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ABSTRACT
We examined how summated training and match load measures relate to salivary immunological
and hormonal profile changes in professional football players. Data were collected from 18 elite-
level professional male football players from one English Championship team across a complete 40
wk competitive season. Daily training (micro-technology) and match (computerised tracking)
measures of total, high-speed and high-metabolic load running distance and sprint,
acceleration, deceleration and sRPE load were converted into exponentially weighted moving
average “acute” (7d), “chronic” (28d) and acute:chronic composite load measures. Bi-weekly
morning saliva samples were analysed for immunoglobulin-A, alpha-amylase, testosterone,
cortisol and testosterone:cortisol. A two-stage data reduction technique using partial least
squares modelling and a backward stepwise selection procedure determined the most
parsimonious model for each salivary variable. Testosterone had non-linear relationships with
chronic total (P = 0.015; Cohen’s D: large), high-metabolic load (P = 0.001;small) and high-speed
(P = 0.001;trivial) running distance and linear relationships with chronic sRPE (P = 0.002;moderate
↓) and acute:chronic high-speed running distance (P = 0.001; trivial ↑). Cortisol had a non-linear
relationship with chronic high-speed running distance (P = 0.001;trivial). Testosterone:cortisol
had non-linear relationships with chronic decelerations (P = 0.039;small) and chronic summated
acceleration and deceleration load (P = 0.039;small). Non-linear relationships typically indicated
optimal hormonal responses at squad mean loads. No load variables clearly related to salivary
immunoglobulin-A or alpha-amylase changes. We conclude that chronic total and high-intensity
load measures relate to hormonal changes and might be useful indicators of player readiness.
Acute load variables were not related to immunological or hormonal changes and
consequently, should not be used as surrogate measures of player readiness in isolation.
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Introduction

Professional association football training and match play
are high-intensity, high-volume activities. The competi-
tive season is long (i.e. 40–42 wks) and characterised
by frequent, clustered periods of high game density
(i.e. when players are required to play 2 games in 7 d)
(Springham, Waldron, Burgess, & Newton, 2019). Conse-
quently, imbalance to the relationship between sum-
mated training and match load (“load”) and recovery
can occur, resulting in maladaptive training; denoted
by negative changes in a biological system in response
to external load or inadequate recovery (Meeusen
et al., 2013; Schwellnus et al., 2016; Soligard et al., 2016).

Individualised, multivariate, concurrent monitoring of
internal and external training and match load, alongside

biological fatigue measures (i.e. immunological or hor-
monal measures used to quantify the physiological
response to load (Meeusen et al., 2013; Schwellnus
et al., 2016; Soligard et al., 2016; Impellizzeri, Marcora,
& Coutts, 2019)), are advocated to determine the load-
recovery relationship, and mitigate the risk of maladap-
tive training (Meeusen et al., 2013; Schwellnus et al.,
2016; Soligard et al., 2016). In football, load is readily
monitored using indices derived from Global Positioning
Systems (GPS), Micro-Electrical Mechanical (MEMS)
sensors and computerised tracking technology (Aken-
head & Nassis, 2016). Of these, total distance (TD),
high-speed running distance (HSR), sprint, acceleration,
deceleration and metabolic power measures (i.e. high
metabolic load distance (HMLd)) are most frequently
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used in practice (Akenhead & Nassis, 2016) and research
(Bowen, Gross, Gimpel, & Li, 2017; Bowen, Gross, Gimpel,
Bruce-Low, & Li, 2019; Springham et al., 2020). It has
recently been recommended that load indices should
be converted into composite values to reflect “acute”
((A) ∼ 7 d average load; proposed to be analogous to
player “fatigue”) and “chronic” ((C) ∼ 28 d average
load; proposed to be analogous to player “fitness”)
load, and the acute: chronic (A:C) load ratio in order to
indicate player “readiness” (to accept new load Schwell-
nus et al., 2016) (Schwellnus et al., 2016; Soligard et al.,
2016). To date, composite load measures have demon-
strated relationships with injury risk (Bowen et al.,
2017; Bowen et al., 2019) and match play physical per-
formance (Springham et al., 2020) in football players.

Biological fatigue measures can be collected around
games (i.e. ∼ 24–48 h pre- and post- match) (Akenhead
& Nassis, 2016) to indicate player recovery status
(Meeusen et al., 2013; Schwellnus et al., 2016; Soligard
et al., 2016). Owing to high game frequencies in football,
regular (often bi-weekly) monitoring is warranted to
facilitate timely player load management decision
making. Consequently, measures that impart minimal
psychophysiological stress (i.e. those that are not fati-
guing or invasive) and have fast result availability are
preferable. As such, resting salivary measures of
immunological and hormonal status are popular (Aken-
head & Nassis, 2016) because sample collection is fast (∼
30 s), non-invasive and results are available rapidly
(Coad, McLellan, Whitehouse, & Gray, 2015; Dunbar,
Armitage, Jehanli, & Browne, 2013; Dunbar, Rosen,
Gimpel, & Jehanli, 2016; Morgans, Orme, Anderson,
Drust, & Morton, 2014; Morgans, Owen, Doran, Drust, &
Morton, 2015).

Salivary immunoglobulin-A (s-IgA) and a-amylase (s-
AA) are antimicrobial proteins, secreted by mucosal
cells under sympathetic adrenal medullary (SAM) axis
regulation (Papacosta & Nassis, 2011). Prolonged, exces-
sive psychophysiological stress (i.e. by excessive train-
ing and/or match load or inadequate recovery) can
reduce s-IgA and s-AA secretion, and compromise
mucosal immunity (Papacosta & Nassis, 2011). To
date, reductions in s-IgA have been associated with
increases in upper respiratory tract infection (URTI)
risk in football players (Dunbar et al., 2013), and both
s-IgA and s-AA have demonstrated the ability to track
changes in load in football players (Morgans et al.,
2014; Owen et al., 2016) and professional (Chennaoui
et al., 2016) and Paralympic (Edmonds, Burkett, Leicht,
McKean, & Sacchetti, 2015; Sinnott-O’Connor, Comyns,
Nevill, & Warrington, 2018) swimmers.

