
Citation: Dann, C.; O’Neill, S.;

Getenet, S.; Chakraborty, S.; Saleh, K.;

Yu, K. Improving Teaching and

Learning in Higher Education

through Machine Learning: Proof of

Concept’ of AI’s Ability to Assess the

Use of Key Microskills. Educ. Sci.

2024, 14, 886. https://doi.org/

10.3390/educsci14080886

Academic Editors: Julie Delello and

Rochell McWhorter

Received: 21 May 2024

Revised: 2 August 2024

Accepted: 7 August 2024

Published: 14 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

education 
sciences

Article

Improving Teaching and Learning in Higher Education through
Machine Learning: Proof of Concept’ of AI’s Ability to Assess
the Use of Key Microskills
Christopher Dann 1, Shirley O’Neill 1 , Seyum Getenet 1,* , Subrata Chakraborty 2 , Khaled Saleh 3

and Kun Yu 4

1 School of Education, University of Southern Queensland, Springfield Central, Ipswich 4300, Australia;
chris.dann@unisq.edu.au (C.D.); shirley.o’neill@unisq.edu.au (S.O.)

2 School of Science and Technology, University of New England, Sydney 2351, Australia;
subrata.chakraborty@une.edu.au

3 School of Information and Physical Sciences, The University of Newcastle, Newcastle 2300, Australia;
khaled.saleh@newcastle.edu.au

4 Data Science Institute, University of Technology Sydney, Sydney 2007, Australia; kun.yu@uts.edu.au
* Correspondence: seyum.getenet@unisq.edu.au

Abstract: Advances in artificial intelligence (AI), including intelligent machines, are opening new
possibilities to support teaching and learning in higher education. This research has found a ‘proof
of concept’ in the application of machine learning in the assessment of educators’ use of four key
microskills, drawn from an internationally established framework. The analysis of teaching videos
where these microskills were demonstrated multiple times in front of a green screen or in a space
formed the data set. Multiple videos of this nature were recorded to allow for increased analysis and
deconstruction of the video components to enable the application of machine learning. The results
showed how AI can be used to support the collaborative and reflective practice of educators in a
time when online teaching has become the norm. Having achieved a ‘proof of concept’, this research
has laid the groundwork to allow for the whole framework of ten microskills to be applied in this
way thus adding a new dimension to its use. Providing such critical information that is not currently
available in such a systematic and personalised way to educators in the higher education sector can
also support the validity of formative assessment practices.

Keywords: artificial intelligence; higher education; machine learning; microskills; reflective practice

1. Introduction

The fields of teaching and learning and artificial intelligence (AI) are broad fields of
knowledge, and the combination of these fields has the potential to fundamentally change
the approaches and presentation of higher education programs [1]. Artificial intelligence
is rapidly appearing in professional practice worldwide, and higher education and, more
broadly, education is no exception. AI advances have been foregrounded as an important
part of our educational future through increasing investment globally to address the
continuing need for improved outcomes. AI has experienced a compound annual growth
rate of nearly 48%, with global trends showing similar growth patterns [2,3].

Although research on AI has been in existence for many years, the move to use it to
impact pedagogical approaches in higher education is now possible with the introduction
of low-cost, easily transferable videos of teaching practice [4]. It is even more relevant in
times such as COVID-19, where higher education teaching and learning has needed to
move online. In addition, there is now a considerable amount of commercial investment in
the use of AI [5]. In addition, a country’s uptake of technology for educational and work
purposes has been shown to increase Gross Domestic Product (GDP). Thus, it is timely
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to investigate the potential of AI and machine learning’s use in higher education, where
challenges to the provision of effective online learning have been most recently felt, and
how it can support pedagogical strategies and reflective practice. In particular, the research
aims to apply AI to illuminate the pedagogical effectiveness of educators’ teaching online
in higher education. Thus, this research addresses the following question:

Can educators’ pedagogical actions be identified and classified to develop an algo-
rithm that provides feedback on their performance in specific key microskills for profes-
sional learning?

Microskills are specific, fundamental skills that teachers need and use during the
process of teaching a lesson, and they are essential for effective classroom management
and student engagement [6]. To answer the research question and ensure that computers
can identify and classify teaching actions, we must first determine whether a computer can
replicate the human ability to categorise these actions as they occur during teaching. This
process may raise ethical concerns, including researcher and research bias [7], especially in
the current era of narrow AI, which focuses on specific features such as providing Natural
Language Processing (NLP) for chatbots that respond to texts in chat rooms and emulate
human conversation [8]. However, the most relevant considerations for this project are,
firstly, ensuring the validity of the selected microskills as they must be relevant to a diverse
workforce. Secondly, there must be accuracy and reliability in the human analysis of the
evidence of macroskills in the selected videos.

