

UNIVERSITY OF SOUTHERN QUEENSLAND

Development of a Decision Support System for Furrow
and Border Irrigation.

A Dissertation submitted by
David McClymont, B Eng (hons)

For the award of
Doctor of Philosophy

2007

 ii

 iii

Abstract

Furrow and border irrigation practices in Australia and around the world are
typically inefficient. Recent advances in computer-based surface irrigation
decision support technology have the potential to improve performance, but have
had little uptake. Despite considerable academic achievements with individual
components of the technology, the implementation of this knowledge into usable
tools has been immature, hindering adoption. In particular, there has been little
progress in encapsulating the different decision support components into a
standalone system for surface irrigation. Therefore, the research problem
addressed in this dissertation aims to develop a new decision support system for
furrow and border irrigation aimed at increasing the usability of the technology,
and improving decision making capabilities. Specifically the research hypothesis
is:

“That calibration, optimisation, and parameter analysis capabilities can be
developed and integrated with an accurate and robust simulation model into a
decision support system to improve furrow and border irrigation performance.”

Six research objectives have been identified to support the hypothesis including:
(RO1) investigate existing surface irrigation modelling technology to determine a
model and solution technique structure suitable for incorporating into a decision
support system; (RO2) develop a robust reliable simulation engine for furrow and
border irrigation for automation within a decision support system under
optimisation and systematic response evaluation; (RO3) investigate and develop
parameter estimation (calibration) capabilities for the decision support system;
(RO4) investigate and develop optimisation capabilities for the decision support
system; (RO5) investigate and develop parameter response (design charts)
capabilities for the decision support system; and (RO6) develop an object-
oriented framework to combine the components developed in Research
Objectives 2 to 5 with data management facilities and a graphical user interface.

Successful completion of these objectives has resulted in the development of a
decision support system for furrow and border irrigation featuring an automation-
capable hydrodynamic simulation engine, automated full-hydrodynamic inverse
solution, automated optimisation of design and management variables, and
automated user-definable real-time generation of system response. This was
combined with a highly flexible object-oriented program structure and web-
browser-like graphical user interface. Each of these components represents a
unique implementation of the required functionalities, differing from the
established software packages (such as SIRMOD and WinSRFR) that use
alternate technologies with no automation or optimisation capabilities.

Development of the hydrodynamic simulation engine has involved the refinement
of the commonly used implicit double-sweep methodology with the objectives of
achieving robustness and reliability under automation. It was subsequently found
that only subtle changes and manipulations were required in much of the
numerical methodology, including derivation of simplified solution equations. The
main focus of this research has targeted the computational algorithms that drive
the numerical solution process. Key factors effecting robustness and reliability

 iv

were identified in a study of simulation operation, and treated through these
algorithms. Validation was undertaken against output from the SIRMOD
simulation engine, with robustness and reliability tested through tens of
thousands of simulations under optimisation and automated system response
evaluation.

The calibration facilities demonstrated that the inverse-solution using the full-
hydrodynamic model is a viable and robust methodology for the unique
identification of up to three infiltration/roughness parameters. Two optimisation-
methods were investigated during this research with objective-functions based
upon either a volume-balance time-of-advance equation, or complete simulations
of the hydrodynamic model. A simple but robust optimisation algorithm was
designed for this purpose. While the volume-balance method proved fast and
reliable, its accuracy is reduced due to the underlying assumptions and simplistic
model structure. The hydrodynamic method was shown to be accurate, although
it suffered slow execution times. It was therefore decided to use the two
methods in tandem during the solution process where the faster volume-balance
method is used to provide starting estimates for the more accurate
hydrodynamic method. Response-surface investigation for the advance-based
objective function identified a unique solution when solving for three parameters.

It was found that the automated unconstrained optimisation of design and
management practices is limited to the selection of one solution variable (time to
cut-off) due to non-unique multi-variable solutions. Nevertheless, the developed
facilities provide a unique benchmarking of irrigation performance potential. This
research has used the earlier-developed optimisation algorithm to automate
simulations using a prototype objective-function based upon user-defined
weightings of key performance measures. A study of the response-surfaces of
different configurations of the objective-function identified parabolic ridges of
alternate solutions, so, in practice, the optimisation process simplifies down to
optimising only one parameter: time-to-cutoff. It was also recognized that the
performance-based objective functions are highly sensitive to numerical
discretisation inconsistencies that occur between simulations, which impede
solution convergence.

The highly customisable, automated, system response evaluation facilities
developed in this research offer potential as both a research and practitioner
tool, capable of multidimensional analysis of irrigation systems subject to
temporal and spatial infiltration variations. A preliminary study demonstrated the
importance of infiltration variation on irrigation decision-making, and provided
initial guideline layout designs that combined the effects of variable infiltration
and three decision variables using a fixed management strategy of minimising
runoff. A limited range of response outputs for a fixed management objective
negated the potential benefit of visualising a large number of dimensions.
Nevertheless, this study provided direction for the subsequent software
development with recommendations including: representing system outputs as
contours and iso-curves, rather than by the chart axes; representing different
infiltration conditions in separate design charts; allowing the user to assign
variables to each chart axis; and representing only two decision variables in each
chart.

 v

Finally, the simulation, calibration, optimisation and parameter analysis
components were combined with a database and graphical user interface to
develop the FIDO (Furrow Irrigation Decision Optimiser) decision support system.
There were three focus areas during this marriage of components; firstly, an
object-oriented structure was developed to accommodate program elements
concentrating on separating the graphical user interface components from other
task related objects for flexible future development; secondly, a database was
developed using XML-based technologies to store property, paddock, event and
model information; and thirdly, a user-friendly graphical user interface was
created with web-browser-like functionality. The software design evolved through
many different prototypes with its current design being heavily influenced from
the successes and mistakes of the previous attempts.

This work represents the first coordinated attempt to develop a decision support
system for furrow irrigation linking a database, simulation engine, calibration
facilities, optimisation facilities, and parameter analysis capabilities. A major
feature of this work is that all components of the system have been developed
from first principles using an object-oriented structure, with the primary goal of
implementation into a decision support system. This research has contributed to
the development of a professional-quality software package to improve the
decision-making capabilities of researchers, irrigation consultants, and irrigators.

 vi

 vii

Certification of dissertation

I certify that the ideas, experimental work, results, analyses, software and
conclusions reported in this dissertation are entirely my own effort, except were
otherwise acknowledged. I also certify that the work is original and has not been
previously submitted for any other award, except where otherwise acknowledged.

Signature of Candidate Date

ENDORSEMENT

Signature of Supervisor Date

Signature of Supervisor Date

 viii

 ix

 Acknowledgements

I shall take this opportunity to thank and acknowledge those who provided
valuable assistance and inspiration throughout the duration of this research.

Firstly, I am particularly grateful to Professors Rod Smith and Steve Raine for
their forward vision with the irrigation research being conducted at USQ. Rod
stimulated my initial research efforts and taught me the concepts of researching
and presenting the work. His background in hydraulic and irrigation engineering
was regularly tested whenever technical problems arose in refining the
simulation engine. Steve has provided the practical guidelines for developing the
decision support system, and continually managed to lift my enthusiasm for the
project when other work was dominating.

I would like to thank Professor Wynn Walker of Utah State University for
introducing me to Borland C++ Builder, without which, this project (and my
career) would have had an entirely different outcome. Professor Walker was also
gracious in providing the source code of his own software SIRMOD for us to
review and study in the early stages of this project.

In addition, my mother Mrs Grace McClymont has been a continual source of
inspiration, support and encouragement.

Finally I would thank my loving friend and wife Hoda for her patience, love and
support while enduring significant absence of my time over the eight years we
have been together during development of this dissertation.

I would like to dedicate this dissertation to my late father, Mr “Bill” McClymont,
who never had a formal education but has taught me more in life than anyone
else, and who would be thrilled beyond words to see his son submit this
dissertation.

 x

 xi

Contributions to theory and practice from this research

This dissertation has covered a wide range of topic areas in developing a
decision support system for furrow and border irrigation. A summary of the major
contributions to theory and practice arising from this research include:
• Development of a robust, reliable and flexible hydrodynamic simulation

engine for furrow and border irrigation for automation within a decision
support system under optimisation and systematic response evaluation. This
includes:

o Refinement of existing simulation technologies including the
simplification of the algebraic equations for the Preismann double-
sweep solution technique;

o Development of an object-oriented structure to simplify operation and
improve flexibility and future development; and

o Identification and solution to convergence problems associated with
hydrodynamic modelling.

• Development of an automated hydrodynamic inverse solution technique for
estimating soil infiltration (and roughness) parameters. This includes:

o Development of a simple reliable optimisation algorithm;
o Development of a simple volume-balance-based inverse technique for

calibrating with a minimum of field data, and for generating initial
parameter estimates for the hydrodynamic solution; and

o Investigation of parameter response-surfaces for the inverse problem
identifying a unique solution when estimating three infiltration
parameters.

• Development of an automated optimisation technique for design and
management practices, with an emphasis on quantifying the potential of
irrigation performance. This includes:

o Development of a user-defined objective-function for optimisation of
irrigation design and management practices;

o A study of the system response for optimising irrigation performance
identifying that an unlimited range of management options exists to
achieve an optimum level of performance;

o The subsequent recommendation of optimisation on only one design
or management parameter due to the non-unique solution and noise
in the system response; and

o Provides and automated facility for benchmarking the performance
potential of an irrigation.

• Development of an automated guideline generation facility for design and
management of surface irrigation, and system response evaluation, based on
repeated runs of the hydrodynamic simulation. This includes:

o Evaluation of a range of alternative design and management
guidelines that emphasise the sensitivity of temporal variations in
infiltration; and

o Development of highly configurable user interface tools for selection
of design and management variables/parameters, configuration of
charts, and filtering of results.

• Encapsulation of these technologies within a user-friendly, and highly
automated decision support system. This includes:

 xii

o Development of a four-level database for property, paddock, event
and simulation data, and for monitoring temporal and spatial system
changes;

o Development of an object-oriented program structure focusing on
adaptability for future enhancements and inclusions; and

o Development of a simple to use web-browser-like graphical user
interface, emphasising progressive-disclosure concepts, to help
improve adoption of the technology to more users.

This research has aided in the development of a new decision support system for
furrow and border irrigation, which will serve as both a practical tool, and a
research platform for many years to come.

 xiii

Publications arising from this research

This dissertation is the culmination of ten years of research. The majority of the
research was undertaken in the first four years until work and family
commitments intervened and very little output was generated for a period of four
to five years. Publications produced during the initial years of this research
include:

McClymont, DJ & Smith, RJ 1996, ‘Infiltration parameters from optimisation on
furrow irrigation advance data’, Irrigation Science, 17(1): 15-22.

Smith, RJ & McClymont, DJ 1996, ‘Toward real time control of surface irrigation:
Estimation of soil infiltration parameters under surface and surge irrigation’,
Proc. AgEng96, the European Conference on Agricultural Engineering, Madrid,
Sept 1996.

McClymont, DJ 1996, ‘A simple reliable nonlinear optimisation /solution
technique suitable for agricultural applications’, Proc. of Conference on
Engineering in Agriculture and Food Processing 24-27 November 1996,
University of Queensland, Gatton College. SEAg 96/063

Smith, RJ & McClymont, DJ 1996, ‘Surge irrigation infiltration parameters from
surge advance data’, Proc. of Conference on Engineering in Agriculture and Food
Processing 24-27 November 1996, University of Queensland, Gatton College.
SEAg 96/051

McClymont, DJ, Raine, SR & Smith, RJ 1996, ‘The prediction of furrow irrigation
performance using the surface irrigation model SIRMOD’, Proc. of Irrigation
Australia Conference and Exhibition - Australian Solutions, May 14-16 1996,
Adelaide Convention & Exhibition Centre South Australia

Smith, RJ & McClymont, DJ 1996, ‘Towards real time control of surface irrigation:
Estimation of soil infiltration parameters under surface irrigation and surge
irrigation’, Proc. of Irrigation Australia Conference and Exhibition - Australian
Solutions, May 14-16 1996, Adelaide Convention & Exhibition Centre South
Australia

Smith, RS, Raine, SR, & McClymont, DJ 1997, ‘Design for improved efficiency of
surface irrigation applications: A best management practice’, Proc. AWWA
Regional Conference

Raine, SR, McClymont, DJ, & Smith, RJ 1997, ‘The development of guidelines for
surface irrigation in areas with variable infiltration’, Proc. Aust. Soc. Sugar Cane
Technologists, 29 April-1st May, Cairns.

McClymont, DJ, Smith, R.J. & Raine, SR 1998, ‘An integrated numerical model for
design and management of surface irrigation’, Proc. International Conference on
Engineering in Agriculture, 27-30 September, Perth. Paper 98/039.

 xiv

McClymont, DJ, Smith, R.J. & Raine, SR 1999, ‘An integrated numerical model for
the design and management of surface irrigation’, Proc. International Conference
on Multi-Objective Decision Support Systems, 1-6 August, Brisbane.

It is expected that several new papers will also be generated from the output of
this dissertation and published in the near future.

 xv

Table of contents

Abstract .. iii

Certification of dissertation ... vii

Acknowledgements ... ix

Contributions to theory and practice from this research......................... xi

Publications arising from this research... xiii

Table of contents .. xv

List of figures ... xxi

List of tables.. xxvii

List of symbols... xxix

Chapter 1 Introduction: Towards the development of a decision support
system for furrow & border irrigation ... 1

1.1 Introduction..1
1.2 Background..1
1.3 The research problem ...3
1.4 Justification of research..4
1.5 Definitions..5

1.5.1 Defining surface irrigation practices...5
1.5.2 Defining design and management of surface irrigation..........................5
1.5.3 Defining surface irrigation modelling..6
1.5.4 Defining decision support systems for furrow and border irrigation.6

1.6 Delimitations of scope ..6
1.6.1 Focus upon Australian furrow and border irrigation practices................7
1.6.2 Focus upon engineering aspects of in-field design and management ..7
1.6.3 Focus upon conceptual design of a decision support system.7
1.6.4 Focus on irrigators, consultants and researchers.7
1.6.5 Focus upon validation against existing proven technology.....................7

1.7 Outline of dissertation...8
1.8 Conclusions..9

Chapter 2 Background to surface irrigation decision support 11
2.1 Introduction..11
2.2 Surface irrigation background ..11

2.2.1 History ...11
2.2.2 Techniques ...12
2.2.3 Phases of the irrigation cycle ..12
2.2.4 Design and management practices..13

2.3 Surface irrigation decision support ..13

 xvi

2.3.1 What is a decision support system for surface irrigation? 13
2.3.2 Uses of the decision support system... 14
2.3.3 The need for decision support systems... 15
2.3.4 Research for decision support systems... 15

2.4 Background to simulation modelling... 16
2.4.1 Model equations.. 16
2.4.2 Simplification of the model... 16
2.4.3 Infiltration model ... 18
2.4.4 Numerical solution techniques .. 19
2.4.5 Dimensionless solution formulations .. 20

2.5 Simulation model development... 20
2.5.1 The evolution of volume-balance models.. 21
2.5.2 The evolution of kinematic wave models .. 23
2.5.3 The evolution of zero-inertia models.. 26
2.5.4 The evolution of hydrodynamic models ... 28

2.6 “Inverse” methodologies.. 30
2.6.1 Graphical solution techniques for the “inverse problem” 31
2.6.2 Numerical approximation techniques for the “inverse problem” 33
2.6.3 Optimisation-based techniques for the “inverse problem” 35

2.7 Optimisation of furrow and border irrigation design and management 39
2.7.1 Human based learning for optimising design and management 39
2.7.2 Design charts for optimising design and management........................ 40
2.7.3 Computer optimised practices for design and management............... 41
2.7.4 Real time automated control.. 43

2.8 Decision support software for furrow and border irrigation 44
2.9 General discussion ... 46
2.10 Direction for developing a new decision support system for furrow and
border irrigation... 47
2.11 Conclusions .. 47

Chapter 3 Development of a simulation engine for furrow and border
irrigation decision support ...49

3.1 Introduction... 49
3.2 Background to simulation engine design.. 49

3.2.1 What is a simulation engine? ... 49
3.2.2 Elements of the simulation engine .. 50
3.2.3 Objectives of simulation engine development 51
3.2.4 Model and solution technique considerations...................................... 52
3.2.5 Software algorithm design considerations.. 53
3.2.6 Programming complexity issues... 53

3.3 Model and solution technique formulation... 54
3.3.1 Choosing the underlying model.. 54
3.3.2 Choosing a numerical solution technique ... 55
3.3.3 Solution grid formation ... 57
3.3.4 Input requirements ... 58
3.3.5 Simulation engine outputs.. 58
3.3.6 Solution node outputs... 58
3.3.7 Summary outputs.. 59

3.4 Refinement of the numerical method ... 61
3.4.1 Principal formulation... 61
3.4.2 First cell calculations .. 70

 xvii

3.4.3 Advance phase calculations..71
3.4.4 Runoff conditions...72
3.4.5 Lateral flow conditions...74
3.4.6 Boundary conditions ..74
3.4.7 Initial parameter estimates ...75
3.4.8 Parameter constraints ...76

3.5 Computer algorithm development..77
3.5.1 Developing a structure...77
3.5.2 Model algorithm ...79
3.5.3 Input parameter objects ..81
3.5.4 Output objects ..82
3.5.5 Phase switching ...82
3.5.6 Exception handling...84

3.6 Observations on simulation characteristics ..84
3.6.1 Cell sizes decrease downstream...84
3.6.2 Sources of volume-balance error..84
3.6.3 Sources of instability..85
3.6.4 Effect of solution grid structure...87
3.6.5 Recession approximations can cause instability88
3.6.6 Transition to runoff ..89

3.7 Achieving simulation robustness..90
3.7.1 Early time-step calculations ..90
3.7.2 Parameter monitoring during iterations ...90
3.7.3 Pre-testing time-step to remove collapsing cells91
3.7.4 Automatic time-step management ...92

3.8 Validation ...92
3.8.1 Accuracy of results ...93
3.8.2 Operation speed...94

3.9 Conclusions..94

Chapter 4 Estimation of soil infiltration and hydraulic roughness
parameters... 95

4.1 Introduction..95
4.2 Background to estimation of soil infiltration and roughness parameters...95

4.2.1 Objectives of calibration module development......................................96
4.2.2 Elements of the calibration module..96
4.2.3 Limitations of existing techniques ..98

4.3 Preliminary study – INFILT volume-balance solution technique99
4.3.1 Derivation of method .. 100
4.3.2 Optimisation technique .. 101
4.3.3 Comparison with other methods.. 104
4.3.4 Volume-balance errors.. 106
4.3.5 Objective-function response-surfaces ... 107
4.3.6 Data handling .. 109
4.3.7 Findings of the preliminary study... 111

4.4 FIDO hydrodynamic inverse technique... 112
4.4.1 Algorithm design considerations.. 112
4.4.2 Derivation of FIDO hydrodynamic inverse method........................... 113
4.4.3 Developing an object-oriented structure ... 113
4.4.4 Calibration module algorithm... 114

 xviii

4.4.5 Objective-function algorithms... 115
4.4.6 Achieving operational efficiency... 118
4.4.7 Response-surfaces.. 120

4.5 Validation .. 120
4.6 Conclusions... 122

Chapter 5 Automatic optimisation of design and management
parameters ...125

5.1 Introduction... 125
5.2 Background to optimising surface irrigation practices 125

5.2.1 What is the automatic optimisation of surface irrigation practices?. 126
5.2.2 Objectives of optimisation-module development................................ 126
5.2.3 Elements of the optimisation-module.. 127
5.2.4 Methodology considerations .. 128

5.3 Objective-function formulation .. 129
5.4 Computer algorithm development... 130

5.4.1 Developing a structure.. 130
5.4.2 Objective-function algorithm .. 132
5.4.3 Optimisation algorithm ... 132
5.4.4 Decision variable selection and constraints 132

5.5 Investigation of objective-function response. ... 133
5.5.1 Response of irrigation performance measures................................... 133
5.5.2 System response for different management strategies..................... 135
5.5.3 Closer examination of response-surface characteristics 136
5.5.4 Variations in system response for different field-lengths................... 139

5.6 Optimisation validations... 140
5.7 Discussion... 142
5.8 Conclusions... 143

Chapter 6 Automated generation of field design and management
guidelines...145

6.1 Introduction... 145
6.2 Background to automating the development of field design and
management guidelines ... 145

6.2.1 What is automated generation of field design and management
guidelines?... 146
6.2.2 Objectives for developing a system for automating field-guideline
generation.. 146
6.2.3 Elements of an automated system to generate field design and
management guidelines ... 147

6.3 Accounting for infiltration variation ... 148
6.4 Preliminary Study: Development of guidelines for surface irrigation........ 150

6.4.1 Field data ... 150
6.4.2 Pre-analysis of infiltration data .. 150
6.4.3 Evaluation of management strategies... 151
6.4.4 Investigation of design curves.. 152
6.4.5 Finalisation of guidelines.. 154
6.4.6 Discussion of case study .. 155
6.4.7 Recommendation from case study .. 157

6.5 Computer algorithm development... 157

 xix

6.5.1 Developing a structure.. 157
6.6 Analyses for displaying output... 161

6.6.1 Response-surfaces ... 161
6.6.2 Guidelines for design and management ... 161

6.7 Discussion of parameter-analysis facility ... 162
6.8 Conclusions... 163

Chapter 7 Software engineering a decision support system for furrow
and border irrigation... 165

7.1 Introduction... 165
7.2 Decision support system design criteria... 165

7.2.1 What is the FIDO decision support system 165
7.2.2 Objectives of decision support system development 166
7.2.3 Software engineering tools... 166

7.3 Program framework.. 167
7.3.1 Design methodology ... 167
7.3.2 Structural components ... 168
7.3.3 Structural connections.. 172

7.4 Developing a surface irrigation database... 174
7.4.1 Design considerations .. 174
7.4.2 Schema representation of the data... 175
7.4.3 Database connections.. 177
7.4.4 Programming implementation of the database. 177
7.4.5 Database development methodology.. 180

7.5 Graphical user interface... 181
7.5.1 Principles of graphical user interface design...................................... 181
7.5.2 Evaluation of existing interfaces .. 182
7.5.3 Prototyping the interface .. 186
7.5.4 Current interface functionality ... 188
7.5.5 Interface layout ... 188
7.5.6 Modules ... 189

7.6 Using the decision support system ... 199
7.7 Conclusions... 199

Chapter 8 Conclusions, implications and recommendations............... 201
8.1 Introduction... 201
8.2 Overview of previous chapters .. 201
8.3 Conclusions about the research problem... 204

8.3.1 Discussion of the research objectives... 205
8.3.2 Practical implications of this research .. 209

8.4 Limitations .. 211
8.5 Recommendations for further research and development 211
8.6 Concluding postscript... 212

List of References... 213

Appendix 2.1 Derivation of the Saint Venant Equations with lateral
inflows and outflow .. 229

A2.1.1 Assumptions.. 229
A2.1.2 Continuity Equation... 229

 xx

A2.1.3 Momentum Equation .. 230

Appendix 2.2 Case study – evaluation of SIRMOD235
A2.2.1 Outline of case study .. 235
A2.2.2 Rational for study .. 235
A2.2.3 Materials and methods... 235
A2.2.4 Validation of the model... 237
A2.2.5 Sensitivity analysis .. 239
A2.2.5 Mathematical convergence errors ... 243
A2.2.6 Results using empirically fitted infiltration parameters 243
A2.2.7 Discussion of results of case study.. 244

Appendix 3.1 Simulation engine source code247
A3.1.1 C++ Header file ... 247
A3.1.2 C++ Source File ... 251

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD
Output...269

Appendix 4.1 Calibrated advance curves..289

Appendix 5.1 Response-surface generation for different user-defined
weightings of the objective-function ...297

Appendix 5.2 FIDO Optimisation Trial Results303

Appendix 7.1 Software engineering tools ...313
A7.1.1 Target operating system ... 313
A7.1.2 Programming languages.. 313
A7.1.3 Database environment ... 314
A7.1.4 Development environments ... 315
A7.1.5 Components and libraries .. 316

Appendix 7.2 FIDO XML Data Structures...319

Appendix 7.3 Evolution of FIDO’s simulation GUI..................................323

Appendix 7.4 Evolution of FIDO’s calibration GUI..................................329

Appendix 7.5 Evolution of FIDO’s optimisation GUI...............................331

Appendix 7.6 Evolution of FIDO’s parameter analysis GUI333

Appendix 7.7 Evolution of FIDO’s database GUI337

 xxi

List of figures

Figure 2.1: (a) Water surface profiles and (b) advance and recession

characteristic curves for different phases of the irrigation cycle.................... 13
Figure 3.1: Fundamental Components of the Simulation Engine. 50
Figure 3.2: Eulerian (a) and “deformable control volume (Lagrangian)” (b) grid

structures.. 57
Figure 3.3: Components used in calculating Application Efficiency. 59
Figure 3.4: Components used in calculating Storage Efficiency. 60
Figure 3.5: Components used in calculating Application Uniformity.................... 60
Figure 3.6: Eulerian Grid Cells and time-dependant (physical) representation... 62
Figure 3.7: First cell representation.. 70
Figure 3.8: Two cell grid representation. .. 72
Figure 3.9: Basic linear or “Black Box” functionality of simulation engine.......... 77
Figure 3.10: Simulation Engine Object Structure .. 78
Figure 3.11: Parameter object and model-object interaction in the FIDO

simulation engine... 78
Figure 3.12: Algorithm used in the simulation engine for running simulations. . 80
Figure 3.13: Structure of the object-oriented input parameter types used in

FIDO.. .. 81
Figure 3.14: Memory allocation technique employed by theT2DGridParameter

types.. 82
Figure 3.15: Algorithm for adding/remove phase component to the "set".......... 83
Figure 3.16: Typical iterations log for different irrigation phases......................... 85
Figure 3.17: Convergence Log for A and Q parameters during transition from

depletion phase to recession phase. The surface water and infiltration
profiles are shown in the top chart. Convergence was achieved in 12
iterations... 86

Figure 3.18: Example of convergence failure during the recession phase.......... 87
Figure 3.19: Effect of a sudden change in time-step on advance trajectory. 87
Figure 3.20: Problems with recession definition ... 89
Figure 3.21: Fluctuations in runoff hydrograph in (a) FIDO simulation engine

and (b) SIRMOD output... 89
Figure 3.22: Repeating mirrored-oscillations... 91
Figure 3.23: Sample output of validation of FIDO simulation engine against

SIRMOD results. Blue lines are the FIDO output; Red lines are the
SIRMOD output. .. 92

Figure 3.24: Scatter-plot analysis of FIDO vs SIRMOD outputs....................... 93
Figure 4.1: Fundamental components of the calibration module. 97
Figure 4.2: Conceptual input/output functionality of the Calibration module..... 98
Figure 4.3: Step-cycle involved for two parameters .. 102
Figure 4.4: (a) Response-surface of Rosenbrock's function; (b) Response

trajectory of 25 sets of initial starting estimates. .. 103
Figure 4.5: Cumulative infiltration curves for the Flowell wheel, Flowell nonwheel,

Kimberly wheel, Kimberly nonwheel furrows, comparing the results of the
method to that of Walker and Busman (1990).. 106

Figure 4.6: Volume-balance errors for the Flowell nonwheel furrow of Walker and
Busman (1990) .. 107

 xxii

Figure 4.7: Objective-function response-surfaces for the Flowell nonwheel furrow
of Walker and Busman (1990)..108

Figure 4.8: Cumulative infiltration curves for original and smoothed Flowell
nonwheel advance data of Walker and Busman (1990)...............................110

Figure 4.9: Effect of flow measurement errors on cumulative infiltration of Flowell
nonwheel furrow of Walker and Busman (1990) at t=432 min111

Figure 4.10: Object-oriented components for calibration module......................114
Figure 4.11: Calibration module algorithm ..115
Figure 4.12: Objective-function algorithm for advance data...............................116
Figure 4.13: Objective-function algorithm for runoff data...................................117
Figure 4.14: Objective-function algorithm for combination advance and runoff

data. ..118
Figure 4.15: Advanced calibration output showing parameter and objective-

function variations during optimisation. Arrow indicates the transition from
the INFILT method to the hydrodynamic-based objective function.119

Figure 4.16: Hydrodynamic response-surface investigation for different values of
Kostiakov fo...121

Figure 4.17: Sample calibration output. The red advance curves result from the
INFILT calibration, while the blue curves result from the hydrodynamic
calibration. ..122

Figure 5.1: Fundamental elements of the optimisation component.127
Figure 5.2: Conceptual input/output functionality of the optimisation-module.128
Figure 5.3: Object-oriented components for optimisation algorithm..................131
Figure 5.4: Objective-function algorithm ..132
Figure 5.5: Response-surfaces for irrigation performance measures................134
Figure 5.6: Response-surface for equal weightings of the objective-function

components. ...137
Figure 5.7: Dependence of volume-balance error on time-to-cutoff.138
Figure 5.8: Influence of z-required on slope of maximum-ridge (a) z-req =0.075 m

and (b) z-req=0.15 m ...139
Figure 5.9: Relationship between (a) and (c) peak objective-function values

(filtered) and (c) volume-balance errors. ..140
Figure 5.10: Sample output from optimisation validation in Appendix 5.2. Blue

lines denote optimised outputs, while red lines represent the measured
condition. ..141

Figure 5.11: Comparison of performance values for optimised versus measured
results. (where AE is application efficiency, SE is storage efficiency, and DU is
application uniformity) ...141

Figure 6.1: Fundamental components of the parameter-analysis module........147
Figure 6.2: Conceptual input/output functionality of the parameter–analysis

module ..148
Figure 6.3: Infiltration range is calculated from high/low and average of paddock-

specific infiltration curves..149
Figure 6.4: Objective-function algorithm for calculating average infiltration curve

...149
Figure 6.5: Cumulative infiltration curve fitting results showing (a) “sticking point”

encountered in early research, and (b) correct curve fitting results.............150
Figure 6.6: Summary of infiltration information Jarvisfield site throughout the

1994/95 irrigation season. (a) Cumulative infilgration curves (b) cumulative
infiltration opportunity time of 500mins...151

 xxiii

Figure 6.7: Application efficiency (-) and storage efficiency (- - -) for a simulated
irrigation performance using the seasonal average infiltration function, a fixed
water application rate of 2.6l/s and a range of irrigation periods from 190-
270 mins. ... 153

Figure 6.8: The effect of field-length of the maximum application efficiency of the
soil with low, average and high infiltration characteristics when water is
applied at 2.6l/s for a range of irrigation periods. .. 154

Figure 6.9: Design charts based on (a & d) high, (b & e) average and (c & f) low
infiltration characteristics.. 155

Figure 6.10: Example of a design chart by Hornbuckle et al. (2003) for furrow
irrigated field on a self-mulching clay soil with furrow length 200m. The solid
line in upper chart corresponds to distribution uniformity, and in the lower
chart corresponds to the infiltrated volume... 156

Figure 6.11: Object-oriented components for design and management guideline
generation... 158

Figure 6.12: Storage and definition objects of Parameter Analysis Manager ... 159
Figure 6.13: Mapping of dimensions from the Response object to the data array

object. ... 160
Figure 6.14: Sample design chart output from the parameter-analysis module.

... 162
Figure 7.1: Conceptual view of FIDO program elements showing separation

between graphical user interface and other program code. Arrows represent
communication lines between objects. .. 168

Figure 7.2: Main user-interface units in FIDO showing relative positions and
parent objects. Layers designate parent/child relationships and "OR" symbol
suggests that either one element or another will be shown depending on
current program conditions. .. 169

Figure 7.3: Derivation of manager objects used in FIDO. 170
Figure 7.4: Derivation of analysis classes in FIDO. ... 171
Figure 7.5: FIDO structure demonstrating interactions and connections between

the central “user interface units”, “managers”, “tools” and “analysis”
components. The project object is visible to all components. 173

Figure 7.6: Schema representation of main FIDO database connections. 177
Figure 7.7: Derivation of record object classes in FIDO.................................... 178
Figure 7.8: Sequence of summary calculations performed by

TFIDOCustomDataTreeObject children. ... 179
Figure 7.9: Parameter object design hierarchy as used in FIDO. 180
Figure 7.10: SIRMOD user-interface screenshots: (a) shows one of the many

input dialogs; (b) animation of water flowing along and infiltrating into furrow;
(c) tabulated input parameters; and (d) plotted output of advance and
recession characteristics... 183

Figure 7.11: Screenshots of the SRFR interface: (a) shows the main parameter
input dialog; (b) represents the animation of water flowing along and
infiltrating into the furrow; (c) demonstrates curves of advance, recession,
inflow, runoff, and infiltration; and (d) shows the infiltration distribution
again, along with the performance summary figures. 184

Figure 7.12: Screenshots of the WinSRFR interface: (a) Project Management
Window; (b) Event Analysis World; (c) Inflow management screen; (d)
hydraulic roughness and infiltration characteristics; (e) infiltration outputs;
and (f) simulation animation. .. 185

 xxiv

Figure 7.13: Layout of the FIDO graphical user interface.188
Figure 7.14: Database navigation panel showing drop down menu of commands.

...190
Figure 7.15: Sample database reports displayed in the database-reporting

window. (a) Property record report showing property statistics, and linked
images. (b) Model record report showing simulation input data and results.
...191

Figure 7.16: Database editing window showing the editing of the “Furrow bot
width” parameter. The database report window will be revoked once the user
presses the “enter” key. ..192

Figure 7.17: (a) Performance and (b) infiltration summary analyses. (note:
screenshots are from an older version of FIDO, but the functionality is the
same) ..192

Figure 7.18: Simulation Summary Analysis..193
Figure 7.19: Advanced comparison of (a) animated flow profiles, and (b)

simulation solution grid (advance/recession trajectories)............................194
Figure 7.20: Advanced simulation convergence analysis. This is presented as a

popup dialog. ..194
Figure 7.21: Advanced calibration-monitoring analysis. (note: screenshot is from

an older version of FIDO) ...195
Figure 7.22: Optimisation objective-function priority setter................................196
Figure 7.23: Parameter analysis configuration dialog...197
Figure 7.24: Response-surface generation for three design parameter. (a) Third

parameter is represented by setting of scroller-bar. (b) third parameter is
expanded, showing a separate response-surface for each value of the
parameter. ..198

Figure 7.25: Design and management guideline analysis showing setting up of
guideline grid. ...198

Figure 7.26: Response-surface filters for hiding/showing objective-function
parameter ranges. Objective-function weightings can be assigned using the
setter at the bottom of the dialog. ..199

Figure A2.2.1: Comparison of measured and predicted advance times............238
Figure A2.2.2: Comparison of measured and predicted (a) runoff volumes and

(b) infiltrated volumes. ...238
Figure A2.2.3: Effect of changes in Manning n on (a) runoff and (b) infiltrated

volumes...239
Figure A2.2.4: Effect of changes in field slope on (a) runoff and (b) infiltrated

volumes...239
Figure A2.2.5: Effect of changes in inflow on; (a) runoff volume with constant

infiltration parameters; (b) infiltrated volume with constant infiltration
parameters; (c) runoff volume with recalculated infiltration parameters; and
(d) infiltrated volume with recalcul..240

Figure A2.2.6: Effect of changes in cross-sectional area of flow on; (a) runoff
volume with constant infiltration parameters; (b) infiltrated volume with
constant infiltration parameters; (c) runoff volume with recalculated
infiltration parameters; and (d) infiltrated volume with recalculated infiltration
parameters. ..242

Figure A2.2.7: Effect of changes in final infiltration rate on (a) runoff and (b)
infiltrated volumes. ..243

Figure A2.2.8: Results from SIRMOD using infiltration parameters from
INFILTv3.01, showing effect on (a) runoff and (b) infiltrated volumes.243

 xxv

Figure A5.1.1: Response-surface for equal weightings of the objective-function
components.. 297

Figure A5.1.2: Response-surface for maximising storage efficiency. 297
Figure A5.1.3: Response-surface for maximising application uniformity........... 298
Figure A5.1.4: Response-surface for minimising runoff...................................... 298
Figure A5.1.5: Response-surface for minimising deep drainage........................ 299
Figure A5.1.6: Response-surface for maximising storage efficiency. 299
Figure A5.1.7: Response-surface for ignoring uniformity.................................... 300
Figure A5.1.8: Response-surface for emphasising maximise storage efficiency.

... 300
Figure A5.1.9: Response-surface for emphasising maximise application

uniformity.. 301
Figure A5.1.10: Response-surface for emphasising minimise runoff. 301
Figure A5.1.11: Response-surface for emphasising minimise drainage. 302
Figure A7.1.1: Borland C++ Builder has been used as the integrated

development environment for developing FIDO. ... 315
Figure A7.1.2: XML Spy 2004 has been used to develop the XML database

and reporting capabilities of FIDO .. 316
Figure A7.1.3: Examples of TeeChart as used in FIDO: (a) 3D surface for

parameter analysis generation; (b) as a graphical animation of the simulation
output; and (c) as a slider bar control. ... 317

Figure A7.1.4: Examples of VirtualTreeView throughout FIDO: (a) As a data
selector; (b) for data entry; and (c) as a grid control for data output. 317

Figure A7.2.1: Property Data Structure .. 319
Figure A7.2.2: Paddock Data Structure.. 320
Figure A7.2.3: Event Data Structure... 321
Figure A7.2.4: Event Data Structure... 322
Figure A7.3.1: Main interface version 1. This is the very first version of FIDO

with textural outputs and simple animation... 323
Figure A7.3.2: Simulation Animation, early version. 323
Figure A7.3.3: Textural Outputs, early version. .. 324
Figure A7.3.4: Performance outputs, early version. .. 324
Figure A7.3.5: Simulation animation, early version... 325
Figure A7.3.6: Simulation animation, early version.. 325
Figure A7.3.7: Advanced simulation outputs. .. 326
Figure A7.3.8: XFIDO simulation... 326
Figure A7.3.9: Advanced XFIDO outputs. ... 327
Figure A7.3.10: Multiple simulations.. 327
Figure A7.3.11: Solution grids... 328
Figure A7.4.1: First calibration attempt.. 329
Figure A7.4.2: Early calibration interface. .. 329
Figure A7.4.3: Early attempt at calibration. ... 330
Figure A7.4.4: Advanced calibration interface used in XFIDO. 330
Figure A7.5.1: Early optimisation interface. ... 331
Figure A7.5.2: Early objective-function setter. ... 331
Figure A7.5.3: Advanced objective-function setter.. 332
Figure A7.6.1: First version of parameter analysis interface.. 333
Figure A7.6.2: Updated parameter analysis interface... 333
Figure A7.6.3: Multiple views in parameter analysis interface........................... 334
Figure A7.6.4: Multiple outputs in parameter analysis interface. 334

 xxvi

Figure A7.6.5: Prototype of current parameter analysis interface.335
Figure A7.6.6: Prototype showing 3rd parameter expansion...............................335
Figure A7.6.7: Prototype contour plotter.. ..336
Figure A7.7.1: Original FIDO database.. ...337
Figure A7.7.2: Updated FIDO Database..337
Figure A7.7.3: Tab filtering in early FIDO database. ..338
Figure A7.7.4: Prototype of current database..338
Figure A7.7.5: Prototype data editor...339
Figure A7.7.6: Database performance summaries. 339
Figure A7.7.7: Infiltration summaries.. ...340

 xxvii

List of tables

Table 2.1: List of commonly used infiltration equations in surface irrigation

modelling .. 18
Table 3.1: Input variables required by the simulation engine. 58
Table 3.2: Boundary conditions for different phase combinations 75
Table 3.3: Initial parameter estimates for different irrigation phases. 76
Table 4.1: Parameter and objective-function values for the proposed method

compared to the results from Walker and Busman (1990) (σ y oA and SSE
values were calculated for each set). ... 105

Table 4.2: Effect of flowrate variations on the resulting parameter values for
Flowell nonwheel furrow data from Walker and Busman (1990). The
measured inflow is varied by ±10%. ... 110

Table 5.1: Summary of response-surface results for different optimisation
weightings... 136

Table 6.1: Performance results for different management practices in the
Burdekin Delta Region... 152

Table A2.2.1: Site information for irrigation trials. .. 236
Table A2.2.2: Irrigations tested in sensitivity analysis. 237
Table 2.2.3: Summary of validation results. .. 237
Table A2.2.2: Coefficients of variation for power curve regressions of the nine

irrigation events.. 244

 xxviii

 xxix

List of symbols

1σ , 2σ , 1ρ , 2ρ Furrow shape parameters

iiiii edcba ,,,, Partial derivative terms of residual of continuity

iiiii usrqp ,,,, Partial derivative terms of residual of momentum

σ z (Dimensionless) is subsurface storage shape parameter

fo (m3/min/m) is the steady-state or basic infiltration rate for the

soil

inQ Flow rate (m3/sec)

0,tZ Infiltration depth at the top end of the furrow (m)

VI Volume of water infiltrated (m3)

VS Volume of water temporarily stored on the surface. (m3)

CR Residual of continuity

MR Residual of momentum

φ Space-averaging coefficient

σ y Surface storage shape parameter

θ Time-averaging coefficient.

ct Time-to-cutoff (min)

reqZ Z-required (m)

n
CR 1Δ , n

MR 1Δ Difference matrices

)1(T to)7(T Temporary variables used in double sweep calculation

n
CR 1∇ , n

MR 1∇ Jacobian matrices

Ao. Average cross-sectional area of surface water at the upstream

end of the furrow or bay

A Cross-sectional area of flow (m2)

a Kostiakov infiltration exponent (dimensionless)

 AE Application efficiency (%)

At,x Cross-sectional area of flow at node (m2)

 AU Application uniformity (%)

C Deferred infiltration volume (m3)

 xxx

D Drag force (friction force)

DPV Deep percolation volume (m3)

dt Simulation time step (sec)

E, H and F Auxiliary coefficients used in double sweep calculation

fo Steady state infiltration rate (m3/s/m)

g Gravitational constant

h’ Suction at the wetting front

i Cell index

I Infiltration rate (m3/s/m)

il Saturated hydraulic conductivity of restricting layer

J, M, L and R Grid cell subscripts

K Hydraulic conductivity in the wetted zone

k Kostiakov infiltration equation coefficient (m3/mina/m)

L Field-length (m)

n Manning roughness parameter

OFV Objective function value

P Hydrostatic pressure (N/m2)

p Power advance curve multiplier

q Inflow rate per unit width (m3/sec/m)

Q, Flowrate (m3/sec)

r Power advance curve exponent (dimensionless)

RV Runoff volume (m3)

S Volume of cracks per unit area

S0 Furrow slope

 SE Storage efficiency (%)

Sf Energy slope

SSE Sum square error

t Irrigation time (mins)

top Opportunity time for infiltration to occur (min)

TV Total applied volume (m3)

U,V, Z, and W: Auxiliary coefficients used in double sweep calculation

v Velocity of the surface flow (m/s)

VBE Volume-balance error (%)

 xxxi

w1,w2,w3,w4 Objective function weighting coefficients that add up to 1.0

x Distance along the furrow (m)

Xt,x Node location (m)

y Depth of flow (m)

Z Cumulative infiltration (m)

Z Infiltrated volume/unit length (m3/m)

z Rate of infiltration per unit length (m3/sec/m)

z(dt) Incremental infiltrated volume for the time-step (m)

Zc Initial depth of infiltration required for crack filling and

absorption (m)

Zt,x Cumulative infiltration depth at node (m)

γ Cumulative infiltration at top=0 if steady state had been

reached at top=0 (m)

θi Initial moisture content

θs Saturated moisture content

τ Time that water is available for infiltration into the soil,

otherwise known as the opportunity time (min)

Qt,x Flowrate at node (m3/sec)

r Lateral inflow (rainfall) rate (mm)

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 1

Chapter 1 Introduction: Towards the development of a

decision support system for furrow & border irrigation

1.1 Introduction
Surface irrigation, including furrow and border irrigation, is the simplest and most
common method of irrigating crops used throughout the world today. In Australia
it accounts for 57% of the total irrigated area (Australian Bureau of Statistics
2005). These systems have the potential to be very efficient, but in practice, they
are probably the most inefficient method of irrigation with typical water use
efficiencies ranging from 30% to 60% (Raine and Backer 1996; Smith 1988).
Computer software programs developed over the last twenty years can
potentially increase these efficiencies through helping irrigators improve design
and management decisions. However, few irrigators or extension officers
currently use any form of simulation model or decision support tool to optimise
performance (Raine and Walker 1998). Complexity, limited functionality and
reliability problems are possible barriers to the adoption of these tools.

The goal of this chapter is to introduce and discuss the research problem of
developing a new decision support system aimed at improving the practices of
furrow and border irrigation, which are the prevalent forms of surface irrigation in
Australia. This chapter has five main objectives: (1) it will present the
background to this research; (2) the research question and hypotheses are
introduced; (3) justification for this research is presented; (4) the methodology
used in this research is discussed; and (5) the outline of this dissertation is
presented.

1.2 Background
Surface irrigation is the technique of artificially applying water to agricultural soils
where the soil is used to transmit and infiltrate the water over the field. The
water is transported along the field in furrows or borders utilising gravity and
hydrostatic pressure differences as the transport mechanisms. Water infiltrates
into the soil during this process, which serves to supply moisture for plant growth
and provides a delivery mechanism for essential nutrients while leaching and
diluting salts in the soil.

Surface irrigation systems have the potential to be very efficient and return high
crop yields (Hodgson et al. 1990). However, in practice they are typically
inefficient with design and management based upon traditional and primitive
methods with little knowledge of the efficiency and uniformity of the design.

Recent studies of the Australian cotton industry found that average surface
irrigation application efficiencies are as low as 48%, with individual irrigation
efficiencies lying between 17% and 100% (Dalton et al. 2001; Smith et al. 2005).

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 2

Similarly, typical application efficiencies of 40% to 80% were measured for
irrigated vineyards (Smith 1988). In the Australian sugar industry, a review of
surface irrigation practices revealed that application efficiencies averaged from
31% to 62%, with individual irrigations ranging from 14% to 90% (Raine and
Bakker 1996). Factors most effecting efficiency includes field-length, irrigation
cut-off times, water application rates, furrow shape, soil type and amount of
cultivation.

However, these studies have also shown that significant improvements can
easily be achieved through the adoption of better design and management
practices, to minimise losses caused by tail-water runoff and deep percolation.
Optimising these practices through the use of computer simulation models has
revealed that irrigation water-use efficiencies of over 90% can be achieved at the
field level (Raine et al. 1995; Anthony 1995; Smith et al. 2005).

Therefore, computer simulation models offer considerable potential to aid in the
decision-making processes of irrigation design and management. They represent
a cheap and accessible means to experiment, trial and optimise surface
irrigation practices. This was proven in many studies that have shown that they
are sufficiently accurate to be used in practical applications (Maheshwari et al.
1993a, 1993b; Hornbuckle et al. 2003; Abbasi et al. 2003; Ismail & Depeweg
2005). Also, as an added bonus of their use, they force the irrigator to account
for, and measure, his existing management practices.

However, despite more than twenty years of research and development, these
tools are yet to reach their potential for improving on-field irrigation performance,
having seldom been used in engineering practice (Playan et al. 2000). In
Australia (and around the world), the adoption of this technology by irrigators and
consultants has been poor (Raine and Walker 1998), despite recent workshops
and training courses (http://www.ncea.org.au) to promote their use. While
model-developers promote the virtues of their products, the reality is that these
software applications have been developed as research tools and not
practitioner tools, using primitive software engineering technologies. General
opinion indicates that the existing models are complex, not robust, sensitive to
input data and difficult to operate. Also, they typically perform only the task of
performance-evaluation and neglect other decision support requirements such
as data management, infiltration parameter estimation, automatic design
optimisation, and design-chart generation.

A fundamental cause of all of these limitations and problems lies not in the
science of the models, but in deficiencies in structural and interface design.
Typically, these programs are developed by engineers and scientists who have
been researching the simulation mathematics, and who have limited software
engineering experience. Modern software engineering methodologies can
potentially overcome these problems by simplifying the complexities of the
design task (including solution of the model) while greatly improving the utility of
the product.

This dissertation presents an essential initial step in improving the utility of
simulation model technology through applying modern software engineering
practices to furrow and border irrigation modelling science. This research

http://www.ncea.org.au/�

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 3

assumes that a thorough understanding of both irrigation hydro-informatics and
modern software engineering is a prerequisite to design a decision support tool
that will see practical use, and consequently improve surface irrigation practices.

Therefore, the research problem for this dissertation is designed to investigate
surface irrigation decision support technologies; develop strategies for
overcoming gaps in the existing technologies; and incorporating these strategies
into a new decision support system for furrow and border irrigation.

1.3 The research problem
In brief, the research problem is to develop an integrated decision support
system for furrow and border irrigation aimed at increasing the usability of the
technology to improve decision-making capabilities. Specifically the research
hypothesis is:

“That calibration, optimisation, and parameter analysis capabilities can be
developed and integrated with an accurate and robust simulation model into a
decision support system to improve furrow and border irrigation performance.”

Six specific objectives have been designed to support this hypothesis and solve
the research problem:

Research Objective 1: Investigate existing surface irrigation modelling
technology to determine a model and solution technique structure suitable for
incorporating into a decision support system. Determine why existing surface
irrigation software tools have been poorly adopted by industry. It aims to identify,
describe and analyse the processes used by surface irrigation researchers in
simulating the processes of furrow and border irrigation, and interfacing this
technology with decision makers.

Research Objective 2: Develop a robust, reliable simulation engine for furrow
and border irrigation for automation within a decision support system under
optimisation and systematic response evaluation. Based upon the findings of
Research Objective 1, develop a simulation engine for furrow and border
irrigation that is reliable, flexible and reusable to incorporate into the decision
support system, and that can cope under the rigors of automation.

Research Objective 3: Investigate and develop parameter estimation
(calibration) capabilities for the decision support system. This facility will allow
for the automatic determination of any combination of soil infiltration parameters
and/or roughness parameter. This includes calibration on irrigation advance
and/or runoff hydrographs.

Research Objective 4: Investigate and develop optimisation capabilities for the
decision support system. This involves developing a user-defined objective-
function for irrigation design and management. Optimisation capabilities should
allow for inclusion of any input parameter combination.

Research Objective 5: Investigate and develop parameter response (design
charts) capabilities for the decision support system. This involves developing

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 4

tools to allow design and management charts to be automatically generated for a
range of infiltration conditions. This facility should also allow response-surfaces
of simulation parameter interactions to be generated for sensitivity, parameter,
and objective-function analyses.

Research Objective 6: Develop an object-oriented framework to combine the
components developed in Research Objectives 2 to 5 with database facilities
and a graphical user interface. The objective is concerned with interfacing the
science with the user in the simplest way possible. This will ultimately effect how
well the software will be adopted by users of various levels.

1.4 Justification of research
This research is justified on four interrelated bases. Firstly, decision support for
furrow and border irrigation is an under-researched area. A review of the
literature provided no evidence of a holistic approach to combining the field-level
decision support requirements. Instead, research has focused on the individual
components of decision support such as; simulation and performance evaluation
(e.g. Walker and Skogerboe 1987; Katopodes 1994; Singh and Bhallamudi
1996); infiltration parameter estimation (e.g. Khatri and Smith 2005; Gillies and
Smith 2005); optimisation of practices (e.g. Bautista and Wallender 1993; Ito et
al. 1999; Valiantzas 2001); and design chart generation (e.g. Zerihun et al.
1993; Hornbuckle et al. 2003). Questions then arise as to what constitutes a
decision support system for furrow and border irrigation, and how the individual
components of the system should be combined and interact.

Secondly, problems and limitations are generally known to exist in all of the
current furrow and border irrigation tools; including issues of reliability,
complexity, and versatility. Evidence for this is difficult to source in the literature,
which tends to focus on the benefits of the technologies, but is found amongst
users, and through self-investigation of the different software. It is thought that
these problems and limitations are hindering the adoption of the technology.

Very little of the irrigation research undertaken over the last 20 years has been
developed into an operational form of software available to users. Only two
models have succeeded to gain limited, but widespread, acceptance: SIRMOD
(Walker 2003) and SRFR (Strelkoff et al. 1998). Research bodies around the
world seem to be split into different allegiances to either one of these products.

Thirdly, there is a need to combine a range of decision support tools for furrow
and border irrigation design and management into a single, easy to use package.
Currently, different tools exist for different decision-making purposes. For
example, the INFILT (developed in Chapter 4) software package is used solely
for determining the infiltration properties of the soil. These results could then be
entered into one of the singularly focused simulation models such as SIRMOD
or SRFR to determine irrigation performance (Interestingly, the underlying
models used in these separate processes are often fundamentally different).
Optimisation of irrigation management can then be undertaken using a trial and
error approach of repeated simulations of the model. Therefore a tool is required
to integrate commonly performed tasks such as performance evaluation, data
management, spatial and temporal performance review, infiltration parameter

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 5

estimation, automatic optimisation of design variables, parameter response
investigation, and sensitivity analysis of design variables.

Finally, the simplicity, utility, flexibility and reliability of decision support tools
could be greatly enhanced through the use of modern software engineering
practices. These practices offer the potential to simplify the transformation of the
modelling mathematics into computer equivalent code, with associated benefits
including improved readability of code, powerful debugging capabilities,
interchangability of components, enhanced exception handling, faster operating
speeds, flexible inputs and outputs, and accessibility for reuse. New software
engineering tools allow simple yet powerful graphical user interfaces to be
developed using advanced third party libraries, which are intuitive to use,
progressively disclose advanced capabilities, and are compatible with other
software and the operating system.

1.5 Definitions
This section will define the key terms and concepts of this research so that the
direction and focus of the dissertation can be established. These key terms and
concepts include: terminology of surface irrigation; design and management of
surface irrigation; surface irrigation modelling; and decision support systems for
surface irrigation. The importance of these definitions warrants detailed
discussion.

1.5.1 Defining surface irrigation practices
Surface irrigation in the context of this dissertation pertains to the practices of
furrow and border irrigation. In particular, the software tool that is developed is
most suitable for both of these practices, even though most of the validation
produced in this following chapters is for the special case of furrow irrigation. In
the context of this dissertation, the term “surface irrigation” will be used to imply
both furrow and border irrigation, but not practices such as basin irrigation,
which would require a different modelling approach. It also doesn’t include surge
or cutback irrigation (even though these are forms of furrow irrigation) since the
technology is not widely used in Australia.

1.5.2 Defining design and management of surface irrigation.
In Australia, surface irrigation design and management consists of three main
components: designing the field layout, scheduling irrigations; and managing the
irrigation events. Field design encapsulates decisions pertaining to field-length
and width, furrow size and shape, furrow spacing, and field slope (including
variable slopes). Water delivery systems must also be considered. Scheduling
relates to how much water to apply and when to apply it. Managing irrigation
events considers choosing decision variables such as flowrate, time-to-cutoff,
and application depth to water the field. Management can also consider
irrigation-advance location to guide cutoff, but this will not be investigated in this
dissertation.

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 6

1.5.3 Defining surface irrigation modelling
A surface irrigation model is a computer based simulation tool used in aiding the
design and management of a surface irrigation event. The model consists of a
series of mathematical equations that simulate the physical hydraulic processes
of the irrigation event. These equations are linked to an interface through which
the user manipulates the simulation by entering data representing the physical
properties of the irrigation system. The equations are usually solved at discrete
time and distance intervals using a suitable finite difference or finite element
technique. Operation of the model produces a series of graphical or textural
outputs representing the simulated performance of the event.

The term “model” can be used to define both the mathematical constructs used
to simulate irrigation, and the computer program in which these equations
reside. To differentiate between the two, the term “simulation engine” will
hereafter be used interchangeably with the term model to define the
mathematical components; while the software program will be referred to as the
“decision support system”.

1.5.4 Defining decision support systems for furrow and border irrigation.
A decision support system for furrow and border irrigation integrates a surface
irrigation model (simulation engine) with a range of other design and
management tools into a single software package.

The principal role of the decision support system is to simulate an irrigation event
given a set of measured inputs; that is, to predict quantities that are time-
dependent and difficult or impractical to measure, given a set of time
independent measured input quantities. During a typical simulation, the flow
rate and cross-sectional area of flow are predicted at various locations along the
furrow length for each time interval. As well, the advance is predicted during the
initial phase of the event.

However, if the advance is known, the model can be used to obtain estimates of
other parameters, which are normally measured; for instance, infiltration. The
solution of the infiltration parameters from a measured advance is known as the
inverse solution. This is an important technique, as infiltration is a property that
is very difficult to physically measure due to the temporal and spatial variability of
the soil.

Lastly, the model should contain an optimisation algorithm allowing automatic
solution of the irrigation design parameters; that is parameters that the irrigator
has direct control over such as time to cut-off and inflow rate. Absence of this
algorithm leads to excessive operator input while manually trying different design
parameters configurations in repeated trial simulations.

1.6 Delimitations of scope
This research has five main delimitations of scope: focus upon Australian furrow
and border irrigation practices; focus upon engineering aspects of in-field design
and management; focus upon the conceptual design of the decision support

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 7

system; focus upon a target audience of irrigators, consultants and researchers;
and focus on validation against existing technology. These will be discussed in
turn.

1.6.1 Focus upon Australian furrow and border irrigation practices.
This research focuses upon the two most predominant forms of surface irrigation
in Australia; furrow and border irrigation. Both of these practices can be
modelled using the same set of 1D-algorithms with modifications to the furrow
geometry parameters. Other forms of surface irrigation such as basin and bay
irrigation are more suited to a 2D modelling approach (although the 1D approach
has been commonly used in the past), and will not be considered in this
dissertation. Also, surge and cutback irrigation will not be considered, as they are
currently not widely used in Australia. Even though the tools developed in this
dissertation will work for both furrow and border irrigation, validation will
predominantly focus on furrow irrigation, since the research focus is at risk of
becoming too broad. Also blocked furrow conditions were also not validated for the
same reason.

1.6.2 Focus upon engineering aspects of in-field design and management
This research is concerned with the in-field related irrigation design and
management issues such as field and furrow design, and determination of
optimal inflow rates and cut-off times. This includes all aspects related to the
hydraulic modelling of water flowing down along a furrow. This does not include
management issues such as irrigation scheduling, or the economic assessment
of irrigation performance. Decision support capabilities will be targeted at the
field level, and does not include on-farm factors such as distribution in channels,
farm storages and agronomic considerations.

1.6.3 Focus upon conceptual design of a decision support system.
This research aims to present a conceptual design of a decision support system
for furrow and border irrigation. A prototype decision support system will be
developed as part of the research to validate and test the design effectiveness.
Nevertheless, the emphasis of this dissertation will be focused upon design
concepts rather than the physical product. Unfortunately, it is beyond the scope
of this dissertation to study the adoption of the newly developed technology by
irrigators and consultants.

1.6.4 Focus on irrigators, consultants and researchers.
The design of the decision support system targets a wide range of user types
including irrigators, consultants and researchers. Appropriate and innovative
software engineering principles must be adhered to in order to avoid biasing the
software towards any particular group.

1.6.5 Focus upon validation against existing proven technology.
The decision support tools developed as part of this study are validated against
existing proven technology, rather than actual field experiments. For the
simulation engine, this involved comparing modelled outputs against that from

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 8

SIRMOD, which has been the subject of several previous studies, including a
case study as part of this dissertation (which was based on actual field-data).

1.7 Outline of dissertation
This research in this dissertation is presented in eight parts. It follows a structure
resembling that of the decision support system being developed. After a brief
introduction and literature review, different components of the decision support
system are presented in individual chapters. This includes component topics
such as the simulation engine; calibration module; optimisation module;
parameter analysis module; and program structure and user interface. Finally,
the conclusions arising from this research are presented in the last chapter along
with implications of this research and recommendations for future work.

Chapter 1 (this chapter): An introduction to the dissertation is presented. Firstly,
a brief background is given into the research problem before the research
hypotheses are proposed. The subsequent sections are based upon defining the
terminology, basic theory and limitations faced during the research.

Chapter 2: A literature review of existing surface irrigation modelling techniques
and limitations is presented. It focuses on four modelling technologies used in
surface irrigation; that is, the volume-balance, hydrodynamic, zero-inertia, and
volume-balance models. Finally, it presents a case study of SIRMOD, which is
one of the most successful models used for furrow and border irrigation decision
support.

Chapter 3: A new simulation “engine” for furrow and border irrigation modelling
is developed. This engine aims to overcome the limitations of existing models
outlined in Chapter 2. This will form the “central core” of the decision support
system being developed in this dissertation. The chapter presents a
redevelopment of the most commonly used simulation methodology into a
simpler form. These techniques are then incorporated into a new object-oriented
structure designed to coexist inside a modern user-friendly decision support
system. Techniques are discussed to achieve simulation robustness. The engine
is validated against the SIRMOD model that was studied in Chapter 2.

Chapter 4: The parameter estimation or “calibration” requirements of a decision
support system for furrow and border irrigation are investigated. Not all input
parameters used in a simulation model can be directly measured in the field. Soil
parameters representing infiltration and roughness need to be estimated
indirectly through some form of “inverse” modelling. A simple volume-balance
“inverse” technique (INFILT) was developed in the stages of this research and
presented in this chapter. This work is then followed up with the development of
a more powerful hydrodynamic-model technique for incorporation into the
decision support system, which uses the INFILT methodology to provide starting
estimates. The method is validated against real field data while objective-
function response-surfaces are generated providing insight into the complexities
of the solution process.

Chapter 5: The work in this chapter focuses upon the development of the
optimisation capabilities for the decision support system. A flexible new

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 9

objective-function equation is derived for optimising irrigation management and
design practices. Different formations of this function are examined with results
highlighting ridges of constant objective-function value for different design
combinations. This equation is linked with an optimisation engine using an
object-oriented structure to create the optimisation module for the software.
Because of the nature of the system response, it is recommended that only time-
to-cutoff be included in the optimisation process which simplifies the operation in
the presence of minute variations in the volume-balance caused by numerical
discretisation errors.

Chapter 6: The concept of “decision support” in terms of design charts and
guidelines is introduced in this chapter. An initial case study is undertaken as an
early part of this research. A key feature of this work is the application of
historical records to disseminate guidelines for low, average and high infiltration
conditions. The design problem is then considered for the automatic generation
of design charts within the decision support system. Features of the developed
tool include; 4D analysis capabilities by incorporating the fourth variable through
multiple charts, or slider-bar functionality; variable exchange functionality; and
response-surface filtering. Sample charts are provided.

Chapter 7: The components developed in the previous four chapters are now
combined with a database and a simple user interface to develop a new decision
support system for furrow and border irrigation. Software engineering issues are
initially discussed in this chapter before a suitable object-oriented program
structure is developed to accommodate program elements. A new XML-based
surface irrigation database is developed as the central core of the decision
support system. Finally, a simple graphical user interface is developed with
“hyperlinking” capabilities to mimic web-browser functionality.

Chapter 8: The conclusions and implications of this research are presented in
this chapter. The work undertaken in the previous chapters is summarised in
order to highlight the logical progression of ideas and issues studied in
addressing the research hypotheses. Conclusions are presented for the research
hypothesis, and associated research objectives. Practical Implications of this
research are discussed along with limitations of the results. Finally,
recommendations for future research and development are presented.

1.8 Conclusions
This chapter has laid the foundations for this research. Principally it has defined
the research problem as developing a decision support system for furrow and
border irrigation to improve surface irrigation practices by combining modern
software engineering practices with proven irrigation science theory.

Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation

 10

Chapter 2 Background to surface irrigation decision support

 11

Chapter 2 Background to surface irrigation
decision support

2.1 Introduction
Computer-based decision support software has the potential to greatly improve
surface irrigation design and management practices. Over the last fifty years,
much research has been undertaken into the development of decision support
tools focusing on the separate research areas of simulating irrigation events,
estimating the soil infiltration parameters, and optimising current practices.
However, very little of this research has been applied operationally indicating that
there are problems with the current technology.

A major objective of this dissertation is to develop a new decision support system
for surface irrigation that will overcome these problems in order to place this
technology in more hands. Therefore, a comprehensive review of the literature is
required to understand the strengths and weakness of the current technology.
The goal of this chapter is to address this task in order to determine the
structural and functional requirements of new software.

The research reported in this chapter focuses upon four main tasks: (1) to
present the background theory for the decision support of surface irrigation
practices; (2) to undertaken a comprehensive literature review of surface
irrigation decision support technology, including simulating irrigation events,
estimating the soil infiltration parameters, and optimising current practices; (3)
to evaluate the most commonly used surface irrigation software through a
literature review and case study; and (4) to consolidate these findings to
establish a direction for the development of a new decision support system.

This chapter is accompanied by two appendices containing a full derivation of
the continuity and energy equations used in simulation modelling (Appendix 2.1),
and a case study to evaluate the commonly used SIRMOD (Walker 2003)
software package (Appendix 2.2).

2.2 Surface irrigation background

2.2.1 History
Surface irrigation is one of the oldest known forms of irrigation with records
showing the practice being used in the Middle East going back thousands of
years. Today it is still the most common method for applying water to promote
crop growth despite post Second World War interest in pressurised forms of
irrigation such as sprinkler and trickle irrigation. While pressurised forms have
reduced labour requirements including the need for land-levelling, surface
irrigation systems are still often favoured due to lower capital and operating
costs, simplicity of maintenance, and the need for unskilled labour (Walker &
Skogerboe 1987).

Chapter 2 Background to surface irrigation decision support

 12

2.2.2 Techniques
Surface irrigation practices have evolved into a variety of configurations,
although the distinctions between them are not always clear. Depending upon
the way that the water is transported across the field, they can loosely be
classified into furrow, border, basin, and wild flooding:
• Furrow irrigation involves the water being transmitted down the field via small

channels or furrows. The crop is usually located between the furrows and the
water is allowed to run freely from the end of the field (although blocked
furrows do exist).

• Bay or border irrigation is the irrigation of long rectangular fields divided into
graded borders, with longitudinal slope and free draining. Level borders,
however, are not free draining.

• Basin irrigation is the irrigation of small, relatively flat enclosed areas, not
allowing for runoff. Interest in level basin irrigation has resulted due to
advantages of potentially high distribution uniformities, high efficiency (due to
minimal deep percolation and no runoff), and reduced labour requirements
(Hoffman and Martin 1993).

Inflow techniques add further dimension to this classification by distinguishing
between continuous, cutback, and surge forms of irrigation practice:
• Continuous inflow involves a uniform inflow rate throughout the irrigation until

termination.
• Cutback regimes involve an initially high inflow rate to advance the water to

the end of the field as quickly as possible to improve application uniformity,
and then a reduction in the inflow rate to reduce runoff losses.

• Surge irrigation is the intermittent application of water down a furrow or
border in a series of on and off time periods. Surge irrigation is used as a
management tool to improve efficiency and uniformity, although the
mechanisms contributing to these improvements are not fully understood. It
is known however that the soil’s infiltration rate is reduced during surge
irrigation leading to a quickening of the advance in subsequent surges
(Hoffman and Martin 1993). This is thought to result principally from surface
sealing effects resulting in a reduction in deep percolation losses. Surge
irrigation is largely confined to the United States with the practice not yet
adopted by farmers in Australia.

2.2.3 Phases of the irrigation cycle
There are four distinguishable phases that occur during a typical surface
irrigation event; namely the advance, storage, depletion, and recession phases:
• The advance phase occurs when water is introduced into the furrow or bay

and flows downstream on initially dry soil.
• Storage occurs once the advance reaches the end of the field. There is a

continuous volume of water on the surface of the furrow or bay.
• Once the inflow rate is cutoff, the depletion phase begins where the surface

water level at the top end of the furrow or bay begins to fall. Some refer to
this as the vertical recession phase.

• The recession phase exists when a zero surface water depth is encountered
at the top end of the furrow or bay. A distinguishable dry/wet boundary front

Chapter 2 Background to surface irrigation decision support

 13

then propagates along the furrow in the direction of flow. Sometimes this is
known as the horizontal recession phase.

Figure 2.1: (a) Water surface profiles and (b) advance and recession characteristic curves for

different phases of the irrigation cycle.

Combinations of these phases can sometimes exist such as simultaneous
“advance and depletion” and “advance and recession”. These occur when the
inflow is terminated before the advance reaches the end of the field culminating
in a pulse of water moving down the furrow.

Furrow end conditions designate further categorisation. “Ponding” at the
downstream end occurs when the end of the furrow or border has been
purposely blocked to prevent runoff. Otherwise, “free-draining” conditions exist.

2.2.4 Design and management practices
Surface irrigation design and management are separate practices requiring
different considerations and treatments. For example, irrigation design involves
selecting field parameters (such as application method, drainage method, furrow
cross-section, field-length and slope) prior to the first irrigation occurring with the
multiple goals of simplifying management, maximising performance, and
minimising costs. Irrigation management involves controlling the distribution and
amount of water for an individual irrigation event (typically through selection of
flow rate, time-to-cutoff and application depth) to maximise plant uptake and
minimise costs and water losses.

2.3 Surface irrigation decision support

2.3.1 What is a decision support system for surface irrigation?
A decision support system for surface irrigation is computer-based software for
aiding the design and management of surface irrigation. Wikipedia
(www.wikipedia.org) provides a generalised definition for these systems:
“Decision support systems are a class of computerised information systems or
knowledge based systems that support decision making activities.”

http://www.wikipedia.org/�

Chapter 2 Background to surface irrigation decision support

 14

The fundamental component of these systems in the context of surface irrigation
is the simulation model. The model consists of a series of mathematical
equations that simulate the physical hydraulic processes of the irrigation event.
These equations are linked to an interface through which the user can
manipulate the simulation by entering data representing the physical properties
of the irrigation system. The equations are usually solved at discrete time and
distance intervals using a suitable finite difference or finite element technique.
Operation of the model produces a series of graphical or textural outputs
representing the simulated performance of the event.

Other components of a surface irrigation decision support system could include;
a database for storage and retrieval of input data, and to serve as a repository
for processed results; an optimisation algorithm for calibration and optimisation
of model outputs; and analyses to pre-process and post-process input data and
model outputs. The system is typically encapsulated by a graphical user
interface and contains graphical and textural reporting facilities to communicate
information.

2.3.2 Uses of the decision support system
A principal role of a surface irrigation decision support system is to evaluate the
performance of an irrigation event. Given a set of measured (time-independent)
inputs, the irrigation model is used to simulate an event, so as to predict
quantities that are time-dependent and difficult or impractical to measure.
During a typical simulation, the flow rate and cross-sectional area of flow are
predicted at various locations along the furrow length for each time interval. As
well, the advance is predicted during the initial phases of the event. From this,
the performance of the irrigation can be evaluated in terms of efficiency,
uniformity, and volumes.

However, if the advance is known, the model can be used to obtain estimates of
other parameters, which are normally measured; for instance, infiltration. The
solution of the infiltration parameters from a measured advance is known as a
solution to the “inverse problem”. This is an important technique, as infiltration
is a property that is very difficult to physically measure due to the temporal and
spatial variability of the soil.

Lastly, repeated simulations of the model using different combinations of design
variables are fundamental for optimising design and management strategies.
These variables are usually those that the irrigator has direct control over such
as time-to-cutoff and inflow rate. Optimal strategies can be determined through
a manual trial and error approach of running the model; or systematically
simulating all combinations of the variables to generate design curves; or
through a structured optimisation strategy. The addition of an optimisation
algorithm to automatically determine these variables is a higher objective for a
decision support system.

Chapter 2 Background to surface irrigation decision support

 15

2.3.3 The need for decision support systems
Extensive research has been undertaken towards improving decision making
involved in the design and management of surface irrigation, yet irrigation
practices have changed little over the past decades. While recent technology
has introduced a wide range of tools and techniques to draw upon, their
adoption has been slow and generally poorly coordinated. Decisions are more
often influenced by local policy, neighbouring practices, consultants’ experiences
and preferences, and availability and cost of materials, rather than by evaluation
and comparison of methods for the site of interest.

Field trials and computer modelling are becoming more commonplace in
developed nations and have set the standard for surface irrigation decision
making, although both are limited in their current form. Computer models offer
the greatest potential but so far have really only been used as research tools,
indicating that there are problems with the current technology/software.

Therefore, an opportunity exists to develop a decision support tool for surface
irrigation that will overcome these problems and place this technology in more
hands. It needs to simplify the multidimensional nature of the decision process
by simultaneously comparing and demonstrating different techniques and
methods over a range of conditions.

2.3.4 Research for decision support systems
Research into decision support systems has been directed in three principal
areas including:

• simulation of furrow and border irrigation;
• solving the “inverse problem”; and
• optimising design and management practices.

Simulation models have been the main focus of surface irrigation research over
the last fifty years. There is a considerable body of literature on simulation
modelling, which unfortunately is not all encompassing. While the
methodologies presented are typically sound and often novel, the depth of the
subject area has meant that many topics have been poorly treated.

Solution of the “inverse problem” has been the second most researched area of
furrow and border irrigation decision support. The “inverse problem” relates to
using the simulation technology in “reverse” to estimate field parameters (such
as the infiltration or hydraulic roughness parameters) through a calibration of the
simulated outputs against measured field data (such as the advance, or runoff
hydrograph). Simple methods have been developed which have proven useful,
but the research is yet to take full advantage of current technology.

The least treated research area is that of using simulation technology to optimise
design and management practices. Different methodologies have been
presented to optimise these practices including generation of design charts,
computer optimisation, and real-time control of irrigation systems. The relative
lack of depth in this subject area is indicative of both the infancy of the
technology, and problems associated with the basic simulation capabilities.

Chapter 2 Background to surface irrigation decision support

 16

Background modelling theory and a review of the literature in each of these three
areas will now be presented.

2.4 Background to simulation modelling
The simulation model is the primary component of a surface irrigation decision
support system, and the success of secondary tools is dependent upon the
effectiveness of the simulation model. Therefore, before a literature review of
surface irrigation decision support technologies can be undertaken, an
understanding of the background theory of simulation modelling is required. This
theory will now be discussed in terms of the underlying model equations;
simplifications to the model; infiltration model; numerical solution techniques;
and dimensionless formulations of the equations.

2.4.1 Model equations
Computer simulation of water flowing and infiltrating along the furrow or border
during surface irrigation is governed by the laws of mass and momentum
conservation. The mathematical equations describing these laws are generally
known as the de Saint-Venant Equations (often the “de” is omitted). They
consist of two separate hyperbolic partial differential equations1; one
representing continuity (Eqn. 2.1); and one representing momentum (Eqn.2.2).

zr
t
y

x
q

−=+
∂
∂

∂
∂

... (2.1)

()
y

rzvSSg
x
yg

x
vv

t
v

fo
)(−

+−=⎟
⎠
⎞

⎜
⎝
⎛++

∂
∂

∂
∂

∂
∂

... (2.2)

Where q is the inflow rate per unit width, x is the distance along the furrow, z is
the rate of infiltration per unit length, y is the depth of flow, t is the irrigation time,
g is the gravitational constant, S0 is the furrow slope, Sf is the energy slope, v is
the velocity of the surface flow, and r is the lateral inflow (rainfall) rate.

For completeness, a derivation of these equations is presented in Appendix 2.1
as many texts fail to state the assumptions underlying the derivation; are not
thorough in the derivation; and neglect to include lateral inflows and outflows.

2.4.2 Simplification of the model
The solution of these equations is complex, and as yet, no analytical solution to
the complete equations has been found. Therefore researchers have typically
used a combination of numerical methods and simplifying assumptions to obtain
a solution. The simplification of these equations can be categorised into four
main types based on the level of modification. These include the solution of the
full set of hydrodynamic equations, the zero-inertia approximation, the kinematic-

1 Note that this form of the equations is most suited to flow in borders. A different form of the
equations, that better represents flow in furrows (in terms of Q and A, rather than q and y), will be
presented in Chapter 3, and used in the developed software.

Chapter 2 Background to surface irrigation decision support

 17

wave approximation; and the volume-balance method. These will now be
discussed in turn.

Solutions based on the full set of hydrodynamic equations
The complete form of the Saint Venant Equations (Equations 2.1 & 2.2)
represents the most accurate description of the water flow over the ground
surface. However, complex numerical methods are required for their solution,
being costly both in programming complexity and execution times.

Solutions based on the zero-inertia approximation
The first level of simplification of the Saint Venant Equations involves removing
the inertial, or acceleration, terms in the equations. The acceleration terms are a
source of fragility, especially if the flow is near critical. Their removal from the
momentum equation leads to a more robust solution, as the equations are now
parabolic, rather than hyperbolic (Strelkoff and Falvey 1993). The momentum
equation then becomes:

fSS
x
y

−=
∂
∂

0 .. (2.3)

Numerous studies (Katopodes and Strelkoff 1977b; Clemmens 1979; Fangmeier
and Strelkoff 1979; Elliot et al. 1982; Schwankl and Wallender 1987) have
shown that this zero-inertial approach can accurately simulate flow in borders
and furrows. Surface irrigation is typically characterised by sub-critical flow with
Froude numbers close to 0.3, meaning that the zero-inertia assumptions are
seldom violated.

Application of this approximation is relatively simple and computer execution
times small even though it is usually solved numerically. Several researchers
have formulated analytical and quasi-analytical solutions in recent years.

Solutions based on the kinematic-wave approximation
The kinematic-wave approximation is the next level of simplification to the Saint-
Venant equations. This approximation further simplifies the zero-inertia
equations by assuming that the water surface slope is relatively small compared
to the other terms of the equations. The momentum equation then becomes:

fSS =0 ... (2.4)

The model assumes uniform flow conditions at the furrow inlet and outlet, but
not along the furrow reach due to lateral outflows (infiltration). Effectively, the
assumption is that the bed slope can approximate the frication slope, and that
flow is “uniform” only over discrete distances. The absence of the depth gradient
term (xy ∂∂ /) from the equation implies that the depth at the top end of the
furrow will instantaneously reach the value of normal depth as soon as flow
commences, rather than rising gradually as you would expect in practice.

Many analytical solutions to these equations have been found including explicit
and implicit “time of advance” equations. Numerical solutions are still used as
well, and are simple to code and operate very efficiency.

Chapter 2 Background to surface irrigation decision support

 18

The limitation of the method is that it is only applicable to special conditions that
don’t void the underlying assumptions. For example, the method cannot handle
backwater effects due to the uniform flow boundary condition at the furrow
outlet, so it cannot be used for blocked, or partially blocked furrow ends.

Solutions based on the volume-balance approximation
The volume-balance model represents the simplest approximation of the Saint
Venant equations where the momentum equation is usually replaced with an
assumption of average depth of flow or a predetermined water-surface profile.
Shape factors are often used along with empirical “power” relationships to define
advance trajectories. The depth of flow at the top end of the field is assumed to
be the normal depth for the applied flowrate. Only the continuity equation from
the Saint-Venant equations is used and is usually solved algebraically.

2.4.3 Infiltration model
The most commonly used infiltration functions in surface irrigation modelling
include the Kostiakov-Lewis, Modified-Kostiakov-Lewis, Phillip, and Horton
equations (Table 2.1). These are empirical equations and are primarily designed
for non-cracking soils, neglecting to consider instantaneous crack filling (Maihol
and Gonzalez 1993). However, it is not uncommon for these equations to be
modified through the addition of a crack-fill parameter. Physically based models
such as the Green and Ampt equation (Eqn. 2.9) may be better suited to the
cracking situation, but are difficult to incorporate in simulation models and apply
to field situations (Evans et al. 1990).

Table 2.1: List of commonly used infiltration equations in surface irrigation modelling

Source Equation
Kostiakov-Lewis (Kostiakov

1932; Lewis 1937) Z ktop
a= (2.5)

Modified-Kostiakov-Lewis Z kt f top
a

o op= + (2.6)

Phillip (1957a)
oopop ftktZ += 2

1

 (2.7)

Horton (1940) Z e f trt
o op

op= − +−γ ()1 (2.8)

Green and Ampt (1911) I K h
Z

s i= +
− ′⎡

⎣⎢
⎤
⎦⎥

1 ()θ θ
 (2.9)

SCS, USDA, also Evans et
al. (1990) Z kt Cop

a= + (2.10)

Maheshwari-Jayawardane
(1992)

also Maihol-Gonzalez
(1993)

oplc tiZZ += (2.11)

Wallender-Rayej (1985) Z kt f t Sop
a

op= + + (2.12)

where Z is the cumulative infiltration ; top is the opportunity time for infiltration to occur; a, k and r
are fitted empirical parameters; fo is the steady state infiltration rate; I is the infiltration rate; θs is
the saturated moisture content; θi is the initial moisture content; K is the hydraulic conductivity in
the wetted zone; h’ is the suction at the wetting front, γ is cumulative infiltration at top=0 if steady

state had been reached at top=0; C is deferred infiltration volume; il is the saturated hydraulic
conductivity of the restricting layer; Zc is the initial depth of infiltration required for crack filling and

absorption; and S is the volume of cracks per unit area.

Chapter 2 Background to surface irrigation decision support

 19

With the exception of the Green and Ampt equation (Eqn. 2.9), all of the
equations are of a similar form. That is, they are composed of variations of a
non-linear component, a steady state component, and sometimes an
instantaneous crack-fill component. Also, the actual role of each equation-part is
not necessarily fixed, and is dependant upon the parameter values. For example,
the Kostiakov-Lewis Equation (Eqn. 2.5) could be used to represent any one of
the three components. In general this equation represents non-linear infiltration.
However, if the parameter a is set to 0, it would represent instantaneous crack-fill;
and if a is fixed at 1, then it would represent steady-state infiltration.

2.4.4 Numerical solution techniques
While dozens of attempts have been made to develop surface irrigation models
over the last century, only a relatively small range of solution techniques has
been employed. Early work involved the solution of volume-balance models
involving only simple algebraic equations. The limitations of these models were
recognized early and with the advent of modern computers, attempts were made
to solve variations of the more complex hydrodynamic models, which have
proved impossible to solve algebraically in the purest form. Therefore, iterative
numerical solution techniques are required to solve the models.

Conceptually, the modelling consists of two levels of approximation: firstly, the
governing equations represent an approximation to reality; and secondly, the
numerical method chosen is an approximation to the analytical solution of the
governing (differential) equations. Numerical methods used include the method
of characteristics, finite differencing, finite element analysis, and finite volume
analysis. Finite differencing is the most commonly used method in surface
irrigation modelling.

Method of Characteristics
This technique simplifies the problem of solving the two partial differential
equations (continuity and momentum) by transforming them into four ordinary
differential equations (Stephenson and Meadows 1986). This technique was
used long before the advent of modern computers through graphical solution
methods. These days, numerical techniques are used through explicitly solving
the transformed equations on an irregular space-time grid formed by the
intersection of disturbance-trajectories (characteristics curves). A limitation of
the method, due to the irregular grid, is that inputs to the characteristic
equations must constantly be interpolated from the previous calculations. This is
both computationally intensive and a potential source of compounding error. For
an extensive treatment of this theory, see Courant and Hilbert (1962).