Testosterone (T) and cortisol (C) are steroid hor-
mones, detectable in saliva (s-T, s-C) (Papacosta &

Nassis, 2011), that reflect anabolic (s-T) and catabolic
(s-C) balance (s-T:C) (Thorpe & Sunderland, 2012). Their
secretion is regulated by the hypothalamic pituitary
adrenal (HPA) (s-T and s-C) and hypothalamic pituitary
gonadal (HPG) (s-T) axes. Football match play typically
induces acute increases in C, equivocal changes to T
but reductions in T:C, signalling a catabolic state, that
can manifest for ∼ 24–72 h (Thorpe & Sunderland,
2012). Longitudinally, 25% and 35% increases in C
have been reported during sustained periods of
increased load (Filaire, Lac, & Pequignot, 2003) and
game density (Handziski et al., 2006) in football
players. Since muscular recovery is augmented in ana-
bolic environments (Urhausen, Gabriel, & Kindermann,
1995), s-T, s-C and s-T:C are considered as useful indi-
cators of athletic readiness (Papacosta & Nassis, 2011).
Collectively, owing to their reactivity to SAM, HPA and
HPG axis activation, salivary immunological (s-IgA, s-
AA) and hormonal (s-T, s-C, s-T:C) measures are con-
sidered as useful indicators of holistic stress balance
(i.e. from the psychophysiological stress derived from
both sport and non-sport means (Meeusen et al., 2013;
Schwellnus et al., 2016; Soligard et al., 2016)) and the
load-recovery relationship in athletes (Papacosta &
Nassis, 2011) and football players (Cormack, Newton,
McGuigan, & Cormie, 2008; Filaire et al., 2003; Handziski
et al., 2006; Kraemer et al., 2004; Morgans et al., 2014;
Owen et al., 2016; Rowell et al., 2018; Thorpe & Sunder-
land, 2012).

High acute loads have been associated with increased
injury risk (Bowen et al., 2017; Bowen et al., 2019) and
compromised match play physical performances in foot-
ball players (Springham et al., 2020). Conversely, high
chronic loads have been associated with reduced
injury risk (Bowen et al., 2017; Bowen et al., 2019) and
improved high-intensity match play physical perform-
ances (Springham et al., 2020). These findings have typi-
cally been attributed to the effects of “fatigue” and
“fitness”, based on the premise that “acute” and
“chronic” load indices are analogous to “fatigue” and
“fitness” status. However, the relationships between
composite load indices and biological fatigue measures
are yet to be empirically evaluated to test these assump-
tions. Indeed, no longitudinal empirical investigations
have examined if composite load indices relate to
immunological (s-IgA, s-AA) or hormonal (s-C, s-T, s-T:
C) profile changes in football players. To optimally
support player health and performance, it is clearly
important to understand how composite load measures
relate to biological fatigue measures. Accordingly, the
aim of this investigation was to investigate how compo-
site measures of summated training and match load (TD,
HSR, sprint, acceleration, deceleration and HMLd) relate
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to biological fatigue measures (s-IgA, s-AA, s-T, s-C and s-
T:C) in elite-level professional football players.

Materials and methods

Study design

Daily training and/or match load measures and bi-
weekly resting saliva samples were collected from 18
senior professional male outfield players (age = 24 ± 4
years; height = 181 ± 7.0 cm, body mass = 72.4 ±
5.2 kg) from one English Championship (EC) team
across one complete season. Informed consent was
obtained from all participants prior to data collection
and an ethics declaration was approved for this investi-
gation by the Edith Cowan University (Australia) Human
Research Ethics Office.

Training load

Training load was recorded for all pre-season and in-
season training sessions. External load was measured
using sports GPS and MEMS sensors (Statsports Viper
2, Belfast, Northern Ireland, UK), sampling at 10 Hz
(GPS) and 100 Hz (tri-axial accelerometer, gyroscope
and magnetometer). Typical error for distance and
speed for this device are < 3% and < 2% (Beato, Dever-
eux, & Stiff, 2018) respectively. A software application
(www.gnssplanning.com) reported previously (Spring-
ham et al., 2020), was used to identify a geographical
point (ground station) based on the latitude and longi-
tude coordinates of the team training facility. This deter-
mined the mean number of satellites and horizontal
dilution of precision for GPS data across the sample
period, which equated to 8.7 ± 1.0 and 0.66 ± 0.08%
respectively; indicating optimal conditions for satellite
transmissions (Witte & Wilson, 2004).

Players wore the same GPS device for all training ses-
sions. Devices were worn in a neoprene vest, between
the scapulae as per manufacturer guidelines. Load vari-
able selection was based on use in practice (Akenhead
& Nassis, 2016) and similar scientific research literature
relating to load quantification in elite level professional
football (Bowen et al., 2017; Bowen et al., 2019; Spring-
ham et al., 2020). Total distance – (total distance com-
pleted (m)); high-speed running (HSR) – (total distance
completed between 5.5 m/s and 80% of individualised
maximal linear running velocity (m)); high metabolic
load distance (HMLd) – (distance covered when energy
consumption per kilogram per second is > 25 W/kg−1

(m)); number of sprints (total number of sprint efforts
> 80% of individualised maximal linear running velocity);
and high intensity variables: total number of

accelerations (ACC), decelerations (DEC) and changes
to speed (ACC + DEC) were recorded. Acceleration and
DEC efforts were identified according to manufacturer
guidelines as a change in player velocity of > 0.5 m/s2

maintained for > 0.5 s. Efforts were zone-banded
based on the peak magnitude of ACC or DEC with
thresholds set at > 3 m/s2 and > −3 m/s2 respectively.
These thresholds are consistent with those reported
elsewhere in the football science research literature
(Akenhead, Hayes, Thompson, & French, 2013; Spring-
ham et al., 2020; Varley & Aughey, 2013; Varley,
Gabbett, & Aughey, 2014; Varley, Jaspers, Helsen, &
Malone, 2017). Training load data were extracted from
GPS devices using manufacturer software (Statsports
Viper, Belfast, Northern Ireland, UK). Internal load was
recorded using player rating of perceived exertion
(RPE) from the CR-10-scale (Foster et al., 2001). CR-10
response was collected within 30 min of all training ses-
sions and multiplied by session duration (min) to
provide an arbitrary unit (AU) of session load, denoted
as sRPE. This method has been validated for use in foot-
ball previously (Impellizzeri, Rampinini, Coutts, Sassi, &
Marcora, 2004). Data collection and analysis was com-
pleted by the same investigator across the entire
sample period.