It is clear from the literature that if a computer is provided with enough unbiased
data to describe clearly distinguishable cues, then it is possible for it to identify actions
within a video as required by the present project [9–12]. For instance, data bias may occur
when the criteria are unclear to multiple researchers thus preventing clear categorisation
of a specific skill. If applied to the provision of data applicable to evaluating educators’
performance, which forms part of the current praxis in higher education, the results
would have the potential to address the well-recognised need for reform in this area [13].
That is, the identification of categories of successful pedagogical actions of experienced
educators within a video can illuminate a contested area and provide a core resource to
guide learning and practice. Moreover, it supports achieving consistency in the approach
to and understanding of lectures/video presentations in higher education. Such observable
pedagogical skills need to be clearly distinguishable in the study of educator performance
and are central to this present research. Moreover, given the broad nature of teaching, and
the fact that educators comprise a diverse group, the researchers sought to take these into
account in selecting the Richmond microskills framework [6], which has been proven to
have international applicability as it has identified the specific skills that all teachers need
and implement during the process of teaching a lesson, such as establishing expectations
and giving instructions.

Thus, the research was underpinned by [6], an internationally established explanatory
framework of ten microskills for teaching. This framework provided a standardised
structure to create the classification system to enable the process of video analysis. The
research objectives were to identify the following:

• the elements that need to be considered to use AI in assessment of teaching video
• if machine learning is able to distinguish between and correctly classify specific microskills
• whether a structured classification system for AI can be generated to support the valid

analysis of microskills in higher education teaching
• whether reliable data can be produced from videos of practice to inform an automated

feed of information applicable to educator reflective practice.

Thus, in keeping with [2,3]’s prediction that the use of AI in higher education will
increase in the upcoming years, this research contributes to the field through its explo-
ration of the machine learning process in relation to much needed innovation in being
able to assess the presence of educators’ use of the microskills necessary for effective
pedagogical practices.
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2. Literature Review
2.1. Machine Learning

AI is often referred to in terms of being able to provide solutions to problems deci-
phered by machines rather than humans. For instance, ref. [1] defined AI as a computing
system that is able to engage in humanlike processes, such as learning, adapting, synthe-
sising, and self-correction. They see machine learning as a subset of AI that “includes
software able to recognise patterns, make predictions, and apply newly discovered patterns
to situations” (p. 2). This subset, which this research focuses upon, recognises the necessity
to develop the machine learning element first to establish the AI problem-solving process.
This includes the concepts of unsupervised and supervised classification and profiling. The
supervision level relates to the involvement of human intervention in the classification
method, where humans create supervised classifications for the computer. In contrast,
unsupervised refers to the process where the computer generates its own classifications.

As ref. [14] noted, machine learning is a method within AI, the results of which have
already been used to enhance the lives of individuals, for example, in supporting people’s
daily activities through the provision of chatbots. In addition, the AI products initially
developed through a machine learning process include applications like Apple’s Siri and
Amazon’s Alexa. Such a personalisation of processes has been achieved through a ma-
chine’s capacity for synthesising large amounts of data. This involves developing software
that can recognise patterns, make predictions, and apply newly discovered patterns to
situations that have not been previously considered. New managerial data and student
engagement data produced by current software are already being enhanced by the avail-
ability of video data and student-contributed information that can inform learning and
teaching [15].

2.2. Importance of AI in Higher Education

A comprehensive review of the literature on the use of AI and other advances and
the conventional analytics in education reveal a broad spectrum of applications, yet there
is limited evidence of AI systems’ research being conducted at the scale of educational
settings [16]. In particular, the application of AI in higher education teaching practices
shows some promising development, particularly in the use of machine learning and video
analysis. This underscores the growing recognition of the need for teacher training in AI
technologies, which justifies the adoption of a microskills framework for this research.

Currently, the following three main categories of AI applications are prevalent in
education: personal tutors (providing individualised teaching and support to students,
adapting to their learning pace and style to offer tailored educational experiences), intelli-
gent support for collaborative learning (facilitating group learning activities by enhancing
communication, coordination, and cooperation among students), and intelligent virtual
reality (virtual reality systems to create immersive learning environments) [17]. These
categories align with the learner-facing, teacher-facing, and system-facing perspectives of
AI tools [14]. However, despite these advancements, it remains challenging to find substan-
tial evidence of AI’s impact on enhancing teaching processes and practices, particularly
regarding the humanistic aspects of teaching. Nevertheless, the pursuit of analytics that
inform the quality of teaching is both significant and longstanding. Research has varied
broadly, from studies involving teacher–student interactions to investigations into the use
of microskills by educators [15]. As a result, ‘Education Analytics’ has emerged as a distinct
field, with sub-specialties like educational data mining, which are expected to revolutionise
education [18], and this research aims to build upon these developments.

One successful application of data analytics in higher education administration is the
prediction of student churn or the students’ potential to drop their courses of study. The
rise of technology in higher education classrooms, including online learning, has facilitated
data collection. However, most advancements have focused on structured data, such as
grades and courses, which provide information primarily for educational management
rather than offering deep pedagogical insights. Deep knowledge is derived from data
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that can demonstrate an educator’s use of Richmond’s macroskills, verifying the evidence-
based pedagogical practices essential for learning. Consequently, administrators often
prioritise learning management system outputs consistent with a managerial view over
pedagogical practices.