Finite differencing numerical methods
The majority of surface irrigation models, including the latest state-of-the-art
models such as SIRMOD (Walker 2003) and SRFR (Strelkoff et al. 1998), utilise
finite differencing techniques to approximate the differential equations. These
methods involve replacing the partial derivative terms in the governing equations
with discrete approximation terms (since it is the derivative terms which prohibit
the formulation of an analytical solution). This is the most common solution

Chapter 2 Background to surface irrigation decision support

 20

technique used in surface irrigation modelling, as it is in most problems involving
one-dimensional, steady or time-dependant flow (Chaudhry 1993).

Finite difference techniques can be categorised into implicit or explicit
techniques. Implicit techniques solve “simultaneously” for all of the unknown
variables at a time-step, where as explicit techniques will solve for the unknowns
in a “marching” cell-by-cell fashion. Explicit techniques are generally simpler to
program and easier to debug, but they are more susceptible to instability
problems (Chaudhry and Mays 1993). Stability checks such as the “Courant
condition” (Courant et al. 1928; 1948; and 1956) must be performed to ensure
that the nodes at which each solution is sought, lie within the zone of
dependence of the neighbouring nodes that are used in the derivative
approximations. Also, in surface irrigation modelling (though not necessarily in
general) explicit methods are assumed to be an order of magnitude less
computationally efficient than the implicit techniques (although no evidence
could be found of actual comparisons).

Other numerical methods
Other possible methods for solution of the model equations for furrow and border
irrigation include finite element and finite volume analysis. Finite element
methods have been used for modelling furrow irrigation conditions (Shayya et al.
1993), modelling sediment and chemical transport (Katopodes 1994), and two
dimensional analysis of furrow infiltration (Vogal and Hopmans 1992), but has
not found widespread application in modelling general open-channel and
irrigation flow conditions. Singh and Bhallamudi (1997) developed a finite
volume method to solve the two-dimensional governing equations of basin
irrigation.

2.4.5 Dimensionless solution formulations
Dimensionless formations of the finite difference forms of the continuity and
energy equations have been used by many researchers for modelling surface
irrigation (e.g. Strelkoff 1985; Rayej and Wallender 1985). The main advantage
of a dimensionless solution of the model equations is that it allows significant
reductions in the amount of data generated and presented, without loss of
generality (Strelkoff and Clemmens 1994). These dimensionless solutions are
independent of the systems of units used. Dimensionless variables appear in the
form of ratios of the normalised quantities used. Dimensionless solutions have
been favoured for creating design charts due to the reduced number of variables
present (Ram and Singh 1985).

2.5 Simulation model development
The mathematical modelling of surface irrigation is not new. Volume-balance
models had been developed as early as the 1930’s, and the advent of modern
personal computers in the 1970’s saw more complex forms of model being
introduced with energy and momentum components. A review of the evolution of
these models will now be undertaken focussing on the four separate types of

Chapter 2 Background to surface irrigation decision support

 21

simulation model available including: volume-balance models; kinematic-wave
models; zero-inertia models, and hydrodynamic models.

2.5.1 The evolution of volume-balance models
The first attempts at simulating the advance-phase of surface irrigation used
volume-balance models that apply the continuity equation (Eqn. 2.1) over the
entire flow profile and use simplifying assumptions to replace energy and
momentum effects. They are still of interest today because of their simple form
which is easy to program into a computer, and couple with optimising and batch-
processing algorithms. Both analytical and iterative solutions have been
developed, with key differences between methods lying in the underlying
assumptions for surface and sub-surface geometry.

The first attempt at an analytical solution was by Lewis and Milne (1938) who
derived an integral equation for advance time in terms of inflow, mean surface
water depth and cumulative infiltration. Philip and Farrell (1964) later used
Laplace transforms to simplify the integral equation for different infiltration
equations.

The first iterative numerical scheme for solving the volume-balance equations
was developed by Hall (1956) in what has been described as a “landmark
contribution” (Al-Azba and Strelkoff 1994) to the research. This method for
solving the advance laid the foundation for physically based numerical irrigation
models and has regularly been referenced in journal articles and books ever
since. Hall’s approach used an iterative numerical scheme over a sequence of
time-steps where normal depth at the upstream end was assumed along with a
power-law shape factor for the surface stream-depth profile yielding a
“reasonable” approximation of the actual advance.

Another algebraic volume-balance model was later developed by Strelkoff (1977)
for generating approximate advance and recession curves for border irrigation.
He approximated the surface volume by using a simple surface shape profile,
and assuming normal depth at key points along the surface. Results were
compared to other more complex mathematical models, and to laboratory and
field experiments with results of “useful quality”.

This technique was later modified for furrow irrigation by Levien and Souza
(1987), using a power function to represent furrow geometry and a simple
Kostiakov function to represent infiltration. Having validated the model against
field data as well as other models, the authors claimed “reasonable results” but
believed that it was more accurate than many of the more complex models.

At the same time, Rayej and Wallender (1987) also produced a volume-balance
model for open furrow irrigation. They used the same assumptions made by
Strelkoff (1977) along with a modified Kostiakov infiltration equation, and a
power equation to represent furrow geometry. During the recession phase, the
flow-area at the downstream end was assumed proportional to the distance of
the recession from the downstream end. This was questioned later by Xu and
Singh (1990) who thought it more reasonable to assume that flow “depth”
instead of flow “area” should be proportional to the recession distance. Low

Chapter 2 Background to surface irrigation decision support

 22

computational efficiency and programming complexity were also acknowledged
as a limitation of the method.

Xu and Singh (1989, 1990) developed an analytical volume-balance model to
simulate all phases of the irrigation cycle for borders and furrows. A parabolic
shape was assumed for surface and subsurface profiles during the advance
phase; the coefficients of which were determined in the region of gradually varied
flow away from the advance front. Recession was simulated using a simple
iterative technique by Strelkoff (1977) that assumes that the surface profile is
linear during this phase and that “the downstream end flow is normal and
declines proportionally to the receding tail position measured from the
downstream end”. The furrow irrigation version of the model can be applied to
any form of furrow shape by transformation into an equivalent semicircular
shape.

Another volume-balance approach used by several authors involves replacing the
energy equation with a Muskingum storage-discharge relationship (Singh and He
1988; Singh et al. 1988; Wilson and Elliot 1988). Singh demonstrated this
method for both furrows and borders (with a modified Kostiakov infiltration
equation) and found that it “satisfactorily” predicts water movement and
infiltration distribution for all phases of the irrigation cycle, with errors
comparable with other models. However, the model contains twelve input
coefficients making it difficult to calibrate for a volume-balance model. The main
advantage of the model is that it is simple to program and executes rapidly.

Wilson and Elliot (1988) used a modified version of the Muskingum flood-routing
approach to predict the advance, along with a second routing method that
assumes that the flow is approximately steady within each furrow reach. Each
method used a power function to describe the surface and subsurface profiles.
Both models predicted advance times accurately on soils that quickly reach
steady state infiltration and had relatively high infiltration losses. However, the
second method was found to over-predict the advance on low infiltration soils.

Al-Azaba and Strelkoff (1994) revisited the work of Hall (1957) showing that the
original technique had problems associated with volume-balance errors
occurring at the infiltration wetting front, and accumulating over each successive
time-step. They found that errors could be as high as 10% for small advance
times, but the error decreased with increasing time. This is also not uncommon
with today’s more complicated hydrodynamic models. The authors neglected to
point out that the higher volume-balance errors correspond with smaller
volumes. However, they did present a more accurate model by redeveloping the
technique and calculating volumes at each time-step rather than computing
incremental changes. They also modified the model to account for the sharp
curvature of the infiltration profile at the advance front.

In recent work, Greek researcher John Valiantzas has undertaken considerable
research with volume-balance models. In 1993, he developed a simple model to
predict advance in borders using a volume-balance equation with an adjusted
surface shape factor and the zero-inertia motion equation evaluated at the head
of the border (Valiantzas 1993). A system of two equations containing the two
unknowns of advance position and upstream depth were solved at each time-

Chapter 2 Background to surface irrigation decision support

 23

step. The method performed well against the zero-inertial solution and four well-
documented field irrigations. It also proved accurate on borders with small slope
where volume-balance models traditionally fare poorly.

Four years later, he developed a new algebraic form of volume-balance model
(Valiantzas 1997a,b) describing the time variation of the subsurface water
profile. This equation was developed by solving the modified Hall technique (Al-
Azaba and Strelkoff 1994) for different values of the exponent of the Kostiakov
equation. By “systematic” analysis of the results, a relationship was derived
relating the subsurface water profile to time for infiltration represented by the
Kostiakov Equation. This analysis was then extended to other infiltration
equations. However, a limitation of the resulting equations is that the advance
time in the model is given implicitly. Therefore, its calculation requires the use of
an iterative numerical technique such as the Newton-Raphson method.
Nevertheless, the resulting equations were found to be substantially more
accurate than previous algebraic volume-balance equations utilising the power
advance assumption.

Valiantzas (1999a,b) readdressed the problem of the iterative nature of the
method two years later, when he analysed the behaviour of dimensionless
advance curves for various combinations of infiltration parameters. He found
that by expressing the advance problem in terms of conveniently selected
dimensionless variables, the various advance curves (obtained using the
modified Hall technique), could be described by a single advance curve
independent of the infiltration parameters. A “simple” explicit time-of-advance
equation was then derived to explain this curve. The proposed formula was
compared against the kinematic-wave numerical results with good agreement.

The next year, Valiantzas (2000a,b) admitted that this technique was not as
simple as he had initially suggested. A disadvantage of the method is that the
advance relationship described by the model is presented as three equations of
different mathematical form, lacking the simplicity of the popular SCS empirical
equation (U.S. Department of Agriculture 1983), with the extra calculations
required deemed significant. Therefore he derived another simpler equation
based on the systematic analysis of dimensionless zero-inertia numerical
solutions, yielding good agreement with the zero-inertia model.

Once again in the following year, Valiantzas (2001) simplified the previous model
further, proposing a new time-of-advance equation equivalent in simplicity to the
SCS equation. This equation is derived as an extension of the two small-time
large-time explicit advance time solutions. He evaluated this against the SCS
equation, which was found to perform poorly against his new design. He also
tested the equation against observed furrow data, and a zero-inertia model and
found good agreement with both.

2.5.2 The evolution of kinematic wave models
First proposed by Lighthill and Whitman (1955) for modelling overland flow, the
kinematic-wave approximation was widely utilized soon after in catchment
hydrology and for predicting flood movement in rivers (Henderson and Wooding
1964; Wooding 19665a,b). This hydrologic application of the model was

Chapter 2 Background to surface irrigation decision support

 24

extended to sloping, free draining borders by Chen (1970) using the method of
characteristics. Smith (1972) made improvements to Chen’s work, while also
introducing his own solution technique based on finite difference approximations
to the partial differential equations.

Walker and Humpherys (1983) highlighted that the kinematic-wave
approximation developed for borders, could easily be modified for furrows by
including a description of furrow cross-section along with a wetted perimeter
dependant infiltration function. This was later modified by Ross (1986) in a
model called “KIM” using a variable time-step (to keep the space-step
approximately constant) and a volume-balance approach to calculate recession
times.

Rayej and Wallender (1988) developed a kinematic-wave model to solve for the
time-of-advance to specified locations down the field using the implicit double-
sweep technique of Liggett and Cunge (1975). However, at this stage of model
development, the coding requirements were found to be extensive and
computational times long, even for this simple model type. Wallender and
Yokokura (1991) followed on from this work, using an explicit Newton Raphson
solution method that iteratively adjusts the time-step to ensure that the nodes
fall at fixed locations, rather then using fixed node locations and solving implicitly
for the time-step. This proved to be more computationally efficient than Rayej
and Wallender’s method, while providing identical results.

Shayya, et al. (1993) developed a unique model for all phases of furrow irrigation
based upon application of the one-dimensional Galerkin formulation of the finite-
element method to the numerical solution of the kinematic-wave equations. The
Kostiakov-Lewis infiltration equation was used without wetted-perimeter
compensation. Results showed that the method produced “excellent”
predictions of the advance and recession trajectories for “almost” all simulations
of the available field tests. Simulation times of thirty seconds on a “386”
computer suggests that the method is an order of magnitude slower than the
implicit finite difference method.

One researcher who has contributed greatly towards developing the kinematic
wave models is Vijay P. Singh of the USA. For over twenty years from the late
1970’s, he provided a comprehensive mathematical treatment of kinematic
wave modelling of surface irrigation. In his early work with Sherman (Sherman
and Singh 1978, 1982; Singh and Sherman 1983), and later with Ram (Singh
and Ram 1983, 1984) he refined a model using a variety of numerical solution
techniques (one being the Kinematic Wave Train method of Ram et al. 1983) for
different phases of the irrigation cycle. These solution techniques were
simplified in later work becoming part numerical, part analytical (Singh and Ram
1985).

Singh and Ram (1983) tested the model against data from thirty-one
experimental borders. They concluded that while it was quite good at simulating
advance and recession, it struggled to handle the depletion phase adequately.
This agrees with an earlier study that Singh was involved in (Chen et al. 1981)
and also that of Smith (1972). In the following year, Singh and Ram (1984)
further developed the solution for the transient infiltration case in the “Kinematic

Chapter 2 Background to surface irrigation decision support

 25

Wave Train” formulation. This method can be used with many infiltration models
and uses a semi-analytical recursive solution technique.

They then focused on providing quantitative estimates regarding the accuracy of
the model through the development of dimensionless advance and recession
curves for border irrigation (Ram and Singh 1985). In the majority of cases, they
found the model to be “sufficiently accurate”.

In 1986, in a series of papers with Ram and Prasad, Singh presented a quasi-
steady state integral model for both closed and free draining border irrigation
(Ram et al. 1986a,b). They used a semi-analytical method for solving the
governing equations for all phases of the irrigation cycle. The continuity and the
quasi-steady state approximation of the momentum equation were integrated for
the depth and velocity distributions of the surface water while a Kostiakov
infiltration function predicted the subsurface distribution. Results were reported
as “satisfactory” with prediction errors between twenty and thirty percent. The
following year, Singh published several more papers (Singh and Yu 1987a,b,c) on
this model.

This work was continued in 1989 with a model for free draining borders
simulating all phases of the cycle (Jain and Singh 1989). This was based upon
the integral formulation with a Newton-Raphson iterative scheme and could
accommodate any infiltration function. Very low volume-balance errors were
encountered while testing against field data. However, Singh later reported that
this technique might converge slowly under some situations (Reddy and Singh,
1994).

To address this problem, Reddy and Singh (1994) reinvestigated the
linearisation scheme that Strelkoff and Kotopodes (1977) had used to directly
solve the non-linear equations. They rederived explicit algebraic expressions for
the linearised form of the kinematic-wave equations, for computation of advance
and runoff rate in furrow irrigation. A modified Kostiakov-Lewis infiltration
equation was used in the derivation. They used a deforming control volume
approach during the advance phase while resorting to a fixed control grid for the
storage and runoff phases. The authors didn’t consider the depletion and
recession phases suggesting that in general, these phases are insignificant in
furrow irrigation. They compared their results with field data, and also a zero-
inertia model and found close agreement between them all. They also derived a
differential equation to estimate the error between the kinematic-wave and zero-
inertia forms of the model by assuming a constant infiltration rate. This equation
could then be used to define the limits of usability for the kinematic-wave model
in furrow irrigation.

Turbak and Morel-Seytoux (1988) also assumed a constant infiltration rate when
they developed an analytical solution to the kinematic wave model for all phases
of the irrigation cycle. The authors acknowledge that the assumption of a
constant infiltration rate would introduce a significant prediction error.
Nevertheless, this modelling attempt highlighted that an analytical solution could
be found through the use of a simplified linear infiltration assumption.

Chapter 2 Background to surface irrigation decision support

 26

This method was revisited by Maihol and Gonzalez (1993) for the recession
phase when developing an analytical furrow irrigation model targeted at real-time
applications on cracking soils. The advance phase of the model was solved
using a Laplace transform solution of the Lewis-Milne (volume-balance) equation
containing a linear crack-fill infiltration function, to produce an “implicit” time-of-
advance equation. As with Turbak’s method, the simplified infiltration equation
limits the utility of the method, especially during later stages of the irrigation, and
on cracking soils that may have a “zero” final infiltration rate. The authors also
suggested that the linear form of the infiltration equation facilitates the need for
statistical analysis to overcome the problem of spatial variability.

These attempts at an analytical solution were not lost on Australian researchers
Austin and Prendergast (1997), who were more successful in their approach to
develop a simple analytical irrigation model based upon the kinematic wave
approximation. The model was specifically targeted at cracking clay soils, and
included a simple linear infiltration function deemed suitable for describing
infiltration into soils exhibiting shrinkage and cracking upon drying. The two
parameters used in the function have physical significance allowing pre-irrigation
estimation of these parameters in the field. It is because of the linear nature of
this function (that is, a constant rate of change of infiltration over time) that an
analytical solution to the kinematic wave model was able to be derived for all
phases. The method is simple enough that it can be undertaken using hand
calculations without the use of a personal computer. Initial results were good
enough to warrant future research.

2.5.3 The evolution of zero-inertia models
In a “ground-breaking” paper, Strelkoff and Katopodes (1977) developed the
first zero-inertia model for border irrigation. They borrowed the idea of using the
zero-inertia approximation from Brakensiek et al. (1966), and from Harder and
Armacost (1966) who utilised the technique in river-flood routing. Problems in
adapting these methods to border irrigation were identified in the region of the
advance front where the depth is zero, and with convergence problems towards
the end of the depletion phase. They dismissed the use of an explicit solution
technique because of these convergence problems and therefore presented an
implicit double sweep technique solving the integrated form of the governing
equations in the x-t plane, paving the way for the state-of-the-art models of today.
For each time-step, a series of non-linear equations were first linearised and then
solved using the double-sweep algorithm. Solution techniques were presented
for each individual phase with “satisfactory” results. This was later verified by
Fangmeier and Strelkoff (1979), while the method was later modified for closed-
end borders by Clemmens (1979).

Five years later and following on from the work of Strelkoff and Katopodes, Elliott
et al. (1982) presented the first zero-inertia model for furrow irrigation advance.
The model equations were linearised and then solved on a moving Langrangian
solution grid using a double-sweep algorithm. They related both depth and
wetted-perimeter to cross-sectional flow area using a power relationship,
something that again has become popular. They presented only the advance
phase of the simulation, deeming it of greatest interest as it is most responsible
for the uniformity in the final distribution of infiltrated water (the other phases of

Chapter 2 Background to surface irrigation decision support

 27

the irrigation were later presented in a book by Walker and Skogerboe, 1987).
Field data were used to validate the model concluding that significant errors
were not introduced by neglecting the acceleration terms, nor by linearising the
series of algebraic equations.

The authors followed up this work the following year by non-dimensionalising the
zero-inertia equations so as to be able to present graphically, a series of
dimensionless advance curves for irrigation design (Elliot et al. 1983a). It is
interesting to note that this team abandoned this dimensionless approach (which
is still used by researchers such as Strelkoff and Katopodes), when developing
their popular SIRMOD model.

Schwankl and Wallender (1987, 1988) presented a zero-inertia furrow model
with variable infiltration and hydraulic characteristics. The method was novel in
that the model equations were solved at specified space increments rather than
specified time increments using an explicit finite differencing technique. This
allowed them to vary infiltration and hydraulic properties at locations along the
furrow corresponding to measurements of infiltration, roughness and geometry.
They found great benefit in this, stressing the importance of wetted perimeter
effects on infiltration.

Australian researcher Ross developed a zero-inertia model for furrow and border
irrigation in 1987 (Ross, 1987). Aptly named “ZIM” (Zero-Inertia Model), the
model followed on from the work of Strelkoff and Katopodes (1977) and Elliot et
al. (1982) using a Newton-Raphson technique in the solution process. This
model managed to earn some early recognition with Australian primary industry
researchers, although later models (such as SIRMOD and SRFR) soon
overshadowed it.

Schmitz and Seus (1989, 1990, 1992) developed a zero-inertia model for
irrigation in borders and furrows. The model is unique in that an analytic solution
replaced the finite difference approximation to the derivative terms in the model.
Up until this time, analytical solutions could only be achieved for volume-balance
approaches. However, it is not an explicit time-of-advance model, and does
require iteration over successive time-steps. The model can be used with any
infiltration equation and a range of furrow geometries can easily be
accommodated. The authors claimed that the model is very accurate and
numerically economic avoiding the normal errors introduced by numerical
discretisation. They compared the model against a full hydrodynamic model and
also field data showing “excellent agreement”. Unfortunately, along with many
other models discussed, it doesn’t seem like any further development has taken
place in the time since it was first published.

Oweis and Walker (1990) modified the method of Elliot at al. (1982) for the
situation of surge flow. The model simulates all phases of the irrigation cycle
including simultaneous advance and recession, which is regularly overlooked by
researchers. Unfortunately, although this phase combination is crucial in surge
flow modelling, the authors still only offered a brief coverage of the topic passing
up an opportunity to publish in an important but little understood area.
Nevertheless, the model appears to be successful, and would later on contribute
to the development of SIRMOD. Neglecting the inertial terms was thought to

Chapter 2 Background to surface irrigation decision support

 28

have minimal impact on the accuracy of the simulation despite the relatively high
flow velocities associated with surge irrigation.

Katopodes (1994) developed a unique and powerful model for simulating the
surface irrigation advance that also calculates the velocity profile of the surface-
water wetting front. This complex technique makes possible the analysis of
particle suspension and chemical transport, which is in fact the reason for its
development. A two dimensional finite element approach in the vertical plane is
used to solve the Navier-Stokes equations in the region of the wave front. Zero-
inertia theory is then used a short distance upstream where a fully developed
vertical structure is encountered. The model is not suggested as a tool to
analyse or design border irrigation flow and the author admits that it could not
compete with any of the recent hydrodynamic models with results differing
considerably from a zero-inertia model. It presents as a first attempt to model
surface irrigation based on the turbulent Navier-Strokes equations addressing
the problem of point-source contamination from irrigation runoff.

2.5.4 The evolution of hydrodynamic models
Nearly all furrow irrigation models up until the late 1970’s employed volume-
balance methodologies. While hydrodynamic modelling had commenced a
decade earlier, it had met with little success. Since then, most interest in
hydrodynamic modelling has been directed towards using explicit solution
techniques to solve the equations, with stability problems and slow computation
times reported. The most successful methodology (and benchmark standard)
appears to be the implicit double-sweep technique of Walker and Skogerboe
(1987).

Wilke (1968) presented one of the first attempts at using a hydrodynamic model
using the method of characteristics, but computational difficulties near the
advance front prevented accurate predictions of the advance trajectory. The first
“successful” attempts at simulating all phases of the irrigation cycle using the
full hydrodynamic model were made by Basset (1976) and Katopodes and
Strelkoff (1977b) using finite differencing techniques based on the method of
characteristics. Long simulation times and the high cost of producing runs on
shared computing systems stirred much interest in simplifying the model by
neglecting accelerations terms in the momentum equation.

Fonken et al. (1980) presented a complete hydrodynamic model of all phases of
border irrigation. The authors employed a Newton-Raphson-based numerical
integration technique applied to control volumes in replacing the method of
characteristics (which was popular throughout the previous decade), with great
improvements in numerical efficiency. The numerical costs associated with
running this new model were comparable to that of the simpler zero-inertia
models of the time. Interestingly, the model was presented as a useable tool,
rather than academic concept, which tended to add some credibility to the
science at that time.

The underlying model for the SIRMOD software was presented by Walker and
Skogerboe (1987) in their textbook for surface irrigation theory and practice. The
method uses a Eulerian integration approach to approximating the Saint-Venant

Chapter 2 Background to surface irrigation decision support

 29

equations and solving with the implicit double-sweep technique of Liggett and
Cunge (1975). The authors have presented what is probably the most
comprehensive treatment of hydrodynamic simulation modelling for furrow
irrigation to date, and includes treatments for initial conditions and downstream
boundary conditions. Given the success of the SIRMOD software (see Section
2.9), this model has set the standard for surface irrigation models.

During the late 1980’s there was considerable interest in simulating irrigations
using fixed node locations and solving for the time-of-advance using volume-
balance, kinematic wave, and zero inertia models (Wallender 1986, Rayej and
Wallender 1988; Schwankl and Wallender 1988). A benefit of specifying node
locations is that different infiltration functions (uniform or stochastic) can be
used along the furrow. Wallender and Rayej (1990) presented the first attempt at
developing a hydrodynamic furrow irrigation advance model using this approach
with an explicit shooting algorithm. This explicit solution technique was used to
solve for flow-area and flowrate on a cell-by-cell basis in the upstream direction,
given the location of the wave front and an initial value of the time-step.

The authors contend that since flow in surface irrigation is typically subcritical,
downstream conditions can propagate upstream and this type of solution
technique was ideally suited to this situation. They contrasted this against the
more common two-point boundary value solution using the double sweep
technique, implying (without supporting evidence) that this latter approach would
not handle this situation very well. They added that the explicit shooting
algorithm simplified the coding by decoupling the model equations allowing
greater flexibility in resolving instability problems at locations on the solution grid
where hydraulic conditions change. They criticised the double sweep technique
that at that time was solved using fixed time-steps without the ability to fix node
locations. However, many of the authors’ underlying hypotheses for developing
the model were later shown to be unfounded.

Bautista and Wallender (1992) later expanded on this research to include the
storage, depletion, and recession phases of the irrigation, and to simulate
simultaneous advance and recession. The authors presented a numerical
analysis showing that the specified space solution is computationally more
efficient than the traditional specified time solutions. However, computation
times were in the order of minutes rather than seconds, which is an order of
magnitude larger than the implicit double sweep methodologies. Convergence
issues were also identified and the authors suggested different research options
to improve this. While results suggested that the model was successful, no
evidence could be found that the model was developed further, possibly due to
the problems associated with long computation times.

Greek researchers Sakkas, Bellos and Klonaraki (1994) developed a model
based upon the complete hydrodynamic equations for all phases of the irrigation
cycle. The explicit two-step numerical solution technique of MacCormack and
Warming (1973) was used to solve the equations, proving to be the main “new”
information presented. As usual, the model provided “satisfactory” results. This
explicit technique allowed the decoupling of surface and subsurface flow models,
which for simplicity can then be operated in sequence. A simple Kostiakov-like
infiltration equation was used in the presented example but reference was made

Chapter 2 Background to surface irrigation decision support

 30

of some preliminary work which used the physically based Philip equation; a
benefit of the decoupling process.

This benefit was highlighted two years later by Indian researchers Singh and
Bhallamudi (1996), who identified the flexibility of the explicit finite difference
method over the implicit technique for handling different infiltration equations.
They developed yet another hydrodynamic model which was solved using the
explicit MacCormack method. Interestingly, no reference was made to the work
of their Greek colleagues. However, they did use a different infiltration model,
that of the Parlange equation (Haverkamp et al. 1990). The Kostiakov equation
was also employed in a separate variation of the model. A simple sub-grid
technique was introduced to implement a small grid size at the location of the
wetting front to avoid the occurrence of negative depths, while maintaining a
courser grid at other locations to improve computational efficiency. The amount
of effort by the researchers to improve solution speed highlights a deficiency in
the model; that of long computation times. While there is no doubt that today’s
modern computers would handle the explicit techniques more quickly, they tend
to be an order of magnitude slower than the implicit double-sweep techniques for
the same level of accuracy.

A double-sweep technique was used by Tabuada et al. (1995), who coupled a
two-dimensional infiltration model with the Saint Venant equations to simulate
the interaction of surface water depth and soil water movement during all
phases of the irrigation cycle. Richards’ equation was used for infiltration as it
takes into account the initial soil water conditions before the irrigation and the
surface water depth during the irrigation. The model aimed to provide insight
into the infiltration phenomenon involved in furrow irrigation, tracking the
position of the soil-water wetting front through time. This allows greater
investigation of different inflow rates, furrow spacings and furrow shapes to
improve irrigation efficiency. However, computational intensity was deemed as a
practical limitation of the model, which had very long computation times on
powerful super-computers of that era.

The MacCormack solution method was also used by Dholakia et al. (1998) to
simulate all phases of border irrigation using the hydrodynamic (HDFD), zero-
inertia (ZIFD), and kinematic wave (KWFD) models. A key feature of the
methodologies is that consistent discretisation in implementing the boundary
conditions and pseudo viscosity has eliminated the need for special grid
treatments (e.g. moving grid, deformable gird, subgrid techniques) for the
advance and recession fronts. Computation times for the hydrodynamic model
ranged from 75 sec to 300 sec on a 486 computer, which is nearly twice that of
the kinematic wave model. Simulated outputs from the models were compared
against measured data with good agreement found, although the authors
suggest that the hydrodynamic model is the most suitable model for simulating
all irrigation phases.

2.6 “Inverse” methodologies
Optimal design and management of furrow irrigation practices using simulation
models requires accurate identification of soil infiltration and hydraulic
roughness properties. These soil characteristics are one of the dominant factors

Chapter 2 Background to surface irrigation decision support

 31

in determining the performance (efficiency and uniformity) of furrow irrigation
applications and exert their influence by controlling the rate of advance of the
irrigation water down the furrow or bay. Knowledge of the spatial average values
is required for the optimisation of furrow irrigation management while the
temporal range of values is required for field design.

Substantial recent work has been directed towards developing methods to
measure the infiltration properties of the soil. A volume balance at the end of
the event (through measuring inflow and outflow) such as that presented by
Merriam and Keller (1978) is a useful check on infiltration parameters estimated
during the event. Strelkoff et al. (1999) proposed that surface volumes
measured over time could also be used in the estimation. Devices have also
been specifically developed for measuring infiltration (e.g. Turral & Malano
1996).

However, it is the “inverse solution” methodology for determining infiltration
parameter values that has generated most interest in surface irrigation; that is,
determining the infiltration parameter values from the measured irrigation
advance, and/or surface depth profile, and/or runoff hydrograph. An advantage
of this is that parameters can be estimated in “real-time”, before the irrigation
has been completed. Over the last 40 years, many methods have been
developed to solve the inverse problem differing in their data requirements,
assumptions, ease of analysis and accuracy (Strelkoff and Clemmens 2001).

The inverse methods can be broadly sorted into three main categories. The first
two categories involve those methods that use a direct application of the volume-
balance (or sometimes kinematic-wave) equations, which are manipulated in
some way in order to determine the infiltration parameters. These first two
categories differ in the way in which the infiltration parameters are extracted,
with the first including methods employing a graphically based procedure, while
the second includes those that use a numerical solution technique. The third
category involves those methods that require repeated simulations using an
optimisation technique to minimise the error between the measured and
predicted advance and/or surface profile measurements.

Note that several attempts have also been made to derive generalised infiltration
relationships for different soil types. These include efforts by the US Department
of Agriculture (1975), Merriam and Clemmens (1985), and Walker (1989). Soil
roughness characteristics (Manning n) are also typically categorised for different
hydraulic situations. While these generalisations may have some credit in field
design, they are less suitable for irrigation management where spatial and
temporal variability effects must be considered.

2.6.1 Graphical solution techniques for the “inverse problem”
Several methods for solving the inverse problem were developed in the 1950s
and 60s which required the use of manual curve fitting techniques on graph
paper, and were usually quite time consuming and labour intensive. Finkle and
Nir (1960) developed a simple graphical procedure to solve a volume-balance
model to calculate infiltration in borders. This method is based upon the inverse
procedure of Hall (1956) and was aimed at improving on earlier work by Bauwer

Chapter 2 Background to surface irrigation decision support

 32

(1957), which required a minimum of three sets of irrigation measurements (with
different flow rates, volumes, and cutoff times) on adjacent borders. However,
Finkle and Nir’s method also required intensive measurements at many points
inside the test border. It was later found that this method places much
emphasis on the advance during the first few minutes of the irrigation, which is
subject to field measurement errors (Turner and Clift 1984).

Philip and Farrell (1964) developed an analytical solution for the irrigation
advance based upon a Laplace transformation of the Lewis and Milne equations
(1938). This work provided the foundation for much of the later research in time-
of-advance solutions (e.g. Or and Silva 1996) and numerically based inverse
methodologies. Infiltration is estimated through plotting on graph paper, the
Laplace-transformed volume-balance equation for large irrigation times, and
calculating the slope and intercept to extract the sorptivity and saturated
hydraulic conductivity of the Philip infiltration equation (Eqn. 2.7). A limiting
assumption of constant cross-sectional flow area in time and space is applied.
This method was later shown to be valid only for short times, failing to predict the
correct long-term infiltration behaviour (Knight 1980), and was also criticized for
its time-consuming procedure (Shepard et al. 1993).

This method was revisited by Norum and Gray (1970) who instead utilised
dimensionless curves superimposed on nomographs to determine the infiltration
coefficients through curve-matching, with the advantage that the complete
advance curve could be used, instead of just points at large times. However,
both methods are restricted to certain forms of infiltration equation and
therefore have limited field application (Maheshwari et al. 1988).

An advantage of the previous two methods (associated with using the Laplace
transformation methodology) is that no assumptions about the functional form of
the advance equation are necessary to determine infiltration from the advance
(Smerdon and Blair 1988). In earlier work, Gray and Ahmed (1965) had
developed a different volume-balance methodology for calculating infiltration in
border dyke systems. Power functions were used to approximate both advance
and infiltration relationships with a least squares methodology used to calculate
power-coefficients. The power function approximations proved to be a
disadvantage of the method, along with the physical measurement and
mathematical representation of surface water storage with time (Norum and
Gray 1970). Nevertheless, the power approximations used in this methodology
have been reused in many of the later techniques, including the industry-
standard “two-point” method (Elliot and Walker 1982).

Another Laplace model was developed by Wilke and Smerdon (1965) which, like
the method of Norum and Gray (1970), uses a dimensionless form of the
Laplace transformed system equations and graphical curve matching to estimate
the infiltration parameters. However, this method multiplies a surface profile
shape factor by the measured upstream cross-sectional area of flow to calculate
surface storage.

Christiansen et al. (1966) developed a graphical technique, which requires the
plotting of advance data on log-log paper to obtain the coefficients of a power
advance equation. Infiltration volumes (calculated as the difference between

Chapter 2 Background to surface irrigation decision support

 33

inflow and surface volumes) are then plotted against time from which the
Kostiakov infiltration parameters are then estimated. In a later study, Elliot and
Eisenhauer (1983) found that errors in surface flow estimates could be as high
as 46% using this method.

Detar (1989) presented a modification of Christiansen’s work producing
essentially the same results, but with a more direct approach. The concept of
average opportunity time was introduced to plot the infiltration function directly
from tabulated data, hence simplifying the methodology.

Cahoon (1998) used a kinematic wave model iteratively to systematically vary
the Kostiakov infiltration parameters over a grid of input values. For each pair of
a and k parameters, the predicted and measured advance and runoff
hydrographs were compared. Solution of the field average combination could be
interpolated from the charts. He observed that a wide range of infiltration
parameters can lead to an acceptable coincidence between the measured and
simulated advance and runoff hydrographs. Simultaneously fitting both advance
and runoff data provided a smaller solution space than fitting each singularly.

2.6.2 Numerical approximation techniques for the “inverse problem”
Numerical solution techniques to the inverse problems became popular in the
1980’s when computers became more accessible. Some methods relied on
numerical solutions to the previous graphical procedures, while others employed
particular assumptions to simplify the equations so that an analytical solution to
the infiltration parameters could be found. These numerical techniques were
typically only designed for determining the infiltration parameters, and not the
hydraulic roughness parameter.

Lal and Pandya (1972) developed a simple volume-balance technique to
estimate the Kostiakov-Lewis infiltration parameters. The method was designed
to be programmed into a computer and uses least squares fitting to determine
the coefficients to an exponential form of advance equation, and also the
infiltration parameters. Extensive field measurements of advance and surface
storage were required (suggested at 20m intervals) over time. The accuracy of
the solution is determined by the extent and accuracy of field measurements
taken. Maheshwari et al. (1988) found that this technique places much
emphasis on the beginning of the irrigation, when accurate measurements are
hard to obtain.

Burt et al. (1982) developed a similar volume-balance approach to the previous
method using numerical integration. The method is more numerically intensive
than the “two-point” method and it requires the surface profile to be measured at
several locations along the furrow. However, it still requires only two advance
measurements, taken at the middle and end of the field. Elliot and Eisenhauer
(1983) found that errors in estimated surface volume were around 3%.

Elliott and Walker (1982) and Elliott and Eisenhauer (1983) developed the “two-
point” method, which has become the most popular procedure for solving the
inverse problem. Its simple numerical solution technique makes it suitable for
hand calculations, as well as implementing into computer code. This method

Chapter 2 Background to surface irrigation decision support

 34

incorporates the modified Kostiakov-Lewis equation into a volume-balance
model to solve for the infiltration parameters a and k. The final infiltration-rate
fo must be estimated or measured separately. Input data includes the cross-
sectional area of the flow at the upstream end of the furrow or bay. Only two
irrigation advance points are required. These are used to generate two non-
linear volume-balance equations that are solved for the two unknown infiltration
parameters. In the process of generating these equations, a simple power
equation is used to represent the advance. A logarithmic transformation is used
to linearise the volume-balance equations giving two linear algebraic equations
in two unknowns.

Smerdon et al. (1988) and Blair and Smerdon (1988) expanded on the work of
Elliott and Eisenhauer (1983). Six forms of “two-point” volume-balance methods
(including three infiltration equations and two advance equations) were
evaluated before suggesting a simple and direct method based upon the
Kostiakov infiltration equation and the power advance equation.

Clemmens (1991) used a modification of the double-sweep technique commonly
used in solving the continuity and momentum equations to determine one global
parameter at each time step. The modification derived double-sweep coefficients
for the Kostiakov infiltration parameter k, the Manning n, and global time-step.
Another procedure allowed for determining Kostiakov a and k during the
advance. However, it was subsequently found that these attempts were subject
to errors caused by assumptions at the advance tip with regards to surface
storage volumes. Nevertheless, this lead to further research in real-time control
application where advance measurements were used to estimate the trade-off
between infiltration and roughness using Bayesian statistical method (Clemmens
and Keats 1992).

Renault and Wallender presented a series of papers (1991, 1992 and 1994) on
determining infiltration using advance rates (rather than times) in a methodology
they called “ALIVE” (Advance Linear Velocity). They developed a “time of
advance-rate” equation using the Laplace transform of a flow-rate-balance
equation (instead of a volume-balance equation) using a methodology borrowed
from Philip and Farrell’s (1964) solution of the flow-volume equation. They
derived a function for advance-rate with two exponential terms, using a Horton
(1940) law to represent infiltration. When using this to solve the inverse
problem, four characteristics of the measured advance-velocity diagram were
used to calculate the two Horton-infiltration parameters and one surface storage
parameter. This process involves fitting two linear equations to the advance-
velocity diagram: firstly for the initial rapid advance that occurs along the top end
of the furrow, and then to steadier advance for the remainder of the furrow. In
practice, the rapid advance phase could not be accurately measured. The
authors promoted this method for its ability to determine the steady state
infiltration term without having to measure runoff. In later work (1994), they
demonstrated how this technique could be used to detect and evaluate
heterogeneous soil properties at different sections of the field.

Shepard et al. (1993) developed a simple one-point method using a volume-
balance equation and over-conditioning the advance and infiltration functions.
The method uses the Philip infiltration and power advance relationships to derive

Chapter 2 Background to surface irrigation decision support

 35

a simple algebraic expression to determine the Philip infiltration coefficients
using only one measured advance point (preferably at the end of the field). To
derive this expression, a constant value of 0.5 was used for the exponent term in
the power advance equation. This assumption would have very limited
applicability on most soils. Khatri and Smith (2005) found that the method
continually failed to provide a reasonable prediction of cumulative infiltration,
and it also failed to match the measured advance curves. It was found to under-
predict infiltration at all times up until the final advance time.

Scaloppi et al. (1995) developed a volume-balance methodology to determine
the Kostiakov or modified Kostiakov infiltration parameters. This approach
requires advance and/or runoff data, resulting in three different procedures to
determine infiltration. Some mathematical approximations are suggested to
simplify the amount of field measurement and numerical computation. The
results from the three procedures were found to vary considerably, with most
variability found with smaller advance times.

Valiantzas et al. (2001) developed their own one-point method using a power
advance equation and the USDA infiltration function (Eqn. 2.10) with a constant
value for the parameter c. A differential algebraic relationship between the
infiltration and irrigation parameters was derived requiring a Newton-Raphson
iterative procedure to solve for two infiltration parameters. Khatri and Smith
(2005) found that like the previous one-point method, this method under-
predicts infiltration up until the final advance time, and poorly represent the
measured advance. It was found that this method cannot describe initial high
infiltration rates (including crack-fill) because of the fixed value of the infiltration
parameter C. Allowing parameter C to vary resulted in improved performance of
the method.

In earlier work, Valiantzas (1994) was able to determine both roughness and
infiltration parameters in border irrigation through a simple iterative analysis
using both the full advance, and surface depth measurements at a single station.
Approximate estimates of the infiltration parameters were obtained using simple
algebraic equations and are successively corrected using a zero-inertia model.

Other techniques have been developed by Singh and Chauhan (1973), Reddell
(1981), Clemens (1982), Ottoni and Warrick (1983), and Scaloppi (1984), Izadi
et al. (1988), which have received relatively little recognition from other authors
in the literature.

2.6.3 Optimisation-based techniques for the “inverse problem”
The most promising method for solving the inverse problem is through repeated
simulations using an optimisation technique to match predicted and measured
quantities. Many methods have been developed since the 1980’s making use of
the rapid rise in computing power, and optimisation technologies. These
methods can be categorised into those that employ time-of-advance equations,
and those that utilise full irrigation simulations.

Chapter 2 Background to surface irrigation decision support

 36

While the time-of-advance methods usually provide rapid solutions, they are
often limited (by their analytical structure) by the forms of infiltration equations
that they can employ, and also by which objective-functions (and hence
measured data) can be used. Typically, they are based upon a volume-balance
or kinematic-wave approximation to the full hydrodynamic model, which can lead
to errors under certain field situations.

Using optimisation with complete simulations to solve the inverse problem has
the advantage that there are no restrictions on the objective-function and
solution parameters that are used. However, the main limitation is in speed and
radius of convergence in the optimisation. Complete simulations inherently have
some amount of noise in their results resulting from the discretisation process in
the solution procedure. This can lead to convergence problems using sensitive
optimisation tools. Most of the tools developed have demonstrated these
problems.

Maheshwari et al. (1988) adopted a Hooke-Jeeves pattern search optimisation
algorithm to solve a volume-balance model. The objective-function was the
minimisation of the difference between the measured and estimated infiltrated
volumes. The model allowed for the adoption of any time dependant infiltration
equation and also any form of advance equation. Data requirements included
measurements of the advance, surface storage depths, runoff, channel
geometry, and inflow. They concluded that the method showed promise.

Conjugate gradient and variable metric optimisation techniques were used by
Katopodes et al. (1990) to determine three parameters from a zero-inertia
model. Two of the parameters were a and k from the Kostiakov infiltration
equation while the third parameter was the Manning n. The objective-function
used was the minimisation of the error between the measured and estimated
depths of flow on the surface. The method is limited in that it requires the
measurement of the advance, surface storage depths, field slope, inflow, and
channel width. The optimisation process required good initial estimates with
convergence problems identified when solving for the three parameters. In
another paper, Katopodes (1990) suggested that only one parameter can be
identified from advance data only, and two to three parameters can be
determined from surface depth profile measurements.

In later work, Yost and Katopodes (1998) readdressed the convergence
problems of this method, implementing a “fixed-point” algorithm that permitted
unconditional global convergence on the solution. This is a slow-converging but
reliable optimisation process which can be switched to a localised gradient
technique after several iterations to speed convergence. Both infiltration and
hydraulic resistance parameters could be determined reliably using a zero-inertia
model and calibrating against surface depth measurements. Parameter scaling,
gradient modification and switching optimisation algorithms were required to
make this method robust and efficient. This method was suggested to overcome
what was seen as a general problem of limited radius of convergence associated
with optimisation based inverse methods.

Walker and Busman (1990) used a Simplex optimisation algorithm to determine
the modified Kostiakov-Lewis infiltration parameters using a kinematic-wave

Chapter 2 Background to surface irrigation decision support

 37

model and measured advance data. Having demonstrated that the technique
works, they applied it to mimic the situation of real-time control, in which the
infiltration parameters are continuously recalculated as more and more advance
data became available during the irrigation. The results showed that the
parameters could be determined with sufficient accuracy from early advance
data for situations of slow to linear advance rate. They neglected to discuss the
efficiency and reliability of the Simplex method and any difficulties involved in the
optimisation.

The real-time solution of the inverse problem was also investigated by Azevedo
(1992) with applications for variable-inflow irrigations with feedback control
systems. A kinematic-wave model was combined with a non-linear search
optimisation algorithm for constant inflow irrigation that was later applied to the
variable inflow situation. It was found that some non-uniqueness of the inverse
furrow advance problem can exist, although this had little effect on computations
of application efficiencies and runoff hydrographs.

A Marquardt optimisation algorithm was used by Bautista and Wallender (1993a)
to solve a hydrodynamic model for the modified Kostiakov-Lewis infiltration
parameters. The parameters were found by minimising the error between the
measured and predicted advance times or velocities, the latter of which was the
more successful. They concluded that solving for three infiltration parameters
was too difficult, the result being overly influenced by noisy data. They only had
confidence in their results when solving only for the Kostiakov a and k
parameters.

Smith (1993) developed a method utilising the volume-balance model from the
two-point method of Elliott and Walker (1982). In this method, the Kostiakov-
Lewis parameters were found by minimising the volume-balance error using a
Steepest Descent optimisation procedure. His results, although initially
appearing to be considerably different from the results of the two-point method,
produced a cumulative infiltration curve that was almost identical. However,
unlike the two-point method, the steady state infiltration rate did not need to be
measured as it was determined in the optimisation. Data required were the
cross-sectional area of water at the upstream end of the furrow, inflow rate and
three or more points on the irrigation advance. In practice, the method had a
limited range of convergence, and slow computation times.

Hume (1993) presented a solution to the infiltration characteristic of a cracking
clay soil using a regression approach to the volume-balance technique, and
utilising automatic data gathering techniques. This technique enables the fitting
of any form of infiltration function through a least squares regression approach.

A ‘flexible tolerance’ algorithm was developed to work with the SRFR model by
Calejo and de Sousa (1996) to estimate the Kostiakov Lewis infiltration
parameters and hydraulic roughness parameter using advance and/or recession
data. The flexible tolerance algorithm was chosen because of its global
convergence ability. However, convergence problems were identified when
optimising on two or more parameters. The most accurate results were achieved
when using both advance and recession data, while significant errors were

Chapter 2 Background to surface irrigation decision support

 38

recorded when calibrating on recession data alone. No evidence could be found
that this method was developed futher.

Camacho et al. (1997) developed an infiltration parameter estimation (IPE)
methodology for management and control of furrow irrigation in real time. The
method is based upon a kinematic-wave model and a downhill simplex
optimisation method optimising on measured and predicted advance. The
method is unique in that the model can compute the spatial and temporal
variability of infiltration due to variations in the wetted perimeter. The same
model can then be used to simulate the irrigation and suggest a cutback rate
and time-to-cutoff. The simulated results were compared against SIRMOD
output with some discrepancies. Nevertheless, this represents one of the few
instances where the same model is used for both calibration and simulation.

Walker (2005) presented a stepwise multi-level optimisation scheme to calculate
infiltration and roughness parameters, for any form of simulation model. In an
effort to simplify field requirements, the procedure requires inflow and outflow
hydrographs, but does not require individual advance measurements. Through
an understanding of the parameter verses response sensitivities, a
“decomposed” or stepwise multilevel approach to estimating the parameters is
used, as opposed to searching automatically and simultaneously for all
parameters within a feasible parameter range. Potentially, this offers the
advantages of simplicity, stability and ease of implementation at the cost of long
computation times. It could be implemented manually using the existing
SIRMOD and SRFR software, although it could easily be automated. The author
suggests, “the most important advantage of the multilevel approach is that it is
easier to manage and control periodic convergence failures within the simulation
model” (Walker, 2005, p131).

However, the piece-wise nature of the optimization has potential problems. For
example, as each parameter is optimised/calibrated in turn, the previously
adjusted parameter no long longer represents the optimal condition. Given this, it
is questionable whether the final calibrated figures are optimal, and it is
concerning that the author infers that the inherent accuracy is due to estimating
different parameters from different parts of the irrigation. Probably, the greatest
influence on accuracy is that the method includes a greater proportion of the
irrigation response on which to calibrate, so that the calibrated parameters will
naturally be more accurate than simpler “advance-only” methods.

Both advance and runoff measurements were included in the inverse solution of
Gillies and Smith (2005). The method employs a volume-balance model using
the optimisation algorithm developed and presented in Section 4.4.2 of this
dissertation. Objective-functions are developed for advance-only, and then
combined advance-runoff situations. In the advance-runoff example, the
objective-function uses runoff-volumes rather than runoff-rates, and weighting
parameters are introduced to change the sensitivity of the individual objective-
function components. Results of their study suggest that infiltration can be
calculated more accurately when both advance and runoff data are collected. In
effect, this enables an extrapolation of the infiltration curve to greater times. The
dual methodology is limited to advance and storage phases of the irrigation, and
cannot be employed during recession phases. In later work, Gillies et al. (2006)

Chapter 2 Background to surface irrigation decision support

 39

modified the technique to account for variable inflow irrigations by introducing an
accumulated inflow term, instead of the previous average inflow assumption.
They found that this provided accurate results under variable inflow irrigation so
long as it is not applied where inflow changes rapidly. It cannot be applied to
traditional cutback inflow irrigations.

2.7 Optimisation of furrow and border irrigation design and
management
Optimisation of surface irrigation design and management practices has
historically been undertaken through trial and error over many seasons, and
through extensive field experimentation. Simulation models have provided a new
tool to optimise practices, although this is not a straightforward process, with
considerable user input required to run multiple simulations. Relatively little
research has been undertaken to simplify, and/or automate this process.
However, other options are also available.

In general, there are four types of methods available to determine optimum
design and management parameters:

• Human-based learning (or “action learning”);
• design charts;
• simulation models; and
• automated feedback control systems.

Research into these methods is reviewed below.

2.7.1 Human based learning for optimising design and management
As the transfer of computer-based technology is still in its infancy stage, the trial
and error approach to improving design and management practices is still
encouraged at the farm level with an emphasis on measurement and
quantification of performance. A survey by Maheshwari and Patto (1990)
showed that most Australian irrigators “guess” the design variables (flowrate,
length, and slope) that dominate surface irrigation performance.

A “technology-gap” exists between farming and research organizations, which
extension officers worldwide are trying to bridge through demonstration field
trials and participatory action groups. While this aspect of improving design and
management practices is not a focus of this dissertation, it does warrant a
mention because it is a useful medium to communicate practical findings from
decision support system outputs. Also the decision support software provides a
means to measure changes in practice.

Field research in Australia (e.g. Raine and Bakker 1996; Raine & Shannon,
1996) has revealed a range of simple inexpensive measures, which can improve
performance and are attractive to farmers. A range of methods to improve
application efficiencies were identified and grouped according to whether they
modified the soil, water or design parameters. Results showed that water use
could be reduced by 50% through modification of field-length, time-to-cutoff,
water inflow rate, furrow shape and cultivation practices. While the value of
these results should not be underestimated, the techniques employed in this sort

Chapter 2 Background to surface irrigation decision support

 40

of research are expensive and time consuming and are limited to a narrow range
of conditions

2.7.2 Design charts for optimising design and management
Design charts (or field design and management guidelines) are a paper-based
design and/or management tool, and were one of the first support tools for
surface irrigation decision-making. Historically they have been developed from
field trials, empirical relationships, and simple analytical functions. Recently,
simulation models provide a more convenient means of developing these charts.
They are presented as contours or three-dimensional surfaces of performance
plotted against the decision variables.

Before personal computers were readily available, design charts developed from
field experimentation provided a simple means to design irrigation fields. Hall
(1960) developed a simple graphical method using the advance function to
design border checks to achieve maximum application efficiency.

Strelkoff and Shatanawi (1985) produced a series of dimensionless normalised
graphs (based upon generalised “ultimate outcome solutions”) for wide, sloping,
plane, free draining borders. With the use of a calculator, these curves allow the
determination of the final distribution of infiltration water, runoff volume and
efficiency for any combination of management (required depth of infiltration,
flowrate, time-to-cutoff) and field parameters (bottom slope, length and
roughness, infiltration parameters).

Zerihun et al. (1993) developed design-management “nomographs” for free
draining graded furrows. This represents plots of efficiency, time-to-cutoff and
uniformity coefficient contours in a length-flowrate space for a given set of field
parameters. The nomograph can be used to determine the combinations of
length, flowrate, and time-to-cutoff for an optimum combination of efficiency and
uniformity.

One of the most successful attempts at guideline generation was through the
development of the BORDER software application (Strelkoff et al. 1996).
BORDER was originally released as a DOS-based design and management tool
for border irrigation with tailwater runoff. It consists of a stored database of pre-
run irrigation simulations with an algorithm for retrieving and displaying the
results for a range of design and operating parameters. The outputs are
presented in the form of contour plots of selected irrigation performance
measures for different combinations of design and management parameters. It
has recently been incorporated into the WinSRFR decision support system.

In more recent research, Hornbuckle et al. (2003) used the SIRMOD simulation
model to develop design charts to demonstrate a potential application of the
software. These charts were designed to present application efficiencies,
distribution uniformities, infiltration volumes and runoff volumes for different
combinations of inflow and time-to-cutoff. The authors contend that by recording
irrigation properties for a previous irrigation season, these charts can be created
and used in the following season to improve irrigation practices. This assumes
that infiltration characteristics remain constant over the season and is

Chapter 2 Background to surface irrigation decision support

 41

acknowledged as a limitation of the method. Previous work by Hornbuckle
(1999) demonstrated that usually only small differences in the infiltration
characteristics occur after the first irrigation of the season. Nevertheless, they
recommend that infiltration characteristics for both the first irrigation and the
later irrigations be used to represent infiltration over the season.

2.7.3 Computer optimised practices for design and management
Computer simulation models offer the greatest potential to optimise design and
management practices. Optimum parameter combinations can be determined
through repeated simulations using existing simulation models, although the
quality of these results is largely dependant on the operator’s skill in using the
model. Acknowledged reliability problems and high complexity of existing models
have hindered efforts to accommodate an optimisation algorithm to remove the
dependence of a skilled operator.

The few existing self-optimising models are limited in their range of objective-
functions and optimisable parameters and have failed to reach their potential.
Self-optimising models have long been considered the last stage in model
development by irrigation researchers, but the decisions derived from such tools
are valid only as long as conditions remain constant in the field. Variations in
field parameters such as soil infiltration must be considered when optimising.

Before 1990, the optimisation of irrigation design and management practices
using computer simulation software was limited by the need to apply a trial and
error approach. Since then, very few attempts have been made to develop
automated optimising capabilities into a surface irrigation decision support
system. None have succeeded to achieve practical use. To understand the
difficulties involved in developing such a system, one should consider that even
the most popular simulation tools require considerable user input and guidance.

Geometric programming techniques were used by Reddy and Clyma (1981) to
optimise the design of free draining borders while considering net economic
benefit. Similar methods were used by Holzapfel et al. (1986) who used a linear
programming economic model to optimise the design of free draining borders.
They used a log-transformed objective-function to maximise the profit of the crop.
A year later Holzapfel and Marino (1987) resolved the problem using a non-linear
optimisation technique. In these last two examples, the soil was considered
homogeneous, while relationships between irrigation performance and design
variables (inflow, cutoff time, and field-length) were derived through regression
analysis.

Smerdon and Blair (1987) made the first serious attempt at combining an
optimisation algorithm with a hydraulic model to optimise irrigation efficiency.
They combined a kinematic wave model with the golden section optimisation
method to determine the time-to-cutoff.

Singh et al. (1987) developed a model for optimisation of inflow rate and time-to-
cutoff in closed end borders using the Strelkoff zero-inertia model (1985) and a
quasi-Newton optimisation algorithm. They developed an objective-function
based upon maximising the “deficit/excess efficiency” term by Blair and

Chapter 2 Background to surface irrigation decision support

 42

Smerdon (1988). In effect, this function attempts to minimise runoff and deep-
drainage components of the irrigation. While their results would suggest that the
optimum design parameters were identified successfully, the authors neglect to
mention any difficulties associated with the optimisation process.

Wallender et al. (1990) used a volume-balance simulation model (including a
runoff water recovery component) to provide input into a profit calculation model
to maximise profit as a function of inflow rate and irrigation time. Objective-
function response-surfaces were generated to determine the optimum design
values, instead of using an automated optimisation algorithm.

Another alternative to automated optimisation was in the form of a regression-
based model for border irrigation called BICADM (Maheshwari and McMahon
1991; Maheshwari 1994). Multiple regression analyses on the input and output
data from SRFR simulation model were carried out resulting in an approximation
to the parent model, free from its associated reliability and time problems. The
accuracy of the new model was comparable to the original, demonstrating that a
mathematically complex model such as the Strelkoff simulation could be used to
develop a simpler model for specific field conditions. It was suggested that this
type of model would be ideal for optimisation purposes, relieving the
computational load of the original model while maintaining its accuracy

The optimal management of a cutback furrow irrigation system was analysed by
Bautista and Wallender (1993) using a cost minimisation objective-function
subject to achieving a specified proportion of the irrigation requirement. A
kinematic-wave simulation model with wetted-perimeter dependant infiltration
was combined with an economic model to formulate the objective-function and a
Box optimisation algorithm used to undertake the search. Response contours of
the objective-function were plotted against the decision variables to analyse
different cutback strategies and economic settings. Results showed the
response-surface to be insensitive to changes in the decision variables around
the optimal solution and the authors acknowledged some convergence
problems. Both discrete and continuous cutback functions were investigated
with little difference in performance resulting between the two.

Ito et al. (1999) used a kinematic-wave simulation model in conjunction with a
Box and constrained grid search optimisation algorithm to maximise economic
“return to water”. This research was aimed at investigating the effect of a lack of
infiltration and furrow geometry data on the design and economic return to water
for furrow irrigation systems. Optimisations were carried out for both actual and
partial information cases and monetary loss due to lack of infiltration data was
calculated. Monetary loss was found to be lower for systems with high inflow
rates.

An optimisation algorithm was not used by Valiantzas (2001) who addressed the
furrow irrigation design problem through an analytical time-of-advance solution.
For a specified length of furrow, the inflow rate (and time-to-cutoff) could be
found using a simple algebraic equation to minimise the cost of the furrow
system (independent of water and labour costs) in terms of the inflow volume.
The results were validated against the optimum values obtained from a zero-

Chapter 2 Background to surface irrigation decision support

 43

inertia model and were in close agreement. The method was also extended to
solve for the optimal furrow length.

2.7.4 Real time automated control
Recent technology advances have provided numerous mechanical devices to aid
irrigation design and management. These include measurement devices used to
monitor soil moisture, flow rates, depths and irrigation advance, and laser-
grading machines to accurately level the field. Variable rate inflow valves exist
for use in cutback and surge irrigation while efficient delivery systems exist to
transfer the water into the furrows. Of particular interest is the recent
development of automated control systems for furrow irrigation.

Several real-time automated control systems have been developed for irrigation
management. There is no doubt that these systems will dominate surface
irrigation in the future, but at present they are virtually untried and far too
expensive to implement into existing systems. The advantage of these systems
would be in achieving high performance results while reducing labour
requirements. However, the use of simulation software to manage irrigations
may produce similar performance results without the high capital and
maintenance costs of automated systems.

Researchers Reddell and Latimer (Reddell 1981; Reddell and Latimer 1987;
Latimer and Reddell 1989, 1990) developed the “Advance Rate Feedback
Irrigation System” (ARFIS) that senses the advance of water at two stations down
the field. These measurements are relayed to a computer through a telemetry
system and used to calculate an infiltration function for input into a volume-
balance model to calculate suitable management parameters. Once calculated,
these results are sent to a flow control system that regulates the inflow to match
the existing infiltration rate in a cutback procedure. Upon shutdown of the inflow
valve, performance figures are calculated.

Katopodes and Tang (1991) developed a self-adaptive control system for surface
irrigation advance. The goal of their system is to use sensors, a zero-inertia
simulation model and an algorithm to adjust inflow rate to obtain an ideal
distribution of water. An objective-function is constructed based upon
minimising discrepancies between actual and desired advance rate. In their
system, field sensors measure the water surface profile as water advances down
the field. Infiltration and roughness parameters are estimated using this data,
before the optimum advance trajectory for these conditions is retrieved from a
database. An optimisation algorithm is then used to determine an adjusted
inflow rate to improve the distribution of water. This continues for a few minutes
before the process is restarted over again. The authors report “satisfactory”
performance of the system given that most of the steps of the system rely on
ideal conditions for data collection and implementing the control actions.

Hibbs et al. (1992) also used an adaptive control algorithm to automate furrow
irrigation management (called FAAC). Using a flume and runoff depth sensor,
infiltration is estimated in real-time using a volume-balance model before the
computer adjusts inflow to control outflow at a desired rate. Tests showed that
the adaptive control algorithm was accurate enough to restrict furrow outflow at

Chapter 2 Background to surface irrigation decision support

 44

a desired rate. The results were compared to a constant inflow system, and the
FAAC system was found to substantially decrease discharge and tailwater losses
with a small decrease in cumulative infiltration. Application efficiencies were
increased when the furrow was initially dry.

2.8 Decision support software for furrow and border irrigation
Very little of the research into simulation modelling, inverse methodologies, and
design and management tools has been developed into user-friendly software
applications. While a number of tools and ad-hoc constructions have been built
for specific applications, very few have developed into serious decision support
packages for surface irrigation design and management. Some early packages
that were developed include BASCAD (Boonstra and Jurriens 1988), BICADM
(Maheshwari and McMahon 1991), FISDEV (Zerihun and Feyen 1992) through
to SURDEV (Jurriëns 2001), BASIN (Clemmens et al. 1995) and BORDER
(Strelkoff et al. 1996). However the must successful software developments are
the SIRMOD (Walker 1997), and SRFR/WinSRFR (Strelkoff et al. 1998; AARC
2006) software packages, which have both seen long-term and widespread use
amongst research groups, and have had some practical application.

SIRMOD was developed at Utah State University to simulate both border and
furrow irrigation for continuous flow irrigations as well as surge flow and cutback
methodologies. It employs a full hydrodynamic model, as well as zero-inertia and
kinematic-wave approximations. The ability of the software to accurately predict
advance and recession in relatively short furrows has been verified by many
authors including the developers of the model (Walker and Humphries 1983).
SIRMOD was originally developed for research and teaching purposes and has
been successfully used at both Utah State University and the University of
Southern Queensland since 1987 (Raine and Walker 1998). The tool is
continually being further developed.

SRFR is software from the United State Department of Agriculture (USDA) that
has existed as a DOS program for over fifteen years, although it was recently
redeveloped as a Windows program. SRFR employs a zero-inertia model and can
accommodate a range of spatially and temporally varying input parameters
including slope, furrow cross-sections, infiltration and hydraulic roughness. It is
also currently serving as a platform for simulating constituent transport (Strelkoff
et al. 2001). It has also been used in many research projects in Australia (e.g.
Maheshwari et al. 1993a,b; Wood, et al. 1998; Hardie et al. 2002; Victorian DPI
2004).

Both of these tools are primarily simulation engines; that is they are specifically
designed for simulating surface irrigation to determine irrigation performance.
They can both be used manually to optimise practices but do not contain
automatic optimisation capabilities. Also, they do not allow the solution of the
“inverse problem” using the simulation model. However, both packages contain
a built-in database of typical soil-infiltration properties, although the reliability of
these for Australian conditions is doubtful.

Chapter 2 Background to surface irrigation decision support

 45

In terms of accuracy, both packages have now been evaluated by several
researchers (Maheshwari and McMahon 1993a; Raine and Walker 1998;
Hornbuckle et al. 2003) who all rated the performance as satisfactory to good.
For example, Maheshwari and McMahon (1993a) investigated the performance
of SIRMOD and SRFR models along with four other border irrigation models.
Over sixty irrigations were monitored and the models applied. It was concluded
that the Walker model was the best for predicting advance times and the
Strelkoff best for the recession. More generally, it was found that the models
employing the hydrodynamic and zero-inertia approaches were the most
appropriate. There was no difference in the results between the hydrodynamic
and zero-inertia approaches of the Walker model. This supports the assumption
that other authors have made regarding negligible effects of inertia terms in
border irrigation. Maheshwari and McMahon (1993a) found that the kinematic-
wave models had a tendency to underpredict the recession.

During the research for this dissertation, considerable time was spent using and
evaluating these tools. The initial impression of both packages was that they are
very powerful and impressive looking, at the expense of being overly complex
and difficult to use. The interfaces were limited and relatively user-unfriendly.
Both packages often crashed when unrealistic data was entered, while SIRMOD
often required adjustment of the time-step parameter to achieve convergence.
Considerable practice and experience with the tools was required to use them
successfully.

While some people have found SIRMOD and SRFR to be stable, robust and fast
(Garcia-Navarro et al. 2004), evidence of the angst experienced by other users is
found in a paper by Maheshwari (1994). Having previously tested several of the
leading models in “real” field conditions, he remarked that “the use of <the
model> for design purposes on cracking soils was found to be tedious and time
consuming, particularly if the number of simulation runs required are excessive
(say >10)”.

New Windows versions of both SIRMOD and SRFR software packages were
released in 2006 (USDA 2006; AARC 2006), but not in time to be properly
evaluated as part of this research. Both have gone to great lengths to improve
flexibility and reliability of the software with many advanced features, including
simple inverse-solutions, and design capabilities. For example, WinSRFR now
combines the functionality of the individual SRFR, BORDER and BASIN
software. Recent dialog with Professor Wynn Walker has provided some comment
on these software programs stating, “robustness <problems> has been improved
but not eliminated… software packages tend to feel like the research model of
old. Some model parameters remain and need to be hidden. The inverse solution
tends to be simple, and, while the design algorithms are good, they do not
optimise – optimal design still depends on trial and error. Both use a lot of code
remnants from earlier versions for some components.” (Walker pers.comm.
2007).

Chapter 2 Background to surface irrigation decision support

 46

2.9 General discussion
Several gaps in the research can be identified from the reviews on simulating
surface irrigation, solution of the inverse problem, and optimisation of design
and management practices. These will now be discussed in turn.

The literature review of simulation modelling methodologies reveals that not all
areas of research have been given thorough treatment. For example, relatively
few surface irrigation models have been created to simulate all phases of the
irrigation cycle with most research directed towards modelling the advance (Xu
and Singh 1990). Ironically, it is the advance phase that has been most
successfully modelled and needs the least treatment. It is not uncommon for
papers claiming to model a surface irrigation event, to only describe the
procedure for the advance phase. To find an adequate coverage of the other
phases, one must start to look in Ph.D. dissertations (e.g. Kafshgiri 1984) and in
books such as Walker and Skogerboe (1987).

Problems associated with solution techniques have rarely been discussed. The
computer algorithms and numerical solution techniques for solving the model
equations are the most fragile part of the technology, especially with the
hydrodynamic and zero-inertia models that are difficult to solve. Yet relatively few
authors mention any performance problems associated with their methodologies.
Accuracy is often discussed, but robustness is hardly ever mentioned. Also, the
research typically focuses upon the mathematical treatment of the
methodologies, but very few authors present algorithms for transforming the
mathematics into its computer code equivalent.

It was also found that some authors have often benefited by segregating models
for border and furrow irrigation and publishing separate papers for each.
However, the model and solution techniques for the two irrigation practices are
very similar with the differences occurring in the treatment of infiltration and
wetted perimeter effects.

The review of the inverse methodologies has highlighted that the “two-point”
method has been very popular with researchers, with several variations of the
technique being presented. It has also probably been the most commonly used
method in practice, and has regularly been used to calculate infiltration
parameters for input into SIRMOD and SRFR (it is inbuilt in the most recent
versions). However, the difference in model structures between the “two-point”
method (volume-balance) and target simulation tools (hydrodynamic and zero-
inertia) is a potential source of error. This was also identified by Walker (2005).
Unfortunately, the literature review showed that very few of the suggested
inverse techniques employ the full hydrodynamic model.

The literature review of optimisation of practices revealed little information about
the nature of objective-function response that was involved with the
methodologies. Investigation of response-surfaces is crucial in evaluating the
performance of automatic optimisation capabilities. Instead, none of the
automatic optimisation methodologies provided any clear evidence of successful
solution. Once again, it appears authors have failed to report the limitations of
their techniques.

Chapter 2 Background to surface irrigation decision support

 47

In current practice, probably the most accessible way of optimising irrigation is
still through a trial and error approach of repeatedly running the simulation.
Manual optimisation requires a degree of skill on behalf of the operator, and can
lead to problems caused by entering unrealistic parameter values. For example,
during the case study presented in Appendix 2.2, SIRMOD was found to be
sensitive to the range of input parameter values and the program often
“crashed” with the input of unrealistic data.

2.10 Direction for developing a new decision support system for
furrow and border irrigation.
Having performed a comprehensive literature review and an evaluation of the
SIRMOD software, it was decided to base the new decision support system on a
hydrodynamic simulation model using a methodology similar to that employed by
SIRMOD and SRFR. However, the focus will be on automating this simulation
engine for optimisation and system response evaluation. An inverse technique
will need to be developed and incorporated into the system using the same
hydrodynamic model, to avoid calibration using a different type of model. There
is also a need to develop an optimisation algorithm to facilitate the calibration
process and automatically determine the optimum design and management
parameters. Response-surface generation facilities should be added to enable
evaluation of the optimisation and calibration performance. This feature can
then be used to generate design charts for irrigation management and design.
The new system will need to refine the existing computational methodologies to
improve system robustness, while maintaining accuracy. Data management
facilities will also be required given the range of analyses that is potentially
available to the system. This will deliver a decision support system that provides
tools for each of the major decision support requirements.

2.11 Conclusions
This chapter has presented the concept of decision support systems for furrow
and border irrigation. A literature review was undertaken into the three main
surface irrigation research areas of simulation modelling, solution of the “inverse
problem” and optimisation of design and management practices. It was found
that gaps exist in the literature, especially with: simulating the later stages of the
irrigation cycle; converting the mathematical model into computer code form;
ensuring simulation robustness; calibrating using the complete hydrodynamic
simulation model; parameter analysis of system responses; and automating the
optimisation process. Functionality requirements for the development of a new
decision support system were identified as simulation, calibration, optimisation,
parameter-analysis and data management.

The remainder of this dissertation presents research into these “gap” areas while
developing the functionality for a new decision support system for furrow
irrigation.

Chapter 2 Background to surface irrigation decision support

 48

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 49

Chapter 3 Development of a simulation engine
for furrow and border irrigation decision support

3.1 Introduction
Review of the literature of furrow and border irrigation modelling in Chapter 2
has highlighted that existing surface irrigation models are accurate for many
practical applications, but suffer from reliability and usability problems. The goal
of this chapter is to overcome these limitations by developing a new simulation
engine (henceforth known as the FIDO simulation engine) based upon the
modification and refinement of existing techniques, which can be incorporated
into a decision support system for furrow and border irrigation.

This research presented in this chapter has six main objectives: (1) it will outline
design criteria considered when developing the FIDO simulation engine; (2) it
will present the model and solution technique formulation, including the
redevelopment of Preismann double-sweep solution technique for furrow and
border irrigation into a simpler form; (3) it will develop an object-oriented
algorithm capable of transforming the mathematics of this model and solution
technique into a tool capable of being implemented into a modern user friendly
decision support system; (4) observations about the simulation behaviour will be
discussed; (5) four treatments to the simulation are presented to achieve
simulation robustness; and (6) the simulation engine will be validated against
the existing SIRMOD simulation tool.

This chapter is accompanied by two appendices containing the source-code
(Appendix 3.1) and validation results for the simulation engine (Appendix 3.2).

3.2 Background to simulation engine design
To design a simulation engine for furrow and border irrigation, one must first
understand what a simulation engine is, what it is composed of, and what the
primary design-objectives are. Two main aspects of the design must be
considered: firstly concerning the model and solution technique formulation; and
secondly regarding the software algorithm design. Finally, an understanding of
the complexity of the design task is fundamental towards overcoming barriers
faced by developers in the past.

3.2.1 What is a simulation engine?
A simulation engine (for furrow and border irrigation) is a computer-based model,
which mathematically predicts the physical processes of water flowing down a
furrow and infiltrating into the soil over time. The simulation engine is not a
“stand-alone” computer program built around a user-interface; rather it is only a
sub-module of a computer program or decision support system for surface
irrigation. Forming the central core of this decision support system, it is crucial
that it be as accurate, reliable and robust as possible. The useability and

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 50

flexibility of all of the other components of the system depend upon the
simulation engine being able to repeatedly and reliably deliver an accurate set of
results without user intervention.

Simulation involves solving the hydrodynamic equations for flow rate and flow
area during each irrigation phase either on a predefined grid, or on a grid defined
during the advance phase. Combinations of different irrigation phases and grid
design along with the presence of two possible furrow-end conditions leads to
many simulation configurations. Robust solution of all configurations is required
for inclusion of the engine in computer-managed processes (such as
optimisation) where physically unrealistic input data may be encountered.

3.2.2 Elements of the simulation engine
The simulation engine is composed of three conceptual elements (Figure 3.1):

• differential (model) equations;
• a numerical solution technique; and
• a computer algorithm for managing the simulation.

 Figure 3.1: Fundamental Components of the Simulation Engine.

The differential equations (model equations) are a mathematical representation
of the physical laws and processes of water flowing down a furrow and infiltrating
into the soil. These processes are very complicated to describe mathematically,
and the equations take on a differential form making them very difficult to solve.
Therefore a numerical solution technique is required to solve the equations
iteratively by approximating the differential terms, linearising, and solving the
resulting set of simplified equations. The computer or software algorithm forms
the controller or manager of the simulation. Its purpose is to oversee the
operation of the solution technique and provide input/output functionality.

Past surface irrigation research has focussed mainly on the first two of these
elements, with less emphasis on the logistics of converting the mathematical
equations, simulation options and constraints into their computer language
equivalent.

Software Algorithm
Input, output and internal process control

Numerical Solution Technique
Approximates and solves the Differential Equations

Differential Equations
Approximates Reality

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 51

3.2.3 Objectives of simulation engine development
The primary goal of the work in this chapter is to develop a simulation engine
capable of being implemented into a decision support system for furrow and
border irrigation. This involves (a) the refinement and modification of existing
techniques in dealing with the model equations and solution techniques, and (b)
the development of a new object-oriented computer algorithm for controlling the
simulation.

The target decision support system is required to support operations such as
optimisation, calibration and response-surface generation for a range of
management operations. For this to occur, three primary objectives of the
simulation engine must be achieved:
• It must be accurate, robust and reliable;
• It must be flexible in handling a range of physical scenarios and conditions;

and
• It must be reusable in a variety of applications within a decision support

system.
These objectives will now be discussed in more detail.

Accuracy, robustness and reliability.
Accuracy, robustness and reliability are three criteria used to assess the
performance of the simulation engine. These are related more to the underlying
mathematical model and numerical solution techniques rather than the engine’s
computer algorithm.

Accuracy relates to how well the simulation model replicates the physical
processes of surface irrigation. Factors that can influence the accuracy of the
simulation engine include:

• Limitations in the mathematical model: For example, the full
hydrodynamic model is considered more accurate than the volume-
balance model for simulating more conditions in surface irrigation;

• Errors resulting from the discretisation process in the solution technique;
• Numerical approximations: For example, an approximation is used during

the recession phases of the simulation whereby upstream cells are
removed when the depth of flow is less that 5% of the normal depth.
Although the flow is still finite, an approximation of zero depth and zero
flow is then used for the following time-step; and

• Poor grid refinement. Simulation detail may be missed if the time-step or
distance-step is too large.

Robustness is a somewhat ambiguous term with different meaning to different
people and contexts. According to Strelkoff and Falvey (1993), robustness
implies an absence of sawtooth fluctuations in the numerical results, even under
severe flow conditions. The ASCE Task Committee on Irrigation Canal System
Hydraulic Modelling (1994) suggested that a robust model was simply one that
could continue the numerical solution through potentially troublesome
circumstances without encountering errors, which could cause the program to
terminate.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 52

Reliability combines the attributes of accuracy and robustness and implies a
proven ability to consistently deliver accurate simulation results over a period of
time and conditions.

Flexibility
Flexibility defines the ability of the simulation engine to successfully model a
range of scenarios. This could include different management techniques such
variable inflow methods, blocked furrow irrigation, or it could mean handling
spatially variable input parameters.

Reusability
Reusability is an attribute of the computer algorithm in relation to the simulation
engine’s ability to be used in a variety of contexts. For example, the same
simulation engine should be able to be used in simulation, calibration,
optimisation and analysis roles, or even be used as a sub-model in a larger
modelling toolkit.

3.2.4 Model and solution technique considerations
As outlined in Chapter 2, a variety of numerical techniques and treatments exist
to solve the hydrodynamic equations for surface irrigation simulation. Therefore
many decisions need to be made when formulating the underlying model and
solution techniques used in the simulation engine:
• Which form of the hydrodynamic equations should be used as the basis of

the model: full-form, zero-inertia, kinematic-wave or volume-balance?
• Should a dimensionless form of the equations be used?
• What are the irrigation phases that need to be modelled?
• Should the simulation be one-dimensional or two-dimensional?
• What sort of approximation to the partial differential equations should be

used: finite differencing, finite elements or something else (like neural
networks)?

• What sort of coordinate system should be used for the discretisation process:
regular grid, moving grid, or method of characteristics?

• What type of solution technique should be used: an implicit technique or
explicit technique?

• During the advance phases, do we use a fixed time-step and solve for the
advance distance, or do we use a fixed distance-step (predefined grid) and
solve for time?

• During the recession phases, do we try and solve for the recession trajectory,
or use an approximation methodology?

• How do we accurately model rapidly changing conditions (inflow on, inflow
off, transition to runoff) without violating stability constraints (such as
“Courant”)?

• What boundary conditions need to be applied?
• How should infiltration be treated?
• How do we set parameter constraints without compromising numerical-

stability?
These questions (and those to follow) will be addressed throughout the
remainder of this chapter.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 53

3.2.5 Software algorithm design considerations
Very little information has been published by irrigation researchers on how to
transform the mathematical hydrodynamic equations and iterative solution
techniques into their equivalent computer code (some have presented
programming algorithms, including Schmitz and Seus 1991 and; Tabuada et al.
1994). One could then wonder how closely modern programming practices have
been adhered to in these transformations given that the latest generation of
surface irrigation software has been criticised as being unreliable.

These days, almost all software-engineering (with graphical user interfaces) is
undertaken using object-oriented programming (OOP) techniques, given the
power and flexibility that this methodology offers (the reader is referred to texts
such Riel 1996 and Coad et al. 1993 for more information). OOP was chosen
over procedural techniques for the development of the simulation engine and
FIDO decision support system.

Good OOP design is a difficult skill with many complex decisions required during
the initial design stage. Key questions arise such as:

• How should the software components be modularised? Should the
objects be data-centred (categorised based upon data considerations), or
model-centred (categorised based upon irrigation characteristics such as
phases)?

• How should the data objects be formulated: what information should they
store, and how much processing ability should they encapsulate?

• How should memory be managed given that many megabytes of data
could be generated?

• How should the engine cope with any errors that arise?
• How can switching between irrigation phases be handled: using memory

pointers, conditional statements, OOP “virtual methods” (a powerful
technique utilising OOP’s “polymorphism2” capabilities)?

• Which parameters should be made available to the program interface?
• How much of the design should be accessible (using OOP “scoping”

techniques) to future developers so that modification and expansion can
be easily undertaken?

3.2.6 Programming complexity issues
A single mathematical equation is usually quite simple to translate into its
programming language equivalent form. Consider however, if there are dozens of
equations that need only slight changes under certain conditions. Then the
computer algorithm will need to be modified to account for these variations using
logical and conditional statements. Note that it would be very dangerous to have
multiple copies of the main algorithm with slight variations. As well as increasing
the size of the code, this can easily introduce errors if part of the main algorithm
needs to be modified since the changes would have to be made in more than
one place in the code. Good programming practices dictate that each equation
should be written only once and that conditional programming statements should
be used to apply these equations in the appropriate order. The effect of all of this

2 See www.wikipedia.org for further information.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 54

is that the computer code quickly becomes more complex than the initial set of
equations. The complexity of the computer code grows proportionally (and
sometimes exponentially) with the number of variations in the model.

Considering this, the problem of simulating water flowing down a furrow is a very
complex programming exercise. It is a very dynamic problem with the
programmer not knowing beforehand the number of time-steps, distance-steps
and iterations that will occur, and even which irrigation phases will need to be
simulated. The number of input variables will also vary for different users with
the requirement that a field could be broken up into several reaches of different
slope, geometry, roughness, and infiltration characteristics. Furthermore, there
are also a range of management techniques that must be considered such as
different inflow methods (constant, variable, cutback, or surge) and furrow-end
treatments (blocked or free draining).

Despite all these variations, researchers have typically presented very little
information on how to replicate these conditions in the software algorithms. In
terms of the research community, it could be assumed that this is seen as
programming problem, rather than part of the hydraulic engineering task. Only
those who have taken the research past the academic level can appreciate the
effort required, especially given the immature software engineering technologies
that were available until recently. Nevertheless, the lack of professional software
engineering expertise into the development of the computer algorithms remains
a major reason why surface irrigation models have had reliability and flexibility
problems.

3.3 Model and solution technique formulation
The first step in developing a simulation engine for furrow and border irrigation
involves defining the underlying model and solution techniques. This includes
identifying model inputs and outputs as well as describing the coordinate system
for the discretisation process. Key model and solution technique equations must
then be derived for main body of the simulation, for the starting calculations, for
different furrow end treatments, and for the simulation termination. Boundary
conditions, initial parameter estimates, and parameter ranges must also be
identified.