Match load

Match load was recorded for all home and away games.
External load variables were measured using 6 fixed
semi-automated high definition motion cameras (Chyr-
onhego TRACKAB, London, UK). Following games, raw
TRACKAB player position data were converted to equiv-
alent training load variables using manufacturer soft-
ware (Statsports Viper, Belfast, Northern Ireland, UK).
This method has been described previously (Taberner
et al., 2020), and is widely used in practice and scientific
research literature (Bowen et al., 2019; Springham et al.,
2020; Taberner et al., 2020). Strong relationships are
reported between Statsports Viper and TRACKAB for
TD (r2 = 0.98) and HSR (r2 = 0.98) (Taberner et al., 2020)
and our unpublished data indicate strong relationships
for HMLd (r2 = 0.93), ACC (r2 = 0.94), DEC (r2 = 0.95) and
number of sprints (r2 = 0.97) using this method during
elite-level professional football match play. Internal
match load was calculated using the same sRPE
method as was used following training.

Composite load indices

For each load variable, the pooled (summated training
and match derived measures) 7 d absolute sum, 28 d
absolute sum, exponentially weighted moving average

1158 M. SPRINGHAM ET AL.

http://www.gnssplanning.com


(EWMA) acute load, EWMA chronic load and the EWMA
acute: chronic load ratio (A:C) were calculated. EWMA
indices were calculated using equations by Williams
and colleagues (Williams, West, Cross, & Stokes, 2017):

EWMAtoday = Loadtoday∗ la + ((1− la)∗ EMWAyesterday)

Where la represents the degree of time decay. Time
decay was calculated using:

la = 2/(N+ 1)

Where N is the chosen time decay constant. Decay
factors representing time constants for 7 d (acute) and
28 d (chronic) were used. These equated to 0.25 and
0.069 respectively.

Saliva sampling

Saliva samples were collected the morning after rest and
/ or recovery days across the sample period. Typically,
this was two days prior (i.e. match day (MD) −2) and
two days after (i.e. MD +2) games during both single
and double game weeks. Baseline saliva measures
were calculated for individual players as the mean of
MD-2 data collected during single game weeks in the
first 5-week in-season mesocycle. We reasoned that
this best represented when player “fitness” was high
(i.e. following pre-season), when “fatigue” was low (i.e.
early in the competitive season, following a recovery
day during single game weeks) and thus when player
holistic stress balance was optimal. Players reported to
the team training facility between 09:00 and 09:30 on
sample collection days. They were asked to abstain
from caffeine consumption prior to sample collection
and samples were collected prior to breakfast and train-
ing. They were asked to sit quietly, swallow existing
saliva in the mouth and to then place an oral fluid collec-
tor (OFC; SOMA Bioscience, Wallingford, UK) on the
tongue. With the mouth closed, 0.5 ml of saliva was col-
lected, as indicated by a volume adequacy indictor on
the OFC. The OFC was then placed into 3 ml of buffer
solution in a bespoke 10 ml container (OFC Buffer;
SOMA Bioscience, Wallingford, UK) and mixed gently
by hand for 2 min.

Salivary IgA and cortisol

Two drops of the OFC sample were applied to two lateral
flow immunochromatographic (LFI; SOMA Bioscience,
Wallingford, UK) test strips: which captured s-IgA and
s-C at test and control reagent lines within a solid base
nitrocellulose membrane. After a 5 min incubation
period, the LFI strips were inserted into a lateral flow
device reader (LFD; SOMA Bioscience, Wallingford, UK),

which used signal intensity to provide quantifiable
values for s-IgA (mg/ml) and s-C (nM). These were deter-
mined using specifically programmed curves assigned to
the LFI strips, provided by the manufacturer (SOMA Bio-
science, Wallingford, UK). Analysis of s-IgA and s-C was
conducted by the same researcher across the entire
sample period; who had ∼ 10 years’ experience in
sample collection and analysis using this method in
the applied football environment. Comparison of the
LFD method with the enzyme-linked immunosorbent
assay (ELISA) method indicates strong validity for s-IgA
(r = 0.93; P < 0.001) (Coad et al., 2015) and s-C (r2 =
0.79) (Dunbar, Springham, Franklin, Ahmed, & Browne,
2013). Repeated sampling indicates strong reliability
for s-IgA (ICC r = 0.89, P < 0.001 and CV = 9.4%) (Coad
et al., 2015) and s-C (CV = 6.8%) (Dunbar et al., 2013).

Salivary a-amylase and testosterone

The remaining OFC buffer solution was sealed and taken
to a private laboratory (SOMA Bioscience, Wallingford,
UK) where s-AA (mg/ml) and s-T (pg/ml) were measured
by ELISA using enzyme immunoassay test kits (EIA;
SOMA Bioscience, Wallingford, UK), and an automated
analyser (Tecan Nanoquant, Tecan, Männedorf, Switzer-
land) as per manufacturer guidelines. Following analysis,
s-T was converted to its molar value to calculate s-T:C. All
analysis was completed by the same laboratory tech-
nician. All samples were analysed within 24 h of collec-
tion. The intra- and inter- assay CV for s-AA and s-T
analysis using this method is 4.71% and 11.4%; and
7.94% and 9.4% respectively; as reported in other
applied environments (Anton-Solanas, O’Neill, Morris, &
Dunbar, 2016).

Statistical analysis

Statistical analysis was conducted using R (version 3.5.1,
R Foundation for Statistical Computing, Vienna, Austria).
Individual salivary measures were associated with the
EWMA 7 d “acute” and 28 d “chronic” load measures
summated up to the end of the previous day. The
season was divided into nine equal 5-wk mesocycles
(one preseason and eight in-season phases). “Phase of
season” was then modelled as a re-scaled linear effect
to represent the linearised effect of “readiness” for
each salivary variable across the season. This was then
included as a covariate to help to control for any poten-
tial longitudinal effects (i.e. to changes in player “readi-
ness” across the season). A two-stage data reduction
process was then used to determine the most parsimo-
nious model for each salivary biomarker.
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First, the “multivariate methods with unbiased vari-
able selection” (“MUVR”) algorithm (Shi, Westerhuis,
Rosen, Landberg, & Brunius, 2019) was used to identify
the minimal-optimal candidate load predictor variables
for each salivary variable. The MUVR package is an algor-
ithm for multivariate modelling, aimed at finding associ-
ations between predictor data (an X matrix) and a
response (a Y vector) via partial least squares modelling.
MUVR is useful for handling data that has large numbers
of variables and few observations, and constructs robust,
parsimonious multivariate models that generalize well,
minimize overfitting and facilitate interpretation of
results (Shi et al., 2019).