To address this issue, ref. [17] suggests that partnerships between educators and AI
developers would help communities of practice to better understand the critical issues and
identify opportunities for innovation. Such collaborations could shift the focus towards
essential pedagogical practices. However, these partnerships face potential disruption
from existing institutional systems that prioritise data collection on teaching tools, like
Blackboard and Moodle, over exploring how evidence-based pedagogical practices can be
leveraged, as intended in this project.

2.3. Positioning Video for AI Feed on Teaching in Higher Education

The use of video as a teaching tool has long been used in both classroom and online
education [19], but the use of video data in analytics is a more recent phenomenon such
that the field is in its nascent stages. The shift required to move from video being perceived
as an audio–visual medium with a focus on content to a source of data analytics relevant
to machine learning and, ultimately, the use of AI means significant reconceptualisation
in the field [20]. According to [21], it reflects a move from videoing others for teaching
purposes to videoing oneself to critique against a microskill standard in order to build
personal capacity. Thus, this opportunity to increase pedagogical feed through video data
analytics can lead to new and innovative ways of using the information contained within a
video, which is particularly relevant to reforming teaching in higher education [9–12].

Video is a record of a situation and is the capture of 25–30 frames of the activity per
second. All videos include images that are digital representations of scenes that capture
movement, as well as separate streams of sound and audio data. Basically, the analysis of
videos may involve identifying, transforming, and tracking these data streams for purposes
relevant to a growing number of disciplines apart from teaching, e.g., medicine and the
social sciences [22,23]. Machine learning uses this information to create sets of data that
a computer can understand. Video is turned into a set of time stamped images that can
be used as analytically prepared data. These data include the identification of low-level
features like humans and objects, the detection of relationships between these features, as
well as time and, finally, the extraction of variables with time-stamped values. Such data
can influence the machine recall of the content in the video so patterns can be recognised
for identification in other videos when presented. However, this process is only developing
in its application to the higher education field of teaching, although strategies to analyse the
quality of teaching in general are not new [24]. The current context of ‘video manipulation’
is outlined in the next section.

2.4. Performance Enhancing Video

Advancements using human direction and corresponding behaviours have been
achieved in fields such as psychology, biomechanics, sports, commercial video games
(e.g., Kinect for Xbox 360) and video surveillance and security [25]. However, the kinesthetic
fields, such as sports and dance, have led the way in utilising video analysis to improve
performance for several years but educators are rarely involved. The high video coverage
of sports has enabled the collection of data analytics relevant to the needs of high-stakes
worldwide premier league sports, which has prompted clubs to use video analyses to
optimise performance and, most recently, the support of machine learning. Video images
have also been utilised in biomechanics to study muscular activity to improve human
movement [25–29]. However, this study of human movement is a separate area to human
motion capture, upon which the present research focuses, as this depends on the ability
to capture human motion through the use of behavioural biometrics [27,29]. Thus, when
applied to teaching, the angle of the head, the movements of the arms, and the angle of the
body leaning into or away from the student all become important factors to consider.
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2.4.1. Using Images in Video

There have been various approaches to using images in the video, but these have not
been applied to teaching. Ref. [30] employed a Pyramidal Motion Features (PMF) technique
with Adaboost. Such adaptive boosting in machine learning can yield high recognition
rates for certain databases, although the approach can be computationally expensive.
Similarly, ref. [31] used temporal localisation to identify activities, which has the advantage
of being computationally efficient and simple, and applicable to real-world scenarios, such
as surveillance. While this is not appropriate for analysis of online databases, such as those
that contain teaching analysis, ref. [32] technique of the spatiotemporal steerable pyramid
(STSP) is more relevant. It offers both the preservation of shape and motion information
as well as efficient results on the three activities’ recognition datasets. However, it does
not perform as well on complex actions and backgrounds, which is critical in the study of
teaching because of the complexities of movement and the learning environment.

2.4.2. Teaching Video Availability

With respect to data on teaching videos, there are limited databases of teaching
actions [33] and multiple mannerisms have not been created as yet. Nevertheless, the
literature demonstrates that there is a range of specialised technological advancements
in the recognition of body movement that is worth utilising to explore teaching in higher
education. There are also several datasets and databases where initial training and testing
could be undertaken, in parallel to data collection. Such datasets also provide pointers on
what sort of data must be collected and what form they should take. Examples include the
Weizmann Human Action dataset of actions [34], such as bending, running, walking, and
skipping, and the UCF dataset of sports-based actions. This existing knowledge supports
the feasibility of adaptation to other teaching skills as proposed in this paper.

