameter is denoted as τ 
function, as a regulator.

3.3.4. Elastic net (ENET)
Elastic-net regression (ENET) originated as a reaction to criticisms 

leveled against the LASSO regression model, which was criticized for its 
potentially unstable variable selection that was overly dependent on the 
data. In fact, the objective is to minimize the subsequent loss function 
(Hastie et al., 2009). 

LENET(β) =
1
2n
∑n

i=1

(

yi − β0 −
∑p

j=1
βjxij

)2

+ ζ

(
1 − α

2
∑p

j=1
β2

j + α
∑p

j=1
|βj

⃒
⃒
⃒
⃒
⃒

)

(13) 

The mixing parameter between the Ridge (α = 0) and LASSO (α = 1) 
is denoted by its symbol α. Currently, two parameters, ζ and α, require 
tuning. When there are several correlated features, the ENET is a very 
beneficial regularised regression approach since it linearly integrates the 
penalties L1 and L2 of the LASSO and Ridge regression methods.

3.3.5. Extra trees
The ML technique, referred to as “Extremely randomised trees” or 

“extra trees” (Geurts et al., 2006), is a recently developed ensemble al
gorithm. The algorithm was created to continue the random forest al
gorithm to decrease the probability of overfitting a dataset (Geurts et al., 
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2006). The additional trees technique, similar to random forest, employs 
a random subset of features to train each base estimator (Singh et al., 
2022). However, it sets itself apart by randomly choosing the most 
optimal feature and its corresponding value to divide each node (John 
et al., 2016).

3.4. SHAP explainer tool

The essential concept that forms the foundation of SHAP is the 
allocation of a numerical value to each characteristic inside a specific 
data point, which measures the extent to which that characteristic 
influenced the prediction made by the model. The scores provided are 
derived from applying Shapley values, a concept rooted in cooperative 
game theory. This theoretical framework aims to allocate the value 
generated by a collaborative endeavour to each person involved. The 
precise computation of the Shapley values for a given feature is as fol
lows (Lundberg and Lee, 2017): 

EM = φ0 +
∑n

i=1
φiti (14) 

φi(ML, x) =
∑

t⊆x

|t|!(n − |t| − 1)!
n!

[ML(t) − ML(t\i)] (15) 

ti represents the simplification of the input variable numbers, where n 
represents the input variable numbers. The variable’s contribution to the 
ML model is denoted by i, φi ∈ R, and the differences notation for set 

operations is represented by \.

3.5. Evaluation indicators

Evaluation of the performance of ML techniques is essential in pre
diction tasks. In the present study, six different statistical metrics (Cor
relation Coefficient (R), Root Mean Square Error (RMSE), Uncertainty 
coefficient (U95%), Reliability coefficient, Mean Absolute Percentage 
Error (MAPE), and Kling–Gupta Efficiency (KGE) (Gupta et al., 2009)) 
were used to evaluate the accuracy of the techniques used. The following 
are formulas for the mentioned metrics (Jamei et al., 2022, 2020): 

R =
∑N

i=1

(
Yieldo,i −

Yieldo
) (

Yieldp,i − Yieldp
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(

Yieldo,i − Yieldo)
2 ∑N

i=1

(

Yieldp,i − Yieldp
)2

√

(16) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
Yieldo,i − Yieldp,i

)2

√
√
√
√ (17) 

U95% = 1.96
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SD2
e + RMSE2

√

(18) 

Reliability =

∑N
i=1Ki

N
× 100% (19) 

Fig. 4. Workflow of a multi-level preprocessing-based super ensemble ML framework to accurately estimate the crop potato in Atlantic Canada.
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Ki =

{
1, if(RAEi ≤ δ)

0else (20) 

RAEi =

⃒
⃒Yieldo,i − Yieldp,i

⃒
⃒

Yieldo,i
× 100%,RAE ≥ 0 (21) 

MAPE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
Yieldo,i − Yieldp,i

Yieldo,i

⃒
⃒
⃒
⃒× 100 (22) 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R − 1)2
+ (α − 1)2

+ (β − 1)2
√

(23) 

here Yieldo,i is observed yield, Yieldp,i is predicted yield, N is the total 
number of data, SDe is the standard deviation of errors (Yieldo,i − Yieldp,i), 
β represents the ratio of the average predicted yield value to the average 
observed yield value, while α represents the relative standard deviation 
of the predicted and observed yield values. Correlation coefficient (R), 
measures the strength and direction of the linear relationship between 
observed and predicted values, with a range of − 1 to 1. If R = 1, it has a 
perfect linear relationship and if R = 0 than there is no linear relation
ship; if the value is − 1, it has a perfect negative linear relationship. High 
positive values (close to 1) indicate a strong positive correlation (Malik 
et al., 2022a). High negative values (close to − 1) indicate a strong 
negative correlation. Values close to 0 suggest no correlation. Root Mean 

Square Error (RMSE) measures the average magnitude of the prediction 
error. It squares the errors before averaging, thus penalizing more sig
nificant errors than smaller ones. It has range from 0 to ∞. RMSE = 0 is a 
perfect fit, while higher RMSE values result in worse model perfor
mance. Uncertainty Coefficient (U95%) provides a confidence interval 
around the predictions, indicating the range within which the actual 
values are expected to lie with 95 % confidence (Jamei et al., 2021a). It 
ranges from 0 to ∞, while lower U95% values have less uncertainty and 
higher U95% values have more significant uncertainty. Reliability Co
efficient typically measures the proportion of the total variation in 
observed values that is explained by the predicted values. It has range 
from 0 to 1. Coefficient = 1 has Perfect reliability, and coefficient =
0 has no reliability. Mean Absolute Percentage Error (MAPE), measures 
the accuracy of predictions as a percentage, showing the average abso
lute error as a percentage of the observed values. It has range from 0 to 
∞. MAPE = 0 has perfect accuracy, and higher MAPE values result in 
worse model performance (Jamei et al., 2022). Kling–Gupta Efficiency 
(KGE) is a composite metric that combines correlation, variability, and 
bias components to provide a holistic measure of model performance. It 
has a range from − ∞ to 1. KGE = 1 perfectly matches observed and 
predicted values, while KGE = 0 model performance is as good as the 
mean of observed values. The KGE < 0 model performs worse than 
simply using the mean of the observed values. Understanding these in
dicators and their implications helps evaluate and compare predictive 

Fig. 5. Boruta-SHAP feature selection results based on Z-score values to recognize the most influential field features for yield potato monitoring in the Atlantic 
province of Canada.
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models’ performance effectively. Lower RMSE, MAPE, and U95% values 
generally indicate better model performance, while higher R, reliability 
coefficient, and KGE values indicate stronger and more reliable predic
tive capabilities (Jamei et al., 2021b; Malik et al., 2022b).