Second, the candidate training and match load pre-
dictor variables identified for each salivary measure
were entered into a backward stepwise selection pro-
cedure to identify the best-fitting overall model. Quadra-
tic polynomials and interaction effects between
predictors were considered as part of this process. Quad-
ratic models explored the possibility of non-linear
relationships by including a squared predictor term in
the model; if this term was significant and improved
the model fit (based on likelihood ratio tests), the quad-
ratic term was retained and presented as such. If not,
then a linear model was used to assess the relationship
between the predictor and outcome variable. Player
identity was included as a random effect to account
for repeated observations within players. Effects were
deemed to be statistically significant at an alpha level
of P < 0.05. Data are presented as means and 95% confi-
dence intervals (CI), alongside Cohen’s d effect sizes (ES)
(Hopkins, Marshall, Batterham, & Hanin, 2009). These
were estimated from the estimated marginal means
and the “sigma”/SD taken from the random effects
term of the mixed model. Thresholds for ES were: 0.0-
0.2 = Trivial; 0.2-0.6 = Small; 0.6-1.2 =Moderate; 1.2-2 =

Large; >2 = Very Large. The conditional R2 value (which
considers both fixed and random effects in the model)
is also provided as a goodness-of-fit measure for these
relationships. Data for non-linear relationships is pre-
sented as means and 95% CI with estimated salivary vari-
able responses at typically very low (−2 SD), low (−1 SD),
mean, high (+ 1 SD) and very high (+2 SD) values of each
training and match load predictor variable.

Results

Predictors of salivary proteins

s-IgA
Only a linear effect of phase of season (P = 0.011, ES =
Trivial ↑) (Supplementary Table 1) was retained from the
variable selection process for s-IgA.

s-AA
Only a linear effect of phase of season (P < 0.001, ES =
Small ↓) (Supplementary Table 2) was retained from the
variable selection process for s-AA.

Predictors of salivary hormones

s-T
Six variables were retained from the variable selection
process for s-T (Table 1). Linear effects were identified
for phase of season (P = 0.004, ES = Trivial ↓), chronic
sRPE (P = 0.002, ES =Moderate ↓) and A:C HSR (P =
0.011, ES = Trivial ↑). Non-linear effects were identified
for chronic TD (P = 0.015, ES = Large) (Figure 1, Panel
A), chronic HSR (P = 0.001, ES = Trivial) (Figure 1, Panel
B) and chronic HMLd (P = 0.001, ES = Small) (Figure 1,
Panel C). For TD, s-T was highest at very high chronic
load (+2 SD). For HSR, s-T was highest at very low (−2

Table 1. Predictors of salivary testosterone (s-T).
s-T

Predictors Estimates ES CI Standardized CI P

(Intercept) 208.2 5.58–410.8 0.044
Phase of Season −73.9 Trivial ↓ −124.8 – −23.0 −0.12 – 0.01 0.004
EWMA chronic TD2 0.00 Large 0.00–0.00 0.03–0.28 0.015
EWMA chronic HSR2 0.02 Trivial 0.01–0.03 0.08–0.30 0.001
EWMA chronic HMLd2 0.00 Small −0.01 – −0.00 −0.53 – −0.14 0.001
EWMA chronic sRPE −1.32 Moderate ↓ −2.13 – −0.50 −0.61 – −0.14 0.002
EWMA A:C HSR 16.9 Trivial ↑ 3.87–29.98 0.03–0.20 0.011
Random Effects
σ2 40663
τ00 Player_ID 3396
ICC 0.08
N Player_ID 18
Observations 1093
Marginal R2 0.087
Conditional R2 0.157

Note: EWMA, exponentially weighted moving average; TD, total distance; HSR, high-speed running; HMLd, high metabolic load distance; sRPE, session rating of
perceived exertion; A:C, acute:chronic;2, denotes a non-linear relationship.
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SD) and very high (+2 SD) chronic load. For HMLd, s-T
was highest at squad mean chronic load.

s-C
Two variables were retained from the variable selection
process for s-C (Table 2): a linear effect for phase of
season (P < 0.001, ES = Small ↓) and a non-linear effect
for chronic HSR (P = 0.001, ES = Trivial). For chronic
HSR, s-C was lowest at squad mean chronic load and

highest at very low (−2 SD) and very high (+2 SD)
chronic load (Figure 1, Panel D).

s-T:C
Four variables were retained from the variable selection
process for s-T:C (Table 3). Linear effects were identified
for phase of season (P = < 0.001, ES = Small ↑) and
chronic HSR (P = 0.554, ES = Trivial ↑). Non-linear effects
were identified for chronic DEC (P = 0.039, ES = small)

Figure 1. Non-linear relationships between exponentially weighted moving average (EWMA) chronic total distance and salivary tes-
tosterone (panel A), EWMA chronic high-speed running distance and salivary testosterone (panel B), EWMA chronic high-metabolic
load distance and salivary testosterone (panel C), EWMA chronic high-speed running distance and salivary cortisol (panel D), EWMA
chronic decelerations and salivary testosterone: cortisol (panel E) and EWMA chronic summated accelerations and decelerations and
salivary testosterone: cortisol (panel F). Data are presented as mean ± 95% CI bands, denoted by grey areas on the curves. Figures
demonstrate predicted hormonal responses at very low (−2 SD), low (−1 SD), mean, high (+1 SD) and very high (+2 SD) EWMA work-
loads. Model-predicted EWMA workload values at −2 SD, −1SD, mean, +1 SD and +2 SD are provided in brackets on the X-axis.

Table 2. Predictors of Salivary Cortisol (s-C).
s-C

Predictors Estimates ES CI Standardized CI P

(Intercept) 12.79 8.47–17.12 <0.001
Phase of Season −8.53 Small ↓ −10.5 – −6.6 −0.34 – −0.22 <0.001
EWMA chronic HSR2 0.00 Trivial 0.00–0.00 0.04–0.15 0.001
Random Effects
σ2 74.24
τ00 Player_ID 5.29
ICC 0.07
N Player_ID 18
Observations 1083
Marginal R2 0.138
Conditional R2 0.195

Note: EWMA, exponentially weighted moving average; HSR, high-speed running;2, denotes a non-linear relationship.
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(Figure 1, Panel E) and chronic ACC + DEC (P = 0.039, ES
= Small) (Figure 1, Panel F). For chronic DEC, s-T:C was
highest at squad mean chronic load. For ACC + DEC, s-
T:C was highest at very low (−2 SD) and very high (+2
SD) chronic load.