3.3.1 Choosing the underlying model
The full form of the one-dimensional hydrodynamic equations (Saint Venant
Equations) for open channel flow was chosen as the basis of the underlying
model in the FIDO simulation engine. The inclusion of these equations instead
of the simpler and easier-to-program zero-inertia form of equations was justified
based upon:

• The findings of the literature review conducted in Chapter 2 that identified
the advantages of the more complex full hydrodynamic models in terms of
accurately simulating a wide range of conditions;

• The proven ability of the Walker model (which also uses the full form of
these equations) which has been shown to be accurate under many
conditions (Maheshwari et al. 1993a and 1993b; Hornbuckle et al.
2003); and

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 55

• Increased computing power (leading to faster simulations) and modern
software engineering techniques and diagnostic tools, which have
overcome many of the obstacles faced by researchers in the past when
using this type of model (many of who typically defaulted to the simpler
equation forms).

The full form of the hydrodynamic equations is essentially a set of hyperbolic
partial differential equations (the most difficult type of partial differential
equations to solve) with no known analytical solution. Therefore, a numerical
procedure is needed to approximate the differential terms in the equations in
order to extract the simulation information. The furrow reach is broken up into
finite cells, and the solution for each cell is then computed over incremental
time-steps. This is the most complex process in the system, and the success of
the simulation engine is heavily dependant on the power and efficiency of the
solution technique used.

Chapter 2 highlighted that much of the early surface irrigation hydrodynamic
modelling research (and continuing today) utilised a dimensionless form of the
underlying equations in order to reduce the number of independent parameters
that they contain. This was deemed important in the early days as computing
power was very limited, and many different techniques were employed to reduce
the computational load. However, the trade-off from this was that extra
processes were involved to dimensionalise and non-dimensionalise the inputs
and outputs, and the solution parameters on their own, had no physical meaning.
The true benefit of this is questionable. The main issue raised was that the
added complexity of dimensionalising/non-dimensionaling negates the (possible)
benefit of improved computational performance. Also, there is little evidence
(other than anecdotal evidence) to prove that there is any real performance
benefit. Elliot et al. (1982) experimented with the dimensionless form of
equations in early research, however, Walker’s SIRMOD model (which has roots
from this early work) did not utilise this form of the equations. Therefore, the
dimensionless form of the equations was not used in the simulation engine
developed in this chapter.

3.3.2 Choosing a numerical solution technique
The implicit Preismann double-sweep technique (Liggett and Cunge 1975) is
redeveloped in this chapter into a more generalised form. The review of the
literature in Chapter 2 has highlighted the potential of the double-sweep method
in terms of simulation speed and success. The method uses finite differencing to
approximate the differential terms in conjunction with a Newton-Raphson
procedure to linearise and solve the equations at each time-step. The resulting
matrix is banded and solved using an efficient Gaussian solution technique that
bears the name of the method – the “double sweep” technique. The method
results in coefficients being calculated in a forward sweep starting from the
upstream cell before the model parameters can be calculated in a backward
sweep.

Use of an implicit solution technique such as this allows conditions at nodes to
be determined simultaneously rather than on a node by node basis. This
“supposedly” removes the burden of conditional stability that is inherent in the

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 56

explicit form of solution techniques (although this will later be shown in Section
3.6.4 to be unfounded). Many explicit techniques exist which have the benefit of
being simpler to program, but have been found to be slow in operation and
dependant on stability restrictions. For example, an explicit shooting method
technique (based on the work of Wallender and Rayej 1990) was trailed during
the early stages of this research, but was found to be an order of magnitude
slower than the implicit double-sweep methods3. This finding is supported by
other researchers publishing long execution times for their explicit solution-
technique based models (Singh and Bhallamudi 1997).

Several variations of the double-sweep method have proven successful in
surface irrigation modelling. However, the solution equations that have been
published, such as those by Walker and Skogerboe (1987) with fixed-time-steps,
and those by Strelkoff (1992) with fixed-distance-steps, are not in their simplest
form. The simpler and more generalised form developed here is easier to convert
into computer code, and allows either fixed time-step or fixed distance steps to
be used, depending on the simulation requirements.

The formulation of the method developed in this chapter borrows heavily from
both forms of the published equations. Both forms of the equations are similar
even though one is “time-step-based” and the other is “distance-step-based”.
Strelkoff’s equations have the addition complexity of a global unknown time-step
parameter allowing for solution on a predefined grid. However, by removing this
term from the Strelkoff algorithm, the equations are effectively the same.

The new equations developed in this work also include the global unknown time-
step parameter, giving the option of solution at fixed node locations. However, in
practice, the FIDO simulation engine rarely makes use of this feature, normally
using fixed time-steps and solving for the advance distance.

At first glance, it may seem more sensible to have a predefined solution grid and
solve for the unknown advance time to each of the nodes. This would allow
nodes to be located at points of interest down the furrow. For example, nodes
could be placed at locations where field measurements were captured such as
advance time, flow-rate or flow-area. However, problems with the technique
could arise once the advance rate becomes very small and the time-step
becomes larger. Firstly, the time-step variable could become so large that it
introduces convergence problems and volume-balance errors. Secondly, the
advance may never reach the target node. In either case, new nodes may have to
be added during the time-step. This requires both some judgement as to where
to place the new node, and also some interpolation of the new node parameter
values at the previous time-step. This process may have to be repeated many
times during the course of a simulation. In practice, the fixed-time-step method is
the simpler (mathematically, and programmatically) and more robust method of
the two.

Having the global unknown time-step parameter in the generalised equations is
still useful. If it is known that runoff is just about to occur, this feature can be
used during the time-step to fix a node at the end of a furrow before performing

3 These results have not been included in this dissertation.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 57

the calculations. Otherwise, a trial and error method is required to try and match
up the last node location with the position of the furrow end.

3.3.3 Solution grid formation
Two coordinate systems are commonly employed when using the finite difference
forms of solution technique such as the double-sweep method. One is the
Eulerian integration approach (Figure 3.2a) which uses a stationary rectangular
grid structure; and the second is a “deformable control volume” method (Figure
3.2b) which uses a deforming cell (trapezoidal) grid structure where the cells
have a forward velocity, and is often incorrectly called the “Lagrangian” system in
the literature.

The Eulerian system has been chosen as the default coordinate system in the
FIDO simulation engine due to its inclusion in the Walker model. However, the
engine has been designed to accommodate either coordinate system, in keeping
with its general open structure geared towards future development. The
differences in computer code materialise in both the model equations and
derivative terms, and also the parameter referencing. The “deformable control
volume” form of the finite difference equations (see Eqns. 3.7 and 3.8) contain
extra terms that disappear when the cells become rectangular. The model
parameter-objects (see section 3.5.3) contain a switch that can swap cell
coordinate systems (using “pointer” convention). At present, switching between
systems is internal and changeable only by the developer.

Figure 3.2: Eulerian (a) and “deformable control volume (Lagrangian)” (b) grid structures.

The benefit of one system over the other is questionable as there is no evidence
in the literature of comparative performance. Many of the older models (such as
Souza 1981; Rayej and Wallender 1985; Wallender and Rayej 1990) used the
“deformable control volume” coordinate system while the advance was moving
down the field and then switched to the Eulerian system once runoff occurred.
However, the Eulerian form was adopted throughout for the FIDO simulation
engine as fewer calculations are required.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 58

3.3.4 Input requirements
There are thirteen input variables required by the simulation engine in order to
perform a simulation (Table 3.1). These parameter values are passed into the
engine through an input-object (model record), stored in a database and are
editable through the user interface (see Chapter 7). SI units are used for each
parameter in the calculations, even though a different set of units may have
been entered into the interface by the user.

Table 3.1: Input variables required by the simulation engine.

Management
Variables

Field
Variables

Soil
Parameters

Furrow
Parameters

Flow rate, Qin field-length, L Kostiakov a 1σ

time-to-cutoff, ct field slope, So Kostiakov k 2σ

Z-Required, reqZ Manning n Kostiakov fo 1ρ

 2ρ

The field, soil and furrow variables are all vector types4 to store a range of values
to account for spatially varying properties of a furrow. The flowrate variable is
also a vector to account for variable inflow. The validation of the simulation
engine presented in this dissertation is based upon spatially and temporally
uniform conditions so the default size of these vectors is “1”.

Each variable is tested before being loaded into the simulation engine.
Simulation will not take place if any of the parameter values are undefined or
outside of predefined limits. The furrow variables 1σ , 2σ , 1ρ and 2ρ (empirical
shape factors representing the furrow geometry) are also calculated at this time.
These parameters are generated from the top-width, mid-width, bottom-width
and maximum depth parameters located in the input record, although they can
also be explicitly defined through the user interface.

3.3.5 Simulation engine outputs
The simulation engine is designed to be the central core of the decision support
system supplying simulation output data for external analysis. Two types of
outputs are generated: solution node information representing the physical
properties of the flow and infiltration profiles at each time-step; and summary
values describing irrigation performance. The second of these is calculated on a
need-to-know basis for any time-step so as to minimise the demand on computer
system resources.

3.3.6 Solution node outputs
During the simulation, the values of a number of variables are calculated and
stored in the output object at each grid point in time and space. This includes the
cross-sectional area of flow (At,x), flowrate (Qt,x), cumulative infiltration depth (Zt,x)

4 The vector form of these variables is disabled in the presented version of the simulation engine.
Future versions of the software will see these feature enabled. The validation presented is for
uniform conditions.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 59

and the node location (Xt,x). Note that Xt,x needs to be stored at each time-step
given the possibility of cells being removed or repositioned during the simulation.
Other parameters that are stored at each time-step include total-time, delta-time
(tdt), the downstream cell-index, and upstream cell-index. Finally, maximum flow
depth, maximum cumulative infiltration volume, number of time-steps, and total
number of iterations are also recorded.

3.3.7 Summary outputs
The traditional measures of irrigation performance of “Application Efficiency” and
“Storage Efficiency”, along with “Application Uniformity” (as opposed to the more
commonly used “Distribution Uniformity”) and the percentage “Volume-balance
Error” are calculated and stored in the output-object for any time-step. These
performance measures are defined based upon volume-balance principles and
may differ from what other authors define as standards. The main reason for
choosing these indicators is that firstly they can be calculated at any time during
the simulation5; and secondly, they are simple to calculate and can easily be
explained (to farmers) through simple diagrams.

Application efficiency (AE): is the ratio of the amount of water that is stored in
the root zone (below reqZ) to the total amount of water applied to the field (Figure
3.3). Most researchers fail to include the surface water volume in the calculation
because they only need to calculate application efficiency once the simulation is
completed. By adding this term, we are able to monitor application efficiency
throughout the irrigation. In this case, the surface water storage is classed as a
temporary “loss”, reducing the magnitude of the application efficiency.

%100×
−−−

=
InflowVol

SurfaceVolRunoffVollDrainageVoInflowVolAE (3.1)

Figure 3.3: Components used in calculating Application Efficiency.

5 The traditional measure of distribution uniformity can only be calculated once the advance has
been completed.

0.5L L 0

Required Depth, Zreq

Infiltrated Depth, Z

Distance from furrow inlet , X

Infiltration profile

Surface Depth, Y
Surface water profile

Inflow, Qin Runoff

LOSSES

Temporary Loss

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 60

Storage efficiency (SE): is the ratio of the volume of water stored in the root-zone
(defined by reqZ) to the total storage capacity of the root-zone (Figure 3.4).

%100
1000

×
××

=
hFieldLengtZ

StoredVolSE
req

... (3.2)

Figure 3.4: Components used in calculating Storage Efficiency.

Application uniformity (AU): is described as how evenly the water is applied along
the furrow (Figure 3.5).

%100
10000,

×
××

+
=

hFieldLengtZ
lDrainageVoStoredVolAU

t

.. (3.3)

where 0,tZ is the infiltration depth at the top end of the furrow. This normally
corresponds with the maximum infiltrated depth.

Figure 3.5: Components used in calculating Application Uniformity.

Volume-balance error (VBE): is not an irrigation performance measure but a
measure of model accuracy.

%100)(1 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++
−=

InflowVol
RunoffVollDrainageVoStoredVolSurfaceVolVBE (3.4)

0.5L L 0

Required Depth, Zreq

Distance from furrow inlet , X

Infiltration profile

Surface Depth, Y
Surface water profile

Inflow, Qin Runoff

Infiltrated Depth, Z

0.5L L 0

Required Depth, Zreq

Infiltrated Depth, Z

Distance from furrow inlet , X

Infiltration profile

Surface Depth, Y
Surface water profile

Inflow, Qin Runoff

Zt,0

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 61

Other summary values that are calculated and stored in the output-object
include: inflow volume; surface volume; stored volume; drainage volume; runoff
volume; and error volume. Other performance indicators such as “Tail Water
Ratio” and “Deep Percolation Ratio” are not generated but are easily calculated
from the data provided in the output object.

3.4 Refinement of the numerical method
Translating and embedding the numerical solution technique into a computer
algorithm is a complex task. Robustness, flexibility and reusability of the model
are highly dependent on the effectiveness of this procedure. Reducing the
solution equations to their simplest form before translation is a prerequisite for
efficient, flexible, and robust programming. However, neither Walker’s nor
Strelkoff’s published solution equations have been reduced into their simplest
form. Therefore, these equations have been rederived from first principals in this
chapter to achieve this objective.

The new equations differ from that published by Walker and Strelkoff through the
calculation of “intermediate values”, which significantly simplifies the algebra.
The solution from these equations should be identical to that of those published,
and will probably have little effect on the efficiency of the solution. However, the
benefit is a much easier-to-understand implementation of the solution leading to
both simpler translations into computer code, and a better basis for future
modification and enhancement.

3.4.1 Principal formulation
The derivation of the solution technique that follows is a generalised form of the
solution equations, which includes the global unknown time-step parameter as a
solution variable. Modifications to the technique are required to tailor it to
specific irrigation conditions such as different irrigation phases and furrow end
conditions. Later sections in this chapter will cover these adjustments.

This generalised numerical technique (to solve to the continuity and momentum
equations) represents the solution to the finite difference approximations to the
following equations, first described in Chapter 2 (Eqns. 2.1 and 2.2). Rewritten
here in terms of Q and A (instead of q and y), they are:

0=
∂
∂

+
∂
∂

+
∂
∂

t
Z

x
Q

t
A

.. (3.5)

and,

() 01
0

2

=−+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ ASD

x
P

gA
Q

xt
Q

g
.. (3.6)

where, A is the cross-sectional area of flow (m2), Z is the infiltrated volume/unit
length (m3/m), Q is the flowrate (m3/sec), P is the hydrostatic pressure (N/m2), D
is the drag force (friction force), and S0 is the field slope.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 62

By multiplying through by t∂ and x∂ and replacing the partial differential terms
with their finite difference approximations, Eqn. 2.1 then becomes:

() ()()[]
() ()()[]
() ()()[]()
() ()()[]()
() ()()[]() CLRRRLL

JMMMJJ

MRMMRR

JLJJLL

MJRL

RXXZAZA
XXZAZA
XXZAZA

XXZAZA
dtQQQQ

=−+−++−
−+−+++
−+−+++

−+−++−
−−+−

φφ
φφ
θθ
θθ

θθ

1
1
1

)(1
1

.. (3.7)

and, Eqn. 2.2 becomes:
1
g

φQJ + 1− φ()QM[] XM − XJ()−
1
g

φQL + 1− φ()QR[] XR − XL()

+
1
g

θQR + 1−θ()QM[] XR − XM()−
1
g

θQL + 1−θ()QJ[] XL − XJ()

+
1
g

θ QL
2

AL

−
QR

2

AR

⎛

⎝
⎜

⎞

⎠
⎟ + 1−θ() QJ

2

AJ

−
QM

2

AM

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ dt

+ θPL + 1−θ()PJ[]dt − θPR + 1−θ()PM[]dt

+ θ φ DL − S0AL()+ 1− φ() DR − S0AR()[]() XR − XL()dt

+ 1−θ() φ DJ − S0AJ()+ 1− φ() DM − S0AM()[]() XM − XJ()dt = RM

... (3.8)

where φ is a space-averaging coefficient and θ is a time-averaging coefficient.
These values are typically equal to 0.6. The terms CR and MR are the residuals of
continuity and momentum respectively. These residual values will be
approximately equal to zero, and any deviation from zero will be attributed to a
volume-balance error resulting from the finite differencing approximation used.
The subscript referencing J, M, L and R represent the variable’s Eulerian grid cell
representation (Figure 3.6) on the space-time solution grid. Each individual cell
on the solution grid is represented by a pair of these equations.

Figure 3.6: Eulerian Grid Cells and time-dependant (physical) representation.

Lagrangian Components:
These terms reduce to “0” when
cells are rectangular (stationary).

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 63

The hydrostatic pressure P, can be related in terms of the cross-sectional area of
flow A:

() 2

2

11

2

1

1

1 σ

σ

σ

σ
+

−

+

=

A
P ... (3.9)

Where 1σ and 2σ are furrow coefficients defined by:

2
1

33.12 ρρ ARA = .. (3.10)

The wetted perimeter can also be defined in terms of 1ρ and 2ρ :

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

24
3

2
54

3

1

1 ρ

ρ
AWP .. (3.11)

The drag force (friction force) D is related by the following equation:

212

1

2
ρ

ρ
−= AQnD .. (3.12)

We can simplify Eqns. 3.7 and 3.8 by introducing the term dx, which represents
the distance between cell node positions. Eqn. 3.7 then becomes:
θ QL − QR()+ 1−θ() QJ − QM()[]dt

− θ AL + ZL()+ 1−θ() AJ + ZJ()[]dxLJ

+ θ AR + ZR()+ 1−θ() AM + ZM()[]dxRM

+ φ AJ + ZJ()+ 1− φ() AM + ZM()[]dxJM

− φ AL + ZL()+ 1− φ() AR + ZR()[]dxRL = RC

.. (3.13)

Eqn. 3.8 then becomes:

φQJ + 1− φ()QM[]dxMJ − φQL + 1− φ()QR[]dxRL(
 + θQR + 1−θ()QM[]dxRM − θQL + 1−θ()QJ[]dxLJ)1

g
∂RM

∂dt
dt = RM

....................... (3.14)

where for convenience,
dt
RM

∂
∂

is defined by:

∂RM

∂dt
= θ QL

2

gAL + PL

−
QR

2

gAR + PR

⎛

⎝
⎜

⎞

⎠
⎟ + 1−θ() QJ

2

gAJ + PJ

−
QM

2

gAM + PM

⎛

⎝
⎜

⎞

⎠
⎟

−θ φ DL − S0AL()+ 1− φ() DR − S0AR()[]dxRL

− 1−θ() φ DJ − S0AJ()+ 1− φ() DM − S0AM()[]dxMJ

... (3.15)

This simplification is useful when transforming the mathematics into its
computer-code form, as dtRM ∂∂ / already needs to be calculated as part of the
double-sweep technique. Using the Eulerian coordinate system, these equations
can be further simplified down to:

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 64

θ QL − QR()+ 1−θ() QJ − QM()[]δt

+ φ AJ + ZJ()+ 1− φ() AM + ZM()[]dxJM − φ AL + ZL()+ 1− φ() AR + ZR()[]dxRL = RC

(3.16)

and,

 φQJ + 1− φ()QM[]dxMJ − φQL + 1− φ()QR[]dxRL ()1
g

∂RM

∂dt
dt = RM(3.17)

Now that the discretisation of the underlying model has been defined, we can
begin to derive its solution. The double-sweep method that we are developing
uses a Newton-Raphson procedure for solving these equations for unknowns A,
Q (and possibly dx and/or dt,) for each cell on the solution grid. This
methodology effectively linearises the equations, whose solution is then
determined iteratively.

To implement this methodology, consider a single cell element (Figure 3.6) of the
solution grid. The residuals CR and MR for this cell are first written in terms of a
Taylor Series expansion, which linearises the expressions:

RC1
n +1 = RC1

n + ∇RC1
n()ΔRC1

n
...(3.18)

RM 1
n +1 = RM 1

n + ∇RM 1
n()ΔRM 1

n
..(3.19)

where n is the iteration number. The derivation begins to differ from Walker’s
solution at this point through the inclusion of the global value of the time-step
parameter (dt) pertaining to all n, following the methodology of Strelkoff. Given
starting conditions (starting values of the unknowns), the solution will continue to
be improved over successive iterations. Therefore the residuals at the improved
solution are functions of current solution:
RC1

n = RC AL
n,QL

n , AR
n ,QR

n ,dt n()...(3.20)

RM 1
n = RM AL

n,QL
n , AR

n ,QR
n ,dt n() ..(3.21)

The gradient terms, n
CR 1∇ and n

MR 1∇ are the Jacobian matrices:

∇Rc1
n =

∂RC1

∂AL

, ∂RC1

∂QL

, ∂RC1

∂AR

, ∂RC1

∂QR

, ∂RC1

∂dt
⎛

⎝
⎜

⎞

⎠
⎟

n

...(3.22)

∇RM 1
n =

∂RM 1

∂AL

,∂RM 1

∂QL

,∂RM 1

∂AR

,∂RM 1

∂QR

,∂RM 1

∂dt
⎛

⎝
⎜

⎞

⎠
⎟

n

..(3.23)

The difference terms n
CR 1Δ and n

MR 1Δ are:

ΔRC n
1 = AL

n +1 − AL
n,QL

n +1 − QL
n ,AR

n +1 − AR
n ,QR

n +1 − QR
n ,dtn +1 − dtn()= δAL ,δQL ,δAR ,δQR ,δdt()

...(3.24)

ΔRM n
1 = AL

n +1 − AL
n,QL

n +1 − QL
n ,AR

n +1 − AR
n ,QR

n +1 − QR
n ,dtn +1 − dtn()= δAL ,δQL ,δAR ,δQR ,δdt()

...(3.25)

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 65

Now rewriting Eqns. 3.18 and 3.19 in expanded form, we get:

RC1
n +1 = RC1

n +
∂RC1

∂AL

⎛

⎝
⎜

⎞

⎠
⎟

n

δAL +
∂RC1

∂QL

⎛

⎝
⎜

⎞

⎠
⎟

n

δQL +
∂RC1

∂AR

⎛

⎝
⎜

⎞

⎠
⎟

n

δAR +
∂RC1

∂QR

⎛

⎝
⎜

⎞

⎠
⎟

n

δQR +
∂RC1

∂dt
⎛
⎝
⎜

⎞
⎠
⎟

n

δdt

.. (3.26)

RM 1
n +1 = RM 1

n +
∂RM 1

∂AL

⎛

⎝
⎜

⎞

⎠
⎟

n

δAL +
∂RM 1

∂QL

⎛

⎝
⎜

⎞

⎠
⎟

n

δQL +
∂RM 1

∂AR

⎛

⎝
⎜

⎞

⎠
⎟

n

δAR +
∂RM 1

∂QR

⎛

⎝
⎜

⎞

⎠
⎟

n

δQR +
∂RM 1

∂dt
⎛
⎝
⎜

⎞
⎠
⎟

n

δdt

.. (3.27)

Because the residuals 1
1

+n
CR and 1

1
+n

MR will eventually tend towards zero, they
are set to zero at each iteration leading to two linearised equations with four

unknowns LAδ , LQδ , RAδ , RQδ . Therefore, by setting 01
1 =+n

CR and 01
1 =+n

MR ,
Eqns. 3.26 and 3. become:

−RC1
n =

∂RC1

∂AL

⎛

⎝
⎜

⎞

⎠
⎟

n

δAL +
∂RC1

∂QL

⎛

⎝
⎜

⎞

⎠
⎟

n

δQL +
∂RC1

∂AR

⎛

⎝
⎜

⎞

⎠
⎟

n

δAR +
∂RC1

∂QR

⎛

⎝
⎜

⎞

⎠
⎟

n

δQR +
∂RC1

∂dt
⎛
⎝
⎜

⎞
⎠
⎟

n

δdt (3.28)

−RM 1
n =

∂RM 1

∂AL

⎛

⎝
⎜

⎞

⎠
⎟

n

δAL +
∂RM 1

∂QL

⎛

⎝
⎜

⎞

⎠
⎟

n

δQL +
∂RM 1

∂AR

⎛

⎝
⎜

⎞

⎠
⎟

n

δAR +
∂RM 1

∂QR

⎛

⎝
⎜

⎞

⎠
⎟

n

δQR +
∂RM 1

∂dt
⎛
⎝
⎜

⎞
⎠
⎟

n

δdt (3.29)

To simplify the notation, we can substitute algebraic variables for the partial
derivate terms as follows:
aiδAi−1 + biδQi−1 + ciδAi + diδQi + eiδdt = −RC i ... (3.30)

piδAi−1 + qiδQi−1 + riδAi + siδQi + uiδdt = −RM i .. (3.31)

where i denote the cell index. This is slightly different to Strelkoff’s formulation
(but similar to Walker’s) in that the indexing of the solution variables has
purposely been shifted to the left (i becomes i-1) to simplify the explanation of
the system. For example, the left hand side of the first cell is now indexed as 0,
while Strelkoff has it indexed as 1. This has no effect on the results at all, but
impacts directly on the readability of the mathematics and computer code. This
subtle transformation has helped to derive a more simplified version of the
solution technique.

These linearised equations form the basis of the double-sweep technique.
Therefore, N pairs of these equations (where N represents the number of cells
for the current time-step) can be put into matrix form and solved iteratively until
the change in the solution variables (between iterations) becomes negligible.

Unfortunately, the matrix algebra required for solving such a (potentially) large
set of equations is complex. However, the matrix is banded which leads to a
particularly efficient solution using the double-sweep methodology. This solution
technique is formulated by assuming that a linear combination of the flowrate,
flow-area and time-step increment variables exist for each node on the solution
grid:

iiiii FdtHAEQ ++= δδδ ... (3.32)

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 66

For the case of only two cells in the solution grid, the previous three equations
can be put into matrix form:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

2

2

2

1

1

0

3

2

1

1

0

0

22

22222

22222

11111

11111

00

1

1

F
R
R
R
R
F

dt
Q
A
Q
A
Q
A

HE
usrqp
edcba
usrqp
edcba
HE

M

C

M

C

δ
δ
δ
δ
δ
δ
δ

...(3.33)

Defining the matrix in this way allows the solution sweep to start from the
upstream cell and iterate through to the downstream cell. We begin the sweep by
determining auxiliary coefficients for each cell. These coefficients are derived by
combining Eqns. 3.30 to 3.32. From this point onwards, the derivation follows
closely to Strelkoff’s methodology, with the structural form of the equations
appearing very different to that derived by Walker. Beginning the derivation, Eqn.
3.32 written for the first cell is:
δQ0 = E0δA0 + H0δdt + F0 ...(3.34)

Then Eqn. 3.30 written for the last cell is:

1111110101 CRdteQdAcQbAa −=++++ δδδδδ ...(3.35)

Substituting Eqn. 3.34 into Eqn. 3.35, we get:

111111010100101)(CRdteQdAcFbdtHbAEbAa −=++++++ δδδδδδ ...(3.36)

Simplifying, this result, we now have:

01111110110110)()(FbRQdAcHbedtEbaA C −−=+++++ δδδδ ..(3.37)

Then 0A∂ equals:

011

111111011
0

)(
Eba

QdAcHbedtFbR
A oC

+
−−+−−−

=
δδδ

δ ...(3.38)

We can simplify this equation by introducing the new terms U,V, Z, and W:

0010100 WdtZQVAUA +++= δδδδ ...(3.39)

Where

011

1
0 Eba

cU
+
−

= ..(3.40)

011

11
0 Eba

QdV
+

−
=

δ
...(3.41)

011

11
0

)(
Eba
HbeZ o

+
+−

= ...(3.42)

011

011
0 Eba

FbR
W C

+
−−

= ...(3.43)

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 67

We now need to repeat this process for Eqn 3.31. Rewriting Eqn 3.31 for the first
cell, we have:

1111110101 MRdtuQsArQqAp −=++++ δδδδδ ... (3.44)

Then substituting Eqn 3.34 into Eqn 3.44:

111111010100101)(MRdtuQsArFqdtHqAEqAp −=++++++ δδδδδδ ... (3.45)

Simplifying this we get:

01111110110110)()(FqRQsArHqudtEqpA M −−=+++++ δδδδ ... (3.46)

Then substituting Eqn 3.38 into Eqn 3.46:

(p1 + q1E0) −RC1 − b1F0 −δdt(e1 + b1H0) − c1δA1 − d1δQ1

a1 + b1E0

⎛

⎝
⎜

⎞

⎠
⎟

 + δdt(u1 + q1H0) + r1δA1 + s1δQ1 = −RM 1 − q1F0
... (3.47)

Expanding these terms we get:
− p1 + q1E0() RC1 + b1F0()− p1 + q1E0()(e1 + b1H0)δdt − p1 + q1E0()c1δA1

− p1 + q1E0()d1δQ + u1 + q1H0() a1 + b1E0()δdt + a1 + b1E0()r1δA1 + a1 + b1E0()s1δQ1

= − RM 1 + q1F0() a1 + b1E0 ()
.......... (3.48)

Finally, grouping the solution variables together, the equation becomes:

δQ1 =
− p1 + q1E0()c1 + a1 + b1E0()r1

p1 + q1E0()d1 − a1 + b1E0()s1

δA1

+
− p1 + q1E0() e1 + b1H0()+ u1 + q1H0() a1 + b1E0()

p1 + q1E0()d1 − a1 + b1E0()s1

δdt

+
− p1 + q1E0() RC1 + b1F0()+ a1 + b1E0() RM 1 + q1F0()

p1 + q1E0()d1 − a1 + b1E0()s1

.. (3.49)

Notice that this equation now takes the form of Eqn. 3.32:
δQ1 = E1δA1 + H1δdt + F1 ... (3.50)

Therefore, we now have equations to represent the coefficients E, H and F:

E1 =
− p1 + q1E0()c1 + a1 + b1E0()r1

p1 + q1E0()d1 − a1 + b1E0()s1

... (3.51)

H1 =
− p1 + q1E0() e1 + b1H0()+ u1 + q1H0() a1 + b1E0()

p1 + q1E0()d1 − a1 + b1E0()s1

.. (3.52)

F1 =
− p1 + q1E0() RC1 + b1F0()+ a1 + b1E0() RM 1 + q1F0()

p1 + q1E0()d1 − a1 + b1E0()s1

... (3.53)

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 68

These equations are very similar to those derived by Strelkoff (albeit with
different indexing) although they are not yet in their simplest form. There is a
recurring pattern within these equations, so if we now introduce new temporary
parameters)1(T to)7(T , we are able to reduce these equations even further:

011)1(EbaT += ..(3.54)

011)2(EqpT += ...(3.55)

011)3(HbeT += ...(3.56)

011)4(HquT += ..(3.57)

011)()5(FbRT C += ..(3.58)

011)()6(FqRT M += ..(3.59)

)1(1)2(1)7(TsTdT −= ...(3.60)

Therefore, the coefficients E, H and F now become:

()
)7(

)1(1)2(1
1 T

TrTc
E

+−
= ...(3.61)

()
)7(

)1()4()2()3(
1 T

TTTT
H

+−
= ...(3.62)

()
)7(

)1()6()2()5(
1 T

TTTT
F

+−
= ..(3.63)

We can also rewrite Eqns. 3.40 to 3.43 using this formulation:

)1(10 /TcU −= ...(3.64)

)1(10 /TdV −= ..(3.65)

)1()3(0 /TTZ −= ..(3.66)

)1()5(0 /TTW −= ..(3.67)

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 69

Therefore, going back to a more generalised form with subscript i representing
the cell-node index, the double-sweep solution equations can be summarised as:

iiiii FdtHAEQ ++= δδδ ... (3.68)

11111 −−−−− +++= iiiiiii WdtZQVAUA δδδδ ... (3.69)

where

)7()2()1(/)(TTcTrE iii −= ... (3.70)

)7()2()3()1()4(/)(TTTTTHi −= .. (3.71)

)7()2()5()1()6(/)(TTTTTFi −= ... (3.72)

and

)1(1 /TcU ii −=− .. (3.73)

)1(1 /TdV ii −=− .. (3.74)

)1()3(1 /TTZi −=− ... (3.75)

)1()5(1 /TTWi −=− .. (3.76)

Then, the temporary variables are expressed as:

1)1(−+= iii EbaT .. (3.77)

1)2(−+= iii EqpT ... (3.78)

1)3(−+= iii HbeT .. (3.79)

1)4(−+= iii HquT ... (3.80)

1)5(−+= iiiC FbRT .. (3.81)

1)6(−+= iiiM FqRT .. (3.82)

)1()2()7(TsTdT ii −= ... (3.83)

To solve for the incremental changes to the solution parameters (iQδ and iAδ),

the temporary variables)1(T to)7(T and auxiliary coefficients E, H, F, U, V, Z and
W are calculated for each cell (for the current time-step) using Eqns. 3.70 to
3.83, progressing in a forward sweep starting from the upstream cell and
marching to the downstream cell. Once these parameters have been calculated,
Eqns. 3.68 and 3.69 are used in a backward sweep to calculate the incremental
changes to solution variables iQδ and iAδ .

Once the incremental changes to solution parameters for all cells have been
calculated, the actually solution parameter values can be updated using:

i
n
i

n
i AAA δ+=+1

... (3.84)

i
n
i

n
i QQQ δ+=+1

... (3.85)

i
n
i

n
i dtdtdt δ+=+1

... (3.86)

The computer algorithm (developed in section 3.5 of this chapter) will be
responsible for determining which of these parameters will form part of the

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 70

solution. During the advance phase, the simulation is solved for flowrate, flow-
area and advance distance. In this case, the coefficients of the time-step
parameter are disabled (equal 0) in the double sweep algorithm. More specific
solution treatments are presented in the remainder of this chapter.

3.4.2 First cell calculations
During the first time-step, the solution grid is composed of a single triangular cell
with the J, M and R subscripted variables equal to zero (Figure 3.7). The two
unknowns in the system of equations are AL and dx.

dx=??
QL=Qin

AL=??
ZL=f(dt)

QR=0
AR=0
ZR=0

QJ=0
AJ=0
ZJ=0

L R

M J

dt=f ixed

Figure 3.7: First cell representation.

For this cell, the continuity and momentum equations (Eqns. 3.7 and 3.8)
therefore reduce to:

()() CLRLLL RXXZAtQ =−+−δθ ..(3.87)

−
1
g

φQLδx +
1
g

θ QL
2

AL

δt + θPLδt + θφ DL − S0AL()δx = RM ..(3.88)

By substituting dxδ for RQδ in the residual of continuity and residual of
momentum equations (Eqns. 3.30 and 3.31), we are able to solve for the
incremental advance distance for this time-step. With this substitution, and
removing the redundant terms for this time-step, Eqns. 3.30 and 3.31 reduce
down to:

CL RdxdAa −=+ 111 δδ ...(3.89)

ML RdxsAp −=+ 111 δδ ..(3.90)

Therefore, we have two unknowns (LAδ and dxδ) in two equations. We can
isolate LAδ and dxδ by substituting one equation into the other. To isolate LAδ ,
we substitute Eqn. 3.90 into Eqn. 3.89 for 1dxδ to get:

C
LM

iL R
s

ApRdAa −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+

1

1
1

δδ ..(3.91)

Then simplifying, we have:

111111 sRAdpdRAsa CLML −=−− δδ ...(3.92)

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 71

Grouping like terms together:

δAL a1s1 − p1d1()= RM di − RC s1 ... (3.93)

Finally, we can isolate the incremental change in the solution parameter:

1111

11

aspd
dRsRA MC

L −
−

=δ ... (3.94)

The same procedure can be following to isolate 1dxδ , whereby this time, we
substitute Eqn. 3.94 into Eqn. 3.90 for LAδ . After simplifying the equations and
isolating 1xδ , we get:

1111

11
1 aspd

pRaRdx CM

−
−

=δ ... (3.95)

These equations are used iteratively, as LAδ and dxδ are only the incremental
changes in the solution variables. The updated parameter value of LAδ can be
calculated using Eqn. 3.84, and the updated value of dx can be calculated using:

i
n
i

n
i dxdxdx δ+=+1

... (3.96)

Therefore, given starting values of AL and dx (see Table 3.3) , then LAδ and dxδ
are calculated at each iteration and the new solution variables are recalculated
until convergence is achieved (no further changes in the solution variables).

3.4.3 Advance phase calculations
As in the first-cell calculations, solving for the advance phase in the simulation
involves substituting dxδ for RQδ in the residual of continuity and residual of
momentum equations (Eqns. 3.30 and 3.31) for the downstream triangular cell.
This assumes that a linear combination of the distance-step and flow-area exists
at the downstream cell (similar to Eqn. 3.32) on the solution grid:

iiii FAEdx += δδ ... (3.97)

To solve for the advance, a fixed time-step size is used and the system of
equations is solved for the incremental advance distance dx for each time-step.
For the case of only two cells on the solution grid (Figure 3.8), the system of
equations can be represented by:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

2

2

2

1

1

0

2

1

1

0

0

2

2222

2222

1111

1111

0

1

1

F
R
R
R
R
F

dx
A
Q
A
Q
A

E
srqp
dcba

srqp
dcba

E

M

C

M

C

δ
δ
δ
δ
δ
δ

... (3.98)

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 72

Q2=0
A2=0
Z2=0

dt=f ixed

Q1=??
A1=??
Z1=f(t)

Q0=Qin
A0=??
Z0=f(t)

dx1=??

RC2=f(Q1,A1,dx1)
RM2=f(Q1,A1,dx1)

RC1=f(Q0,A0,Q1,A1,dt)
RM1=f(Q0,A0,Q1,A1,dt)

Figure 3.8: Two cell grid representation.

The assumptions of zero-flowrate and zero-flow-area exist at the front end of the
triangular downstream cell. The unknowns in the two-cell example are 0A , 1Q ,

1A and dx . The solution begins by calculating the temporary variables)1(T to

)7(T and auxiliary coefficients E, F, U, V and W for each cell using Eqns. 3.70 to
3.83, progressing in a forward sweep starting from the upstream cell and
marching to the downstream cell. Time-step auxiliary coefficients H (Eqn. 3.71)
and Z (Eqn. 3.75) no longer need calculating since dt is not a solution variable.
Once these coefficients have been calculated, Eqns. 3.68, 3.69 and 3.97 are
used in a backward sweep to calculate the incremental changes in the solution
variables iQδ , iAδ and for the last cell, dxδ . Finally, the solution variables are
updated using Eqns. 3.85, 3.84 and 3.96.

This algorithm can be used throughout the advance phase. However, at the end
of the advance phase, it is very unlikely that a node will coincide with the exact
location of the field end. Therefore, special treatment is required to match up the
location of the last node with the end of the field. In this situation, the global
unknown time-step parameter dt is included as a solution variable and the
distance-step parameter dx is held constant.

To implement this, the simulation is monitored until the advance exceeds the
field-length. Once this occurs, the last time-step is reset (including its solution),
and a new node is positioned at the furrow outlet. The last cell is then tested to
ensure that it is large enough to avoid convergence problems. From
experimentation, it was found that the last cell should be at least a quarter of the
width of the previous cell, otherwise the last two cells should be joined together.
The generalised double sweep algorithm (Eqns. 3.70 to 3.83 and Eqns. 3.85 to
3.86) is then used to solve for dt instead of dx.

3.4.4 Runoff conditions
Special consideration must be taken once the advance reaches the end of the
field and runoff occurs. Normal flow is assumed at the furrow outlet and is
calculated using Manning’s equation as a boundary condition. The double sweep
technique is therefore modified to solve for these changed conditions. This
modification occurs only in the last cell, whereby an explicit formulation of RAδ is
presented that differs to what other researchers (e.g. Elliot et al. 1982) have

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 73

presented. Therefore, beginning the derivation, the boundary condition for the
last cell is represented by the Manning Equation:

Qrunoff =
ρ1S0()

1
2

n
AR

ρ2

2
⎛

⎝
⎜

⎞

⎠
⎟

.. (3.99)

This can be simplified by introducing the coefficients α and ω :
ωα Rrunoff AQ = ..(3.100)

where

2
2ρω = ..(3.101)

and

()
n
S 2

1

01ρα = ...(3.102)

By differentiating Eqn. 3.99 with respect to RA , we have:

()

R

runoff
R

R

runoff

A
Q

A
dA

dQ
δ

δ
ωα ω == −1

...(3.103)

Rearranging this we have:

()
RRrunoff AAQ δωαδ ω 1−= ...(3.104)

Now we can substitute this equation into Eqns. 3.28 and 3.29 to remove RQδ
from the equations:

()
R

R

C
R

R

C
L

L

C
L

L

C
C A

Q
RA

A
R

Q
Q
RA

A
RR δωαδδ ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=− −11
...(3.105)

()
R

R

M
R

R

M
L

L

M
L

L

M
M A

Q
RA

A
RQ

Q
RA

A
RR δωαδδ ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=− −1
..(3.106)

Once again, to simplify the notation, we can substitute algebraic variables
(previously defined in Eqns. 3.30 and 3.31) for the partial derivative terms as
follows:

RLL
n

C AcQbAaR δδδ *
1111 ++=− ...(3.107)

RLL
n

M ArQqApR δδδ *
1111 ++=− ..(3.108)

In this example, 1c and 1r have changed to *

1c and *
1r which are defined by:

()

R

C
R

R

C

Q
RA

A
Rc

∂
∂

+
∂
∂

= −1*
1

ωωα ..(3.109)

And,
()

R

M
R

R

M

Q
RA

A
Rr

∂
∂

+
∂
∂

= −1*
1

ωωα ..(3.110)

Now, to generate an equation to calculate RAδ , we can rework Eqn. 3.48 with a
few changes to reflect the updated boundary conditions. Therefore Eqn. 3.48
rewritten for the last cell, and including *

1c and *
1r is:

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 74

− p1 + q1E0() RC1 + b1F0()− p1 + q1E0()c1
*δA1 + a1 + b1E0()r1*δA1 = − RM 1 + q1F0() a1 + b1E0 ()

 ... (3.111)

Rearranging the terms in the equation we get:
δA1 a1 + b1E0()r1* − p1 + q1E0()c1

*()= p1 + q1E0() RC1 + b1F0()− RM 1 + q1F0() a1 + b1E0 ()(3.112)

Then 1Aδ equals:

δA1 =
p1 + q1E0() RC1 + b1F0()− RM 1 + q1F0() a1 + b1E0 ()

a1 + b1E0()r1* − p1 + q1E0()c1
* .. (3.113)

We can simplify this equation by reintroducing the temporary variables that were
previously defined in Eqns. 3.77, 3.78, 3.81 and 3.82:

δA1 =
T 2()T 5() − T1()T 6()

T1()r1
* − T 2()c1

* ... (3.114)

This equation is called immediately after the end of the forward sweep. After
calculating 1Aδ , Eqn. 3.99 is called to calculate the corresponding normal flow
associated with this cross-sectional area. The backward sweep calculations then
follow as per usual.

3.4.5 Lateral flow conditions
A stage may be reached during the recession phases of the simulation whereby
flowrates become very small, leading to very little downstream propagation of the
flow profile. In the case of simultaneous advance and recession, this may result
in the advance front of the surface profile receding back upstream, as infiltration
dominates the volume-balance. At this stage, solution of the full momentum
equation is prone to instability problems. In this case, the simulation engine can
directly transform this surface water into the infiltrated volume over incremental
time-steps, with little effect on the simulated performance figures.

Therefore, for each cell (i) with surface water present, and while the surface
water volume is greater than the incremental infiltrated volume for the time-step
z(dt), the cumulative infiltration volume ()itZ , is calculated by:

() ())(,1, dtzZZ itit += − ... (3.115)

() ())(,1, dtzAA itit −= − .. (3.116)

For the very last remaining portion of surface water, which is less than z(dt):

() () ()ititit AZZ ,1,1, −− += .. (3.117)

() 0, =itA .. (3.118)

3.4.6 Boundary conditions
Boundary conditions can be segregated based upon the different phase-
combinations of the simulation (Table 3.2).

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 75

Table 3.2: Boundary conditions for different phase combinations

Phase Upstream conditions Downstream conditions

Advance tint QQ ,,0 =
0, =tLastcellQ

0, =tLastcellA
Storage with blocked-
furrow tint QQ ,,0 = 0, =tLastcellQ

Storage with runoff tint QQ ,,0 = 2

2

1

,
,

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

o

tLastcell
tLastcell S

nQ
A

Depletion with block-
furrow

0,0 =tQ 0, =tLastcellQ

Depletion with runoff 0,0 =tQ 2

2

1

,
,

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

o

tLastcell
tLastcell S

nQ
A

Recession with blocked-
furrow

0,1 =− tFirstcellQ

0,1 =− tFirstCellA
0, =tLastcellQ

Recession with runoff
0,1 =− tFirstcellQ

0,1 =− tFirstCellA
2

2

1

,
,

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

o

tLastcell
tLastcell S

nQ
A

Advance and depletion 0,0 =tQ
0, =tLastcellQ

0, =tLastcellA

Advance and recession
0,1 =− tFirstcellQ

0,1 =− tFirstCellA

0, =tLastcellQ

0, =tLastcellA

Advance (last cell) tint QQ ,,0 =

0, =tLastcellQ

0, =tLastcellA
1

1
−

−−= t
lastcell

t XhFieldLengtdx

Advance and recession
(last cell)

0,1 =− tFirstcellQ

0,1 =− tFirstCellA

0, =tLastcellQ

0, =tLastcellA
1

1
−

−−= t
lastcell

t XhFieldLengtdx

3.4.7 Initial parameter estimates
Unfortunately, the iterative double-sweep methodology has a limited range of
convergence. Good initial starting estimates are crucial for convergence on the
final solution. Fortunately, the starting information can usually be obtained from
the final solution at the previous time-step. Table 3.3 presents formulae for the
starting estimates for different irrigation phases.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 76

Table 3.3: Initial parameter estimates for different irrigation phases.

Phase Initial Estimates

Advance (first cell) ()()fodtakQQ a
in +−= −1*

0 ,
() 2

0

1

01

2*

0

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

S
nQ

A ,
0A
dtQdx in=

Advance For x>1, 1
1

−
−= t

x
t
x QQ , 1

1
−
−= t

x
t
x AA , 1−= tt dxdx

Storage with blocked-
furrow 1−= t

x
t
x QQ , 1−= t

x
t
x AA

Storage with runoff 1−= t
x

t
x QQ , 1−= t

x
t
x AA

Depletion with block-
furrow 1−= t

x
t
x QQ , 1−= t

x
t
x AA

Depletion with runoff 1−= t
x

t
x QQ , 1−= t

x
t
x AA

Recession with blocked-
furrow For x>1, 1

1
−
−= t

x
t
x QQ , 1

1
−
−= t

x
t
x AA

Recession with runoff For x>1, 1
1

−
−= t

x
t
x QQ , 1

1
−
−= t

x
t
x AA

Advance and depletion For x>1, 1
1

−
−= t

x
t
x QQ , 1

1
−
−= t

x
t
x AA , 1−= tt dxdx

Advance and recession For x>1, 1
1

−
−= t

x
t
x QQ , 1

1
−
−= t

x
t
x AA , 1−= tt dxdx

Advance (last cell)
For x>1, 1

1
−
−= t

x
t
x QQ , 1

1
−
−= t

x
t
x AA ,

1
1

−
−−= t

lastcell
t XhFieldLengtdx

Advance and recession
(last cell)

For x>1, 1
1

−
−= t

x
t
x QQ , 1

1
−
−= t

x
t
x AA ,

1
1

−
−−= t

lastcell
t XhFieldLengtdx

This table combined with the boundary conditions in Table 3.2 is sufficient to
achieve convergence in almost all cases. However, sometimes, special treatment
is required at times of rapid system change such as the transition between
advance and runoff, and also when the inflow is terminated. These treatments
will be discussed later in this chapter.

3.4.8 Parameter constraints
As the solution variables oscillate around their true values during convergence,
they need to be constrained to physically realistic values to maintain system
harmony. All of the solution variables must remain positive, while the inflow rate
and corresponding normal depth of flow influence the upper-limit for flowrate
and flow-area. Therefore, parameter limits include:

intx QQ ≤≤),(0 .. (3.119)

ntx AA ≤≤),(0 ... (3.120)

1000),(≤≤ txdx (nominal value) ... (3.121)

The effect of these constraints on convergence will be discussed later in this
chapter.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 77

3.5 Computer algorithm development
Having derived the mathematical equations for the model and its solution, the
next step in developing the simulation engine was to derive a computer algorithm
to manage and control the simulation operation. In doing so, six key elements of
the computer algorithm needed to be carefully defined including:

• the structure of the simulation engine;
• the simulation model algorithm;
• the input parameter objects;
• the output parameter objects;
• the phase switching mechanism; and
• exception handling facilities (error management).

3.5.1 Developing a structure
The FIDO simulation engine has been developed using an object-oriented
structure using the C++ language. While simulation speed was a design issue,
the object-oriented design approach was adopted despite the view that well
written procedural code can potentially run faster. The benefits of the object
orientated approach in this instance include:

- Simpler code structure;
- Easier readability of code; and
- Multiple input/output objects.

Designing an object-oriented algorithm involves breaking up the structure of a
system into different modules and objects that can interact with each other and
also with external elements. These objects should have some level of
“intelligence” being able to perform tasks and follow instructions. They should
also have a memory, being able to store information. Decisions need to be made
at the design stage regarding the level of modularity required for the system. For
the case being considered here, this level need not be high at all. The simulation
engine could in fact operate as a simple linear system with one set of inputs and
one set of outputs; a “black box” in effect (Figure 3.9).

Figure 3.9: Basic linear or “Black Box” functionality of simulation engine.

The engine itself would be an object that encapsulates the model code, solution
techniques, and internal parameters. The input data and output data would also
be objects that contain parameters (which again are objects) and can be passed
in and out of the engine. The simulation engine would also contain other internal
parameter objects that are inaccessible to other parts of the program (otherwise,
they should be part of the input object). Figure 3.10 shows the storage structure
of these objects as used in FIDO. The output-object is located inside of the
input-object for convenience; it is simpler to pass “one” object around the
decision support system than it is for “two”.

Outputs Inputs Simulation Engine

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 78

Figure 3.10: Simulation Engine Object Structure

In reality, the connections between the objects are varied. The algorithms require
extensive use of memory-pointers that essentially give the objects “hands” by
which they attach to other objects. This alleviates the continual copying of
information (which is slow) when passing from one object to another. This is
achieved through careful design of the parameter objects that make use of
polymorphism to alleviate repetition of code between the different parameter
types. In this case, the performance penalty (operation speed) associated with
using polymorphic parameter objects was overshadowed by their benefits. The
final design of these parameters is actually quite complex given the amount and
variety of tasks that they are required to perform (this will be discussed later in
this chapter). Figure 3.11 provides a more in-depth look at how all of these
objects interact.

Figure 3.11: Parameter object and model-object interaction in the FIDO simulation engine.

In this example, the breaking down of the structure is biased towards the data
components rather than the mathematical components. This can be justified
since the decision support system is not required to interact with the simulation
engine outside of this basic input/output functionality. For this reason there is no
need to further modularise the model code. An added advantage of this type of
structure is that it allows for many data-objects to exist in memory
simultaneously (although processing by the simulation engine occurs one at a
time) allowing for easy comparison of different results, and input data.

Simulation Engine Input Object Output Object

Parameter Objects

contain contain
s

contain

Parameter Objects

Passed in by DSS
 from database

Parameter Objects

Extracted later on by
whatever needs it!

T1DGridParameter

TSplitOptValueTreeObject

TFIDOSimulation

TTFIDOModelDataTreeObject
TOutputObject

Connections

Connections T2DGridParameter

T1DInputParameter

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 79

Other alternatives to this design were investigated during the development
process. However, they were considered too complex with little or no extra
benefit in meeting the design specification of the simulation engine.

One alternative was to use polymorphism to create a custom “simulation
(engine) object” and derive child objects from this for different irrigation
configurations. (e.g. “blocked” vs. “free-draining” furrow end conditions).
However, the complexity involved in switching scenarios would have been the
same whether it was performed inside or outside of the simulation engine. This
would also have added the extra burden in managing memory, whereby the
simulation engine would need to be created and deleted each time a different
scenario was modelled. With the current design, the simulation engine is created
at program start-up, and remains there until the program is closed down. Virtual
methods associated with polymorphism could also have slowed down simulation
times unnecessarily if they are called during each iteration. However, one
possible advantage of this technique would be in future development work,
whereby other developers could more easily create new variations of the
simulation without altering the original code. This is still possible with the existing
design, but it would possibly have been simpler and more flexible using
polymorphic techniques.

Another alternative that was considered was to split up the simulation engine
object at the “irrigation-phase” level. This would involve having a single
“simulation (engine) object” and using polymorphism again by creating a custom
phase object, and deriving child objects for each different phase of the irrigation
(e.g. “advance”, “storage” “recession”, etc). The phase-objects would contain the
solution techniques, boundary conditions and initial conditions for each phase.
This could simplify the code by removing much of the conditional statements
from the code. Each object would encapsulate functions specific for that phase,
including error handling techniques. However, the problems outlined in the
previous example could again surface here with polymorphism potentially
slowing down simulation times. There would still be memory management
issues; do we create/destroy phase objects each time we change phases, or
possibly create every single phase object in memory at once? Another bottleneck
could be the copying and transferring of information in and between phase
objects.

Putting time-penalties through overuse of polymorphism aside, the main reason
for going with the suggested model structure was because it was the simplest.

3.5.2 Model algorithm
Figure 3.12 outlines the model algorithm used by the simulation engine when
running a simulation. The algorithm revolves around two main loops; one for
incrementing the time-step, and one for incrementing the iteration step. When
implementing this algorithm, modular coding is used to eliminate code repetition
and simplify development. If a piece of code needs to be accessed from more
than one place, then it is placed in its own unique method. Breaking the code
down this way into its smallest elements naturally encourages modular
programming, simplifying the algorithm and code maintenance and minimising

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 80

the likelihood of coding errors. Use of good naming conventions of these
methods tends to self-document the code, especially when called from a
controller method containing nothing more than method-calls and
conditional/logic statements. This is demonstrated by comparing the Simulate()
method in the simulation engine source code (Appendix 3.1) with the algorithm
in Figure 3.12.

Figure 3.12: Algorithm used in the simulation engine for running simulations.

Another feature of the algorithm is that it allows output to be generated even in
the case of simulation failure. Although the current version of the simulation
engine has proved to be extremely robust, earlier development work had
identified the need to provide sensible output in the event of such a failure.
External analyses attached to the simulation engine behave unpredictably if
unrealistic results are fed into them. Therefore the algorithm is designed to
output the last “good” set of results from the simulation, which in the case of a
terminated simulation, would be results generated from the time-step before
failure occurred. In most cases, the final performance measures would be very
close to the true values, since these types of failures occur predominately during
the latter parts of the simulation after the advance has completed.

Main FIDO Simulation Algorithm

1. Load record from database -links input model data and output object parameters.
2. Reset simulation -clears memory for all parameters objects and initialises switches.

While still simulating
3. Increment time-step -updates time-step integer and flags new step.
4. Set up memory for parameters -adds just enough memory to each parameter for this step.
5. Reset iteration count -resets iteration count and convergence flag.
6. Determine irrigation components –checks current elements (inflow, advance, etc).
7. Set solution function pointers –determines which solution functions to use.
8. Determine solution cell range –sets upstream and downstream cells.
9. Set parameter estimates -sets estimates for Q, A, X, and T based on previous time-step.
10. Set boundary conditions -sets boundary conditions for current phase

While still converging
try
11. Update iteration count – increase iterations and reset convergence checks.
12. Calculate auxiliary coefficients –initial sweep
13. Update parameter estimates –final sweep (reverse of previous step)
14. Check convergence –check each parameter for convergence
Catch errors
15. Deal with the problem –find a solution to be implemented next time-step.

15. Check for abnormalities –check if time steps needs repeating due to problems.
16. Remove empty cells –remove collapsed cells (upstream and downstream)
17. Check if still simulating –stop if all cells have collapsed.

18. Update output object properties –updates endcell, max Z, max A, time-step information
19. Update Analyses –updates any analyses that may be attached to simulation (e.g. the animation).

`

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 81

3.5.3 Input parameter objects
Object-orientated programming techniques were used to create input parameter
objects to represent the solution variables such as Q, A, dx and dt (among
others). This effectively adds a “brain” to the parameters so that they have both
processing and memory management capabilities as well as the usual storage
functionality. Traditionally, these parameters would have been an array of
“floats” or “doubles”. Now they contain information about upper and lower
constraints, temporary storage vectors, solution tolerances, solution cell
information (including differentiation between Eulerian and Lagrangian grids),
and functions for setting initial values, updating new estimates and adjusting
storage sizes.

Three different types of data storage objects have been used in the simulation
engine, which have been called T1DGridParameter, T1DInputParameter, and
T2DGridParameter objects. These are all ultimately derived from the “abstract
base class” (which by definition, cannot be used to store data) called
TCustomGridParameter, which implements the polymorphism functionality (by
introducing “virtual” methods”) and setting the structure of its children. Figure
3.13 demonstrates the relationships and key functionality of the parameters.

 Figure 3.13: Structure of the object-oriented input parameter types used in FIDO. Note that
the T1DInputParameter contains a pointer to an input parameter located in simulation input

object.

A multi-value input parameter object called TSplitOptValueTreeObject has
been created to house spatially and temporally variable input parameter values
(such as for non-uniform infiltration, roughness, furrow geometry, field-slope and

TCustomGridParameter
Defines of the structure of the

parameter-objects. Contains upper
and lower limits, tolerance values, and

defines “virtual” methods (for
“polymorphism”) for child classes. No

storage for data is allocated at this
level.

T1DGridParameter
Contains a one-dimensional storage vector

for data. Used to represent model
parameters such as dt, upstream cell,
downstream cell. Contains storage for

logging convergence values if necessary.

T1DInputParameter
Contains a link (pointer) to an input

parameter (TSplitOptValueTreeObject)
in the current data record. This forms

the connection between the user
interface and the model parameters.
Used to represent input parameters

such as inflow rate, fieldslope, furrow
geometry parameters and infiltration

parameters.

T2DGridParameter
Contains a two-dimensional storage

vector for data. Used to represent cell
parameter such as Q, A, Z and X as well

as internal velocity and pressure, and
wetter perimimeter parameters. Contains
cell reference (L,R,J,M) for Eulerian and
Langrangian Cells. Convergence storage

is updated for two-dimensions.

TSplitOptValueTreeObject
This is the input parameter which

is located in the model record,
and is presented in the user

interface. The user can directly
edit this value. It is capable of
being split into several values

representing different locations
along the furrow or different

periods in time.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 82

inflow). This parameter object is linked to the input object through a pointer in a
corresponding T1DGridParameter parameter object.

All of child parameter-object types have been designed to manage memory
efficiently. At any one time, the storage containers inside of these objects have
been sized exactly to that of the current memory demand. That is, bulk memory
allocation is not employed, rather memory is allocated dynamically at each time-
step according to the current requirements. For the T2DGridParameter types,
this involves a triangular storage structure as the number of cells on the solution
grid increases (during the advance phase of the irrigation) with each time-step
(Figure 3.14).

Figure 3.14: Memory allocation technique employed by theT2DGridParameter types.

3.5.4 Output objects
Storing the results of the simulation engine externally in a specially designed
object allows the user to compare the results of many different simulations
simultaneously. A single output object TSimulationOutputObject is used
to store all of the simulation outputs described in Section 3.5.5. Outside of the
basic storage functionality, the object contains the methodology to calculate the
irrigation performance parameters for any time-step.

3.5.5 Phase switching
The simulation engine employs a special C++ container type called a set (an
associative container that supports unique keys, allowing fast retrieval of the
keys) to keep track of the physical processes occurring during an irrigation
simulation. This set (called TPhaseComponents) can contain up to six different
elements relating the state of the irrigation (although due to obvious physical
limitations, they can not all occur simultaneously). This includes advance,
recession, inflow, runoff, ponding, and lateral flow phases.

Figure 3.15 describes the logic in defining the contents of the set. At the start of
the simulation, the set is initially empty. Then at the beginning of each time-step,
this algorithm is called to see which of these elements are currently active. Any
active elements are added to the set, and any inactive elements are removed. At
any stage during the calculations, the set can quickly be examined to aid in the
internal decision-making. Although a speed penalty is incurred through extra
conditional operations during the calculations, the conditional checks are fast
since no values or functions need to be examined.

Time Step

0.102
0.102

0.105
0.113

0.116
0.125
0.135
0.140

0.102
0.102 0.103
0.102 0.105 0.112
0.102 0.107 0.115 0.115
0.102 0.108 0.117 0.118

0.1250.1210.1090.103
0.103 0.109 0.124 0.130

Grows with each successive time step

Adds an extra element to the
array in the x-dir for each

s ccessi e time step d ring the

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 83

Figure 3.15: Algorithm for adding/remove phase component to the "set"

In early versions of the simulation engine, sets were not used. Instead, a series
of switches were used for the individual phases and phase-combinations of the
irrigation cycle. During each time-step, a “checking-function” would be called
whereby the current state of irrigation phase was decided upon (from about
fifteen different alternatives), and function-pointers were assigned according to
this state. During simulation, these function pointers were called instead of the
actual required function. This proved quite powerful, dramatically cutting down
on the number of conditional statements required throughout the calculations,
with all of the decision making being done in the initial “checking-function”.
However, the problem was that it resulted in an excessive amount of code with
many functions repeated with only minor changes between them. This simulation
engine became very difficult to work with from the developer’s perspective. It was
tremendously difficult to debug, and there was little confidence in any part of
code because there was just too much to manage effectively. The use of sets in
the latest version has reduced the total volume of code to a third of the original
code amount.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 84

3.5.6 Exception handling
Exception handling (error management) has been implemented at potential
problem sources minimising the impact on the simulation progress. It aims to
improve reliability allowing convergence problems to be identified and handled
with a more appropriate grid structure or better initial parameter estimates. The
try/catch statements implemented around Steps 11-14 in the algorithm (
Figure 3.12) aim to trap errors during the double-sweep solution process, where
they are most likely to occur. If an error does occur at this level (normally a
convergence error), the time-step can be adjusted or restarted without user-
intervention through exception handling techniques. Sometimes erroneous
results can occur despite apparent convergence success. These abnormalities
are checked outside of this loop to verify that the simulation is behaving, as it
should and that convergence wasn’t achieved through unusual circumstances.

3.6 Observations on simulation characteristics
Having derived the simulation mathematics and program algorithms, the next
step in the development process was to combine these by writing the computer
program, which is presented in Appendix 3.1. From this point on, research
focused upon refining, testing and debugging the program. A key part of this work
was directed at studying and observing the characteristics of the simulation.
Based upon these observations, measures were then implemented to improve
robustness and reliability. Therefore, several key observations of the
characteristics of the simulation will now be discussed including:

• cell sizes decrease towards the downstream end;
• volume-balance errors are greatest at furrow inlet;
• instability is greatest during rapidly changing conditions;
• grid structure influences simulation performance;
• recession approximations can lead to instability; and
• transition to runoff can cause oscillations in runoff hydrograph.

3.6.1 Cell sizes decrease downstream
During the advance phases of the simulation, nodes on the solution grid are
created based upon the position of the advance front at each time-step.
Therefore an extra node is created for each successive time-step. By the time the
advance reaches the end of the field, the node spacings are much smaller then
they are at the top end of the field. One advantage is that the smaller sized
solution cells are located in positions where the later stages of the recession will
predominate. This helps in the solution of a potential weak link in the simulation.
Unfortunately, the larger cells are located at the top end of the field where a finer
grid resolution is also required to capture rapidly changing inflow conditions.

3.6.2 Sources of volume-balance error
It was observed that volume-balance errors predominate at the upstream end of
the furrow. The top end of the furrow is the location of the most dynamic and
rapidly changing quantities of the simulation; that of instantaneous inflow and
instantaneous cut-off. In the first instance, the system instantaneously switches
between no-flow and high-flow conditions. Percentage-wise, the volume-balance

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 85

error during this time-step could be as high as 30% to 40%, but volumetrically it
is still very small in terms of the whole irrigation water balance. In the second
instance, the flow change is reversed from high-flow to no-flow, but it still occurs
instantaneously. On both of these occasions, the effect will be most pronounced
at the upstream end of the furrow. Therefore, it is recommended that extra
nodes should be placed at this location to help account for the rapidly changing
conditions.

Another source of volume-balance error can be attributed to numerical instability.
Approximations are made during the recession stages of the irrigation which can
cause convergence problems leading to volume-balance errors. Effectively,
system accuracy is often compromised to achieve numerical stability.
Fortunately, these compromises usually result in only a very small error in terms
of the overall volume-balance.

3.6.3 Sources of instability
Instability in the solution technique is most likely to occur during stages of rapidly
changing conditions. This is primarily due to the difficultly in obtaining good
parameter starting values during these periods. This is especially noticeable
during phase transitions from advance to storage, from storage to depletion, and
from depletion to recession, and also during later stages of the recession. Figure
3.16 show a progression of time-step iteration counts for a typical simulation,
highlighting periods of instability.

Figure 3.16: Typical iterations log for different irrigation phases

Some general observations from studying convergence during the course of this
work include:

• Good initial starting estimates are crucial for avoiding stability problems.
• The advance phase is the most robust simulation phase, typically

converging in two iterations. It has proven consistently reliable under all
conditions.

• The storage phase is also generally robust, once the transition from
advance to storage is completed. However, difficulty is often encountered

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 86

during this transition, although it rarely requires special treatment to
achieve convergence.

• The transitions from storage to depletion and depletion to recession are
key sources of instability, given the difficulties in obtaining good initial
estimates of the surface and flow profiles.

• Most failures occur during the recession phases of the simulation,
especially when the recession is very rapid, and flow rates and flow
depths are very low. For example, saw-tooth fluctuations in the surface
and flow profiles have been observed during the later stages of the
recession.

Parameter convergence monitoring capabilities were embedded into the FIDO
simulation engine to study the nature of instability patterns and convergence
issues on the individual solution parameters Q, A, dx and dt. This was a key
debugging tool that has contributed to four strategies for improving simulation
robustness presented later in this chapter.

These capabilities provide insight into the sources of instability during periods of
convergence difficulties. For example, Figure 3.17 shows an output of this
extended analysis corresponding to a transition from the depletion phase to the
recession phase in a typical irrigation (as shown by the peak in Figure 3.16). The
two surface plots represent the absolute values of incremental parameter
changes for A and Q for different node positions and iterations. In this example,
the source of instability is located in the region of rapidly changing conditions at
the upstream end of the furrow.

Figure 3.17: Convergence Log for A and Q parameters during transition from depletion phase to

recession phase. The surface water and infiltration profiles are shown in the top chart.
Convergence was achieved in 12 iterations.

Another example (Figure 3.18) highlights the difficulties in achieving
convergence during the later stages of the recession. This example resulted in
catastrophic failure of the simulation, which was terminated after 100 iterations
of the time-step. A low-flow, low-volume surface profile was present during the
previous time-step. Solutions to this problem are presented later in this chapter.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 87

Figure 3.18: Example of convergence failure during the recession phase.

3.6.4 Effect of solution grid structure.
It was found that another source of error exists if the nodes on the solution grid
are spaced erratically. During repeated trials with different configurations of the
simulation engine, the most stable and reliable simulations occurred when the
solution grid was regular. Note this does not imply that the solution grid was
“uniform”, but rather that changes in cell sizes occurred gradually from one cell
to the next. For example, Figure 3.19 demonstrates the effect on the solution
grid of increasing and decreasing the time-step midway through the simulation.
Errors have been introduced in both cases due to the sudden change in time-
step. It was noted that convergence was also slower in both these cases.

Figure 3.19: Effect of a sudden change in time-step on advance trajectory.

Consequently, this could imply problems when solving for the unknown time-step
parameter (as in the fixed-distance-step method), especially when the advance is
very slow and struggling to reach the next node on the solution grid. In this
example, the time-step solution could be very large, with a subsequent penalty in
stability and volume-balance error. For this reason, the fixed-time-step

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 88

methodology was preferred over this method when designing this simulation
engine.

This also highlights that the implicit double-sweep solution technique is reliant
upon stability restrictions on the solution grid structure. This is despite popular
belief that only the explicit solution techniques are subject to this condition.
Other authors have also verified this. For example, Strelkoff and Falvey, (1993)
reported that “… implicit schemes in which the simultaneous equations are
solved with a double-sweep method- having one boundary condition picked up at
the upstream end … and another picked up at the downstream end - exhibit
oscillations if the Froude number exceeds unity by more than just a little or for
more than just a short time”.

Since the FIDO simulation engine uses a fixed time-step to implicitly locate
nodes in the x-direction, careful management of this time-step size is required to
avoid convergence problems.

3.6.5 Recession approximations can cause instability
All existing surface irrigation models make approximations during the recession
phases. That is, none of the existing models actually solve simultaneously for the
time for the recession to pass each node6. Typically, the recession is defined
when the depth of flow at a cell node is less than 5% of the normal depth.
However, numerically speaking it is not uncommon for the depth of flow to be
negative before the recession flag is activated (Figure 3.20). It was observed that
this can cause irregularities in the recession curve due to the true recession
point not coinciding with the nodes on the solution grid. Although it may have
little effect on the accuracy of performance results, the effect is more
pronounced on the reliability of the solution technique with convergence
problems occurring in extreme cases. To deal with this, a monitoring system
needs to be implemented to check for convergence problems at this location.
This will be discussed later in this chapter.

6 During this research, considerable time was spent trying to solve implicitly for both dx and dt
during the simultaneous advance and recession phase of the irrigation. This involved deriving a
new double-sweep algorithm whereby the direction of the two sweeps is reversed. Unfortunately,
robustness could not be achieved, and the solution matrix was ill-conditioned. That it, there was
an infinite number of solutions within the range of the remaining simulation times, as the cell
flow-rate and flow-area could turn out to be 0 in the solution. This work was abandoned in favour
of the more reliable approximation method. However, it may be possible to derive a single unique
solution with different techniques and further research.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 89

Figure 3.20: Problems with recession definition

3.6.6 Transition to runoff
It was often observed that the simulated transition from advance to runoff
caused a fluctuation, or dampened oscillation, in the runoff hydrograph (Figure
3.21a). This characteristic is not unique to this simulation engine, but was also
observed to occur in SIRMOD (Figure 3.21b).

(a)

(b)

Figure 3.21: Fluctuations in runoff hydrograph in (a) FIDO simulation engine and (b)
SIRMOD output.

This phenomenon seems to occur more frequently and severely when the time-
step size is suddenly reduced in order to position the last node with the end of
the field (e.g. if the time-step was reduced from 5mins to 2mins for the last
advance step). It was also observed to occur when initial starting estimates of
the furrow end parameters are poor. In either case, convergence is usually
achieved but the solution parameters are obviously inaccurate, although its
effect on the overall accuracy of the simulation is thought to be minimal. These
errors dampen quickly over successive time-steps as the furrow end conditions
become more uniform. It appears that the system is weakly linked to the
boundary conditions that are insensitive to the parameter variations, but this

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 90

requires further investigation. Fortunately, this situation can usually be avoided
by ensuring that the time-step size for the last advance step is close to, or larger
than, the default time-step. This may require “undoing” the “previous” time-step
before adopting a larger time-step size to match endpoints.

3.7 Achieving simulation robustness.
It quickly became apparent when writing this computer program that deficiencies
in the published methodologies are understated. Given the lack of information
that exists on undertaking these transformations, it is important to document
these idiosyncrasies and their solutions for future reference. The following
techniques have been employed in the FIDO simulation engine to achieve the
design goals of robustness and reliability:

• implement small time-steps for first few iterations;
• monitor parameter convergence during iterations;
• pre-test time-steps to remove collapsing cells; and
• automatic time-step refinement.

3.7.1 Early time-step calculations
It was previously mentioned that the upstream end of the furrow is potentially the
main source of volume-balance error and numerical instability. This is because it
is a location of rapidly changing conditions; that is, when the inflow is turned on
and also turned off. It is also the location of the largest solution cell, which is
generated during the first time-step. One way to minimise these problems is to
introduce smaller solution cells in this region. This can be done by using small
time increments for the first few time-steps:

default
i

i dtdti 5 5;for =<= ... (3.122)

where i is the current time-step index.

3.7.2 Parameter monitoring during iterations
Publications have typically neglected to mention critical solution problems such
as parameter limits. Due to the iterative nature of the solution process,
convergence on the final parameter values is obtained after oscillation around
the true parameter values. If the true parameter values are very small, then the
solution parameters may take on unrealistic or negative values during the
convergence process. While this isn’t really a problem if we consider that we are
just solving a large set of equations in matrix form, it is a problem when these
equations are representing physical processes and that all sorts of side-effects
can spawn if our solution parameter values are unrealistic. Therefore we need to
constrain our solution parameters to within a physically realistic range. These
constraints must be applied the instant that a limit is exceeded and not just at
the end of an iteration, otherwise errors will be introduced in adjacent cells
during the marching technique.

Unfortunately, one of the side effects of constraining a parameter is that
repeated mirrored-oscillations in the improved parameter values can sometimes
occur over successive iterations. Usually, the mirroring of the oscillations occurs

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 91

when the constraint is first applied to a parameter, and continues until that same
constraint is forced to be reapplied. Then the process restarts over again.
Therefore the process becomes stuck in an infinite loop and convergence never
occurs (Figure 3.22).

Figure 3.22: Repeating mirrored-oscillations

To overcome this, the solution parameter objects automatically monitor
oscillations during each time-step, and report back to the simulation engine
when any mirroring effect occurs. This typically happens during the recession
phase and results when a finite (but small) depth of flow at the recession front is
constrained to zero (as discussed in section 3.6.5); that is, when the true
recession position does not coincide with the solution grid node locations.

Once oscillations have been reported, the cell in which the oscillations occur is
removed from the current time-step. If the recession is sufficiently rapid (i.e. on
steep slopes, or high infiltration soils), it may be possible that several cells are
removed in one step during the process. As mentioned earlier, this may
compromise solution accuracy (i.e. a very small error could be introduced) for a
marked increase in simulation robustness.

3.7.3 Pre-testing time-step to remove collapsing cells
During the recession phase(s), a simple but effective technique is available to
reduce instability in the numerical system, by removing upstream cells that are
likely to collapse during the time-step, before they collapse. During the recession,
there are no inflows into the upstream solution cell, while outflows can involve
both infiltration and surface-flows into adjoining cells. While the surface flows
cannot be determined until the end of the time-step, the potential infiltration
volume is known (or can be estimated if wetted-perimeter effects are being
accounted for) at the commencement of the time-step. Therefore, if it is obvious
that the potential infiltrated volume for the time-step is greater than the surface
water volume in the cell, then the upstream cell can be removed before the time-
step is simulated (making sure to account for the infiltrated water). This avoids
potentially having to constrain negative flow and storage values during the time
step (as explained in Section 3.6.5), which is a major cause of instability. More
than one upstream cell can be removed in a single pre-test. However, any
subsequent cells must also test for possible inflows by considering the outflow of
the adjoining upstream cell at the previous time-step.

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 92

3.7.4 Automatic time-step management
A simple “time-step management” technique has been developed and
implemented into the simulation engine to ensure that simulations are
completed without convergence errors. Given the simplicity and success of the
technique, one could easily suspect that’s its role in the simulation process is
trivial. On the contrary, the robustness of the simulation is severely compromised
without strict adherence of the technique’s rules.

It was found during testing that many instability problems could be resolved if the
time-step was changed mid-way through a time-step convergence loop. This
process involves testing the convergence of the solution variables during the
iterations, and if problems were acknowledged, then the time-step would be
restarted with a different step-size. Usually, only a change of a few seconds was
required to “kick” the simulation through its problem. This procedure was only
implemented as a last resort having concluded that repeated oscillations (as
outlined in the previous section) were not the source of the problem.

In the rare event of this failing to rectify the problem, the entire simulation would
then be rerun using a different default time-step size.

3.8 Validation
The FIDO simulation engine has been validated by comparing its results with
that from SIRMOD (e.g. see Figure 3.23). The literature review (Chapter 2) and
case study (Appendix 2.2) confirmed that SIRMOD can accurately simulate a
wide range of field conditions. Therefore, agreement between the results from
FIDO and SIRMOD would confirm that the FIDO simulation engine is also
accurate. This hypothesis is reinforced by the fact that the models share the
same hydrodynamic model and that the solution techniques are similar albeit for
the recession, runoff and stability management techniques.

Figure 3.23: Sample output of validation of FIDO simulation engine against SIRMOD
results. Blue lines are the FIDO output; Red lines are the SIRMOD output.

Flowrate (m^3/sec) 0.0016
Time-To-Cutoff (mins) 1070
Field-Length (m) 520
Field Slope 0.0015
Manning n 0.1
Kostiakov A 0.074
Kostiakov K (m^3/min^a/m) 0.076
Kostiakov Fo (m^3/min/m) 0.00003

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 93

3.8.1 Accuracy of results
Eighteen data-sets representing a variety of free-draining irrigation conditions
were used to validate FIDO against SIRMOD. Appendix 3.2 shows the outcome
of these runs by overlaying advance and recession profiles of each model. An
example of this output is presented in Figure 3.23. In all cases the advance
curves generated by each model were identical, while recession curves were
usually similar but not identical. Some differences were observed to occur
between runoff hydrographs.

A scatter-plot analysis was also undertaken for each of the volume-balance
components and efficiencies, showing good agreement between the two models’
outputs (Figure 3.24). Results for inflow, stored and total-infiltration volumes
were practically identical, while small discrepancies appeared with the
application efficiency, uniformity, and loss components.

Figure 3.24: Scatter-plot analysis of FIDO vs SIRMOD outputs

Each model calculates uniformity differently, so this difference was not
unexpected. The variations in the loss components (drainage and runoff) can be
explained through slightly different treatments of simulated runoff between the
models, and possibly by the stability measures in FIDO impacting on the volume-

Chapter 3 Development of a simulation engine for furrow and border irrigation decision support

 94

balance results. For example, if instabilities are detected in the later stages of
the irrigation, FIDO is able to switch to simulating only lateral flows, which is
likely to have the greatest effect on the runoff and drainage results. As these are
typically smaller components of the volume-balance, variations will appear more
dramatic than for larger quantities such as inflow and stored volumes. It is likely
that the stability measures will be downgraded in future versions of the software
with further fine-tuning of the model.

3.8.2 Operation speed
The FIDO model has undergone several attempts over its development cycle at
optimising the mathematical algorithms to minimise the overall simulation time.
This is an important consideration given that the engine is to be used in
calibration, optimisation and parameter analysis roles requiring potentially
hundreds of repeated simulations. Running on the current generation Pentium 4
computers, simulation times typically range from a few hundredths of a second
to up to three or four seconds using a ten-minute simulation time-step. The
longer simulation times mostly occur when the simulation engine encounters
difficulties and has to apply special treatment to individual time-steps to achieve
convergence. Longer irrigation cutoff times also contribute to larger simulation
times. The response-surface generation discussed in Chapters 5 and 6 provided
total simulation times of approximately one hour to perform 10,000 simulations.

3.9 Conclusions
This chapter has described the development of a new object-oriented simulation
engine capable of being implemented into a decision support system for furrow
and border irrigation. This involved adaptation of the Walker and Strelkoff
solution techniques, including the derivation of a simplified form of solution
equations, and new algorithm for solving runoff. An object-oriented computer
algorithm was developed for controlling the simulation, featuring intelligent input
parameter objects. Robustness and reliability of the simulation engine was
ensured by the development and implementation of four different treatments to
avoid convergence problems. The simulation engine was validated against the
SIRMOD model.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 95

Chapter 4 Estimation of soil infiltration and hydraulic
roughness parameters

4.1 Introduction
Accurately determining the spatial average value of the soil infiltration
characteristic is a prerequisite for surface irrigation decision support operations.
For example, evaluating irrigation performance is currently a two-stage process,
whereby the infiltration parameters are typically estimated using a simple
volume-balance model (such as the “two-point method”) before being imported
into a more complex hydrodynamic model for running the simulation. However,
this is a potential source of error in the modelling process due to differences
between the models’ structures.

The goal of this chapter is to develop parameter estimation (calibration)
capabilities for the FIDO decision support system that avoids this source of error
by determining the soil infiltration and/or hydraulic roughness parameters using
the same model that is used to perform the simulation. In practice, this will allow
any of the three Kostiakov-Lewis infiltration parameters and/or the hydraulic
roughness coefficient to be determined using a simple but powerful optimisation
algorithm to minimise the error between the measured and predicted irrigation
advance and/or runoff hydrograph.

The research in this chapter has five main objectives; (1) to present a
background to developing calibration faculties for the decision support system;
(2) to present as a preliminary study, the development a simple optimisation-
based volume-balance inverse technique for determining the soil infiltration
parameters; (3) using the optimisation-methodology developed in the previous
task, to develop a more complex hydrodynamic inverse technique for the
determination of any of the soil infiltration and/or the hydraulic roughness
parameters; (4) to analyse the response-surfaces of the advance-based
objective-functions; and (5) to validate the performance of the hydrodynamic
inverse method using real field data.

This chapter is accompanied by a single appendix containing the output of the
calibration validation showing simulated advance curves resulting from both the
volume-balance and hydrodynamic inverse methods (Appendix 4.1).

4.2 Background to estimation of soil infiltration and roughness
parameters
The inverse methods employ a form of simulation-model to determine infiltration
parameters through matching field measurements with the simulated outputs.
This alternative usage of the simulation model is essentially a calibration
technique, yet no software packages are currently available which combine both
simulation and calibration capabilities using the same model. Infiltration is

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 96

typically calculated using a simple volume-balance model with these results
being imported later into the more complex hydrodynamic model. However, this
may cause inaccurate results due to the differences in model structure and the
empirical nature of the inverse technique.

Models used to solve the inverse problem consist of two parts. The first is an
equation describing the process of infiltration, or entry of water into the soil. The
modified Kostiakov-Lewis equation is the infiltration equation, which is most
often used with furrow irrigation (Walker and Skogerboe 1987):

ττ o
a fkI += ... (4.1)

where I is the cumulative infiltration (m); τ is the time (min) that water is
available for infiltration into the soil, otherwise known as the opportunity time; a
(dimensionless) and k (m3/mina/m) are fitted parameters; and fo (m3/min/m) is
the steady-state or basic infiltration rate for the soil. This equation is well suited
to most soil types as it takes into consideration the basic infiltration rate. Failure
to do this can lead to an underestimation of the cumulative intake (Hanson et al.
1993).

The second part of the inverse solution is a representation of the distribution of
water temporarily stored on the surface of the furrow or bay. This links the
infiltration equation to measurable parameters such as the inflow, surface water
depth and the irrigation advance. This component of the solution usually takes
the form of either a volume-balance model (consisting of the continuity equation
only), or hydrodynamic advance model (consisting of a continuity equation and a
momentum equation).