4. Model development and adjustment

This section describes the workflow for monitoring potato tuber 
yield in Canada’s Atlantic provinces (Prince Edward Island and New 
Brunswick) using a high-dimensional feature MCDM-multi- 

preprocessing explainable VOTE-LGCB scheme. In this regard, 556 
data points (241 in New Brunswick and 315 in PEI) including the 30 field 
features, namely HCP1, PRP1, MC1, Slope1, NDVI1, OM1, PH1, PAl1, 
CEC1, BS1, HCP2, PRP2, MC2, Slope2, NDVI2, HCP3, PRP3, MC3, 
Slope3, NDVI3, OM3, PH3, PAl3, CEC3, BS3, HCP4, PRP4, MC4, Slope4, 
NDVI4, were used to construct the predictive models. This is the first 
time such a number of features has been used to estimate the yield values 
of every agricultural product. Comparative ML approaches (VOTE- 
LGCB, CatBoost, LightGBM, Extra Tree, ELNET, and LASSO) have also 
been adopted. The main hybridized model is comprised of the Botura- 

Table 3 
MCDM-based candidate input combination identifying using hybridized best subset regression with MOORA and WASPAS.

# 
Var

Variables MSE Ad- 
R2

Cp AIC PC WASPAS MOORA

10 PAl1 / HCP2 / PRP2 / MC2 / NDVI2 / HCP3 / MC3 / OM3 / BS3 / NDVI4 2.878 0.697 25.577 598.673 0.309 5.61E- 
06

0

11 Slope1 / PAl1 / HCP2 / PRP2 / MC2 / NDVI2 / MC3 / Slope3 / OM3 / BS3 / NDVI4 2.847 0.700 20.469 593.565 0.306 4.41E- 
06

0.4794

12 HCP1 / Slope1 / PAl1 / HCP2 / PRP2 / MC2 / HCP3 / MC3 / Slope3 / OM3 / BS3 / NDVI4 2.823 0.702 16.924 589.957 0.304 3.59E- 
06

0.8120

13 HCP1 / Slope1 / PAl1 / HCP2 / PRP2 / MC2 / NDVI2 / HCP3 / MC3 / Slope3 / OM3 / BS3 / 
NDVI4

2.812 0.704 15.666 588.635 0.303 3.31E- 
06

0.9300

14 HCP1 / Slope1 / OM1 / PAl1 / HCP2 / PRP2 / MC2 / NDVI2 / HCP3 / MC3 / Slope3 / OM3 / 
BS3 / NDVI4

2.803 0.704 14.928 587.828 0.303 3.15E- 
06

0.9960

15 HCP1 / Slope1 / OM1 / PAl1 / HCP2 / PRP2 / MC2 / NDVI2 / HCP3 / MC3 / Slope3 / OM3 / 
PAl3 / BS3 / NDVI4

2.800 0.705 15.289 588.140 0.303 3.23E- 
06

0.9662

16 HCP1 / Slope1 / OM1 / PAl1 / HCP2 / PRP2 / MC2 / NDVI2 / HCP3 / MC3 / Slope3 / OM3 / 
PAl3 / BS3 / MC4 / NDVI4

2.799 0.705 16.222 589.039 0.304 3.44E- 
06

0.8787

17 HCP1 / Slope1 / OM1 / PAl1 / HCP2 / PRP2 / MC2 / NDVI2 / HCP3 / MC3 / Slope3 / NDVI3 / 
OM3 / PAl3 / BS3 / MC4 / NDVI4

2.803 0.704 18.000 590.810 0.305 3.84E- 
06

0.7121

Fig. 6. MCDM-based BSR outcomes to discover the best input combination for feeding ML schemes aim to the prediction of yield values in Atlantic zones of Canada.
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SHAP feature selection integrated with two MCDM schemes (WASPAS 
and MOORA) and the best subset regression (BSR), as a multi-level pre- 
processing scheme, and a voting-based super ensemble model, VOTE- 
LGCB. In pursuit of this objective, all the ML models (approaches: Cat
Boost, LightGBM, Extra Tree, ELNET, and LASSO) are structured on the 

open-source Scikit-learn performing on the Python platform. Besides, 
Boruta-SHAP and SHAP explainers were executed based on the Boruta 
and SHAP open-source libraries, whereas WASPAS and MOORA were 
performed with NumPy and Pandas. Notably, every calculation is per
formed on a personal laptop equipped with an 8.0 GB RAM 

Table 4 
Bayesian-based optimum hyperparameters of all the ML models constructing the yield predictive models.

Model Hyperparameters

Combos C1 C2 C3 C4

LASSO τ: 1.5 τ: 1.5 τ: 1.5 τ: 1.5
ELNET ζ = 0.05, α: 0.8 ζ = 0.1, α: 0.8 ζ = 0.05, α: 0.8 ζ = 0.05, α: 0.8
Extra tree max_depth:10, min_samples_split: 2, 

N_estimators: 200; criterion=SE
max_depth:10, min_samples_split: 2, 
N_estimators: 300; criterion=SE

max_depth:10, min_samples_split: 2, 
N_estimators: 200; criterion=SE

max_depth:10, min_samples_split: 2, 
N_estimators: 100; criterion=SE

LightGBM learning_rate: 0.2, max_depth: 8, 
N_estimators: 100

learning_rate: 0.1, max_depth: 6, 
N_estimators: 200

learning_rate: 0.1, max_depth: 8, 
N_estimators: 100

learning_rate: 0.1, max_depth: 8, 
N_estimators: 300

CatBoost learning_rate: 0.1, max_depth: 8, 
N_estimators: 100

learning_rate: 0.05, max_depth: 5, 
N_estimators: 200

learning_rate: 0.1, max_depth: 8, 
N_estimators: 100

learning_rate: 0.15, max_depth: 6, 
N_estimators: 100

Vote- 
LGCB

Meta learners: LGBMRegressor and CatBoostRegressor; verbose = 0

*SE=Square Error.

Table 5 
Goodness-of-fit indices are used to assess the performance and robustness of the provided hybrid expert systems and monitor the yield values in the Atlantic province of 
Canada.