2.4.3. Extracting Data from Video for AI

In the last two decades, several researchers have developed tools to help track and
extract a sufficient quantity of quality learning events that would lay the foundation for
video-based analytics for education [35,36]. In laying the foundation for such work, ref. [36]
developed techniques for extracting and analysing the textual contents from instructional
videos, while [37] developed an efficient video indexing engine called InVideo that makes it
amenable for searchability, and both quantitative and qualitative analyses. Along similar lines,
ref. [38] proposed and demonstrated the effectiveness of tracking student interactivity using
educational video games. Further, ref. [35] developed tools for tracking learning objectives.
While the field is nascent, its potential is being well recognised, with researchers investigating
how analytics could become part of an integrated instructional solution [39–41]. By being
able to build on this work, the present research provides a strategic response to the need to
improve teaching in higher education and addresses [3]’s claims that there is “little evidence
for the advancement of pedagogical and psychological learning theories related to AI driven
technology” (p. 22) and that practitioners in education are rarely the drivers behind research
in this field.

2.5. Application of AI to Teaching in Higher Education

The International Journal of Artificial Intelligence in Education (2016) recently pre-
sented a special edition that focused on the various applications of machine learning in
the education space but with a specific focus on its use in formative assessment processes.
The issue presents the case for improving feed processes to support student learning and
builds on [17]’s claim that there is about to be a renaissance in assessment practices because
of technological advancements. Its exploration of machine learning applied to tutoring
systems specifically examines learner differences and the characteristics of individuals that
influence the mindful processes of feed that can be offered through machine learning [42].
While demonstrative of the scope of the field, this research sought to use AI to generate
knowledge to inform personal teaching development.
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According to [3], four broad areas of AI and machine learning development in higher
education have emerged. These are (1) profiling and prediction, (2) intelligent tutoring
systems, (3) assessment and evaluation, and (4) adaptive systems and personalisation.
Assessment and evaluation utilising machine learning focus on tools to help students
when they are confused in their work by providing prompts. Such software has broad
applications, ranging from supporting trainee pilots to providing automatic feedback
for students to help with writing. Other key areas include using AI for course content
management, personalising content in MOOCs and supporting academics to provide
repetitive learning tasks, e.g., quizzes in online learning environments. These are seen as
part of the “student life cycle” [3] and thus clearly supporting a student-centred approach.
Importantly, the project proposed in this research steps outside of this to take a teaching
process view and focuses on teaching and developments, specifically regarding microskills,
to improve teaching in higher education.

AI for Teacher Educators in Higher Education

Of note for this research is [3], the systematic literature on teaching in higher education
regarding AI, which includes a focus on assisting teachers with supervision in collaborative
student activities and on sharing tutorial tasks. Although this considers both managing
the learning process and reducing the teachers’ workload, it does not focus on supporting
the teaching act. They point out that no research was found with regard to pedagogical
concerns and machine learning or AI, or consideration of the teaching perspective. The
point was also made that there was a lack of longitudinal research. Thus, this research seeks
to address this gap in terms of identifying if machine learning is able to distinguish between
and correctly classify specific microskills. Thus, a search for a suitable framework that was
(1) internationally recognised, (2) had the capacity to support the production of data an-
alytics for AI, and (3) could accommodate a culturally diverse set of practitioners was
conducted. This highlighted the following internationally developed standards, namely
Marzano’s The Art and Science of Teaching [43] and Danielson’s Framework for Teacher
Evaluation [44]. However, each of these was deemed too large in scope regarding the teach-
ing skills and/or too broad in the description of the activity, and thus deemed unsuitable
for the project’s requirements. In direct contrast, it was found that the scope covered by
the categories of [6]’s microskills for teaching framework was found to be both internation-
ally relevant and also concise with educator action foci that were clear and appropriate
to support the classification processes. Compared with other microskill approaches to
teaching, such as the [10] ‘5 step microskills model’ that has mainly been applied in clinical
teaching, the specificity of Richmond’s framework is more relevant to the effectiveness of
educators in higher education apart from the application to AI. This is reinforced by [45]’s
research that has found such alternatives to be inadequate in scope. In contrast, this selected
microskills for teaching framework being globally accepted is able to provide a cohesive tie
between diverse education contexts thus recognising their commonality and centrality to
teaching and learning. Of the 252 factors identified, micro-teaching/video review of lessons
is positioned thirteenth, with an effect size of 0.88. Moreover, this places microskills above
‘teacher clarity’, ‘scaffolding’, and ‘deliberate practice’ thus highlighting them together
with a video review of lessons as a highly critical influence on student learning and thus a
workable choice for this research.

3. Materials and Methods

Richmond’s [6] ten specific microskills found to be necessary for effective teaching
provided the underpinning framework for the research. The use of this framework provided
the scope for investigating the key skills that all teachers need to do to maximise their
effectiveness and, in turn, improve students’ learning [6].