4.2.1 Objectives of calibration module development
The primary goal of the research in this chapter is to develop a calibration
module for estimating soil infiltration (and roughness parameter) capable of
being implemented into a decision support system for furrow and border
irrigation. Specific objectives of the calibration module are:

• Unique infiltration and roughness parameters must be determined
without user intervention;

• It must be capable of using any form objective-function (and hence
measurement data) including those based upon advance and/or runoff
data;

• It must be able to include any combination of soil and/or roughness
parameters.

4.2.2 Elements of the calibration module
The calibration module required for solving the inverse problem to estimate soil
infiltration and roughness parameters is composed of five principal components
(Figure 4.1):

• calibration parameters;
• a simulation engine;
• field measurements;
• an objective-function; and
• an optimisation engine.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 97

Figure 4.1: Fundamental components of the calibration module.

The calibration parameters represent the soil infiltration and/or hydraulic
roughness parameters that we wish to estimate. The simulation engine is
required to provide the simulated outputs to compare with the field
measurements. The field measurements include data such as advance-
trajectory, surface water depths, recession-trajectory and/or runoff hydrographs.
The objective-function calculates the error between the field measurements and
simulated outputs. The optimisation engine is the computer algorithm that
manipulates the calibration parameters in order to minimise or maximise the
objective-function response without user intervention.

The conceptual input/output functionality of the calibration module is displayed
in Figure 4.2. This suggests that the calibration parameters such as a, k, fo
and/or Manning n are passed into the optimisation module. An objective-function
is also required as input to the module. These input choices can be selected by
the user through an appropriate graphical user interface. The calibration process
is then performed by automatically curve-matching the measured and predicted
advance and/or runoff data. The calibrated parameter values are then presented
as output from the module, and returned to the decision support system.

Optimisation
Engine

Manipulates the
calibration

parameters and
evaluates system
response to solve

the inverse-
problem

Objective Function
Calculates sum of the squares of the error between measured and
simulated outputs.

Simulation Engine
Simulates furrow irrigation based on the current value of
the design parameters.

Calibration Parameters
Variables of interest, that we wish to estimate.

Field Measurements
Can include measurement such as advance trajectory,
surface water depths, recession trajectory, or runoff
hydrographs.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 98

Figure 4.2: Conceptual input/output functionality of the Calibration module.

4.2.3 Limitations of existing techniques
Inverse techniques have proven the most popular and reliable methods of
parameter estimation of soil infiltration and hydraulic roughness parameters.
However, despite all of the methodologies available, there is currently no “best”
method for determining these parameters. This is evidenced by recent work by
the US Water Conservation Laboratory who is developing a new software tool for
estimating infiltration and roughness parameters (Tamimi et al. 2003). The
software has two goals: firstly, to provide a tool for evaluating different
parameter-estimation methods in order to develop recommendations and
guidelines; and secondly, to apply the most appropriate methodology for the
data which is available.

The main problem with the existing methods is that they typically provide only a
crude “calibration” of the target simulation model. Inaccuracies result from
differences between the calibration and simulation model structures, ineffective
solution techniques, and a deficit of reliable input data.

Despite recent attempts at combining optimisation algorithms with hydrodynamic
and zero inertia models, the two-point method (Elliot and Walker 1982) has been
the most commonly used technique to solve the inverse problem. This is partly
due to the simplicity of the two-point method not requiring specialised software
making it cheap and easily accessible. It is regularly taught in irrigation courses
and is included in many irrigation texts. In comparison, the software-based
optimisation techniques have not been made readily available to the public
suggesting that problems outlined in the literature may be more serious than
indicated. As well, the data requirements of the two-point method are minimal
compared to many of the alternatives. Those techniques requiring the
measurement of a surface depth profile are the least practical as this is a
relatively complicated and expensive task.

Because only two points on the irrigation advance are used in the two-point
method, a possibility for error exists if either of the points is not representative of
the advance. Although only two points are required, the method still remains
information expensive in that the basic infiltration rate and cross-sectional area

Calibration Module
Links the simulation

engine with an
optimisation algorithm

Soil
Parameters

e.g. a, k, fo and/or
n

Objective Fn.
(based on
advance

and/or runoff)

Calibrated
Parameters

e.g. a, k, fo and/or
n

Inputs Outputs

User Defined

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 99

still need to be measured. Errors in the measurement of these quantities can
lead to inaccuracies in the infiltration parameter values.

A limitation of all but the latest methods involving optimisation is that they
require a lot of input data including advance measurement, surface depth
profiles, inflow and outflow hydrographs. Temporal variations in the infiltration
parameters are also important. The infiltration conditions of the soil tend to
change between irrigation applications due to factors such as initial moisture
content and degree of compaction. Therefore the infiltration parameters should
be measured while the particular irrigation event is in progress. With existing
optimisation methods there are typically three factors hindering this operation
including the low speed of optimisation, the need for user intervention, and the
need to measure fo .

4.3 Preliminary study – INFILT volume-balance solution technique
As a preliminary study towards developing the calibration module for the decision
support system in this dissertation, a simple volume-balance technique (INFILT)
was developed to overcome many of the problems associated with the existing
inverse techniques7. During the early stages of this research, it was not known
whether structural differences between the simulation model (hydrodynamic
model) and the inverse method (volume-balance model) would introduce
significant errors in the simulation results. While the findings of this initial work
were promising, it was subsequently found that these structural differences
needed to be accounted for in the simulation model by adjusting the Manning n
parameter (see Appendix 2.2). Nevertheless, this study was invaluable in
developing the optimisation code used in the decision support system and for
identifying the problems associated with the determination of the infiltration
parameters.

The INFILT method couples a volume-balance model with an optimisation
algorithm to minimise the error between the predicted and measured advance.
The method differs from existing approaches in that only advance data and
inflow rates are required. The average cross-sectional area of the furrow and the
final infiltration rate are treated as fitted parameters and need not be measured.

The method improves on the two-point method using a model of similar form. It
utilises the full irrigation advance (at least two advance points) while data
requirements are reduced substantially by the omission of the need to measure
the flow-area and final infiltration rate. This is possible through using an
optimisation technique to find the values of the three infiltration parameters and
the average cross-sectional area of flow.

By including the cross-sectional area of flow as one of the fitted parameters, it is
treated empirically rather than as a physical parameter. Its resulting magnitude
will then reflect the effect of spatial changes in the above-mentioned variables.

7 This work was developed into a stand-alone software package called INFILT and published in
the Journal of Irrigation Science (McClymont and Smith 1996).

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 100

The method may be suited to automation or real time control. A barrier to these
processes is that the solution technique undertaken must provide the results
quickly and without human interaction. Therefore a simple optimisation
procedure is also required. However, the main purpose of the method is for
application in conventional manually controlled surface irrigation, and the
optimisation procedure described is well suited for either purpose.

4.3.1 Derivation of method
The proposed method follows from that of Smith (1993). It is based upon the
volume-balance equation derived by Elliott and Walker (1982) for the two-point
method, and is only applicable while there is no runoff from the end of the field.
This volume-balance model is simply stated as:
Q t V Vo I S= + ... (4.2)

where Qo is the inflow (m3/min); t is the time (min) since commencement of the
irrigation; VI is the volume (m3) of water infiltrated; and VS is the volume (m3) of
water temporarily stored on the surface.

Eqn. 4.2 is modified by the substitution of τ = −t tx to give Eqn. 4.3:
I k t t f t tx x

a
o x= − + −() () .. (4.3)

where Ix is the depth of infiltration (m) at a distance x (m) from the top of the
field, and tx is the time (min) for the advance to reach the distance x
downstream. Eqn. 4.3 can be expressed in terms of x by assuming that the
advance follows a power function relationship:
x ptx

r= ... (4.4)

where r and p are empirical parameters. Substituting this into Eqn. 4.3 and
integrating over the wetted length of the field determines the total volume VI of
water infiltrated in time t:

V I dxI x

x

= ∫
0

... (4.5)

The parameter p disappears in the integration. The volume of water VS stored on
the surface can be calculated from:
V A xS y o= σ .. (4.6)

where σ y (dimensionless) is a surface storage shape parameter; and Ao is the
average cross-sectional area of surface water at the upstream end of the furrow
or bay.

Substitution of Eqn. 4.5 and Eqn. 4.6 into Eqn. 4.2 gives the volume-balance
equation as used in the two-point method of Elliott and Walker (1982):

Q t A x kt x f tx
ro y o z

a o= + +
+

σ σ
1

... (4.7)

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 101

where σ z (dimensionless) is subsurface storage shape parameter and is given
by:

σ z
a r a

a r
=

+ − +
+ +

()
()()

1 1
1 1

.. (4.8)

To solve the above equations for the infiltration parameters, an objective-
function is formulated based upon minimising the sum of the squares of the
error between the predicted and measured advance. Eqn. 4.7 is rewritten as;

r
tfktA

tQx
oa

zoy

o

+
++

=

1
σσ

.. (4.9)

The objective-function is then;

SSE x
Q t

A kt
f t

r

i
o i

y o z i
a o ii

N

= −
+ +

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
=
∑

σ σ
1

1

2

a minimum .. (4.10)

where xi the measured advance distance and ti is the measured time at advance
point i; and N is the total number of advance points.

To apply the method, a power curve regression first needs to be undertaken to
calculate r from Eqn. 4.4. It is preferable that a non-linear regression technique
be employed rather than the log-transformed linear regression as used in the
two-point method. It was found that the simple log-transformation procedure
placed too little emphasis on the later advance points. This could also be
overcome using a weighted log-transformation.

A second non-linear optimisation (Eqn. 4.10) is then used to determine the four
parameters a, k, fo , and σ y oA .

4.3.2 Optimisation technique
In the early stages of this development, a computer program was written to test
different optimisation algorithms. The Steepest Descent and Newton's methods
of optimisation were initially employed to solve for the infiltration parameters. It
was found that the Steepest Descent method provided reasonable results,
although optimisation times were often long with thousands of iterations
required. Newton's method failed to converge on the optimum solution when
attempting to solve for four parameters.

A new procedure was therefore developed with the main goals of robustness and
global convergence. This new method avoids the calculation of derivatives
through a “common sense” approach of “forcing” the objective-function to
decrease by changing the design parameters individually. This process
undertakes several separate optimisations with only one design parameter
changing in each. However, this process by itself is extremely slow. To increase
the rate of convergence and to adopt the nature of a gradient search method,
the routine follows up the individual changes with a “group” parameter change.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 102

This is undertaken by changing all of the parameters together in the direction of
the resultant vector obtained from the sum of the individual parameter vectors
(Figure 4.3).

Figure 4.3: Step-cycle involved for two parameters

For example, for an objective-function with two design parameters, the steps in
the minimisation process are;
(a) Select initial values for the two parameters.
(b) Change the first parameter until the objective-function can be lowered no

further.
(c) Change the second parameter until the objective-function can be lowered no

further.
(d) Change both parameters as a group in the direction of the resultant vector

from Steps 2 and 3 until the objective-function can be lowered no further.
(e) Repeat (b) to (d) until the optimum design parameters have been found.

This method has the advantage over traditional methods in that it is
mathematically simple and forces the objective-function to increase/decrease
with the individual parameter changes.

To test the optimisation method, it was first applied to a well-known test function
for optimisation methods: Rosenbrock’s function:

f x x x x() () ()= − + −100 12 1

2 2
1

2
..(4.11)

where x1 and x2 are the design parameters, and f(x) is the function to be
minimised. Figure 4.4(a) shows the response-surface for this function.

Twenty-five pairs of initial estimates were chosen to test the optimisation method
with each test converging on the true optimum response value. Optimisation
times were less than 4 seconds, running on an outdated Pentium 1 processor. In
each case the final parameter estimates were the same at x1=1.0 and x2=1.0.
Figure 4.4b demonstrates the paths taken by the algorithm for the different
initial starting estimates. Straight lines on the graph indicate rapid convergence.
The curved lines, corresponding to the positive initial estimates of x2, appear to
follow the response-surface contours (Figure 4.4a) and demonstrate the longest
optimisation times.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 103

Figure 4.4: (a) Response-surface of Rosenbrock's function; (b) Response trajectory of 25 sets of

initial starting estimates.

Having developed the optimisation algorithm, it was then applied to solve the
inverse problem using the object-function presented in Eqn. 4.10. The steps
followed in the process were:
Step 1: Initial values are selected for a, k, fo , and σ y oA .
Step 2: Perturbation sizes are set for each parameter. Experience has shown the
following to be suitable starting values:

P

p
p
p

p

a

k

f

A

o

y o

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

σ

0 01
0 0001

0 00001
0 001

.
.

.
.

... (4.12)

Step 3: Each parameter is then individually incremented or decremented by an
integer number j of these perturbations, continuing while the objective-function
(Eq.10) is decreasing, for example:
a a j p SSE SSEi i a a i i= ± × <− −1 1 while ... (4.13)

Step 4: The parameters are then changed as a group by the same individual
amounts as in Step 3, again until the objective-function can be lowered no
further:

X X J P SSE SSEi i

T
i i= +− −1 1 while < ... (4.14)

where:

(a)

(b)

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 104

X

a
k
f
A

J

j
j
j

j

i

i

i

o i

y o i

a

k

f

A

o

y o

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥σ σ

, ..(4.15)

where the integers J are those as determined in Step 3. The effect of changing
the parameters as a group is in effect a pseudo-gradient search method.

Step 5: Steps 2 to 4 are then repeated until the objective-function value can no
longer be reduced by changing the parameters either individually or as a group.
At this stage, the magnitude of the perturbation for each parameter is decreased
and the process repeated. It is recommended that upper and lower limits
(preferably 1 and 0 respectively) can be placed on each parameter during the
optimisation so that unrealistic values are not obtained.

The optimisation process was found to have a wide range of convergence on the
optimum solution. Tests undertaken, using both the upper and lower constraints
as the initial estimates for the four fitted parameters, converged on the same
parameter values as those employing more reasonable intermediate initial
estimates. Optimisation times typically ranged from less than 30 seconds on a
486 computer to under 1 second on a new generation Pentium 4. All tests were
undertaken without user input.

Another advantage of the method is that the user can easily set the values for
any particular parameters. In this way, if the values of fo and σ y oA are known or
can be assumed, the program can mimic the Two-Point method. Similarly
parameters in the Phillip infiltration equation can be determined by setting a to
0.5.

4.3.3 Comparison with other methods.
Advance data and results (Walker and Busman 1990) for four irrigation events
were used to evaluate the method. The infiltration parameter values obtained
from the method are presented in Table 4.1 along with the measured values
published by Walker and Busman and their results for the Simplex and two-point
methods. To further facilitate a quantative comparison (in terms of SSE), values
of σ y oA for each of the published parameter sets were estimated through
optimisation using Eq.4.10, since the authors did not publish the measured
values. These “optimum” values and associated SSE are also presented in Table
4.1.

.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 105

Table 4.1: Parameter and objective-function values for the proposed method compared to the
results from Walker and Busman (1990) (σ y oA and SSE values were calculated for each set).

 INFILT Measured Simplex Two Point
Flowell Wheel

a 0.444 .534 0.530 0.644

k (m3
/min

a
/m) 0.00224 0.00280 0.00280 0.00150

fo (m/min) 0.00033 0.00022 0.00022 0.00022

σ y oA (m
2

) 0.00667 0.00385 0.00385 0.00571

SSE 151.3 1089.78 1089.78 1543.5

Flowell Nonwheel
a 0.788 0.673 0.681 0.698

k (m3
/min

a
/m) 0.00190 0.00220 0.00260 0.00190

fo (m/min) 0.00001 0.00022 0.00015 0.00022

σ y oA (m
2

) 0.00689 0.00698 0.00501 0.00796

SSE 138.4 412.4 287.7 433.3

Kimberly Wheel
a 0.453 0.212 0.084 0.200

k (m3
/min

a
/m) 0.00591 0.00880 0.0160 0.01030

fo (m/min) 0 0.00017 0.00019 0.00017

σ y oA (m
2

) 0.00085 0.00554 0.00251 0.00318

SSE 71.0 1494.1 2866.4 1285.4

Kimberly Nonwheel
a 0.625 0.533 0.514 0.504

k (m3
/min

a
/m) 0.00578 0.00700 0.00850 0.00890

fo (m/min) 0 0.00017 0.00017 0.00017

oy Aσ (m
2

) 0.0035 0.002124 0 0

SSE 91.7 128.4 180.0 176.0

On first inspection, the results from the method seem to differ considerably from
the others. However, evaluation of the method is best undertaken by
substituting the derived parameter values into the target model, the modified
Kostiakov-Lewis infiltration equation (Eqn. 4.1). Figure 4.5 shows the resulting
cumulative infiltration curves

It can be seen from these curves that the results of the method compare
favourably with those of Walker and Busman (1990). The only significant
discrepancy occurs for the Kimberly wheel furrow (Figure 4.5c). Here the
cumulative infiltration differs from the curves of Walker and Busman (1990) by
about 10mm at the intermediate opportunity times. However, the SSE values for
this trial as presented in Table 4.1 indicate that the published results fit the
advance data relatively poorly.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 106

Figure 4.5: Cumulative infiltration curves for the Flowell wheel, Flowell nonwheel, Kimberly wheel,
Kimberly nonwheel furrows, comparing the results of the method to that of Walker and Busman

(1990) (_____ INFILT, _ _ _ _ measured, Simplex, _ . _ . _. _ Two Point).

4.3.4 Volume-balance errors
Volume-balance errors (VBE) were calculated (Eqn. 4.16) at different advance
points for the Flowell nonwheel furrow (Figure 4.6).

 VBE = inflow vol.- (surface storage + infiltrated vol.)
inflow vol.

× 100%(4.16)

A high initial volume-balance error of 20% is indicative of the relatively low
volume of water applied at that point. The remaining errors are relatively low and
support the model's validity.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 107

Figure 4.6: Volume-balance errors for the Flowell nonwheel furrow of Walker and Busman (1990)

4.3.5 Objective-function response-surfaces
The best way of evaluating the performance of an optimisation-based solution
technique is to generate a response-surface for the design parameters, in order
to visually validate the optimised results. This is simple when there are only two
design-parameters, which can be evaluated in the form of a single three-
dimensional surface, or as a contour-plot in two dimensions. However, the
situation becomes complicated when there are more than two design-
parameters, leading to a solution space greater than that which we can
physically visualise. In this case-study example, we have four design-parameters
(a, k, fo and σ y oA) leading to a solution space in five dimensions.

To overcome this problem, a range of response-surfaces was plotted for
combinations of the various parameters (Figure 4.7). The two parameters not
shown on each surface were held constant at their optimum values. To display
the full range of possible SSE values over the selected parameter range, the
logarithm of the error was plotted on the vertical axis.

Figure 4.7a shows a strong parabolic relationship between the a and k
parameters with a well-defined minimum. However, the a- fo and k- fo surfaces in
Figure 4.7b and Figure 4.7f show long valleys corresponding to relatively fixed
values of a and k respectively. This would suggest that the objective-function is
less sensitive to changes in the fo parameter.

 An obvious potential limitation of the method is that the σ y oA parameter, which
represents the amount of water stored on the surface, is treated empirically. If
the value is not correct in a physical sense, then the predicted infiltration may be
affected. However, it can be seen from the surfaces showing the influence of the
σ y oA parameter (Figure 4.7c to e) that there is a true minimum on which the
optimisation process can focus. This characteristic provides some reassurance
that including the σ y oA parameter in the optimisation is a viable option, and that
the values obtained should be realistic.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 108

Figure 4.7: Objective-function response-surfaces for the Flowell nonwheel furrow of Walker and
Busman (1990).

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 109

By treating σ y oA as an empirical parameter, the method accounts for variations
in geometry (slope, cross section, roughness) along the length of the furrow
better than is possible by the use of an assumed σy with a measured Ao.

The treatment of fo as an empirical parameter is only likely to become a problem
with high infiltration soils involving short advance times. Under these
circumstances, the fitted value may tend to zero and be much lower than the
true physical value. This difficulty arises due to the inability of the model to
differentiate between the transient and steady state components of infiltration at
short advance times. This observation is in agreement with Bautista and
Wallender (1993b) who found that the reliability of the parameter estimates
increased for relatively long advance times.

4.3.6 Data handling
Two facets of the proposed technique that warrant consideration, and that are
universal to all similar calculation methods, are the use of unconditioned data,
and the sensitivity of the model to measurement errors.

The temptation to condition the data arises from a desire to make the
optimisation process as efficient as possible; this efficiency being measured in
terms of the speed and reliability of convergence, and in the accuracy of the
results. Possible data conditioning strategies include;

• the use of an optimum number of advance points;
• the deletion of early advance data points; and
• the use of smoothed advance data.

It is reasonable to assume that the optimum number of advance measurements
required for the solution technique will vary according to the quality of advance
data. As a general rule, the use of a small number of advance points will lead to
fast convergence on a solution. A greater number of advance points are needed
to maintain accuracy in the presence of noisy or imperfect data. However, an
excessive number of advance points may complicate the optimisation process so
that the true optimum may not be found, hence reducing the accuracy of the
solution.

Deletion of the early time advance data was investigated. It was found that the
optimisation time was greatly reduced without significantly altering the results,
indicating that less importance can be placed upon early advance data. This is in
general agreement with the work of DeTar (1989) who suggested that data from
the first quarter of the field could be neglected.

The Flowell nonwheel advance data from Walker and Busman (1990) were also
used to determine the effect on the solution of smoothing the advance data. The
power advance curve determined in the initial regression was used to generate
pairs of advance data (x and t) for the subsequent optimisation process.
Convergence on the solution was improved using the smoothed data. However,
the cumulative infiltration curves (Figure 4.8) generated from the measured and
smoothed advance data differ considerably over the full application duration.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 110

Figure 4.8: Cumulative infiltration curves for original and smoothed Flowell nonwheel advance

data of Walker and Busman (1990) (______measured;smoothed)

This difference is not an argument against smoothing but an indication of the
limitations of the power curve to represent the advance and warrants further
investigation. That the proposed method can handle a degree of noise without
conditioning of the data is adequate demonstration of its utility. However, the
reliability of the solution will still depend on the quality of the input data.

The only input data required by the method are the inflow rate and the advance.
It is the measurement of the inflow rate that is most likely to be a source of error
in determining the parameters. Errors in the measurement of the advance are
not cumulative, and the model is designed to handle such noisy data.

To show the effects of inflow measurement errors, the inflow for the Flowell
nonwheel furrow (Walker and Busman, 1990) was varied by ±10%. The resulting
effect on the parameters can be seen in Table 4.2. In all three cases, the
proportion of water on the surface remains the same at a given point in time
(t=432min). Therefore increasing the inflow rate effectively increases the
volume of water predicted on the surface and vice versa.

Table 4.2: Effect of flowrate variations on the resulting parameter values for Flowell nonwheel
furrow data from Walker and Busman (1990). The measured inflow is varied by ±10%.

% of measured inflow 90% 100% 110%

Inflow (m3/min) 0.108 0.12 0.132

a 0.790 0.791 0.791

k (m3/mina/m) 0.00171 0.00190 0.00208

fo (m/min) 0 0 0

σ y oA 0.00621 0.00692 0.00762

SSE (m2) 137.47 137.49 137.43

surface water as % of inflow
at t=432min

3.65%

3.66%

3.66%

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 111

Increasing the flowrate also increases the cumulative infiltration (Figure 4.9). The
resulting infiltration curves differ by nearly 20 mm after 300 minutes; far greater
than that seen in comparing the different calculation methods. We can also infer
that the error induced in the parameters by incorrect inflow measurements is
likely to be greater than that caused by any inability of the method to exactly
model the volume-balance.

Figure 4.9: Effect of flow measurement errors on cumulative infiltration of Flowell nonwheel

furrow of Walker and Busman (1990) at t=432 min (. -10%real flow; _____ real flow; _ . _ . _
+10% real flow)

4.3.7 Findings of the preliminary study
A volume-balance method was developed for the estimation of the infiltration
characteristics of a soil from surface irrigation advance data. Important features
of the method are that it:

• has an optimisation based on minimising the difference between
predicted and measured advance curves which requires no manual
intervention;

• includes the final infiltration rate fo and the average cross-sectional area
of flow σ y oA as parameters evaluated in the optimisation;

• is able to handle noisy advance data effectively without the need to
condition data before use; and

• requires a minimum of field data, but accurate inflow data.

Initial testing of the model indicates that it is a useful tool for determining the soil
infiltration characteristic. Since it was developed, hundreds of copies of the
INFILT software package have been downloaded over the Internet, and it has
been used in university (http://www.usq.edu.au) and training courses
(http://www.ncea.org.au), and also in practice for the last ten years. However,
it must be recognised that since it is structurally different to the target
hydrodynamic simulation model, the potential for error exists when using the
results for any decision support operation. Nevertheless, the cumulative
infiltration curves generated from the method compared well with the measured

http://www.usq.edu.au/�
http://www.ncea.org.au/�

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 112

values, and those from the Simplex and two-point methods. Spatial variations in
the geometric and hydraulic properties of the furrow should be accounted for and
reflected in the infiltration parameter values through the inclusion of σ y oA as a
derived parameter.

The simple optimisation algorithm developed for use in the method was found to
be more reliable than the Newton and Steepest Descent methods. The speed,
accuracy, and wide range of convergence of this algorithm may make the model
suitable for use in real time control of furrow and border irrigation. It was decided
that it is also suitable for inclusion in the hydrodynamic inverse solution
developed in the next section.

4.4 FIDO hydrodynamic inverse technique
The optimisation methodology used in deriving the INFILT technique can be
extended to determine the infiltration and hydraulic roughness coefficients using
the full form of the hydrodynamic model. This overcomes the common problem of
calibrating using one model (volume-balance model), and simulating with
another model (hydrodynamic model). With this new methodology, the same
model is used for both simulation and calibration.

In this instance, no time-of-advance equation is available to generate the
advance profile. Complete simulations need to be performed, and the simulated
advance (and/or runoff) trajectory extracted and compared with the measured
data. Because all of the irrigation phases can be generated during the
simulation, a range of objective-functions could be used in the calibration based
upon the advance, recession, surface storage, and runoff, or combinations of
each.

4.4.1 Algorithm design considerations
Using complete simulations during the calibration process introduces many new
algorithm design considerations when compared to using a simple time-of-
advance equation. While there are many benefits from using complete
simulations during the optimisation, the solution process is generally much more
complex, and many times slower than time-of-advance techniques.

One problem is that simulated outputs typically contain a degree of noise related
to the discretised-solution process, which could impede the optimisation
algorithm from finding the global minima. This manifests itself in the form of a
rough uneven response-surface with bumps and pits which researchers
commonly (and often wrongly) refer to as local minima.

Another problem can exist where the spatial or temporal locations of the
measured data do not coincide with the simulation outputs. Interpolation
algorithms such as cubic-splines must then be used to match pairs of data. This
is more complicated when the simulated advance doesn’t reach the measured
node locations, as the response-surface must be generated using an equal
number of measurements stations for each iteration of the calibration. A

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 113

negative advance (front end recession) can also occur during simulations that
must be taken into consideration.

However, one of the main benefits of using the more complex approach is for the
common case when the inflow is cutoff before the advance reaches the end of
the field. Simultaneous advance and recession is likely to occur which cannot be
adequately treated using the time-of-advance methods.

4.4.2 Derivation of FIDO hydrodynamic inverse method
The procedure for solving the inverse technique using the hydrodynamic-model is
the same as that defined in Steps 1-5 in Section 4.3.2, except that the objective-
function is now different and results from complete or near-complete simulations
of the irrigation. Cubic-spline interpolation is used to match pairs of measured
and predicted data, while penalty functions are introduced to ensure consistent
data counts when comparing measured and predicted data.

The objective-function is determined by the availability of input data and is
defined as the sum of the square of the errors between the measured and
predicted data. The model can be calibrated using advance data, runoff
hydrograph data, or a combination of both8. If runoff data are not available, then
only the advance phase(s) of the simulation will be used in the calibration. If
runoff data exists, then all phases of the simulation are included.

Any of the three parameters of the modified Kostiakov-Lewis infiltration equation
can be included in the optimisation along with the Manning n roughness
coefficient. The flexibility of the optimisation algorithm allows easy
selection/deselection of calibration parameters.

4.4.3 Developing an object-oriented structure
The FIDO calibration component has been developed using an object-oriented
structure in the C++ language. Some of the benefits of using an object-oriented
design were discussed in Chapter 3. In this example, reusability of the objects is
an important design consideration since the simulation engine, optimisation
engine and objective-function objects will be reused by other components of the
decision support system.

Figure 4.10 shows an overview of the object-oriented components of the
calibration module including:

• a calibration manager, for overseeing the operation of the calibration
process, and providing all input/output functionality of the system;

• an objective-function module, for storing different objective-function
objects including those based upon the advance, runoff, and combined
advance and runoff;

8 The surface profile and/or complete recession trajectory could also be used but are less
suitable to incorporate into objective functions since they are more difficult, and time-consuming
to measure in the field. Implicitly, by including runoff as a component of the calibration, the final
advance and recession times are automatically accounted for. Therefore, when runoff data is
used, it could be argued that the calibration is also being performed on the recession.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 114

• a simulation engine, for determining the simulated output;
• simulation parameter objects, which are the data storage containers for

all of the simulation data including the measured data (advance, runoff
etc) and calibration parameters; and

• an optimisation engine, which controls the optimisation process. This
contains special parameter objects for linking to the calibration
parameters and a pointer to the selected objective-function.

Figure 4.10: Object-oriented components for calibration module.

The optimisation parameter objects (called TOptimisationParameter)
contained in the optimisation engine, are specially design “intelligent” objects
that have multiple roles. They contain much of the functionality for linking the
optimisation engine to the calibration parameters, as well as storage facilities for
tracking parameter changes during the optimisation. They also contain many
methods for interacting with the optimisation.

4.4.4 Calibration module algorithm
Figure 4.11 outlines the model algorithm used by the calibration module when
estimating the soil infiltration and/or hydraulic roughness parameters. The
algorithm revolves around one main loop for iterating through a range of data-
files. This allows many calibrations to be performed in one go, simplifying the
task for the user.

TOptimisationEngine
Performs optimisation

TCalibrationManager
Contains links to data, objective
function module, and optimisation
engine. Controls the data input/
output to the calibration.

Pointer linkages to
calibration-

parameters and
objective function

TObjectiveFunctionModule

Contains all of the different objective
functions for optimisation, calibration and
response-surface generation.

Advance Function

Runoff Function

Advance/Runoff Function

TSimulationParametersObject

Stores simulation data including the
calibration parameters

Kostiakov a

Kostiakov k

Kostiakov fo

Manning n

TSimulationEngine
Runs the simulation

Optimisation Parameter 1

Optimisation Parameter 2

Optimisation Parameter 3

Optimisation Parameter 4

Measured Data
i.e. advance, runoff hydrograph

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 115

FIDO Main Calibration Algorithm

1. Get User Input - Get user input for the objective-function and design parameters.
2. Reset system –resets parameters, timer, and calibration progress
3. Load Objective-function –load the user-selected objective-function
4. Alert User – lets user know of impending calibration, changes cursor etc.
Iterate through datasets that need calibrating

5. Load current data-set –if necessary, opens file and allocates memory for parameters
6. Create optimisation objects -these objects link the calibration parameters to the optimisation
If current data-set is ready to be calibrated
 7. Connect data-set to optimisation objects - establishes linkages.
 8. Run optimisation
 9. Update calibrated parameters into database – store results but keep original parameters..
10. Alert user to calibration progress. – update progress, provide message.

11. Finalise system –perform summary calculation, stop time, alert user

Figure 4.11: Calibration module algorithm

4.4.5 Objective-function algorithms
Advance-based objective-function
An objective-function based upon advance measurements aims to minimise the
sum of the squares of the error between the measured and predicted advance
times for different measurement stations. Figure 4.12 shows the algorithm for
this function. When the function is called, the simulation engine and the
objective-function error value are initially reset. The simulation is then performed
and checked for successful completion. In the unlikely event that the simulation
fails, a default penalty error is assigned to the function response.

The simulation solution nodes are not expected to coincide with the advance
measurement stations. Therefore, the simulated advance trajectory is loaded
into a special array for generating cubic-splines, in order to match up the spatial
locations of the measured and predicted advance points for the objective-
function calculations.

In the case where infiltration is very large, and the simulated advance does not
reach some of the measured advance stations, the last predicted advance point
can be repeatedly used as the reference point for calculating the error when
iterating through the remaining advance stations. In effect, this introduces a
significant time penalty to the function while the time-gap increases between the
later advance measurements and the final simulated advance location.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 116

Figure 4.12: Objective-function algorithm for advance data.

Runoff-based objective-function
Objective-functions based upon runoff hydrograph measurements can be derived
in two different ways: firstly, by minimising the error between the measured and
predicted runoff rates at each time-step; and secondly by minimising the error
between the measured and predicted runoff volumes for each time-step. It was
decided to use the second approach for the decision support system, since this
is easier to calculate, and is less likely to be influenced by noise and
discretisation errors.

Figure 4.13 shows the algorithm for the suggested runoff-based objective-
function. As in the previous example when the function is called, the simulation
engine and the objective-function error value are initially reset before running the
simulation and checking that it performed correctly. If successful, the simulated
runoff hydrograph is loaded into a special array for performing cubic spline
interpolations before calculating the error value.

Advance-based Objective Function Algorithm
Set SSEAdvance = 0.
Reset Simulation
Load New Parameters
Run Simulation
IF(Simulation was successful)
{

Generate Advance Curve Fit (Cubic Spline)
For(x=0 to number of measured data)
{

 If (Front end recession has not occurred)
 {

if(Last simulated Advance point<Last measured Advance Point)
{

SSEAdvance = SSEAdvance + (MeasuredTime(x) – InterpolatedTime(x))2
}
else
{

SSEAdvance = SSEAdvance + (MeasuredTime(x) – InterpolatedTime(last))2
This penalises the response values since the change in time will become very large.

}
}

}
}
Else
{

SSEAdvance = NULL This leaves a hole in the response-surface which the optimisation penalises.
}
Return the result to the optimisation algorithm.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 117

Figure 4.13: Objective-function algorithm for runoff data.

Combined “advance and runoff”-based objective-function
The objective-function based upon both advance and runoff data is more
complex than in the previous examples because it is composed of both time-
based and volume-based quantities. Therefore, user-defined weighting
coefficients are introduced to equalise the relative magnitudes of the two error
quantities.

Figure 4.14 presents the algorithm for this function. The procedure follows that
of the previous objective-functions where advance and runoff errors are
calculated as before. The resulting error portions are then multiplied by the
weighting coefficients before being added together.

Runoff-based Objective Function Algorithm
Set SSERunoff = 0.
Reset Simulation
Load New Parameters
Run Simulation
IF(Simulation was successful)
{

Generate Runoff Curve Fit (Cubic Spline)
For(t=0 to number of measured data)
{

SSERunoff = SSERunoff + (MeasuredVolume(t) – InterpolatedVolume(t))2
Note: if the last simulated time is less than the last measured time, then the
interpolated volume will be 0 for that time, and no penalty function needs
to be introduced.

}
}
Else
{

SSERunoff = NULL This leaves a hole in the response-surface which the optimisation penalises.
}
Return the result to the optimisation algorithm.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 118

Figure 4.14: Objective-function algorithm for combination advance and runoff data.

4.4.6 Achieving operational efficiency
One of the problems with using an objective-function based upon complete
simulations of the hydrodynamic model is that convergence on the optimal
solution is slowed down due to the time it takes to undertake individual
optimisation iterations. Optimisations are typically an order of magnitude slower
using the hydrodynamic method than compared to using objective-functions
based upon time-of-advance equations. In early testing of this research, it was
immediately apparent that this could limit the functionality of the decision
support operations with some calibrations taking over ten minutes to complete
(with an average time of approximate two minutes) using a modern Pentium 4
processor. Processing times were highly dependent on the quality of the initial
parameter estimates for the optimisation.

Another problem is that despite all of the robustness measures encapsulated in
the simulation engine, it could not always handle the extreme conditions that it
was sometimes asked to simulate. For example, unrealistic parameter
combinations are often encountered during the optimisation process

Advance and Runoff-based Objective Function Algorithm
Set SSERunoff = 0
Set SSEAdvance = 0
Set SSETotal = 0
Reset Simulation
Load New Parameters
Run Simulation
IF(Simulation was successful)
{

Generate Advance Curve Fit (Cubic Spline)
Generate Runoff Curve Fit (Cubic Spline)
For(x=0 to number of measured data)
{

 If (Front end recession has not occurred)
 {

if(Last simulated Advance point<Last measured Advance Point)
{

SSEAdvance = SSEAdvance + (MeasuredTime(x) – InterpolatedTime(x))2
}
else
{

SSEAdvance = SSEAdvance + (MeasuredTime(x) – InterpolatedTime(last))2
This penalises the response values since the change in time will become very large.

}
}

}
For(t=0 to number of measured data)
{

SSERunoff = SSERunoff + (MeasuredVolume(t) – InterpolatedVolume(t))2
Note: if the last simulated time is less than the last measured time, then the
interpolated volume will be 0 for that time, and no penalty function needs
to be introduced.

}
SSETotal= w1 x SSEAdvance + w2 x SSERunoff
Where w1 and w2 are user-defined weighting coefficients.

}
Else
{

SSETotal = NULL This leaves a hole in the response-surface which the optimisation penalises.
}

Return the result to the optimisation algorithm.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 119

representing extremely high infiltration conditions. In this situation, the irrigation
advance may only travel a few metres down the furrow, with several metres of
infiltration occurring. While a simple time-of advance equation can adequately
find a solution to this, it is outside of the operational range of the hydrodynamic
model as configured for the decision support system9.

Therefore, to improve the operational efficiency of the calibration module, it was
decided to combine both of the methods developed in this chapter. That is, the
INFILT method was incorporated into the calibration module to provide “good”
starting parameter estimates for the optimisation involving the hydrodynamic-
based objective-function. As well as speeding up the optimisation, this avoids the
likelihood of the hydrodynamic-based objective function having to simulate any
extreme infiltration conditions.

The two-stage methodology is characterised by a spike in the objective-function
output during the optimisation when the objective functions are switched; that is,
when the volume-balance calibrated parameters are inputted into the
hydrodynamic-based objective function. This is an indication of the error
associated with performing a calibration using a method with a different model
structure to the target simulation model. Figure 4.15 demonstrates this effect by
showing the output10 of a typical advance-based calibration, with an annotation
showing the transition (spike) between objective-functions.

Figure 4.15: Advanced calibration output showing parameter and objective-function variations

during optimisation. Arrow indicates the transition from the INFILT method to the
hydrodynamic-based objective function.

9 With extra refinement, it could be configured to handle this situation.
10 This is an advanced-user analysis in FIDO, and is not normally displayed as part of the
calibration process.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 120

4.4.7 Response-surfaces
The surfaces generated during the initial case study in this chapter (Figure 4.7)
presents one way of investigating the system response and optimisation
accuracy by plotting a response-surface for each combination of the design-
parameters. However, the true nature of the global minima remains unclear in
these outputs, since many different reference coordinate systems are used when
switching parameter-axis relationships. One way to overcome this is to generate
a series of response-surfaces for the two most sensitive parameters (a and k),
with separate surfaces presented for different combinations of the remaining
design parameter (fo).

Figure 4.16 presents an example of this analysis for the hydrodynamic form of
the advance-based objective-function11. To improve visualisation of the outputs,
the objective-function values are represented as the “log” of the sum of the
squares of the error between the measured and predicted advance. Each surface
represents a different value of Kostiakov fo, and is generated by systematically
varying the Kostiakov a and k parameter values.

These results prove that there is a true global minimum for the optimisation
process to focus. It lies within a sharp deep parabolic-shaped value valley, which
flattens and increases in magnitude for non-optimum values of fo. The surfaces
appear to be “smooth”, but closer inspection reveals some surface roughness,
which is not expected to impede the optimisation process.

4.5 Validation
Validation of the hydrodynamic inverse technique with the advance-based
objective-function was performed within the FIDO decision support system by
running calibrations for real field data (thirteen irrigations), and investigating the
simulated advance-curves based upon the calibrated modified-Kostiakov
infiltration parameters12. The results of this validation are presented in Appendix
4.1 with a sample output presented in Figure 4.17. For comparison, and to show
the error inherent with mixing model structures, the simulated output for the
INFILT-calibrated infiltration parameters are shown in red on the charts.

These results show perfect agreement between the measured and simulated
outputs based upon the hydrodynamic method, while the INFILT-based results
often show significant deviation from the measured advance. In earlier research
with the INFILT method, this was accounted for by performing a second manual
calibration by adjusting the Manning n parameter when the calibrated infiltration
parameters were entered into the simulation model (see Appendix 2.2). The new
method alleviates the need for this, both simplifying the calibration process and
providing a more accurate result though computer based-optimisation.

11 Results for the other objective-functions have not been included in this dissertation, and will be
followed up with future studies.
12 For this study, the Manning n parameter was not included in the calibrations. Also, the
recession-based objective-functions were not evaluated and will be followed up with later studies.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 121

Figure 4.16: Hydrodynamic response-surface investigation for different values of Kostiakov fo.
Note that the spikes in the response-surface are artefacts of the grid size, and do not indicate

local (or multiple) minima.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 122

Measured
Advance

x(m) t(min)

100 234

200 426

300 724

400 988

500 1246

Flowrate (m^3/sec) 0.00194167 NOTE: INFILT value
=1.941667 l/sec

Time-to-cutoff
(mins)

1690 NOTE: SIRMOD value =1690
mins Old Value 1689

Field-length (m) 520
Field-slope 0.00151
Manning n 0.03

Kostiakov a 0.09162 Previous:
0.10155

Kostiakov k
(m^3/min^a/m)

0.15781662 Previous:
0.13916

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 280 NOTE: SIRMOD value =0.28
m Old Value 0.111

Furrow top width (m) 0.72
Furrow mid width

(m) 0.48
Furrow bot width (m) 0.3

Furrow max depth
(m) 0.2

Figure 4.17: Sample calibration output. The red advance curves result from the INFILT
calibration, while the blue curves result from the hydrodynamic calibration.

An important aspect of the validation that is not shown by these outputs is that
the entire operation was performed using a single mouse-click without user
intervention. This was performed by clicking on the “Calibrate” hyperlink for the
property data record in the FIDO decision-support system (see Chapter 7 for
more information). The total calibration time was under fifteen minutes for the
thirteen sets of data (on a Pentium M 1.6GH processor).

4.6 Conclusions
Two new optimisation-based inverse methodologies were developed for
determining the infiltration properties (and in the second method, hydraulic
roughness) of the soil. The first method uses a volume-balance time-of-advance
equation with a purpose built optimisation algorithm requiring a minimal number
of field measurements. The method was found to be reasonably accurate, fast
and reliable (the method has successfully been used in practice for the last ten
years), although structural differences between it and the hydrodynamic
simulation model were identified as a potential source of error.

The second method uses the same optimisation algorithm with the full
hydrodynamic model in the objective-function calculations. This requires
simulations to be run for each optimisation step, allowing a range of objective-
function types to be used. This allows field measurements other than the
advance to be used in the calibration whilst also accommodating situations
where the inflow is cutoff before the advance reaches the end of the furrow. The
hydrodynamic method was found to be accurate, but an order of magnitude
slower than the volume-balance method. It was therefore decided to use the two
methods in tandem during the solution process. Therefore, the faster volume-

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 123

balance method is first used to determine an approximation of the solution
parameters, before using these results as input for the hydrodynamic method.

This technique proved reliable with a validation of the hydrodynamic inverse
method (advance-based objective function) showing that the simulated outputs
from the optimised infiltration parameters provided excellent agreement with the
measured advance. Simulated outputs from the INFILT-calibrated infiltration
parameters showed poorer agreement with the measured advance highlighting
the error that exists when mixing simulation and calibration model structures. A
response-surface investigation of both methodologies identified true minima for
the optimisation to focus upon. Some “roughness” was apparent with the
hydrodynamic method due to numerical discretisation errors; although it is not
thought that this presents a serious problem to the solution process.

Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters

 124

Chapter 5 Automatic optimisation of design and management parameters

 125

Chapter 5 Automatic optimisation of design and
management parameters

5.1 Introduction
The automatic, optimal and reliable determination of design and management
parameters to achieve maximum irrigation performance is a desirable goal in
developing a surface irrigation decision support system. However, it remains a
“stumbling block” for researchers whose attempts have been largely unreliable
and inflexible. While a great deal of research has been undertaken in developing
simulation models, very few have tried to couple these models to an optimisation
algorithm, mainly due to limitations of the underlying model. Also, most of this
research has been directed at maximising economic performance rather than the
engineering performance of the irrigation.

Therefore, the goal of this research is to develop an optimisation-module for the
FIDO decision support to enhance furrow and border irrigation design and
management. In the process, a user-defined objective-function (based upon
maximising the engineering performance of the irrigation system) has been
proposed and tested demonstrating the potential of the methodology, and also
its limitations. It was subsequently found that a range of optimal parameter
configurations exists for this objective-function. Therefore it was recommended
that only one design variable be included in the optimisation process. Response-
surface “roughness” derived from numerical approximations in the simulation
process was also found to impede the optimisation process. A key benefit of the
tool, other than guiding design and management, is automatically benchmarking
the potential performance of the irrigation system.

The research in this chapter has five main objectives: (1) to present a
background of optimisation-module development outlining the design issues
under consideration; (2) to develop a new user-defined objective-function for
optimising furrow and border irrigation performance; (3) to develop an object-
oriented algorithm for implementing automatic optimisation capabilities into the
FIDO decision support system; (4) to evaluate response-surfaces for different
configurations of the objective-function; and (5) to demonstrate the utility of the
new method highlighting its strengths and weaknesses.

Two appendices accompany this chapter. The first presents the results of a
response-surface analysis of different objective-function formulations (Appendix
5.1), and the second presents output from optimisations performed using the
FIDO software (Appendix 5.2).

5.2 Background to optimising surface irrigation practices
Before developing the optimisation-module for the decision support system, the
operational functionality of the module needs to be clearly defined, the

Chapter 5 Automatic optimisation of design and management parameters

 126

objectives of the development identified, the components of the module
recognized, and methodology concerns considered. Each of these will now be
discussed in turn.

5.2.1 What is the automatic optimisation of surface irrigation practices?
In the context of this dissertation, the automatic optimisation of surface irrigation
practices is the process of using the decision support software to automatically
calculate the optimum values of design and management variables to maximise
the “engineering performance” of irrigation systems. This involves the coupling of
an optimisation algorithm to the simulation engine to minimise a user-defined
objective-function based upon four key hydraulic performance parameters
relating to engineering performance; maximise storage efficiency, maximise
application uniformity, minimise runoff, and minimise deep drainage.

The literature review (Chapter 2) showed that most of the irrigation optimisation
procedures have focused upon optimising economic profit associated with
performing the irrigations. In doing so, many authors have linked the hydraulic
simulation model to external factors including crop return, irrigation scheduling,
water quality, and labour and water costs. While this is potentially very powerful,
it was assumed in the current research that maximum economic profit is
inherently highly correlated to the minimisation of water losses while achieving
the required depth of application in a uniform manner. Therefore, external
economic and social factors were not considered as part of this research.

5.2.2 Objectives of optimisation-module development
The primary goal of the work reported in this chapter is to develop an
optimisation-module capable of being implemented into a decision support
system for furrow and border irrigation. This involves (a) coupling an optimisation
algorithm with the simulation engine using an object-oriented programming
structure, and (b) developing an objective-function for generating system
response. The specific performance objectives of the optimisation-module are:

• It must be able to determine the optimum design and management
parameter without user intervention;

• The answer provided must be independent of the parameter starting
estimates input into the optimisation;

• The objective-function should be configurable for a range of design and
management priorities, and also interchangeable with other objective-
function types;

• There should be no restriction on the type of irrigation parameters
included in the optimisation process. A limit on the maximum number of
design parameters will be set to three; and

• The major components of the optimisation-module including the
optimisation algorithm and simulation engine must be interchangeable
with other alternatives for future development.

Chapter 5 Automatic optimisation of design and management parameters

 127

5.2.3 Elements of the optimisation-module
Conceptually, the optimisation-module required for optimising surface irrigation
practices is composed of four principal elements (Figure 5.1):

• decision variables;
• a simulation engine;
• an objective-function; and
• an optimisation engine.

Figure 5.1: Fundamental elements of the optimisation component.

The decision variables represent the model variables of interest that we are able
to change in the field to improve our irrigation performance. In furrow and border
irrigation, this typically includes management variables such inflow-rate and
time-to-cutoff, but could also include field design variables such as field-length
and slope. The simulation engine is required to evaluate irrigation performance
for the given set of decision variables. The objective-function represents a
minimisation or maximisation function that is composed of irrigation
performance values, or possibly external factors including costs associated with
irrigating and growing the crop. The optimisation engine is the computer
algorithm that manipulates the decision variables in order to minimise or
maximise the objective-function, which it must achieve without user intervention.

The conceptual input/output functionality of the optimisation-module is displayed
in Figure 5.2. This suggests that the design or management variables such as
flowrate and/or time-to-cutoff are passed into the optimisation-module. An
objective-function is also required as input to the module. These input choices
can be selected by the user through an appropriate graphical user interface. The
optimisation process is then performed before the optimised variables are
presented as output from the module, and returned to the decision support
system.

Optimisation
Engine

Manipulates the

design parameters
and evaluates

system response to
determine optimal

design.

Objective Function
Calculates system response by evaluating simulated output.

Simulation Engine
Simulates furrow irrigation based on the current value of
the design parameters.

Decision Variables
Variables of interest, that we wish to optimise.

Chapter 5 Automatic optimisation of design and management parameters

 128

Figure 5.2: Conceptual input/output functionality of the optimisation-module.

5.2.4 Methodology considerations
From the review of the literature (Chapter 2), it doesn’t appear that any of the
research into automatic optimisation of furrow and border irrigation design and
management variables has been developed into publicly available software for
decision support. Software such as BORDER (Strelkoff et al. 1996) and
BICADM (Maheshwari and McMahon 1991) do have a similar role but are based
respectively on a stored database of runs, and a regression analysis of runs, for a
fixed number of conditions and do not employ optimisation. No clear evidence
could be found to provide reasons for the lack of progression of the technology,
although it could be inferred that there are problems with the simulation engines,
and/or problems with the optimisation algorithms in the techniques presented.

Conceptually, the automatic optimisation requirement is a simple mechanism. If
the simulation engine is accurate and robust, the optimisation algorithm is
powerful, and the objective-function is well defined, then theoretically,
determining the optimum parameter values should be straightforward. However,
in practice this turns out not to be the case.

Problems can occur at the simulation level. While a simulation engine may prove
robust and reliable simulating normal field conditions, it is very likely that
problems will arise when trying to model the range of parameter combinations
that will be presented during the optimisation. It is an unfortunate reality that
unusual conditions will be presented to the simulation engine at some time
during the optimisation process. While parameters can be constrained to
minimise this, the constraint domain across a multi-parameter spectrum is
dynamic and not rectangular. Therefore, the simulation engine must be robust
enough to handle impractical irrigation configurations.

Problems can occur at the optimisation level. Speed of optimisation and radius
of convergence are issues to be considered. Many methodologies exist that could
be used, with each having different strengths and weaknesses. Modern
optimisation practices often recommend using a combination of methods in
order to take advantage of each method’s strengths.

Optimisation
Module

Links the simulation
engine with an

optimisation algorithm

Decision
Variables
E.g. Qin, tc

Objective
Function

Optimised
Variables
E.g. Qin, tc

Inputs Outputs

User Defined

Chapter 5 Automatic optimisation of design and management parameters

 129

Problems can occur at the objective-function level. There needs to be a unique
minimum or maximum in the objective-function response-surface in order for the
optimisation to determine the optimum parameter values. If a ridge or valley of
peak objective-function values is present (as was found with this research) then
multiple sets of optimum parameter values will exist. The surface also needs to
be smooth and free of local minima. Any roughness in the response-surface that
may occur due to numerical approximation in the simulation procedure could
impede the optimisation process in its trajectory across the surface.

These were all issues faced during the development of the optimisation-module.

5.3 Objective-function formulation
Given that the simulation engine and optimisation algorithm have already been
developed in other chapters of this dissertation, the only new piece of theory that
needed to be developed for the optimisation-module (other than the computer
algorithm) was the formulation of an objective-function for the optimisation.

It was apparent from very early on in this research that the objective-function
should be customisable, due to the range of management conditions that could
be considered. The traditional approach to design and management using
hydraulic simulation models was typically based upon the objectives of
maximising application efficiency, storage efficiency, and distribution uniformity.
However, these objectives can change depending on site constraints (e.g. soil
characteristics, water availability) and management variables (e.g. agronomic
limitations, labour requirements).

For example, over-irrigation is the main contributor to irrigation inefficiencies. An
irrigator typically over-irrigates by at least 30% to achieve the required depth of
application over 80% of the field (Trout 1990). Furrow-to-furrow inflow and
infiltration variations leave portions of the field under-irrigated. The natural
response of the irrigator is to apply more water to maintain crop yields. In this
situation, the management decision that the irrigator is faced with is not one of
improving efficiencies, but one of balancing water and nutrient losses with that of
crop yield.

Another example is where an irrigation system recycles the runoff-water. The
optimisation objective may then require more emphasis on minimising deep
percolation than runoff, whereas a system growing crops sensitive to water
logging would more appropriately be optimised according to opportunity time and
application efficiency. The objective-function chosen will also depend on whether
the user is optimising field design or management practices.

For this research, an objective-function was developed using a weighting system
based on the user-specified preference of minimising runoff, minimising deep
percolation, maximising storage, and maximising application uniformity:

AUwSEw
TV

DPVw
TV
RVwOFV 4321

* 10.1 ++⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −= .. (5.1)

Chapter 5 Automatic optimisation of design and management parameters

 130

where OFV* is the temporary objective-function value that can vary in range from
0 to 1.0; w1,w2,w3,w4 are weighting coefficients that add up to 1.0; RV is the
runoff volume; TV is the total applied volume; DPV is the deep percolation
volume; SE is the storage efficiency; and AU is the application uniformity.

Complete simulations must be undertaken to calculate the objective-function.
For a (theoretically) perfect irrigation with 100% storage efficiency, 100%
uniformity and no losses, the value of OFV* would be equal to 1.0.

Another key consideration in developing the objective-function is that the
advance needs to reach the end of the furrow to avoid having parts of the field
left under-watered. It could not be guaranteed that Eqn. 5.1 would avoid this
occurrence. Therefore, an optional penalty-function can be applied to ensure that
the entire furrow is watered. This is formulated based on two conditions. Firstly, if
the advance has reached the end of the field (or if the penalty-function is
ignored), the objective-function value is calculated as:

*OFVOFV = .. (5.2)

Otherwise, if the field is under-watered, the objective-function value becomes:

0=OFV ... (5.3)

Therefore the objective of the optimisation is to minimise a reconfiguration of the
value of OFV, which is represented by formulation:

[]OFVMinunctionObjectiveF −0.1: ... (5.4)

Alternatively, this could be formulated as a maximisation problem.

Another option that was considered during this research was to constrain the
design based upon individual elements of the objective function. For example,
using storage efficiency as a constraint could be used to insure the completion of
the advance phase, rather than using the penalty function. Individual
performance components could even be removed from the objective function if
used as a constraint. However, the optimisation engine does not consider
“external” constraints in its present form. Therefore it was decided to limit the
study to use the objective function presented above, as it should still be able to
implicitly handle any suggested design and management demands.

5.4 Computer algorithm development
Aspects of the computer algorithm that had to be developed for the optimisation-
module include; an object-oriented structure for performing the optimisation; and
an algorithm for implementing the objective-function.

5.4.1 Developing a structure
The FIDO optimisation-module has been developed using an object-oriented
structure using the C++ language. The benefits of using object-oriented code
have been highlighted in Chapters 3 and 4, and also hold true here.

Chapter 5 Automatic optimisation of design and management parameters

 131

The object-oriented structure required for the developing the FIDO optimisation
component is similar to that developed in Chapter 4 for the calibration
component. The main difference between these structures is that the
optimisation component does not need to incorporate measured data when
calculating the objective-function.

Figure 5.3: Object-oriented components for optimisation algorithm.

The central object in this structure is the TOptimisationManager class
(henceforth known as the optimisation manager). This class contains all of the
functionality to communicate with the decision support system and perform the
task of optimising irrigation practices. It contains pointer links to the
TObjectiveFunctionModule, which is a repository for all the available
objective-function objects. The TSimulationEngine class is linked to each
objective-function and is not required by the optimisation manager. However, the
TOptimisationEngine component is linked to the optimisation manager,
which controls to operation of the optimisation process.

Before optimisation commences, pointer links are used by the optimisation
manager to connect the selected decision variables (from the
TSimulationParametersObject object) and objective-function to the
optimisation engine. The optimisation engine commences operation by changing
the design values and updating the objective-function. Results are stored for
each iteration and the progress is reported back to the optimisation manager,
which passes this information back to the decision support system. When the
optimisation is completed, the new values of the decision variables are stored
alongside their original values (no replacement is undertaken) for further post-
processing and reporting.

TSimulationEngine
Runs the simulation

TSimulationParametersObject

Stores simulation data including the
design parameters

FlowRate

TimeToCutoff

FieldLength

TObjectiveFunctionModule

Contains all of the different objective functions
for optimisation, calibration and response-
surface generation.

PerformanceObjectiveFunction
Operates the simulation engine, to
generate a the objective function value

TOptimisationManager
Contains links to data, objective
function module, and optimisation
engine. Controls the data input/
output to the optimisation.

TOptimisationEngine
Performs optimisation

Optimisation Parameter 1

Optimisation Parameter 2

Optimisation Parameter 3

Pointer linkages to
optimisation-

parameters and
objective function

Chapter 5 Automatic optimisation of design and management parameters

 132

5.4.2 Objective-function algorithm
Figure 5.4 outlines the algorithm used to calculate the objective-function value
for each step of the optimisation. Calculation involves running the simulation
before checking that it was successful. The function will then calculate the
individual performance parameters and temporary objective-function value. If the
advance reaches the end of the furrow during a simulation, the function will
return the temporary value, otherwise it penalises the result (if desired). Once the
new objective-function value is returned to the optimisation algorithm, the
process restarts.

Reset Simulation
Load New Parameters
Run Simulation
if (Simulation was successful)
{
 Calculate Performance Values

 Calculate temporary objective-function value (OFV*)
 Apply penalty function if required, to calculate objective-function value (OFV)

}
else
{
 Objective-function Value = NULL This leaves a hole in the response-surface which the optimisation penalises
}
Return the result to the optimisation algorithm

Figure 5.4: Objective-function algorithm

5.4.3 Optimisation algorithm
The literature review (Chapter 2) has identified that a range of optimisation
techniques have been used to optimise irrigation performance, with no particular
methodology being seen as superior. However, from a programming perspective,
the algorithm chosen must be numerically efficient, and be robust enough to
handle a degree of noise in the results.

Chapter 4 outlined the development of a simple optimisation algorithm designed
to satisfy these requirements through not requiring derivative function
calculations and by forcing parameters to change in the presence of local
minima. The same algorithm is reused here to determine the optimum design
and management parameters for furrow and border irrigation. Other benefits of
this algorithm are that it can easily incorporate any objective-function, and it can
handle any number and type of design variables (without having to redevelop the
objective-function each time).

5.4.4 Decision variable selection and constraints
Due to limitations that will be highlighted in the next section, the current version
of the software has been temporarily “hobbled” so that time-to-cutoff is the only
decision variable that can be included in the optimisation. Nevertheless, the
optimisation-module has been designed so that the user can choose which
design and management variables are included in the optimisation. This
currently includes field-length, slope, discharge, time-to-cutoff, and the required

Chapter 5 Automatic optimisation of design and management parameters

 133

depth of infiltration, but can be extended to include functions representing
variable inflow and variable field slope.

Upper and lower variable constraints have been linked to each decision variable
and can be changed by the user. The range of these constraints must be
practically feasible and implementable in the field. For example, flowrate must
be greater than the steady state infiltration rate of the soil, and small enough not
to cause soil erosion. This range can be further narrowed by considering the
range of flows that can be delivered by the irrigator’s infrastructure. Narrow
parameter ranges can simplify the optimisation through avoiding having to
evaluate impractical designs.

Under real field conditions, many of the decision variables including flowrate and
field-length have a fixed integer set of acceptable values. Field-length is generally
dictated by property and paddock boundaries, which can only be practically split
into “fractions”. Flowrate is often dictated by manufacturers’ siphon or gate
sizes. Therefore it would be beneficial for the parameters to take on predefined
discrete integer values during the optimisation. However, this has not been
considered for this initial version of the software. The nature of this research was
more academic, with the primary objective of determining the “optimum” design.
Therefore, further research is required to equate this to real field conditions, as
the optimisation engine will need some modifications to cope with discrete
parameter values.

5.5 Investigation of objective-function response.
Response-surfaces for different combinations of flowrate, time-to-cutoff and
objective-function weighting coefficients have been generated to study the
suitability of Eqns. 5.1 to 5.4 as an objective-function for furrow and border
irrigation design and management. For this study, the penalty function (Eqn. 5.3)
was omitted from the objective-function calculations as the purpose was to
investigate the fundamental shape of the response-surface without any
modifications.

This study was broken into four stages. Firstly, the response-surfaces for the
different irrigation performance measures were generated to understand the
nature of each component, their interrelationships and their contribution to the
objective-function response. Secondly, the basic form of the objective-function
response-surface was compared for different management strategies. Thirdly,
the response-surface for the default-configuration objective-function was closely
examined to identify key characteristics. Finally, this response-surface was
regenerated for different combinations of a third decision variable (field-length)
to further investigate the nature of the peak response.

5.5.1 Response of irrigation performance measures
The first objective of this study was to investigate the response-surfaces for
different irrigation performance measures including objective-function response,
irrigation efficiency measures, and volume-balance components. Figure 5.5

Chapter 5 Automatic optimisation of design and management parameters

 134

presents the response-surfaces from this analysis including that derived from the
default configuration of the user-defined objective-function (w1=w2=w3=w4=0.25).

All figures are characterised by the absence of a unique global maximum. Peak
regions are characterised by ridges, plateaus, and constraint-defined-highpoints
(which are pseudo-maxima with no practical benefit). They are also free from
local maxima, which should at least help the optimisation process detect the
peak locations.

Figure 5.5: Response-surfaces for irrigation performance measures

The objective-function response-surface (shown in the top-left hand corner of the
figure) is characterised by a ridge of near-constant performance values. This
suggests that many different combinations of flowrate and time-to-cutoff can be
used to achieve a similar level of performance. The ridge aligns very closely with
constant levels of application efficiency, storage efficiency, and application
uniformity. With the exception of runoff volume, the individual volume-balance
components do not share this characteristic surface curvature.

Figure 5.5 shows the interrelationships between key performance outputs. For
example, application efficiency is seen to decrease as storage efficiency and

Chapter 5 Automatic optimisation of design and management parameters

 135

application uniformity increase. In the region of the intersection of these surfaces
lies the ridge of maximum performance as defined by the objective-function
response. Other graphs in Figure 5.5 indicate that application efficiency
decreases as inflow volume, runoff volume and drainage volume increase.

Figure 5.5 also demonstrates how objective-functions with surfaces exhibiting
constraint-defined-highpoints are ill-suited for optimising performance. For
example, the response-surface for application efficiency exhibits a pseudo
maximum at the lower limit of flowrate and time-to-cutoff. In practice, choosing
these design values would lead to a very poor irrigation associated with very low
values of storage efficiency and application uniformity (as can be seen from the
corresponding surfaces). Therefore, application efficiency cannot be used on its
own as an objective-function for irrigation management (unless other
performance indicators are used as external constraints).

5.5.2 System response for different management strategies
The second part of this study investigated different combinations of objective-
function weighting factors to examine the different forms of the objective-
function response. The weighting factors were chosen based upon practical
management alternatives such as maximising performance efficiencies,
minimising loss components, or emphasising particular performance
components over others. These results are summarised in Table 5.1 while the
graphical response-surface outputs are presented in Appendix 5.1. Both
orthographic and perspective views of the objective-function response-surfaces
have been included to help visualise the true nature of the surfaces.

For each combination of weighting factors summarised in Table 5.1, the
objective-function response-surface failed to demonstrate a unique global
maximum for the optimisation to focus. The results ranged from having a ridge of
maximum performance (e.g. the equal weightings example), to a plateau of
maximum performance (e.g. maximising storage efficiency), to an undefined
asymptotic-like maximum (e.g. maximise application uniformity). This suggests
that optimal management decisions based upon these strategies are going to
require extra information so that practical constraints can be added to the
system to better define the optimal solution. With these constraints in place, a
unique “apparent” maximum may possibly be found. The alternative is to limit
the number of decision variables included in the optimisation.

Chapter 5 Automatic optimisation of design and management parameters

 136

Table 5.1: Summary of response-surface results for different optimisation weightings.

Example name w1 w2 w3 w4
Maxima

Identified Surface optimum type

Equal weightings 25% 25% 25% 25% defined,
multiple “Level” Parabolic ridge

See Figure A5.1.1 Notes: Presence of near level ridge.

Maximise storage efficiency 0% 0% 100% 0% defined,
Infinite Plateau

See Figure A5.1.2 Notes: Surface is the same as the response-surface for Storage Efficiency.
Maximise application

uniformity 0% 0% 0% 100% undefined Asymptotic

See Figure A5.1.3 Notes: Surface is the same as the response-surface for Application Uniformity

Minimise runoff 100% 0% 0% 0% defined,
infinite Plateau

See Figure A5.1.4 Notes:

Minimise drainage 0% 100% 0% 0% Defined,
infinite undefined

See Figure A5.1.5 Notes: dependent on time-to-cutoff
Maximise storage efficiency 50% 50% 0% 0% undefined Optima increasing

See Figure A5.1.6 Notes: at parameter limits.

Neglect application uniformity 33% 33% 33% 0% Defined,
infinite “Level” Parabolic ridge

See Figure A5.1.7 Notes: Presence of near level ridge.
Emphasise maximising

storage efficiency 16% 16% 50% 16% Defined,
infinite “Level” Parabolic ridge

See Figure A5.1.8 Notes: Presence of near level ridge.
Emphasise maximising
application uniformity 16% 16% 16% 50% Defined,

infinite “Level” Parabolic ridge

See Figure A5.1.9 Notes: Presence of near level ridge.

Emphasise minimising runoff 50% 16% 16% 16% Defined,
infinite “Level” Parabolic ridge

See Figure A5.1.10 Notes: Presence of near level ridge.
Emphasise minimising

drainage 16% 50% 16% 16% Defined,
infinite “Sloping” Parabolic ridge

See Figure A5.1.11 Notes: Presence of near level ridge.

5.5.3 Closer examination of response-surface characteristics
The third part of this study investigates prominent features of a typical objective-
function response-surface. Figure 5.6 presents such a surface (which is a
detailed view of that displayed in Figure 5.5) derived from the default objective-
function configuration, where weighting coefficients are set equally to 25%. Note
that “bumps” displayed in the surface are mainly a result of the grid spacing
used in generating the surface, and are not indicative of any error or irregularity.

Chapter 5 Automatic optimisation of design and management parameters

 137

(a)

(b)

(c)

(d)

Figure 5.6: Response-surface for equal weightings of the objective-function components.

As indicated in the previous analysis, the resulting response-surface shows a
“near-level” curved ridge of maximum objective-function value. However, closer
examination of the ridge (Figure 5.6 c&d) reveals that it is not perfectly level, and
that a very slight slope exists, showing performance decreasing with increased
time-to-cutoff.

From a practical point of view, it can be argued that this effect is negligible and
that different combinations of these design values occurring along the ridge will
achieve a “similar” level of performance. This suggests that the optimisation
process simplifies down to optimising on only one parameter; time-to-cutoff. Even
if this assumption is incorrect, and that the slope does indicate that some
“optimal” configurations would perform better than others, the nature of the
slope implies that the better performing irrigations will occur at the higher inflow
rates. In this case, the best management decision would be to choose the largest
inflow rate possible for “safe” irrigation (avoiding erosion) and optimise on time-
to-cutoff.

The effect of the sloping ridge may not be as significant as that presented in
Figure 5.6. Given that the surfaces presented here are generated over a wide
range of flowrates and cutoff times (O.5 l/s<Qin<10 l/s and 2 hrs<tc<18 hrs),
the variation in peak performance values over the physically viable ranges would
be considerably less than shown here. For example, an irrigator’s inflow
capabilities may range from 2 l/s to 5 l/s with irrigation times ranging from 5 hrs

Chapter 5 Automatic optimisation of design and management parameters

 138

to 10 hrs. This would restrict the optimisation to the central portion of the
response-surface, with considerably less performance variation.

There is also a suspicion that significant volume-balance errors are influencing
these results for lower values of time-to-cutoff. Figure 5.7 shows a magnified
view of volume-balance errors which range from about -0.2% to -4%. This shows
that the larger (more negative) volume-balance errors occur at the very low
values of time-to-cutoff. One reason for this is that the fixed time-step of ten
minutes that was used for all simulations during the response-surface generation
is ill-suited for such low cutoff times, resulting in relatively few nodes in the
simulation solution grid. Another reason is that the difficult-to-model
simultaneous advance and recession phase predominates with these low cutoff
times, which is prone to higher volume-balance errors. A third reason for this is
that “percentage volume-balance errors” are magnified for small values off
applied water, as is associated with the small cutoff-times.

Figure 5.7: Dependence of volume-balance error on time-to-cutoff.

Unfortunately, these volume-balance variations could have a significant effect on
the robustness of the optimisation process. This form of surface roughness can
sometimes manifest itself as local minima, independent of the optimisation
process used. This effect would be more pronounced with more than one
solution variable included in the optimisation.

The sloping ridge effect was also found to be influenced by the value of the z-
required variable, with larger values of z-required producing more level ridges
(Figure 5.8). This appears to be a result of deep drainage having a larger impact
(percentage wise) on the objective-function when using small values of z-required
at lower cutoff times, while deep drainage has less of a contribution when larger
values of z-required are modelled. This seems to introduce a slight shift in the
surface trajectory that manifests itself as a change in slope of the peak response
ridge.

Chapter 5 Automatic optimisation of design and management parameters

 139

(a)

(b)

Figure 5.8: Influence of z-required on slope of maximum-ridge (a) z-req =0.075 m and (b) z-
req=0.15 m

While a true sensitivity analysis was not carried out on the three decision
variables, a similar analysis by Zerihun et al. (1996) showed that flowrate and
time-to-cutoff have the highest impact on irrigation performance, with the system
being less sensitive to field length. The authors also stressed that these results
are subjective indicating the difficulty in undertaking the multivariate analysis.

5.5.4 Variations in system response for different field-lengths
The last part of this study involved regenerating the default-configuration
objective-function response-surfaces for different field-lengths. This enabled
further investigation of the nature of the ridge of peak response. In particular, it
was unknown whether the ridge would remain level for different field-lengths, or
whether it would increase in slope or convert into a true global maximum. It was
also unknown whether the maximum attainable performance level would
increase or decrease with changes in field-length.

Advanced features of the FIDO parameter analysis component (see Chapters 6
and 7) were used to help visualise these results. This included overlaying all
response-surfaces onto the same chart, and filtering the results so that only the
ridge of peak response was visible (Figure 5.9). In this example, different
coloured response-surfaces represent different field-lengths.

The ridge of peak response was observed to move around the parameter space,
but maintained the same maximum attainable performance level for each field-
length. This implies that the maximum irrigation performance can be attained for
a large range of combinations of the three decision variables. Given that these
are the key variables that can be changed by an irrigator, this greatly simplifies
decision making by reducing the dimensionality of the problem. That is, in
principle, the design and management of surface irrigation can be undertaken by
fixing two of the decision variables and optimising on the remaining variable.
Typically, field-length and inflow rate would be fixed, and time-to-cutoff would be
determined through optimisation.

Chapter 5 Automatic optimisation of design and management parameters

 140

(a)

(b)

(c)

Figure 5.9: Relationship between (a) and (c) peak objective-function values (filtered) and (c)
volume-balance errors.

5.6 Optimisation validations.
To test the utility of the optimisation module, the irrigation data used to validate
the simulation model (Chapter 3) was optimised for time-to-cutoff, using the
default-configuration of the user-defined objective-function. The penalty function
(Eqn.5.3) was not applied, and inflow rates were set at their measured values
rather than at the maximum permissible rate (which was suggested in 5.5.3).

Solving for one parameter is a relatively straightforward and robust process using
the optimisation algorithm developed in Chapter 4. However, the small variations
in volume-balance errors exhibited across the surface (shown in Figure 5.7 and
Figure 5.9c) would be expected to impede the optimisation process when
optimising on more than one variable. In practice, global convergence was easily
achieved irrespective of the initial parameter starting estimates.

Chapter 5 Automatic optimisation of design and management parameters

 141

Appendix 5.2 presents the output of the optimisations taken directly from the
FIDO decision support software. A sample of this output is presented in Figure
5.10 showing the comparison of irrigation performance values for both the
measured data and optimised results.

Optimisation 1. Run by at 09::26 17/11/2006

Optimisation Parameter Measured Optimised Comments
Flowrate 0.001486 0.001486
Time-to-cutoff 1248 870
Performance Measure Measured Optimised Comments
Application Efficiency 67.1 94.2
Storage Efficiency 100 97.7
Application Uniformity 95.6 91.8
Applied Volume 111510.7 77569.2
Runoff Volume 26965.2 262.7
Stored Volume 74880 73189.4
Drainage Volume 9715.8 4201.5

Figure 5.10: Sample output from optimisation validation in Appendix 5.2. Blue lines denote
optimised outputs, while red lines represent the measured condition.

The change in performance values is summarised at the property level in Figure
5.11. The optimised results demonstrate a marked improvement in application
efficiency accompanied by a subtle reduction in storage efficiency and
application uniformity. This suggests that the irrigator has over-watered their field
in order achieve the required depth of application at the lower end of the furrows.

Figure 5.11: Comparison of performance values for optimised versus measured results. (where

AE is application efficiency, SE is storage efficiency, and DU is application uniformity)

In this study, the optimised designs consistently watered the whole furrow, even
in the absence of the penalty function. In most cases, a very small amount of

Chapter 5 Automatic optimisation of design and management parameters

 142

runoff did occur. However, in one instance, considerable runoff was seen to
occur suggesting that the optimum management strategy will not always involve
minimising runoff. That is, sometimes runoff is required in order to increase
storage efficiency and application uniformity.

5.7 Discussion
This research is a first attempt at developing an optimisation-module for a
decision support system for furrow and border irrigation. It provides a simple and
efficient mechanism to demonstrate how to improve the performance of an
individual irrigation event. Although problems with the methodology have been
identified, this research provides a platform through which more powerful
optimising capabilities can be developed.

Two main difficulties were encountered with the existing methodology. Firstly, the
objective-function does not present a unique optimised solution, but a range of
solutions providing similar levels of performance. Secondly, the response-surface
is characterised by surface roughness that inhibits the optimisation process
(note that this has very little impact when only optimising on one decision
variable such as time-to-cutoff).

The first problem is not necessarily a drawback of the methodology. From a
practical point of view, having a range of decision variables providing the same
level of performance is probably an advantage, greatly simplifying the design
problem. However, it is possible that this feature could be an artefact of a poorly
defined objective-function. Given the nature of the different surfaces presented,
it is likely that tighter constraints and limits will need to be applied to the
decision variables and objective-functions before multi-variable optimisations are
viable. This may include testing designs for satisfactory levels of performance. In
effect, this is analogous to the linear programming example of applying
constraints to better define the objective-function solution space.

The second problem is probably inevitable. So long as numerical approximations
are used in the solution of the hydrodynamic equations, there will be some
degree of noise in the objective-function response-surface. This didn’t cause any
significant problems during this analysis, but it is very likely to impede a multi-
variable optimisation. The volume-balance components included in the objective-
function seem to be especially sensitive to these variations. Three opportunities
exist to minimise the effects of this problem. Firstly, the simulation model
solution technique could be refined to improve numerical accuracy and stability.
Options available for this could include; general optimising of code; decreasing
the simulation time-step size (although this will cause optimisation times to
increase); improving the stability measures introduced into the solution process;
or even adopting a simpler model type. Secondly, the objective-function could be
redefined to include elements that are less susceptible to numerical errors. For
example, using the irrigation advance curve in the calibration objective-function
was found to be relatively insensitive to these errors (although this would not be
suitable for design and management). Finally, the optimisation algorithm could
be updated to a more robust and globally convergent form.

Chapter 5 Automatic optimisation of design and management parameters

 143

Another problem for future optimisation research is contending with the spatial
and temporal variability of infiltration. For an individual furrow, the optimal time-
to-cutoff is usually that which results in the advance just reaching the end of the
furrow causing minimal runoff (as was shown earlier, this is not always the case,
especially with low infiltration soils). Given that infiltration varies from furrow to
furrow, if a constant cutoff-time is used for the entire irrigation, some of the
furrows are likely to be under-watered with the advance not reaching the furrow
end. Therefore the objective-function must include a component representing
infiltration variability to ensure maximum performance across the field.

Another limitation of this study is that it doesn’t segregate the independent tasks
of design and management. In this case, a single objective-function has been
developed to represent both requirements. Although this function can be useful
for field design purposes, a more suitable function would be one that aims to
simplify irrigation management through minimising the effects of infiltration
variability. This would involve incorporating seasonal irrigation summary
information into the objective-function to optimise field-length and/or slope to
minimise the range of management options over the season. The form of this
function will require further research.

Despite these problems and limitations, the objectives of this study (Section
5.2.3) have been satisfied. As the optimisation included only one decision
variable, global convergence was attained without user-intervention, with the
results independent of the initial parameter estimates. While the software was
limited to only optimising on time-to-cutoff, there is really no restriction on the
type and number of decision variables that can be included in the optimisation.
This is only limited by the type of objective-function that is linked into the module.
Because of the object-oriented design of this module, different objective-function
types, optimisation algorithms, and simulation components can easily be
interchanged.

It is inevitable that this type of tool will not appeal to all practitioners. Many will
prefer an interactive design capability, while others will require an engineer
somewhere in the loop. Nevertheless, a key benefit of the tool that should appeal
to all, is that it can be used to automatically benchmark the performance
potential of an irrigation event. Subsequent design and management
configurations can than be compared against this optimum value.

5.8 Conclusions
An optimisation-module for the automatic design and management of surface
irrigation was developed for the decision support system. This involved
combining the simulation engine with an optimisation algorithm and a user-
configurable objective-function. The objective-function consists of components
relating to the design and management priorities of maximising storage
efficiency, maximising application uniformity, minimising runoff, and minimising
deep drainage.

It was originally envisaged that this optimisation-module would undertake multi-
variable optimisations, such as simultaneously optimising key decision variables
(e.g. flowrate, time-to-cutoff and field-length). However, a study of the response-

Chapter 5 Automatic optimisation of design and management parameters

 144

surfaces of the objective-function formulations failed to identify a global
maximum for the optimisation process to focus upon. Instead, the surface
maximum was typically in the form of a “level” parabolic ridge. When
combinations of the three key decision variables were analysed, this ridge was
found to move around in parameter space at a constant level of attainable
performance. This implies that maximum performance can be attained for many
combinations of the three decision variables that greatly simplify decision
making by reducing the dimensionality of the problem. That is, in principle, the
design and management of surface irrigation can be undertaken through fixing
two of the decision variables and optimising on the remaining one. And added
benefit of this tool is that it can be used to automatically benchmark the
performance potential of an irrigation event.

Chapter 6 Automated generation of field design and management guidelines

 145

Chapter 6 Automated generation of field design and
management guidelines

6.1 Introduction
Chapter 5 has reviewed and demonstrated the benefits and problems associated
with the automated optimisation of design and management practices. While that
methodology provides an optimum real-time management solution, it fails to
present an overall picture of the design and management problem, including the
effect of spatial and temporal variability of infiltration. Field design and
management guidelines (also known as design charts) offer a medium to present
this extra information, based upon the recorded irrigation history for a particular
location.

Field design charts were one of the earliest forms of design and management aids
dating back to the 1960s and were derived from analytical and empirical
relationships based upon extensive field trials. Recent simulation models provide a
simpler and more efficient way to develop these charts based upon repeated
simulations of different irrigation configurations. However, this can be a time-
consuming process. For example, design charts that were developed as a
preliminary study during this research (Section 6.4) took approximately three
standard working weeks to develop. Therefore, there is a need to develop an
automated facility to generate these types of charts and to incorporate this facility
into the FIDO decision support system. This facility is referred to as the “parameter-
analysis module”.

The research presented in this chapter has five main objectives: (1) to present a
background for developing the parameter-analysis module outlining the design
issues under consideration; (2) to develop a methodology for accounting for the
spatial and temporal variability of infiltration for inclusion in guideline development;
(3) to investigate design curve generation through a preliminary case study in order
to define the required functionality of the parameter analysis tool; (4) to develop a
suitable object-oriented algorithm to automate the process of generating design
and management guidelines; and (5) to generate sample guidelines using the
software.

6.2 Background to automating the development of field design and
management guidelines
Before developing the parameter-analysis module for the decision support system,
the module and its outputs need to be clearly defined, the components of the
module recognised, and the objectives of the development identified. Each of these
will now be discussed in turn.

Chapter 6 Automated generation of field design and management guidelines

 146

6.2.1 What is automated generation of field design and management
guidelines?
The literature review (Chapter 2) identified field design and management guidelines
as a paper-based design tool generated from the systematic analysis of parameter
responses (irrigation performance) using an irrigation model. Also known as
parameter-analysis outputs, design curves, design charts, and response-surfaces,
these guidelines were one of the first management and design tools available for
surface irrigation (although it is doubtful whether they were ever effectively applied
in practice). Initially, they were developed from field trial information, empirical
relationships, and simple analytical functions. In recent times, they have been
generated from the output of computer simulation models in the form of iso-curves
and contours.

Many different configuration options exist when setting up design charts. Decisions
must be made regarding how many charts to present, what to include in each chart,
which elements will be represented by each chart axis, and which elements, or
mixture of elements, will be plotted as iso-curves or contours. The last decision is
probably the most important one, as it defines the segregation of the system
outputs (irrigation performance values) from the system inputs (decision variables),
and it ultimately affects the way in which the chart data will be generated.

For example, if the contours and iso-curves represent irrigation performance, then
system inputs such as flow-rate, time-to-cutoff, and field-length will be represented
by the chart axes. Potentially, this requires thousands of simulations to be run to
account for all combinations of the decision variables. The only practical way of
generating these outputs is to use an automated process of running the simulation
and updating the results.