Model Combo Phase R RMSE MAPE KGE U95% Reliability

LASSO Combo 1 TRN 0.8346 5772.4868 10.7191 0.7655 16009.5442 87.3874
TST 0.8669 5576.5244 10.0283 0.7821 15470.7317 91.0714

Combo 2 TRN 0.8356 5757.5656 10.6341 0.7668 15968.1614 87.8378
TST 0.8675 5562.6600 10.0273 0.7811 15440.4160 91.0714

Combo 3 TRN 0.8361 5748.6457 10.6134 0.7676 15943.4228 87.3874
TST 0.8677 5555.5712 9.9449 0.7830 15421.2866 91.0714

Combo 4 TRN 0.8364 5743.4654 10.5878 0.7680 15929.0555 87.8378
TST 0.8680 5546.7496 9.9759 0.7840 15399.5834 91.0714

ELNET Combo 1 TRN 0.8141 6087.6948 11.3206 0.7266 16883.7491 86.9369
TST 0.8383 6093.2330 10.9620 0.7585 16892.4917 84.8214

Combo 2 TRN 0.8102 6144.5366 11.3125 0.7238 17041.3955 86.0360
TST 0.8319 6189.4433 11.1125 0.7540 17172.8473 85.7143

Combo 3 TRN 0.8160 6059.6421 11.1743 0.7300 16805.9472 86.9369
TST 0.8380 6087.0044 10.8528 0.7595 16889.8307 85.7143

Combo 4 TRN 0.8215 6028.7504 11.0176 0.7428 16719.3969 86.9369
TST 0.8406 6050.9010 10.6221 0.7604 16779.2983 85.7143

Extra tree Combo 1 TRN 0.9939 1313.2269 2.3625 0.9348 3642.1330 98.8229
TST 0.8778 5672.3515 10.6139 0.6907 15690.2353 90.1786

Combo 2 TRN 0.5846 8823.3574 15.0968 0.5430 24470.8970 77.0270
TST 0.8806 5611.5876 10.5752 0.6917 15544.2459 91.0714

Combo 3 TRN 0.9941 1286.5623 2.3145 0.9364 3568.1807 99.7748
TST 0.8910 5402.3815 10.0673 0.7060 14961.1986 91.0714

Combo 4 TRN 0.9946 1234.8211 2.2298 0.9387 3424.6804 99.7748
TST 0.8889 5434.6035 10.1449 0.7038 15061.8066 91.0714

LightGBM Combo 1 TRN 0.9868 1764.8306 3.1585 0.9400 4894.6206 99.5495
TST 0.8732 5479.2504 9.7550 0.7672 15215.7693 91.9643

Combo 2 TRN 0.9862 1801.2839 3.2870 0.9380 4995.7211 99.7748
TST 0.8860 5279.4948 9.5391 0.7586 14659.3198 91.0714

Combo 3 TRN 0.9876 1707.3528 3.1424 0.9422 4735.2104 99.5495
TST 0.8756 5420.9857 9.8876 0.7751 15057.0567 89.2857

Combo 4 TRN 0.9893 1586.8958 2.8623 0.9473 4401.1325 98.5600
TST 0.8830 5300.7073 9.6300 0.7700 14723.0394 90.1786

CatBoost Combo 1 TRN 0.9931 1295.1831 2.4384 0.9532 3592.0889 98.7556
TST 0.8860 5393.2011 9.4958 0.7273 14946.0631 91.0714

Combo 2 TRN 0.9822 2017.2630 3.6965 0.9367 5594.6854 99.7748
TST 0.8806 5366.5627 9.5436 0.7645 14888.0089 91.0714

Combo 3 TRN 0.9937 1239.8431 2.3369 0.9560 3438.6056 96.1250
TST 0.8875 5415.2456 9.6639 0.7137 15013.0142 91.9643

Combo 4 TRN 0.9937 1241.4561 2.3469 0.9551 3443.0799 97.2501
TST 0.8864 5453.4631 9.6251 0.7135 15089.3683 88.3929

Vote-LGCB Combo 1 TRN 0.9851 1885.1531 3.5105 0.9314 5228.3259 99.7748
TST 0.8810 5357.9742 9.4376 0.7634 14870.5359 89.2857

Combo 2 TRN 0.9857 1844.4627 3.4433 0.9326 5115.4709 99.7748
TST 0.8855 5235.6550 9.4110 0.7610 14527.8179 95.5357

Combo 3 TRN 0.9860 1824.9885 3.4402 0.9342 5061.4640 99.7748
TST 0.8958 5088.5087 8.9913 0.7652 14127.6637 93.7500

Combo 4 TRN 0.9850 1896.6947 3.5036 0.9289 5260.3356 99.7748
TST 0.8934 5149.6633 9.4761 0.7569 14305.8586 91.9643
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configuration and an Intel (R) Core i7 processor operating at 3.0–3.20 
GHz. Fig. 4 depicts each phase of modelling potato tuber yield value 
with a unique high-dimensional filtering super ensemble model. Given 
the lack of predictive power exhibited by the accumulated agricultural 
datasets concerning yield, it becomes necessary to identify the most 
influential predictors by implementing a robust methodology that ac
counts for the nonlinear correlation between predictors and targets. The 
Boruta-SHAP FS approach was employed to achieve this objective, 
which uses an important factor derived using a Z-score value to identify 
the most significant predictors among numerous input features for yield 
estimation. To this end, it is critical to use an appropriate benchmark 
criterion, the so-called Max-Shadow, to remove the redundant 

predictors in order to gain the most efficient performance. Boxplots in 
Fig. 5 illustrate the outcomes of the Boruta-SHAP method, indicating the 
significant input predictors based on Z-score values to construct the 
predictive model of potato tuber yield. As shown in Fig. 5, green boxes 
reveal the 17 accepted features, including HCP1, Slope1, OM1, PAl1, 
HCP2, PRP2, MC2, NDVI2, HCP, MC3, Slope3, NDVI3, OM3, PAl3, BS3, 
MC4, and NDVI4. In contrast, features corresponding red boxes show the 
rejected ones based on the Max-Shadow benchmark values. In the next 
pre-processing stage, the optimal candidate input combinations with 
10–17 components were computed using the BSR scheme. According to 
the literature, the lowest values of MSE, Cp, AIC, and PC and the highest 
value of Ad-R2 are vital in indicating the best possible combinations. 