Discussion

The aim of this investigation was to examine the
relationships between composite load measures and
salivary immune (s-IgA, s-AA) and hormone (s-T, s-C, s-
T:C) profile changes in elite-level professional football
players. Chronic (for TD, HSR, HMLd and sRPE) and
acute:chronic (for HSR) load variables related to hormo-
nal profile changes (s-T, s-C, s-T:C), exerting trivial to
large effects. No load variables were associated with s-
IgA or s-AA profile changes. Results indicate that
chronic total and high-intensity load measures might
be useful indicators of player readiness because they
relate to hormonal profile changes, which has been
identified as an important element of the holistic stress
balance model (Meeusen et al., 2013; Schwellnus et al.,
2016; Soligard et al., 2016). However, acute load vari-
ables did not relate to immunological or hormonal
profile changes, which questions their use as contribut-
ing measures of player readiness in isolation.

The most important finding from this investigation is
the large non-linear relationship identified between
chronic TD and s-T. For this relationship, increases in
chronic TD were associated with increases in s-T, with
the greatest s-T values observed at +2 SD of chronic
TD (Table 1 and Figure 1, Panel A). “Chronic” measures
of load indicate medium-to-long-term training and
match load exposure (28 d) and are proposed to be ana-
logous to “fitness” status (Gabbett, 2016). Since TD is a
global measure of training volume (Akenhead & Nassis,
2016), this relationship suggests that chronic training

volume might be an important regulator of T concen-
tration in football players. Previous studies have demon-
strated an unclear relationship between load and T
concentration in this population. For example, sustained
periods of high load have been associated with equiv-
ocal (Filaire et al., 2003), increasing (Rowell et al., 2018)
and decreasing (Handziski et al., 2006; Kraemer et al.,
2004) effects on T concentration in football players.
However, these investigations are somewhat limited by
infrequent hormonal sampling (Filaire et al., 2003; Hand-
ziski et al., 2006; Kraemer et al., 2004), short sampling
periods (Handziski et al., 2006; Kraemer et al., 2004),
limited load variable reporting (Filaire et al., 2003; Hand-
ziski et al., 2006; Kraemer et al., 2004; Rowell et al., 2018)
or the use of sub-elite players (Kraemer et al., 2004).
Comparatively, the current investigation employed
daily multivariate load monitoring and bi-weekly hormo-
nal sampling across a complete competitive season in
elite-level professional players. Accordingly, the study
design and methods employed herein might facilitate
a more sensitive analysis. Our result is consistent with
findings from other researchers, reporting increases in
resting T among elite-level professional rugby union
players following periods of high chronic load (21 d)
(Gleeson, Allgrove, & Reddin, 2007). It is possible that a
high chronic training volume up-regulates the HPG
axis, serving to increase T concentration. Indeed, this
mechanism has previously been proposed to explain
temporal increases in s-T in football players (Thorpe &
Sunderland, 2012), and might also help to explain the
significant, albeit small “U” shaped relationship ident-
ified herein between chronic ACC + DEC and s-T:C
(Table 3 and Figure 1, Panel F), for which very high
loads were associated with optimal s-T:C responses.

Interestingly, our analysis also identified a moderate
negative linear relationship between chronic sRPE load
and s-T (Table 1), suggesting that high chronic internal

Table 3. Predictors of salivary testosterone: cortisol (s-T:C).
s-T:C

Predictors Estimates ES CI Standardized CI P

(Intercept) 59.4 30.1–88.7 <0.001
Phase of Season 48.9 Small ↑ 34.7–63.0 0.17–0.30 <0.001
EWMA chronic DEC2 −0.20 Small −0.39– −0.01 −0.41 – −0.01 0.039
EWMA chronic ACC + DEC2 0.06 Small 0.00–0.11 0.01–0.44 0.039
EWMA chronic HSR 0.05 Trivial ↑ −0.12–0.23 −0.10–0.18 0.554
Random Effects
σ2 3447
τ00 Player_ID 669
ICC 0.16
N Player_ID 18
Observations 1064
Marginal R2 / 0.066
Conditional R2 0.218

Note: EWMA, exponentially weighted moving average; DEC, deceleration; ACC + DEC, combined acceleration and deceleration; HSR, high-speed running;2,
denotes a non-linear relationship.
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load compromised s-T concentration. This result con-
trasts recent findings, indicating a positive linear
relationship between these variables (Rowell et al.,
2018). Rowell and colleagues (Rowell et al., 2018)
suggested that high chronic internal loads might facili-
tate increases in s-T secretion, but did not propose an
explanatory mechanism. Session RPE is an internal train-
ing load measure, used to quantify training stress by
multiplying perceived effort and session duration
(Foster et al., 2001; Gabbett, 2016). Of note, excessive
load and / or inadequate recovery are implicated as
the dominant causes of maladaptive training (Meeusen
et al., 2013; Schwellnus et al., 2016; Soligard et al.,
2016), which in-turn, can disturb HPG axis function and
reduce T secretion (Cormack et al., 2008). Therefore, it
is possible that our finding is explained by a disturbance
to HPG axis function during periods of excessive internal
load across the sample period. Maladaptive training is
most likely to occur during sustained periods of high
game density or training load in football (Morgans
et al., 2014), both of which are commonplace in the
English Championship (Springham et al., 2019). Collec-
tively, the relationship between chronic TD and s-T indi-
cates that high chronic training volumemight increase s-
T concentration, while the chronic sRPE – s-T relationship
indicates that excessive chronic internal load might com-
promise the response. Thus, chronic high-intensity train-
ing volume might have important interactive effects on
T secretion in football players.

We also observed small non-linear (inverted “U”
shaped) relationships between chronic HMLd and s-T
(Table 1 and Figure 1, Panel C) and between chronic
DEC and T:C (Table 3 and Figure 1, Panel E). For these
relationships, s-T and s-T:C responses increased across
very low to mean chronic HMLd and DEC loads but
decreased thereafter through high to very high loads.
Collectively, these relationships suggest optimum
loading “zones” (at approximately squad mean chronic
load, herein) for determining player T and T:C profiles.
Of note, HMLd accounts for acceleration, deceleration,
sprinting and HSR activity (in any combination), and con-
sequently, is considered a “global” measure of high-
intensity load (Springham et al., 2020). Chronic DEC is
a measure of exposure to negative change in speed,
which has a very high mechanical demand at the
threshold employed herein (> - 3 m/s2) (Akenhead
et al., 2013). Thus, these relationships also implicate
chronic high-intensity training volume as an important
moderating factor for T and T:C profile changes in foot-
ball players. Moreover, these findings indicate merit in
ensuring that players are exposed to appropriate
chronic HMLd and DEC loads to optimise T and T:C
responses, but to avoid excessive chronic HMLd and

DEC loads (i.e. +1 and +2 SD of chronic HMLd and DEC
training and match load herein), since these scenarios
might compromise the hormonal response.