The alternative to this is to represent irrigation performance on one or more of the
chart axes. Then iso-curves representing different values of the decision variables
are plotted in the chart space. Typically, only four or five iso-curves will be generated
for each decision variable. In this situation, only a relatively small number of
simulations need to be run to account for a smaller number of design parameter
combinations. This is suitable for manually run simulations.

6.2.2 Objectives for developing a system for automating field-guideline
generation.
The primary goal of the research in this chapter is to develop an automated tool for
generating field design and management guidelines (charts) capable of being
implemented into a decision support system for furrow and border irrigation. This
involves developing a new object-oriented computer algorithm for controlling the
simulation and generating performance outputs based upon a user’s specification.
In particular, key objectives of the parameters-analysis module are:

• It must be able to automatically generate the system response given basic
user direction;

• The results must be able to be configured to account for the multi-
dimensional nature of parameter/objective-function response; and

• The module must be able to take into consideration the effects of spatial
and temporal variation of the soil properties.

Chapter 6 Automated generation of field design and management guidelines

 147

To maximise the effectiveness of the module, it should be configurable by the user
in order to evaluate different forms of output. For example, the users should be able
to develop design curves based upon different decision variables and objective-
functions. The module should not be limited to analysing irrigation performance, but
could be used to generate any kind of response-surface (as was demonstrated in
Chapters 4 and 5). Successful development of these features will ensure that the
module will be an effective research tool, as well as an operational tool for design
and management.

6.2.3 Elements of an automated system to generate field design and
management guidelines
The parameter analysis module developed for the FIDO decision support system is
composed of seven principal components (Figure 6.1):

• design parameters;
• field measurements;
• a simulation engine;
• objective-functions;
• a parameter analysis manager; and
• graphical analyses.

Figure 6.1: Fundamental components of the parameter-analysis module.

The design parameters represent the variables of interest that are manipulated in
order to generate a response-surface. The objective-functions calculate the
performance measures, and the error between the field measurements and
simulated outputs. The simulation engine is required to provide the simulated
outputs for calculating response-surface outputs from the objective-functions. The
field measurements include data such as advance trajectory, surface water depths,

Objective Function
Calculates system response by evaluating
simulated output. Can relate to either
performance or calibration objectives.

Simulation Engine
Simulates furrow irrigation based upon
the current value of the design
parameters.

Design Parameters
Variables of interest, that we wish
to optimise.

Field Measurements
Can include measurement such as
advance trajectory, surface water
depths, recession trajectory, or runoff
hydrographs.

Graphical
Analyses

Analyses containing
surface series and

contour series, in order
to visual system

response.

Parameter
Analysis
Manager

Iterates through
the design

parameters ranges
and evaluates

system response to
determine optimal

design.

Chapter 6 Automated generation of field design and management guidelines

 148

recession trajectory and/or runoff hydrographs and are used when the response-
surface is based upon one of the calibration objective-functions. The parameter
analysis manager provides the computer algorithm that controls the response-
surface generation. The goal of the parameter analysis module is to allow the user
to generate guidelines for management and design with a minimum of effort.

The conceptual input/output functionality of the parameter-analysis module is
displayed in Figure 6.2. Design and/or management variables such as flowrate
and/or time-to-cutoff are passed into the parameter-analysis module along with an
objective-function and a measure of the infiltration characteristic for the analysis.
These input choices can be selected by the user through an appropriate graphical
user interface. System response information is then generated by the module
before three-dimensional surfaces and contours (and the underlying data) are
presented as output from the module, and returned to the decision support system
for display and further analysis.

Figure 6.2: Conceptual input/output functionality of the parameter–analysis module

6.3 Accounting for infiltration variation
A key consideration in developing design charts for irrigation design and
management is that they must take into account the spatial and temporal variability
of the soil. This could be achieved through lumping measured irrigation
characteristics together to produce an “averaged” set of design curves.
Unfortunately, this doesn’t provide any information on the range of performance
results that could be expected for different infiltration conditions. Therefore, the
upper and lower ranges of infiltration variability could also be included in this
analysis to provide confidence limits on design and management decisions.

A simple method for implementing this is to generate three sets of design charts for
high, low and average infiltration properties of the soil. This involves a pre-
processing of paddock-specific infiltration data to determine three sets of the
modified Kostiakov-Lewis infiltration parameters. This requires a range of
cumulative infiltration curves for a nominal opportunity-time from a paddock’s
recorded history (Figure 6.3).

Parameter Analysis
Module

Links the simulation
engine with a recursive

algorithm

Design
Parameters

E.g. Qin, tc

Objective
Function

Data for
response-

surfaces and
contours

Inputs Outputs

Infiltration
Parameters

UUsseerr
DDeeffiinneedd

Chapter 6 Automated generation of field design and management guidelines

 149

Figure 6.3: Infiltration range is calculated from high/low and average of paddock- specific infiltration

curves.

The infiltration parameter sets representing high and low infiltration can be selected
directly from the historical set of cumulative infiltration curves. These are chosen
from curves with the highest and lowest cumulative infiltration values at the
nominated opportunity time.

The average infiltration characteristic is more difficult to determine and requires an
optimisation algorithm to fit the infiltration equation parameters to match the
averaged result of all infiltration curves. The optimisation algorithm developed in
Chapters 4 and 5 was used for this purpose. However, a new curve-matching
objective-function was developed to plug into the optimisation, based upon
minimising the error been the average infiltration curve, and the fitted equation
curve (Figure 6.4).

Figure 6.4: Objective-function algorithm for calculating average infiltration curve

In comparison to the curve-matching objective-functions presented in Chapter 4,
this procedure is simple and efficient as no simulation-runs or cubic spline
interpolations are required in the calculations. Both the averaged and fitted
equation infiltration curves are generated using the same constant time-interval.

In practice, optimising on the three infiltration parameters performed quickly (in
only a fraction of a second). However, problems were encountered during
development that hindered the optimisation from converging on the true global
minimum. In particular, the optimisation was observed to repeatedly default to
fitting a straight line through the averaged infiltration curve (Figure 6.a). It was
assumed that this was because of a flattening on the response-surface for the

Average Infiltration Parameters Algorithm
Set SSE = 0.
For(t=0 to number of desired time-increments)
{

SSE = SSE + (AverageCumulativeInfiltration(t) – PredictedCumulativeInfiltration(t))2

}
Return the result to the optimisation algorithm.

Chapter 6 Automated generation of field design and management guidelines

 150

objective-function, causing a sticking point in the optimisation. This was overcome
(Figure 6.b) by increasing the sensitivity of the optimisation algorithm.

(a)

(b)

Figure 6.5: Cumulative infiltration curve fitting results showing (a) “sticking point” encountered in
early research, and (b) correct curve fitting results.

6.4 Preliminary Study: Development of guidelines for surface irrigation
As a preliminary study in developing the parameter analysis module, site-specific
design and management guidelines were prepared by repeated manual simulations
using the SIRMOD simulation model. The analysis was undertaken to show the
effect of infiltration variation on irrigation decision-making, and assist in developing
the functionality of the parameter analysis tool.

The guidelines were developed based upon including the three main decision
variables (flowrate, time-to-cutoff, and field-length), along with infiltration variability
into a single set of design charts. Data was provided from seventeen surface
irrigations monitored in the Burdekin Delta region in Queensland Australia.

6.4.1 Field data
The data used in study were collected from irrigations on sugar cane at the
Jarvisfield site (Raine and Bakker 1996) during 1994-95 season. Irrigation advance
and volume-balance parameters were usually measured on two furrows for each
irrigation, and those with more than four advance measurements and complete
volume-balance measurements were used in the analysis. The average root zone
soil deficit was 0.6 ML/ha and the average volume applied was 1.4 ML/ha.
Application rates varied from 2.0-3.4 L/s with an average of 2.6 L/s. The average
irrigation time-to-cutoff was 644 mins with a range of 453 to 913 mins.

6.4.2 Pre-analysis of infiltration data
From the seventeen measured irrigations, twenty-two infiltration functions were
evaluated for use in the simulation model and for assessing infiltration variability
(Figure 6.6a). The Kostiakov-Lewis infiltration parameters were calculated for each
set of data using the modified two-point method (Elliot and Walker 1982), while the
manning n parameter in the SIRMOD model was also adjusted using the measured
advance to finalise the calibration (which usually only required a small adjustment).

Chapter 6 Automated generation of field design and management guidelines

 151

Then high, low and average infiltration functions were calculated using the methods
proposed in Section 6.3 for an 800 min opportunity time.

0

0.1

0.2

0.3

0.4

0 250 500 750 1000
Time (min)

C
um

ul
at

iv
e

in
fil

tr
at

io
n

(m
)

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

7-
N

ov

23
-N

ov

16
-D

ec

27
-D

ec

6-
Fe

b

8-
M

ar

23
-M

ar

4-
Ap

r

19
-A

pr

5-
M

ay

27
-M

ay

20
-J

un

19
-J

ul

Irrigation Event Date

C
um

ul
at

iv
e

In
fil

tr
at

io
n

(m
)

(b)

Figure 6.6: Summary of infiltration information Jarvisfield site throughout the 1994/95 irrigation
season. (a) Cumulative infilgration curves (b) cumulative infiltration opportunity time of 500mins

Infiltration was found to vary considerably between furrows during the same
irrigation, and with time over the season. Total infiltrated volumes for individual
irrigations varied from 1.2 to 2.4 ML/ha over the season for an arbitrary time-to-
cutoff of 500 mins (Figure 6.6b). The substantial spatial and temporal variability
observed during these irrigations reinforces the need to consider the complete
range of infiltration characteristics during the generation of design charts.

6.4.3 Evaluation of management strategies
Before developing new design charts, two different management strategies were
evaluated using the simulation model and compared against the measured results.
The first strategy involved applying the optimum flowrate and time-to-cutoff
calculated for the seasonal average infiltration function to all of the irrigations
throughout the season. This was done to evaluate the effectiveness of using an
average infiltration function in the decision making process, as would be done when
using generalised decision curves.

The second management strategy involved manually optimising flowrate and time-
to-cutoff for each irrigation during the season. The objective of this optimisation was
primarily concerned with maximising application efficiency whereby the irrigation
was designed so that the advance would just reach the end of the field with zero
runoff occurring. It was intended that this real-time control strategy could be later
be used to generate design charts of “optimised performance”.

The results of this analysis are presented in Table 6.1. Manual optimisation of the
management practices using the seasonal average infiltration function suggests
that an application rate of 3.7 L/s with a cutoff time of 190 mins should be applied
throughout the season. Results from using this strategy indicated that the average
application efficiency would increase from the measured value of 41% to 71%.
However, this corresponded with a decrease in storage efficiency from the
measured value of 98% to 83%. The high measured value of storage efficiency is
indicative of the commercial practice of completely refilling the root zone. Where

Chapter 6 Automated generation of field design and management guidelines

 152

management parameters were optimised for each irrigation during the season, the
average application efficiency was seen to increase to 93% with a storage efficiency
of 90%. Distribution uniformities remained similar for each management option.

Table 6.1: Performance results for different management practices in the Burdekin Delta Region.

Management
practice

Application
Efficiency (%)

Storage
Efficiency (%)

Distribution
Uniformity (%)

Seasonal water
application

(ML/ha)
Measured 41 (±2) 98 (±2) 92 (±2) 26.4

Optimised from
average

infiltration
function

71 (±2)

83 (±2)

93 (±1)

17.9

Real time
control

93 (±2) 90 (±2) 88 (±3) 12.2

Results are presented as the mean (± standard error)

These results indicate the danger of using the average infiltration function in
isolation for design and management, because of the potential for a significant
reduction in storage efficiency. However, results based upon this function do
provide very useful information and can be used as a “starting point” in the design
process. That is, the optimum design can be derived for this situation, before
considering alternative infiltration conditions that are likely to occur, to provide a
range of possible outcomes. Design values can then be defined based on upon a
margin of safety.

On the other hand, the real-time control situation provides an efficient design, but
can only be used while the irrigation is occurring, or in “post-analysis” mode to
determine the performance potential of an irrigation (as was done in this study). It is
this second methodology that can be used to develop design charts, by reporting
optimised solutions for a range of decision variables.

Therefore, both of these strategies can contribute to the development of design
charts through (a) including the generalised infiltration information as a starting
point in the design process, and (b) composing the charts from the output of
optimised simulations.

6.4.4 Investigation of design curves.
At the time of this preliminary case study, neither SIRMOD nor the FIDO simulation
engine was capable of being incorporated into any automated batch-processing
procedure. That is, SIRMOD had no provision for running in a batch mode (and still
hasn’t), while FIDO wasn’t robust enough for the purpose. Therefore, the design
curves developed in this study were generated from manually run simulations,
necessitating that irrigation performance be represented by the vertical chart axes.
Even though very few variations of the decision variables were analysed, this still
turned out to be a very time-consuming process with the entire study taking about
three weeks to complete.

Chapter 6 Automated generation of field design and management guidelines

 153

At the start of the study, some experimentation with different design chart
configurations was undertaken to investigate the nature of the response, and to
evaluate the effectiveness of each chart-configuration. The first attempt (Figure 6.7)
was designed to investigate the effect of field-length on irrigation performance using
the seasonal average infiltration function for a fixed inflow rate (2.6l/s) and a range
of cutoff-times (190min, 360mins, and 720mins). In each case, application
efficiency was observed to increase with increasing field-length due to a reduction
in tailwater losses. This coincided with a minor reduction in storage efficiency as it
became increasing difficult to completely fill the root-zone at the furrow outlet for
long field-lengths.

0

20

40

60

80

100

0 250 500 750 1000
Field Length (m)

Ef
fic

ie
nc

y
(%

)

720 min360 min

190 min

190 min 360 min 720 min

Figure 6.7: Application efficiency (-) and storage efficiency (- - -) for a simulated irrigation

performance using the seasonal average infiltration function, a fixed water application rate of 2.6l/s
and a range of irrigation periods from 190-270 mins.

In a second example (Figure 6.8), the maximum application efficiency and optimum
field-length were presented for the high, low and average infiltration functions, and
a range of cutoff times. This highlights the effect of infiltration variability on
performance and optimum field design, demonstrating that the optimal field-length
for high infiltration conditions is less that half of that for low infiltration conditions.
However, for this site, application efficiencies were never higher than 70% for the
high infiltration condition, irrespective of the field-length and cutoff time. In was
found that deep drainage losses were accounting for the low efficiencies.

Chapter 6 Automated generation of field design and management guidelines

 154

0

20

40

60

80

100

0 500 1000 1500 2000
Field Length (m)

A
pp

lic
at

io
n

Ef
fic

ie
nc

y
(%

)
Low

Average

High720 min

360 min

190 min

100 min

Figure 6.8: The effect of field-length of the maximum application efficiency of the soil with low,

average and high infiltration characteristics when water is applied at 2.6l/s for a range of irrigation
periods.

6.4.5 Finalisation of guidelines
While both of the previous examples (Section 6.4.4) provide useful information, they
are limited by the use of a fixed inflow rate. Therefore, to better represent the multi-
dimensional nature of the design problem, the three key decision variables
(flowrate, time-to-cutoff, and field-length) were combined into the same set of
design charts (Figure 6.9). The only way to achieve this was to apply a fixed
management strategy, whereby zero-runoff occurred during the irrigations. This is
equivalent to the real-time irrigation situation presented in the Section 6.4.3. To
achieve this, field-length was included as a “quasi” system output. That is, each
irrigation was simulated using an initial infinite field-length and a preset flowrate
and time-to-cutoff. The final irrigation advance location was then designated as the
effective field-length for the zero-runoff strategy. By assigning effective field-length
to the horizontal axis, and irrigation performance to the vertical axis, iso-curves for
different flowrates and time-to-cuff can be plotted on the charts. A matrix of six
charts was produced with the columns representing different infiltration
characteristics and the rows representing different irrigation performance
measures.

Chapter 6 Automated generation of field design and management guidelines

 155

Figure 6.9: Design charts based on (a & d) high, (b & e) average and (c & f) low infiltration
characteristics.

From these charts, it is possible to choose an acceptable level of irrigation
performance for the average infiltration characteristic, and read off the range of
design values for flowrate, time-to-cutoff and field-length to achieve this
performance. By repeating this for each infiltration characteristic, a range of design
values can be selected to ensure an acceptable level of performance for the
different conditions. It is then up to the user to select a suitable design with an
appropriate safety margin.

6.4.6 Discussion of case study
The finalised form of the design charts is dominated by three main factors. Firstly,
the multidimensional nature of the analysis, which includes describing infiltration
variation, necessitated that several charts be developed (instead of a single chart)
to try and simplify explaining the system response. Secondly, the technology
available at the time wasn’t suitable for automating the process to generate
complete response-surfaces. Therefore the only option available was to represent
the system outputs by the chart axes and plot a small range of decision variable iso-
curves. Thirdly, optimised runs with a zero-runoff objective were needed to develop
the charts in order to accommodate three decision variables.

Chapter 6 Automated generation of field design and management guidelines

 156

At the time, the prospect of producing design charts describing so much information
and being based upon optimised simulation runs was seen as an exciting and
potentially revolutionary tool for design and management. However, several
deficiencies are apparent which limit their practical application.

Possibly the biggest limitation is that only a small portion of the system response is
presented in the charts. Specifically, the curves are generated for the zero-runoff
situation, which was assumed to be the optimum management strategy. Therefore,
they are limited to evaluating and designing irrigations for this specific situation,
and are invalid when runoff occurs or is desired. That is, they fail to describe the
performance response for non-optimal and alternative priority design and
management practices. Because of this they can be misleading.

Also, the charts are not intuitive and can be difficult to interpret, especially for an
untrained user. Readability is impaired as the iso-curves tend to be bunched
together and interpolation is difficult because of a non-linear interpolation space.
There are also many blank regions on the charts including whole charts being
empty.

The initial two design charts (Figure 6.7 and 6.9) that describe only two decision
variables are generally simpler to understand. However, they are still (arguably)
difficult to use, possibly because the chart axes represent both system inputs and
outputs. A third decision variable can be represented by producing multiple copies
of the charts and substituting decision variables. For example, time-to-cutoff or
flowrate could replace field-length on the horizontal axis, which changes the charts
from a design tool to a management tool. This was the approach of Hornbuckle et
al. (2003) who developed design curves with time-to-cutoff on the horizontal axes
(instead of field-length) and iso-curves representing different flowrates (Figure
6.10). The relative simplicity of these charts reinforces the benefits of representing
only two decision variables.

Figure 6.10: Example of a design chart by Hornbuckle et al. (2003) for furrow irrigated field on a

self-mulching clay soil with furrow length 200m. The solid line in upper chart corresponds to
distribution uniformity, and in the lower chart corresponds to the infiltrated volume.

Chapter 6 Automated generation of field design and management guidelines

 157

6.4.7 Recommendation from case study
In retrospect, trying to include variable infiltration effects and three decision
variables was probably too ambitious with the potential benefits of visualising a
large number of dimensions being negated by a limited range of response outputs
for a fixed management objective. Nevertheless this provided a basis for developing
the guideline-generating capabilities for the decision support software.

The key findings of this study which were used to develop the parameter-analysis
module include:

• It is preferable to represent system outputs as contours and iso-curves,
rather than by the chart axes. This will maximise the visualisation of the
system response and not limit it to showing the results for a particular
management strategy.

• It was better to represent different infiltration conditions in separate design
charts, rather than trying to incorporate all this information into one chart.

• The choice of which variables can be assigned to each chart axis should be
user defined, as different configurations can provide different explanations
of the response, and different operational objectives (e.g. design versus
management).

• Preferably only two decision variables should be represented in each chart,
although multiple system outputs could be represented.

6.5 Computer algorithm development
Aspects of the computer algorithm that were developed for the parameter-analysis
module include; an object-oriented structure for generating and displaying the
system response; objects for defining the analysis and storing and manipulating the
response; and analysis objects for configuring and displaying the outputs

6.5.1 Developing a structure
Parameter-analysis facilities for the decision support system were developed using
an object-oriented structure using the C++ language (Figure 6.11). This structure is
more complex than that developed in the previous chapters, and warrants a more
concise explanation.

The central object in this structure is the TParameterAnalysisManager class
(henceforth known as the parameter analysis manager). This class contains all of
the functionality to communicate with the decision support system and perform the
task of generating response-surfaces and design charts. It contains pointer links to
the TObjectiveFunctionModule, which is a repository for all of the available
objective-function objects. Two graphical analyses have been developed for
displaying and arranging contours and response-surfaces
(TSurfaceParameterAnalysis and TUserDefinedParameterAnalysis). The
TSimulationEngine class is linked to each objective-function and is not required
by the parameter analysis manager.

Chapter 6 Automated generation of field design and management guidelines

 158

Figure 6.11: Object-oriented components for design and management guideline generation.

 Integral parts of this system are the response objects (derived from
TCustomResponseObject) that manage and store the system response data in n-
dimensional arrays (TPADataArrayObject) corresponding to n decision variables
(n<=3). Each response object can contain a range of these arrays to hold all of the
system response information for the selected objective-function. There are two
forms of these objects: those that store performance response information
(TPerformaceResponseObject); and those that store calibration response
information (derived from TCustomCalibrationResponseObject) of which there
are several types for different calibration objective-functions. The parameter
analysis manager is designed so that many of these response objects can be stored
in memory simultaneously in order to compare outputs and accumulate information
from different scenarios into a single set of design charts.

 Figure 6.12 shows the class hierarchy of the response objects. The virtual base
class TCustomResponseObject contains the functionality to add new response
data, load and save the response data to and from a file, rearrange the order of the
dimensions of the response data, as well as pointer linkages to the parameter
analysis manager, objective-function module, selected objective-functions, and
individual parameter components (to remap parameter configurations). It contains
a special definition object called T_PADefinition which contains enumerated

TParameterAnalysisManager
Contains links to data, objective
function module, and optimisation
engine. Controls the data input/
output to the optimisation.

TSimulationEngine
Runs the simulation

TObjectiveFunctionModule

Contains all of the different objective functions
for optimisation, calibration and response-
surface generation.

Performance Objective Function

Advance Function

Runoff Function

Advance/RunoffFunction

TSurfaceParameterAnalysis
Routines for displaying 3D response-surfaces.
Contains instances of 3D surface chart series.

TUserDefinedParameterAnalysis
Routines for displaying and arranging contours
of irrigation performance for generating
guidelines for design and management

TSimulationParametersObject

Stores simulation data including the
calibration parameters

Model Parameters
i.e. includes inflow, time-to-
cutoff, field-length, field slope,
furrow geometry parameters,
infiltration parameters, Manning
n, Z-required. All are available
for inclusion into the parameter
analysis facilities.

Measured Data
i.e. advance, runoff hydrograph

ResponseObject
Storage object for response-surface data. Serves
as source data for the 3D surface chart series,
and contour chart series.

ResponseObject
Storage object for response-surface data. Serves
as source data for the 3D surface chart series,
and contour chart series.

ResponseObject
Output object for response-surface data.
Different forms of Response objects exist for
different objective function.

Chapter 6 Automated generation of field design and management guidelines

 159

types of all the elements of a parameter-analysis operation including objective-
function type, infiltration type (high, low, average, measured), grid sizes, and
selected parameter types.

 Figure 6.12: Storage and definition objects of Parameter Analysis Manager

TPADataArrayObject
This is a storage object for holding the different response
values calculated from the various objective functions. The
array has a three dimensional capacity, and uses a special
enumerator type to align parameter types with each
storage dimension. This storage medium can be “plugged”
into the 3D surface chart series and contour chart series to
provide data values for graphing without having to copy
values in memory.

Main methods
UpdateModelValue(x, y, z, value) – add new response value
to array
CalcMaxResponseValue() – calculate max/min response
value
WriteToXML() – write contents of data array file
ExtractFromXML() – read file contents into data array
CalculateArangementOrder(parameter x, parameter y,
parameter z) – determine parameter arrangement order
from the current parameter types.
Main properties
Data[x][y][z] – storage array for response data
ArrangementOrder - XYZ, XZY, YXZ, YZX, ZXY, ZYX
Name – descriptive name of generated object
XGridSize – size in x dimension
YGridSize - size in y dimension
ZGridSize – size in z direction
UpperResponseLimit – maximum response value
LowerResponseLimit - minimum response value

TCustomResponseObject
This is a custom parent class from which more specific
response objects will be derived. This contains all of the
output information required for generating response-
surfaces or contours. Contains a number of instances of
the TPADataArrayObjects depending on the objective
fuction defined in the TPA_Definition object.

Main methods
LoadFromFile – add new response value to array
SaveToFile– calculate max/min response value
UpdateXParameter (nosteps,index) – write contents of data
array file
UpdateYParameter (nosteps,index) – read file contents into
data array
UpdateZParameter (nosteps,index) – read file contents into
data array
ConnectXYZParameters () – determine parameter
arrangement order from.
SaveParameterValues () – determine parameter
arrangement.
RefreshParameterValues () – determine parameter
arrangement.
Main properties
SimulationData – storage array for response data
FilePointer - XYZ, XZY, YXZ, YZX, ZXY, ZYX
Definition – descriptive name of generated object
ArrangementOrder
DataArray[index]
DataArrayCount
DataArrayList
ObjectiveFunction*
ObjectiveFunctionModule*
ParameterAnalysisManager*
XParameter*
YParameter*
ZParameter*

TPA_Definition
This is the definition object for the parameter response
analyses. Includes information about objective function,
infiltration type (high, low, averge, measured, design
parameters, and dimensional size for each parameter.

Main Properties
ObjectiveFunctionType
InfiltrationType
GridSize1
GridSize2
GridSize3
Parameter1;
Parameter2;
Parameter3;
Parameters;

TPerformaceResponseObject
This is the definition object for the parameter
response analyses. Includes information about

Main Properties
ApplicationEfficiency
StorageEfficiency
Distribution
Uniformity
RunoffVolume

DrainageVolume
InflowVolume
InfiltrationVolume
VolumeBalanceError
ObjectiveFunctionValue

TINFILTResponseObject
This is the definition object for the parameter
response analyses. Includes information
about

Main Properties
CalculateArrayLimits
UpdateDataValues

TAdvaneRunoffResponseObject
This is the definition object for the parameter
response analyses. Includes information
about

Main Properties
AdvanceSumSquaredError
RunoffSumSquaredError
CalculateArrayLimits
UpdateDataValues

TRunoffResponseObject
This is the definition object for the parameter
response analyses. Includes information
about

Main Properties
CalculateArrayLimits
UpdateDataValues
Size3
Parameter1;
Parameter2

TAdvanceResponseObject
This is the definition object for the parameter
response analyses. Includes information
about
Main Properties
CalculateArrayLimits
UpdateDataValues

TCustomCalibrationResponseObject
This is the definition object for the parameter
response analyses. Includes information about

Main Properties
ObjectiveFunctionValue
CreateDataArrays

Chapter 6 Automated generation of field design and management guidelines

 160

Child classes derived from TCustomResponseObject contain the individual
storage functionality associated with the linked objective-functions, as well as
specialised functions for updating the storage arrays and calculating maximum and
minimum response values.

The response object has been designed to work efficiently with other elements of
the decision support system. The n-dimensional arrays in which the response
information is stored are part of an especially designed class called
TPADataArrayObject. The array has a three dimensional capacity, and uses a
special enumerator types to align decision variable types with each storage
dimension. This storage medium can be “plugged” into the 3D surface chart series
and contour chart series to provide data values for graphing without having to copy
values in memory.

The TPADataArrayObject class facilitates remapping of the parameter
dimensions between the storage data array and response object through
parameter-pointers located in the response object base class (Figure 6.13). This
allows a switching of variables when instances of TPADataArrayObject class are
“plugged” in the graphical outputs. For example, flowrate and time-to-cutoff could
be interchanged providing a mirroring effect of the graphical response-surface.
Alternatively, field-length could be interchanged with flowrate to switch from a
management scenario to a design scenario.

Before any parameter analysis operation commences, a dialog is presented to the
user to select the key elements of the study for the current selected record. This
includes the decision variables (from the TSimulationParametersObject
object), objective-function, and grid sizes for each decision variable. Pointer links
are then established between the parameter analysis manager, selected decision
variables and objective-function. Response-surface data is then generated by the
manager and stored in the response object, through changing the design values
and updating the objective-function. Progress is reported back to the parameter
analysis manager, which passes this information back to the decision support
system. When the response-surface data has been generated, the data is saved to
disk and linked to the selected record.

 Figure 6.13: Mapping of dimensions from the Response object to the data array object.

XParameter

YParameter

ZParameter

ptrXParameter

ptrYParameter

ptrZParameter

ArrangementOrder

Parameters dimensions are “virtually” rearranged (remapped) according to the ArrangementOrder variable.
This is done using pointers to access different memory segments of the stored data matrix. This allows direct
memory access to different configurations of the response data during surface and contour generation; e.g.
Flowrate vs TimeToCuttof, Flowrate vs Fieldlength, Fieldlength vs TimeToCutoff.

Pointer connections
remapping parameters.

TPADataArrayObject

Response Object

Chapter 6 Automated generation of field design and management guidelines

 161

6.6 Analyses for displaying output
Two analyses have been developed for displaying the outputs from the parameter
analysis manager. This includes a three-dimensional response-surface analysis
(TSurfaceParameterAnalysis), and a two-dimensional design chart analysis
(TUserDefinedParameterAnalysis).

6.6.1 Response-surfaces
The response-surface analysis (TSurfaceParameterAnalysis) is designed to
maximise the visualisation of the system outputs in two, three or four dimensions.
Visualising the fourth dimension is achieved through “chart-splitting” or through a
slider-bar control of the third decision variable. The analysis is highly interactive with
many interface components for changing surface features, coordinate systems, and
parameter interactions. Key features of this analysis include:

• Interaction with a third decision variable using a slider-bar control;
• System response for different values of the third decision variable can be

expanded into separate charts (“chart-splitting”), removing the interaction
with the slider-bar control;

• Any of the decision variables can be interchanged with one another on the
chart axes and slider-bar control.

• Synchronized zooming, panning and rotation capabilities for all charts. If the
view of one chart is changed, then the other charts are also updated
accordingly;

• Merging of response-surfaces into a single chart to visualise surface
interactions;

• User-selectable outputs including the ability to incorporate results from more
than one analysis;

• Parameter response filtering to hide/show different parts of the response-
surface (for example, see Figure 5.9);

• Different colouring options including fixed colours, colour gradient, and
colour palette, and also user-defined transparencies; and

• Different surface outputs including solid surface, contours, wire-frame and
dot-points.

Sample outputs from the response-surface analysis have already been presented
the Chapters 4 and 5 when validating the calibration and optimisation modules.

6.6.2 Guidelines for design and management
The user-configurable two-dimensional (contour) design-chart analysis
(TUserDefinedParameterAnalysis) was developed to allow custom generation
of design and management guidelines. Many of the features that were developed
for the response-surface analysis have also been incorporated in this analysis
including: the slider-bar control for the third parameter; parameter response filtering
to hide/show different parts of the response-surface; and different colouring
options for the outputs. Key features of this analysis, that differ from the response-
surface analysis include:

• A user-definable chart array, whereby the user can configure the number of
chart-rows and chart-columns for setting up the design analysis;

• A custom editor for assigning decision variables to individual chart axes;

Chapter 6 Automated generation of field design and management guidelines

 162

• Drag and drop set-up of system-outputs onto the design charts;
• Multiple system outputs allowable for each chart, with filtering options

available to improve readability; and
• Custom captioning of each chart.

Figure 6.14 shows a sample output from this analysis for three different infiltration
conditions. The charts were developed in under five minutes through running three
separate parameter analyses for each infiltration condition; setting up a 3x2 array
of charts; assigning flowrate and time-to-cutoff variables to the individual chart
axes; and dragging and dropping the “application efficiency” and “storage
efficiency” outputs onto the charts.

Figure 6.14: Sample design chart output from the parameter-analysis module.

In using these charts, the user would be advised to choose values of the decision
variables that would correlate with the blue regions of the charts, which represent
regions of high efficiency. Typical design selections would lie in the region of the
parabolic intersection of the two outputs for the individual infiltration conditions.
From these charts, the user can deduce that application efficiency decreases with
increasing infiltration conditions, and that a maximum application efficiency of
around only 50% can be achieved under the high infiltration state. These charts
also show how easy it is to overwater the field, with large areas of peak storage
efficiency evident.

6.7 Discussion of parameter-analysis facility
The usefulness of the parameter-analysis module has already been demonstrated
through the generation of the response-surfaces presented in Chapters 4 and 5.
This was a purely academic application of the tool, yet it only demonstrated a small

Chapter 6 Automated generation of field design and management guidelines

 163

proportion of its capabilities. From a practical point of view, the tool offers the
potential to quickly and easily generate a set of design and management guidelines
given historical paddock infiltration data.

A potential limitation of the module is that it is not capable of generating curves in
the form presented in the preliminary case study. That is, the tool cannot represent
system outputs by the chart axes, but instead must display them as contours with
the decision variables represented by the axes. It is possible to include this
capability in a later version of the software, and even utilise the optimisation
algorithm to generate system outputs as was done manually in the case study.
However, having studied these output formats, it was decided that the most useful
method is that which has been developed here, with the influencing factor being the
need to visualise as much as the system response as possible.

6.8 Conclusions
A preliminary study was carried out to show the importance of infiltration variation
on irrigation decision-making, and to provide a first attempt at generating design
charts. The resulting charts combined the effects of variable infiltration and three
decision variables using a fixed management strategy of minimising runoff. A
limited range of response outputs for a fixed management objective negated the
potential benefit of visualising a large number of dimensions. Nevertheless, this
study provided the basis for the subsequent development of the guideline-
generating capabilities for the FIDO decision support system.

Recommendations from the study included representing system outputs as
contours and iso-curves, rather than by the chart axes; representing different
infiltration conditions in separate design charts; allowing the user to assign
variables to each chart axis; and representing only two decision variables in each
chart. These features were then incorporated into the parameter-analysis module
using a detailed object-oriented structure to combine the key elements of a
manager-controller class, design parameters, field measurements, simulation
engine, objective-functions, and two highly interactive graphical analyses.

Chapter 6 Automated generation of field design and management guidelines

 164

Chapter 7 Software engineering a decision support system for furrow irrigation

 165

Chapter 7 Software engineering a decision support
system for furrow and border irrigation

7.1 Introduction
The literature review (Chapter 2) has highlighted the usability and reliability
problems with existing surface irrigation design and management software. The
research presented in the subsequent chapters has attempted to overcome
these problems by developing new object-oriented tools for furrow and border
irrigation design and management tasks. The goal of this chapter is to combine
these tools with a database and a simple user interface to develop a new
decision support system for furrow and border irrigation called FIDO (Furrow
Irrigation Decision Optimiser).

The research in this chapter has four main objectives: (1) it will discuss the
software engineering design options available while developing the application;
(2) a suitable object-oriented program structure is developed to accommodate
program elements; (3) it will develop a new XML-based surface irrigation
database; and (4) a simple graphical user interface is created using advanced
third-party libraries.

This chapter is accompanied by seven appendices providing further information
on the software engineering tools used to develop the decision support system
(Appendix 7.1), the XML-based data structures (Appendix 7.2), and the evolution
of the FIDO simulation (Appendix 7.3), calibration (Appendix 7.4), optimisation
(Appendix 7.5), parameter analysis (Appendix 7.6), and database (Appendix 7.7)
graphical user interfaces.

7.2 Decision support system design criteria
Before developing the decision support system, the operational functionality of
the system needs to be clearly defined, the objectives of the development
identified, and the software engineering tools presented. Each of these will now
be discussed in turn.

7.2.1 What is the FIDO decision support system
The FIDO decision support system is a computer software tool combining a
database, graphical user interface and surface irrigation design and
management tools into a single program. The required functionality of the
software is to:
• store property, paddock, event and model information;
• evaluate the performance of existing irrigations;
• estimate infiltration parameters from irrigation advance and/or runoff data;
• assess the optimum performance potential of existing irrigations;
• review and compare performance, infiltration and optimum potential over

time;

Chapter 7 Software engineering a decision support system for furrow irrigation

 166

• evaluate performance sensitivity to changes in design and management
parameters and options; and

• create site-specific design charts for irrigation design and management.

7.2.2 Objectives of decision support system development
The primary goal of this chapter is to develop a decision support system for
furrow and border irrigation by combining the tools developed in Chapters 3 to 6
into a single program containing a database and graphical user interface. This
involves:
1. developing an object-oriented structure to accommodate program elements:

This structure must separate the graphical user interface components from
other task related objects while sharing resources and communicating
effectively between elements. It must remain flexible for future development.

2. developing a database to store property, paddock, event and model
information: The database is required to store measurements, modelled
results, and other irrigation information. Average irrigation and infiltration
performance at the property, paddock and event levels needs to be
monitored and automatically recalculated each time model results are
updated. The database should use a format accessible to other applications
while existing irrigation data formats (such as SIRMOD and INFILT data
files) should be easily imported.

3. creating a user-friendly graphical user interface: The interface must be
simple and intuitive to use and not distract the user from the tasks of
irrigation evaluation, design and management. Therefore, recognized
principles of graphical user interface design need to be adhered to. It should
utilise proven third-party components and libraries to maximise programming
efficiency and power.

The target audience of this tool is primarily researchers, and irrigation
consultants. However, this is not trying to limit this software away from users at
the farm level.

The scope of this chapter is limited to presenting a decision support system for
furrow and border irrigation capable of demonstrating the components
developed in Chapters 3 to 6. The goal is not to develop a commercial quality
software product ready for distribution within its target market. This would
require a further number of months of development, testing and bug fixing.
However, the structure, database and interface as presented in this chapter are
valid contributions to this eventual ambition.

7.2.3 Software engineering tools
FIDO has been developed in C++ as a Win32 application under Microsoft
Windows using Borland C++ Builder and the Visual Class Library
(www.borland.com). XML (eXtensible Mark-up Language), XSD Schema, and
XSLT technologies (www.w3.org/XML) were chosen to develop the database
components of the software while prototyping was undertaken using XML Spy
Suite software (www.altova.com). Several third party libraries including TeeChart
(www.teemach.com) and VirtualTreeView (www.delphi-gems/VirtualTreeview)

http://www.borland.com/�
http://www.w3.org/XML�
http://www.altova.com/�
http://www.teemach.com/�
http://www.delphi-gems/VirtualTreeview�

Chapter 7 Software engineering a decision support system for furrow irrigation

 167

feature prominently throughout the FIDO decision support system. A description
and discussion of these software engineering tools is presented in Appendix 7.1.

7.3 Program framework
FIDO has been designed using a multi-threaded object-oriented design structure
that separates the graphical user interface code from the separate but
interrelated tasks of data storage, simulation, calibration, optimisation, and
parameter analysis. Task and storage orientated objects called “managers”
have been developed for each of these elements encapsulating their features
within. Special analyses have been developed to post-process and display
outputs from the managers. Tools such as the simulation and optimisation
engines remain external to these managers and analyses, but are easily
accessible to each.

7.3.1 Design methodology
Developing a framework for the decision support system has centred on the
primary goal that the graphical user interface remains external to the
mathematical libraries and databases. In this manner, the decision support
system can be compiled as a library sans user interface and distributed to other
researchers and developers for inclusion in their projects. This has already been
applied in undergraduate and postgraduate projects (Ma 1994; Gillies, M.
pers.comm. 2005-2006).

Separating the user interface from the rest of the program is contrary to the
natural programming doctrine of using a “Rapid Application Development (RAD)”
tool such as Borland C++ Builder. These RAD environments encourage “form-
based” programming where the simplest path for developers is to encapsulate
non-interface code inside the automatically created form-classes. The developer
creates user-interface components and controls graphically at design time that
are then instantly accessible to the non-interface code. While this is powerful
when creating smaller applications, large decision support systems such as
FIDO require careful code and object management to simplify program structure
and reduce memory loadings. Externalising the interface plays a large role in this
simplification.

Because of the size of the FIDO project (consisting of over two hundred
individual object types contained in over one hundred and fifty “.cpp” files), early
development consisted of creating five separate programs to focus upon the
separate tasks of data-management, simulation, calibration, optimisation and
parameter analysis. The main purpose of this was to increase development
efficiency through faster compile and linking times. However, it also had the
added advantage of improving the overall program structure through better
object design and management. That is, the program objects have been
designed better as a result of having to work under a range of operating
environments. Having the system work in the absence of a user interface has
further enhanced this.

Chapter 7 Software engineering a decision support system for furrow irrigation

 168

7.3.2 Structural components
The structure of FIDO can be broken down into five conceptual element groups
of “user interface units”, “managers”, “tools”, “analyses” and the “project”.
These can be further classified into their graphical user interface and program
code components (Figure 7.1).

Figure 7.1: Conceptual view of FIDO program elements showing separation between graphical
user interface and other program code. Arrows represent communication lines between objects.

User interface units
The user interface units consist of forms and dialogs containing a range of
graphical controls. While the appearance and content of these elements will be
discussed in detail later in the Chapter, it’s the structure and order of the units
that is examined here.

All of the main interface units are derived from the TForm class (the “form”
component in Borland’s Visual Class Library) and represent a visual “window”
or form inside of FIDO. The key form is T_MainForm that is the first unit created
when FIDO is started, and the last to be deleted upon closing down.
T_MainForm ultimately contains and controls instances of all other interface
elements with the responsibility of displaying, resizing and positioning them.
Other form elements embed seamlessly into T_MainForm so that it appears that
only one window exists.

Figure 7.2 highlights the relationships between T_MainForm and the other main
interface units, forming three embedded window layers. T_MainForm
constitutes the first window layer. The second layer consists of two possible
input-related forms (T_RecordSelectorForm and T_ParameterInputForm)
and two possible output-related forms (T_DatabaseMainForm and
T_AnalysesForm). A third window layer exists for database manipulation where
a further three possible output-related forms are available
(T_DatabaseRecordsForm, T_ReportForm, and T_BrowserOutputsForm).
Two of these forms, T_BrowserOutputsForm and T_AnalysesForm, are
similar in structure in that they both contain specialised controls to provide the
graphical interface for the “analysis objects”.

Program Code

Graphical User Interface

User Interface
Units

Managers

Tools
Analyses

Project

Chapter 7 Software engineering a decision support system for furrow irrigation

 169

Finally, there are also three dialogs available (T_RuntimeDialog,
T_ParameterAnalysisDialog, and T_ChartEditorDialog) which appear to
float above the main window upon activation.

Figure 7.2: Main user-interface units in FIDO showing relative positions and parent objects.
Layers designate parent/child relationships and "OR" symbol suggests that either one element or

another will be shown depending on current program conditions.

T_MainForm also contains non-interface elements such as the “Program
Manager” (see next section). While this may appear to contravene the original
design goal of separation of interface and non-interface code, in this instance, it
is only an object which is contained and not fragments of code. Any developer
who uses FIDO as an external library can easily relocate this object.

Managers
“Managers” are the workhorses in the FIDO program containing the execution
loops for generating output and performing the decision support tasks. Three
different types of managers are used in FIDO (Figure 7.3) and include the
program manager, storage managers, and task managers:

T_MainForm
Main program

window

T_DatabaseMainForm
For database operations.

T_DatabaseRecordsForm
For displaying record data.

T_BrowserOutputsForm
For graphically summarising

data.

T_ReportForm

XML reporting of
data.

T_AnalysesForm
For post-analysis of simulation, calibration,
optimisation and parameter analysis tasks.

T_RecordSelectorForm
For changing and browsing

records

T_ParameterInputForm
For displaying current input

data

T_ParameterAnalysisDialog
For setting up Parameter Analysis

T_RuntimeDialog
For guiding user through tasks

T_ChartEditorDialog
For editing charts

OR

OR

OR

Chapter 7 Software engineering a decision support system for furrow irrigation

 170

Figure 7.3: Derivation of manager objects used in FIDO.

1) The program manager (TProgramManager) is designed primarily as the

execution point and communication centre for all decision support
operations. All major non-interface components are created and contained
inside of this manager including the other managers and tools. This
effectively unifies the program code keeping it separate from the user
interface. It is through this manager that the user interface units
communicate with the task managers and analyses responsible for decision
support operations.

2) Storage-managers are responsible for grouping related data or methods.
This manager-type is conceptual since existing examples are not derived from
a common ancestor, although they still have a similar purpose. Three
independent examples exist in FIDO:
• TDatabaseManager contains several graphical analyses for summarising

the stored data. This includes an XML-based report generation feature to
display a user-customisable review of the selected records. Historical
performance and infiltration analyses are also available along with the
ability to explore measured input data.

• TUsersManager contains a database of user information. This
information is used to track changes to data-variables, and in report
generation.

• TObjectiveFnManager is used to centrally store the different objective-
function objects used in the calibration, optimisation and parameter
analysis.

3) Task-managers are designed to perform particular actions or tasks such as
running a simulation or calibration. FIDO contains several of these
managers and these are derived from a common parent called
TCustomManager. This base class is itself derived from an independent
operating thread class (TThread) so that mathematical processes do not
monopolise processor time. This multi-threading capability allows the user to
interact with the graphical user interface while simulations and optimisations
are being performed. Task Managers include:

TDatabaseManager

TOptimisationManager

TCalibrationManager

TSimulationManager

TCustomManager

TParameterAnalysisManager

(2) Storage Managers (3) Task Managers

Pointer
 Connection

TThread

TUsersManager

TObjectiveFnManager

Pointer
 Connections

TProgramManager

Contains instances of all other managers

(1) Program Manager

Chapter 7 Software engineering a decision support system for furrow irrigation

 171

• TSimulationManager for irrigation evaluation tasks;
• TCalibrationManager for calibration and parameter estimations;
• TOptimisationManager for optimisation of irrigation performance; and
• TParameterAnalysisManager for in-depth parameter evaluation.

Analyses
Output from the different managers is sent to the “analysis” objects for post-
processing and display. It is through these analyses that detailed graphical and
textural outputs are presented to the user. An example of this is the animation of
water flowing down a furrow developed in TAnalysisSIM_FlowAnimation
(see Figure 7.18 in Section 7.5.6)

All analysis objects are ultimately derived from a specially created class called
TCustomAnalysis (Figure 7.4), which has been designed to “plug-in” to the
user interface units T_AnalysesForm and T_BrowserOutputsForm containing
the graphing and spreadsheeting functionality. The base class
TCustomAnalysis is itself derived from an independent operating thread class
(TThread) to extend the program’s multithreading capabilities.

Figure 7.4: Derivation of analysis classes in FIDO.

TThread
Independent operating thread.

ThistoricalSummaryAnalysis
Summarises historical performance.

TinfiltrationSummaryAnalysis
Summarises infiltration history.

TsimulationAnalysis
Virtual class containing a link to the
Simulation Engine, and sets up view
settings list for graphical output. Allows
use of a common Y-Axis in graphical
outputs.

TAnalysisPACustom
Virtual class containing a scrollbar control
for “third-parameter” manipulation.

TAnalysisSIM_FlowAnimation
Animates the output of the simulations.

TAnalysisSIM_SolutionGrid
Displays advance, recession and runoff output.

TAnalysis_Calibration
Shows measured and predicted advance curves.

TAnalysis_Optimisation
Compares predicted and optimised performances.

TAnalysisPA_Surfaces
Generates 3D parameter response-surfaces.

TAnalysisPA_UserDefined
Designer tool for user-defined design charts.

TCustomAnalysis
Virtual class containing main execution
loops of analyses:
• UpdateAnalysis()
• UpdateOutput()
Links to current manager, charting and
treeview components, toolbar, header and
footer, and parent component.

Chapter 7 Software engineering a decision support system for furrow irrigation

 172

Further abstraction of the base class continues through the development of the
specialised virtual classes; TSimulationAnalysis which adds extra common
functionality for simulation, calibration and optimisation operations; and
TAnalysisPACustom which contains information common to the “parameter
analysis” tasks.

In all, FIDO currently (at the time of writing) contains eight analyses, although
more can easily be developed and added at a later time. These current analyses
are created and stored in their corresponding task-managers and include:
• two database analyses including THistoricalSummaryAnalysis and

TInfiltrationSummaryAnalysis for summarising historical performance
and infiltration;

• two simulation analyses including TAnalysisSIM_FlowAnimation and
TAnalysisSIM_SolutionGrid for graphically animating the simulation
outputs and presenting advance, recession and runoff information;

• one analysis called TAnalysis_Calibration for displaying calibration “fits”
of measured and predicted advance;

• one analysis called TAnalysis_Optimisation for viewing optimisation
progress; and

• two analyses for detailed parameter analysis of response-surfaces and
curves: TAnalysisPA_Surfaces and TAnalysisPA_UserDefined.

Tools
FIDO contains two main tools which are available to the task managers: the
simulation engine, (TSimulationEngine as developed in Chapter 3); and the
optimisation engine (TOptimisationEngine as developed in Chapter 4). These
tools are created inside the program manager (TProgramManager) so that
only one instance of each is required, so as to be accessible to all managers.

Project
The project object (TFIDOProjectTreeObject) is the main database control in
FIDO. It contains routines to load and save data, and is responsible for
communicating with the program manager (TProgramManager) to pass
information in and out of the task managers and analyses.

7.3.3 Structural connections
Although the “user interface units”, “managers”, “tools” and “analyses” are
separate objects, they are not designed to function independently. Instead they
coexist with each other through a network of external links and parent-child
relationships.

Figure 7.5 demonstrates these relationships for the main program elements.
This shows how the program manager (TProgramManager) is located inside of
T_MainForm, and that all other managers and tools are located inside of
TProgramManager. While the database manager (TDatabaseManager) has no
parent/child relationship with any of the task managers, connections still exist

Chapter 7 Software engineering a decision support system for furrow irrigation

 173

between them through external links. Likewise, the objective-function manager
(TObjectiveFnManager) is linked to three of the task managers using the
same mechanism.

TProgramManager

TUsersManager

TSimulation

TDatabaseManager
• TAnalysis_HistoricalSummary
• TAnalysis_InfiltrationSummary
• Analysis_TimeSeries

TOptimisationEngine

TObjectiveFunctionManager
• AdvanceFn
• AdvanceAndRunoffFn
• RunoffFn
• IrrigationPerformanceFn

TCalibrationManager
• TAnalysis_Calibration

TSimulationManager
• TAnalysis_FlowAnimation
• TAnalysis_SolutionGrid

TOptimisationManager
• TAnalysis_Optimisation

TParameterAnalysisManager
• TAnalysis_Surfaces
• TAnalysis_UserDefined

T MainForm

T AnalysesForm

T DatabaseMainForm

T ParameterInputForm

T RecordSelectorForm

Figure 7.5: FIDO structure demonstrating interactions and connections between the central
“user interface units”, “managers”, “tools” and “analysis” components. The project object is

visible to all components.

“Pointers” (programming term for memory referencing) are used extensively
throughout FIDO as the mechanism for these links. Using pointers establishes
visibility between the non-related objects that extend in one direction through
related links. For example, through pointer connectivity, the simulation engine
(TSimulationEngine) is accessible to the database manager
(TDatabaseManager), which in turn is linked to the other task managers. The

TFIDOProjectTreeObject

Chapter 7 Software engineering a decision support system for furrow irrigation

 174

task managers then automatically have access to the TSimulationEngine as
they are sharing the link with TDatabaseManager. However, the reverse is not
true since TSimulationEngine does not know anything about the database
manager or the task managers. This is because the reverse link has not been
defined, and in practice it is not required.

Figure 7.5 also shows how the analysis objects are stored in their respective
storage and task managers. The large transparent arrows that underlay these
objects indicate how the managers and analyses interact with the different input
and output user interface units. Note that different interfaces are used for
database and non-database related tasks.

7.4 Developing a surface irrigation database
The FIDO database component (project object) is a key component of the
decision support system from which all tools receive and send information. It
has been developed using XML and XML-Schema technologies, and is based
upon a four-tier hierarchical structure of property, paddock, event and model
information. Data is not stored in flat file or relational tables as in traditional
database design (although this approach was used in early development), but
through parent-child relationships between the four structural elements. The
primary element is the property data, which is stored as independent XML data
files containing all information relating to the property, including the paddock,
event and model data. The project object (TFIDOProjectTreeObject) serves
to link all of the property data and facilitate searching and retrieving
requirements.

Developing the database was a complex process. The design methodology was
evolutionary with many prototypes being developed using different structures
and technologies. Nevertheless, having learnt from earlier “failures”, the current
XML database has been designed and developed in an organised manner. This
included the steps of identifying design issues, designing schema
representations of the data, establishing database connections, designing
object-oriented computer code for the database, and establishing an efficient
development methodology. These issues will now be discussed in turn.

7.4.1 Design considerations
The current database has evolved over many years and through several changes
in structure and technologies. In many ways, its design has been dominated by
available technologies with early versions using the Microsoft Access database
and Borland Database Engine. After many attempts, it was decided that the flat
file and relational database methodologies were not well suited to the
progressive disclosure objectives of the software design. That is, the primary
purpose of this database is not the traditional store/search/filter methodology of
large data repositories. Rather its purpose is to embed itself into the object-
oriented framework of the decision support system, with traditional tables and
databases being replaced by intelligent objects that help form the program
structure. In the current version, XML and XML Schema technologies are used

Chapter 7 Software engineering a decision support system for furrow irrigation

 175

to facilitate these requirements, serving as communication and storage medium
for disk access, and integration with external software and libraries.

One implication of this is that the database is not “live”. That is, the data
structure and values are loaded into memory when the user opens a project,
which initiates a copy of the XML data into program memory. The original stored
data remains unchanged until the user chooses to save the program data back
over the original database. Forgetting to save the database will mean that all
changes to the program data are lost. In comparison, the early attempts at using
Microsoft Access database meant that data was constantly being read and
rewritten to the database.

XML has many attractive features for database development including a
standardised format allowing the data to be accessed by other applications and
platforms. Saving the data in the XML format serves to preserve the structural
relationship of the data as well as the data values. There is also little overhead
in using XML, compared to having one of the commercial database engines
installed on the user’s computer. However, one disadvantage of using XML as a
data store, is that the entire database structure is loaded into memory during
initialisation13. However, given that the data requirements of a large irrigation
database would only be in the order of megabytes (easily handled by today’s
computers), this should not be a problem.

Nevertheless, careful memory management was seen as a design objective to
ease the burden on the system. FIDO ensures that while the database structure
is always loaded in memory, the property data (other than the names and IDs
and filenames) are not loaded into memory until required, where they will stay
until the program is terminated. This is made possible by storing the property
details separately from the database structure and using dynamic memory
allocation techniques to assign memory for storage variables only when required.
Both the record files and the database structure are stored in XML format.

In an early design using the XML technologies, relational tables for each record
type were used to form the FIDO database with each set of data being saved in
their own files. That is, each property, paddock, event and model data record was
saved in its own individual file and stored in four separate data tables. The
project file maintained data connections between the elements. From a practical
point of view, this proved to be too complex with a typical database containing
hundreds of XML data files. Backing up data and exchanging data with other
users are important design considerations, and this was difficult to undertake
with so many files in different directories. The software engineering required to
manage the databases and import files was also complicated. Therefore, the
idea was abandoned for the single property file format that is simple to copy and
exchange.

7.4.2 Schema representation of the data.
Appendix 7.2 presents the schema representations of the FIDO database
elements including property, paddock, event and model data. XML-based

13 There are many exceptions to this.

Chapter 7 Software engineering a decision support system for furrow irrigation

 176

property records represent the top level of these schemas, and are saved in their
own separate property files. Paddock data, event data, and model data are then
located inside each property file, and are pre-linked together by the XML
structure. Each property record is then linked into the FIDO database by an
XML–based project file that stores each record in a list.

In developing the schemas, common group data elements were identified to exist
for all of the record types; a feature that will later be used in the programming
implementation. These common data elements include:

• Identification information;
• Table specific data;
• Linked documents;
• Images;
• Performance summary;
• Infiltration summary; and
• Tally Summary (counts).

Specific information relating to each record type will now be discussed.

Property data
The property database has the responsibility of storing the property related
information such as owner details and property location (Figure A7.2.1). This
data type represents the highest level in the FIDO database structure. Summary
statistics are recorded for child (paddock) records, however these results are
processed no further as summarising across properties has no practical benefit.

Paddock data
The paddock database holds key paddock information (Figure A7.2.2) including
basic field measurements for “auto-insertion” into newly created model records.
This data type represents the second level of the FIDO database structure.

Event data
The event database holds information specific to the day on which an irrigation
occurred including climate data and management options (Figure A7.2.3).
Although this record is intended to represent an actual irrigation event, it is not
designed to store any simulation model input data. This is because more than
one set of input data can exist for an irrigation depending on how many furrows
were monitored. Therefore, storage of this data was left to the model data type.

Model data
The model data type is the most complicated of the irrigation records (Figure
A7.2.4). The “data” component of the record contains the model parameters
required to run the simulations (which were discussed in Chapter 3.3.4). The
furrow parameters may be stored in either physical or empirical form (included
for input of furrow profile-meter results).

There are also some structural differences between this record type and the rest
including:
• irrigation performance is represented by only one results-field instead of

three. That is, we cannot calculate high, low and average performance from
a single set of simulation results;

Chapter 7 Software engineering a decision support system for furrow irrigation

 177

• calibration and optimisations results are stored here; and
• no tally or infiltration summary fields are included.

7.4.3 Database connections
The FIDO project object (TFIDOProjectTreeobject) is essentially a database
object, which links all of the property data, and facilitates searching and
retrieving requirements. Only the property filenames are initially stored in the
project object until the user requests more information. The connections
between the different properties are made externally through a project file (in
XML format) that contains the entire database structure. Figure 7.6 represents
the schema structure of this XML file showing how the record name and
filename are the only information stored along with the structural information.
The “0…∞” symbol appearing in the figure indicates that there is no limit on the
number of property records that the database may contain.

Figure 7.6: Schema representation of main FIDO database connections.

7.4.4 Programming implementation of the database.
The programming implementation of the FIDO database uses an object-oriented
structure closely resembling the schema structure presented in section 7.4.2. It
consists of a project object (TFIDOProjectTreeObject), a series of record
objects for property, paddock, event and model data (derived from
TFIDOCustomDataTreeObject), and many parameter objects for storing data-
field values. These will now be discussed in turn

Project object
First presented in Section 7.3.2, the project object (TFIDOProjectTreeObject)
contains a list of property objects, as well as temporary lists for active (selected)
property, paddock, events and model data records. It contains routines for
reading and writing to the XML files, and standard database functionality for
adding, deleting, and modifying records.

Chapter 7 Software engineering a decision support system for furrow irrigation

 178

Record objects
A series of record objects for property, paddock, event and model data have
been derived from a common base class (TFIDOCustomDataTreeObject).
Figure 7.7 displays the type and functionality of these object-classes and their
common ancestors.

Figure 7.7: Derivation of record object classes in FIDO.

The structural organisational levels of the database are maintained through lists
contained in each record object (defined in TFIDOCustomDataTreeObject).
That is, paddock objects are stored in lists located in each property object, event
objects are stored in lists located in each paddock object, and so on. These lists
are updated during loading of the XML data files, and through modifications
initiated by the program manager.

The TFIDOCustomDataTreeObject also defines statistical storage types for
tally, performance and infiltration summaries, which are required on all database
levels. Because these summary components are common to each child class,
statistical operations can be called recursively and efficiently, updating each
level in succession (Figure 7.8). For example, a property-object can request that
its infiltration statistics be updated. This will spawn a cycle whereby each
paddock-object listed for that property will request a similar action. Then every
event-object listed for each paddock will again repeat the request. When the
request filters down to the model data objects, the required information will then
be passed backwards and be summarised at each level.

TCustomContainerTreeObject
Virtual base class containing parent
functionality and XML read/write
capabilities

TFIDOCustomDataTreeObject
Virtual base class containing
Irrigation related information
including:
• Child record list.
• Tally info: counts on child

records
• Performance info: average,

high and low.
• Infiltration info: average, high

and low.
• Comments
• Creation/modified details
• VirtualTreeView connections

TFIDOPropertyDataTreeObject
Property and owner info. (see Figure A7.2.1)

TFIDOPaddockDataTreeObject
Paddock info. (see Figure A7.2.2)

TFIDOEventDataTreeObject
Irrigation day/event info. (see Figure A7.2.3)

TFIDOModelDataTreeObject
Simulation model info. (see Figure A7.2.4)

Chapter 7 Software engineering a decision support system for furrow irrigation

 179

Figure 7.8: Sequence of summary calculations performed by TFIDOCustomDataTreeObject
children.

Parameter objects
Powerful parameter objects have been developed to store and manipulate data-
field information. These objects have the ability to:

• Display themselves in the Virtual TreeView control (see Appendix 7.1).
• Load/save themselves to disk using XML format
• Send themselves to XML Report
• Allow the user to edit them in the tree
• Allow comments to be added and stored
• Store “author” and “last-modified” information
• Allow user filtering of data.

Over thirty different parameter object types are used in FIDO. Figure 7.9 shows
the design hierarchy of those relating to the data-field information.

Record

Calculate
Child Statistic

Calculate
Child Statistic

And so on…

Chapter 7 Software engineering a decision support system for furrow irrigation

 180

Figure 7.9: Parameter object design hierarchy as used in FIDO.

7.4.5 Database development methodology
Defining the structures of the property, paddock, event and model elements was
a complicated process, and the final designs are the result of continual
refinement and evolution over a period of months. The XMLSpy Suite software
was indispensable for this purpose as it quickly and easily facilitated the
synchronisation between the XML Schemas and C++ record classes.

This involved a three step process of: (a) designing/modifying an XML-Schema
for each database element using the XMLSpy Suite software; then (b) writing
the equivalent C++ code to generate “sample” output XML files; and then (c)
validating the these files against each schema until the outputs and design
structures agree. The C++ code is in the form of specialised database classes or

TSeriesGridLineTreeObject
Spreadsheet entity object

TDataSeriesTreeObject
Graphical output series

TContourLevelTreeObject
Contour info for PA

TObjectiveFnSetterTreeObject
Objective function setter

TAnchorTreeObject
structural filler

TAnchorTreeObject
Invisible structural object.
TCaptionTreeObject

Header in databases

TTextTreeObject
String storage object

TCheckTreeObject
Boolean storage object

TFloatTreeObject
Float storage object

TIntegerTreeObject
Integer storage object

TOptionsMenuTreeObject
Int storage object with menu
TRecordTreeObject
Record header object

TinputDataTreeObject
Vector storage object

TCustomOptValueTreeObject
abstract value parameter

TSplitOptValueTreeObject
Container for value params

TTallyTreeObject
Irrigation summary info

TInfiltTreeObject

Infiltration summary
TPerformanceTreeObject

Performance summary info

TFileTreeObject
Filename linking object

TDateTreeObject
Date storage object

TCommentsTreeObject
Comments storage object
TSummaryFloatTreeObject

Float storage object

TSummaryIntTreeObject
Integer storage object

TBooleanMenuTreeObject
Boolean object with menu

TFloatOptTreeObject
Float for optimisation
TIntOptTreeObject
Int for optimisation

TCustomFormatTreeObject
Introduces presentation info.

TCompundTreeObject
Complex object prototype

TCustomContainerTreeObject
Introduces parent child capabilities

TCustomTreeObject
Parent base-class

Chapter 7 Software engineering a decision support system for furrow irrigation

 181

“record and database objects” that contains the storage variables, and also
methods to input and output the desired XML file.

7.5 Graphical user interface
Modern design conventions have been used to develop the graphical user
interface for the FIDO decision support system. Lack of adherence to these
conventions in the past has arguably been one of the leading contributors to the
poor adoption rates of surface irrigation design and management software.
Frustrations born out of trying to use a poorly designed interface do nothing to
foster confidence in the effectiveness of the software and the complexities
inherent in these types of mathematical models have traditionally manifested
themselves in the interfaces.

The concept of the FIDO decision support system is complex, with its five main
functional requirements and a large range of input and output parameters.
Hiding this complexity from the user is the one of the primary goals of the design
of the graphical user interface, which acts as the communication medium
between human and computer. The effectiveness of the interface can be judged
by how simply and intuitively the user can perform the tasks of surface irrigation
database management, simulation, calibration, optimisation and parameter
analysis. Therefore careful consideration has been given towards user issues
and software design procedures in developing the FIDO graphical user interface.

7.5.1 Principles of graphical user interface design
Numerous texts and articles exist defining the principles of graphical user
interface design (Tognazzini 1992; Cooper and Reimann 2003, Tidwell 2005).
Although software technology is quickly outdated these days, the general
principles behind graphical user interface design remain the same. Ten
commonly used principles that have been adhered to in the design of the FIDO
user interface include:
1. Keep it simple and transparent: Allow the user to concentrate on the task

and not be distracted by the interface. Design the interface to show only
useful and relevant information, and hide elements that compete with this.
Don’t clutter the interface and overload the user with too many buttons and
options. Use “progressive disclosure” techniques to limit what the user sees
at any given moment.

2. Maintain consistency with appearance and behaviour: The application should
be consistent with itself and with other applications. Consistency allows the
user to apply their existing knowledge of other applications and environments
to understand the new application. This includes using common commands,
controls and layout.

3. Provide appropriate user feedback: Maintain a sensible level of feedback to
the user to keep them informed of the current program status. For each
action a user makes, provide feedback that the system has received input
and is operating on it. Feedback can include text or status bar messages,
cursor changes, progress indicators, simple animations, audio alerts, and
sometimes popup messages.

4. Design the application to be self-evident: Comprehensive online help and
manuals are automatic requirements for any application, but the program

Chapter 7 Software engineering a decision support system for furrow irrigation

 182

should be designed so that the user need not use them. The goal is to design
an interface that requires no further explanation through careful use of
labels, buttons, controls, hints and messages.

5. View warning and errors messages as potential flaws in the application:
Users dislike being told something is wrong. The goal of the program should
be to prevent these errors from occurring, rather than complaining about
them. Design the interface to guide the user to enter appropriate data by
constraining formats, presenting valid options and disabling dependant steps
until the dependencies are satisfied.

6. Create a safe environment for exploration: Good programs allow the user to
investigate features and functions without fear of getting lost or
loosing/changing information. This involves making actions reversible,
supporting “undos”, creating a good sense of “home”, and providing various
paths for completing tasks.

7. Design controls to be intuitive: Users should be able to anticipate a control’s
behaviour from its visible properties. Metaphors should be used whenever
possible to describe the controls behaviour (i.e. trashcan icon in Windows).

8. Minimise “modal” behaviours: Avoid locking users into situations by
presenting multi-tasking capabilities with escape options.

9. Allow user customisation: Design to allow users to simplify tasks that they
repeat often, and present outputs in a format of their choosing.

10. Use multimedia effects sparingly: Sound, colour, and animation can make an
application look professional, but a balance is required to maximise their
effectiveness. They should be used only as a secondary mean of
communication. Remember that many users may be colour blind or deaf.

7.5.2 Evaluation of existing interfaces
In developing the graphical user interface for the FIDO decision support
software, the interfaces of the two leading surface irrigation software packages,
SIRMOD and SRFR, were studied to determine their strengths and weaknesses.
Both of these programs evolved through several revisions during the course of
this study; from DOS-based programs into Windows-based software. However, it
was the versions that were available between 1999 and 2005 that have had the
greatest influence on the design of the FIDO user-interface.

Both software packages have gone through several evolutions of interface design
during their development cycle. Both have similar interface capabilities with
animated graphical outputs, and dialog based inputs. Both packages operate
with a distinct modal behaviour segregating input, output, and simulation
operations. It was found that while the outputs from both tools were useful and
attractive, the interfaces were awkward to use and lacked flexibility.

SIRMOD has evolved over several versions primarily as a DOS-based research
tool, and was converted to Windows in 1997/98, in an effort to simplify and
modernise the interface. In SIRMOD, only one set of data can be open at a
time. It makes extensive use of tabbed dialog windows to enter the simulation
parameter data (Figure 7.10a), with results being presented in a range of
graphical and tabular outputs (Figure 7.10b-d) including an animation of water
flowing down and infiltration into the furrow (Figure 7.10b).

Chapter 7 Software engineering a decision support system for furrow irrigation

 183

(a)

(b)

(c)

(d)

Figure 7.10: SIRMOD user-interface screenshots: (a) shows one of the many input dialogs;
(b) animation of water flowing along and infiltrating into furrow; (c) tabulated input parameters;

and (d) plotted output of advance and recession characteristics.

The SIRMOD interface appears simple on first viewing with relatively few
buttons and menu options. However, the complexity of the interface soon
becomes apparent once the “Field Characteristics” dialog or the “Model
Parameters” dialog is opened. While parameters in these dialogs are cleverly
grouped in common categories, one of the downfalls of this presentation is that
every parameter is shown, independent of which modelling options are selected.
No attempt has been made to hide parameters that are not required for the
current set of management options. From experience gained through SIRMOD
training workshops at the NCEA (National Centre for Engineering in Agriculture) in
Toowoomba, this has caused considerable confusion among users. Many of the
parameters are empirical and poorly labelled, while some of the physical
parameters listed are not required for the simulation, but the user has no way of
knowing this.

Unlike SIRMOD, SRFR has remained a DOS-based program for most of its
development cycle (until just recently) featuring a “Windows-like” graphical user
interface and well organised operational structure. In the most recent DOS-
based version, inputs are entered into a dialog that is much less cluttered than in
SIRMOD, but offers fewer input options (Figure 7.11a). A flow animation output
is available (Figure 7.11b) along with other graphical and textural outputs (Figure
7.11c-d).

While the SRFR interface is relatively uncluttered, a major criticism of the
interface is that it feels “unfamiliar” to use, given the DOS-based interface that

Chapter 7 Software engineering a decision support system for furrow irrigation

 184

fails to maintain consistency with other Window’s software. The controls aren’t
intuitive, and there is distinct “modal” behaviour with little sense of “home”.
Being developed in a non-Windows environment also introduces compatibility
problems with printing and importing/exporting data and results.

(a)

(b)

(c)

(d)

Figure 7.11: Screenshots of the SRFR interface: (a) shows the main parameter input dialog;
(b) represents the animation of water flowing along and infiltrating into the furrow; (c)

demonstrates curves of advance, recession, inflow, runoff, and infiltration; and (d) shows the
infiltration distribution again, along with the performance summary figures.

Probably the most attractive feature of both programs’ interfaces is the
simulation animation of the water flowing down along the furrow. Experience has
found that users are initially intrigued by this and its potential to demonstrate
water infiltrating below the root-zone. All of the other graphical outputs are also
useful, but are inflexible in terms of exploration and presentation; that is, the
user cannot “zoom” or “pan” around the charts or compare them directly with
other outputs. They lack the potential flexibility that professional quality third-
party charting packages offer.

At the time of writing this, new versions of both products had only just been
released, so there was no time for them to have any real influence on the FIDO
interface design. SIRMOD has been redeveloped into an internal program for
the US Department of Agriculture called NRCS_Surface (USDA, 2006) and was
not available for evaluation, although it appears that the interface has changed
very little to that reviewed earlier. Of more significance, are the substantial
changes to the SRFR software with the introduction of a Windows version called
“WinSRFR” in 2006.

Chapter 7 Software engineering a decision support system for furrow irrigation

 185

The developers of WinSRFR (AARC 2006) have gone to great lengths to provide
a user-friendly interface to encapsulate the combined functionality of the SRFR,
BORDER (Clemmens et al. 1996) and BASIN (Clemmens et al. 1995) software.
Nevertheless, WinSRFR still uses a very traditional form of interface architecture
with many tabs, buttons, information elements, and modal dialogs all mixed
together. To simply its operation, it is embedded with an extensive amount of
textural guidance and suggestions to help the user navigate through the
program. On most screens, the user will find instructions on how to proceed, with
many “question and answer” type scenarios.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.12: Screenshots of the WinSRFR interface: (a) Project Management Window; (b)
Event Analysis World; (c) Inflow management screen; (d) hydraulic roughness and infiltration

characteristics; (e) infiltration outputs; and (f) simulation animation.
 (Screenshots sourced from the WinSRFR 1.0 User Manual, 2006)

Chapter 7 Software engineering a decision support system for furrow irrigation

 186

WinSRFR uses an analogy of “Worlds” to separate the tasks of event analysis,
simulation, physical design, and operational analysis. These represent four
separate interface pages that are linked by a central database (Figure 7.12a).
Many tabs exist at the bottom and top of each page to switch between different
inputs and outputs. A prominent feature is the amount of text on each page to
guide the user through the process (Figure 7.12b). Separate pages exist for
many of the input variables and parameter such as inflow (Figure 7.12c) and
infiltration and roughness (Figure 7.12d). Outputs are very similar to the DOS-
based version and still lack the flexibility of a modern graphics library (Figure
7.12e,f).

While the design of WinSRFR is a big improvement over the previous versions, it
is now a much more complex and “daunting” piece of software, reflecting the
diversity of new decision support tasks that it is required to perform. There is
always a large amount of information being presented to the user at any one
time, despite attempts at both grouping and segregating functionalities. Only
time will tell how users will react to the complexity of the interface, and whether it
will encourage new users to adopt this technology.

A common limitation of all of software packages is the modal behaviour of
operation. That is, the user is forced to be in either “input mode”, “output
mode”, or “action mode”, with many steps required to progress from one stage to
the next. For comparison, recent programming practices would encourage inputs
and outputs to coincide and harmonise, while the “actions” would be designed to
run “multi-threaded” in the background.

7.5.3 Prototyping the interface
The current version of the FIDO interface has evolved over many different
configurations. Appendices 7.3 to 7.7 demonstrate the range of designs that
have been developed and tested during the prototyping. Initially, many poor
design choices were made while encapsulating the complexity and volume of
tools required by the decision support system. Many of these problems were
present because of the limitations of the software engineering tools,
underdeveloped programming skills, and a lack of clarity in getting away from the
simulation-centred design philosophy of the SIRMOD and SRFR software.
Therefore, the initial prototypes of the decision support software were
characterised by four main problems.

Firstly, initial versions of the software tried to provide general access to all
operations of the decision support system from the main interface screen. This
was done by configuring different analyses on separate pages accessible from
the “tabs” located at the top and/or left hand side of the screen. In practice, this
was found to clutter the interface and provoked confusion from evaluators. This
also required that the user go to a particular page before conducting an
operation such as simulation or calibration, adding extra unnecessary steps to
the process. In later versions, a single button with a drop down menu linking the
analyses was added to the toolbar to remove the tabs, and provoke the “action”
(simulate, calibrate etc) before going to the analysis page. In the current version,
this feature was removed in favour of “hyperlinks” in the database report. In this

Chapter 7 Software engineering a decision support system for furrow irrigation

 187

way, actions are only presented if the action can be performed. This naturally
provides progressive disclosure of the actions, and hyperlinks to the actions
coincide seamlessly into the report. In effect, actions are now performed in a
web-browsing-like manner.

Secondly, the first few versions of this software presented the focus of the
interface on the currently loaded set of irrigation data. While a database was
present, its main role was to provide alternative sets of data for this focus.
However, this limited the use of the tools to analysing only a single set of data at
a time, even though multiple sets of simulation results could be loaded
simultaneously. It was only in the most recent version of the software that this
central focus was shifted to the database itself, whereby the main focus or
“home” is the entire database, and the secondary focus is any of the property,
paddock, event or furrow records. This also allows progressive disclosure of
analyses that are compatible with the selected record type.

Thirdly, the initial software versions were composed of too many types and
number of interface components. This had two pronounced effects. The first
effect was that the interface became cluttered with too many controls, and too
many options presented simultaneously for the user. A good example of this is
the initial database functionality, which contained an embedded version of
Microsoft Access to maintain records. With this database came a range of
controls, tables, and tools for navigating, editing, displaying and searching the
database, when only a limited amount of functionality was actually required.
There were also flexibility issues with using this feature as most of the
functionality was built in and couldn’t be easily customised. It also added to the
size of the software and required the Access database engine to be installed on
the computer along with software. The second effect of having too many
components was that the software engineering became increasingly difficult to
maintain. Typically, these components were employed using the RAD (rapid
application development) functionality of dragging and dropping the components
onto forms. In software engineering terms, this “individualises” the component
rather than existing in a generalised form of array that could be treated as a
group. Extra programming was then required to achieve this “group”
functionality. The final result was that the initial software versions were plagued
by excessive amounts of interface code that was difficult to maintain.

Finally, the object-oriented program structure was poorly developed in the initial
versions of the software. This was primarily caused by immature programming
skills at that stage of development. By utilising more object-oriented
programming features in the later versions, a more powerful and less complex
graphical user interface could be achieved. For example, using polymorphic
“Tree Parameters” provided the means to simultaneously develop the database
structure, a visual database-navigator tool, database editing facilities, database
reporting facilities, and file input/output operations. Also, a consistent look and
feel to the analyses was achieved throughout the program by using an object-
oriented structure to derive each analysis from the same parent class.

Chapter 7 Software engineering a decision support system for furrow irrigation

 188

7.5.4 Current interface functionality
The current version of FIDO is designed to behave with web-browser-like
functionality. Built around the irrigation database, the user is able to navigate
through the program, exploring data and analyses similar to browsing an Internet
site. However, in this case, the information that the user sees comes from the
database, rather than the Internet14. This is achieved through displaying all of
the information, data, results and hyperlinked-actions inside a HTML report
(created through XML /XSLT transformations) for the selected database record.
Familiar web-browser controls such as “home”, ”back”, “next” and bookmarks
exist, with the report for the selected record serving as the homepage for the
user to return to after performing any actions.

Built closely around progressive-disclosure techniques, few options and
information are presented to the user at “start-up”, with more becoming
available as the user progresses through different tasks. A basic-level user may
spend all of their time just viewing and updating the ”reports”, while an
advanced-level user may probe deeper into more complex analyses. Menus are
also context sensitive to the current task being undertaken with currently
unavailable commands being hidden until required.

7.5.5 Interface layout
The current version of the FIDO software is characterised by a graphical
interface designed using a three-panel layout (Figure 7.13):

• a top panel contains menus, toolbars and status bar;
• a left panel contains user input information including a database

navigator control, and simulation input data for the analyses; and
• a right (main) panel contains output information (and inputs as well when

viewing the database). This includes both HTML reports and other more
complex analyses.

A splitter bar is used between the input and output windows for resizing and
presentation purposes. The user can alternate between hiding and showing the
input panel by clicking the splitter bar.

Figure 7.13: Layout of the FIDO graphical user interface.

14 The potential exists for later versions of the software to store and access irrigation data from
an internet server.

Program
Outputs

Status and Toolbars

Program
Inputs

Chapter 7 Software engineering a decision support system for furrow irrigation

 189

There are many advantages of this layout. Firstly, the user need not be
concerned with arranging “windows” and “dialogs”, as with “multiple document
interfaces”. In this example, graphical information is always automatically
arranged, maximised and centred. Preference is given to displaying data
“wholly” rather than trying to display too much information at once.

Secondly, task-inputs are always available to the user at their location in the left
hand panel. This allows for instantaneous and simultaneous updating of the
program outputs. The alternative to this is to display input options in dialogs
(such as SIRMOD) where the outputs are quite often not updated until these
dialogs are closed.

Finally, the large status bar continually keeps the user informed of the program’s
state and progress. Menu and tool bars are placed in their usual position at the
top of the screen in accordance with the “principle of consistency”. Other
toolbars are used in the program and are located inside the input and output
panels. These are duplicate commands designed to be located conveniently next
to the objects that they act upon, but are also located in the main menu or main
toolbar.

7.5.6 Modules
From the developer’s perspective, the FIDO user interface can be divided into
five main sub-modules coinciding with the five main requirements of the decision
support system, including:

• Database module;
• Simulation Analyses;
• Calibration Analyses;
• Optimisation analyses; and
• Response-surface generation and parameter analyses.

From the user’s perspective, this modularisation is not apparent as it is hidden
by the progressive disclosure and encapsulation techniques applied. These five
interface modules will now be discussed in turn.

Database module
The database and its interface form the “centrepiece” of the decision support
system. The database is not only a source of input data, but it is also a
repository of results with associated analyses to post-process and summarise
irrigation and infiltration performance. The database interface serves as a
“home” location for program navigation, and presents the principal user-interface
components of the software.

Early versions of the database interface (Appendix 7.7) employed the Microsoft
Access database engine, and a series of data tables and tab fields. The current
version has replaced this methodology with an XML database which opens up
the interface to a progressive disclosure oriented design. It consists of four main
components including:

• the database navigator panel;

Chapter 7 Software engineering a decision support system for furrow irrigation

 190

• the database reporting window;
• the database editing window; and
• performance and infiltration summary analyses.

The database navigator panel (Figure 7.14) allows the user to navigate, select
(and to some extent, edit) the property, paddock, event and model data using the
VirtualTreeView component. The tree-like structure permits a “progressive
disclosure” of the data greatly simplifying the interface. The record names
displayed in the tree are complex “tree-parameters” (derived from
TCustomTreeParameter), which communicate with the database and contain
file input/output capabilities. They have an associated drop-down menu with
special options for the selected record.

Figure 7.14: Database navigation panel showing drop down menu of commands.

The database reporting window (Figure 7.15(a) and (b)) is the central reporting
tool in the decision support system. All program inputs and outputs can be
presented in this window using customisable reporting templates. The reports
are automatically generated in HTML format after selecting a record, through
transforming the record’s XML data-file using a XSLT stylesheet (template). A
key feature of this technology is that the stylesheets are external to the decision
support software, and can be redesigned or modified at any time by people other
than software developer. In an ideal situation, a graphic designer could be
employed to develop new eye-catching reports for the software.

The software has been designed to load any number of report stylesheets at one
time, so that the user can switch between different reports and treatments of the
same data-set. Because the resulting reports are in HTML format, hyperlinks
can be added to the reports, to initiate actions such as editing the data, running
the simulation and performing a calibration/optimisation/parameter-analysis. As
the source data is in XML format, any type of attribute information can be
associated with the data and displayed in the reports, including comments, units
and “date-modified”.

Chapter 7 Software engineering a decision support system for furrow irrigation

 191

(a)

(b)

Figure 7.15: Sample database reports displayed in the database-reporting window. (a) Property
record report showing property statistics, and linked images. (b) Model record report showing

simulation input data and results.

The database-editing window (Figure 7.16) hides behind the reporting window
and is invoked if the user selects any of the hyperlinked parameters. This editor
is required as the user is not able to directly edit the data in the transformed
HTML report15. When editing the database, the selected record is displayed
using VirtualTreeView component that provides editors for the different variable
types. The user is returned back to the database report window when the
“enter” key is pressed, or the “return to report view” button is clicked at the top
of the editor.