Fig. 7. Spider plot measuring whole metric performance (i.e., R, RMSE, MAPE, KGE, U95%, and Reliability) in testing phase simulation of the yield value using super 
ensemble and five comparative ML models.
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However, no specific law determines which ones are more decisive. 
Aiming to address this drawback, two MCDM schemes, namely WASPAS 
and MOORA, were coupled with the BSR technique to specify the 
optimal combinations accurately. Table 3 reports all the outcomes of the 
second pre-processing stage based on the abovementioned criteria. 
Basically, the minimal values of WASPAS and the maximal values of 
MOORA reveal the superior candidate input combinations. In order to 
do this, the four best input combinations with 13–16 features were found 
using WASPAS and MOORA values and then evaluated using ML models. 
To make the ML modelling evaluation easier, the following combina
tions are used: Combo 1 (WASPAS = 3.31E-06 and MOORA = 0.93), 
Combo 2 (WASPAS = 3.15E-06 and MOORA = 0.9960), Combo 3 
(WASPAS = 3.23E-06 and MOORA = 0.9962), and Combo 4 (WASPAS 
= 3.44E-06 and MOORA = 0.8787). To better understand how the 
MCDM-based BSR scheme worked, the Ad-R2, MSE, Cp, WASPAS, and 
MOORA values were shown on a multi-scale plot (Fig. 6) for all the 
possible input combinations.

The 556 data points were randomly partitioned to create an 80/20 
training and testing data split. The training subset was subjected to k- 
fold cross-validation (with five folds) in this investigation to prevent 

overfitting and ensure that each dataset had an equal opportunity 
throughout both the training and testing stages. Also, Before running the 
ML techniques, the training and testing datasets were normalized to a 
range of [0, 1] to improve convergence and maintain model stability.

The hyperparameters associated with a soft computing framework 
are critical in its preparation since they directly impact model precision 
(Jamei et al., 2022). In the current research, the LightGBM and CatBoost 
models consider the main meta-learner, which contains three key 
hyperparameters, namely learning_rate, max_depth, and N_estimators.

The Bayesian optimisation approach adjusted the Extra tree, 
LightGBM, and CatBoost hyperparameters. The setting of the VOTE- 
LGCB super ensemble model is directly dependent on two meta-learner 
functions (LGBMRegressor and CatBoostRegressor) in the Scikit-learn 
library. Consequently, it has no specific hyperparameter. The optimal 
values and ranges of the hyperparameters for all the proposed ML 
(LASSO, ELNET, Extra tree, LightGBM, CatBoost, and VOTE-LGCB) 
systems are shown in Table 4.

Fig. 8. Scatter plots were associated with simulated and measured yield values using the super ensemble and five comparative ML models, using four input 
combinations selected in the testing phase.
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5. Application results and computational assessment

The prediction results generated by the LASSO, ELNET, Extra tree, 
LightGBM, CatBoost, and Vote-LGCB models are discussed in detail in 
four scenarios of input combinations Combo 1, Combo 2, Combo 3, 
Combo 4. Table 5 shows values for the statistical metrics R, RMSE, 
MAPE, KGE, U95%, and Reliability in training (TRN) and testing (TST) 
phases to monitor potato tuber yield in Atlantic Canada Province, 
Edward Island. The proposed models have also been examined with the 
help of distinct diagnostic plots to assess their suitability and applica
bility in predicting potato tuber yield.

Table 5 illustrates the performance of the LASSO, ELNET, Extra tree, 
LightGBM, CatBoost, and Vote-LGCB models using the input combina
tions Combo 1, Combo 2, Combo 3, and Combo 4. By analyzing, the 
LASSO model shows slightly better precision in terms of (R = 0.8364, 
RMSE = 5743.4654, MAPE = 10.5878, KGE = 0.7680, U95% =
15929.0555, Reliability = 87.8378)-TRN and (R = 0.8680, RMSE =
5546.7496, MAPE = 9.9759, KGE = 0.7840, U95% = 15399.5834, 
Reliability = 91.0714)-TST phases by incorporating the Combo 4 input 
subset followed by Combo 3, Combo 2, and Combo 1 to predict potato 
tuber yield. Similarly, the ELNET model produces better prediction ac
curacy for Combo 4 than Combo 1, Combo 2, and Combo 3 to predict 
potato tuber yield.

The Extra tree, CatBoost, and Vote-LGCB models appeared more 
precise with Combo 3-based statistical metrics in training and testing 
phases against Combo 1, Combo 2, and Combo 4 sets of input combi
nations to predict potato tuber yield. Meanwhile, the LightGBM ac
quired better accuracy in terms of Combo 1 concerning other input 
combinations. Overall, the Vote-LGCB model shows highest prediction 
accuracy [R = 0.9860, RMSE = 1824.9885, MAPE = 3.4402, KGE =
0.9342, U95% = 5061.4640, Reliability = 99.7748]-TRN and (R =
0.8958, RMSE = 5088.5087, MAPE = 8.9913, KGE = 0.7652, U95% =
14127.6637, Reliability = 93.7500]-TST as compared to LASSO, ELNET, 
Extra tree, LightGBM, CatBoost models to predict potato tuber yield. 
Moreover, Combo 3 appeared to be a slightly better input combination 
to predict potato tuber yield than Combo 1, Combo 2, and Combo 4. 
Therefore, the Vote-LGCB model appeared to be the most accurate 
model based on Table 5 compared to other models.

Fig. 7 exhibits the spider plots of LASSO, ELNET, Extra tree, 
LightGBM, CatBoost, and Vote-LGCB models in terms of R, RMSE, 
MAPE, KGE, U95%, and Reliability metrics to predict potato tuber yield 
for all four input combinations Combo1(purple), Combo 2 (cyan), 
Combo 3 (yellow) and Combo 4 (pink). It is quickly realized that the 
Vote-LGCB model reports better accuracy in these spider plots for all 4 
input combinations but outperformed input combination C3. The 
comparing models (i.e., LASSO, ELNET, Extra tree, LightGBM, CatBoost) 

Fig. 8. (continued).
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are reasonably good in terms of spider plots in all 4 input combination 
scenarios to predict potato tuber yield. However, the Vote-LGCB model 
surpasses all the models with Combo 3 in predicting potato tuber yield 
by attaining precise assessment metric scores.