The microskills relate to language overall and are relevant to the management of
students. During learning, they are categorised within the following three main areas:
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(1) the language of expectation, (2) the language of acknowledgment, and (3) the language
of correction, as listed below:

The language of expectation:

1. Establishing expectations.
2. Giving instructions.
3. Waiting and scanning.
4. Cueing with parallel acknowledgment.

The language of acknowledgement:

1. Body language encouraging.
2. Descriptive encouraging.

The language of correction:

1. Selective attending.
2. Redirecting to the learning.
3. Giving a choice.
4. Following through.

Considering the research question as to whether educators’ pedagogical actions can
be identified and classified for the production of an algorithm that can provide a feed
of information for professional learning indicative of their performance of specific key
microskills, the first four microskills in the ‘language of expectations category’ were tested.
This included ascertaining the ability to deliver the relevant data analytics for ‘proof of
concept’. The participants (the researchers and tertiary educators in this preliminary stage)
were required to produce a video demonstrating their interpretation of the teacher’s actions
as represented by the microskills. This initial test of the framework indicated that of the
10 microskills, only the first 4 would be able to be used. Those in the category of the
‘language of acknowledgement’ (5 to 6) and the ‘language of correction’ (7 to 10) were
found to be non-viable in all the trial’s teaching videos as well as in a sample of publicly
available videos since the evidence of educators’ use of these microskills depends on how
students respond compared with the first four that are initiated by the educator. Hence,
since microskills 5 to 10 depended on videoing students’ responses, which would require
substantial expansion of the study and were not necessary to answer the research question,
microskills 1 to 4 became the focus of the study. In light of the successful ‘proof of concept’,
the researchers plan to replicate the study to include students’ responses.

3.1. Theoretical Underpinning for Implementing AI in Higher Education

In keeping with the research direction of focusing on pedagogical advancement in
higher education, this paper presents a pilot study that seeks to explicitly build a machine
learning process informed by the underlying philosophical position of critical realism. This
position combines the belief that the real world does exist independently of our perceptions
with the epistemological perspective of constructivism. From this combined perspective,
the authors positioned themselves to think about the issues and insights of the phenomenon
central to this research. Constructivism builds on the premise of the social construction of
reality [46] and brings with it the advantage of allowing close collaboration between the
researcher and the educators. It allows the educators to describe their views of reality and
enables the researchers to understand the actions of the educators better. It is through this
lens that new understandings can be socially constructed within this case, supported by
machine learning analyses of human movement, speech, and intonation.

With a view to build on this preliminary proof of concept research, the project sought
to carefully consider and select aspects within the case, which, in this study, included videos
of teaching that can illustrate the selected specific classifications. Given the global nature
of teaching, the cultural intonation and diversity, and perceived differences in teaching
approaches, it was critical to ensure that, initially, the videos were selected according to a set
of reproducible tests. Thus, in order to allow the researchers to explore differences between
cases with the goal of making comparisons, it was critical that cases were chosen carefully
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so that the researchers were cognizant of the similarities and differences between them.
Hodge and Sharp [47] described case studies as either intrinsic, instrumental, or collective.
This study used the instrumental case as it intended to gain insight and understanding of if
and how the selected microskills could be identified and labelled from a set of teaching
performances in video. It is based on the proposition that experienced educators make
decisions about the effects of teaching based on prior knowledge, and, in turn, these
decisions can inform the feedback they give to the performer. As noted, the framework
comprises descriptions of microskills that have been found to represent effective teaching
practice internationally, so applicable to this underpinning philosophy. The application of
this framework is described in the following section.

In testing for the ‘proof of concept’, the study aimed to employ machine learning to
identify each of the selected microskills in a set of videos of teaching. A pilot collection of
visual data in the form of video recorded by a member of the research team performing the
first four micro teaching skills was compiled. These data were then used to generate an
algorithm and test the process of video collection and the production of data analytics. The
following section presents the participant information, video selection requirements, and,
finally, the four stages that were used to extract data from the selected videos.

3.2. Participants

The research involved three educators in distinct roles. One educator, previously
mentioned, was the educator featured in the videos selected for analysis. The other two
participants contributed to developing the video analysis process and generating data
analytics. All data collection adhered to the ethical approvals from the educators’ respective
universities. Since selecting videos for machine learning is a crucial aspect of the project,
the following section elaborates on the project’s methodology, detailing the video selection
and classification processes.

3.3. Video Selection Process

The selection of video for the purposes of this research was to test for the ‘proof of
concept’ by conducting initial algorithm training. This was essential to the project in that if
successful, it would provide the basis for the extension of the research once the machine
learning process had been established and the algorithm developed.

3.3.1. Analysis of Category One Case Study—Provision of Data for Proof of Concept

The initial videos were of a single practitioner and research team member demon-
strating each of the four micro skills multiple times in front of a green screen or in a space
without students. Multiple videos of this nature were then recorded to allow for increased
analysis and deconstruction of the video components. These replicated the educator’s
work in higher education, which involved teaching online as well as face-to-face. The
deconstruction included sounds and movement, but excluded facial expression, as this
facet was able to be incorporated through the existing algorithms. Each video had the
educator verbally nominate the microskill and then demonstrate the skill and verbally
indicate the end of the skill demonstration.