The notion that chronic high-intensity training
volume can exert an important influence on hormonal
profile is also supported somewhat by the significant,
albeit trivial, “U”-shaped relationship identified
between s-C and chronic HSR (Table 2 and Figure 1,
Panel D). For this relationship, the s-C response was
highest at very low and very high chronic HSR load and
was lowest at approximately the squad mean HSR
load. Cortisol is secreted in response to HPA axis acti-
vation and is used as a quantitative stress biomarker in
athletes (Chennaoui et al., 2016). Accordingly, this
suggests that periods of low “fitness” (i.e. when
chronic HSR is very low) and high “fatigue” (i.e. when
chronic HSR is very high) exert compromising effects
on C concentration in football players. Interestingly,
this finding is consistent with previous research, report-
ing increases in s-C during periods of increased training
intensity (Dunbar et al., 2016) and load (Filaire et al.,
2003) in football players. Practically, the nature of this
relationship indicates merit in exposing players to an
appropriate chronic HSR load (to optimise the C
response) but to avoid excessively low (i.e. −2 and −1
SD) and high (i.e. +1 and +2 SD) chronic HSR loads,
since this might compromise the C response.

Surprisingly, no training and match load variables
related to s-IgA or s-AA profile changes. This contrasts
previous research, indicating that s-IgA and s-AA
measures are sensitive to changes in load in football
players (Morgans et al., 2014; Morgans et al., 2015;
Owen et al., 2016) and professional (Chennaoui et al.,
2016) and Paralympic (Edmonds et al., 2015; Sinnott-
O’Connor et al., 2018) swimmers. Indeed, existing data
typically indicate reductions in s-IgA in response to
acute (Morgans et al., 2015) and chronic (Morgans
et al., 2014; Owen et al., 2016) periods of increased
load in football players. We propose several explanations
for this finding. First, consistent with previous rec-
ommendations, (Williams et al., 2017) we quantified
“acute” load using an EWMA 7 d decay factor, spanning
168 hr of training and competition time. Though equiv-
alent data are unavailable for s-AA, s-IgA is reported to
normalise in ∼ 18 to 60 h following training and
match-play (Coad, Gray, Wehbe, & McLellan, 2015) in
football players, respectively. Thus, it is possible that s-
IgA measures are not sensitive to load accrued > 60 h
preceding sample collection. Indeed, s-IgA measures
might indicate short-term (i.e. 1–3 d), but not long-
term (i.e. 4–7 d) stress balance within-microcycles in
football players. It is also possible that our finding is
explained somewhat by the effect of non-training
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related stress on SNS activation. Indeed, lifestyle factors
and other sources of psychophysiological stress that
were not quantified in the current investigation could
have “masked” load-induced secretory changes to s-
IgA and s-AA. For example, it is known that both s-IgA
and s-AA are sensitive to changes in psychological
stress (Papacosta & Nassis, 2011). Importantly, since
acute load variables did not relate to any of the salivary
biomarkers, it is evident that EWMA 7 d “acute” and A:C
measures should not be used as surrogate measures of
player “fatigue” status in isolation.

Strengths and limitations

The strengths of this investigation relate to the partici-
pation level of the cohort, the study duration and the
sampling frequency. Indeed, load was measured daily
and salivary variables were analysed bi-weekly in a
sample of 18 elite-level professional football players for
∼ 1 year. However, the authors acknowledge several
limitations. Firstly, data were collected from a single
team and we acknowledge that players from other
cohorts might respond differently owing to intra- and
inter- team factors (i.e. variance in individual and team
physical, technical, tactical and psychological prep-
aration methods, and exposure to non-sport related
stressors). Secondly, we acknowledge the relatively
high variability of some point of care salivary analysis
variables and recognise that this might account for
some trivial interactions reported. Thirdly, as per manu-
facturer guidelines, we did not screen saliva samples for
blood contamination, but acknowledge that this might
affect the accuracy and validity of some findings.
Accordingly, some caution is advised when interpreting
these results. Fourthly, the authors acknowledge recent
scientific literature proposing methodologic limitations
of using “acute” and “chronic” load monitoring variables
as surrogate measures of “fatigue” and “fitness” status
(respectively) (Impellizzeri, McCall, Ward, Bornn, &
Coutts, 2020). Accordingly, when interpreting the
results herein, some caution is advised relating to the
interchangeability of these terms. Finally, that we only
included male participants limits the application of
these findings to female players.

Practical applications

Chronic EWMA TD, HMLd, HSR, DEC and ACC + DEC load
measures exerted important interactive effects on hor-
monal profile changes in football players: a linear
relationship was identified between chronic TD load
and s-T; non-linear “U” shaped relationships were ident-
ified between chronic HSR load and both s-T and s-C and

between chronic ACC + DEC load and s-T:C; and inverse
“U” shaped relationships were identified between
chronic HMLd load and s-T and between chronic DEC
load and s-T:C. For all non-linear relationships, the
optimal hormonal response was observed at squad
mean loads. Accordingly, coaches and practitioners
should attempt to manage player exposure to these
load variables and avoid excessively “low” (i.e. −1 to
−2 SD below squad mean) or excessively “high” (i.e.
−1 to −2 SD above squad mean) levels. Indeed, these
scenarios might compromise hormonal responses;
which are linked to player readiness, and in-turn, injury
and illness risk and performance potential (Meeusen
et al., 2013; Schwellnus et al., 2016; Soligard et al., 2016).

No relationships were identified between the EWMA
acute load variables and salivary biomarkers. Therefore,
at present, we recommend that EWMA acute and A:C
load variables should not be used in isolation as surro-
gate measures of player readiness. Indeed, as per pre-
vious recommendations (Meeusen et al., 2013;
Schwellnus et al., 2016), regular immunological and hor-
monal profile monitoring appears to still be warranted
to identify momentary readiness in football players.

We acknowledge that other response to load
measures are widely used in practice to help to identify
player readiness (i.e. measures of metabolic, neuromus-
cular, and inflammatory status) (Akenhead & Nassis,
2016). Consequently, further research is also warranted
to examine how EWMA load variables relate to these
measures. This will improve current understanding relat-
ing to the efficacy of training and match load measures
to indicate player readiness in football.