The scatter plots in Fig. 8 inspect the efficiency of the LASSO, ELNET, 
Extra tree, LightGBM, CatBoost, and Vote-LGCB models between the 
predicted and measured potato tuber yields based on Combo 1, Combo 
2, Combo 3, and Combo 4. Scatterplots further elaborate the models’ 
prediction competence by including the R metric and the 20 % upper 
and lower bounds. The Vote-LGCB model with Combo 3 accomplished 
the highest precision with better prediction capacity by obtaining R =
0.8958, followed by Vote-LGCB with Combo 4 (R = 0.8934) and Extra 

Tree with Combo 3 (R = 0.8910) to predict potato tuber yield as 
compared to other models. Thus, Fig. 8 authenticates that the Vote- 
LGCB model with Combo 3 is a reasonably good potato tuber yield 
prediction model.

The Taylor diagrams in Fig. 9 discussed the LASSO, ELNET, Extra 
tree, LightGBM, CatBoost, and Vote-LGCB model’s performance more 
tangibly and concretely between the referenced and predicted potato 
tuber yields in Combo 1, Combo 2, Combo 3, and Combo 4 scenarios. 
Taylor diagrams are branded a comprehensive valuation to inspect the 
models’ comparability based on standard deviation and correlation 
coefficient.

For Combo 2, Combo 3, and Combo 4, the clearly Vote-LGCB model 

Fig. 9. Taylor diagram of simulated yield values using the super ensemble and five comparative ML models through selected four input combinations (Combo 1, 
Combo 2, Combo 3, Combo 4) against the reference (i.e., actual yield) point related to the measured yield values.

Table 6 
Finalization of six predictive models through possible input combinations based on two MCDM schemes (i.e., WASPAS and MOORA) for concentrating on superior 
performances of models.

Model Combo WASPAS MOORA Sup-Combo Model Combo WASPAS MOORA Sup-Combo

LASSO Combo 1 0.00025 0.6828 3 LightGBM Combo 1 0.00026 0.4800 2
Combo 2 0.00024 0.7256 Combo 2 0.00023 0.4357
Combo 3 0.00024 0.2834 Combo 3 0.00025 0.6075
Combo 4 0.00024 0.3951 Combo 4 0.00024 0.4594

ELNET Combo 1 0.00024 0.6110 4 CatBoost Combo 1 0.00024 0.5611 2
Combo 2 0.00025 0.6719 Combo 2 0.00025 0.1952
Combo 3 0.00024 0.4557 Combo 3 0.00025 0.6352
Combo 4 0.00024 0.3040 Combo 4 0.00024 0.8427

Extra Tree Combo 1 0.00026 0.6188 3 Vote-LG-CB Combo 1 0.00025 0.6546 3
Combo 2 0.00025 0.6194 Combo 2 0.00026 0.4320
Combo 3 0.00023 0.3812 Combo 3 0.00023 0.3788
Combo 4 0.00023 0.3853 Combo 4 0.00024 0.5944
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positioned itself slightly closer to the reference potato tuber yield with a 
correlation coefficient between 0.90 and 0.95, except for Combo 1. The 
comparison of models LASSO, ELNET, Extra Tree, LightGBM, and Cat
Boost shows acceptable accuracy. However, it could not surpass the 
Vote-LGCB model. Therefore, Fig. 9 further confirmed the appropriate
ness of the Vote-LGCB model in monitoring potato tuber yield using 
Combo 1, Combo 2, Combo 3, and Combo 4.

6. Further analysis and interpretably assessment of outcomes

Table 6 identifies the most accurate predictive model using the input 
combination Combo 1, Combo 2, Combo 3, and Combo 3 based on the 
two MCDM schemes (i.e., WASPAS and MOORA). Observing Table 6, 
Combo 3, based on WASPAS and MOORA schemes, appeared to be the 
most optimum input combination for the LASSO model to predict potato 
tuber yield. Likewise, the WASPAS and MOORA schemes depict that 
Extra tree performs best on Combo 3. Similarly, the Vote-LGCB model 
reports better accuracy in combination with Combo 3 using the WASPAS 
and MOORA schemes. The WASPAS and MOORA schemes confirmed 
that Combo 2 is better for LightGBM and CatBoost. In contrast, Combo 4 
is the optimum set of input for the ELNET model to predict potato tuber 
yield accurately. However, the WASPAS and MOORA schemes support 
and validate the highest performance of the Vote-LGCB model over 
other counterpart models by achieving the lowest scores based on 
Combo 3 (Table 6).

The bar graphs in Fig. 10 represent the WASPAS and MOORA scores 
attained by the LASSO, ELNET, Extra tree, LightGBM, CatBoost, and 
Vote-LGCB models in all four combinations (i.e., Combo 1, Combo 2, 
Combo 3, and Combo 4) to predict potato tuber yield. The Vote-LGCB 
model obtained the smaller values of WASPAS and MOORA scores to 
predict potato tuber yield using Combo 1, Combo 2, Combo 3, and 
especially Combo 4, where the magnitudes of these MCA schemes are 

much less than others. The LASSO, ELNET, Extra tree, LightGBM, and 
CatBoost models displayed relatively lower accuracy based on WASPAS 
and MOORA scores using all four input combinations to predict potato 
tuber yields. Thus, Fig. 10 established that overall, the Vote-LGCB model 
displays higher accuracy using WASPAS and MOORA scores.

Fig. 11 offers a more in-depth analysis using the normalized error 
distribution and MC2 values (%) in terms of stem plots for the most 
significant input feature. Additionally, the violin plot distribution of the 
normalized error was also inserted to assess the robustness of the LASSO, 
ELNET, Extra tree, LightGBM, CatBoost, and Vote-LGCB models in their 
corresponding optimal input combinations (i.e., Combo 2, Combo 3, and 
Combo 4). The Vote-LGCB model with Combo 4 exhibited lower 
normalized error distribution and MC2 values (%) as compared to 
LASSO (with Combo 3), ELNET (with Combo 3), Extra tree (with Combo 
3), and LightGBM (with Combo 2), CatBoost (with Combo 2) to predict 
potato tuber yield. Moreover, the violin plot distribution generated by 
the Vote-LGCB model with Combo 4 is also consistent with the minor 
normalized error along with Mean = 0.0675 as compared to all other 
models. Hence, the Vote-LGCB model with Combo 4 accomplishes better 
prediction accuracy for potato tuber yield monitoring.