From this research project’s perspective, all educators were able to access personal
teaching materials and any documentation they felt was necessary to inform their knowl-
edge of each of the microskills. In addition, a basic set of documents informing the
definition of each micro skill was produced and accompanied by any supporting material
the educators generated during the project.

3.3.2. Ensuring the Project’s Sustainability—Ethical Requirements and
Continued Implementation

It was vital for the project to be conducted to allow for the natural extension of the
research should ‘proof of concept’ be attained. This was achieved through being conscious
of the fact that, in the next phase, the selection of videos would need to be broadened
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such that three criteria would need to be met. Firstly, the video would need to be ethically
collected and ethically approved for public scrutiny, so it should be made publicly available
as well as freely accessible online to enable the replication of the study. Secondly, the video
would need to involve educators actually in the action of teaching, where there was subject
content, although video content matter was not required to prove that the microskills were
being demonstrated through machine learning. The final criterion was that the teaching
had to have clear audio and vision of the teacher and be free of text annotations. This
would ensure a fair pre-selection process for the video and help assure relevance.

Sitting within the video criteria here was also the need for a set of technical require-
ments. Each video needed to be viewed on a computer with a ‘second by second’ indication
of time so that educators could associate actions with the seconds within the video. How-
ever, an advantage was that the video was not required to be in high definition for machine
learning analysis to be applied. Thus, the initial selection of videos needed to undergo
data cleaning (sorting) by the researchers according to the presence of the educator and
students and active teaching dialogue. In addition, any other teaching descriptions or
edited annotations included in the video needed to be removed so that the resultant video
would be pure in terms of the teaching in a learning situation, paving the way for the
identification of the microskills.

3.4. Video Processing Stages

Challenges that the researchers faced in carrying out the supervised classification for
machine learning of the act of teaching included hidden human body parts (including
self-occlusion), fast human movements in complex background scenes, light sensitivity
and motion ambiguities. For example, in this application, the students in the learning
environment needed to be identified and excluded as part of the background scene so that
the machine learning process could focus instead on the educator’s activities. However,
as discussed, several techniques can address these specific issues to obtain the optimal
pedagogical and activity dataset, where complex and subtle actions can be distinguished
and delineated. This requires the same sensitivity and precision that is evidenced in
sports- or dance-based action capture and reinforces the need for supervised classification
processes in the initial phase as with the present research. The video extraction stages of
the project involved the software’s detection of visual movement of which there were four
common stages foundational to any machine learning with video [26,27,48]. These stages
consist of (i) initialisation, (ii) tracking, (iii) pose estimation, and (iv) interpretation, and are
described below to explain the extraction method used to analyse the project’s initial video
data collected.

3.4.1. Visual Stage One—Initialisation

The first stage involved initialisation by building the initial humanoid model of ap-
pearance, shape, and kinematic structure to be set up for subsequent stages. One approach
has been based on building models using prior knowledge and manually identified joint
locations [49–51]. However, the field has been progressing towards automatic model con-
struction using a range of techniques, and this is often based on 3D depth body shape,
sensors for body scans and joint information, using multiple perspectives. In addition, com-
mercial marker-based frameworks and motion capture databases will also be employed in
a priori mapping of ‘image to pose’ space. The models employed primitive shapes, such as
cylinders, cones, and ellipsoids [52], and used polygonal mesh surfaces to define kinematic
skeletons [53]. Multiple perspectives have also been employed to improve the fidelity of
identification and imaging [54,55]. In addition, through utilising databases, the researchers
were able to learn about the range of body shapes, statistically [56].

3.4.2. Visual Stage Two—Tracking

The application of machine learning also needs to take into account the figure–ground
separation in the video; thus, tracking is a key part of the process. Tracking is a spatio-



Educ. Sci. 2024, 14, 886 10 of 17

temporal step that has two parts, namely segmenting or differentiating the subjects from
the background and tracking or detecting the sequences of the segments across consecutive
frames. The basic idea of figure ground separation is based on distinguishing the figure-
based attributes, such as colour, shade, and intensity differences, as well as fitting geometric
representations and kernels. The standard colour differences may be enhanced by intensi-
ties [57] or normalised [58]. A kernel-based approach is another technique that offers the
advantages of being able to handle cluttered backgrounds and dynamics, evolving scenes
(e.g., moving educators) at a higher speed [59,60]. This approach represents each back-
ground pixel by a function of bits. Neighbourhood relationships (the relationships between
items close together in a video) could also be encoded. Statistical and machine learning
techniques (classification and autoregression) are also typically applied to represent a scene,
and present-day algorithms permit moving backgrounds. Similarly, segmentation models
also make use of the humanoid appearance of humans to distinguish humans from the
background, as well as distinguishing appearances based on individual differences. Such
appearance-based approaches can also be either context-free or context enriched. A number
of these approaches also help with automatic tracking and hence serve twin purposes. In
addition, temporal correspondence works on the back of segmentation. Although one
challenge with tracking human movement in classroom settings is the occurrence of mul-
tiple people and partial occlusion of images, both local and probabilistic approaches for
bypassing these issues have been formulated [61,62].