Conclusion

Measures of chronic EWMA training volume and high
intensity training volume are associated with salivary
hormone profile changes; but acute EWMA variables
do not relate to salivary immunological or hormonal
profile changes in elite-level professional football
players.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Matthew Springham http://orcid.org/0000-0002-0206-3676
Sean Williams http://orcid.org/0000-0003-1460-0085
Chris Mclellan http://orcid.org/0000-0003-0318-0054
Robert U. Newton http://orcid.org/0000-0003-0302-6129

1164 M. SPRINGHAM ET AL.

http://orcid.org/0000-0002-0206-3676
http://orcid.org/0000-0003-1460-0085
http://orcid.org/0000-0003-0318-0054
http://orcid.org/0000-0003-0302-6129


References

Akenhead, R., Hayes, P. R., Thompson, K. G., & French, D. (2013).
Diminutions of acceleration and deceleration output during
professional football match play. Journal of Science and
Medicine in Sport, 16(6), 556–561.

Akenhead, R., & Nassis, G. P. (2016). Training load and player
monitoring in High-Level football: Current practice and per-
ceptions. International Journal of Sports Physiology and
Performance, 11(5), 587–593.

Anton-Solanas, A., O’Neill, B. V., Morris, T. E., & Dunbar, J. (2016).
Physiological and cognitive responses to an antarctic
expedition: A case report. International Journal of Sports
Physiology and Performance, 11(8), 1053–1059.

Beato, M., Devereux, G., & Stiff, A. (2018). Validity and reliability
of Global Positioning System units (STATSports Viper) for
measuring distance and peak speed in sports. Journal of
Strength and Conditioning Research, 32(10), 2831–2837.

Bowen, L., Gross, A. S., Gimpel, M., Bruce-Low, S., & Li, F. X.
(2019). Spikes in acute: Chronic workload ratio (ACWR)
associated with a 5-7 times greater injury rate in English
Premier League football players: A comprehensive 3-year
study. British Journal of Sports Medicine, 54, 731–738.

Bowen, L., Gross, A. S., Gimpel, M., & Li, F. X. (2017).
Accumulated workloads and the acute:Chronic workload
ratio relate to injury risk in elite youth football players.
British Journal of Sports Medicine, 51(5), 452–459.

Chennaoui, M., Bougard, C., Drogou, C., Langrume, C., Miller, C.,
Gomez-Merino, D., Vergnoux, F. (2016). Stress biomarkers,
mood states, and sleep during a Major competition:
“success” and “failure” athlete’s profile of High-Level swim-
mers. Frontiers in Physiology, 7, 94.

Coad, S., Gray, B., Wehbe, G., & McLellan, C. (2015). Physical
demands and salivary immunoglobulin A responses of
elite Australian rules football athletes to match play.
International Journal of Sports Physiology and Performance,
10(5), 613–617.

Coad, S., McLellan, C., Whitehouse, T., & Gray, B. (2015). Validity
and reliability of a novel salivary immunoassay for individual
profiling in applied sports science. Research in Sports
Medicine, 23(2), 140–150.

Cormack, S. J., Newton, R. U., McGuigan, M. R., & Cormie, P.
(2008). Neuromuscular and endocrine responses of elite
players during an Australian rules football season.
International Journal of Sports Physiology and Performance,
3(4), 439–453.

Dunbar, J., Armitage, M., Jehanli, A., & Browne, A. (2013).
International society of exercise immunology symposium.
Mucosal immunity and self-reported upper respiratory
symptoms in a cohort of Premier League academy soccer
players, Newcastle, New South Wales, AU.

Dunbar, J., Rosen, B., Gimpel, M., & Jehanli, A. (2016). Salivary
cortisol is highly correlated with training intensity in
English Premier League players. In T. Favero, B. Drust, & B.
Dawson (Eds.), International research in Science and soccer
II (Vol 1. pp. 104–109). London: Routledge.

Dunbar, J., Springham, M., Franklin, E., Ahmed, J., & Browne, A.
(2013). United Kingdom strength and conditioning association
Annual conference. Investigating the use of a point of care
salivary cortisol test in the professional football environ-
ment, Nottingham, UK.

Edmonds, R., Burkett, B., Leicht, A., McKean, M., & Sacchetti, M.
(2015). Effect of chronic training on heart rate variability,
salivary IgA and salivary alpha-amylase in elite swimmers
with a disability. PLoS One, 10(6), e0127749.

Filaire, E., Lac, G., & Pequignot, J. M. (2003). Biological, hormo-
nal, and psychological parameters in professional soccer
players throughout a competitive season. Perceptual and
Motor Skills, 97(3 Pt 2), 1061–1072.

Foster, C., Florhaug, J. A., Franklin, J., et al. (2001). A new
approach to monitoring exercise training. The Journal of
Strength & Conditioning Research, 15(1), 109–115.

Gabbett, T. J. (2016). The training-injury prevention paradox:
Should athletes be training smarter and harder? British
Journal of Sports Medicine, 50(5), 273–280.

Gleeson, M., Allgrove, J. E., & Reddin, D. (2007). Paper presented
at: 12th Annual congress of the European College of Sport
science. Salivary cortisol, testosterone and immunoglobulin
A changes during 3 consecutive weeks of training and inter-
national competition in elite rugby union players, Jyvyskala.

Handziski, Z., Maleska, V., Petrovska, S., et al. (2006). The
changes of ACTH, cortisol, testosterone and testosterone/
cortisol ratio in professional soccer players during a compe-
tition half-season. Bratislavske Lekarske Listy, 107(6-7), 259–
263.

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J.
(2009). Progressive statistics for studies in sports medicine
and exercise science. Medicine & Science in Sports &
Exercise, 41(1), 3–12.

Impellizzeri, F. M., Marcora, S. M., & Coutts, A. J. (2019). Internal
and external training load: 15 years On. International Journal
of Sports Physiology and Performance, 14(2), 270–273.

Impellizzeri, F. M., McCall, A., Ward, P., Bornn, L., & Coutts, A. J.
(2020). Training load and its role in injury prevention, part 2:
Conceptual and methodologic pitfalls. Journal of Athletic
Training, 55(9), 893–901.

Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., &
Marcora, S. M. (2004). Use of RPE-based training load in
soccer. Medicine & Science in Sports & Exercise, 36(6), 1042–
1047.