The expected time-series trend plots in Fig. 12 compare the measured 
and predicted potato tuber yield (pink) and their residuals (blue) using 
six predictive models in the best possible input combination. The Vote- 
LGCB model with Combo 4 accomplished better accuracy in terms of 
parallel and consistent trends against the measured potato tuber yield as 
compared to the LASSO (with Combo 3), ELNET (with Combo 3), Extra 
tree (with Combo 3), and LightGBM (with Combo 2), and CatBoost (with 
Combo 2) models. The Vote-LGCB model with Combo 3 also generated 
smaller residuals, which further confirmed the prediction accuracy was 
higher during potato tuber yield prediction. Thus, the Vote-LGCB model 
with the Combo 3 model outperforms other models in predicting potato 
tuber yield accurately.

Fig. 10. Grouped Columns − Indexed data plot to represent the MOORA and WASPAS values associated with all the models through four input combinations to 
ascertain the best combination in each model in the testing phase.
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The absolute forecast error |FE| are given in Fig. 13 using empirical 
cumulative distribution function (ECDF) and a 95 % confidence interval 
to compare the Vote-LGCB model with Combo 3 against other bench
marking models to portray a more tangible view. The ECDF of the Vote- 
LGCB model with Combo 3 exhibited a very close profile corresponding 
to 60 % of the cumulative probability, and the minimal |FE| value is 
around 10 within the 95 % confidence interval. The comparing models 
LASSO (with Combo 3), ELNET (with Combo 3), Extra tree (with Combo 
3), LightGBM (with Combo 2), and CatBoost (with Combo 2) exhibit 
slightly higher |FE| values. Hence, these figures further confirm the 
suitability of the Vote-LGCB model in predicting potato tuber yield.

Fig. 14 reports explainability and interpretability during the potato 

tuber yield model prediction, which consists of a Force plot (top), 
summary plot (middle), and correspondence plot (below). The forced 
and summary plots are exhibited for the pre-defined point of dividing 
training and testing subsets. Fig. 14, extracted by the SHAP explainer, 
appraises the impact and influence of every significant input predictor 
on the Vote-LGCB model’s prediction. The SHAP values resulted in the 
LightGBM and CatBoost average as the voting method’s meta-leaners (i. 
e., Vote-LGCB), representing the super ensemble SHAP outcomes. The 
Force plot indicates that the input predictors MC2, NDVI4, HCP2, 
Slope3, NDVI2, and PAI1 in red have contributed significantly to the 
model’s output prediction with score value MC2 = 17.81 appeared to be 
the most positively contributed predictor, followed by PAI1, and HCP2. 

Fig. 11. Normalized error distribution versus the MC2, as the most significant input feature (a) and violin plot of normalized error values (b) to assess the robustness 
of the super ensemble approach compared to the predictive models (according to the optimal input combination) aim to the yield modeling.
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The predictors PRP2 and BS3 in blue colour show low feature values in 
the model’s prediction.

The red dots in the summary and correspondence plots display that 
the corresponding predictors (i.e., MC2, NDVI4, OM1, HC3, HCP2, PAI1, 
and NDVI2) have a higher impact and influence on the model’s output 

prediction. In contrast, the variable in the blue dot describes lower and 
poor effects. Based on Fig. 14, the numerical values in the waterfall plots 
are the model’s score. The input predictor MC2, with a score of 17.81, 
contributed significantly to potato tuber yield prediction and pushed the 
Vote-LGCB model to attain the highest score value. Accordingly, the 

Fig. 12. Physical expected trends related to yield values were measured using six predictive models in the best possible input combination, and yield values were 
calculated and predicted in the testing phase (pink colour) and residual values (blue colour). Here, the term Res refers to the residuals.
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input feature MC2, followed by NDVI4, OM1, HC3, HCP2, PAI1, and 
NDVI2, are the significant features for the model’s accuracy in 
prediction.

7. Further discussion

The manuscript presents a novel approach for accurately estimating 
potato tuber yields in Atlantic Canadian provinces by leveraging a 
comprehensive soil property data collected across multiple fields and 
growing seasons. An advanced explainable ML framework employing 
techniques like Boruta-SHAP feature selection, best subset regression, 
and multi-criteria decision-making methods (WASPAS and MOORA) has 
been constructed to identify the most influential soil variables affecting 
potato tuber yield. A unique ensemble model called VOTE-LGCB, which 
combines CatBoost and LightGBM through a voting scheme, has been 

developed and demonstrated to outperform other comparing models (i. 
e., LASSO, ELNET, Extra tree, LightGBM, CatBoost) with high correla
tion and low error rates, highlighting the advantages of the ensemble 
approach. The voting ability caused the ensemble robustness of both 
classical CatBoost and LightGBM schemes to capture the nonlinearities 
of the understudy target efficiently. However, the proposed framework 
involves advanced techniques like ensemble modelling, multi-criteria 
decision-making, and feature selection, which can be computationally 
intensive, especially for larger datasets or real-time applications. As the 
current study is the first ground-based big data modeling endeavour 
using 30 feature inputs, developing a robust model that captures the 
nonlinearities between yield and available features is deeply chal
lenging. Thus, comparing the present research achievements with pre
vious literature is restricted to satellite image-based modeling 
conducted by (Gómez et al., 2019) in Spain and (Salvador et al., 2020) in 

Fig. 13. Empirical cumulative distribution function (ECDF) versus absolute forecast error |FE| and 95% confidence interval for six predictive models (superior input 
combination) in the testing datasets of yield modeling.

M. Jamei et al.                                                                                                                                                                                                                                  Computers and Electronics in Agriculture 238 (2025) 110831 

20 



Mexico. In Spain, potato yield was estimated using images from the twin 
Sentinel 2 satellites (European Space Agency Copernicus Programme) 
based on the Support Vector Machine Radial (SVR Radial) (Gómez et al., 
2019). The SVR Radial accuracy resulted in R = 0.964 and RMSE = 11.7, 
compared to R = 0.8875 in the current study. In Mexico, the superior ML 
model based on ERA5′s meteorological data and satellite imagery from 
TERRA, Support Vector Machine Polynomial (SVMP), led to R = 0.926 
and RMSE = 14.9 (Salvador et al., 2020). In the abovementioned 

research, modelling was performed using the classification regarding the 
fewer input features. Consequently, their reliability and efficiency are 
fewer than those of the VOTE-LGCB platform in modeling potato tuber 
yield based on numerous input data.