3.4.3. Visual Stage Three—Pose Estimation

This stage addresses the important step of the software’s ability to detect human poses.
‘Pose estimation’ helps synthesise and evaluate the underlying skeletal structure of the
pose, often using a high-level human model. The range of pose estimation algorithms
can be based on model-free, direct, and indirect methods [27,48]. Algorithms such as
2D estimation of body parts, e.g., head, torso, and extremities, are used to develop pose
estimations that learn and map from 2D images to 3D poses [63–69]. Ref. [69], for example,
presented a discriminative density propagation algorithm based on a Bayesian Mixture of
Expert model (BME). It has the advantage of efficiency in detecting human poses but fails
to track if the object is occluded adequately.

3.4.4. Visual Stage Four—Interpretation

The final stage requires the software to identify the people in the video and their
behaviour. This recognition can be logically and hierarchically separated into tasks required
for interpretation. Each level drills down into details. The first level involves scene
interpretation where the whole picture needs to be interpreted without identifying and
discriminating constituent parts, such as people and things. The whole human body or
body parts also need to be recognisable (holistic recognition, level two). Similarly, at the
third level, complex actions can be recognised through the use of grammar with action
primitives applied to specific tasks or semantic depiction of a scene [70]. For example, for
scene interpretation, refs. [71,72] presented ways to detect irregularities.

3.5. Experimental Study

Temporal Segment Network (TSN) [73] is a versatile and adaptable video-level frame-
work designed for learning action models in videos. As illustrated in Figure 1, it seeks to
capture long-range temporal structures through a segment-based sampling and aggrega-
tion method. This approach enables the TSN framework to effectively learn action models
by utilising the entire video.
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Figure 1. Temporal Segment Network workflow.

Our study analysed 21 videos, each lasting 1 to 20 min. The videos were categorised
as follows: Four videos focused on cueing with parallel acknowledgment skills, four videos
on establishing expectation skills, eight videos on giving instruction skills, and five videos
on waiting and scanning skills.

A TSN was employed to acquire video-level labels. Specifically, we trained a TSN for
each micro-skill class. For each class, half of the videos were used for training, and the
other half for testing. We compared the performance of two features—colour and optical
flow. For training, each model was initialised with pre-trained weights obtained through
a cross-modality training technique. The classification results are shown in Table 1. The
average accuracy achieved with the colour feature was 25%, whereas the motion feature
yielded an accuracy of 62.5%. These results indicate that colour is not a strong feature, as
most of the videos were filmed in the same environment by the same person, resulting in
minimal colour variation among them.

Table 1. Classifying microskills with TSN.

Class
Classification

Color Motion

Establishing expectations 0% 100%

Giving instructions 50% 50%

Waiting and scanning 50% 100%

Cueing with parallel
acknowledgment 0% 0%

Based on insights from TSN, we also adopted a hybrid approach to recognise the
microskills. As depicted in Figure 2, this approach involves two modules. The first module,
the facial feature extractor, captures and acquires face-related representations from each
frame in the input sequence. Since a person’s face can reveal significant information about
their personal behaviours [74], our facial feature extractor module focused on identifying
facial features indicative of micro-teaching skills. This module utilised OpenFace 2.0, a
state-of-the-art facial behaviour analysis toolkit [75].
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The second module of our framework, the temporal modelling module, processes the
sequence of facial features and captures the temporal dependencies between them. For this
module, we rely on Long Short-Term Memory (LSTM) [73], one of the most successful and
widely adopted deep recurrent neural network architectures for modelling sequential data.

To evaluate the performance, each video was split into small chunks of 1 s duration
without overlapping. This resulted in approximately 60 videos for training and 70 videos
for testing. Given the imbalanced nature of the processed dataset and the correlation
between the four classes of essential skills, we trained two separate binary classifiers for
each pair of essential skills—(Establishing Expectation, Waiting and Scanning) and (Giving
Instructions, Cueing with Parallel Acknowledgement). Table 2 shows the classification
results of the hybrid framework. As observed, the two classifiers, combined with the rich
facial features, have achieved robust results in terms of precision, recall, and F1 score.

Table 2. Classifying microskills with a hybrid approach.