Kraemer, W. J., French, D. N., Paxton, N. J., et al. (2004). Changes
in exercise performance and hormonal concentrations over
a big ten soccer season in starters and nonstarters. The
Journal of Strength & Conditioning Research, 18(1), 121–128.

Meeusen, R., Duclos, M., Foster, C., et al. (2013). Prevention,
diagnosis, and treatment of the overtraining syndrome:
Joint consensus statement of the European College of
Sport Science and the American College of Sports medicine.
Medicine & Science in Sports & Exercise, 45(1), 186–205.

Morgans, R., Orme, P., Anderson, L., Drust, B., & Morton, J. P.
(2014). An intensive winter fixture schedule induces a tran-
sient fall in salivary IgA in English premier league soccer
players. Research in Sports Medicine, 22(4), 346–354.

Morgans, R., Owen, A., Doran, D., Drust, B., & Morton, J. P.
(2015). Prematch salivary secretory immunoglobulin a in
soccer players from the 2014 World Cup qualifying cam-
paign. International Journal of Sports Physiology and
Performance, 10(3), 401–403.

Owen, A. L., Wong del, P., Dunlop, G., Groussard, C., Kebsi, W.,
Dellal, A., Morgans, R., Zouhal, H. (2016). High-Intensity train-
ing and salivary immunoglobulin A responses in pro-
fessional top-level soccer players: Effect of training

EUROPEAN JOURNAL OF SPORT SCIENCE 1165



intensity. Journal of Strength and Conditioning Research, 30
(9), 2460–2469.

Papacosta, E., & Nassis, G. P. (2011). Saliva as a tool for monitor-
ing steroid, peptide and immune markers in sport and exer-
cise science. Journal of Science and Medicine in Sport, 14(5),
424–434.

Rowell, A. E., Aughey, R. J., Hopkins, W. G., Esmaeili, A., Lazarus,
B. H., & Cormack, S. J. (2018). Effects of training and compe-
tition load on Neuromuscular recovery, testosterone, corti-
sol, and match Performance during a season of
professional football. Frontiers in Physiology, 9, 668.

Schwellnus, M., Soligard, T., Alonso, J.-M., Bahr, R., Clarsen, B.,
Dijkstra, H. P., Gabbett, T. J., Gleeson, M., Hägglund, M.,
Hutchinson, M. R., Janse Van Rensburg, C., Meeusen, R.,
Orchard, J. W., Pluim, B. M., Raftery, M., Budgett, R.,
Engebretsen, L. (2016). How much is too much? (Part 2)
International Olympic Committee consensus statement on
load in sport and risk of illness. British Journal of Sports
Medicine, 50(17), 1043–1052.

Shi, L., Westerhuis, J. A., Rosen, J., Landberg, R., & Brunius, C.
(2019). Variable selection and validation in multivariate
modelling. Bioinformatics (oxford, England), 35(6), 972–980.

Sinnott-O’Connor, C., Comyns, T. M., Nevill, A. M., & Warrington,
G. D. (2018). Salivary biomarkers and training load during
training and competition in Paralympic swimmers.
International Journal of Sports Physiology and Performance,
13(7), 839–843.

Soligard, T., Schwellnus, M., Alonso, J.-M., Bahr, R., Clarsen, B.,
Dijkstra, H. P., Gabbett, T., Gleeson, M., Hägglund, M.,
Hutchinson, M. R., Janse van Rensburg, C., Khan, K. M.,
Meeusen, R., Orchard, J. W., Pluim, B. M., Raftery, M.,
Budgett, R., Engebretsen, L. (2016). How much is too
much? (part 1) International Olympic Committee consensus
statement on load in sport and risk of injury. British Journal
of Sports Medicine, 50(17), 1030–1041.

Springham, M., Waldron, M., Burgess, D., & Newton, R. U. (2019).
Game distrbution and density differ between the Major

British and European professional football leagues. Journal
of Sports Sciences, 37(NO SUP1), 1–93.

Springham, M., Williams, S., Waldron, M., Strudwick, A. J.,
McLellan, C., & Newton, R. U. (2020). Prior workload has mod-
erate effects on high-intensity match performance in elite-
level professional football players when controlling for situa-
tional and contextual variables. Journal of Sports Sciences, 38
(20), 2279–2290.

Taberner, M., O’Keefe, J., Flower, D., Phillips, J., Close, G., Cohen,
D. D., Richter, C., Carling, C. (2020). Interchangeability of pos-
ition tracking technologies; can we merge the data? Science
and Medicine in Football, 4(1), 76–81.

Thorpe, R. T., & Sunderland, C. (2012). Muscle damage, endo-
crine, and immune marker response to a soccer match.
Journal of Strength and Conditioning Research, 26(10),
2783–2790.

Urhausen, A., Gabriel, H., & Kindermann, W. (1995). Blood hor-
mones as markers of training stress and overtraining. Sports
Medicine, 20(4), 251–276.

Varley, M. C., & Aughey, R. J. (2013). Acceleration profiles in elite
Australian soccer. International Journal of Sports Medicine, 34
(1), 34–39.

Varley, M. C., Gabbett, T., & Aughey, R. J. (2014). Activity
profiles of professional soccer, rugby league and
Australian football match play. Journal of Sports Sciences,
32(20), 1858–1866.

Varley, M. C., Jaspers, A., Helsen, W. F., & Malone, J. J. (2017).
Methodological considerations when quantifying high-
intensity efforts in team Sport using Global Positioning
System technology. International Journal of Sports
Physiology and Performance, 12(8), 1059–1068.

Williams, S., West, S., Cross, M. J., & Stokes, K. A. (2017). Better
way to determine the acute:Chronic workload ratio? British
Journal of Sports Medicine, 51(3), 209–210.

Witte, T. H., & Wilson, A. M. (2004). Accuracy of non-differential
GPS for the determination of speed over ground. Journal of
Biomechanics, 37(12), 1891–1898.

1166 M. SPRINGHAM ET AL.


	Abstract
	Introduction
	Materials and methods
	Study design
	Training load
	Match load
	Composite load indices
	Saliva sampling
	Salivary IgA and cortisol

	Salivary&inline-formula;&alternatives;&inline-graphic xlink:href=
	Statistical analysis

	Results
	Predictors of salivary proteins
	s-IgA
	s-AA

	Predictors of salivary hormones
	s-T
	s-C
	s-T:C


	Discussion
	Strengths and limitations
	Practical applications
	Conclusion
	Disclosure statement
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.245 841.846]
>> setpagedevice