This study demonstrated that SHAP analysis and the VOTE-LGCB 
model consistently identified soil moisture content (MC), soil pH, 
Cation Exchange Capacity (CEC), and the Normalized Difference Vege
tation Index (NDVI) as the primary variables influencing potato tuber 

Fig. 14. Interpretable results during the training phase of modeling. Forced plot, summary plot (at the pre-defined point of dividing training and testing sub-sets), 
and correspondence plot.
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yield, corroborating established agronomic principles. Soil moisture is a 
crucial determinant of tuber initiation and bulking; insufficient water 
availability during these phases reduces tuber size and uneven devel
opment. All the Analyses indicate that yield fluctuations strongly 
correlate with variations in moisture content throughout the season, 
emphasizing the necessity of precise irrigation management in the 
Maritime regions. Similarly, soil pH affects nutrient availability, espe
cially phosphate and micronutrients essential for tuber development; 
the current model results show a pronounced decrease in expected yield 
when pH levels deviate significantly from the optimal range (5.5–6.5) 
recommended for potatoes. Cation Exchange Capacity (CEC), indicative 
of the soil’s ability to retain and exchange vital cations like Ca2+, Mg2+, 
and K+, is directly associated with soil fertility and the plant’s capacity 
to maintain consistent tuber development. Our analysis indicates that 
lower CEC values (<8 cmol/kg) correlate with significant yield losses, 

suggesting that soils with inadequate cation exchange characteristics 
may require targeted fertilization or organic matter improvements.

Furthermore, NDVI, derived from proximal sensing, serves as a 
reliable metric for canopy vitality and photosynthetic performance, 
establishing a direct connection between soil conditions and above
ground plant health. By integrating these variables, the provided 
methodology achieves high forecast accuracy and provides interpretable 
insights into the underlying mechanisms influencing potato production 
variability. The findings underscore that the proposed model functions 
as both a predictive tool and a decision-support system, enabling site- 
specific soil and crop management strategies in the region. The exist
ing approach exhibits commendable predictive performance, although 
other avenues could augment its robustness. Integrating physical models 
with the suggested framework may elucidate the fundamental agro
nomic processes, enhancing interpretability and reliability.

Fig. 14. (continued).
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The VOTE-LGCB model exhibited robust predictive accuracy for 
potato yield estimation in the examined fields of PEI and NB; however, 
its applicability to other regions with varying soil types, climatic con
ditions, or management practices requires external validation. Future 
endeavours will entail evaluating the framework on autonomous data
sets and varied agro-climatic circumstances to determine its trans
ferability and resilience across different production contexts. This study 
examined 30 soil parameters; however, future research should investi
gate additional aspects, including climatic variations, pest and disease 
prevalence, and management strategies. These improvements will 
augment the model’s practical utility across many agricultural contexts. 
On top of that, to augment the applicability of the current methodology 
for real-world scenarios, it has discerned a minimized subset of signifi
cantly impactful soil characteristics (e.g., moisture content, pH, and 
CEC) by Boruta-SHAP and Best Subset Regression, facilitating yield 
calculation independent of the complete dataset. Furthermore, we 
advocate for integrating this diminished feature set with proximal 
sensing instruments, such as NDVI and soil moisture sensors, which can 
offer dynamic crop condition indicators with fewer field measurements. 
This method reduces expenses and labor requirements while ensuring 
strong yield forecast effectiveness and can be considered for future 
purposes.

8. Conclusion

This research presents an advanced, eXplainable high-dimensional 
feature filtering and Bayesian super ensemble framework (Vote-LGCB) 
for predicting potato tuber production through a combination of soil 
physical and chemical parameters. Integrating multi-criteria decision- 
making methodologies (WASPAS and MOORA), we discovered four best 
input combinations (Combo 1–4) for model training and evaluation. 
Combo 3 consistently surpassed the other input sets, exhibiting 
enhanced predictive capability. The Vote-LGCB model, augmented with 
SHAP-based interpretability, attained superior accuracy (R = 0.9860, 
RMSE = 1824.99, MAPE = 3.44, KGE = 0.93, U95% = 5061.46, Reli
ability = 99.77) in comparison to the LASSO, ELNET, Extra Tree, 
LightGBM, and CatBoost models, hybridised with preprocessing pro
cedure. This research’s principal innovation involves converting the 
opaque Vote-LGCB model into an interpretable framework through 
SHAP analysis, which identified soil moisture content, NDVI, organic 
matter (SOM), ground conductivity, and phosphorus-to-aluminium ratio 
(PAL) as the most significant predictors of tuber yield. This improved 
comprehension of soil-yield dynamics can inform precision agricultural 
methodologies by pinpointing the aspects most significantly influence 
yield variability. In addition to predicting potato yields, the suggested 
approach has potential applications in agriculture, hydrology, environ
mental management, and renewable resource optimisation, facilitating 
data-driven decision-making to enhance resource allocation and sus
tainability. Future research should integrate meteorological factors 
(temperature, humidity, and precipitation), disease prevalence (e.g., 
late blight, early blight, common scab), and pesticide usage (type, fre
quency, and efficacy) to enhance model precision. Extending this 
methodology to forecast yields of additional crops, including blueberries 
and soybeans, would enhance its relevance and influence.
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Gómez, D., Salvador, P., Sanz, J., Casanova, J.L., 2019. Potato yield prediction using 
machine learning techniques and sentinel 2 data. Remote Sens. 11, 1745.

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean 
squared error and NSE performance criteria: Implications for improving hydrological 
modelling. J. Hydrol. 377, 80–91.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data 
mining, inference, and prediction. Springer Science & Business Media.

Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., Zhou, H., 2019. 
Evaluation of CatBoost method for prediction of reference evapotranspiration in 
humid regions. J. Hydrol. 574, 1029–1041.

Jamei, M., Ahmadianfar, I., Chu, X., Yaseen, Z.M., 2021a. Estimation of triangular side 
orifice discharge coefficient under a free flow condition using data-driven models. 
Flow Meas. Instrum. 77, 101878. https://doi.org/10.1016/j. 
flowmeasinst.2020.101878.