Class Precision Recall F1-Score

Cueing with parallel acknowledgement 92% 69% 79%

Giving instructions 81% 95% 88%

Cueing with parallel acknowledgment 92% 75% 83%

Waiting and scanning 84% 95% 89%

3.6. Ethical Considerations

There are two key ethical considerations for this research. Firstly, working with the eth-
ical boundaries of the institutions which has been granted for this project (No. ETH19-4205)
and, secondly, the ethical implications of AI implementation and development. The
project’s focus on personal learning and evidence of microskills requires various ethi-
cal issues to be addressed. These include the de-identification of individuals and thus
the reduction in individual performance to a form of data that can be managed without
personal or professional impacts on the educators providing the video. Furthermore, we
ensured no video clip or image would be released without consent from the participating
educators, and the consent was acquired via the signed consent declaration from them. To
maintain the confidentiality, all the data were anonymised before further processing. The
impact of the machine learning output also needed to be considered. The researchers for
this project were also cognizant of the possible impact on the personal teaching efficacy of
those who participate in and undertake feedback by the resultant machine learning process.
These considerations have therefore driven the supervised classification and research de-
sign. At each stage of the project, the outputs were supervised and correlated to the human
classifications to increase the reliability and accuracy of the machine learning process. This
indicated an ethical consideration of the implications of such processes as well.
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The ethical challenges within the project also included the collection of videos of
teaching which may have identifiable images of individuals. In addition, the storage of
video requires very large storage spaces and raises issues when the videos need to be
transmitted or accessed across the globe. Thus, consideration needs to be given to the
management and security of the video, ownership of the storage facility, access to the
storage facility, and how the backup systems work. These ethical challenges relate to the
dissemination of data and participant privacy and involve issues pertaining to privacy and
child protection in data collection. Thus, appropriate ethical clearances were obtained and
factored into the methods being applied.

4. Discussion and Conclusions

In answer to the research question, the project results clearly confirm that educators’
pedagogical actions in videos, in terms of the four selected microskills, were able to be
identified and classified, and an algorithm was produced to provide a feed of information
for professional learning and reflective practice. The research identified the elements that
need to be considered when applying AI to an assessment of teaching videos and, in turn,
proved that machine learning is able to both distinguish between and correctly classify
the targeted microskills. Furthermore, the objectives to identify whether a structured
classification system for AI could be generated to support the valid analysis of the targeted
microskills was also achieved as was confirmation of the reliability of the data produced.
While the process demonstrated sound alignment between the machine learning feedback
and human feedback, it is acknowledged that following the success of this ‘proof of concept’,
further research is required. Not only is this needed to increase the machine-learning’s
range of microskills to include those related to student responses (microskills 5–10) but
also to further validate its acceptance of educators’ culturally and linguistically diverse
backgrounds. However, it is also necessary to acknowledge that the study was limited
to the higher education context in Australia and to the ecological context of the related
learning environment where the videos were initially sourced. It is also limited to the
cultural and diverse characteristics of the educators and students who were engaged in
the classification process, although a reasonable representation for this initial work has
been achieved, cross-institutionally, culturally and linguistically among the research team.
These limitations are crucial to the development of further research as future studies must
also document the cultural and contextual demographics of people involved to ensure
the resultant classification systems can meet the demands of the diverse global cohorts of
educators in higher education.

Thus, as the literature has shown, this research, in seeking to position the act of
teaching in higher education within the field of AI and machine learning, is very timely.
It provides support for the argument that pedagogical affordances are possible through
the use of machine learning. These stem from the ability to identify evidence in videos of
internationally established microskills required for teaching to be effective. The methods
used were developed by a multi-disciplinary team that includes educators and machine
learning developers to address the lack of understanding of teaching and learning by AI
and machine learning teams that act in isolation from practitioners.

Recognising that the microskills investigated here are applicable to teaching in higher
education acknowledges [17]’s view that there is a renaissance in the assessment that
recognises a need to focus on the actions of the educator rather than those of the learner cur-
rently prevalent in the literature. In conclusion, this research has responded to the limited
application of machine learning on the act of teaching in the higher education sector in the
AI space and has highlighted the growing importance of the need for formative assessment
of teaching and reflective practice in higher education and how it may be achieved. In the
light of achieving ‘proof of concept’, this research has also laid the groundwork for future
research that can expand the suite of microskills as indicators of teaching effectiveness and
strengthen their applicability to teaching and assessment in higher education, aside from
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highlighting the importance of the need for professional development for educators in
higher education and modelling them for educators in general.

This study can have implications for teacher education, particularly in professional
development and reflective practice. The successful use of machine learning to identify
and classify key microskills in teaching videos shows AI’s potential to enhance pedagogical
practices in higher education. The reliable alignment between AI and human feedback
suggests that AI can be a valuable tool for formative assessment. This study also emphasises
the need to include diverse microskills and consider cultural and linguistic diversity. By
proving the concept, this study lays the groundwork for broader AI applications in teacher
education, advocating for its integration into professional development to improve teaching
strategies and learning outcomes. Future research should expand these findings across
different educational contexts and diverse populations.

5. Recommendations

The results showed how AI could be used to support the collaborative and reflective
practice of educators at a time when online teaching has become the norm in response to
unpredictable contexts such as COVID-19. This research can lay the groundwork to allow
for the whole framework of ten microskills to be applied in this way thus adding a new
dimension to its use. Providing such a critical feed of information not currently available in
such a systematic and personalised way to educators in the higher education sector can
also support the validity of formative assessment practices.
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