15 Several technologies could have been used to directly edit the transformed HTML report.
However, each have associated limitations and complexities and were not included in this version
of the software. For example, edit dialogs could have been embedded into the stylesheet, and
would appear in the HTML report to allow editing. However, to get the edited values back into
the database, a “post” button would be required on the form, and extra programming needed to
do the processing. Also the visual appearance of the report is diminished when cluttered with edit
boxes.

Chapter 7 Software engineering a decision support system for furrow irrigation

 192

Figure 7.16: Database editing window showing the editing of the “Furrow bot width” parameter.

The database report window will be revoked once the user presses the “enter” key.

Performance and infiltration summary analyses (Figure 7.17a,b) have been
added to the database module to provide a direct summary of property, paddock,
event and furrow data. This interface component is presented using the
TBrowerForm component to provide an interactive analysis for the user, who is
able to select and explore a range of summary information at each level from the
paddock through to the furrow.

(a)

(b)

Figure 7.17: (a) Performance and (b) infiltration summary analyses. (note: screenshots are from
an older version of FIDO, but the functionality is the same)

Simulation module
The primary interface for displaying simulation information is through the
database report window whereby simulation outputs including
advance/recession trajectories, inflow/outflow hydrographs, and performance
information are displayed. The user selects the hyperlink for “simulate” in the

Chapter 7 Software engineering a decision support system for furrow irrigation

 193

report of the selected record, and the report is automatically updated with the
new results. Multiple simulations are conducted if the selected record relates to
a property, paddock, or event.

The simulation module also contains other more detailed analyses including an
interactive animation of the simulation. Three main analyses exist for displaying
advanced simulation information including:

• a simulation summary analysis;
• multiple record analyses; and
• a simulation convergence analysis;

The simulation summary analysis is a highly graphical interface for presenting
simulation outputs. Like SIRMOD and SRFR, an animation of the simulation
surface water and infiltration profiles is available, although this version is
interactive with a slider-bar control at the top of the screen to navigate through
the animation. Also present are the advance and recession trajectories, and the
inflow and runoff hydrographs.

When this analysis is activated, the database navigation panel is replaced with
the list of selected simulation data, and subsequent field and management
parameters. These parameters can be edited through this facility with the
simulated results being updated automatically (in the background in a separate
operating thread) when the “return key” is pressed.

Figure 7.18: Simulation Summary Analysis.

One of the powerful analysis features of the FIDO decision support system is its
ability to directly compare outputs from different irrigations. A range of multiple
record analyses have been created for this purpose including a flow animation
analysis (Figure 7.19a) and solution grid analysis (Figure 7.19b). Graphical

Chapter 7 Software engineering a decision support system for furrow irrigation

 194

results can be compared side-by-side, overlaid, or stacked on top of each by
setting the display format.

Figure 7.19: Advanced comparison of (a) animated flow profiles, and (b) simulation solution grid
(advance/recession trajectories).

Another advanced analysis that is available is a simulation convergence analysis
(Figure 7.20). This analysis was developed to study and debug the simulation
engine and to optimise its performance. Convergence plots of the simulation
solution parameters (Q, A, dx and/or dt) are displayed along with the simulation
animation, and iterations history. A slider bar allows the user to explore
convergence at different times during the simulation.

Figure 7.20: Advanced simulation convergence analysis. This is presented as a popup dialog.

Chapter 7 Software engineering a decision support system for furrow irrigation

 195

Calibration module
The graphical user interface for the calibration component of the decision
support system is minimal. If data is available, calibration can be initiated by
clicking on the action hyperlink in the database report window for the selected
record. The calibration parameters and objective-function will be determined
automatically based upon the type of measured input data. Because calibration
can take several minutes, a progress bar is displayed in the main title panel.
When the calibration is completed, the report is updated with the calibrated
results.

An advanced calibration analysis (Figure 7.21) can optionally be activated to
monitor parameter changes during the optimisation process. Based upon
several prototype versions (Appendix 7.4), graphs are displayed showing changes
in the calibration parameters, objective-function value, and measured and
predicted advance trajectory and/or runoff hydrographs.

Figure 7.21: Advanced calibration-monitoring analysis. (note: screenshot is from an older version

of FIDO)

Optimisation module
Like the calibration module, the graphical user interface for the optimisation
component of the decision support system is also minimal. Optimisation can be
initiated by clicking on the action hyperlink in the database report window for the
selected record. Different hyperlinks can be added to the report to initiate
different optimisation options. An “objective-function setter” dialog (Figure 7.22)
is then presented to the user to specify priority weightings for the objective-
function before a progress bar updates the user to the state of the optimisation.

Chapter 7 Software engineering a decision support system for furrow irrigation

 196

This dialog is a unique graphical tool that has been created especially for the
user to set the design weightings for the irrigation performance object function.
The “objective-function setter” is in the form of a pie-chart with “user-sizable” pie
pieces representing the weighting factors in the objective-function. “Handles”
appear on the pie pieces when the user passes the mouse over the pie-chart in
order to resize the proportions.

Figure 7.22: Optimisation objective-function priority setter.

Several versions of this tool were created before selecting this final design (see
Appendix 7.5). Originally the tool consisted of four linear slider bars, where the
user would adjust each in relation to each other to achieve the weighting-split.
However, this caused several problems relating to the proportional nature of the
task. Changing the setting of one bar inadvertently changed the other weightings
automatically as the relative position between the bars changed. Also several
different setting arrangements could be used to achieve the same result. For
example, an equal twenty-five percent weighting split could be achieved by
setting all sliders at the same setting, regardless of the value of this setting. In a
later version, a pie chart was added above the sliders to try and provide a
visualisation of the proportions. Unfortunately, this did little to alleviate the
problems. Therefore, this new component was developed to allow the user to
directly manipulate the pie settings.

An advanced optimisation monitoring analysis also exists using the same
interface as shown in Figure 7.21. In this analysis, irrigation performance values
are displayed instead of the measured data quantities.

Parameter analysis module
An advanced graphical user interface was developed for the parameter analysis
module, to simplify the process of generating response-surfaces, and for
generating guidelines for irrigation design and management. The interface
consists of several components including:

• A parameter analysis setup dialog for designing the analysis;
• A response-surface generation analysis;
• A user-defined contouring analysis for generating guidelines for design

and management; and
• A filter tool for modifying the surface and contour series;

Chapter 7 Software engineering a decision support system for furrow irrigation

 197

This interface was developed after several prototyping iterations (Appendix 7.6)
with the current version reflecting the need for complex analysis capabilities, and
a simple and manageable code base. Earlier versions proved difficult to
maintain and extend and were plagued by stability problems.

In the current version, parameter analyses can be initiated from the database
report window by clicking on an appropriate action hyperlink. A parameter
analysis setup dialog (Figure 7.23) is then presented to the user to define:

• the objective-function to investigate;
• the parameters to include in the analysis;
• the type of infiltration property to use (measured, or highest, lowest or

average for site); and
• The step-count for each parameter in generating the response-surface.

Analyses are generated and automatically saved. A hyperlink to the saved file is
added to the current record, and displayed in the database report window.

Figure 7.23: Parameter analysis configuration dialog.

The response-surface analysis (Figure 7.24a,b) was developed to simplify the
investigation of multi-parameter interactions. When three design parameters are
included in the analysis (for example, flowrate, time-to-cutoff and field-length),
the third parameter is represented by the scrollbar at the bottom of the window.
Changing the position of the scrollbar updates the value of the third parameter
and hence, changes the active response-surface (Figure 7.24a). The third
parameter can also be expanded, so that several graphs appear representing
different values of the third parameter (Figure 7.24b). At any stage, the
parameter order can be interchanged so that other parameters can be
expanded.

Chapter 7 Software engineering a decision support system for furrow irrigation

 198

(a)

(b)

Figure 7.24: Response-surface generation for three design parameter. (a) Third parameter is
represented by setting of scroller-bar. (b) third parameter is expanded, showing a separate

response-surface for each value of the parameter.

The user-defined contouring analysis (Figure 7.25) is the primary tool for
generating guidelines for design and management. It has already been briefly
introduced in Chapter 6. Once response-surfaces have been generated, they can
be dragged and dropped onto any of a predefined number of charts to generate
new contours. Any number of response-surfaces can be superimposed to build
up layers of contours. The axis-types are defined corresponding to the available
parameters. Once a configuration has been created, it can be saved for later
retrieval. As with the response-surface analysis, the value of the third parameter
can be adjusted by setting the position of the scrollbar at the bottom of the
window.

Figure 7.25: Design and management guideline analysis showing setting up of guideline grid.

Chapter 7 Software engineering a decision support system for furrow irrigation

 199

For both of these analyses, a filter tool (Figure 7.26) has been developed to hide
or show parts of the different response-surfaces depending upon a set criterion.
For example, the user could hide parts of a surface or contour series where
performance was greater than a designated value. This creates a visible working
envelope of design parameters where the irrigator should aim to operate the
irrigation system.

Figure 7.26: Response-surface filters for hiding/showing objective-function parameter ranges.

Objective-function weightings can be assigned using the setter at the bottom of the dialog.

7.6 Using the decision support system
A typical usage of the decision support system would be:
1. Update property, paddock, event and model information in the database;
2. Select a property, paddock, event or furrow (model) record from the selector

menu at the left of the screen.
3. Calculate the soil infiltration parameters for each model record by calibrating

using the measured advance data. Clicking the “Calibrate” option from the
action-menu starts the process for the selected record and its children.

4. Simulate these records to assess the irrigation performances using the
“Simulate” option.

5. Assess optimum performance by selecting the “Optimise” option and
prioritising irrigation management objectives.

6. Develop a series of design charts to assess likely performance over a range
of infiltration conditions using the “Analyse” option.

7.7 Conclusions
A decision support system for furrow and border irrigation was developed by
combining the tools developed in Chapters 3 to 6 with a database and graphical
user interface. There were three focus areas during this marriage of components;
firstly, an object-oriented structure was developed to accommodate program
elements concentrating on separating the graphical user interface components
from other task related objects for flexible future development; secondly, a

Chapter 7 Software engineering a decision support system for furrow irrigation

 200

database was developed using XML-based technologies to store property,
paddock, event and model information; and thirdly, a user-friendly graphical user
interface was created with web-browser-like functionality. The software has
evolved through many different prototypes versions with its current design being
heavily influenced from the successes and mistakes of the previous attempts.

Chapter 8 Conclusions, implications and recommendations

 201

Chapter 8 Conclusions, implications and

recommendations

8.1 Introduction
The objective of this dissertation was to develop a new decision support system
for furrow and border irrigation aimed at increasing the usability of the
technology to improve decision-making capabilities. Specifically the research
hypothesis stated: “That calibration, optimisation, and parameter analysis
capabilities can be developed and integrated with an accurate and robust
simulation model into a decision support system to improve furrow and border
irrigation performance.”

This chapter presents the conclusions and implications of this research along
with recommendations for future research. The discussion in this chapter has
five main objectives: (1) it will provide a summary of the work undertaken in the
previous chapters in order to highlight the logical progression of ideas and issues
addressed in answering the research questions; (2) conclusions are presented
for each of the research questions; (3) practical implications of this research are
discussed; (4) the limitations of this research are acknowledged; and (5)
recommendations are presented for future research and development.

8.2 Overview of previous chapters
Chapter 1 introduced the hypothesis and research objectives before explaining
the relevance of the research problem. Justification for the research focused
upon three interrelated problem areas: firstly, existing surface irrigation models
aren’t being used due to problems inherent in the software. These problems
included over-complexity, poor software engineering, and reliability problems.
Secondly, there is a need to aggregate different surface irrigation model
components into a single decision support system. These components included a
database, simulation engine, calibration (parameter estimation) capabilities,
optimisation capabilities, and parameter analysis components (design curves).
Thirdly, there was a need to combine modern software engineering concepts and
tools with existing surface irrigation simulation technology.

The main purpose of Chapter 2 was to investigate the history, performance and
potential of existing surface irrigation decision support technology. The
background theory of surface irrigation and computer modelling of surface
irrigation was initially presented as a basis for this research. Then a literature
review was undertaken into the three main surface irrigation research areas of:
simulation modelling; solution of the “inverse problem”; and optimisation of
design and management practices. It was found that gaps exist in the literature,
especially with: simulating the later stages of the irrigation cycle; converting the
mathematical model into computer code form; ensuring simulation robustness;

 Chapter 8 Conclusions, implications and recommendations

 202

calibrating using the complete hydrodynamic simulation model; parameter
analysis of system responses; and automating the optimisation process.
Independent testing of existing surface irrigation models showed that they can
accurately simulate surface irrigation, with the SIRMOD and SRFR models
being identified as the most prominent simulation models. SIRMOD was then
evaluated in a case study and found to satisfactorily simulate all phases of an
irrigation, but was sometimes subject to stability problems. Functionality
requirements for the development of a new decision support system were
identified as simulation, calibration, optimisation, parameter-analysis and data
management.

Chapter 3 presented the development of a new simulation engine based upon
the refinement and modification of existing surface irrigation modelling
technology: notably, a complete hydrodynamic model and the Preismann double
sweep solution technique. The first goal of the chapter was to revise the solution
technique into a simpler and more generic form. An object-oriented structure was
then developed to encapsulate the “model” and solution technique, and provide
input/output capabilities. The simulation engine was then developed around this
structure focusing upon memory management, exception handling, simulation
reliability, code clarity and future expansion. Potential sources of convergence
problems were identified in the simulation and several techniques were
developed to improve simulation robustness. The complete simulation engine
was validated against output from the SIRMOD model.

Chapter 4 highlighted the need for using the same model for both simulation and
soil infiltration and hydraulic roughness parameter estimations. Two different
inverse methodologies for parameter estimation were developed; firstly, an
optimisation-based volume-balance model (INFILT) was developed. This
technique can determine any of the Kostiakov-Lewis infiltration parameters using
inflow-rate and irrigation advance measurements. Secondly, a more complex
hydrodynamic inverse technique was developed for determining any of the soil
infiltration and/or the hydraulic roughness parameters. This second technique
drew upon the optimisation-methodology developed and incorporated into
INFILT. Because of long calculation times associated with the hydrodynamic
method, starting estimates were obtained from the output of the INFILT
method. Three objective-functions were developed based upon advance
measurements, runoff measurements, and combined advance and runoff
measurements. These methodologies were then encapsulated into the decision
support system using an object-oriented structure. Parameter response-surfaces
were generated for the advance-based objective-function to identify a unique
solution for up to four optimisable parameters. A validation was performed
through analysis of the simulation results based upon the calibrated infiltration
parameters.

Automated design and management optimisation capabilities were developed for
the decision support system in Chapter 5, with the added benefit of automated
benchmarking of performance potential. This involved using the optimisation
technique developed in the previous chapter, and applying it to the case of
optimising irrigation performance. A user-defined objective-function was
developed based upon different weightings of maximising storage efficiency,

 Chapter 8 Conclusions, implications and recommendations

 203

minimising runoff, minimising deep drainage, and maximising application
uniformity. Investigation of typical response-surfaces revealed that a single
“best” set of design parameters (flowrate, time-to-cutoff and field-length) rarely
exists in practice due to a compensating effect by the individual components of
the objective-function. This manifests itself in a near horizontal parabolic ridge
that maintained constant values for various combinations of the decision
variables. In fact, for nearly every possible value of each decision variable,
maximum performance could be achieved through a unique combination of the
other two variables. Therefore, an infinite number of potential solutions exists for
a given irrigation system. Hence, the optimisation problem simplifies down to
solving for one decision variable: time-to-cutoff. Solving for more than one
parameter would have been impaired due to small variations in the volume-
balance errors across the response-surface. This was due to discretisation
process used in the simulation solution technique. The method was validated by
comparing the measured (simulated) results against the optimised results, with
rapid and reliable convergence on the solution when optimising on only time-to-
cutoff. The optimised results demonstrated a marked increase in application
efficiency accompanied by a small reduction in storage efficiency and application
uniformity.

In Chapter 6, field design and management guidelines were investigated in the
process of developing an automated procedure for the decision support system.
As a preliminary study, guidelines were prepared based upon a range of
infiltration functions from seventeen surface irrigations. This involved presenting
guidelines composed of low, high and average infiltration functions for the site.
Charts were generated using a fixed management strategy of minimising runoff
and presented iso-curves of flowrate and time-to-cutoff, with irrigation
performance and field-length being represented on the chart axes. However, the
potential benefits of visualising a large number of dimensions were negated by a
limited range of response outputs for a fixed management objective.
Nevertheless, this provided a direction for developing the guideline-generating
capabilities. This included representing system outputs as contours and iso-
curves, rather than by the chart axes; representing different infiltration conditions
in separate design charts; allowing the user to assign variables to each chart
axis; and representing only two decision variables in each chart. Automation
facilities were then created based upon an object-oriented structure. The
generated guidelines are presented as contours of performance values
accompanied with a user-defined envelope of working ranges.

Chapter 7 focused upon the software engineering components of the decision
support system. The main goal of this work was to combine the tools developed
in the previous four chapters with a database and a simple user interface to
develop a new decision support system for furrow and border irrigation. An
object-oriented program structure was then developed to accommodate program
elements. An XML-based surface irrigation database was presented along with a
simple graphical user interface created using advanced third-party libraries. The
resulting interface is based upon a web-browser-like design, and relies on
progressive disclosure techniques to present advanced analyses. The
evolutionary process of developing the final user-interface design was discussed
with different prototype interfaces being presented.

 Chapter 8 Conclusions, implications and recommendations

 204

8.3 Conclusions about the research problem
The hypothesis for the research problem was successfully tested through the
completion of the individual research objectives, and an understanding of the
practical implications resulting from the research. Specifically the research
hypothesis stated: “That calibration, optimisation, and parameter analysis
capabilities can be developed and integrated with an accurate and robust
simulation model into a decision support system to improve furrow and border
irrigation performance.”

Testing of this hypothesis has resulted in the development of a decision support
system for furrow and border irrigation featuring an automation-capable
hydrodynamic simulation engine, automated full-hydrodynamic inverse-solution,
automated optimisation of design and management variables, and automated
user-definable real-time generation of system response. This has been combined
with a highly flexible object-oriented program structure and web-browser-like
graphical user interface. This represents a unique holistic development and
integration of components into a research and practitioner tool, with competing
products offering alternate non-automated and non-optimising capabilities. The
demonstrated successful validation of the intended functionalities was a
prerequisite for supporting the hypothesis.

Key conclusions from this research are that:

• Only minor enhancements to the existing numerical technologies were
required for automating the simulation engine, with the major focus of the
study placed upon the operational algorithms to enhance robustness and
reliability;

• The inverse-solution using the full-hydrodynamic model is a viable and
robust methodology for the unique identification of at least three
infiltration/roughness parameters;

• Automated optimisation of design and management practices is limited to
the selection of one solution variable (time to cut-off) due to the
identification of non-unique multi-variable solutions caused by the
interdependency of key decision variables in relation to irrigation
performance;

• The automated optimisation facilities provide a unique benchmarking of
irrigation performance potential; and

• Automated system response evaluation facilities provide a useful
research and practitioner tool, capable of multidimensional analysis of
irrigation systems subject to temporal and spatial infiltration variation.

In summary, the research into the development of the system supports the first
part of the hypothesis: that is, that the decision support system can be
developed through the suggested integration of components. While field-
evaluation of the decision support system was not a part of this research, there
is much evidence to support the second part of the hypothesis that suggests that
the decision support system can improve furrow and border irrigation
performance though better decision-making. Six principal pieces of evidence
addressed through the Research Objectives that support this includes: (1) that
the improved robustness and flexibility of the simulation engine allows it to be
used in a variety of decision support roles, to accurately and reliably provide

 Chapter 8 Conclusions, implications and recommendations

 205

irrigation performance measures to the user; (2) that the parameter estimation
(inverse method) facilities based upon the hydrodynamic model minimises errors
associated with the traditional volume-balance methods, improving the accuracy
of the simulated and optimised results, and ultimately, management decisions;
(3) that the automated optimisation capabilities can quickly and easily provide
guidance for optimising water use efficiencies for a range of strategies; (4) that
the automated optimisation capabilities also provide a measure of “performance
potential” for benchmarking practices; (5) that site-specific design charts can
quickly and easily be developed to identify the irrigation system response, and
define design and management strategies; and (6) that the decision support
components combined with a database and simple graphical user interface
enhances the flexibility and utility of the product, while simplifying its operation.

Further evidence supporting the hypothesis, through successful completion of
the research objectives and identification of practical implications of the
research, are discussed in turn below.

8.3.1 Discussion of the research objectives
Research Objective 1: Investigate existing surface irrigation modelling
technology to determine a model and solution technique structure suitable for
incorporating into a decision support system. Through a literature review and
case study using the surface irrigation model SIRMOD, it was established that
existing surface irrigation simulation technology is sufficiently accurate to use as
the basis of a decision support tool for irrigation design and management.
However, complexity, stability and usability issues were also identified with the
technology, while gaps in the literature exist relating to strategies to address
these problems.

It was recognised that the SIRMOD and SRFR packages are the most important
decision support tools in the industry. However, these tools remain relatively
unused and offer limited functionality in the overall decision support context.
Both tools were identified as having complexity, stability and usability problems.
It was concluded that the sources of these problems are interrelated, with the
primary source being at the software engineering level. For example, little
documentation was found on how to transfer the mathematical algorithms and
solution techniques into their computer code form. This is further complicated by
a lack of information on how to simulate the later phases of the irrigation cycle
including simultaneous advance and recession. Nevertheless, SIRMOD and
SRFR are capable of simulating all phases of the irrigation cycle. Given that they
have both proved to be sufficiently accurate, and are very similar in design, their
underlying model structure and solution techniques were chosen as a basis for a
new improved simulation engine.

Research Objective 2: Develop a robust, reliable simulation engine for furrow
and border irrigation for automation within a decision support system under
optimisation and systematic response evaluation. Based upon the findings of
Research Objective 1, a new hydrodynamic simulation engine was developed
through combination and simplification of the SIRMOD and SRFR implicit
solution techniques, development of an object-oriented structure, and
identification and treatment of convergence and stability problems.

 Chapter 8 Conclusions, implications and recommendations

 206

This research has revised the Preismann double-sweep solution technique for
simulating furrow and border irrigation. It was found that the published equations
of the SIRMOD and SRFR solution techniques were not reduced into their
simplest form, so a new set of solution equations were rederived from first
principals. These equations provide the same solution as the published methods,
and probably have little effect on the efficiency of the solution. However, they
differ from the published methods through the calculation of “intermediate
values”, which significantly simplifies the algebra. The benefit is a much easier-
to-understand implementation of the solution leading to both simpler translation
into computer code, and a better basis for modification to the solution technique
(for example, solving explicitly for simultaneous advance and recession). A
generalised model structure was presented allowing different modes of
operation including switching between using a constant time-step size and
solving for the advance node locations, or having fixed node locations and
solving for advance times. Both Eulerian and Langrangian solution
methodologies can be implemented and new treatments for the runoff phase
and lateral flow conditions were also developed.

The new simulation engine was developed using an object-oriented computer
algorithm offering a flexible and stable platform for future research and
development. It appears that this is the first attempt at using an object-oriented
structure for surface irrigation modelling with previous attempts (including the
SIRMOD and SRFR software) using procedural code. As well as providing a
reference point for other researchers to follow, this work has simplified the
process of implementing the simulation engine into other decision support
software. This has already been demonstrated with the FIDO simulation engine
being used in other research projects at both undergraduate and postgraduate
levels (Dulin 2004; Gillies pers.comm. 2005-2006).

Stability and convergence problems were identified and documented. Very little
research has been published into circumventing these problems during the
simulation, which can largely be attributed to the software algorithm rather than
the underlying mathematics. Methods developed to improve simulation
robustness include; using small time steps at the start of the simulation to locate
more nodes at the top end of the furrow; parameter monitoring during iterations
to avoid repeated mirrored oscillations with certain nodes; automatic time-step
adjustment to avoid divergence; and forecasting node collapse at the
commencement of a time-step to reduce the stress on the solution technique.

The simulation engine proved to be accurate when validated against SIRMOD
output, and reliable and robust when used in the subsequent optimisation tasks
(Research Objectives 3 and 4).

Research Objective 3: Investigate and develop parameter estimation
(calibration) capabilities for the decision support system. The literature review
and initial case study identified that using volume-balance methods as a means
to calibrate the (hydrodynamic) simulation model can introduce errors into the
system. Therefore parameter estimation capabilities were developed for the
decision support system using optimisation-driven simulations of the
hydrodynamic model. Because of long convergence times involved with running

 Chapter 8 Conclusions, implications and recommendations

 207

hydrodynamic simulations, parameter estimates from a simpler volume-balance
method (INFILT) were used as starting estimates into the hydrodynamic
method.

The INFILT method was developed as a preliminary study for this research, and
is based upon a time-of-advance volume-balance equation linked to a specially
developed optimisation algorithm. The optimisation algorithm adjusts the
infiltration parameter values in order to minimise the error between the
measured and predicted advance data. The method has proven to be fast, robust
and reliable and has set a performance benchmark that has already been
referenced by other authors (Hornbuckle et al 2005; Khatri et al 2005; Gillies et
al 2005; Walker, 2005).

The more complex and computationally intensive hydrodynamic method uses the
same optimisation methodology as the INFILT method, but requires simulations
to be performed instead of simple advance-time estimations. However, a benefit
of this is that different objective function formulations can be used, based upon
different field measurements including advance and runoff data or a
combination of both. This was facilitated using an object-oriented algorithm to
allow swapping of objective-functions and simulation parameters (and also
optimisation algorithms, and even simulation engines).

Validation of the hydrodynamic method (as well as the INFILT method) was
performed for the advance-based objective-function and the modified Kostiakov
infiltration parameters, and showed that after calibration, the simulated outputs
aligned closely with the measured advance. Simulated outputs corresponding
the INFILT-calibrated infiltration parameters did not align as closely to the
measured advance, indicating the error that exists when mixing simulation and
calibration model structures. A spike in the objective function output also
demonstrated this during the optimisation, when the objective function is
switched from the volume-balance to the hydrodynamic method.

As well, response-surfaces were generated for these objective-functions
demonstrating that there is a unique solution of the inverse problem. This has
typically been inferred by other researchers but never proven due to the
dimensionality constraints of investigating three or four parameters. By
developing several response-surfaces in “a-k space” for combinations of the
remaining design parameter (fo), it was shown that the surface minimum moves
around in the in “a-k space”, although a true global minima exists overall. It was
also shown that the general form of the response-surfaces is simple and regular,
without defined local minima.

Research Objective 4: Investigate and develop optimisation capabilities for the
decision support system. Optimisation capabilities were added by combining the
optimisation algorithm (developed in Research Objective 3) with the simulation
engine and a user-defined objective-function within an object oriented structure.
However, the system was found to be unsuitable for solving more than one
decision variable (time-to-cutoff is recommended) due to the nature of the
response-surface exhibiting multiple solutions and pronounced surface
roughness due to discretisation errors in the simulation.

 Chapter 8 Conclusions, implications and recommendations

 208

The research involved developing a new user-defined objective-function for
optimising the performance of furrow and border irrigation. The novelty of this
function is that it allows the user to set predefined weightings on each of the
performance components in order to match the irrigation priorities of maximising
storage efficiency, minimising runoff, minimising deep drainage, and maximising
application uniformity. An optional penalty function was also implemented into
this objective function in order to ensure that the advance reaches the end of the
field.

An investigation into the response-surfaces for different configurations of this
objective-function found that a unique design solution does not exist, and that
many combinations of the decision variables (flowrate, time-to-cutoff, and field-
length) can be used to achieve a similar level of performance. Therefore, it was
recommended to limit the optimisation to solving only for time-to-cutoff.
Furthermore, this has implications for irrigation design and management
whereby it has traditionally been understood that a unique set of design
variables exist to provide maximum system performance.

This research has also identified that the objective-function response-surfaces
are “roughened” because of variations in the volume-balance errors between
different model runs. This can impede the optimisation algorithm from locating
the surface maxima or minima. It was deduced that these inconsistencies are a
result of the discretisation process used in the solution technique during each
simulation. Even minute differences between different sets of model input data
can introduce slight variations in the corresponding volume-balance errors
because of the differences in solution grid structure.

Validation was performed by comparing the measured and optimised results
when optimising on time-to-cutoff. This demonstrated that a gain in application
efficiency was easily attained accompanied by a small reduction in storage
efficiency and application uniformity. This situation is representative of irrigators
who typically over-water their field in order to completely fill the root zone. This
analysis demonstrates the utility of the methodology to quickly and easily present
an alternate management solution. It was found that optimisations ran quickly
and robustly without user-intervention. Interestingly, it was found that the penalty
function was not required to ensure that the field is not under-watered.

An added benefit of the use of this tool is that is allows users to automatically
benchmark the potential performance of an irrigation event. This will be a useful
feature even for those who don’t find this sort of automated tool appealing.

Research Objective 5: Investigate and develop parameter response (design-
charts) capabilities for the decision support system. Parameter response
evaluation capabilities were added by developing a detailed object-oriented
structure to automate the process of running the simulation. The development
process was guided by the recommendations from an initial case study focusing
upon design-chart development.

This study presented design-charts combining the effects of variable infiltration
and three decision variables using a fixed management strategy of minimising

 Chapter 8 Conclusions, implications and recommendations

 209

runoff. However, a limited range of response outputs for a fixed management
objective negated the potential benefits of visualising a large number of
dimensions. Nevertheless, the benefit of presenting a range of charts for
different infiltration characteristics was recognized and recommended for the
decision support software. Furthermore, it was recommended that system
outputs be represented as contours with decision variables represented on the
charts axes. Decision variables should be kept to two per chart while the user
should be able to define which variables are assigned to each chart axis.

Based upon these findings, parameter analysis capabilities for the decision
support system were developed allowing the user to generate different guideline
configurations for a range of soil infiltration properties. Low, average, and high
infiltration characteristics are determined from the paddock site history (based
upon measured irrigation runs) to allow the user to identify an envelope of
possible outcomes for an irrigation design. As well as providing practical field-
specific guidelines, this also represents a powerful research tool for
understanding irrigation parameter relationships. The resulting charts can
integrate large amounts of data into a simple, easy to follow format that offers
great insight into irrigation performance.

Research Objective 6: Develop an object-oriented framework to combine the
components developed in Research Objectives 2 to 5 with database facilities
and a graphical user interface. An object-oriented framework was developed for
combining the decision support components based upon separating the
graphical user interface from the decision support algorithms. A major feature of
this work is that all components of the system have been developed from first
principles and were guided by this framework, with the primary goal of
implementation into a decision support system.

This involved splitting components into managers, tools, analyses and interface
elements. The open structure ensures interchangability of parts, and new
analyses can be added without structural modification to the user interface. An
XML-based database was also developed to store decision support inputs and
outputs. Data and results are presented using XSLT stylesheet technology
allowing an infinite range of interface configurations. This culminated in the
software having a web-browser like functionality with progressing disclosure
capabilities. A key feature of the user-interface is that multiple irrigation events
(or paddocks or furrows) can be analysed and evaluated simultaneously, and
with a minimum of user input.

8.3.2 Practical implications of this research
The primary practical implication of this research is that it has contributed to the
development of a professional-quality software package, capable of use in many
market segments, including researchers, irrigation consultants, and also
irrigators who have undertaken some training. While the goal of this research
was not to present a commercially ready package, the software is well poised to
be further developed to this level. Five specific implications for practice may be
suggested as a result of this work.

 Chapter 8 Conclusions, implications and recommendations

 210

(1) This research has laid the foundations to make surface irrigation decision
support technology accessible to more users. It was identified early in the
research that a likely reason why the technology hasn’t been widely adopted is
because the existing technology is complex and difficult to use. Therefore, a key
goal of this research was to make the software as simple as possible to improve
accessibility. This has been addressed using an HTML-browser-like interface
combined with modern programming and interface design conventions. This
provides multi-level and transparent functionality for different user types. Data
requirements have been minimised and presented using progressive disclosure
techniques, while the mathematical operation of the model has been hidden
from the user. The five major tools required for surface irrigation decision
support (database, simulation, calibration, optimisation and parameter analysis)
have been encapsulated under a single familiar web-like interface. Actions
required to initiate operations have been minimised. In theory, once the user has
entered the irrigation input data, operations such as calibration, simulation, and
optimisation processes can occur automatically and simultaneously with a single
click of a button, and without user-intervention. Conveniently, the software is
customisable through its XML/XSLT interface with an infinite range of interface
configurations possible to account for different users.

(2) It has been recognised that using surface irrigation simulation technology
encourages measurement and accountability of current practices. To use this
technology, irrigators are required to measure how much water they apply, and to
determine losses through estimation of infiltration and possibly runoff. The
decision support system developed as a part of this research has the potential to
further encourage this monitoring, through the inclusion of an inbuilt database
for surface irrigation. This provides a simple tool to monitor irrigations in many
paddocks over different irrigation seasons to measure the performance of
current practices and improvements.

(3) The provision of the database in the decision support system provides a
secondary benefit in helping to account for spatial and temporal variations of the
field parameters in decision-making. Irrigations monitored over a season can be
analysed to determine the range of infiltration variation and corresponding
irrigation performance. The envelope of conditions can then be used as input in
the software to generate guidelines for planning subsequent irrigations. This is
undertaken through the inbuilt automatic guideline generation facilities. A benefit
of this feature is that it could be used by consultants or extension officers to
develop a set of simple to use, paper-based management charts to give to
irrigators who may not have the capabilities to run the software.

(4) This research has provided tools to implement real-time management of
furrow or border irrigation. For example, guidelines generated from irrigations
over the previous season could be used to determine suitable estimates of
flowrate and time-to-cutoff to perform the irrigation. Irrigation advance can then
be monitored during the irrigation, and input into the decision support system
while the irrigation is still occurring. The infiltration parameters can then be
determined using the inbuilt parameter estimation facilities. The irrigation can
then be terminated at a time suggested by the software to achieve optimum
performance. This would typically involve cutting off the irrigation before the
advance reaches the end of the field. While this type of analysis could be

 Chapter 8 Conclusions, implications and recommendations

 211

undertaken with the existing modelling tools such as SIRMOD and INFILT, it
would require considerable manipulation of the software in paddock. The new
software would be able to perform these actions with a minimal effort –
potentially by just entering the measured advance and inflow into the pre-
configured database record, and clicking one button to estimate both the soil
infiltration parameters and optimise the irrigation.

(5) The software provides a useful training tool for irrigators without having to
resort to experimentation in the field. It offers a “computer game” like experience
with graphical simulation animations, and automatic calculation and estimation
facilities. Training courses for the SIRMOD and INFILT software run by the
National Centre for Irrigation in Agriculture (http://www.ncea.org.au) have
attracted considerable interest over the past few years. A major portion of this
time was spent teaching users how to use the software. The simpler interface of
the FIDO software would allow a greater focus upon management and design
issues and utilise the inbuilt parameter estimation, optimisation and guideline
generation facilities.

8.4 Limitations
Due to the range of subject areas presented in this dissertation, not all aspects
of furrow and border irrigation decision support could be thoroughly treated. As
explained in Chapter 1, this research has only focused upon the simplest forms
of furrow and border irrigation in the context of Australian irrigation practices.
However, provision has been made in the software for the future inclusion of
more complex irrigation practices such as variable inflow irrigation, surge flow,
and cutback irrigation. The spatial variability of field parameters such as furrow
slope, furrow shape, hydraulic roughness, and soil infiltration has also been
accounted for in the code but has not been implemented and tested.

The current version of the software (at the time of writing) has not been
operationally released. While the program structure and mathematical
algorithms have been repeatedly refined and validated, program navigation,
database management, and presentation of results still needs further
refinement. The operational efficiency of the algorithms could also be improved,
with simulations often resorting to stability control measures to complete
successfully, and optimisations often slower than desired. More extensive
software documentation and tutorials also need to be developed before the
software is released. Finally, the completed decision support system still requires
rigorous testing and debugging.

8.5 Recommendations for further research and development
Hopefully, this research will lead to further interest in decision support
development for surface irrigation. The software developed provides a stable and
flexible platform from which many directions of research could be undertaken.
This includes research in each of the major decision support component areas
addressed in this dissertation: simulation engine development; solution of the
inverse problem; automatic optimisation of design and management practices;

http://www.ncea.org.au/�

 Chapter 8 Conclusions, implications and recommendations

 212

development of guidelines for design and management of furrow and border
irrigation; and software engineering aspects of the decision support system.

Recommended areas of further research include:

• Measuring the usability, accessibility and performance of the FIDO
decision support system under real field practice.

• Further investigation of parameter response and sensitivity analysis of
furrow and border irrigation field parameters using the response-surface
generation tools.

• Accounting for the spatial and temporal variation of the soil properties in
terms of simulation, calibration and optimisation. This could also include
investigating the aggregation of irrigation performance response-surfaces
for different irrigation properties as a means for improving management
and design practices.

• Including variable inflow methodologies (used in SIRMOD and SRFR)
into the simulation engine in a robust, reliable manner, capable of
implementation into the calibration, optimisation and response-surface
generation tools.

• Improving the performance of the simulation engine in terms of
robustness and iterative efficiency. That is, to ensure robustness without
having to resort to emergency procedures to achieve success, and to
decrease the number of iterations required to achieve convergence.

• Improving calibration and optimisation efficiency to reduce calculation
times.

• Increasing the flexibility of the automatic guideline generation facility to
plot iso-curves of design variables (with performance measures located
on the axes) instead of performance measures.

• Investigating variations of field and furrow properties including non-linear
furrow slopes, variable furrow shapes, and gradients of soil compaction as
a means to improve irrigation performance.

8.6 Concluding postscript
This chapter has presented the key conclusions arising from this research in
relation to the research hypothesis and research objectives. Both practical
implications and limitations of this research have been identified, and
recommendations for future research have been suggested.

In summary, this research has drawn from the efforts of numerous researchers
over the last twenty years and cumulated in the creation of a stable flexible
platform from which more advanced furrow and border irrigation research can be
initiated. As well, this research has contributed to the development of a
professional quality decision support system, which will hopefully improve the
accessibility of decision support technologies to more users.

List of References

 213

List of References

AARC / USDA / ARS 2006, WinSRFR 1.0 User Manual. U.S. Department of
Agriculture, Agricultural Research Service, Arid-Land Agricultural Research
Center 21881 N. Cardon Lane Maricopa, AZ 85239

Abbasi,F, Shooshtari, MM & Feyen, J 2003, ‘Evaluation of Various Surface
Irrigation Numerical Simulation Models’, Journal of Irrigation and Drainage
Engineering, 129(3): 208-213

Al-Azba, A & Strelkoff, T 1994, ‘Correct form of Hall technique for border
irrigation advance', Journal of Irrigation and Drainage Engineering,
120(2):292-307

Anthony, D 1995, ‘On-farm water productivity, current and potential: options,
outcomes, costs', Irrigation Australia 10,20-23

ASCE Task Committee 1993, 'Unsteady-flow modelling of irrigation canals’,
Journal of Irrigation and Drainage Engineering, 119(4):615-630

Austin, NR & Predgergast, JB 1997, ‘Use of kinematic wave theory to model
irrigation on cracking soil’, Irrigation Science, 18:1-10

Australian Bureau of Statistics 2005, ‘4618.0 Water Use on Australian Farms’,
Australian Bureau of Statistics, Canberra, viewed 26 November 2005,
<http://www.abs.gov.au/Ausstats>

Azevedo, CAV 1992, Real-time solution of the inversion furrow advance
problem. Ph.D Dissertation, Utah State University

Azevedo, CAV, Merkley, GP, & Walker, WR 1996, ‘The SIRTOM Software – A
real-time surface irrigation decision support system', Proc. Sixth International
Conference of Computers in Agriculture, Cancun, Mexico pp.872-884

Bassett, DL & Fitzsimmons, DW, ‘Simulating overland flow in border irrigation’,
American Society of Agricultural Engineers, 19(4) 666-671

Bautista, E & Wallender, WW 1992, Hydrodynamic furrow irrigation model with
specified space steps', Journal of Irrigation and Drainage Engineering,
118(3):450-465

Bautista, E & Wallender, WW 1993, ‘Identification of furrow intake parameters
from advance times and rates’, Journal of Irrigation and Drainage Engineering,
119 (2):295-311

Bautista, E & Wallender, WW 1993, ‘Numerical calculation of infiltration in
furrow irrigation simulation models’, Journal of Irrigation and Drainage
Engineering, 119 (2):286-294

Bautista, E & Wallender, WW 1993, ‘Optimal management strategies for
cutback furrow irrigation’, Journal of Irrigation and Drainage Engineering, 119
(6):1099-1113

Bautista, E & Wallender, WW 1993, ‘Reliability of optimized furrow-infiltration
parameters’, Journal of Irrigation and Drainage Engineering, 119 (5):784-800

Boonstra, J & Jurriens, M 1988, BASCAD A mathematical model for level basin
irrigation, ILRI pub. 43, ALTERRA, Wageningen, The Netherlands. 30p.

List of References

 214

Bouwer, H 1957, ‘Infiltration patterns for surface irrigation’, Agr. Eng., 38:662-
664, 676

Brakensiek, DL, Heath, AL & Comer, GH 1966, ‘Numerical technique for small
watershed flood routing', Agricultural Research Science 41-113, USDA,

Burt, CM, Robb, GA & Hanon, A, 1982, ‘Rapid evaluation of furrow irrigation
efficiencies', ASE Paper No, 82-2537. Presented at the 1982 Winter Meeting
of ASAE, Chicago, III

Cahoon, J 1998, ‘Kostiakov infiltration parameters from Kinematic wave
model’, Journal of Irrigation and Drainage Engineering, 124(2);127-130

Calejo, MJ & de Sousa, PL 1996, ‘Computer-aided evaluation of surface
irrigation systems', Proc. of Agricultural Engineering Conference, Madrid,
Spain, 1996, 96C-057:10pp

Camacho, E, Perez-Lucena, C, Roldan-Canas, J & Alcaide, M 1997, ‘IPE: Model
for management and control of furrow irrigation in real time’, Journal of
Irrigation and Drainage Engineering, 123(4):264-269

Chadwick, A & Morfett, J 1986, Hydraulics in Civil and Engineering, Harper
Collins Academic, London

Chaudhry, MH, Mays, LW 1993, Computer modelling of free-surface and
pressurized flows, NATO ASI series, Series E, Applied Sciences

Chen, CL 1970, ‘Surface irrigation using kinematic wave method’, J. Irrig.
Drain. Div, ASCE 96(IR1):39

Chen, CL, McCann, RC & Singh, VP 1981, ‘Numerical solutions to the
kinematic model of surface irrigation’, Tech. Rep. MSSU-EIRS-CE-81-1,
Engineering and Industrial Research Station, Mississippi State University,
Mississippi, Stat, MS

Christiansen, JE, Bishop, AA, Kiefer, FW & Fok YS, 1966, ‘Evaluation of Intake
Rate Constants and Related to Advance of Water in Surface Irrigation’,
Transactions of the ASAE, Vol.9(5) pp 671-674

Clemmens, AJ 1979, ‘Verification of the zero-inertia model for surface
irrigation’, Transactions of the ASAE 22(6 1306-1309

Clemmens, AJ 1981, ‘Evaluation of infiltration measurements for border
irrigation’, Agricultural Water Management, 3:251-267

Clemmens, AJ 1982, ‘Evaluating infiltration for border irrigation’, Agric. Water
Management, 3(4):251-267

Clemmens, AJ 1991, ‘Direct solution to the surface irrigation advance inverse
problem’, Journal of Irrigation and Drainage Engineering, 117(4): 578-594

Clemmens, AJ 1992, ‘Feedback control of a basin irrigation system’, Journal of
Irrigation and Drainage Engineering, 118(3):480-496

Clemmens, AJ & Keats, JB 1992, ‘Bayesian inference for feedback control. I:
Theory”, Journal of Irrigation and Drainage Engineering, 118(3):416-432

Clemmens, AJ, Dedrick, AR & Strand, RJ 1995, ‘WCL Report 19, BASIN – a
computer program for the design of level-basin irrigation systems, version 2.0’,
U.S. Water Conservation Laboratory, Phoenix, Arizona. 55 pp. WCL# 1824

List of References

 215

Coad, P & Nicola, J 1993, Object-Oriented Programming, Pearson Education; 1
edition

Cooper, A & Reimann RM 2003, About Face 2.0: The essentials of interaction
design, Wiley, 1st edition

Courant, R Friedrichs, KO & Lewy, H 1928, ‘Ueber die partiellen
Differenzgleichungen der mathematische Physik', Math Ann, 100 pp 32-74.

Courant, R Friedrichs, KO & Lewy, H 1956, ‘On the partial difference
equations of mathematical physics', NYO-7689, Inst. Math. Sci. New York
University (Translated from German)

Courant, R & Friedrichs, KO 1948, ‘Supersonic flow and shock waves,
Interscience

DeTar, WR 1989, ‘Infiltration function from furrow stream advance’, Journal of
Irrigation and Drainage Engineering, 115(4):722-730

Dholakia, M, Misra, R & Zamam, MS 1998, ‘Simulation of border irrigation
system using explicit MacCormack finite difference method’, Agricultural Water
Management, 36:181-200

Elliott, RL & Eisenhauer, DE, 1983, ‘Volume-balance techniques for measuring
infiltration in surface irrigation', ASAE Paper Non 83-2520, Presented at the
1983 Winter Meeting of the ASAE Chicago III

Elliott, RL & Walker, WR 1982, ‘Field evaluation of furrow infiltration and
advance functions’, Transactions of the ASAE, 396-400

Elliott, RL, Walker & WR, Skogerboe, GV 1983a, ‘Furrow irrigation advance
rates: a dimensionless approach’, Transactions of the ASAE, 1722-1731

Elliott, RL, Walker, WR & Skogerboe, GV 1982, ‘Zero-inertia modelling of furrow
irrigation advance’, Journal of Irrigation and Drainage Engineering,
108(IR3):179-195

Elliott, RL, Walker, WR & Skogerboe, GV 1983b, ‘Infiltration parameters form
furrow irrigation advance data’, Transactions of the ASAE, 1726-1731

Enciso-Medina, J, Martin, D & Eisenhauer, D 1998, ‘Infiltration model for
furrow irrigation’, Journal of Irrigation and Drainage Engineering, 124(2):73-80

Evans, RG, Smith, CJ, Mitchell, PD & Newton, PJ 1990, ‘Furrow infiltration on
nontilled beds with cracking soils’, Journal of Irrigation and Drainage
Engineering, 116(5):714-733

Fangmeier, DD & Ramsey, MK 1978, ‘Intake characteristics of irrigation
furrows’, Transactions of the ASAE, 696-705

Fangmeier, DD & Strelkoff, T 1979, ‘Mathematical models and border
irrigation design’, American Society of Agric. Engineers, 22(1) pp93-99

Finkel, HJ & Nir, D 1960, ‘Determining infiltration rates in an irrigation border',
Journal of Geophysical Research, 65(7):2125-2131

Fonken, DW, Carmody, T, Laursen, EM & Fangmeier, DD 1980, ‘Mathematical
model of border irrigation', Journal of the Irrigation and Drainage Division,
American Society of Civil Engineers, 106(IR3):203-220

Garcia-Navarro, P & Saviron, JM 1992, ‘McCormack's method for the

List of References

 216

numerical simulation of one-dimensional discontinuous unsteady open
channel flow’, Journal of Hydraulic Research, 30(1):95-105

Garcia-Navarro, P, Priestley, A & Alcrudo, F 1994, ‘An implicit method for water
flow modelling in channels and pipes’, Journal of Hydraulic Research,
32(5):721-742

Garcia-Navarro, P, Sanchez, A, Clavero, N & Playan, AM 2004, ‘Simulation
model for level furrows. II: Description, validation, and application’, Journal of
Irrigation and Drainage Engineering, 130(2):113-121

Gillies, MH, Smith, RJ & Raine, SR 2006, ‘Accounting for temporal inflow
variation in the inverse solution for infiltration in surface irrigation’, Irrigation
Science DOI 10.1007/s00271-006-0037-9

Gillies, MH, Smith, RJ 2005, ‘Infiltration parameters from surface irrigation
advance and run-off data’, Irrigation Science 24:25-35

Gray, DM & Ahmed, M 1965, ‘Rational Approach applied to the design of
border Dyke systems', Canadian Agricultural Engineering (Ottawa), Vol 7:1
pp30-33, 44.

Green, WH & Ampt, CA 1911, ‘Studies on soil physics, 1. Flow of air and water
through soils', J. Agric. Sci, 4 1-24

Hall, WA 1956, ‘Estimating irrigation border flow’, Agr Engrg., 37(4), 263-265

Hall, WA 1960, ‘Performance parameters of irrigation systems’, Transactions
of the ASAE, 3(1):75-76,81

Hanson, BR, Prichard, TL & Schulbach, H 1993, ‘Estimating furrow infiltration’,
Agricultural Water Management, 24:281-298

Harder, JA & Armacost LV 1966, Wave propagation in rivers. Hydraulic
Engineering Laboratory Report No 1, Series 8, University of California, Berkeley

Hardie, M, Newell, G & Raine, S 2002, ‘Effect of Sugarcane trash retention
systems on furrow irrigation performance’, Proc. National Conference,
Irrigation Association of Australia, 21st-24th May, Sydney. pp311-320

Haverkamp, R, Parlange, JY, Star, JL, Schmitz, G & Fuentes, C 1990,
‘Infiltration under ponded conditions. 3: A predictive equation base on physical
parameters', Soil Science, 149(4), 292-300

Henderson, FM & Wooding, RA 1964, ‘Overland flow and groundwater flow
from a steady rainfall of finite duration’, J. of Geophysical Research, Am.
Geophysical Union, 69(8):1531-1540

Hibbs, RA, James, LG & Cavalieri, RP 1992 A furrow irrigation automation
system utilizing adaptive control’, Transactions of the ASAE, 35(3):1063-1067

Hodgson, AS, Constable, GA, Duddy, GR & Daniells, IG 1990 A comparison of
drip and furrow irrigated cotton on a cracking clay soil: 2. Water use efficiency,
waterlogging, root distribution and soil structure’, Irrigation Science, 11:143-
148

Hoffman, GJ & Martin, DL 1993 Engineering systems to enhance irrigation
performance’, Irrigation Science, 14:53-63

Holden, AP & Stephenson, D 1995 Finite difference formulations of kinematic
equations', Journal of Irrigation and Drainage Engineering, 121(5):423-426

List of References

 217

Holden, AP & Stephenson, D 1998 Improved four-point solution of the
kinematic equations’, Journal of Hydraulic Research, 26(4):413-423

Holzapfel, EA & Marino, MA 1987 Surface irrigation nonlinear optimization
models’, Journal of Irrigation and Drainage Engineering, 113(3 379-392

Holzapfel, EA, Marino, MA & Chavez-Morales, J 1984 Border irrigation model
selection’, Transactions of the ASAE, 1811-1816

Holzapfel, EA, Marino, MA & Chavez-Morales, J 1984 Comparison and
selection of furrow irrigation models’, Agricultural Water Management, 9:105-
125

Holzapfel, EA, Marino, MA & Chavez-Morales, J 1986 Surface irrigation
optimization models', Journal of Irrigation and Drainage Engineering, 112(1
pp1-19

Holzapfel, EA, Marino, MA, Valenzuela, A & Diaz, F 1988 Comparison of
infiltration measuring methods for surface irrigation’, Journal of Irrigation and
Drainage Engineering, 114(1):130-142

Hornbuckle, JW, 1999, Modelling furrow irrigation on heavy clays, high water
tables, and tiled drain soils using SIRMOD in the Murrumbidgee irrigation
area. Undergraduate Thesis. University of New England. Armidale, NSQ.
Australia.

Hornbuckle, JW, Christen, EW & Faulkner, RD 2003, 'Improving the efficiency
and performance of furrow irrigation using simulation modelling in south-
eastern Australia’, Proc. International Workshop on Improved Irrigation
Technologies and Methods: Research, Development and Testing, 18-19
September, Montpellier, France.

Hornbuckle, JW, Christen, EW & Faulkner, RD 2005, 'Use of SIRMOD as a
Quasi Real Time Surface Irrigation Decision Support System, Proc. MODSIM
International Conference, Melbourne, 12-15 December

Horton, RE 1940, 'An approach towards a physical interpretation of infiltration
capacity', Soil Sci. Sol Am., J. 5 pp399-417

Hume, IH 1993, 'Determination of infiltration characteristics by volume-
balance for border check irrigation’, Agricultural Water Management, 23:23-29

Ismail, SM & Depeweg, H 2005, ‘Simulation of continuous and surge flow
irrigation under short field conditions’, Irrigation and Drainage, 54(2):217-230

Ito, H, Wallender, WW & Raghuwanshi, NS 1999, 'Economics of furrow
irrigation under partial infiltration information’, Journal of Irrigation and
Drainage Engineering, 125(3 pp105-110

Izadi, B, Heermann, DF & Duke, HR 1988, 'Sensor placement for real time
infiltration parameter evaluation', Trans. Am. Soc. Of Agric. Engrs, 31(4 1159-
1166

Jain, SK & Singh, VP 1989, 'A numerical kinematic wave model for border
irrigation’, Irrigation Science, 10:253-263

Jurriëns, M 2001, SURDEV: surface irrigation software : design, operation, and
evaluation of basin, border, and furrow irrigation. Wageningen : International
Institute for Land Reclamation and Improvement/ILRI, 194 p

List of References

 218

Kafshgiri, VMR 1984, A non-linear zero-inertia model for surge flow furrow
irrigation. Dissertation submitted towards Ph.D, University of California, 186pp

Katopodes, ND & Strelkoff, T 1977, 'Dimensionless solutions of border-
irrigation advance’, Journal of Irrigation and Drainage Engineering,
103(IR4):401-417

Katopodes, ND & Strelkoff, T 1977, 'Hydrodynamics of border irrigation -
complete model’, Journal of Irrigation and Drainage Engineering,
103(IR3):309-323

Katopodes, ND & Tang, JH 1990, 'Self-adaptive control of surface irrigation
advance’, Journal of Irrigation and Drainage Engineering, 116(5):697-713

Katopodes, ND 1990, 'Observability of surface irrigation advance’, Journal of
Irrigation and Drainage Engineering, 116(5):656-675

Katopodes, ND 1994, 'Hydrodynamics of surface irrigation: vertical structure of
the surge front’, Irrigation Science, 15:101-111

Katopodes, ND, Tang, JH & Clemmens, AJ 1990, 'Estimation of surface
irrigation parameters’, Journal of Irrigation and Drainage Engineering,
116(5):676-696

Khatri, KL & Smith, RJ 2005, 'Evaluation of methods for determining infiltration
parameters from irrigation advance data', Irrigation and Drainage, 54(4
pp467-482

Khatri, KL, Smith, RJ & Raine, SR, 2006, 'Real time control of surface
irrigation: managing infiltration variations and enhancing furrow irrigation
performance’, Proc. National Conference, Irrigation Association of Australia. 9-
11 May, Brisbane. P73-4

Knight, JH 1980, 'An improved solution for the infiltration-advance problem in
irrigation hydraulics’, Proc. 7th Australasian Hydraulics and Fluid Mechanics
Conference, Brisbane, 18-22 August, 1980, 258-261

Kostiakov, AN 1932, On the dynamics of the coefficients of water percolation
in soils. Sixth Commission, Int. Soc. Soil Science, Part A 15-31.

Lal, R & Pandya, AC 1972, 'Volume-balance method for computing infiltration
rates in surface irrigation’, Transactions of the ASAE, 69-72

Latimer, EA & Reddell, DL 1989, 'A real time automated control system for
surface irrigation', Land and Water Use, 613-620

Latimer, EA & Reddell, DL 1990, 'Components for an advance rate feedback
irrigation system (ARFIS)’, Transactions of the ASAE, 33(4):1162-1170

Levien, SLA & de Souza, F 1987, 'Algebraic computation of flow in furrow
irrigation', Journal of the Irrigation and Drainage Division, Vol 113, 367-377

Lewis MR 1937, 'The rate of infiltration of water in irrigation practice', Trans
Am Geophys Union 18th Annual meeting, 361-368.

Lewis, MR & Milne, WE 1938, ‘Analysis of border irrigation’, Agr. Eng., 19:267-
272

Liggett, A & Cunge, JA, 1975, ‘Numerical methods of solution of the unsteady
flow equations’, Chapter 4 of Unsteady Flow in Open Channels, Water
Resources Publication, Fort Collins, Colorado.

List of References

 219

Lighthill, MH & Whitman, RB 1955, ‘On kinematic Waves: I. Flood movement in
long rivers’, Proc. Royal Soc London, Series A, Vol. 229:201-316

Ma, AD 2004, Computer aided mapping of spatial and temporal infiltration
variability, Undergraduate Thesis, University of Southern Queensland

MacCormack, RW & Warming, RF 1973, ‘Survey of computational methods for
three-dimensional supersonic inviscid flows with shocks. Advances in
numerical fluid dynamics, AGARD lecture series 64, Brussels, Belgium,
ppp5.1-5.19

Maheshware, BL & Patto, MJ 1990, 'Present status of border irrigation design
in Australia’, Proc. Conference on Agricultural Engineering, Toowoomba.
Institution of Engineers, Australia. 156-159

Maheshwari, BL & Jayawardane, NS 1992, 'Infiltration characteristics of some
clayey soils measured during border irrigation’, Agricultural Water
Management, 21:265-279

Maheshwari, BL & McMahon, TA 1991, ‘BICADM. A software package for
border irrigation computer aided design and management’, Dept. Cvil and Ag.
Engr. University of Melbourne, Melbourne Australia. 32p.

Maheshwari, BL & McMahon, TA 1993, 'Performance evaluation of border
irrigation models for south-east Australia: Part 1, advance and recession
characteristics', J. agric. Engng Res., 54:67-87

Maheshwari, BL & McMahon, TA 1993, 'Performance evaluation of border
irrigation models for south-east Australia: Part 2, overall suitability for field
applications', J. agric. Engng Res., 54, 127-139

Maheshwari, BL 1994, 'Development of a regression-based model of border
irrigation on cracking soils’, Agricultural Water Management, 25: 167-178

Maheshwari, BL, Turner, AK & McMahon, TA 1986, 'Mathematical modelling of
border irrigation’, Proc. Conference on Agricultural Engineering, Adelaide 24-
28 August 1986, 215-218

Maheshwari, BL, Turner, AK, McMahon, TA & Campbell, BJ 1988, 'An
optimization technique for estimating infiltration characteristics in border
irrigation’, Agricultural Water Management, 13:13-24

Maihol, JC & Gonzalez, JM 1993, 'Furrow irrigation model for real-time
applications on cracking soils’, Journal of Irrigation and Drainage Engineering,
119(5):768-783

McClymont, DJ & Smith, RJ 1996, ‘Infiltration parameters from optimisation on
furrow irrigation advance data’, Irrigation Science, 17(1): 15-22.

Merriam, JL & Clemmens, AJ 1985, ‘Time rate infiltration depth families’, Proc.
Development and Management Aspects of Irrig & Drainage,Spec. Conf Proc.
Irrig. And Drain. Div.., ASCE, San Antonio, Texas, pp67-74

Merriam, JL & Keller, J 1978. Farm irrigation system evaluation: A guide for
management. Department of Agricultural and Irrigation Engineering, Utah
State University, Logan, Utah.

Norum, DI & Gray, DM 1970, 'Infiltration equations from rate-of-advance data',
Journal of Irrigation and Drainage Division, Proceeding of the American Society

List of References

 220

of Civil Engineers, 96(IR2):111-119

Or, D & Silva, HR 1996, 'Prediction of surface irrigation advance using soil
intake properties’, Irrigation Science, 16:159-167

Ottoni, TB & Warrick, AW, 1983, 'Identification of infiltration parameters using
border irrigation tests', ASAE Pap 83-2519

Oweis, TY & Walker, WR 1990, 'Zero-inertia model for surge flow furrow
irrigation’, Irrigation Science, 11:131-136

Philip, JR & Farrell, DA 1964, 'General solution of the infiltration-advance
problem in irrigation hydraulics', J. Geohpys. Res. 69 pp. 621-631.

Philip, JR 1957a, 'Theory of infiltration, 4. Sorptivity and algebraic infiltration
equations', Soil Science, 84,257-264

Philip, JR 1957b, 'Theory of infiltration, 5. The influence of the initial moisture
content', Soil Science, 84,329-339

Philip, JR 1957c, 'Theory of infiltration, 2. The profile at infinity', Soil Science,
83,434-448

Philip, JR 1969, Theory of infiltration. Advances in hydroscience, vol. 5,
K.T.Choe, ed., Academic Press, New York, 215-296

Raes, D, Sahli, A, Van Looij, J, Ben Mechlia, N & Persoons, E 2000, 'Charts for
guiding irrigation in real time', Irrigation and Drainage systems, 14(4 pp343-
352

Raghuwanshi, NS & Wallender, WW 1997, 'Economic optimisation of furrow
irrigation’, Journal of Irrigation and Drainage Engineering, 123(5):377-

Raghuwanshi, NS & Wallender, WW 1999, 'Forecasting and optimising furrow
irrigation management decision variables’, Irrigation Science, 19(1) pp1-6

Raine, SR & Bakker, D 1996, ‘Increased furrow irrigation efficiency through
better design and management of cane fields”, Proc. Aust. Soc. Sugar Cane
Technol. 18:119-124

Raine, SR & Shannon, EL 1996, 'Increasing the irrigation efficiency of Burdekin
canegrowers through participatory action learning’, Proc. Irrigation Australia
Conference "Australian Solutions," Adelaide May 14-16, 1996, 36:1-6

Raine, SR & Walker, WR 1998, 'A decision support tool for the design,
management and evaluation of surface irrigation systems’, Proc. National
Conference, Irrigation Association of Australia, 19-21 May, Brisbane. pp117-
123

Raine, SR, Holden, JR & Shannon, EL 1996, 'Getting the message across in the
battle for irrigation efficiency’, Proc. Conference on Engineering in Agriculture
and Food Processing 1996, University of Queensland, Gatton,
25(3):SEAg96/092

Ram, RS & Singh, VP 1985, 'Application of kinematic wave equations to border
irrigation design', J. agric. Engng Res., 32:57-71

Ram, RS, Singh, VP & Prasad, SN 1986a, 'A quasi-steady state integral model
for closed-end border irrigation’, Agricultural Water Management, 11:39-57

Ram, RS, Singh, VP & Prasad, SN 1986b, 'A quasi-steady state integral model

List of References

 221

for border irrigation’, Irrigation Science, 7(2) pp 113-141

Rasmussen, WO 1994, 'Infiltration-advance equation for finite linear source’,
Journal of Irrigation and Drainage Engineering, 120(4):796-812

Rayej, M & Wallender, WW 1985, 'Furrow irrigation simulation time reduction’,
Journal of Irrigation and Drainage Engineering, 111(2):134-146

Rayej, M & Wallender, WW 1987, 'Furrow model with specified space
intervals’, Journal of Irrigation and Drainage Engineering, ASCE 113, 536-548

Rayej, M, Wallender, WW 1988, 'Time solution of kinematic-wave model with
stochastic infiltration’, Journal of Irrigation and Drainage Engineering,
114(4):605-621

Reddell, DL 1981, Modified rate-of-advance method for an automatic furrow
irrigation system. Paper No. 81-2552, Am. Soc. Of Agric. Engrs. , St Joseph,
Mich.

Reddell, DL & Latimer, EA 1987, Field evaluation of an advance rate feedback
irrigation system, Irrigation Systems for the 21st Century, Proc. if Irrigation and
Drainage Divisions of the ASCE, Portland, 317-324

Reddy, JM & Apolayo, HM 1991, 'Sensitivity of furrow irrigation system cost
and design variables’, Journal of Irrigation and Drainage Engineering. 117(2),
pp201-219

Reddy, JM & Clyma, W 1989, 'Discussion on “Surface Irrigation nonlinear
optimisation models” by Holzapfel, EA, and Marino, MA’, Journal of Irrigation
and Drainage Engineering, 115(5 897-898

Reddy, JM & Clyma, W, 1981, 'Optimal design of border irrigation systems’,
Journal of Irrigation and Drainage Engineering, 107(IR3) pp 289-306

Reddy, JM & Singh, VP 1994, 'Modelling and error analysis of kinematic-wave
equations of furrow irrigation’, Irrigation Science, 15:113-122

Reddy, JM 1994, 'Optimization of furrow irrigation system design parameters
considering drainage and runoff water quality constrains’, Irrigation Science,
15:123-136

Renault, D & Wallender, WW 1990, 'Alive (Advance Linear Velocity): Surface
irrigation rate balance theory’, Journal of Irrigation and Drainage Engineering,
118(1):138-155

Renault, D & Wallender, WW 1991, 'ALIVE- Advance Linear Velocity: Horton
infiltration law from field water advance rate’, Transactions of the ASAE,
34(4):1706-1714

Renault, D & Wallender, WW 1994, 'Furrow advance-rate solution for
stochastic infiltration properties’, Journal of Irrigation and Drainage
Engineering, 120(3)617-633

Riel, AJ 1996, Object-Oriented Design Heuristics, Addison-Wesley Professional

Ross, PJ 1987, Two numerical models for furrow and border irrigation,
Technical Memorandum, CSIRO Div. Soils, Davies Lab. Townsville, QLD,
Australia, 8pp

Sakkas, JG, Bellos, CV & Klonaraki, MN 1994, 'Numerical computation of
surface irrigation’, Irrigation Science, 15:83-99

List of References

 222

Scaloppi, EJ 1984, 'A method for evaluating infiltration parameters in surface
irrigation', Trans. 12 Congress on Irrigation and Drainage, 28 May – 2 June
1984), Fort Connins, CO. International Commission on Irrigation and Drainage,
New Delhi, Vol.1(B), pp 369-378.

Scaloppi, EJ, Merkley, GP & Willardson, LS 1995, 'Intake parameters from and
advance and wetting phases of surface irrigation', Journal of Irrigation and
Drainage Engineering, 121(1), 57-70

Schmitz, G, Haverkamp, R & Palacios, O 1985, ‘A coupled surface-subsurface
model for shallow water flow over initially dry soil’, Proc, 21st Congr. IAHR, Int.
Assoc. for Hydr. Res., 1, 23-30

Schmitz, GH & Seus, GJ 1989, 'Analytical model of level basin irrigation’,
Journal of Irrigation and Drainage Engineering, 115(1):78-95

Schmitz, GH & Seus, GJ 1990, 'Mathematical zero-inertia modelling of surface
irrigation: advance in borders’, Journal of Irrigation and Drainage Engineering,
116(5):603-615

Schmitz, GH & Seus, GJ 1992, 'Mathematical zero-inertia modelling of surface
irrigation: Advance in furrows’, Journal of Irrigation and Drainage Engineering,
118(1):1-18

Schwankl, LJ & Wallender, WW 1987, ’Furrow modelling with variable hydraulic
characteristics’, Proc. Specialty Conference sponsored by the Irrigation and
Drainage Division, ASCE, pp753-760

Schwankl, LJ & Wallender, WW 1988, 'Zero-inertia furrow modelling with
variable infiltration and hydraulic characteristics’, Transactions of the ASAE,
31(5):1470-1475

Shayya, WH, Bralts, VF & Segerlind, LJ 1993, 'Kinematic-wave furrow irrigation
analysis: a finite element approach’, Transactions of the ASAE, 36(6):1733-
1742

Shepard, JS, Wallender, WW & Hopmans, JW 1993, 'One-point method for
estimating furrow infiltration’, Transactions of the ASAE, 36(2):395-404

Sherman, B & Singh, VP 1978, ‘A kinematic-wave model for surface irrigation’,
Water Res Res 14:357-364

Sherman, B & Singh, VP 1982, ‘A kinematic-wave model for surface irrigation:
an extension’, Water Res Res, 18:659-657

Singh, P & Chauhan, HS 1973, 'Determination of water intake rate from rate of
advance', Transactions of the ASAE, 16(6) June, 1081-1084

Singh, V & Bhallamudi, SM 1996, ‘Complete hydrodynamic border-strip
irrigation model’, Journal of Irrigation and Drainage Engineering, 122(4) 189-
197

Singh, V & Bhallamudi, SM 1997, 'Hydrodynamic modelling of basin irrigation’,
Journal of Irrigation and Drainage Engineering, 123(6):407-414

Singh, VP & He, YC 1988, 'Muskingum model for furrow irrigation’, Journal of
Irrigation and Drainage Engineering, 114(1):89-103

Singh, VP & Joseph, ES 1994, 'Kinematic-wave model for soil-moisture
movement with plant-root extraction’, Irrigation Science, 14:189-198

List of References

 223

Singh, VP & Ram, RS 1983, ‘A kinematic model for surface irrigation”
verification by experimental data’, Water Res Res, 19(6) 1599-1612

Singh, VP & Ram, RS 1984, 'Solution of the Kinematic-wave equations for
border irrigation', Agricultural Water Management, Vol 9(2):127-138

Singh, VP & Sherman, B 1983, ‘A kinematic study of surface irrigation:
mathematical solutions’, Tech. Report WRR4, Water Resources Program,
Department of Civil Engineering, Louisiana State University

Singh, VP & Yu, FX 1987, ‘A mathematical model for border irrigation I.
Advance and storage phases’, Irrigation Science, 8(3) 151-174

Singh, VP & Yu, FX 1987, ‘A mathematical model for border irrigation II.
Vertical and horizontal recession phases’, Irrigation Science, 8(3) 175-190

Singh, VP & Yu, FX 1987, ‘A mathematical model for border irrigation III.
Evaluation of Models’, Irrigation Science, 8(3) 191-213

Singh, VP & Yu, FX 1990, 'Derivation of infiltration equation using systems
approach’, Journal of Irrigation and Drainage Engineering, 116(6):837-858

Singh, VP, Aravamuthan, V & Joseph, ES 1994, 'Errors of kinematic-wave and
diffusion-wave approximations for time-independent flow in infiltration
channels’, Irrigation Science, 15:137-146

Singh, VP, Feyen, J & Persoons, E 1987 A model for optimizing management
variables in close end borders - development and evaluation’

Singh, VP, Scarlatos, PD & Prasad, SN 1990, 'An improved Lewis-Milne
equation for the advance phase of border irrigation’, Irrigation Science, 11:1-6

Singh, VP, Scarlatos, PD & Raudales, SA 1988, 'Muskingum model for border
irrigation’, Journal of Irrigation and Drainage Engineering, 114(2):266-280

Smerdon, ET, Blair, AW & Reddell, DL 1988, 'Infiltration from irrigation advance
data. I: Theory’, Journal of Irrigation and Drainage Engineering, 114(1):4-17

Smith, RE 1972, ‘Border irrigation advance and ephemeral flood waves’,
Journal Irrig. and Drain. Div., ASCE, 98(2) 289-305

Smith, RJ, 1993, ‘Infiltration parameters from irrigation advance data’, Proc.
Intern. Cong. Modelling and Simulation, University of Western Australia, Perth
4: 1569-1574

Souza, F 1981, Nonlinear hydrodynamic model of furrow irrigation, Ph.D.
Dissertation, Department of Land, Air and Water Resources, University of
California at Davis

Stephenson D & Meadows ME, 1986, Kinematic Hydrology and Modelling,
Elsevier, Amsterdam, pp23-8

Strelkoff, T & Katopodes, ND 1977, 'Border-irrigation hydraulics with zero
inertia', Journal of the Irrigation and Drainage Division, American Society of
Civil Engineers, 103(IR3):325-342

Strelkoff, T & Shatanawi, MR 1984, 'Normalised graphs of border-irrigation
performance’, Journal of Irrigation and Drainage Engineering, 110(4):359-374

Strelkoff, T 1977, 'Computation of flow in border irrigation’, Journal of Irrigation
and Drainage Engineering. Vol 103, no3, pp357-377

List of References

 224

Strelkoff, T 1985, 'Dimensionless formulation of furrow irrigation’, Journal of
Irrigation and Drainage Engineering, 111(4):380-394

Strelkoff, T 1992, 'EQSWP: Extended unsteady-flow double sweep equation
solver', Journal of Hydraulic Engineering, 118(5):735-742

Strelkoff, T, Adamsen, FJ, Bautista, E, Hunsaker, DJ, Clemmens, AJ, Strand, RJ
& Tabbara H, 2001, Surface Irrigation Water Quality and Management,
Strelkoff, TS & Clemmens, AJ 1994, 'Dimensional analysis in surface irrigation’,
Irrigation Science, 15:57-82

Strelkoff, TS, Clemmens, AJ, El-Ansary, M, and Awad, M 1999, ‘Surface-
irrigation evaluation models: applications to level basins in Egypt.’
Transactions of the ASAE 42(4):1027-1036

Strelkoff, TS & Clemmens, AJ 2001, ‘Data-driven organization of field methods
for estimation of soil and crop hydraulic properties.’ Paper number 012256,
ASAE Annual Meeting 2001.

Strelkoff, TS & Falvey, HT 1993, 'Numerical methods used to model unsteady
canal flow’, Journal of Irrigation and Drainage Engineering, 119(4):637-655

Strelkoff, TS 1990, SRFR. A computer program for simulating flow in surface
irrigation. Furrows – Basins – Borders. U.S. Water Conservation Laboratory,
4332 East Broadway, Phoenix AZ. WCL Report #17. 75pp. December.

Strelkoff, TS, Clemmens, AJ & Schmidt, BV & Slosky, EJ 1996, WCL Report 21
– BORDER – A design and management aid for sloping border irrigation
systems. 1-44

Strelkoff, TS, Clemmens, AJ & Schmidt, BV 1998, SRFR, Version 3.31 – A
model for simulating surface irrigation in borders, basins and furrows, USWCL,
USDA/ARS, 4332 E. Broadway, Phoenix, AZ.

Tabauda, MA, Rego, ZJC, Vachaud, G & Pereira, LS 1995, 'Modelling of furrow
irrigation. Advance with two-dimensional infiltration’, Agricultural Water
Management, 28:201-221

Tamimi, AH, Clemmens, AJ, Bautista, E & Strelkoff, T 2003, SIPES – Surface
Irrigation Parameter Estimation Software. United States Committee of
Irrigation and Drainage Engineering Conference P. 615-624

Tidwell, J 2005, Designing Interfaces, O’Reilly Media

Tognazzini, B 1992, Tog on Interface, Addison-Wesley Professional

Trout, TJ 1990, 'Furrow inflow and infiltration variability impacts on irrigation
management’, Transactions of the ASAE, 33(4):1171-1178

Turbak, AS & Morel-Seytoux, HJ 1988, ‘Analytical solutions for surface
irrigation. I: Constant infiltration rate’, Journal of Irrigation and Drainage
Engineering, 114(1) 31-47

Turner, AK & Clift, TR 1984, Advance and recession in border check irrigation
for flat, clayey soils. Agricultural Engineering Report, University of Melbourne,
71/84

Turral, H & Malano, HM 1996, 'A recirculating infiltrometer to investigate surge
flow in border irrigation on cracking soils - reconciling field and infiltrometer
measurements’, Proc. Conference on Engineering in Agriculture and Food

List of References

 225

Processing 1996, University of Queensland, Gatton, 25(3):SEAg96/037

USDA 1986, Surge flow irrigation field guide, USDA Soil Conservation Service,
88pp

USDA 2006, Part 623 Irrigation National Engineering Handbook, USDA Natural
Resources Conservation Service, 115pp

Valiantzas, JD 1993, 'Border advance using improved volume-balance model’,
Journal of Irrigation and Drainage Engineering, 119(6):1006-1013

Valiantzas, JD 1994, 'Simple method for identification of border infiltration and
roughness characteristics’, Journal of Irrigation and Drainage Engineering,
120(2):233-249

Valiantzas, JD 1997a, 'Surface irrigation advance equation: variation of
subsurface shape factor’, Journal of Irrigation and Drainage Engineering,
123(4):300-306

Valiantzas, JD 1997b, 'Volume-balance irrigation advance equation: Variation
of surface shape factor’, Journal of Irrigation and Drainage Engineering,
123(4):307-312

Valiantzas, JD 1999, 'Explicit time of advance formula for furrow design',
Journal of Irrigation and Drainage Engineering, 125(1):19-25

Valiantzas, JD 2000a, ‘Discussion of “estimation of surface volume in
hydrological models for border irrigation” by J. Monserrat and J. Barragan’
Journal of Irrigation and Drainage Engineering, 126(2), 131-133

Valiantzas, JD 2000b, ‘Surface water storage independent equation for
predicting furrow irrigation advance’, Irrigation Science, 19:115-123

Valiantzas, JD 2001a, ‘Optimal furrow design. I: Time of Advance Equation,
Journal of Irrigation and Drainage Engineering, 127(4):201-207

Valiantzas, JD 2001b, 'Optimal furrow design. II: Explicit calculation of design
variables', Journal of Irrigation and Drainage Engineering, 127(4):209-215

Valiantzas, JD, Aggelides, S & Sassalou, A 2001, 'Furrow infiltration estimation
from time to a single advance point’, Agricultural Water Management, 52: 17-
32

Victorian DPI, 2004, Shepparton Irrigation Region Implementation Committee,
Research Reporting Day. DPI Tatura, May 2004

Vogel, T & Hopmans, JW 1992, 'Two-dimensional analysis of furrow infiltration',
Journal of Irrigation and Drainage Engineering, Vol 118, no. 5, pp791-806

Walker, WR 1993, SIRMOD – Surface Irrigation Simulation Software, Utah
State University, Logan Utah

Walker, WR 1989, ‘Guidelines for designing and evaluating surface irrigation
systems’, Irrigation and Drainage paper 45, Food and Agriculture Organization
of the United Nations, Rome, Italy

Walker, WR & Busman, JD 1990, 'Real time estimation of furrow irrigation',
Journal of Irrigation and Drainage Engineering, 116(3):299-318

Walker, WR & Humpherys, AS 1983, 'Kinematic-wave furrow irrigation model',
Journal of Irrigation and Drainage Engineering, 109(4):377-392

List of References

 226

Walker, WR & Skogerboe, GV 1987, Surface Irrigation Theory and Practice,
Prentice-Hall, New York

Walker, WR 2005, 'Multi-level calibration of furrow infiltration and roughness',
Journal of Irrigation and Drainage Engineering, 131(2) pp129-135

Walker, WR 2003, SIRMOD III – Surface irrigation simulation, evaluation, and
design. Guide and technical documentation, Dept. of Biological and Irrigation
Engineering, Utah State University, Logan, Utah

Wallender, WW 1986, ‘Furrow model with spatially varying infiltration’, Trans.
The Amer. Soc. Of Agric. Engineers, 29(4), 1012-1016

Wallender, WW & Rayej, M 1985, 'Zero-inertia surge model with wet-dry
advance', Transactions of the ASAE, 28(5);1530-1534

Wallender, WW & Rayej, M 1990, 'Shooting method for Saint Venant equations
of furrow irrigation', Journal of Irrigation and Drainage Engineering,
116(1):114-122

Wallender, WW & Rayej, M, 1987, 'Economic optimization of furrow irrigation
with uniform and nonuniform soil', Transactions of the ASAE 30(5):1425-1429

Wallender, WW & Yokokura, J 1991, 'Space solution of Kinematic-Wave model
by time iteration', Journal of Irrigation and Drainage Engineering, 117(1):140-
144

Wallender, WW (1986), 'Furrow model with spatially varying infiltration',
Transactions of the ASAE, 29(4):1012-1016

Wallender, WW 1989, 'Economic surface irrigation within environmental
constraints', Proc. Southampton Conference, 5.9:507-513

Wallender, WW, Ardila, S & Rayej, M, 1990, 'Irrigation optimization with
variable water quality and nonuniform soil', Transactions of the ASAE 33(5):
pp1605-1611

Wilke, OC & Smerdon, ET, 1961, ‘A solution of the irrigation advance problem’,
Journal of Irrig. Drain. Div. ASCE, 91(5),2334

Wilke, OC, 1968, ‘A hydrodynamic study of flow in irrigation furrows’, Report
TR-13, Texas Water Resources Institute, Texas A&M University

Wilson, BN & Elliott, RL 1988, 'Furrow advance using simple routing models',
Journal of Irrigation and Drainage Engineering, 114(1):104-117

Wood, M, Malano, H & Turral, H, 1998, Real-time monitoring and control of on-
farm surface irrigation systems', Final Report, Department of Civil and
Environmental Engineering, University of Melbourne.

Wooding, RA & Henderson, FM 1965a, ‘A hydraulic model for the catchment-
stream problem. 1. Kinematic wave theory’, J. of Hydrology, 3(3):254-267

Wooding, RA & Henderson, FM 1965b, ‘A hydraulic model for the catchment-
stream problem. 2. Numerical solutions’, J. of Hydrology, 3(3):268-282

Wu, I & Bishop, AA 1970, 'Graphic relation of intake, length-of-run and time',
Journal of the Irrigation and Drainage Division, American Society of Civil
Engineers, 96(IR3):233-240

Yost, SA & Katopodes, ND 1998, 'Global identification of surface irrigation

List of References

 227

parameters', Journal of Irrigation and Drainage Engineering, 124(3):131-139

Yu, FX & Singh, VP 1989, 'Analytical model for border irrigation', Journal of
Irrigation and Drainage Engineering, 115(6):982-999

Yu, FX & Singh, VP 1990, 'Analytical model for furrow irrigation', Journal of
Irrigation and Drainage Engineering, 116(2):154-171

Zerihun, D, Feyen, J 1992 FISDEV A software package for design and
evaluation of furrow irrigation systems. Centre for irrigation Engineering,
Katholieke Universiteit, Lueven, Belgium. 54p

Zerihun, D, Feyen, J & Reddy, JM 1996, 'Sensitivity analysis of furrow-Irrigation
performance parameters', Journal of Irrigation and Drainage Engineering,
122(1):49-57

Zerihun, D, Mohan Reddy, J, Feyen, J & Breinburg, G 1993, 'Design and
management nomograph for furrow irrigation', Irrigation and Drainage
Systems, 7(1) pp29-41.

List of References

 228

Appendix 2.1 Derivation of the Saint Venant Equations with lateral inflows and outflow

 229

Appendix 2.1 Derivation of the Saint Venant Equations

with lateral inflows and outflow

The following one-dimensional unsteady flow equations are derived through
application of the principles of conservation of mass and momentum to an
elemental control volume of fluid. This derivation is given for completeness as
many texts fail to state the assumptions underlying the derivation, are not
thorough in the derivation and neglect to include lateral inflows and outflows.

A2.1.1 Assumptions
• Flow is a translatory wave motion of long wavelength and low amplitude

(Chadwick and Morfett, 1986 implying that the streamlines can be
considered parallel.