M. Jamei et al.                                                                                                                                                                                                                                  Computers and Electronics in Agriculture 238 (2025) 110831 

23 

https://doi.org/10.3390/agronomy10071046
https://doi.org/10.3390/agronomy10071046
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0010
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0010
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0010
https://doi.org/10.1109/ICISC.2017.8068746
https://doi.org/10.1109/ICISC.2017.8068746
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0020
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0020
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0020
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0020
https://doi.org/10.1007/S11634-017-0285-Y/TABLES/7
https://doi.org/10.1007/S11634-017-0285-Y/TABLES/7
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0030
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0030
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0030
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0035
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0035
https://doi.org/10.3390/AGRICULTURE13030596/S1
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0045
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0045
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0045
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0045
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0055
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0055
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0055
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0055
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0065
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0065
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0070
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0070
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0070
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0075
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0075
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0080
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0080
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0080
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0085
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0085
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0090
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0090
http://refhub.elsevier.com/S0168-1699(25)00937-8/h0090
https://doi.org/10.1016/j.flowmeasinst.2020.101878
https://doi.org/10.1016/j.flowmeasinst.2020.101878


Jamei, M., Ahmadianfar, I., Chu, X., Yaseen, Z.M., 2021b. Estimation of triangular side 
orifice discharge coefficient under a free flow condition using data-driven models. 
Flow Meas. Instrum. 77, 101878.

Jamei, M., Ahmadianfar, I., Chu, X., Yaseen, Z.M., 2020. Estimation of triangular side 
orifice discharge coefficient under a free flow condition using data-driven models. 
Flow Meas. Instrum., 101878

Jamei, M., Karbasi, M., Adewale Olumegbon, I., Moshraf-Dehkordi, M., Ahmadianfar, I., 
Asadi, A., 2021c. Specific heat capacity of molten salt-based nanofluids in solar 
thermal applications: a paradigm of two modern ensemble machine learning 
methods. J. Mol. Liq. 335, 116434. https://doi.org/10.1016/j.molliq.2021.116434.

Jamei, M., Karbasi, M., Alawi, O.A., Kamar, H.M., Khedher, K.M., Abba, S.I., Yaseen, Z. 
M., 2022. Earth skin temperature long-term prediction using novel extended Kalman 
filter integrated with artificial intelligence models and information gain feature 
selection. Sustain. Comput. Inform. Syst. 35, 100721.

John, V., Liu, Z., Guo, C., Mita, S., Kidono, K., 2016. Real-time lane estimation using deep 
features and extra trees regression. Springer, pp. 721–733.

Karande, P., Chakraborty, S., 2012. Application of multi-objective optimization on the 
basis of ratio analysis (MOORA) method for materials selection. Mater. Des. 37, 
317–324.

Kbakural, B.R., Robert, P.C., Huggins, D.R., 1999. Variability of Corn/Soybean Yield and 
Soil/Landscape Properties across A Southwestern Minnesota Landscape 573–579. 
DOI: 10.2134/1999.precisionagproc4.c51.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017. 
LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Proces. 
Syst. 3149–3157.

Kravchenko, A.N., Bullock, D.G., 2000. Correlation of corn and soybean grain yield with 
topography and soil properties. Agron. J. 92, 75–83. https://doi.org/10.2134/ 
agronj2000.92175x.

Kumar, V., Minz, S., 2016. Multi-view ensemble learning: an optimal feature set 
partitioning for high-dimensional data classification. Knowl. Inf. Syst. 49, 1–59. 
https://doi.org/10.1007/S10115-015-0875-Y/TABLES/9.

Kuradusenge, M., Hitimana, E., Hanyurwimfura, D., Rukundo, P., Mtonga, K., 
Mukasine, A., Uwitonze, C., Ngabonziza, J., Uwamahoro, A., 2023. Crop yield 
prediction using machine learning models: case of irish potato and maize. Agric 13, 
225. https://doi.org/10.3390/AGRICULTURE13010225.

Kursa, M.B., Jankowski, A., Rudnicki, W.R., 2010. Boruta – a system for feature selection. 
Fundam. Informaticae 101, 271–285. https://doi.org/10.3233/FI-2010-288.

Liu, Y., Feng, H., Fan, Y., Yue, J., Chen, R., Ma, Y., Bian, M., Yang, G., 2024. Improving 
potato above ground biomass estimation combining hyperspectral data and 
harmonic decomposition techniques. Comput. Electron. Agric. 218, 108699.

Liu, Y., Feng, H., Fan, Y., Yue, J., Yang, F., Fan, J., Ma, Y., Chen, R., Bian, M., Yang, G., 
2025. Utilizing UAV-based hyperspectral remote sensing combined with various 
agronomic traits to monitor potato growth and estimate yield. Comput. Electron. 
Agric. 231, 109984.

Liu, Y., Feng, H., Yue, J., Li, Z., Yang, G., Song, X., Yang, X., Zhao, Y., 2022. Remote- 
sensing estimation of potato above-ground biomass based on spectral and spatial 

features extracted from high-definition digital camera images. Comput. Electron. 
Agric. 198, 107089. https://doi.org/10.1016/j.compag.2022.107089.

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. 
Adv. Neural Inf. Process Syst. 30.

Malik, A., Jamei, M., Ali, M., Prasad, R., Karbasi, M., Yaseen, Z.M., 2022. Multi-step daily 
forecasting of reference evapotranspiration for different climates of India: a modern 
multivariate complementary technique reinforced with ridge regression feature 
selection. Agric Water Manag 272, 107812. https://doi.org/10.1016/j. 
agwat.2022.107812.

Parmar, K.P., Bhatt, T., 2022. Crop yield prediction based on feature selection and 
machine learners: a review. In: Proc. 2nd Int. Conf. Artif Intell. Smart Energy, ICAIS, 
pp. 354–358. https://doi.org/10.1109/ICAIS53314.2022.9742891.

Parsa, A.B., Movahedi, A., Taghipour, H., Derrible, S., Mohammadian, A.(Kouros), 2020. 
Toward safer highways, application of XGBoost and SHAP for real-time accident 
detection and feature analysis. Accid. Anal. Prev. 136, 105405. https://doi.org/ 
10.1016/j.aap.2019.105405.

Paudel, D., De Wit, A., Boogaard, H., Marcos, D., Osinga, S., Athanasiadis, I.N., 2023. 
Interpretability of deep learning models for crop yield forecasting. Comput. Electron. 
Agric. 206, 107663.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A., 2018. Catboost: 
unbiased boosting with categorical features. Adv. Neural Inf. Proces. Syst. 
6637–6647.

Ray, P., Reddy, S.S., Banerjee, T., 2021. Various dimension reduction techniques for high 
dimensional data analysis: a review. Artif. Intell. Rev. 54, 3473–3515. https://doi. 
org/10.1007/S10462-020-09928-0/METRICS.
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