• The water surface profile varies gradually implying a hydrostatic pressure
distribution with negligible vertical accelerations.

• The velocity of the streamflow across the cross-sectional area of flow can
be considered sufficiently uniform and can be represented by the average
cross-sectional velocity.

• The effects of momentum for the lateral inflow and outflow can be
considered negligible.

• Steady flow formula can be used to approximate resistance to flow.
• The channel is rectangular of unit width and its slope is small.

A2.1.2 Continuity Equation
The principle of conservation of mass implies that for any time interval, the
difference between the mass flow entering and the mass flow exiting an
elemental control volume, is equal to the change of mass within the control
volume. In terms of flowrate, the difference between the inflow and outflow for a
control volume is equal to the rate of change of storage over the time interval.
Therefore, over a fixed time interval t∂ ;

Figure A2.1.1: Elemental control volume in open channel
flow

Appendix 2.1 Derivation of the Saint Venant Equations with lateral inflows and outflow

 230

timewithstorageinchangeofrateoutflowsinflows =− .. (1)

x
t
yxiqxrq outin Δ=Δ−−Δ+

∂
∂

... (2)

where qin (m3/s) is inflow into the control volume, r (m2/s) is rainfall intensity
(lateral inflow), qout (m3/s) is outflow from the control volume, i (m2/s) is the
infiltration rate (lateral outflow), xΔ (m) is the thickness of the control volume,

xq ∂∂ / is the change in inflow over the control volume width, and ty ∂∂ / is the
change of depth with time. We can relate outq in terms of inq using;

x
x
qqq inout Δ+=

∂
∂

... (3)

Then substituting this back into Eqn.2 we have;

x
t
yxix

x
qqxrq inin Δ=Δ−⎟

⎠
⎞

⎜
⎝
⎛ Δ

∂
∂

+−Δ+
∂
∂

... (4)

Expanding the brackets, the q terms cancel out to give;

x
t
yxix

x
qxr Δ=Δ−Δ−Δ

∂
∂

∂
∂

... (5)

Then dividing through by xΔ and rearranging, we are left with the continuity
equation;

A2.1.3 Momentum Equation
The principle of conservation of momentum implies that a moving body will
neither gain nor lose momentum unless an external force is applied. This is
classically known as Newton’s second law of motion where the sum of the
external forces on the body equals the rate of change of momentum;

m of momentuof change rateforcesexternalofSum = ... (7)

F dM
dt

=∑ .. (8)

Equating the left hand side of this equation, we have four external forces acting
on the control volume. If forces acting in the downstream direction are positive,
we have;

fgPP FFFFF
rightleft

++−=∑ .. (9)

ir
t
y

x
q

−=+
∂
∂

∂
∂

..(6)

Appendix 2.1 Derivation of the Saint Venant Equations with lateral inflows and outflow

 231

where PleftF and ightFPr are the pressure forces acting on the left and right hand

sides of the control volume respectively, gF is the downstream component of the

gravitational force, and fF is the frictional resistance force. We can relate

ightFPr in terms of PleftF using;

⎟
⎠
⎞

⎜
⎝
⎛ Δ+= x

x
FFF P

PP leftright ∂
∂

... (10)

where xFP ∂∂ / is the rate of change of pressure force across the thickness of the
control volume. Substituting this into Eq. 9 we have;

fg
P

PP FFx
x

FFFF
leftleft

++⎟
⎠
⎞

⎜
⎝
⎛ Δ+−=∑ ∂

∂
.. (11)

The resultant pressure force acting on any section of the control volume
(perpendicular to the channel bed) can be expressed using the relationship

2/)(pgyAF = . In this case where we are dealing with unit width of channel, the
cross-sectional area A is equal to the depth y giving;

2

2
1 gyFp ρ= .. (12)

The gravitational force acting in the downstream direction is given by;

og xSgyF Δ= ρ .. (13)

where oS is the channel slope and is in fact an approximation as theoretically the
tangent of the channel angle should be used. This is called the small slope
approximation (Stephenson and Meadows, 1986).

The friction force which retards the flow can be expressed in terms of a shear
stress and the wetted area on which it is acting.

xPFf Δ=τ .. (14)

where τ is the shear stress and P is the wetted perimeter. By equating the
energy loss by the work done by the shear force, the following relationship is
established;

fgRSρτ = .. (15)

where fS is the slope of the energy line or friction slope and R is the hydraulic
radius. Then substituting Eqn.15 into Eqn.14 and recalling that PAR /= , and for
a unit width of channel yA = we have;

xgySF ff Δ= ρ ... (16)

Substituting Eqns.12, 13 and 16 into Eqn.11

foPP xSgyxSgyxgy
x

FFF
leftleft

Δ−Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ⎟

⎠
⎞

⎜
⎝
⎛+−=∑ ρρρ

∂
∂ 2

2
1

.. (17)

Appendix 2.1 Derivation of the Saint Venant Equations with lateral inflows and outflow

 232

Expanding the brackets, the PleftF terms cancel out. After differentiating y with
respect to x, we have;

fo xSgyxSgyx
x
ygyF Δ−Δ+Δ−=∑ ρρ

∂
∂ρ

2
2

.. (18)

Taking xgyΔρ out as a common factor, we can simplify this to obtain;

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −+−Δ= fo SS

x
yxgyF

∂
∂ρ ... 19)

Now considering the RHS of Eqn.8, the change in momentum consist of two
parts, a temporal momentum change and a spatial momentum change.

x
tM

t
xM

dt
dM

∂
∂

+
∂

∂
=

)()(
... (20)

The momentum of the fluid is xvyM Δ= ρ and the temporal momentum change
is its time derivative;

()xvy
tt

xM
Δ

∂
∂

=
∂

∂ ρ)(
.. (21)

⎟
⎠
⎞

⎜
⎝
⎛ +Δ=

∂
∂

t
yv

t
vyx

t
xM

∂
∂

∂
∂ρ)(

... (22)

The spatial momentum change is the space derivative of the momentum flux
through the control surface 2xvyΔρ ;

()2)(xvy
xx

tM
Δ

∂
∂

=
∂

∂ ρ ...(23)

⎟
⎠
⎞

⎜
⎝
⎛ +Δ=

∂
∂

x
vy

x
yvxv

x
tM

∂
∂

∂
∂ρ 2)(

... (24)

Then substituting Eqns.22 and 24 into Eqn.20;

⎟
⎠
⎞

⎜
⎝
⎛ +Δ+⎟

⎠
⎞

⎜
⎝
⎛ +Δ=

x
vy

x
yvxv

t
yv

t
vyx

dt
dM

∂
∂

∂
∂ρ

∂
∂

∂
∂ρ 2 .. (25)

To simplify this equation, we introduce another relationship for a channel of unit
width;
q vy= ... (26)

Differentiating with respect to x we obtain;
∂
∂

∂
∂

∂
∂

q
x

v y
x

y v
x

= + .. (27)

Then substituting this into our continuity equation (Eqn.6), we have;

t
yir

x
vy

x
yv

∂
∂

∂
∂

∂
∂

−−=+ ... (28)

Appendix 2.1 Derivation of the Saint Venant Equations with lateral inflows and outflow

 233

Adding a xvy ∂∂ / term to both sides of this equation, the LHS now resembles the
second bracketed term of Eqn25;

x
vy

t
yir

x
vy

x
yv

∂
∂

∂
∂

∂
∂

∂
∂

+−−=+ 2 .. (29)

Therefore, substituting Eqn.29 into Eqn.25 we have;

⎟
⎠
⎞

⎜
⎝
⎛ +−−Δ+⎟

⎠
⎞

⎜
⎝
⎛ +Δ=

x
vy

t
yirxv

t
yv

t
vyx

dt
dM

∂
∂

∂
∂ρ

∂
∂

∂
∂ρ ... (30)

This equation can be simplified further as the tyxv ∂∂Δ /ρ terms cancel out to
give;

x
vxvyirxv

t
vxy

dt
dM

∂
∂ρρ

∂
∂ρ Δ+−Δ+Δ=)(... (31)

Taking xyΔρ out as a common factor, we simplify further to obtain;

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+Δ=

x
vv

y
irv

t
vxy

t
M

∂
∂

∂
∂ρ

∂
∂)(

.. (32)

Then combining Eqns.19 and 32;

⎟
⎠
⎞

⎜
⎝
⎛ −+Δ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
+Δ fo SS

x
yxgy

x
vv

y
irv

t
vxy

∂
∂ρ

∂
∂

∂
∂ρ)(

... (33)

Finally, by expanding the brackets, we obtain the second of the Saint Venant
equations;

 ()
y

rivSSg
x
yg

x
vv

t
v

fo
)(−

+−=⎟
⎠
⎞

⎜
⎝
⎛++

∂
∂

∂
∂

∂
∂

..(34)

Appendix 2.1 Derivation of the Saint Venant Equations with lateral inflows and outflow

 234

Appendix 2.2. Case study – evaluation of SIRMOD

 235

Appendix 2.2 Case study – evaluation of SIRMOD

During the early stages of this research, SIRMOD was seen as the industry
standard software package for simulating furrow and border irrigation in
Australia. It was therefore decided to undertake a preliminary study to evaluate
the effectiveness of SIRMOD as a platform for decision support development.

A2.2.1 Outline of case study
Volume-balance, surface advance and recession data were collected from 3
different sugarcane farms in both the Burdekin Delta and Burdekin River
Irrigation Areas. Over thirty individual irrigations were monitored with the results
used to validate the performance of the surface irrigation model SIRMOD
(Version 2.12).

Where furrow dimensions, surface flow characteristics and the modified
Kostiakov intake parameters were measured for individual irrigations and
applied in the model, results for the predicted advance and infiltration were
generally found to range within 22.2% and 16.9% of the measured parameters,
respectively. However, the usefulness of a model lies in its ability to predict
irrigation performance where this level of input data is unavailable.

This study presents the results of a sensitivity analysis conducted to identify the
relative effects on the model output of variations in the values of the input
parameters. The use of infiltration parameters derived solely from the irrigation
advance data and inflow is investigated along with the temporal variations in the
measured infiltration functions.

A2.2.2 Rational for study
One of the perceived disadvantages of SIRMOD is its requirement for a
substantial amount of measured data. This includes information on furrow profile
shape and roughness, field size and slope, soil infiltration characteristics,
irrigation inflow rates and event time. In practice this level of data tends to be
difficult, time consuming and expensive to obtain. The question arises as to what
effort is required or justified in data collection for the tool to be beneficial to the
user. Therefore the case study was conducted to determine: (i) the ability of the
model to simulate the physical event if all of the input data is available (model
validation) and (ii) the usefulness of the model if some of the data is inaccurate
or missing. The latter is undertaken in the form of a sensitivity analysis.

A2.2.3 Materials and methods
The individual performance of over thirty irrigations were monitored on three
commercial furrow irrigated sugarcane farms in the Burdekin region during
1994-95 (Raine, 1995a). Sites (Table A2.2.1) were selected to be representative
of the soils, irrigation design and management practices of the region. In each
case, irrigation water was applied at low pressures from a head box through
collapsible fluming and cut-off fluming cups at the end of each furrow. At each

Appendix 2.2. Case study – evaluation of SIRMOD

 236

site, up to twenty furrows were irrigated with measurements undertaken on up to
three individual replicated furrows. Field slope and furrow length were measured
manually while electronic water meters (Great Lakes Instruments, Wisconsin)
were used to measure inflow and outflow rates (and hence, the total volumes) of
water applied and lost as tailwater. The inflow meter was mounted in a length of
250 mm PVC pipe and installed in the layflat irrigation fluming between the
headbox and the monitoring site. The outlet meters were mounted in 50 mm PVC
tubing and sited within individual replicated furrows. The final intake rate for the
furrow was determined as the difference between the inflow and outflow rates
after the outflow rate had reached an effective maximum. Float sensors were
sited at either 100 or 200 m intervals along the furrow length to measure water
advance time, depth of flow and recession time.

To reduce errors due to non-uniformities in furrow shape, furrow geometries were
measured using a profile meter at up to six locations within the trial site. This
data was averaged and the program PCSv1.42 (Raine, 1995b) used to produce
the empirically fitted profile parameters ρ1, ρ2, σ1, σ2, γ1, and γ2 which were
used as input on the SIRMOD "Page 3" screen to describe the surface water
storage. These values were also used in the calculation of the Manning n, as
described on page 118 of Walker and Skogerboe (1987).

Table A2.2.1: Site information for irrigation trials.

Site Surface
texture

Subsurface
texture

Average
Slope

Field
Length (m)

Inflow
Range (l/s)

Home Hill sandy clay
loam

sandy clay
loam 0.001825 400 m 0.99 to

3.50

Rita Island sandy loam sandy clay
loam 0.001864 350 m 1.32 to

2.62

Jarvisfield sandy clay
loam sandy clay 0.000914 450 m 2.04 to

3.31

The modified Kostiakov-Lewis infiltration equation (Equation 2.7) was used to
described the infiltration process. The average hydraulic area of the furrow was
calculated using special software and used to calculate the infiltration
parameters a and k using a modified version of the two point method of Elliott &
Walker (1982). If, as sometimes did occur, the value of the parameter a was
calculated as a negative number using the two-point method, it was set equal to
zero and k was recalculated. This implies a linear infiltration curve predominately
influenced by a high final infiltration rate. However, it most likely means that the
final infiltration rate (fo) was over determined.

A sensitivity analysis was undertaken using data from nine irrigation events,
three tests from each site (Table A2.2.2). It was conducted by changing the
measured input parameters individually by amounts larger than could be
realistically encountered in practice. These were then used as input into
SIRMOD and the output volume-balance recorded. In each case all other
parameters were retained at their measured value.

Appendix 2.2. Case study – evaluation of SIRMOD

 237

Table A2.2.2: Irrigations tested in sensitivity analysis.

Sites Home Hill Rita Island Jarvisfield

Test names lv1120, lu56,
lu139 j37, j74, j104 sh74, sh84,

sh88

The full hydrodynamic model option was used preferentially when undertaking
the simulations in SIRMOD. However, where this model was unable to complete
a simulation due to either programming errors or mathematical non-viability, the
zero inertia model and kinematic wave model options were used.

The program INFILT v3.01 (McClymont, 1995, McClymont and Smith, 1996)
was used to generate alternative values of the three infiltration parameters and
the cross-sectional area of flow from the measured advance data. The program
does this by determining all four parameters in a single optimisation process. The
empirical profile parameters were matched to the area parameter value
generated from INFILT v3.01 using the profile program PCSv1.42. These results
were then used as input into SIRMOD and the output compared with field
measurements to determine the necessity of directly measuring the infiltration
parameters. The effect of variation in the infiltration function of successive
irrigations on the cumulative infiltration was also investigated.

A2.2.4 Validation of the model
To test the model's validity, the results for predicted advance, and runoff and
infiltration volumes, were compared against the measured quantities for over 70
sets of individual furrow irrigation data (Table A2.2.3).

Table 2.2.3: Summary of validation results.

Output slope of
trendline average error r2

Predicted versus measured advance
(Figure A2.2.1) 0.91 22.2% 0.83

Predicted versus measured runoff
volumes (Figure A2.2.2(a)) 1.2 151% 0.2

Predicted versus measured infiltration
volumes (Figure A2.2.2(b)) 0.8 16.9% 0.63

Figure A2.2.1 shows the relationship between the measured advance times and
those predicted by SIRMOD. The regression analysis shows a high correlation
(r2=0.83) while the slope (0.91) of the trendline indicates that SIRMOD is
slightly underpredicting the advance times. The average error between the
predicted and measured advance times was 22.2%.

Appendix 2.2. Case study – evaluation of SIRMOD

 238

0

200

400

600

800

0 200 400 600 800

Measured advance times (min)

Figure A2.2.1: Comparison of measured and predicted advance times.

A significant correlation (r2=0.63) was found between the measured and
predicted infiltrated volumes with a regression coefficient of 0.8 (Figure A2.2.2b).
This suggests that the model generally underpredicts the total infiltration during
the irrigation. However, the average deviation was 16.9% of the measured
infiltrated volume (or less than 10% of the total volume applied). Because of the
direct relationship between the infiltrated and runoff volumes, an
underprediction in infiltration resulted in an overprediction in runoff (Figure
A2.2.2a). In this case the slope of the regression between the measured and
predicted runoff was 1.2 and the correlation coefficient 0.2. The poor correlation
coefficient reflects the proportionally small runoff volumes obtained in these
trials.

The average deviation from the measured runoff volumes appears high at 151%
although again it is less than 10% of the total volume applied. This result is
greatly influenced by several extreme results with errors over 2000%. Excluding
these extremes, the deviations from the measured runoff volumes remains
under 40% for the majority of tests. The 16.9% average deviation between
measured and predicated infiltration volumes provides us with some
reassurance that the model simulates the physical process with some reliability.
However, this is for the case where all input data has been measured with a
reasonable degree of accuracy. The sensitivity analysis undertaken in the next
section indicates the response of the model to changes in input data.

(a)

0

35

70

105

140

0 35 70 105 140

Measured runoff volumes (m^3/drill)

(b)

0
50

100
150
200
250

0 50 100 150 200
Measured infiltrated volumes

(m^3/drill)

Figure A2.2.2: Comparison of measured and predicted (a) runoff volumes and (b) infiltrated
volumes.

Appendix 2.2. Case study – evaluation of SIRMOD

 239

A2.2.5 Sensitivity analysis

Manning n
Figure A2.2.3(a) and (b) demonstrate the effect of changes in the Manning n
parameter on the SIRMOD output where the Manning n was varied from 50% to
250% of the measured value. These graphs indicate that increasing the Manning
n increases the simulated infiltrated volume. This was expected as increasing the
Manning n effectively increases the roughness of the furrow, slowing the
advance and allowing more time for infiltration. However, the error induced is a
less than 4% deviation in the measured infiltrated volume for up to a 150%
increase in the Manning n. The maximum deviation from the measured runoff
volumes of 30% is a reflection of the proportionally small actual runoff volumes.
The maximum volume-balance error was only 2.9% of the total volume applied.

(a)

-30%
-20%
-10%

0%
10%
20%

0% 100% 200% 300%

Percentage of measured Manning n

(b)

-0.02
-0.01

0
0.01
0.02
0.03
0.04

0 1 2 3

Percentage of measured Manning n

Figure A2.2.3: Effect of changes in Manning n on (a) runoff and (b) infiltrated volumes.

Field slope
The field slope parameter in SIRMOD was varied from 40% to 200% of the
measured value. The results shown in Figure A2.2.4(a) and (b) indicate that by
increasing the slope, we are effectively increasing the runoff and decreasing the
infiltrated volume. Again, this was expected due to a faster advance.

(a)

-30%
-20%
-10%

0%
10%
20%

0% 100% 200% 300%

Percentage of measured slope

(b)

-4%

-2%

0%

2%

4%

-50% 50% 150% 250%

Percentage of measured slope

Figure A2.2.4: Effect of changes in field slope on (a) runoff and (b) infiltrated volumes.

The maximum errors induced by a reduction to 40% of the measured slope was a
less than 3% deviation in infiltrated volume and 20% in the runoff volume. This

Appendix 2.2. Case study – evaluation of SIRMOD

 240

equates to 2.2% of the total inflow. Decreasing the slope had more effect on the
simulated output quantities than an increase in slope.

Inflow
Inflow values ranging from 70% to 160% of the measured values were used as
input to SIRMOD. The infiltration parameters and time to cutoff were entered as
their measured values. This represents a situation which could occur if the
infiltration parameters were calculated from a previous event, or using a point
source method.

Figure A2.2.5(a) demonstrates the effect of inflow on the measured runoff
volumes. The deviation from the measured runoff is up to 600% for a 160%
change in inflow (less than 60% of the total volume applied). The large deviations
in simulated runoff volumes can be explained by the fact that changing the inflow
rate has little effect on infiltration of water through the soil, which is dominated
by the soil properties. This is best visualized at large irrigation times where the
final infiltration rate will be dominating the infiltration process.

(a)

-600%
-400%
-200%

0%
200%
400%
600%

0% 50% 100% 150% 200%

Pe rc e n ta g e o f m e a su re d in f lo w

D
ev

ia
tio

n
fro

m

m
ea

su
re

d
ru

no
ff

vo
lu

m
e

(b)

-80%

-60%

-40%

-20%

0%

20%

0% 50% 100% 150% 200%

Pe rc e n t a g e o f m e a su re d in f lo w

D
ev

ia
tio

n
fro

m

m
ea

su
re

d
in

fil
tra

te
d

vo
lu

m
e

(c)

-400%

-200%

0%

200%

400%

0% 100% 200%

Percentage of measured inflow

(d)

-40%
-20%

0%
20%
40%
60%

0% 100% 200%

Percentage of measured inflow

Figure A2.2.5: Effect of changes in inflow on; (a) runoff volume with constant infiltration
parameters; (b) infiltrated volume with constant infiltration parameters; (c) runoff volume with

recalculated infiltration parameters; and (d) infiltrated volume with recalcul

The effect on the infiltrated volumes of varying inflow (Figure A2.2.5(b)) is less
dramatic with deviations ranging up to 60% of the measured infiltration volume.
The large errors occurring at low inflow values arise when the simulated advance
does not reach the end of the field and all of the water applied infiltrates with no
runoff. For the cases tested, this usually meant that the simulated volume of
water applied was less than the measured infiltrated volume. In practice, it

Appendix 2.2. Case study – evaluation of SIRMOD

 241

would be unlikely that the irrigator would apply an inflow rate below that required
to reach the end of the field. Where runoff did occur, the largest infiltration error
was only 7% of the total water applied.

When the Kostiakov-Lewis infiltration parameters a, and k are recalculated for
the changes in inflow, the magnitude of the error between the measured and
predicted infiltration volumes increases dramatically (Figure A2.2.5(d)). The
maximum deviation between infiltrated volumes is now nearly 50% which
accounts for 39% of the total water applied. The error between runoff volumes is
in fact reduced (Figure A2.2.5(c)) to nearly 300% (44% of the total water applied)
for the same inflow changes, though this is of little consequence as it is only
compensating for the larger infiltration errors.

It should be noted that it was not possible to recalculate the infiltration
parameters for the 40% inflow rate. This is not unreasonable as in practice it
would be unlikely to find such a high advance rate from a low inflow rate.

The general trend is that an increase in inflow, without changing the cutoff time,
will increase both predicted runoff and infiltrated volumes, whether or not the
infiltration parameters are altered. However, it is the runoff volume that is most
greatly affected by an increase in inflow.

Cross-sectional area of flow
Figure A2.2.6(a) and (b) demonstrate the effect of changes in the cross-sectional
area of flow parameter on the output volumes. Again, the infiltration parameters
were not recalculated for the new area. Both runoff and infiltration volumes
remained relatively unaffected by changes of 30% to 250% of the measured
area. The greatest infiltration error was only 1% while for runoff it was just under
3.5%. This corresponds to a maximum error of 0.62% of the total inflow volume.
The scatter in the graphs is indicative of numerical rounding errors.

When the infiltration parameters were recalculated to be consistent with the
wetted perimeter corresponding to the change in area, we once again see an
increase in the output volume deviations. Figure A2.2.6 (c) demonstrates a
maximum runoff error of 60% for a 70% reduction in cross-sectional area. Figure
A2.2.6 (d) shows a maximum infiltration error of 16% for a 120% increase in the
measured area parameter. There is an increase in the total volume-balance error
to 9.0% of the inflow volume. The general trend of these graphs indicate that an
increase in cross-sectional area of flow will increase the runoff, reducing the
amount of water infiltrated. As the results of Figure A2.2.6 (a) and (b) indicate
little change in the associated output volumes, Figure A2.2.6 (c) and (d) are in
effect demonstrating the result of changes in the cross-sectional area
parameters on the Kostiakov-Lewis infiltration parameters.

Appendix 2.2. Case study – evaluation of SIRMOD

 242

(a)

-4%
-2%
0%
2%
4%

0% 100% 200% 300%

Percentage of measured cross
sectional area of flow

(b)

-0.012
-0.008
-0.004

0
0.004

0% 100% 200% 300%

Percentage of measured cross
sectional area of flow

(c)

-80%
-60%
-40%
-20%

0%
20%
40%

0% 100% 200% 300%

Percentage of measured cross sectional
area of flow

(d)

-20%
-10%

0%
10%
20%

0% 100% 200% 300%

Percentage of measured cross
sectional area of flow

Figure A2.2.6: Effect of changes in cross-sectional area of flow on; (a) runoff volume with
constant infiltration parameters; (b) infiltrated volume with constant infiltration parameters; (c)

runoff volume with recalculated infiltration parameters; and (d) infiltrated volume with
recalculated infiltration parameters.

Final infiltration rate

The final infiltration rate parameter (fo) was varied by ±100% of the measured
value (Figures A2.2.7(a) and (b)). This involved the recalculation of a and k,
although this was not always possible for very high final infiltration rates. The first
of these figures shows a maximum deviation from the measured runoff volume
of 360% at a zero final infiltration rate. Figure A2.2.7(b) similarly shows that the
maximum error occurs at the zero infiltration rate, with a deviation of nearly 50%
from the measured infiltration volume. This corresponds to a maximum error of
40% when expressed relative to the total inflow volume. Both figures
demonstrate that an increase in the final infiltration rate leads to a reduction in
runoff and hence, more water infiltrated into the soil.

(a)

-400%

-200%

0%

200%

400%

0% 100% 200% 300%
Percentage of measured

final infiltration rate

(b)

-60%

-30%

0%

30%

60%

0% 100% 200% 300%
Percentage of measured

final infiltration rate

Appendix 2.2. Case study – evaluation of SIRMOD

 243

Figure A2.2.7: Effect of changes in final infiltration rate on (a) runoff and (b) infiltrated volumes.

A2.2.5 Mathematical convergence errors
The volume-balance error predicted by SIRMOD is a measure of the success of
the mathematical convergence in the model. It was found that for most
parameter combinations tested, the mathematical convergence error returned by
SIRMOD was less than one percent. That is, the solution converged and the
predicted infiltrated and runoff volumes added up to equal the volume of water
applied to the field. The exception to this was when the predicted advance did
not reach the end of the field. In this case, the error was still usually less than
20%.

A2.2.6 Results using empirically fitted infiltration parameters
Figures A2.2.8(a) and (b) show the magnitude of the volume errors incurred
through using the output of INFILT v3.01 as input into SIRMOD. Five of the
tests showed good agreement with the measured infiltration volumes with
deviations of less than 12%. However, the three tests at the Jarvisfield site (j37,
j74, j104) and the first test undertaken at the Rita Island site (sh74) showed a
poor correlation between measured and predicted infiltration volumes. The
maximum volume-balance error was for the event "j104" at 33.8% of the
measured inflow volume.

The empirically fitted infiltration parameter based model under-predicted
infiltration in all cases. However, Figure A2.2.2(b) demonstrated that SIRMOD
generally under-predicts infiltration, so this result may not wholly be attributed to
the empirically fitted infiltration parameters.

(a)

0%

100%

200%

300%

400%

lv1120 j37 sh74

Irrigation events test by Infiltv3.01

(b)

-0.5
-0.4
-0.3
-0.2
-0.1

0

lv1120 j37 sh74

Irrigation events test by Infiltv3.01

D
ev

ia
tio

n
fro

m

m
ea

su
re

d
in

fil
tra

te
d

vo
lu

m
e

Figure A2.2.8: Results from SIRMOD using infiltration parameters from INFILT v3.01,
showing effect on (a) runoff and (b) infiltrated volumes.

The optimisation undertaken in the INFILT v3.01 model is in effect a curve
fitting exercise through the advance points (x,t). Therefore, you would expect the
quality of the advance data to have an effect on the output parameter values.
Table A2.2.4 shows the coefficients of variation for simple power curve
regressions of the nine irrigations analysed. This data suggests that the irrigation
data sets which produced poor correlations in the predicted volume-balance also

Appendix 2.2. Case study – evaluation of SIRMOD

 244

had high coefficients of variation and confirms that empirically fitted infiltration
parameters are less reliable for "noisy" advance data.

Table A2.2.2: Coefficients of variation for power curve regressions of the nine irrigation events

Test lv1120 lu56 lu139 j37 j74 j104 sh74 sh84 sh88
r2 0.01 0.12 3.42 2.33 2.22 2.66 3.33 0.29 0.20

A2.2.7 Discussion of results of case study
The first part of this analysis showed that SIRMOD is able to simulate the
surface irrigation process adequately when sufficient data are available. When
used with measured data, SIRMOD showed a tendency to under-predict both
the rate of advance and the volume infiltrated.

The underprediction by SIRMOD of the volumes infiltrated was also observed by
Maheshwari and McMahon (1993b), a fact which they attributed to an
uncertainty in the values they used for the infiltration parameters. Given that the
same result occurred in the present study, this suggests that there could be a
systematic error in SIRMOD which might be removed by an appropriate
calibration procedure. Alternatively, this could be caused by the difference in
structure between the two point method, and the simulation model leading to a
“faulty” calibration.

Here calibration is defined as the process whereby the value of a parameter is
adjusted until the predicted result matches the measured result. The infiltration
parameters and the Manning n are the only data input to SIRMOD which are not
measured directly and which therefore provide an opportunity for calibration.

In other applications of similar hydrodynamic models, for example in modelling
river flows, the Manning n parameter is used as the calibration factor. One
outcome of this is that it often results in unrealistically high values for n. A useful
extension of the present study would be to explore the efficacy of attempting to
calibrate SIRMOD against measured data prior to its use in optimisation of
irrigation applications.

The SIRMOD program will be most useful if it can be used with confidence in a
predictive role. The sensitivity analysis reported in this paper showed that for
prediction to be successful, an accurate estimate of the infiltration characteristic
of the soil is a necessity. It was the infiltration parameters which had far greatest
effect on the model results. However, it is also the infiltration parameters which
are the most difficult to measure or estimate. Point measurements are expensive
and do not account well for the spatial and temporal variation in the soil
properties, while techniques based on the irrigation advance cannot be applied
before the first irrigation. Where possible, event based methods using data from
the current or previous irrigation, should be employed. It is unlikely that an
irrigator would measure the infiltration characteristic during each irrigation. This
data would most likely come from some previous event. There is some slight risk
in this practice as demonstrated by the temporal variation in infiltration at the
Jarvisfield site. Using empirically fitted infiltration parameters may be a labour
saving alternative to conventional event based methods although the process

Appendix 2.2. Case study – evaluation of SIRMOD

 245

should be undertaken with caution as poor advance data may influence the
results. It was also shown that the model was relatively insensitive to changes or
errors in the slope and the Manning n, while the cross-sectional profile of the
furrow had little or no effect on the model results. Variation of the inflow had little
influence on the volume infiltrated but had a significant effect on the runoff
volume and hence the volumetric efficiency of an irrigation.

From the work reported in this paper it can be concluded that SIRMOD is a
useful tool for surface irrigation design and management, provided an accurate
description of the infiltration properties of the soil is available.

Appendix 2.2. Case study – evaluation of SIRMOD

 246

Appendix 3.1 Simulation engine source code

 247

Appendix 3.1 Simulation engine source code

The following code listing represents the entire code base for the simulation
engine, excluding that relating to the different “smart” parameter objects.

A3.1.1 C++ Header file
//---

#ifndef FIDOSimulationH
#define FIDOSimulationH

#include <Classes.hpp>
#include <vector>
#include <set>
#include "TeeGeometry.hpp"
#include "TeeGLCanvas.hpp"
#include "TeeOpenGL.hpp"
#include "SmartPointers.h"

//---
#ifndef SIMNAMES
 #define MaxDepth (*_MaxDepth)
 #define TopWidth (*_TopWidth)
 #define MidWidth (*_MidWidth)
 #define BotWidth (*_BotWidth)
 #define sigma1 (*_sigma1)
 #define sigma2 (*_sigma2)
 #define rho1 (*_rho1)
 #define rho2 (*_rho2)
 #define ManN (*_Manning_n)
 #define KosA (*_Kostiakov_a)
 #define KosK (*_Kostiakov_k)
 #define KosFo (*_Kostiakov_fo)
 #define TotalTime (*_TotalTime)
 #define StageArray (*_StageArray)
 #define DownstreamCell (*_DownstreamCell)
 #define UpstreamCell (*_UpstreamCell)
 #define Qin (*_Qin)
 #define So (*_So)
 #define dt (*_dt)
 #define Dist (*_X)
 #define Xinit (*_Xinit)
 #define A (*_A)
 #define Q (*_Q)
 #define Z (*_Z)
 #define D (*_D)
 #define P (*_P)
 #define WP (*_WP)
 #define VP (*_VP)
 #define dZdT (*_dZdT)

 #define DQ _Q->FDeltaValues
 #define DA _A->FDeltaValues
 #define DX _X->FDeltaValues
 #define DT _dt->FDeltaValue

 #define SOl _So->L
 #define Al _A->L
 #define Ql _Q->L
 #define Zl _Z->L
 #define Dl _D->L
 #define Pl _P->L
 #define WPl _WP->L
 #define ManNl _Manning_n->L
 #define rho1l _rho1->L
 #define rho2l _rho2->L
 #define sigma1l _sigma1->L
 #define sigma2l _sigma2->L
 #define VPl _VP->L
 #define dZdTl _dZdT->L

 #define SOr _So->R
 #define Ar _A->R
 #define Qr _Q->R
 #define Zr _Z->R
 #define Dr _D->R
 #define Pr _P->R
 #define WPr _WP->R
 #define ManNr _Manning_n->R
 #define rho1r _rho1->R
 #define rho2r _rho2->R
 #define sigma1r _sigma1->R
 #define sigma2r _sigma2->R
 #define VPr _VP->R
 #define dZdTr _dZdT->R

 #define SOj _So->J
 #define Aj _A->J
 #define Qj _Q->J
 #define Zj _Z->J
 #define Dj _D->J
 #define Pj _P->J

Appendix 3.1 Simulation engine source code

 248

 #define WPj _WP->J
 #define VPj _VP->J
 #define dZdTj _dZdT->J

 #define SOm _So->M
 #define Am _A->M
 #define Qm _Q->M
 #define Zm _Z->M
 #define Dm _D->M
 #define Pm _P->M
 #define WPm _WP->M
 #define VPm _VP->M
 #define dZdTm _dZdT->M
#endif

enum TPhaseElements {peAdvance,peRecession,peInflow,peRunoff,pePonding,peLateralFlow};
typedef Set<TPhaseElements, peAdvance,peLateralFlow> TPhaseComponents;

typedef void __fastcall (__closure *TCalculateCellPositions)(int xpos);
typedef double __fastcall (__closure *TDerivativeCellFunction)(void);
typedef void __fastcall (__closure *TCalcAuxCoefficients)(void);
typedef void __fastcall (__closure *TUpdateParamEstimates)(void);
typedef void __fastcall (__closure *TResetSimulation)(void);

enum TInitialSolutionDirection {sdTopToBottom,sdBottomToTop} ;
enum TGridType {gtEulerian,gtLangrangian};

class TFIDOSimulation;
class TFIDOModelDataTreeObject;
class T1DInputParameter;
class T1DGridParameter;
class T2DGridParameter;
class TCustomGridParameter;
class ECustomFIDOException;
class TFIDOOutputTreeObject;
class TSimulationParametersObject;

SmartPointer<TFIDOSimulation> __fastcall CreateFIDOSimulation(void);

class TFIDOSimulation
{
public:
 __fastcall TFIDOSimulation(void);
 __fastcall ~TFIDOSimulation(void){};
 bool __fastcall RunSimulation(void);
 void __fastcall ResetSimulation(void);
 int x,t;
 bool stop;
 bool CutoffTimeExceeded;
 int lastcell,firstcell;
 double FieldLength;
 double ZRequired;
 double TimeToCutoff;
 double DefaultTimeStep;
 double SimulationTimeStep;
 double MaxZ;
 double An;
 int TotalIterations;
 int ReducedSteps;
 bool StopWhenRunoffOccurrs;
 SmartPointer<T1DInputParameter> _Qin;
 SmartPointer<T1DInputParameter> _So;
 SmartPointer<T1DInputParameter> _MaxDepth;
 SmartPointer<T1DInputParameter> _TopWidth;
 SmartPointer<T1DInputParameter> _MidWidth;
 SmartPointer<T1DInputParameter> _BotWidth;
 SmartPointer<T1DInputParameter> _sigma1;
 SmartPointer<T1DInputParameter> _sigma2;
 SmartPointer<T1DInputParameter> _rho1;
 SmartPointer<T1DInputParameter> _rho2;
 SmartPointer<T1DInputParameter> _Manning_n;
 SmartPointer<T1DInputParameter> _Kostiakov_a;
 SmartPointer<T1DInputParameter> _Kostiakov_k;
 SmartPointer<T1DInputParameter> _Kostiakov_fo;
 T1DGridParameter*_dt;

 T1DGridParameter*_TotalTime;
 T1DGridParameter*_DownstreamCell;
 T1DGridParameter*_UpstreamCell;
 T2DGridParameter*_X;
 T2DGridParameter*_A;
 T2DGridParameter*_Q;
 T2DGridParameter*_Z;

 SmartPointer<T2DGridParameter> _D;
 SmartPointer<T2DGridParameter> _P;
 SmartPointer<T2DGridParameter> _WP;
 SmartPointer<T2DGridParameter> _VP;
 SmartPointer<T2DGridParameter> _dZdT;
 SmartPointer<TList> GridParametersList;
 bool StopOnException;
 __property TResetSimulation OnResetSimulation = { read = FOnResetSimulation, write = FOnResetSimulation };
 __property TCalculateCellPositions CalculateCellPositions = { read = FCalculateCellPositions, write =
FCalculateCellPositions };
 __property TGridType GridType={read=GetGridType,write=SetGridType};
 __property TSimulationParametersObject* CurrentSimData = { read = GetCurrentSimData, write = SetCurrentSimData
};
 __property TFIDOOutputTreeObject* OutputObject = { read = GetOutputObject, write = SetOutputObject };
 __property std::vector<int> Iterations={read=FIterations};

Appendix 3.1 Simulation engine source code

 249

 void __fastcall LoadSimData(TSimulationParametersObject*SimData);
 void __fastcall SetTimeStep(void);
 void __fastcall EnableConvergenceLogging(void);
 void __fastcall DisableConvergenceLogging(void);
 __property int StopAtPoint = { read = GetStopAtPoint, write = SetStopAtPoint };

protected:
 void __fastcall UpdateA(const int&i, const int&j);
 void __fastcall UpdateA_LastCell(const int&i, const int&j);
 void __fastcall UpdateA_Runoff(const int& i);
 void __fastcall UpdateT(const int&i);
 void __fastcall UpdateQ(const int&i);
 void __fastcall UpdateX(const int&i);
 void __fastcall CombineLastTwoCells(void);
 void __fastcall ResetGridParameterDeltaValues(void);
 bool __fastcall AreThereOscillationsAtRecessionFront(void);
 bool __fastcall AreThereOscillationsAtAdvanceFront(void);

 __property int CurrentCell={read=GetCurrentCell,write=SetCurrentCell};

 __property bool AllowRunoff={read=GetAllowRunoff,write=SetAllowRunoff};
 __property bool CutoffTimeReached={read=GetCutoffTimeReached};
 __property bool CellFlowsAreNegligible={read=GetCellFlowsAreNegligible};

 __property bool StillConverging = { read = GetStillConverging };
 __property bool StillSimulating = { read = GetStillSimulating };
 __property TCustomGridParameter*GridParameter[int index]={read=GetGridParameter};
 __property int CellCount ={read=GetCellCount};

 __property TCalcAuxCoefficients
CalculateAuxCoefficients={read=FCalculateAuxCoefficients,write=FCalculateAuxCoefficients};
 __property TUpdateParamEstimates
UpdateParameterEstimates={read=FUpdateParameterEstimates,write=FUpdateParameterEstimates};
 __property TDerivativeCellFunction dRC_dT = { read = FdRC_dT, write = FdRC_dT };
 __property TDerivativeCellFunction dRM_dT = { read = FdRM_dT, write = FdRM_dT };
 __property TDerivativeCellFunction dRC_dAr= { read = FdRC_dAr, write = FdRC_dAr};
 __property TDerivativeCellFunction dRM_dAr= { read = FdRM_dAr, write = FdRM_dAr};
 __property TDerivativeCellFunction dRC_dAr_LastCell= { read = FdRC_dAr_LastCell, write = FdRC_dAr_LastCell};
 __property TDerivativeCellFunction dRM_dAr_LastCell= { read = FdRM_dAr_LastCell, write = FdRM_dAr_LastCell };
 __property TDerivativeCellFunction dRC_dParam= { read = FdRC_dParam, write = FdRC_dParam};
 __property TDerivativeCellFunction dRM_dParam= { read = FdRM_dParam, write = FdRM_dParam};
 __property TDerivativeCellFunction dRC_dParam_LastCell= { read = FdRC_dParam_LastCell, write =
FdRC_dParam_LastCell };
 __property TDerivativeCellFunction dRM_dParam_LastCell= { read = FdRM_dParam_LastCell, write =
FdRM_dParam_LastCell};

 __property bool SolveForT = { write = SetSolveForT };
 __property bool SolveForX = { write = SetSolveForX };
 __property bool SolveForRunoff = { write = SetSolveForRunoff };
private:
 bool NewTimeStep;
 int SimulationRepeats;
 int furtherestdownstreamcellindex;
 double dummy; //delete this
 double __fastcall dRMd(double¶m);
 double __fastcall dRCd(double¶m);
 bool FirstSim; //delete this
 bool Convergence;
 bool FieldLengthExceeded;
 bool IterationsExceeded;
 bool FieldLengthReached;
 bool LogConvergence;
 TGridType FGridType;
 int MaxIterations;
 TPhaseComponents Components;
 double DampeningFactor;
 double RMBodyTemp;
 double theta,phi,inv_phi,inv_theta;
// intRemovedCellCount;
 void __fastcall ResizeMemory(const int&xcount,const int&tcount);
 double T1,T2,T3,T4,T5,T6,denom;
 int maxxcount;
 double a,b,c,d,e,g,p,q,r,u,w;
 double _s;
 double Xrl,Xmj,Xrm,Xlj;
 std::vector<double>E;
 std::vector<double>H;
 std::vector<double>F;
 std::vector<double>U;
 std::vector<double>V;
 std::vector<double>Y;
 std::vector<double>W;
 int FCurrentCell;
 TInitialSolutionDirection InitialSolutionDirection;
 double AMax;
 double drmdt;
 double LowLimitWeighting;
 bool MakeLastCellDerivativeEqualZero;

 std::vector<int>FIterations;
 TResetSimulation FOnResetSimulation;
 TCalculateCellPositions FCalculateCellPositions;
 TCalcAuxCoefficients FCalculateAuxCoefficients;
 TUpdateParamEstimates FUpdateParameterEstimates ;

 TDerivativeCellFunction FdRC_dT;
 TDerivativeCellFunction FdRM_dT;
 TDerivativeCellFunction FdRC_dAr;
 TDerivativeCellFunction FdRM_dAr;
 TDerivativeCellFunction FdRC_dAr_LastCell;

Appendix 3.1 Simulation engine source code

 250

 TDerivativeCellFunction FdRM_dAr_LastCell;
 TDerivativeCellFunction FdRC_dParam;
 TDerivativeCellFunction FdRM_dParam;
 TDerivativeCellFunction FdRC_dParam_LastCell;
 TDerivativeCellFunction FdRM_dParam_LastCell;
 TSimulationParametersObject* FCurrentSimData;
 TFIDOOutputTreeObject* FOutputObject;
 int FStopAtPoint;

 void __fastcall CreateParameters(void);
 SmartPointer<T1DGridParameter> __fastcall Create1DGridParameter(SmartPointer<TList> List,AnsiString name,bool
XOrientated);
 SmartPointer<T1DInputParameter> __fastcall Create1DInputParameter(SmartPointer<TList> List,AnsiString
name,bool XOrientated);
 SmartPointer<T2DGridParameter> __fastcall Create2DGridParameter(SmartPointer<TList> List,AnsiString name);

 TGridType __fastcall GetGridType();
 void __fastcall SetGridType(TGridType type);

 void __fastcall SetCurrentCell(int cell);
 void __fastcall SetSolutionFunctionPointers(void);
 void __fastcall SetSolutionParameters(void);
 int __fastcall GetCurrentCell(void);
 bool __fastcall GetStillConverging();
 void __fastcall CalculateHydraulicParameters(int CellSide);
 void __fastcall CalculateDerivativeValues(int cell) ;
 void __fastcall DealWithTheProblem(ECustomFIDOException & Problem);
 void __fastcall CalculateEulerianCellPositions(int xpos);
 void __fastcall CalculateLangrangianCellPositions(int xpos);
 void __fastcall RemoveUnwantedUpstreamCells(void);
 void __fastcall RemoveUnwantedDownstreamCells(void);
 void __fastcall SetupMemoryForParameters(void);
 void __fastcall DetermineIrrigationStage(void);
 void __fastcall DetermineSolutionCellRange(void);
 TCustomGridParameter*GetGridParameter(int index);
 void __fastcall RemoveEmptyCells(void);
 void __fastcall CheckForAbnormalities(void) ;
 void __fastcall CalculateCellParameters(void);
 void __fastcall UndoTimeStep(void);
 void __fastcall UpdateIterationCount(void);
 void __fastcall ResetChecksAndTolerences(void);
 bool __fastcall GetStillSimulating();
 void __fastcall ResetIterationCount(void);
 void __fastcall CheckConvergence(void);
 void __fastcall CheckForBreakInSimulation(void);
 void __fastcall IncrementTimeStep(void);

 void __fastcall SolveEquationsForFirstCellForDistance(void);
 double __fastcall ResidualOfContinuity(void);
 double __fastcall ResidualOfMomentum(void);
 double __fastcall CalculateHydrostaticPressure(int xpos);
 void __fastcall SetDerivativeFunctionPointers(void);
 double __fastcall CalculateDragForce(int xpos);
 double __fastcall CalculateWettedPerimeter(int xpos);
 double __fastcall CalculateWettedPerimeterDependantInfiltration(int xpos);
 double __fastcall CalculateKostiakovLewisInfiltration(int xpos);
 double __fastcall CalculateVelocityPressureFactor(int xpos);
 void __fastcall CalculateInfiltrationForLateralSurfaceFlow(void);
 void __fastcall DetermineIrrigationComponents(void);
 double __fastcall ZeroFunction(void);
 void __fastcall RefineGrid(const int& t);
 SmartPointer<TCurveFit>__fastcall CreateCurveFit(void);

 double __fastcall RCTip(void);
 double __fastcall RMTip(void);
 void __fastcall SaveParameterEstimates(void);
 void __fastcall UndoIteration(void);
 int __fastcall GetPosAtGreatestDepth(void);
 double __fastcall dRC_dX(void);
 double __fastcall dRM_dX(void);
 double __fastcall dZ_dA(const unsigned& xcoord,const unsigned& tcoord);
 double __fastcall dZ_dT(const unsigned& xi);
 double __fastcall dRC_dAl(void);
 double __fastcall dRC_dQl(void);
 double __fastcall dRC_dAr_Runoff(void);
 double __fastcall dRC_dAr_Normal(void);
 double __fastcall dRM_dAr_Normal(void);
 double __fastcall dRM_dAr_Runoff(void);
 double __fastcall dRC_dt(void);
 double __fastcall dRM_dt(void);
 double __fastcall dRM_dAl(void);
 double __fastcall dRM_dQl(void);
 double __fastcall dRC_dQr(void);
 double __fastcall dRM_dQr(void);
 double __fastcall dRM_dQr_Runoff(void);

 double __fastcall ResidualOfMomentum_Runoff(void);
 double __fastcall ResidualOfContinuity_Runoff(void);

 void __fastcall SetAllowRunoff(bool);
 bool __fastcall GetAllowRunoff(void);
 void __fastcall SetInitialParameterEstimatesForFirstCell(void);
 void __fastcall SetInitialParameterEstimates(void);
 bool __fastcall GetCutoffTimeReached(void);
 bool __fastcall GetCellFlowsAreNegligible(void);
 void __fastcall CalculateAuxCoefficients1(void);
 void __fastcall CalculateAuxCoefficients2(void);
 void __fastcall UpdateParameterEstimates1(void);
 void __fastcall UpdateParameterEstimates2(void);
 void __fastcall UpdateParameterEstimatesForFirstCell(void);
 int __fastcall GetCellCount(void);

Appendix 3.1 Simulation engine source code

 251

 void __fastcall SetSolveForT(bool value);
 void __fastcall SetSolveForX(bool value);
 void __fastcall SetSolveForRunoff(bool value);
 void __fastcall SetCurrentSimData(TSimulationParametersObject* value);
 TSimulationParametersObject* __fastcall GetCurrentSimData();
 void __fastcall SetOutputObject(TFIDOOutputTreeObject* value);
 TFIDOOutputTreeObject* __fastcall GetOutputObject();
 int __fastcall GetActiveModelCount();
 TSimulationParametersObject* __fastcall GetActiveModelSimData(int index);
 void __fastcall UpdateOutputObjectProperties(void);
 double __fastcall GetDampeningFactor(void);
 void __fastcall SetStopAtPoint(int value);
 int __fastcall GetStopAtPoint();

};

#endif

A3.1.2 C++ Source File
#include <vcl.h>
#include "PreCompiledHeaders.h"
#pragma hdrstop

#include "Simulation.h"
#include "FIDOModelTreeObject.h"
#include "GridParameters.h"
#include "SimulationExceptionHandling.h"
#include "FIDOOutputTreeObject.h"
#include "SimulationParametersObject.h"

#include <math.h>

SmartPointer<TFIDOSimulation> __fastcall CreateFIDOSimulation(void)
{
 SmartPointer<TFIDOSimulation> Sim(new TFIDOSimulation);
 #ifdef ASSIGN_SMART_PTR_NAMES
 Sim.PtrName="CreateFIDOSimulation.Sim";
 #endif
 return Sim;
}

__fastcall TFIDOSimulation::TFIDOSimulation(void)
{
 CreateParameters();
 MakeLastCellDerivativeEqualZero=false;
 FOnResetSimulation=0;
 StopOnException=true;
 MaxIterations=10;
 DefaultTimeStep=600;
 InitialSolutionDirection=sdTopToBottom;
 theta=0.6;
 phi=0.6;
 inv_phi=0.4;
 inv_theta=0.4;
 GridType=gtEulerian;
 LogConvergence=false;
}

void __fastcall TFIDOSimulation::LoadSimData(TSimulationParametersObject*SimData)
{
 CurrentSimData=SimData; //CurrentSimData is a property, and many initialisations occur in the setter.
 ResetSimulation();
}

bool __fastcall TFIDOSimulation::RunSimulation(void)
{
 SimulationRepeats=0;
 SimulationTimeStep=DefaultTimeStep;
 do
 {
 try
 {
 if(NewTimeStep)
 {
 IncrementTimeStep();
 SetupMemoryForParameters();
 ResetIterationCount();
 DetermineIrrigationComponents();
 SetSolutionParameters();
 DetermineSolutionCellRange();
 SetSolutionFunctionPointers();
 SetInitialParameterEstimates();
 ResetGridParameterDeltaValues();

 }
 if((t==1||CellCount>1)&&stop==false)
 {
 do
 {
 try
 {
 SaveParameterEstimates();
 UpdateIterationCount();
 if(FCalculateAuxCoefficients)
 CalculateAuxCoefficients();

Appendix 3.1 Simulation engine source code

 252

 UpdateParameterEstimates();
 CheckConvergence();

 //think about constraining delta values to half the actual value
 }
 catch(ECustomFIDOException & Problem)
 {
 DealWithTheProblem(Problem);
 UpdateOutputObjectProperties();
 return false;
 }
 catch(...)
 {
 MessageDlg("Unexpected Error!", mtError, TMsgDlgButtons() << mbOK, 0);
 throw;
 }
 }
 while(StillConverging);
 CheckForAbnormalities();
 RemoveEmptyCells();
 if(StopAtPoint>0&&Dist(t,lastcell)>StopAtPoint)
 {
 UpdateOutputObjectProperties();
 return true;
 }

 }
 else
 stop=true;
 }
 catch(...)
 {
 stop=true;
 if(!LogConvergence)
 {
 --t;
 --t;
 }
 }
 }while(StillSimulating);

 UpdateOutputObjectProperties();
 if((CellCount<=1&&t>1)||(StopWhenRunoffOccurrs&&(Components.Contains(peRunoff)
 ||Components.Contains(peLateralFlow))))
 return true;
 return false;
}

void __fastcall TFIDOSimulation::CreateParameters(void)
{
 SmartPointer<TList> List (new TList);
 GridParametersList=List;
 #ifdef ASSIGN_SMART_PTR_NAMES
 GridParametersList.PtrName="TFIDOSimulation.GridParametersList";
 #endif
 _Qin= Create1DInputParameter(List,"Inflow rate",false);
 _So= Create1DInputParameter(List,"Slope",true);
 _MaxDepth= Create1DInputParameter(List,"Max Furrow Depth",true);
 _TopWidth= Create1DInputParameter(List,"Top Furrow Width",true);
 _MidWidth= Create1DInputParameter(List,"Mid Furrow Width",true);
 _BotWidth= Create1DInputParameter(List,"Bot Furrow Width",true);

 _sigma1= Create1DInputParameter(List,"Sigma1",true);
 _sigma2= Create1DInputParameter(List,"Sigma2",true);
 _rho1= Create1DInputParameter(List,"Rho1",true);
 _rho2= Create1DInputParameter(List,"Rho2",true);
 _Manning_n= Create1DInputParameter(List,"Manning n",true);
 _Kostiakov_a= Create1DInputParameter(List,"Kostiakov a",true);
 _Kostiakov_k= Create1DInputParameter(List,"Kostiakov k",true);
 _Kostiakov_fo= Create1DInputParameter(List,"Kostiakov fo",true);

 _D= Create2DGridParameter(List,"Drag force");
 _P= Create2DGridParameter(List,"Hydrostatic pressure");
 _WP= Create2DGridParameter(List,"Wetted-perimeter");
 _VP= Create2DGridParameter(List,"Veloctity pressure factor");
 _dZdT= Create2DGridParameter(List,"Infiltration rate");
}

SmartPointer<T1DGridParameter> __fastcall TFIDOSimulation::Create1DGridParameter(SmartPointer<TList>
List,AnsiString name,bool XOrientated)
{
 SmartPointer<T1DGridParameter> TempParameter(new T1DGridParameter(this,name));
 TempParameter->XOrientated=XOrientated;
 #ifdef ASSIGN_SMART_PTR_NAMES
 TempParameter.PtrName="TFIDOSimulation::Create1DGridParameter.TempParameter - "+name;
 #endif
 List->Add(TempParameter.Get());
 return TempParameter;
}

SmartPointer<T1DInputParameter> __fastcall TFIDOSimulation::Create1DInputParameter(SmartPointer<TList>
List,AnsiString name,bool XOrientated)
{
 SmartPointer<T1DInputParameter> TempParameter(new T1DInputParameter(this,name));
 TempParameter->XOrientated=XOrientated;
 #ifdef ASSIGN_SMART_PTR_NAMES
 TempParameter.PtrName="TFIDOSimulation::Create1DInputParameter.TempParameter - "+name;
 #endif
 List->Add(TempParameter.Get());
 return TempParameter;
}

Appendix 3.1 Simulation engine source code

 253

SmartPointer<T2DGridParameter> __fastcall TFIDOSimulation::Create2DGridParameter(SmartPointer<TList>
List,AnsiString name)
{
 SmartPointer<T2DGridParameter> TempParameter(new T2DGridParameter(this,name));
 #ifdef ASSIGN_SMART_PTR_NAMES
 TempParameter.PtrName="TFIDOSimulation::Create2DGridParameter.TempParameter - "+name;
 #endif
 List->Add(TempParameter.Get());
 return TempParameter;
}

void __fastcall TFIDOSimulation::DealWithTheProblem(ECustomFIDOException & Problem)
{
 Problem.HandleException();
 // CurrentSimData->SaveErrorReport(OutputObject->ErrorMessage);
}

TCustomGridParameter*TFIDOSimulation::GetGridParameter(int index)
{
 if(index>=0&&index<GridParametersList->Count)
 return (TCustomGridParameter*)GridParametersList->Items[index];
 return 0;
}

void __fastcall TFIDOSimulation::RemoveEmptyCells(void)
{
 if(t>0&&CutoffTimeExceeded&&Convergence)
 {
 RemoveUnwantedUpstreamCells();
 RemoveUnwantedDownstreamCells();
 if(CellCount<=1&&t>1)
 stop=true;
 }

}

bool __fastcall TFIDOSimulation::GetStillSimulating()
{
 return !stop;
}

void __fastcall TFIDOSimulation::SetCurrentCell(int cell)
{
 FCurrentCell=cell;
 for(int i=0;i<GridParametersList->Count;++i)
 GridParameter[i]->CellIndex=cell;

 OutputObject->_dt->CellIndex=cell;
 OutputObject->_A->CellIndex=cell;
 OutputObject->_Q->CellIndex=cell;
 OutputObject->_Z->CellIndex=cell;
 OutputObject->_X->CellIndex=cell;
 OutputObject->_DownstreamCell->CellIndex=cell;
 OutputObject->_UpstreamCell->CellIndex=cell;
 OutputObject->_TotalTime->CellIndex=cell;
}

int __fastcall TFIDOSimulation::GetCurrentCell(void)
{
 return FCurrentCell;
}

void __fastcall TFIDOSimulation::DetermineIrrigationComponents(void)
{
 if(Components.Empty())
 Components=Components<<peAdvance<<peInflow;
 else if(!Components.Contains(peLateralFlow))
 {
 if(Components.Contains(peAdvance))
 {
 if(FieldLengthReached)
 {
 if(AllowRunoff)
 Components=Components<<peRunoff>>peAdvance;
 else
 Components=Components<<pePonding>>peAdvance;
 }
 }
 if(CutoffTimeReached&&!Components.Contains(peRecession))
 {
 Components=Components>>peInflow<<peRecession;
 //stop=true;
 }
 if(Components.Contains(peRecession))
 {
 if(CellFlowsAreNegligible)
 Components=Components<<peLateralFlow>>peRecession>>peAdvance>>peRunoff>>pePonding;
 }
 }
 if(StopWhenRunoffOccurrs&&(Components.Contains(peRunoff)||Components.Contains(peLateralFlow)))
 stop=true;
}

bool __fastcall TFIDOSimulation::GetStillConverging()
{
 return !Convergence;
}

void __fastcall TFIDOSimulation::DetermineSolutionCellRange(void)
{

Appendix 3.1 Simulation engine source code

 254

 UpstreamCell(t)=(t!=1?UpstreamCell(t-1):UpstreamCell(t-1)+1); //hopefully, empty cells should be chopped at
the end of the last itteration.
 DownstreamCell(t)=(Components.Contains(peAdvance)?DownstreamCell(t-1)+1:DownstreamCell(t-1));
 firstcell=UpstreamCell(t);
 lastcell=DownstreamCell(t);
 if(lastcell>furtherestdownstreamcellindex)
 furtherestdownstreamcellindex=lastcell;
}

void __fastcall TFIDOSimulation::UpdateIterationCount(void)
{
 ++Iterations[t];
 ++TotalIterations;
 _X->IncreaseDeltaValueSize();
 _dt->IncreaseDeltaValueSize();
 _A->IncreaseDeltaValueSize();
 _Q->IncreaseDeltaValueSize();
 _TotalTime->IncreaseDeltaValueSize();

 DampeningFactor=GetDampeningFactor();
 ResetChecksAndTolerences();
}

void __fastcall TFIDOSimulation::CheckForAbnormalities(void)
{
 if(t>0)
 {
 FieldLengthExceeded=(Dist(t,lastcell)>FieldLength);
 if(!FieldLengthReached)
 {
 if(Dist(t,lastcell)==FieldLength)
 {
 FieldLengthReached=true;
 FieldLengthExceeded=false;
 //double dx1=Dist(t,lastcell)-Dist(t,lastcell-1);
 }
 }
 if(!CutoffTimeExceeded&&TotalTime(t)>=TimeToCutoff)
 {
 CutoffTimeExceeded=true;
 // stop=true;
 }
 if(t>1000)
 stop=true;
 }
}

void __fastcall TFIDOSimulation::ResetChecksAndTolerences(void)
{
 _Q->ResetConvergenceParameters();
 _A->ResetConvergenceParameters();
}

void __fastcall TFIDOSimulation::CheckConvergence(void)
{

 if(!Components.Contains(peLateralFlow)&&(!_Q->Convergence||!_A->Convergence))
 {
 Convergence=false;
 if(AreThereOscillationsAtRecessionFront())
 {

 if(firstcell<lastcell)
 {
 Q(t,firstcell-1)=0;
 Z(t,firstcell-1)+= A(t,firstcell-1)/2.0;
 A(t,firstcell-1)=0;
 ++firstcell;
 UpstreamCell(t)=firstcell;
 // Q(t,firstcell-1)=0;
 // A(t,firstcell-1)=0;

 }
 }
 if(Components.Contains(peRecession)&&Iterations[t]>20)
 {
 Components=Components.Clear();
 Components=Components<<peLateralFlow;
 if(!(StopWhenRunoffOccurrs&&(Components.Contains(peRunoff)||Components.Contains(peLateralFlow))))
 {
 SetSolutionParameters();
 DetermineSolutionCellRange();
 SetSolutionFunctionPointers();
 SetInitialParameterEstimates();
 ResetGridParameterDeltaValues();
 Iterations[t]=0;
 }
 else
 {
 stop=true;
 }

 }
 if(Iterations[t]>100)
 {
 Convergence=false;
 throw EConvergenceFailure(this,OutputObject,"Exeeded "+AnsiString(100)+" Iterations on
"+AnsiString(SimulationRepeats)+" occasions!");
 }

Appendix 3.1 Simulation engine source code

 255

 }
 else
 {
 Convergence=true;
 IterationsExceeded=false;
 NewTimeStep=true;
 }
 if(LogConvergence)
 CurrentSimData->LogConvergence();
}

bool __fastcall TFIDOSimulation::AreThereOscillationsAtRecessionFront(void)
{
 if(Components.Contains(peRecession)&&Iterations[t]>10
 &&((!_Q->Convergence&&_Q->CheckForOscillations(firstcell))
 ||(!_A->Convergence&&_A->CheckForOscillations(firstcell))))
 {
 return true;
 }

 return false;
}

bool __fastcall TFIDOSimulation::AreThereOscillationsAtAdvanceFront(void)
{
 if(!Components.Contains(peInflow)&&Iterations[t]>10&&!_Q->Convergence&&_Q->CheckForOscillations(lastcell))
 {
 if(_A->CheckForOscillations(lastcell))
 return true;
 }
 return false;
}

void __fastcall TFIDOSimulation::CheckForBreakInSimulation(void)
{

}

void __fastcall TFIDOSimulation::IncrementTimeStep(void)
{
 if(!(FieldLengthExceeded))
 ++t;

 NewTimeStep=false;
}

void __fastcall TFIDOSimulation::ResetIterationCount(void)
{
 Convergence=false;
 Iterations[t]=0;
}

void __fastcall TFIDOSimulation::UndoTimeStep(void)
{

 t=t-1;

 SetupMemoryForParameters();
 ResetIterationCount();
 DetermineIrrigationComponents();
 SetSolutionParameters();
 DetermineSolutionCellRange();
 SetSolutionFunctionPointers();
 SetInitialParameterEstimates();

 ResetIterationCount();
 SetInitialParameterEstimates();

 //for(int i=0;i<GridParametersList->Count;++i)
 // GridParameter[i]->UndoTimeStep();
}

void __fastcall TFIDOSimulation::SetupMemoryForParameters()
{
 int xcount,tcount;
 tcount=t+1;
 if(!(FieldLengthExceeded||FieldLengthReached))
 xcount=tcount;
 else
 xcount=furtherestdownstreamcellindex+1;
}

void __fastcall TFIDOSimulation::ResizeMemory(const int&xcount,const int&tcount)
{
 E.resize(xcount);
 H.resize(xcount);
 F.resize(xcount);
 U.resize(xcount);
 V.resize(xcount);
 Y.resize(xcount);
 W.resize(xcount);

 for(int i=0;i<GridParametersList->Count;++i)
 GridParameter[i]->AdjustMemory(tcount,xcount);

 OutputObject->_A->AdjustMemory(tcount,xcount);
 OutputObject->_Q->AdjustMemory(tcount,xcount);
 OutputObject->_Z->AdjustMemory(tcount,xcount); //want to account for infilt even after advance receeds.
 OutputObject->_X->AdjustMemory(tcount,xcount);
 OutputObject->_DownstreamCell->AdjustMemory(tcount,0);

Appendix 3.1 Simulation engine source code

 256

 OutputObject->_UpstreamCell->AdjustMemory(tcount,0);
 OutputObject->_TotalTime->AdjustMemory(tcount,0);
 OutputObject->_dt->AdjustMemory(tcount,0);
 FIterations.resize(tcount);

}

void __fastcall TFIDOSimulation::SaveParameterEstimates(void)
{
 for(int i=0;i<GridParametersList->Count;++i)
 GridParameter[i]->SaveCurrentValues();
 OutputObject->_dt->SaveCurrentValues();
 OutputObject->_A->SaveCurrentValues();
 OutputObject->_Q->SaveCurrentValues();
 OutputObject->_Z->SaveCurrentValues();
 OutputObject->_X->SaveCurrentValues();
 OutputObject->_DownstreamCell->SaveCurrentValues();
 OutputObject->_UpstreamCell->SaveCurrentValues();
 OutputObject->_TotalTime->SaveCurrentValues();
}

void __fastcall TFIDOSimulation::UndoIteration(void)
{
 for(int i=0;i<GridParametersList->Count;++i)
 GridParameter[i]->UndoLastChanges();
 OutputObject->_dt->UndoLastChanges();
 OutputObject->_A->UndoLastChanges();
 OutputObject->_Q->UndoLastChanges();
 OutputObject->_Z->UndoLastChanges();
 OutputObject->_X->UndoLastChanges();
 OutputObject->_DownstreamCell->UndoLastChanges();
 OutputObject->_UpstreamCell->UndoLastChanges();
 OutputObject->_TotalTime->UndoLastChanges();
}

void __fastcall TFIDOSimulation::ResetSimulation(void)
{
 t=0;
 x=0;
 maxxcount=0;
 furtherestdownstreamcellindex=0;
 stop=false;
 CutoffTimeExceeded=false;
 FieldLengthExceeded=false;
 IterationsExceeded=false;
 FieldLengthReached=false;
 Components.Clear();
 ReducedSteps=1;
 TotalIterations=0;
 StopAtPoint=-1;
 StopWhenRunoffOccurrs=false;
 for(int i=0;i<GridParametersList->Count;++i)
 {
 GridParameter[i]->Reset();
 GridParameter[i]->InitialiseNewElementsFromInputData();
 }
 OutputObject->_dt->Reset();
 OutputObject->_A->Reset();
 OutputObject->_Q->Reset();
 OutputObject->_Z->Reset();
 OutputObject->_X->Reset();
 OutputObject->_DownstreamCell->Reset();
 OutputObject->_UpstreamCell->Reset();
 OutputObject->_TotalTime->Reset();

 OutputObject->_A->InitialiseNewElementsFromInputData();
 OutputObject->_Q->InitialiseNewElementsFromInputData();
 OutputObject->_Z->InitialiseNewElementsFromInputData();
 OutputObject->_X->InitialiseNewElementsFromInputData();
 OutputObject->_DownstreamCell->InitialiseNewElementsFromInputData();
 OutputObject->_UpstreamCell->InitialiseNewElementsFromInputData();
 OutputObject->_TotalTime->InitialiseNewElementsFromInputData();

 _A->LowerLimit=0.0001;//0.02*pow(pow(ManN[0]*(*_Qin)[0] , 2)/(rho1[0]*So[0]) , 1.0/rho2[0]);
 NewTimeStep=true;
 if(FOnResetSimulation)
 FOnResetSimulation();
}

void __fastcall TFIDOSimulation::RemoveUnwantedUpstreamCells(void)
{
 int tempfirstcell=firstcell;
 double tolvalue=A(1,0)*0.05;
 while(tempfirstcell<lastcell&&A(t,tempfirstcell-1)<=tolvalue) //need to validate this.
 {
 Q(t,tempfirstcell-1)=0;
 Z(t,tempfirstcell-1)+= A(t,tempfirstcell-1)/2.0; //this is an average.
 A(t,tempfirstcell-1)=0;
 ++tempfirstcell;
 }
 UpstreamCell(t)=tempfirstcell;
}

void __fastcall TFIDOSimulation::RemoveUnwantedDownstreamCells(void)
{
 int middlepos=GetPosAtGreatestDepth();
 int endcell=lastcell;
 // double ALast=A(t,middlepos);

Appendix 3.1 Simulation engine source code

 257

 for(int i=middlepos+1;i<endcell;++i)
 {
 if(A(t,i)<=_A->LowerLimit)
 {
 DownstreamCell(t)=i;
 Q(t,i)=0;
 Z(t,i-1)+= A(t,i)/2.0; //this is an average.
 A(t,i-1)=0;
 i=endcell;
 lastcell=i;
 Components=Components.Clear();
 Components=Components<<peLateralFlow;
 }
 // ALast=A(t,i);
 }

 //for(int i=DownstreamCell(t);i<endcell;++i)
// {
// A(t,i)=0;
// Q(t,i)=0;
// }
}

void __fastcall TFIDOSimulation::SolveEquationsForFirstCellForDistance(void)
{
 CurrentCell=1;
 if(Iterations[t]==10)
 { A(1,0) = 0.005;
 Dist(t,1) = Q(t,0)*dt(t)/A(t,0);
 }
 if(Iterations[t]==20)
 {
 A(1,0) = 0.0005;
 Dist(t,1) = Q(t,0)*dt(t)/A(t,0);
 }
 CalculateCellParameters();
 //SetDerivativeFunctionPointers();
 a=dRC_dAl();
 d=dRC_dX();
 g=ResidualOfContinuity();
 p=dRM_dAl();
 _s=dRM_dX();
 w=ResidualOfMomentum();
 double denominator=d*p-_s*a;
 DA[0][Iterations[t]-1]= (g*_s-w*d)/denominator;
 DX[1][Iterations[t]-1]= (w*a-g*p)/denominator;
}

int __fastcall TFIDOSimulation::GetPosAtGreatestDepth(void)
{
 double max=0;
 int pos=UpstreamCell(t)-1;
 for(int i=pos;i<=DownstreamCell(t);++i)
 {
 if(A(t,i)>max)
 {
 max=A(t,i);
 pos=i;
 }
 }
 return pos;
}

void __fastcall TFIDOSimulation::SetSolutionFunctionPointers(void)
{
 // if(firstcell==1)
 InitialSolutionDirection=sdTopToBottom;
 // else
 // InitialSolutionDirection=sdBottomToTop;
 if(!Components.Contains(peLateralFlow))
 {
 if(t>1&&InitialSolutionDirection==sdTopToBottom)
 {
 FCalculateAuxCoefficients=CalculateAuxCoefficients1;
 FUpdateParameterEstimates=UpdateParameterEstimates1;
 }
 else if(t>1)
 {
 FCalculateAuxCoefficients=CalculateAuxCoefficients2;
 FUpdateParameterEstimates=UpdateParameterEstimates2;
 }
 else
 {
 FCalculateAuxCoefficients=SolveEquationsForFirstCellForDistance;
 FUpdateParameterEstimates=UpdateParameterEstimatesForFirstCell;
 }
 }
 else
 {
 FCalculateAuxCoefficients=0;
 FUpdateParameterEstimates=CalculateInfiltrationForLateralSurfaceFlow;
 }
}

void __fastcall TFIDOSimulation::CalculateAuxCoefficients1(void)
{
 int lastindex=firstcell-1;
 E[lastindex]=0;
 H[lastindex]=0;
 F[lastindex]=0;

Appendix 3.1 Simulation engine source code

 258

 for (int index=firstcell;index<=lastcell;++index)
 {
 lastindex=index-1;
 CalculateDerivativeValues(index);
 T1=a+b*E[lastindex];
 T2=p+q*E[lastindex];
 T3=e+b*H[lastindex];
 T4=u+q*H[lastindex];
 T5=g+b*F[lastindex];
 T6=w+q*F[lastindex];
 denom=d*T2-_s*T1;
 if(denom!=0)
 {
 E[index]=(r*T1 - c*T2)/denom;
 H[index]=(T4*T1 - T3*T2)/denom;
 F[index]=(T6*T1 - T5*T2)/denom;
 }
 else
 {
 E[index]=0;
 H[index]=0;
 F[index]=0;
 }
 U[lastindex]= - c/T1;
 V[lastindex]= - d/T1;
 Y[lastindex]= -T3/T1;
 W[lastindex]= -T5/T1;
 }
}

void __fastcall TFIDOSimulation::CalculateAuxCoefficients2(void)
{
 int nextindex;
 E[lastcell]=0.000001;
 if(Iterations[t]==1)
 H[lastcell]=(dt(t)>0?(Dist(t,lastcell)-Dist(t,lastcell-1))/dt(t):0.01);
 else
 H[lastcell]=(dt(t)>0?(_X->FDeltaValues[t][Iterations[t]-1])/_dt->FDeltaValue[Iterations[t]-1]:0.01);
 F[lastcell]=0;
 for (int index=lastcell;index>=firstcell;--index)
 {
 nextindex=index-1;
 CalculateDerivativeValues(index);
 T1=c+d*E[index];
 T2=r+_s*E[index];
 T3=e+d*H[index];
 T4=u+_s*H[index];
 T5=g+d*F[index];
 T6=w+_s*F[index];
 denom=b*T2-q*T1;

 E[nextindex]=(p*T1 - q*T2)/denom;
 H[nextindex]=(T4*T1 - T3*T2)/denom;
 F[nextindex]=(T6*T1 - T5*T2)/denom;
 U[index]= - a/T1;
 V[index]= - b/T1;
 Y[index]= -T3/T1;
 W[index]= -T5/T1;
 }
 // F(lastcell)=F[lastcell-1];
}

void __fastcall TFIDOSimulation::UpdateParameterEstimates1(void)
{
 if(_X->IsSolutionParameter) UpdateX(lastcell);
 else if(_dt->IsSolutionParameter)UpdateT(lastcell);
 else if(FieldLengthReached)
 {

 double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell);
 double man_exp=rho2(lastcell)/2.0;
 double ar=(A(t,lastcell));//>0?A(t,lastcell):0.00001);
 double dqdar=man_mul*man_exp*pow(ar,man_exp-1);
 // double da=F[lastcell]/(dqdar-E[lastcell]);
// double dq=E[lastcell]*da+F[lastcell];
 double CC=c+d*dqdar;
 double RR=r+_s*dqdar;

 double da=(T2*T5-T1*T6)/(T1*RR-T2*CC);
 // _A->Update(lastcell,da);
 double dq=da*man_exp*man_mul*pow(A(t,lastcell),man_exp-1);
 double newa=da+A(t,lastcell);

 // if(A(t-1,lastcell)==0&&newa>A(t,lastcell-1))
// {
// da=A(t,lastcell-1)-A(t,lastcell);
// _A->Update(lastcell,da);
// CalculateAuxCoefficients();
//
// }
// else
 _A->Update(lastcell,da);

 dq=man_mul*pow(A(t,lastcell),man_exp)-Q(t,lastcell);

 _Q->Update(lastcell,dq);
//
 // if(A(t-1,lastcell)==0&&A(t,lastcell)>A(t,lastcell-1))
// {
// A(t,lastcell)=A(t,lastcell-1);

Appendix 3.1 Simulation engine source code

 259

 Q(t,lastcell)=man_mul*pow(A(t,lastcell),man_exp);
// }

// UpdateA_Runoff(lastcell);

 // double last=Q(t,lastcell);
 // UpdateQ(lastcell); 2

 //double norm=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(A(t,lastcell),rho2(lastcell)/2.0);
 // if(Q(t,lastcell)>norm)
 // {
 // double temp=Q(t,lastcell);
 // Q(t,lastcell)=norm;
 // int iteration=_Q->DeltaValues[lastcell].size()-1;
 // _Q->DeltaValues[lastcell][iteration]=norm-last;//+=norm-temp;

 // int iteration=_Q->DeltaValues[lastcell].size()-1;
// _Q->DeltaValues[lastcell][iteration]=Q(t,lastcell)-last;
//
 }
 if(_X->IsSolutionParameter)
 UpdateA_LastCell(lastcell-1,lastcell);
 else
 UpdateA(lastcell-1,lastcell);
 UpdateQ(lastcell-1);
 for(int index=lastcell-2;index>=firstcell;--index)
 {
 UpdateA(index,index+1);
 UpdateQ(index);
 }
 UpdateA(firstcell-1,firstcell);
}

void __fastcall TFIDOSimulation::UpdateParameterEstimates2(void)
{
 _A->FDeltaValues[firstcell-1][Iterations[t]-1]=0;
 _Q->FDeltaValues[firstcell-1][Iterations[t]-1]=0;
 _A->FDeltaValues[lastcell][Iterations[t]-1]=0;
 _Q->FDeltaValues[lastcell][Iterations[t]-1]=0;
 if(_dt->IsSolutionParameter) UpdateT(firstcell-1);
 for(int index=firstcell;index<=lastcell-1;++index)
 {
 UpdateA(index,index-1);
 UpdateQ(index);
 }
 // UpdateA_LastCell(lastcell-1,lastcell);
 // UpdateQ_LastCell(lastcell-1); //dont think I need to do anthing here.
 // However, we should check that DX doesn't play a role in any of the other calcs!
 // should also check that other dqvalue are equal to zero.... lines 2-5 should probably fix that..

 if(_X->IsSolutionParameter) UpdateX(lastcell);

 // int i=lastcell;
// double ddx1=(H[i]*DT + F[i]);
// double ddx2=H[i]/Y[i]*(-W[i]-U[i]*DA[i-1]-V[i]*DQ[i-1]);
//
// double ddx=(ddx1==0?ddx1*DampeningFactor:ddx2*DampeningFactor);
// _X->Update(i,ddx);

}

void __fastcall TFIDOSimulation::UpdateA(const int& i, const int& j)
{
 _A->Update(i,(U[i]*DA[j][Iterations[t]-1] + V[i]*DQ[j][Iterations[t]-1] + Y[i]*DT[Iterations[t]-1] +
W[i])*DampeningFactor);
}

void __fastcall TFIDOSimulation::UpdateA_LastCell(const int& i, const int& j)
{ //
 _A->Update(i,(U[i]*DA[j][Iterations[t]-1] + V[i]*DX[j][Iterations[t]-1] + Y[i]*DT[Iterations[t]-1] +
W[i])*DampeningFactor);
}

void __fastcall TFIDOSimulation::UpdateA_Runoff(const int& i)
{
 // _A->Update(i,F[i]/(rho2(i)/2.0*pow(rho1(i)*So(i),0.5)/ManN(i)*pow(A(t,i),rho2(i)/2.0-1.0)-
E[i])*DampeningFactor);
 _A->Update(i,(rho2(i)/2.0*pow(rho1(i)*So(i),0.5)/ManN(i)*pow(A(t,i),rho2(i)/2.0-1.0)-
F[i])/E[i]*DampeningFactor);
}

void __fastcall TFIDOSimulation::UpdateQ(const int& i)
{
 _Q->Update(i,(E[i]*DA[i][Iterations[t]-1] + H[i]*DT[Iterations[t]-1] + F[i])*DampeningFactor);
}

void __fastcall TFIDOSimulation::UpdateX(const int& i)
{
 _X->Update(i,(H[i]*DT[Iterations[t]-1] + F[i])*DampeningFactor);
}

void __fastcall TFIDOSimulation::UpdateT(const int& i)
{
 _dt->Update(t,(-F[i]/H[i])*DampeningFactor);
 TotalTime(t)=TotalTime(t-1)+dt(t);
}

Appendix 3.1 Simulation engine source code

 260

double __fastcall TFIDOSimulation::GetDampeningFactor(void)
{
 return 1.0;
}

void __fastcall TFIDOSimulation::UpdateParameterEstimatesForFirstCell(void)
{
 _X->Update(t,DX[t][Iterations[t]-1]);
 _A->Update(0,DA[0][Iterations[t]-1]);
}

void __fastcall TFIDOSimulation::CalculateDerivativeValues(int cell)
{
 double a2,b2,c2,d2,e2,p2,q2,r2,s2,u2;
 CurrentCell=cell;
 CalculateCellParameters();
 SetDerivativeFunctionPointers();
 g=ResidualOfContinuity();
 a=dRC_dAl();
 b=dRC_dQl();
 if(!(cell==lastcell&&Components.Contains(peRunoff)))
 {
 d=dRC_dParam(); //calc this one first- could get used on next line
 c=dRC_dAr();
 }
 else
 {
 c=dRC_dAr_Runoff();
 d=0;
 }
 e=dRC_dT();
 w=ResidualOfMomentum();
 p=dRM_dAl();
 q=dRM_dQl();
 if(!(cell==lastcell&&Components.Contains(peRunoff)))
 {
 _s=dRM_dParam(); //again...
 r=dRM_dAr();
 }
 else
 {
 r=dRM_dAr_Runoff();
 _s=0;
 }
 u=dRM_dT();
}

void __fastcall TFIDOSimulation::CalculateCellParameters(void)
{
 if(FCurrentCell==firstcell||InitialSolutionDirection==sdBottomToTop)
 CalculateHydraulicParameters(FCurrentCell-1);
 if(FCurrentCell==lastcell||InitialSolutionDirection==sdTopToBottom)
 CalculateHydraulicParameters(FCurrentCell);
 CalculateCellPositions(FCurrentCell);
}

void __fastcall TFIDOSimulation::CalculateHydraulicParameters(int CellSide)
{
 WP(t,CellSide) =CalculateWettedPerimeter(CellSide);
 Z(t,CellSide) =CalculateWettedPerimeterDependantInfiltration(CellSide);
 P(t,CellSide) =CalculateHydrostaticPressure(CellSide);
 D(t,CellSide) =CalculateDragForce(CellSide);
 VP(t,CellSide) =CalculateVelocityPressureFactor(CellSide);
 dZdT(t,CellSide) =dZ_dT(CellSide);

}

void __fastcall TFIDOSimulation::CalculateEulerianCellPositions(int xpos)
{
 Xrl=Dist(t,xpos)-Dist(t,xpos-1);
 Xmj=Dist(t,xpos)-Dist(t,xpos-1);
 Xrm=0;
 Xlj=0;
}

void __fastcall TFIDOSimulation::CalculateLangrangianCellPositions(int xpos)
{
 if(xpos!=1)
 {
 Xrl=Dist(t,xpos)-Dist(t,xpos-1);
 Xmj=Dist(t-1,xpos-1)-Dist(t-1,xpos-2);
 Xrm=Dist(t,xpos)-Dist(t-1,xpos-1);
 Xlj=Dist(t,xpos-1)-Dist(t-1,xpos-2);
 }
 else
 {
 Xrl=Dist(t,xpos)-Dist(t,xpos-1);
 Xmj=0;
 Xrm=Dist(t,xpos)-Dist(t-1,xpos-1);
 Xlj=0;
 }
}

double __fastcall TFIDOSimulation::ZeroFunction(void)
{
 return 0;
}

double __fastcall TFIDOSimulation::ResidualOfContinuity(void)
{
 return +(theta*(Ql - Qr) + inv_theta*(Qj - Qm)) * dt(t)
 -(theta*(Al + Zl) + inv_theta*(Aj + Zj)) * Xlj

Appendix 3.1 Simulation engine source code

 261

 +(theta*(Ar + Zr) + inv_theta*(Am + Zm)) * Xrm
 +(phi*(Aj + Zj) + inv_phi*(Am + Zm)) * Xmj
 -(phi*(Al + Zl) + inv_phi*(Ar + Zr)) * Xrl ;
}

double __fastcall TFIDOSimulation::ResidualOfContinuity_Runoff(void)
{
 double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell);
 double man_exp=rho2(lastcell)/2.0;
 double qr=man_mul*pow(Ar,man_exp);

 return +(theta*(Ql - qr) + inv_theta*(Qj - Qm)) * dt(t)
 -(theta*(Al + Zl) + inv_theta*(Aj + Zj)) * Xlj
 +(theta*(Ar + Zr) + inv_theta*(Am + Zm)) * Xrm
 +(phi*(Aj + Zj) + inv_phi*(Am + Zm)) * Xmj
 -(phi*(Al + Zl) + inv_phi*(Ar + Zr)) * Xrl ;
}

double __fastcall TFIDOSimulation::ResidualOfMomentum_Runoff(void)
{
 double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell);
 double man_exp=rho2(lastcell)/2.0;
 double qr=man_mul*pow(Ar,man_exp);
 double vpr;
 if(Ar>=_A->LowerLimit)
 vpr= pow(qr,2.0) / (9.81 * Ar)+Pr;
 else
 vpr=0;

 drmdt= theta*(VPl-vpr)+inv_theta*(VPj-VPm)
 -theta* (phi * (Dl - SOl * Al) + inv_phi * (Dr - SOr * Ar)) * Xrl
 -inv_theta* (phi * (Dj - SOj * Aj) + inv_phi * (Dm - SOm * Am)) * Xmj;
 return (+(phi * Qj + inv_phi * Qm)* Xmj
 -(phi * Ql + inv_phi * qr)* Xrl
 +(theta * qr + inv_theta * Qm)* Xrm
 -(theta * Ql + inv_theta * Qj)* Xlj)/9.81 + drmdt*dt(t) ;
}

double __fastcall TFIDOSimulation::ResidualOfMomentum(void)
{
 drmdt= theta*(VPl-VPr)+inv_theta*(VPj-VPm)
 -theta* (phi * (Dl - SOl * Al) + inv_phi * (Dr - SOr * Ar)) * Xrl
 -inv_theta* (phi * (Dj - SOj * Aj) + inv_phi * (Dm - SOm * Am)) * Xmj;
 return (+(phi * Qj + inv_phi * Qm)* Xmj
 -(phi * Ql + inv_phi * Qr)* Xrl
 +(theta * Qr + inv_theta * Qm)* Xrm
 -(theta * Ql + inv_theta * Qj)* Xlj)/9.81 + drmdt*dt(t) ;
}

double __fastcall TFIDOSimulation::RCTip(void)
{
 return theta*Ql*dt(t) -(phi*(Al + Zl))*Xrl;
}

double __fastcall TFIDOSimulation::RMTip(void)
{
 return -(phi*Ql+inv_phi*Qr)* Xrl/9.81 + theta*(VPl-phi*(Dl-SOl*Al)*Xrl)*dt(t);
}

double __fastcall TFIDOSimulation::dRC_dt(void)
{ //should check this
 return +(theta*(Ql-Qr)+inv_theta*(Qj-Qm))
 -(theta*dZdTl + inv_theta*dZdTj) *Xlj
 +(theta*dZdTr + inv_theta*dZdTm) *Xrm
 +(phi*dZdTj + inv_phi*dZdTm) *Xmj
 -(phi*dZdTl + inv_phi*dZdTr) *Xrl
 ;
}

double __fastcall TFIDOSimulation::dRM_dt(void)
{
 return drmdt;//this term was calculated when calculating the Residual of Momentum.
}

double __fastcall TFIDOSimulation::dRC_dX(void)
{
 return -phi*(Al + Zl); //this is like this since it is the only bit to survive the massacre of the
triangular cell tip.
}

double __fastcall TFIDOSimulation::dRM_dX(void)
{
 return -phi*Ql/9.81 -theta*phi*(Dl-SOl*Al)*dt(t);

}

double __fastcall TFIDOSimulation::dZ_dA(const unsigned& xcoord,const unsigned& tcoord)
{
 // if (A[xcoord,tcoord]==0) return 0;
 //return (5.0/2.0-3.0/4.0*rho2)*pow(1.0/rho1,3.0/4.0)*pow(A[xcoord,tcoord],3.0/2.0-
3.0/4.0*rho2)*CalculateKostiakovLewisInfiltration(TotalTime[tcoord]-TotalTime[xcoord]);
 return 0;
}

double __fastcall TFIDOSimulation::dZ_dT(const unsigned& xi)
{
 if(Z(t,xi)==0)return 0; //is this ok here???
 return (KosA(xi)*KosK(xi)*pow(TotalTime(t)-TotalTime(xi),KosA(xi)-1.0)+KosFo(xi));
}

Appendix 3.1 Simulation engine source code

 262

double __fastcall TFIDOSimulation::dRC_dAl(void)
{
 return -phi * Xrl -theta*Xlj; // - phi*Xrl*dZ_dA(x-1,t);
}

double __fastcall TFIDOSimulation::dRC_dQl(void)
{
 return theta*dt(t);
}

double __fastcall TFIDOSimulation::dRC_dAr_Normal(void)
{
 if(FCurrentCell==lastcell&&Components.Contains(peRunoff)==false)
 return 0;
 return -inv_phi*Xrl +theta*Xrm; //-(1-phi)*(Dist[x,t]-Dist[x-1,t])*dZ_dA(x,t);
}

double __fastcall TFIDOSimulation::dRC_dAr_Runoff(void)
{
// return rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*d;
 double drcdar=dRC_dAr_Normal();
 double drcdqr=dRC_dQr();
 return drcdar+
rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-1.0)*drcdqr;
}

double __fastcall TFIDOSimulation::dRM_dAl(void)
{
 double dVl_dAl =(Al>0 ? - pow(Ql , 2.0) / (9.81 *pow(Al,2.0)) :0);
 double dPl_dAl =(Al>0 ? pow(sigma1l,-1.0/sigma2l)/sigma2l * pow(Al,1.0/sigma2l) :0);
 double dDl_dAl =(Al>0&&Ql>0 ? (1.0-rho2l)*pow(ManNl,2.0)/rho1l * pow(Ql,2.0)/pow(Al,rho2l) :0);
 return (theta*(dVl_dAl+dPl_dAl) - theta*phi*(dDl_dAl-SOl)*Xrl)*dt(t);
}

double __fastcall TFIDOSimulation::dRM_dAr_Normal(void)
{
 if(FCurrentCell==lastcell&&Components.Contains(peRunoff)==false)
 return 0;
 double dVr_dAr =(Ar>0 ? -pow(Qr , 2.0) / (9.81 *pow(Ar,2.0)) :0);
 double dPr_dAr =(Ar>0 ? pow(sigma1r,-1.0/sigma2r)/sigma2r * pow(Ar,1.0/sigma2r) :0);
 double dDr_dAr =(Ar>0&&Qr>0 ? (1.0-rho2r)*pow(ManNr,2.0)/rho1r * pow(Qr,2.0)/pow(Ar,rho2r) :0);
 return (-theta*(dVr_dAr+dPr_dAr) - theta*inv_phi*(dDr_dAr-SOr)*Xrl)*dt(t);
}

double __fastcall TFIDOSimulation::dRM_dAr_Runoff(void)
{
//// return rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*_s;
// return
dRM_dAr_Normal()+rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*dRM_dQr();

 return
dRM_dAr_Normal()+rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*dRM_dQr_Runoff();
}

double __fastcall TFIDOSimulation::dRC_dQr(void)
{

 return -theta*dt(t);
}

double __fastcall TFIDOSimulation::dRM_dQl(void)
{
 double dVl_dQl =(Al>0 ? 2.0*Ql / (9.81 *Al) :0);
 double dDl_dQl =(Al>0 ? 2.0*pow(ManNl,2.0)/rho1l * Ql * pow(Al,1.0-rho2l) :0);
 return -(phi*Xrl + theta*Xlj)/9.81 + theta*(dVl_dQl - phi*dDl_dQl*Xrl)*dt(t);
}

double __fastcall TFIDOSimulation::dRM_dQr(void)
{

 double dVr_dQr =(Ar>0 ? 2.0*Qr/(9.81*Ar) :0);
 double dDr_dQr =(Ar>0 ? 2.0*pow(ManNr,2.0)/rho1r * Qr * pow(Ar,1.0-rho2r) :0);
 return (theta*Xrm-inv_phi*Xrl)/9.81 - theta*(dVr_dQr + inv_phi*dDr_dQr*Xrl)*dt(t);
}

double __fastcall TFIDOSimulation::dRM_dQr_Runoff(void)
{
 double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell);
 double man_exp=rho2(lastcell)/2.0;
 double qr=man_mul*pow(Ar,man_exp);

 double dVr_dQr =(Ar>0 ? 2.0*qr/(9.81*Ar) :0);
 double dDr_dQr =(Ar>0 ? 2.0*pow(ManNr,2.0)/rho1r * qr * pow(Ar,1.0-rho2r) :0);
 return (theta*Xrm-inv_phi*Xrl)/9.81 - theta*(dVr_dQr + inv_phi*dDr_dQr*Xrl)*dt(t);
}

double __fastcall TFIDOSimulation::CalculateHydrostaticPressure(int xpos)
{
 if(A(t,xpos)<=_A->LowerLimit)return 0;
 return(pow(sigma1(xpos),-1.0/sigma2(xpos))/(1.0+sigma2(xpos))*pow(A(t,xpos),1.0+(1.0/sigma2(xpos))));
}

double __fastcall TFIDOSimulation::CalculateDragForce(int xpos)
{

Appendix 3.1 Simulation engine source code

 263

 if(A(t,xpos)<=_A->LowerLimit)return 0;
 return(pow(ManN(xpos),2.0)/rho1(xpos)*pow(Q(t,xpos),2.0)*pow(A(t,xpos),1.0-rho2(xpos)));
}

double __fastcall TFIDOSimulation::CalculateWettedPerimeter(int xpos)
{
 if(A(t,xpos)<=_A->LowerLimit)return 0;
 return pow(1.0/rho1(xpos) , 3.0/4.0)*pow(A(t,xpos),5.0/2.0-3.0/4.0*rho2(xpos));
}

double __fastcall TFIDOSimulation::CalculateVelocityPressureFactor(int xpos)
{
 if(A(t,xpos)<=_A->LowerLimit)return 0;
 return pow(Q(t,xpos),2.0) / (9.81 * A(t,xpos))+P(t,xpos);

}

double __fastcall TFIDOSimulation::CalculateWettedPerimeterDependantInfiltration(int xpos)
{
 return CalculateKostiakovLewisInfiltration(xpos);
}

double __fastcall TFIDOSimulation::CalculateKostiakovLewisInfiltration(int xpos)
{
 double OppTime=TotalTime(t)-TotalTime(xpos);
 if(OppTime<=0)return 0;
 return(KosK(xpos)*pow(OppTime,KosA(xpos))+KosFo(xpos)*OppTime);
}

void __fastcall TFIDOSimulation::CalculateInfiltrationForLateralSurfaceFlow(void)
{
 double dz;
 int finalcell=(Components.Contains(peAdvance) ?lastcell-1:lastcell);
 dz=CalculateKostiakovLewisInfiltration(firstcell-1)-Z(t-1,firstcell-1);
 if(dz>0.0001)
 {
 for(int i=firstcell-1;i<=finalcell;++i)
 {

 dz=CalculateKostiakovLewisInfiltration(i)-Z(t-1,i); //this will need changing.
 if(dz<A(t-1,i))
 {
 Z(t,i)=Z(t-1,i)+dz;
 A(t,i)=A(t-1,i)-dz;

 }
 else
 {
 Z(t,i)=Z(t-1,i)+A(t-1,i);
 A(t,i)=0;
 Q(t,i)=0;
 ++firstcell;
 UpstreamCell(t)=firstcell;
 }
 }
 for(int i=lastcell;i>=firstcell-1;--i)
 {
 if(A(t,i)==0)
 {
 --lastcell;
 DownstreamCell(t)=lastcell;
 }
 }
 }
 else
 {
 for(int i=firstcell-1;i<=finalcell;++i)
 {

 {
 Z(t,i)=Z(t-1,i)+A(t-1,i);
 A(t,i)=0;
 Q(t,i)=0;
 firstcell=lastcell;
 UpstreamCell(t)=DownstreamCell(t);
 }
 }

 }

}

void __fastcall TFIDOSimulation::SetInitialParameterEstimatesForFirstCell(void)
{
 double Qi;
 SetTimeStep();
 if(KosA(0)!=1)
 Qi=Qin(1)-(KosA(0)*KosK(0)*pow(dt(1),KosA(0)-1)+KosFo(0));
 else
 Qi=Qin(1)-(KosA(0)*KosK(0)+KosFo(0));
 A(1,0)=pow(pow(Qi*ManN(0),2)/(rho1(0)*So(0)),1.0/rho2(0));
 Dist(t,1)=Qin(1)*dt(1)/A(1,0);
}

void __fastcall TFIDOSimulation::SetInitialParameterEstimates(void)
{
 if(InitialSolutionDirection==sdBottomToTop)
 {
 UpstreamCell(t)=UpstreamCell(t)+1;
 firstcell=UpstreamCell(t);
 }

Appendix 3.1 Simulation engine source code

 264

 for(int i=0;i<GridParametersList->Count;++i)
 GridParameter[i]->InitialiseNewElementsFromInputData();

 OutputObject->_A->InitialiseNewElementsFromInputData();
 OutputObject->_Q->InitialiseNewElementsFromInputData();
 OutputObject->_Z->InitialiseNewElementsFromInputData();
 OutputObject->_X->InitialiseNewElementsFromInputData();
 OutputObject->_DownstreamCell->InitialiseNewElementsFromInputData();
 OutputObject->_UpstreamCell->InitialiseNewElementsFromInputData();
 OutputObject->_TotalTime->InitialiseNewElementsFromInputData();
 OutputObject->_dt->InitialiseNewElementsFromInputData();
 if(!Components.Contains(peLateralFlow))
 {
 if(t!=1)
 {
 _X->InitialiseAsPrevious();
 if(FieldLengthReached)
 {

 Dist(t,lastcell)=Dist(t-1,lastcell);
 }
 else if(FieldLengthExceeded)
 {
 Dist(t,lastcell)=FieldLength;
 double dx1=Dist(t,lastcell)-Dist(t,lastcell-1);
 double dx2=Dist(t,lastcell-1)-Dist(t,lastcell-2);
 if(dx1<dx2/4.0)
 CombineLastTwoCells();
 SetTimeStep();
 return;
 }
 else
 {
 _X->InitialiseAsPrevious();
 Dist(t,lastcell)=Dist(t-1,lastcell-1)+(Dist(t-1,lastcell-1) - Dist(t-1,lastcell-2));
 }

 _Z->InitialiseAsPrevious();

 if(Components.Contains(peAdvance)||Components.Contains(peRecession))
 {
 _Q->InitialiseAsPreviousAndLast();
 _A->InitialiseAsPreviousAndLast();
 }
 else
 {
 _Q->InitialiseAsPrevious();//AndLast();//
 _A->InitialiseAsPrevious();//AndLast();//
 }

 if(Components.Contains(peRunoff))
 {
 if(A(t-1,lastcell)==0)
 {

 if(lastcell>4)
 A(t,lastcell)=A(t-1,lastcell-5);
 else if(lastcell>3)
 A(t,lastcell)=A(t-1,lastcell-4);
 else if(lastcell>2)
 A(t,lastcell)=A(t-1,lastcell-3);
 else if(lastcell>1)
 A(t,lastcell)=A(t-1,lastcell-2);
 else if(lastcell>0)
 A(t,lastcell)=A(t-1,lastcell-1);
 }

 else
 {
 A(t,lastcell)=A(t-1,lastcell);

 }

Q(t,lastcell)=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(A(t,lastcell),rho2(lastcell)/2.0);
 }
 }
 else
 SetInitialParameterEstimatesForFirstCell();
 if(Components.Contains(peInflow))
 Q(t,0)=Qin(t);
 else
 Q(t,0)=0;
 if(Components.Contains(pePonding))
 Q(t,lastcell)=0;//sqrt(rho1(lastcell)*So(lastcell))/ManN(lastcell)* pow(A(t,lastcell),rho2(lastcell)/2.0);

 SetTimeStep();
 if(Components.Contains(peRecession))
 {

 double dz;
 int finalcell= (Components.Contains(peAdvance)?lastcell-1:lastcell);
 for(int i=firstcell-1;i<=finalcell;++i)
 {
 dz=CalculateKostiakovLewisInfiltration(i)-Z(t-1,i); //this will need changing.
 if(dz>A(t-1,i))
 {

Appendix 3.1 Simulation engine source code

 265

 Z(t,i)=Z(t-1,i)+A(t-1,i);
 A(t,i)=0;
 Q(t,i)=0;

 for(int cell=i+i;cell<=finalcell;++cell)
 {
 if(cell<lastcell)
 {
 A(t,cell)=(A(t,cell)+A(t,cell+1))/2.0;
 Q(t,cell)=(Q(t,cell)+Q(t,cell+1))/2.0;
 }
 }
 ++firstcell;
 UpstreamCell(t)=firstcell;
 }
 else
 i=finalcell+1;
 }

 }
 if(InitialSolutionDirection==sdBottomToTop)
 {
 for(int i=firstcell-1;i<=lastcell;++i)
 {
 A(t,i)=A(t,i)*0.1;
 Q(t,i)=Q(t,i)*0.1;

 }
 A(t,firstcell-1)=0;//.000001;
 Q(t,firstcell-1)=0;
 SolveForT=true;
 }
 }
 else
 {
 _Q->InitialiseAsZero();
 _A->InitialiseAsZero();
 _Z->InitialiseAsPrevious();
 _X->InitialiseAsPrevious();
 SetTimeStep();
 }

}

void __fastcall TFIDOSimulation::SetTimeStep(void)
{
 if(!FieldLengthExceeded)
 {
 if(t<=5)
 dt(t)=double(t)/5.0*SimulationTimeStep;
 else //(t>5&&t<200)
 {
 dt(t)=SimulationTimeStep;
 }

 }
 else
 dt(t)=SimulationTimeStep*(Dist(t,lastcell)-Dist(t,lastcell-1))/(Dist(t-1,lastcell-1)-Dist(t-1,lastcell-
2));
 TotalTime(t)=TotalTime(t-1)+dt(t);
}

void __fastcall TFIDOSimulation::SetSolutionParameters(void)
{
 SolveForX=(Components.Contains(peAdvance)&&!FieldLengthExceeded);
 SolveForT=FieldLengthExceeded;//(Components.Contains(peRecession));
 SolveForRunoff=Components.Contains(peRunoff);
}

TGridType __fastcall TFIDOSimulation::GetGridType()
{
 return FGridType;
}

void __fastcall TFIDOSimulation::SetGridType(TGridType type)
{
 FGridType=type;
 if(type==gtEulerian)
 FCalculateCellPositions=CalculateEulerianCellPositions;
 else
 FCalculateCellPositions=CalculateLangrangianCellPositions;
}

int __fastcall TFIDOSimulation::GetCellCount(void)
{
 return DownstreamCell(t)-UpstreamCell(t)+1;
}

void __fastcall TFIDOSimulation::SetDerivativeFunctionPointers(void)
{
 if(FCurrentCell!=lastcell)
 {
 dRC_dAr=dRC_dAr_Normal;
 dRM_dAr=dRM_dAr_Normal;
 dRC_dParam=dRC_dQr;
 dRM_dParam=dRM_dQr;
 }
 else
 {
 dRC_dParam=dRC_dParam_LastCell;

Appendix 3.1 Simulation engine source code

 266

 dRM_dParam=dRM_dParam_LastCell;
 dRC_dAr=dRC_dAr_LastCell;
 dRM_dAr=dRM_dAr_LastCell;
 }
}

void __fastcall TFIDOSimulation::SetSolveForT(bool value)
{
 _TotalTime->IsSolutionParameter=value;
 _dt->IsSolutionParameter=value;
 if(value)
 {
 dRC_dT=dRC_dt;
 dRM_dT=dRM_dt;
 }
 else
 {
 dRC_dT=ZeroFunction;
 dRM_dT=ZeroFunction;
 }
}

void __fastcall TFIDOSimulation::SetSolveForX(bool value)
{
 _X->IsSolutionParameter=value;
 if(value)
 {
 dRC_dParam_LastCell=dRC_dX;
 dRM_dParam_LastCell=dRM_dX;
 }
 else
 {
 dRC_dParam_LastCell=dRC_dQr;
 dRM_dParam_LastCell=dRM_dQr;
 }
}

void __fastcall TFIDOSimulation::SetSolveForRunoff(bool value)
{
 if(value)
 {
 dRC_dAr_LastCell=dRC_dAr_Runoff;
 dRM_dAr_LastCell=dRM_dAr_Runoff;
 }
 else
 {
 dRC_dAr_LastCell=dRC_dAr_Normal;
 dRM_dAr_LastCell=dRM_dAr_Normal;
 }
}

bool __fastcall TFIDOSimulation::GetCutoffTimeReached(void)
{
 return CutoffTimeExceeded;
}
bool __fastcall TFIDOSimulation::GetCellFlowsAreNegligible(void)
{
 for(int i=firstcell;i<=lastcell;++i)
 {
 if(Q(t-1,i)>0.001*Q(1,0))
 return false;

 if(Q(t-1,i)>0.001*Q(1,0))
 return false;
 }
 return true;
}

bool __fastcall TFIDOSimulation::GetAllowRunoff(void)
{
 return true;
}

void __fastcall TFIDOSimulation::SetCurrentSimData(TSimulationParametersObject*newrecord)
{
 FCurrentSimData=newrecord;
 OutputObject=FCurrentSimData->OutputObject;
 FCurrentSimData->UpdateModelParameters();
}

void __fastcall TFIDOSimulation::SetOutputObject(TFIDOOutputTreeObject*object)
{
 FOutputObject=object;
 FOutputObject->ErrorMessage="";
 FOutputObject->IsHappy=true;
 FOutputObject->LinkSolutionParameters();
}

TSimulationParametersObject* __fastcall TFIDOSimulation::GetCurrentSimData()
{
 return FCurrentSimData;
}

TFIDOOutputTreeObject* __fastcall TFIDOSimulation::GetOutputObject()
{
 return FOutputObject;
}

void __fastcall TFIDOSimulation::UpdateOutputObjectProperties(void)
{
 if(t>0)

Appendix 3.1 Simulation engine source code

 267

 {
 FOutputObject->EndCell=lastcell;
 FOutputObject->FurtherestDownstreamCellIndex=furtherestdownstreamcellindex;
 FOutputObject->TotalIterations=TotalIterations;
 FOutputObject->MaxFlowDepth=pow(pow(ManN(0)*(*_Qin)(1) , 2)/(rho1(0)*So(0)) , 1.0/rho2(0));;
 FOutputObject->MaxFlowDepth=pow(FOutputObject->MaxFlowDepth/sigma1(1), 1.0/sigma2(1));
 if(t>0&&Z(t,0)>Z(t-1,0))
 FOutputObject->MaxZ=Z(t,0);
 else
 FOutputObject->MaxZ=Z(t-1,0);

 FOutputObject->NumberTimeSteps=t;
 FOutputObject->_sigma1->Resize(_sigma1->Size);
 FOutputObject->_sigma2->Resize(_sigma2->Size);
 for(int i=0;i<_sigma1->Size;++i)
 {
 (*FOutputObject->_sigma1)(i)=sigma1(i);
 (*FOutputObject->_sigma2)(i)=sigma2(i);
 } // tidy this up later with by creating and assign fn.
 FOutputObject->HasBeenSimulated=true;
 FOutputObject->CalculatePerformanceValues(t);
 }
}

// finite difference approximation... probably wont use it...
double __fastcall TFIDOSimulation::dRMd(double¶m)
{
 double r1,r2,tem;
 double tol=param*0.01;
 CalculateCellParameters();
 r1=ResidualOfMomentum();
 tem=param;
 param+=tol;
 CalculateCellParameters();
 r2=ResidualOfMomentum();
 param=tem;
 CalculateCellParameters();
 return (r2-r1)/tol;
}

// finite difference approximation... probably wont use it...
double __fastcall TFIDOSimulation::dRCd(double¶m)
{
 double r1,r2,tem;
 double tol=param*0.01;
 CalculateCellParameters();
 r1=ResidualOfContinuity();
 tem=param;
 param+=tol;
 CalculateCellParameters();
 r2=ResidualOfContinuity();
 param=tem;
 CalculateCellParameters();
 return (r2-r1)/tol;
}

void __fastcall TFIDOSimulation::CombineLastTwoCells(void)
{
 Dist(t,lastcell-1) = Dist(t,lastcell);
 A(t,lastcell-1) = A(t,lastcell);
 Q(t,lastcell-1) = A(t,lastcell);
 Z(t,lastcell-1) = A(t,lastcell);
 //not sure if these are requrired... better to play safe
 D(t,lastcell-1) = D(t,lastcell);
 P(t,lastcell-1) = P(t,lastcell);
 WP(t,lastcell-1) = WP(t,lastcell);
 VP(t,lastcell-1) = VP(t,lastcell);
 dZdT(t,lastcell-1) = dZdT(t,lastcell);

 // ++RemovedCellCount;
 --lastcell;
 if(furtherestdownstreamcellindex==lastcell+1)
 furtherestdownstreamcellindex=lastcell;
 --DownstreamCell(t);
 SetupMemoryForParameters();

}

void __fastcall TFIDOSimulation::RefineGrid(const int& time)
{
 SmartPointer<TCurveFit>AFit=CreateCurveFit();
 SmartPointer<TCurveFit>ZFit=CreateCurveFit();
 SmartPointer<TCurveFit>QFit=CreateCurveFit();
 SmartPointer<TCurveFit>DFit=CreateCurveFit();
 SmartPointer<TCurveFit>PFit=CreateCurveFit();
 SmartPointer<TCurveFit>WPFit=CreateCurveFit();
 int firstcell =UpstreamCell(time);
 int endcell= DownstreamCell(time);
 for (int i=firstcell-1;i<=endcell;++i)
 {
 AFit->EnterStatValue (Dist(time,i) , A(time,i));
 ZFit->EnterStatValue (Dist(time,i) , Z(time,i));
 QFit->EnterStatValue (Dist(time,i) , Q(time,i));
 DFit->EnterStatValue (Dist(time,i) , D(time,i));
 PFit->EnterStatValue (Dist(time,i) , P(time,i));
 WPFit->EnterStatValue(Dist(time,i) , WP(time,i));
 }
 double dx=double(Dist(time,endcell)-Dist(time,firstcell-1))/double(endcell-(firstcell-1));

Appendix 3.1 Simulation engine source code

 268

 double first=Dist(time,firstcell-1);
 int count=0;
 for (int i=firstcell-1;i<endcell;++i)
 {
 Dist(time,i)=first+double(count)*dx;
 ++count;
 }

 for (int i=firstcell-1;i<=endcell;++i)
 {
 if(Dist(time,i)>0)
 {
 A(time,i) = AFit->CubicSpline (Dist(time,i));
 Z(time,i) = ZFit->CubicSpline (Dist(time,i));
 Q(time,i) = QFit->CubicSpline (Dist(time,i));
 D(time,i) = DFit->CubicSpline (Dist(time,i));
 P(time,i) = PFit->CubicSpline (Dist(time,i));
 WP(time,i)= WPFit->CubicSpline(Dist(time,i));

 if(A(time,i)<0) A(time,i)=0;
 if(Z(time,i)<0) Z(time,i)=0;
 if(Q(time,i)<0) Q(time,i)=0;
 if(D(time,i)<0) D(time,i)=0;
 if(P(time,i)<0) P(time,i)=0;
 if(WP(time,i)<0)WP(time,i)=0;
 }
 }
 ResetIterationCount();
 SetInitialParameterEstimates();
}

SmartPointer<TCurveFit>__fastcall TFIDOSimulation::CreateCurveFit(void)
{
 SmartPointer<TCurveFit>Fit(new TCurveFit);
 Fit->Init();
 return Fit;
}

void __fastcall TFIDOSimulation::EnableConvergenceLogging(void)
{
 LogConvergence=true;
}

void __fastcall TFIDOSimulation::DisableConvergenceLogging(void)
{
 LogConvergence=false;
}

void __fastcall TFIDOSimulation::ResetGridParameterDeltaValues(void)
{
 _X->ResetDeltaValues();
 _A->ResetDeltaValues();
 _Q->ResetDeltaValues();
 _TotalTime->ResetDeltaValues();
 _dt->ResetDeltaValues();
}

void __fastcall TFIDOSimulation::SetStopAtPoint(int value)
{
 FStopAtPoint = value;
}

int __fastcall TFIDOSimulation::GetStopAtPoint()
{
 return FStopAtPoint;
}

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 269

Appendix 3.2 Validation of FIDO Simulation Engine against
SIRMOD Output.

Validation Output: C_Turner's Property

Field 19 7/10/2000 Furrow 1 Irrigation no:1
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-01\TURNER_F19\TUR00_fld19irr1fur1.cfg

Flowrate (m^3/sec) 0.00194 NOTE: INFILT value =1.941667 l/sec

Time-to-cutoff (mins) 1690 NOTE: SIRMOD value =1690 minsOld Value

1689
Field-length (m) 520
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.10155
Kostiakov k
(m^3/min^a/m) 0.13916
Kostiakov fo (m^3/min/m) 0
Z-required (m) 280 NOTE: SIRMOD value =0.28 mOld Value 0.111
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 19 7/10/2000 Furrow ave Irrigation no:1
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR00_fld19irr1furAVG.cfg

Flowrate (m^3/sec) 0.00194 NOTE: INFILT value =1.941667 l/sec

Time-to-cutoff (mins) 1690 NOTE: SIRMOD value =1690 minsOld Value

1689
Field-length (m) 520
Field-slope 0.00151
Manning n 0.05
Kostiakov a 0.08592 NOTE: SIRMOD value =0.08592
Kostiakov k
(m^3/min^a/m) 0.1469 NOTE: SIRMOD value =0.1469
Kostiakov fo (m^3/min/m) 0
Z-required (m) 222 NOTE: SIRMOD value =0.222 mOld Value 0.111
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 270

Field 19 31/12/2000 Furrow ave Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR00_fld19irr3furAVG.cfg

Flowrate (m^3/sec) 0.001486 NOTE: SIRMOD value =1.486 lps NOTE: INFILT

value =1.486667 l/sec
Time-to-cutoff (mins) 1248
Field-length (m) 520
Field-slope 0.00151
Manning n 0.08
Kostiakov a 0.13823 NOTE: SIRMOD value =0.13823
Kostiakov k
(m^3/min^a/m) 0.06337 NOTE: SIRMOD value =0.06337
Kostiakov fo
(m^3/min/m) 0
Z-required (m) 144 NOTE: SIRMOD value =0.144 mOld Value 0.067
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 19 12/01/2001 Furrow ave Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr4furAVG.cfg

Flowrate (m^3/sec) 0.00158
Time-to-cutoff (mins) 1070
Field-length (m) 520
Field-slope 0.00151
Manning n 0.1
Kostiakov a 0.07352
Kostiakov k (m^3/min^a/m) 0.07585
Kostiakov fo (m^3/min/m) 0.00003 NOTE: SIRMOD value =0
Z-required (m) 130 NOTE: SIRMOD value =0.13 mOld Value 0.068
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 271

Field 19 24/01/2001 Furrow ave Irrigation no:5
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr5furAVG.cfg

Flowrate (m^3/sec) 0.00203
Time-to-cutoff (mins) 755
Field-length (m) 520
Field-slope 0.00151
Manning n 0.08
Kostiakov a 0.2198 NOTE: SIRMOD value =0.2198
Kostiakov k (m^3/min^a/m) 0.03456 NOTE: SIRMOD value =0.03456
Kostiakov fo (m^3/min/m) 0.00002 NOTE: SIRMOD value =0
Z-required (m) 112 NOTE: SIRMOD value =0.112 mOld Value 0.056
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 19 12/02/2001 Furrow ave Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr6furAVG.cfg

Flowrate (m^3/sec) 0.002
Time-to-cutoff (mins) 875 NOTE: SIRMOD value =875 minsOld Value 445
Field-length (m) 520
Field-slope 0.00151
Manning n 0.08
Kostiakov a 0.18432 NOTE: SIRMOD value =0.18432
Kostiakov k (m^3/min^a/m) 0.04261 NOTE: SIRMOD value =0.04261
Kostiakov fo (m^3/min/m) 0
Z-required (m) 122 NOTE: SIRMOD value =0.122 mOld Value 0.061
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 272

Field 19 26/02/2001 Furrow ave Irrigation no:7
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr7furAVG.cfg

Flowrate (m^3/sec) 0.0026
Time-to-cutoff (mins) 705
Field-length (m) 520
Field-slope 0.00151
Manning n 0.07
Kostiakov a 0.082 NOTE: SIRMOD value =0.082
Kostiakov k (m^3/min^a/m) 0.08137 NOTE: SIRMOD value =0.08137
Kostiakov fo (m^3/min/m) 0
Z-required (m) 118 NOTE: SIRMOD value =0.118 mOld Value 0.059
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 20 9/10/2000 Furrow ave Irrigation no:1
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR00_fld20irr1furAVG.cfg

Flowrate (m^3/sec) 0.00505
Time-to-cutoff (mins) 680
Field-length (m) 520
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.12189 NOTE: SIRMOD value =0.12189
Kostiakov k (m^3/min^a/m) 0.13952 NOTE: SIRMOD value =0.13952
Kostiakov fo (m^3/min/m) 0
Z-required (m) 266 NOTE: SIRMOD value =0.266 mOld Value 0.134
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 273

Field 20 10/12/2000 Furrow ave Irrigation no:2
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR00_fld20irr2furAVG.cfg

Flowrate (m^3/sec) 0.00511
Time-to-cutoff (mins) 594
Field-length (m) 520
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.01991 NOTE: SIRMOD value =0.01991
Kostiakov k
(m^3/min^a/m) 0.24978 NOTE: SIRMOD value =0.24978
Kostiakov fo
(m^3/min/m) 0 NOTE: SIRMOD value =0.000000

Z-required (m) 286.608 NOTE: SIRMOD value =0.286608 mOld Value
0.098

Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 20 1/01/2001 Furrow ave Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr3furAVG.cfg

Flowrate (m^3/sec) 0.0051
Time-to-cutoff (mins) 445 NOTE: SIRMOD value =445 minsOld Value 875
Field-length (m) 520
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.12373
Kostiakov k (m^3/min^a/m) 0.10257
Kostiakov fo (m^3/min/m) 0
Z-required (m) 162 NOTE: SIRMOD value =0.162 mOld Value 0.081
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 274

Field 20 11/01/2001 Furrow ave Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr4furAVG.cfg

Flowrate (m^3/sec) 0.00468
Time-to-cutoff (mins) 450
Field-length (m) 520
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0 NOTE: SIRMOD value =0.000000
Kostiakov k
(m^3/min^a/m) 0.14413 NOTE: SIRMOD value =0.14413
Kostiakov fo (m^3/min/m) 0.00013 NOTE: SIRMOD value =0.000002
Z-required (m) 302.13 NOTE: SIRMOD value =0.30213 mOld Value

0.079
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 20 29/01/2001 Furrow ave Irrigation no:5
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr5furAVG.cfg

Flowrate (m^3/sec) 0.00395 NOTE: SIRMOD value =3.95 lps NOTE: INFILT

value =3.95 l/sec
Time-to-cutoff (mins) 285
Field-length (m) 520
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.1606
Kostiakov k
(m^3/min^a/m) 0.0464 NOTE: SIRMOD value =0.0464
Kostiakov fo
(m^3/min/m) 0
Z-required (m) 140 NOTE: SIRMOD value =0.14 mOld Value 0.072
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 275

Field 20 13/02/2001 Furrow ave Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr6furAVG.cfg

Flowrate (m^3/sec) 0.00548
Time-to-cutoff (mins) 468
Field-length (m) 520
Field-slope 0.00151
Manning n 0.02
Kostiakov a 0.13235 NOTE: SIRMOD value =0.13235
Kostiakov k (m^3/min^a/m) 0.10811 NOTE: SIRMOD value =0.10811
Kostiakov fo (m^3/min/m) 0.00004 NOTE: SIRMOD value =0.000001
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.1
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 20 26/02/2001 Furrow ave Irrigation no:7
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr7furAVG.cfg

Flowrate (m^3/sec) 0.00505 NOTE: SIRMOD value =5.05 lps
Time-to-cutoff (mins) 680 NOTE: SIRMOD value =680 minsOld Value 425
Field-length (m) 520
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.12189 NOTE: SIRMOD value =0.12189
Kostiakov k (m^3/min^a/m) 0.13952 NOTE: SIRMOD value =0.13952
Kostiakov fo (m^3/min/m) 0
Z-required (m) 266 NOTE: SIRMOD value =0.266 mOld Value 0.095
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 276

Field 17 11/01/2000 Furrow 8 Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F17\TUR00_fld17irr4fur8.cfg

Flowrate (m^3/sec) 0.00536
Time-to-cutoff (mins) 650
Field-length (m) 1160
Field-slope 0.00141
Manning n 0.02
Kostiakov a 0.11259 NOTE: SIRMOD value =0.11259
Kostiakov k (m^3/min^a/m) 0.06531 NOTE: SIRMOD value =0.06531
Kostiakov fo (m^3/min/m) 0
Z-required (m) 142 NOTE: SIRMOD value =0.142 mOld Value 0.065
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 17 20/01/2000 Furrow 8 Irrigation no:5
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F17\TUR00_fld17irr5fur8.cfg

Flowrate (m^3/sec) 0.00613
Time-to-cutoff (mins) 380
Field-length (m) 1160
Field-slope 0.00141
Manning n 0.02
Kostiakov a 0.0744 NOTE: SIRMOD value =0.0744
Kostiakov k (m^3/min^a/m) 0.05012 NOTE: SIRMOD value =0.05012
Kostiakov fo (m^3/min/m) 0.00015 NOTE: SIRMOD value =0.000003
Z-required (m) 128 NOTE: SIRMOD value =0.128 mOld Value 0.064
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 277

Field 18 1/10/1999 Furrow 8 Irrigation no:1
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F18\TUR99_fld18irr1fur8.cfg

Flowrate (m^3/sec) 0.00364
Time-to-cutoff (mins) 873
Field-length (m) 725 NOTE: SIRMOD value =725 mOld Value 750
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.13103 NOTE: SIRMOD value =0.13103
Kostiakov k (m^3/min^a/m) 0.07486 NOTE: SIRMOD value =0.07486
Kostiakov fo (m^3/min/m) 0
Z-required (m) 140 NOTE: SIRMOD value =0.14 mOld Value 0.08
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Field 18 11/01/2000 Furrow 2 Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F18\TUR00_fld18irr4fur8.cfg

Flowrate (m^3/sec) 0.0035
Time-to-cutoff (mins) 600
Field-length (m) 725 NOTE: SIRMOD value =725 mOld Value 750
Field-slope 0.00151
Manning n 0.03
Kostiakov a 0.29564 NOTE: SIRMOD value =0.29564
Kostiakov k (m^3/min^a/m) 0.02655 NOTE: SIRMOD value =0.02655
Kostiakov fo (m^3/min/m) 0
Z-required (m) 114 NOTE: SIRMOD value =0.114 mOld Value 0.059
Furrow top width (m) 0.72
Furrow mid width (m) 0.48
Furrow bot width (m) 0.3
Furrow max depth (m) 0.2

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 278

Validation Output: N_Walton's Property
Field 7a 25/09/2001 Furrow 2 Irrigation no:1
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr1fur2.cfg

Flowrate (m^3/sec) 0.0027 NOTE: SIRMOD value =2.7 lps
Time-to-cutoff (mins) 1745
Field-length (m) 635
Field-slope 0.001
Manning n 0.035
Kostiakov a 0.27002
Kostiakov k (m^3/min^a/m) 0.07049
Kostiakov fo (m^3/min/m) 0
Z-required (m) 300 NOTE: SIRMOD value =0.3 mOld Value 0.15
Furrow top width (m) 0.4
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7a 27/12/2001 Furrow 2 Irrigation no:2
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr2fur2.cfg

Flowrate (m^3/sec) 0.004442 NOTE: SIRMOD value =4.442 lps
Time-to-cutoff (mins) 450 NOTE: SIRMOD value =450 minsOld Value 495
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0.19263 NOTE: SIRMOD value =0.19263
Kostiakov k
(m^3/min^a/m) 0.06375 NOTE: SIRMOD value =0.06375
Kostiakov fo
(m^3/min/m) 0

Z-required (m) 199.998 NOTE: SIRMOD value =0.199998 mOld Value
0.078

Furrow top width (m) 0.4
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 279

Field 7a 27/12/2001 Furrow 6 Irrigation no:2
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr2fur6.cfg

Flowrate (m^3/sec) 0.004442 NOTE: SIRMOD value =4.442 lps
Time-to-cutoff (mins) 450 NOTE: SIRMOD value =450 minsOld Value 495
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0.13452
Kostiakov k (m^3/min^a/m) 0.07844
Kostiakov fo (m^3/min/m) 0.00008 NOTE: SIRMOD value =0.000001
Z-required (m) 96 NOTE: SIRMOD value =0.096 mOld Value 0.078
Furrow top width (m) 0.4
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7a 14/01/2002 Furrow 2 Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr3fur2.cfg

Flowrate (m^3/sec) 0.00436 NOTE: SIRMOD value =4.36 lps
Time-to-cutoff (mins) 400
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0.10515
Kostiakov k (m^3/min^a/m) 0.07071
Kostiakov fo (m^3/min/m) 0.00005 NOTE: SIRMOD value =0.000001
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.065
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 280

Field 7a 14/01/2002 Furrow 4 Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr3fur4.cfg

Flowrate (m^3/sec) 0.00436 NOTE: SIRMOD value =4.36 lps
Time-to-cutoff (mins) 400
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0
Kostiakov k (m^3/min^a/m) 0.10071
Kostiakov fo (m^3/min/m) 0.00015 NOTE: SIRMOD value =0.000003
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.065
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7a 14/01/2002 Furrow 6 Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr3fur6.cfg

Flowrate (m^3/sec) 0.00436 NOTE: SIRMOD value =4.36 lps
Time-to-cutoff (mins) 400
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0
Kostiakov k
(m^3/min^a/m) 0.08913
Kostiakov fo (m^3/min/m) 0.00014 NOTE: SIRMOD value =0.000002
Z-required (m) 191.13 NOTE: SIRMOD value =0.19113 mOld Value

0.065
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 281

Field 7a 27/01/2002 Furrow 7 Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr4fur7.cfg

Flowrate (m^3/sec) 0.003897 NOTE: SIRMOD value =3.897 lps
Time-to-cutoff (mins) 400
Field-length (m) 635
Field-slope 0.001
Manning n 0.05
Kostiakov a 0
Kostiakov k (m^3/min^a/m) 0.0367
Kostiakov fo (m^3/min/m) 0.00021 NOTE: SIRMOD value =0.000004
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.085
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7a 27/01/2002 Furrow ave Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr4furAVG.cfg

Flowrate (m^3/sec) 0.003897 NOTE: SIRMOD value =3.897 lps
Time-to-cutoff (mins) 400
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0.00001 NOTE: SIRMOD value =0.00001
Kostiakov k (m^3/min^a/m) 0.05575 NOTE: SIRMOD value =0.05575
Kostiakov fo (m^3/min/m) 0.00006 NOTE: SIRMOD value =0.000001
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.085
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 282

Field 7a 20/02/2002 Furrow 2 Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur2.cfg

Flowrate (m^3/sec) 0.00437
Time-to-cutoff (mins) 450
Field-length (m) 635
Field-slope 0.001
Manning n 0.03
Kostiakov a 0.06954
Kostiakov k (m^3/min^a/m) 0.1037
Kostiakov fo (m^3/min/m) 0
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7a 20/02/2002 Furrow 4 Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur4.cfg

Flowrate (m^3/sec) 0.00437
Time-to-cutoff (mins) 450
Field-length (m) 635
Field-slope 0.001
Manning n 0.05
Kostiakov a 0.12549
Kostiakov k (m^3/min^a/m) 0.07019
Kostiakov fo (m^3/min/m) 0.00016 NOTE: SIRMOD value =0.000003
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 283

Field 7a 20/02/2002 Furrow 6 Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur6.cfg

Flowrate (m^3/sec) 0.00437
Time-to-cutoff (mins) 450
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0.15281
Kostiakov k (m^3/min^a/m) 0.06884
Kostiakov fo (m^3/min/m) 0.00004 NOTE: SIRMOD value =0.000001
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7a 20/02/2002 Furrow 8 Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur8.cfg

Flowrate (m^3/sec) 0.00437
Time-to-cutoff (mins) 450
Field-length (m) 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0.11616
Kostiakov k (m^3/min^a/m) 0.08008
Kostiakov fo (m^3/min/m) 0.00007 NOTE: SIRMOD value =0.000001
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 284

Field 7b 27/12/2001 Furrow 6 Irrigation no:2
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr2fur6.cfg

Flowrate (m^3/sec) 0.00188

Time-to-cutoff (mins) 1035 NOTE: SIRMOD value =1035 minsOld Value

1300
Field-length (m) 635
Field-slope 0.001
Manning n 0.1
Kostiakov a 0.233316 NOTE: SIRMOD value =0.233316
Kostiakov k
(m^3/min^a/m) 0.02546
Kostiakov fo (m^3/min/m) 0.00009 NOTE: SIRMOD value =0.000002
Z-required (m) 122 NOTE: SIRMOD value =0.122 mOld Value 0.065
Furrow top width (m) 0.4
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7b 14/01/2002 Furrow 2 Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur2.cfg

Flowrate (m^3/sec) 0.00233
Time-to-cutoff (mins) 694
Field-length (m) 635
Field-slope 0.001
Manning n 0.1
Kostiakov a 0
Kostiakov k (m^3/min^a/m) 0.06171
Kostiakov fo (m^3/min/m) 0.00014 NOTE: SIRMOD value =0.000002
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.064
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 285

Field 7b 14/01/2002 Furrow 4 Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur4.cfg

Flowrate (m^3/sec) 0.00233
Time-to-cutoff (mins) 694
Field-length (m) 635
Field-slope 0.001
Manning n 0.09
Kostiakov a 0.08275
Kostiakov k (m^3/min^a/m) 0.04904
Kostiakov fo (m^3/min/m) 0.00009 NOTE: SIRMOD value =0.000002
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.064
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7b 14/01/2002 Furrow 6 Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur6.cfg

Flowrate (m^3/sec) 0.00233
Time-to-cutoff (mins) 694
Field-length (m) 635
Field-slope 0.001
Manning n 0.1
Kostiakov a 0.16665
Kostiakov k (m^3/min^a/m) 0.0391
Kostiakov fo (m^3/min/m) 0
Z-required (m) 128 NOTE: SIRMOD value =0.128 mOld Value 0.064
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 286

Field 7b 14/01/2002Furrow 8 Irrigation no:3
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur8.cfg

Flowrate (m^3/sec) 0.00491 NOTE: SIRMOD value =4.91 lps
Time-to-cutoff (mins) 505 NOTE: SIRMOD value =505 minsOld Value 694
Field-length (m) 650 NOTE: SIRMOD value =650 mOld Value 635
Field-slope 0.001
Manning n 0.04
Kostiakov a 0.10758 NOTE: SIRMOD value =0.10758
Kostiakov k (m^3/min^a/m) 0.02967 NOTE: SIRMOD value =0.02967
Kostiakov fo (m^3/min/m) 0.00023 NOTE: SIRMOD value =0.000004
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.064
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7b 27/01/2002 Furrow 2 Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr4fur2.cfg

Flowrate (m^3/sec) 0.0023507 NOTE: SIRMOD value =2.3507 lps
Time-to-cutoff (mins) 695
Field-length (m) 635
Field-slope 0.001
Manning n 0.05
Kostiakov a 0.05407 NOTE: SIRMOD value =0.05407
Kostiakov k (m^3/min^a/m) 0.05122 NOTE: SIRMOD value =0.05122
Kostiakov fo (m^3/min/m) 0.00004 NOTE: SIRMOD value =0.000001
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.085
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 287

Field 7b 27/01/2002Furrow 4 Irrigation no:4
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr4fur4.cfg

Flowrate (m^3/sec) 0.0023507 NOTE: SIRMOD value =2.3507 lps
Time-to-cutoff (mins) 695
Field-length (m) 635
Field-slope 0.001
Manning n 0.05
Kostiakov a 0.07832 NOTE: SIRMOD value =0.07832
Kostiakov k (m^3/min^a/m) 0.05099 NOTE: SIRMOD value =0.05099
Kostiakov fo (m^3/min/m) 0.00002 NOTE: SIRMOD value =0
Z-required (m) 178 NOTE: SIRMOD value =0.178 mOld Value 0.085
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Field 7b 20/02/2002 Furrow 6 Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr6fur6.cfg

Flowrate (m^3/sec) 0.002
Time-to-cutoff (mins) 740 NOTE: SIRMOD value =740 minsOld Value 750
Field-length (m) 635
Field-slope 0.001
Manning n 0.09
Kostiakov a 0.03777
Kostiakov k (m^3/min^a/m) 0.06997
Kostiakov fo (m^3/min/m) 0.0001 NOTE: SIRMOD value =0.000002
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.097
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output.

 288

Field 7b 20/02/2002 Furrow 8 Irrigation no:6
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr6fur8.cfg

Flowrate (m^3/sec) 0.002
Time-to-cutoff (mins) 740 NOTE: SIRMOD value =740 minsOld Value 750
Field-length (m) 635
Field-slope 0.001
Manning n 0.08
Kostiakov a 0.09108
Kostiakov k (m^3/min^a/m) 0.05878
Kostiakov fo (m^3/min/m) 0.00002 NOTE: SIRMOD value =0
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.097
Furrow top width (m) 0.5
Furrow mid width (m) 0.25
Furrow bot width (m) 0.1
Furrow max depth (m) 0.25

Created by David McClymont, NCEA on the 2006-08-24
mcclymon@usq.edu.au using FIDO v1.01 (beta)

Appendix 4.1 Calibrated advance curves

 289

Appendix 4.1 Calibrated advance curves

Calibration Summary: C_Turner's Property
Red lines respresent Simulations using INFILT calibrated infiltration parameters. Blue lines
represent simulations using "Hydrodynamic Method" calibrated infiltrated parameters

Field 19 7/10/2000 Furrow 1 Irrigation no:1

Measured
Advance

x(m) t(min)

100 234

200 426

300 724

400 988

500 1246

Flowrate
(m^3/sec)

0.00194167 NOTE:
INFILT value =1.941667

l/sec
Time-to-cutoff

(mins)
1690 NOTE: SIRMOD value
=1690 minsOld Value 1689

Field-length (m) 520
Field-slope 0.00151
Manning n 0.03

Kostiakov a 0.09162 Previous:
0.10155

Kostiakov k
(m^3/min^a/m)

0.15781662
Previous: 0.13916

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 280 NOTE: SIRMOD value
=0.28 mOld Value 0.111

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Field 19 7/10/2000 Furrow ave Irrigation no:1

Measured
Advance

x(m) t(min)

100 214

200 438

300 689

400 948

500 1194

Flowrate
(m^3/sec)

0.00194167 NOTE:
INFILT value =1.941667

l/sec
Time-to-cutoff

(mins)
1690 NOTE: SIRMOD value
=1690 minsOld Value 1689

Field-length (m) 520
Field-slope 0.00151
Manning n 0.05

Kostiakov a 0.07999 Previous:
0.08592

Kostiakov k
(m^3/min^a/m)

0.15949077
Previous: 0.1469

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 222 NOTE: SIRMOD value
=0.222 mOld Value 0.111

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Appendix 4.1 Calibrated advance curves

 290

Field 19 31/12/2000 Furrow ave Irrigation no:3

Measured
Advance

x(m) t(min)

100 156

200 338

300 562

400 770

500 969

Flowrate
(m^3/sec)

0.00148667 NOTE:
SIRMOD value =1.486 lps

NOTE: INFILT value
=1.486667 l/sec

Time-to-cutoff
(mins) 1248

Field-length (m) 520
Field-slope 0.00151
Manning n 0.08

Kostiakov a 0.125755
Previous: 0.13823

Kostiakov k
(m^3/min^a/m)

0.07233696
Previous: 0.06337

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 144 NOTE: SIRMOD value
=0.144 mOld Value 0.067

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max
depth (m) 0.2

Field 19 12/01/2001 Furrow ave Irrigation no:4

Measured
Advance

x(m) t(min)

100 146

200 293

300 472

400 651

500 839

Flowrate
(m^3/sec) 0.00158

Time-to-cutoff
(mins) 1070

Field-length (m) 520
Field-slope 0.00151
Manning n 0.1

Kostiakov a 0.07201
Previous: 0.07352

Kostiakov k
(m^3/min^a/m)

0.07994569
Previous: 0.07585

Kostiakov fo
(m^3/min/m)

0.0000294
Previous: 0.00003

Z-required (m) 130 NOTE: SIRMOD value
=0.13 mOld Value 0.068

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Field 19 24/01/2001 Furrow ave Irrigation no:5

Appendix 4.1 Calibrated advance curves

 291

Measured
Advance

x(m) t(min)

100 82

200 214

300 336

400 472

500 640

Flowrate
(m^3/sec) 0.00203

Time-to-cutoff
(mins) 755

Field-length (m) 520
Field-slope 0.00151
Manning n 0.08

Kostiakov a 0.225925
Previous: 0.2198

Kostiakov k
(m^3/min^a/m)

0.03588277
Previous: 0.03456

Kostiakov fo
(m^3/min/m)

0.0000038
Previous: 0.00002

Z-required (m) 112 NOTE: SIRMOD value
=0.112 mOld Value 0.056

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Field 19 12/02/2001 Furrow ave Irrigation no:6

Measured
Advance

x(m) t(min)

100 92

200 212

300 343

400 480

500 617

Flowrate
(m^3/sec) 0.002

Time-to-cutoff
(mins)

875 NOTE: SIRMOD value
=875 minsOld Value 445

Field-length (m) 520
Field-slope 0.00151
Manning n 0.08

Kostiakov a 0.17031
Previous: 0.18432

Kostiakov k
(m^3/min^a/m)

0.04780402
Previous: 0.04261

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 122 NOTE: SIRMOD value
=0.122 mOld Value 0.061

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Field 19 26/02/2001 Furrow ave Irrigation no:7

Appendix 4.1 Calibrated advance curves

 292

Measured
Advance

x(m) t(min)

100 90

200 180

300 291

400 393

500 493

Flowrate
(m^3/sec) 0.0026

Time-to-cutoff
(mins) 705

Field-length (m) 520
Field-slope 0.00151
Manning n 0.07

Kostiakov a 0.07068
Previous: 0.082

Kostiakov k
(m^3/min^a/m)

0.0868203
Previous: 0.08137

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 118 NOTE: SIRMOD value
=0.118 mOld Value 0.059

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Field 20 9/10/2000 Furrow ave Irrigation no:1

Measured
Advance

x(m) t(min)

100 78

200 173

300 278

400 381

500 485

Flowrate
(m^3/sec) 0.00505

Time-to-cutoff
(mins) 680

Field-length (m) 520
Field-slope 0.00151
Manning n 0.03

Kostiakov a 0.112265
Previous: 0.12189

Kostiakov k
(m^3/min^a/m)

0.14946592
Previous: 0.13952

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 266 NOTE: SIRMOD value
=0.266 mOld Value 0.134

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Appendix 4.1 Calibrated advance curves

 293

Field 20 10/12/2000 Furrow ave Irrigation no:2

Measured
Advance

x(m) t(min)

100 98

200 197

300 297

400 400

500 502

Flowrate
(m^3/sec) 0.00511

Time-to-cutoff
(mins) 594

Field-length (m) 520
Field-slope 0.00151
Manning n 0.03

Kostiakov a 0.00848 Previous:
0.01991

Kostiakov k
(m^3/min^a/m)

0.27023988
Previous: 0.24978

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m)
286.608 NOTE: SIRMOD

value =0.286608 mOld
Value 0.098

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Field 20 1/01/2001 Furrow ave Irrigation no:3

Measured
Advance

x(m) t(min)

100 56

200 133

300 203

400 277

500 360

Flowrate
(m^3/sec) 0.0051

Time-to-cutoff
(mins)

445 NOTE: SIRMOD value
=445 minsOld Value 875

Field-length (m) 520
Field-slope 0.00151
Manning n 0.03

Kostiakov a 0.11379
Previous: 0.12373

Kostiakov k
(m^3/min^a/m)

0.11054496
Previous: 0.10257

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 162 NOTE: SIRMOD value
=0.162 mOld Value 0.081

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Appendix 4.1 Calibrated advance curves

 294

Field 20 29/01/2001 Furrow ave Irrigation no:5

Measured
Advance

x(m) t(min)

100 43

200 96

300 152

400 210

Flowrate
(m^3/sec)

0.00395 NOTE: SIRMOD
value =3.95 lps NOTE:

INFILT value =3.95 l/sec
Time-to-cutoff

(mins) 285
Field-length (m) 520

Field-slope 0.00151
Manning n 0.03

Kostiakov a 0.132125
Previous: 0.1606

Kostiakov k
(m^3/min^a/m)

0.05786585
Previous: 0.0464

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 140 NOTE: SIRMOD value
=0.14 mOld Value 0.072

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Field 20 13/02/2001 Furrow ave Irrigation no:6

Measured
Advance

x(m) t(min)

100 60

200 130

300 209

400 290

Flowrate (m^3/sec) 0.00548
Time-to-cutoff

(mins) 468
Field-length (m) 520

Field-slope 0.00151
Manning n 0.02

Kostiakov a 0.138605
Previous: 0.13235

Kostiakov k
(m^3/min^a/m)

0.11260512
Previous: 0.10811

Kostiakov fo
(m^3/min/m)

0 Previous:
0.00004

Z-required (m) 200 NOTE: SIRMOD value
=0.2 mOld Value 0.1

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Appendix 4.1 Calibrated advance curves

 295

Field 20 26/02/2001 Furrow ave Irrigation no:7

Measured
Advance

x(m) t(min)

100 75

200 153

300 229

400 302

500 388

Flowrate
(m^3/sec)

0.00476 NOTE: SIRMOD
value =5.05 lps

Time-to-cutoff
(mins)

680 NOTE: SIRMOD value
=680 minsOld Value 425

Field-length (m) 520
Field-slope 0.00151
Manning n 0.03

Kostiakov a 0.00602
Previous: 0.12189

Kostiakov k
(m^3/min^a/m)

0.19065816
Previous: 0.13952

Kostiakov fo
(m^3/min/m) 0 Previous: 0

Z-required (m) 266 NOTE: SIRMOD value
=0.266 mOld Value 0.095

Furrow top width
(m) 0.72

Furrow mid width
(m) 0.48

Furrow bot width
(m) 0.3

Furrow max depth
(m) 0.2

Created by David McClymont, NCEA on the 2006-08-24
mcclymon@usq.edu.au using FIDO v1.01 (beta)

Appendix 4.1 Calibrated advance curves

 296

Appendix 5.1 Response-surface generation for different user-defined weightings of the objective-function

 297

Appendix 5.1 Response-surface generation for different
user-defined weightings of the objective-function

Figure A5.1.1: Response-surface for equal weightings of the objective-function components.

Figure A5.1.2: Response-surface for maximising storage efficiency.

Appendix 5.1 Response-surface generation for different user-defined weightings of the objective-function

 298

Figure A5.1.3: Response-surface for maximising application uniformity.

Figure A5.1.4: Response-surface for minimising runoff.

Appendix 5.1 Response-surface generation for different user-defined weightings of the objective-function

 299

Figure A5.1.5: Response-surface for minimising deep drainage.

Figure A5.1.6: Response-surface for maximising storage efficiency.

Appendix 5.1 Response-surface generation for different user-defined weightings of the objective-function

 300

Figure A5.1.7: Response-surface for ignoring uniformity.

Figure A5.1.8: Response-surface for emphasising maximise storage efficiency.

Appendix 5.1 Response-surface generation for different user-defined weightings of the objective-function

 301

Figure A5.1.9: Response-surface for emphasising maximise application uniformity.

Figure A5.1.10: Response-surface for emphasising minimise runoff.

Appendix 5.1 Response-surface generation for different user-defined weightings of the objective-function

 302

Figure A5.1.11: Response-surface for emphasising minimise drainage.

Appendix 5.2 FIDO Optimisation Trial Results

 303

Appendix 5.2 FIDO Optimisation Trial Results
Note: Red lines in charts represent SIRMOD output, while blue lines are
optimised outputs.

Optimisation Output: C_Turner's Property
Sirmod vs Optimised Comparison

Field 19, 7/10/2000: Furrow 1 Irrigation no:1
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00194 0.00194
Time-to-cutoff 1690 1198
Performance Measure Measured Optimised Comments
Application Efficiency 73.3 98.5
Storage Efficiency 99.3 94.5
Application Uniformity 96 92.7
Applied Volume 196982.6139447.2
Runoff Volume 49287.7 1623.9
Stored Volume 144520.5137534.3
Drainage Volume 3354.6 442.2

Field 19, 7/10/2000: Furrow ave Irrigation no:1
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00194 0.00194
Time-to-cutoff 1690 1126
Performance Measure Measured Optimised Comments
Application Efficiency 58.5 87.7
Storage Efficiency 100 99.7
Application Uniformity 97 93.8
Applied Volume 196941.9131066.4
Runoff Volume 56740.2 0
Stored Volume 115440 115133.9
Drainage Volume 24933.9 16066.6

Appendix 5.2 FIDO Optimisation Trial Results

 304

Field 19, 31/12/2000: Furrow ave Irrigation no:3
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.0014860.001486
Time-to-cutoff 1248 870
Performance Measure Measured Optimised Comments
Application Efficiency 67.1 94.2
Storage Efficiency 100 97.7
Application Uniformity 95.6 91.8
Applied Volume 111510.777569.2
Runoff Volume 26965.2 262.7
Stored Volume 74880 73189.4
Drainage Volume 9715.8 4201.5

Field 19, 12/01/2001: Furrow ave Irrigation no:4
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured OptimisedComments

Flowrate 0.00158 0.00158
Time-to-cutoff 1070 710
Performance Measure Measured OptimisedComments
Application Efficiency 66.5 95.8
Storage Efficiency 100 95.5
Application Uniformity 93.2 89.3
Applied Volume 101480.967308
Runoff Volume 24265.4 0
Stored Volume 67600 64581.4
Drainage Volume 9734.9 2811.8

Appendix 5.2 FIDO Optimisation Trial Results

 305

Field 19, 24/01/2001: Furrow ave Irrigation no:5
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation Parameter Measured OptimisedComments
Flowrate 0.00203 0.00203
Time-to-cutoff 755 573.8
Performance Measure MeasuredOptimisedComments
Application Efficiency 63.1 82
Storage Efficiency 100 98.5
Application Uniformity 91.4 87.4
Applied Volume 92151.8 69888.8
Runoff Volume 13932.9 598
Stored Volume 58240 57395.1
Drainage Volume 20094.6 11960

Field 19, 12/02/2001: Furrow ave Irrigation no:6
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured OptimisedComments

Flowrate 0.002 0.002
Time-to-cutoff 875 538.4
Performance Measure Measured OptimisedComments
Application Efficiency 60.1 94.7
Storage Efficiency 100 96.6
Application Uniformity 95.8 90.7
Applied Volume 105258.364608
Runoff Volume 31066.1 180.9
Stored Volume 63440 61277.3
Drainage Volume 10883.3 3216.1

Appendix 5.2 FIDO Optimisation Trial Results

 306

Field 19, 26/02/2001: Furrow ave Irrigation no:7
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured OptimisedComments

Flowrate 0.0026 0.0026
Time-to-cutoff 705 429
Performance Measure Measured OptimisedComments
Application Efficiency 55.3 91.5
Storage Efficiency 100 89.8
Application Uniformity 98.3 87.1
Applied Volume 110708.366924
Runoff Volume 39455.6 0
Stored Volume 61360 55079.3
Drainage Volume 10073.3 5724.6

Field 20, 9/10/2000: Furrow ave Irrigation no:1
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00505 0.00505
Time-to-cutoff 680 468.8
Performance Measure Measured Optimised Comments
Application Efficiency 66.7 94.8
Storage Efficiency 100 97.7
Application Uniformity 95.8 92.1
Applied Volume 206557.7142046.4
Runoff Volume 52799.3 642.4
Stored Volume 138320 135166.3
Drainage Volume 15960.2 6672.1

Appendix 5.2 FIDO Optimisation Trial Results

 307

Field 20, 10/12/2000: Furrow ave Irrigation no:2
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00511 0.00511
Time-to-cutoff 594 470.4
Performance Measure Measured Optimised Comments
Application Efficiency 80.1 100
Storage Efficiency 98.2 97.1
Application Uniformity 99.2 98.5
Applied Volume 182312.1144224.6
Runoff Volume 36312.4 0
Stored Volume 146348 144661.3
Drainage Volume 0 0

Field 20, 1/01/2001: Furrow ave Irrigation no:3
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured OptimisedComments

Flowrate 0.0051 0.0051
Time-to-cutoff 445 325
Performance Measure Measured OptimisedComments
Application Efficiency 61.2 82.8
Storage Efficiency 100 98.3
Application Uniformity 95.6 91.2
Applied Volume 136910.299450
Runoff Volume 28582 0
Stored Volume 84240 82826.8
Drainage Volume 24602.2 17072.9

Appendix 5.2 FIDO Optimisation Trial Results

 308

Field 20, 11/01/2001: Furrow ave Irrigation no:4
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured OptimisedComments

Flowrate 0.00468 0.00468
Time-to-cutoff 450 311.4
Performance Measure Measured OptimisedComments
Application Efficiency 76.1 100
Storage Efficiency 62.2 55.9
Application Uniformity 91.8 90.9
Applied Volume 127683.187441.1
Runoff Volume 30561.2 0
Stored Volume 97706.6 87897.2
Drainage Volume 0 0

Field 20, 29/01/2001: Furrow ave Irrigation no:5
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation Parameter Measured OptimisedComments
Flowrate 0.00395 0.00395
Time-to-cutoff 285 225
Performance Measure MeasuredOptimisedComments
Application Efficiency 83.4 99.3
Storage Efficiency 78.4 73.3
Application Uniformity 94.7 92
Applied Volume 67952.5 53325
Runoff Volume 11283.4 380.8
Stored Volume 57061.9 53358.7
Drainage Volume 0 0

Appendix 5.2 FIDO Optimisation Trial Results

 309

Field 20, 13/02/2001: Furrow ave Irrigation no:6
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00548 0.00548
Time-to-cutoff 468 348
Performance Measure Measured Optimised Comments
Application Efficiency 66.6 88.2
Storage Efficiency 100 97.3
Application Uniformity 92.9 88.4
Applied Volume 155402.4114422.4
Runoff Volume 28175.4 0
Stored Volume 104000 101237.7
Drainage Volume 23720.8 13553.5

Field 20, 26/02/2001: Furrow ave Irrigation no:7
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00505 0.00505
Time-to-cutoff 680 468.8
Performance Measure Measured Optimised Comments
Application Efficiency 66.7 94.8
Storage Efficiency 100 97.7
Application Uniformity 95.8 92.1
Applied Volume 206557.7142046.4
Runoff Volume 52799.3 642.4
Stored Volume 138320 135166.3
Drainage Volume 15960.2 6672.1

Appendix 5.2 FIDO Optimisation Trial Results

 310

Field 17, 11/01/2000: Furrow 8 Irrigation no:4
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00536 0.00536
Time-to-cutoff 650 440
Performance Measure Measured Optimised Comments
Application Efficiency 72.1 99.4
Storage Efficiency 92.5 85.6
Application Uniformity 96.7 93.6
Applied Volume 210553.5141504
Runoff Volume 58701.8 883.1
Stored Volume 152287.8141059.7
Drainage Volume 0 0

Field 18, 1/10/1999: Furrow 8 Irrigation no:1
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured Optimised Comments

Flowrate 0.00364 0.00364
Time-to-cutoff 873 512.4
Performance Measure Measured Optimised Comments
Application Efficiency 53 88.8
Storage Efficiency 100 98.1
Application Uniformity 96.5 91
Applied Volume 190925.9111908.2
Runoff Volume 63763 0
Stored Volume 101500 99612.6
Drainage Volume 25904.7 12512.4

Appendix 5.2 FIDO Optimisation Trial Results

 311

Field 18, 11/01/2000: Furrow 2 Irrigation no:4
Optimisation 1. Run by at 09::26 17/11/2006

Optimisation
Parameter Measured OptimisedComments

Flowrate 0.0035 0.0035
Time-to-cutoff 600 503.4
Performance Measure Measured OptimisedComments
Application Efficiency 65.1 76.8
Storage Efficiency 100 98.4
Application Uniformity 89.4 85.8
Applied Volume 126452.9105714
Runoff Volume 12052.2 1391.8
Stored Volume 82650 81364.6
Drainage Volume 32044.4 23171

Appendix 5.2 FIDO Optimisation Trial Results

 312

Appendix 7.1 Software engineering tools

 313

Appendix 7.1 Software engineering tools
The choice of software engineering tools used in developing the FIDO decision
support system has heavily influenced all aspects of its final design. The
importance of this cannot be understated, and therefore necessitates
documentation and discussion. Poor choice of tools can severely limit program
functionality and may be irreversible once development is underway. Hence,
careful consideration is required at the commencement of the project as to the:

• Choice of operating system;
• Choice of programming language(s);
• Choice of database environment;
• Choice of development environments; and
• Choice of third party tools and libraries.

A7.1.1 Target operating system
Microsoft Windows was chosen as the target operating system for FIDO. Cross-
platform development was initially considered, but rejected on the grounds that:

• It is assumed that the target audience for the software would have access
to Microsoft Windows. Many of these users would already be using
SIRMOD or SRFR which can operate under the Windows environment
(although there can be problems running SRFR as it is DOS based).

• Cross-platform development severely limits the choices of libraries, tools,
and languages available. The true power of the FIDO software lies in its
integration with existing third-party Windows-based libraries.

A7.1.2 Programming languages
C++ was used as the language of choice for developing FIDO, although others
such as Object Pascal, Fortran and BASIC were also considered.

The benefits of using C++ as a programming language for developing FIDO
include:

• It is an intermediate to high-level language: Computer languages can be
roughly categorized between high and low level languages. Higher level
languages are distinguished as being closer to human languages and
further from machine languages and are therefore easier to read, write
and maintain but ultimately must be translated into machine language by
a compiler or an interpreter
(http://www.webopedia.com/TER/H_/high_level_language.html). This
process can occur at development time before “running” the program
such as with C and Pascal, or it can occur at run-time with languages like
BASIC.

• It is a precompiled language: Precompiled languages such as C++ and
Object Pascal offer considerable performance advantages over
interpreted languages such as BASIC, and until recently have been
considered the standard for writing “serious” applications.

http://www.webopedia.com/�

Appendix 7.1 Software engineering tools

 314

• Traditionally it has been a mathematical language: A large range of
mathematical libraries exist in C and C++ which are not available in
languages such as BASIC and Object Pascal (although this is changing).

Another option that was investigated was the use Microsoft’s .NET technology
(http://www.microsoft.com). This would have permitted the use of the Managed
C++ language (now known as C++/CLI) or C# which would be compiled to a
“Common Language Runtime (CLR)” which is then interpreted at runtime. This
is quickly becoming the most popular technology for Windows’ software
developers and offers considerable advantages in software reuse and
development. This language did not exist when this research started, and was
still in its infancy when the most current version of FIDO was developed. At that
time, there were a number of questions arising about the CLR’s mathematical
performance. Reviewing user comments on the internet revealed a full range of
opinions as to its suitability. It was thought that recursive mathematical
operations “may” run as quickly as the fully compiled equivalent, since the
technology compiles the code on the first iteration. Since FIDO has a modular
structure separating interface and program code, it could quite easily be
converted into a .NET program in the future, if a potential benefit is seen to exist
(including third party support).

A7.1.3 Database environment
XML (eXtensible Mark-up Language) and XML Schema technology was chosen
to develop the database components of FIDO. XML is a simple and flexible text
format originally designed for use in large-scale electronic publishing. However,
it is now widely used for data exchange and storage for all sorts of computing
applications (www.w3.org/XML). Its main characteristics include
(www.dclab.com):

• Only standard text (ASCII or UniCode) is used with a document;
• All data is clearly identified inside user-defined tags;
• The document remains unformatted although formatting information can

be included in the XML tagging; and
• The document usually conforms to a user-defined rule-set or template

such as a schema or DTD (Document Type Definition) although this is
optional.

The two main benefits of using XML (www.dclab.com/xmlbenefits_p1.asp) as a
database include:

1. Content identification: text elements are identified on the basis of what
they are and not what they look like. Data is encapsulated within user-
defined tags. For example, title information could be presented as
<Title>This is the title</Title>.

2. International standard: XML is now an international standard that is
maintained by an independent standards committee. Because of this it is
compatible with a wide range of software products.

In the early stages of this project, the database was originally developed using
Microsoft Access and connected to the FIDO interface through Borland’s
database controls that ship with Builder.

http://www.w3.org/XML�
http://www.dclab.com/�
http://www.dclab.com/xmlbenefits_p1.asp�

Appendix 7.1 Software engineering tools

 315

A7.1.4 Development environments
Two main software engineering tools were used while developing FIDO. Borland
C++ Builder (www.inprise.com) was used as the integrated development
environment for programming tasks, while XML Spy (www.altova.com) was used
to develop the XML database and reporting components.

Borland C++ Builder (Figure A7.1.1) was chosen over other programming
development environments for two main reasons: firstly because it is an object-
oriented programming environment for Windows using the C++ language (and
also Object-Pascal); and secondly, because it is compatible with the class-
leading third-party components TeeChart (www.teemach.com) and
VirtualTreeView (www.delphi-gems/VirtualTreeview) which feature prominently
throughout the FIDO decision support system.

Figure A7.1.1: Borland C++ Builder has been used as the integrated development environment

for developing FIDO.

Other products which were also considered include Borland Delphi, Microsoft
Visual C++, and Microsoft Visual Basic. Delphi is Builder’s sister product and
they both share the same Windows programming library (Visual Class Library)
and compile to the same object-code. However, Delphi was overlooked as it is
an Object-Pascal programming environment, and not this author’s language of
choice. Visual C++ is arguably the industry leader in integrated development
environments. However, it is let down by the way it handles third-party
components. This area is the real strength of Builder (and Delphi) as it allows
the developer to embed third-party components called “packages” directly into
your own applications. In contrast, Visual C++ requires dynamic link libraries
that are external to the developed program, with very limited communication
ability. Visual Basic was also briefly considered at the start of the project, but
was dismissed based on its slower performance, especially when dealing with
mathematical equations. However, it is often favoured by novice programmers
for it simplicity.

http://www.inprise.com/�
http://www.altova.com/�
http://www.teemach.com/�
http://www.delphi-gems/VirtualTreeview�

Appendix 7.1 Software engineering tools

 316

XML Spy 2004 was used to develop the database and input/output components
of FIDO and is now an industry standard for XML development. XML Spy
allows you to graphically create a database or file structure using schema
technology (Figure A7.1.2).

Figure A7.1.2: XML Spy 2004 has been used to develop the XML database and reporting

capabilities of FIDO

A7.1.5 Components and libraries
The use of “packages” in the Borland C++ Builder development environment is
one of its greatest attributes. In the world of object-oriented programming where
“reuse” is one of the primary goals, “packages” offer a simple means to
distribute components so others can use them. These days, there are numerous
companies dedicated to component writing. As a software developer, it makes
good sense to use these third-party components rather than having to “reinvent
the wheel”. FIDO relies heavily on this technology making extensive use of two
third-party components: TeeChart and VirtualTreeView. It also extensively uses
the XML component library which ships with Borland C++ Builder. Without
these components, FIDO would look and feel very different to its current form. It
would also be much less powerful since these tools are widely regarded as “state
of the art”.

TeeChart is a class-leading and award-winning charting and plotting tool by
Steema Software, written in Object-Pascal using the Visual Class Library.
Because it uses this library, it works seamlessly in Borland C++ Builder, and is
easily modified and customised. FIDO incorporates dozens of TeeChart objects
throughout its interface, in both original and modified form. They are used for
outputting results graphically, animating the simulation of water flowing down the
furrow, and even as a slider-bar control for manipulating outputs (Figure A7.1.3).

Appendix 7.1 Software engineering tools

 317

(a) (b)

(c)

Figure A7.1.3: Examples of TeeChart as used in FIDO: (a) 3D surface for parameter analysis
generation; (b) as a graphical animation of the simulation output; and (c) as a slider bar control.

VirtualTreeView is a powerful treeview control that is used throughout FIDO as
the graphical control for data entry, selecting and viewing (Figure A7.1.4). This
tool is quite unique in that it uses a different paradigm for tree management
than other existing treeview controls. This component does not know anything
about the data it manages (other than its size) and uses “events” to retrieve
information and display it to the screen. It is very fast and has a very small
memory footprint.

(a)

(b)

(c)

Figure A7.1.4: Examples of VirtualTreeView throughout FIDO: (a) As a data selector; (b) for
data entry; and (c) as a grid control for data output.

Appendix 7.1 Software engineering tools

 318

The XML component library that ships with Borland C++ Builder is used
extensively in FIDO for database management, report generation, and system
file manipulation. This key component in this library is TXMLDocument which
uses an external “Document Object Model” (DOM) parser to analyse any XML
document. With it the user can load a document, read and modify it, and a save
changes. In FIDO, it is used closely in conjunction with the VirtualTreeView
component.

Appendix 7.2 FIDO XML Database Structures

 319

Appendix 7.2 FIDO XML Data Structures

Figure A7.2.1: Property Data Structure

Appendix 7.2. FIDO XML Database Structures

 320

Figure A7.2.2: Paddock Data Structure

Appendix 7.2. FIDO XML Database Structures

 321

Figure A7.2.3: Event Data Structure

Appendix 7.2. FIDO XML Database Structures

 322

Figure A7.2.4: Event Data Structure

Appendix 7.3 Evolution of FIDO ’s simulation GUI

 323

Appendix 7.3 Evolution of FIDO’s simulation GUI

Figure A7.3.1: Main interface version 1. This is the very first version of FIDO with textural outputs

and simple animation.

Figure A7.3.2: Simulation Animation, early version. First full working version of the FIDO

simulation with detailed simulation outputs. Database was primitive with many controls that were
only there for show.

Appendix 7.3 Evolution of FIDO ’s simulation GUI

 324

Figure A7.3.3: Textural Outputs, early version. Textural outputs for flow-area, flowrate and
infiltration. This was a very powerful feature of the early version and proved very helpful in

debugging the simulation. However, it was also poorly written using a large amount of code and
proved difficult to extend and maintain.

Figure A7.3.4: Performance outputs, early version. Another output from the early version showing

how irrigation performance varies with simulation time.

Appendix 7.3 Evolution of FIDO ’s simulation GUI

 325

Figure A7.3.5: Simulation animation, early version. Early attempt at integrating all decision

support components into a single program. Interface appears clean, many features remained
operational. Measured advance data is incorporated in inputs and outputs.

Figure A7.3.6: Simulation animation, early version. This version attempts to simplify the interface

through using task-buttons, and remove many of the unnecessary controls presented in the
previous figure.

Appendix 7.3 Evolution of FIDO ’s simulation GUI

 326

Figure A7.3.7: Advanced simulation outputs. This version tries to simplify the interface further by

placing task buttons along the left hand side of the screen. Extra simulation outputs are
presented. It appears that there was an error during the simulation. The software name was

temporarily changed to DESSI (Decision Support for Surface Irrigation), but was later changed
back to FIDO (proving that the initial name adopted by software is hard to change).

Figure A7.3.8: XFIDO simulation. Advanced interface developed to help debug the simulation

engine. Code-named XFIDO (Extended FIDO) it presented previously hidden simulation
parameters, and new controls for stepping through and debugging the simulation. Advanced
outputs were also presented including initial estimates for flow-area at each time-step. These
estimates are shown as red dots on the animation which could be changed by dragging the

points with the mouse.

Appendix 7.3 Evolution of FIDO ’s simulation GUI

 327

Figure A7.3.9: Advanced XFIDO outputs. This version of the software was developed as a

compact version with a minimum of features presented. This was created when the decision
support software was becoming very large and difficult to maintain. It was therefore split into

separate models for development purposes.

Figure A7.3.10: Multiple simulations. Prototype of the current version of FIDO. This prototype

version was never operational being plagued by instability problems. This version was the first to
simultaneously display and compare multiple outputs.

Appendix 7.3 Evolution of FIDO ’s simulation GUI

 328

Figure A7.3.11: Solution grids. Solution grid analysis from the prototype of the current FIDO

version. This proved to be a useful development tool for debugging the simulation engine with the
capability to zoom into the grid to study irregularities.

Appendix 7.4 Evolution of FIDO ’s calibration GUI

 329

Appendix 7.4 Evolution of FIDO’s calibration GUI

Figure A7.4.1: First calibration attempt. First attempt at calibration using the hydrodynamic

model. Calibration input options were permanently presented to the user.

Figure A7.4.2: Early calibration interface. Early version of calibration interface, which has

undergone structural simplifications since the previous version. Both “normal” and “advanced”
calibration inputs were available.

Appendix 7.4 Evolution of FIDO ’s calibration GUI

 330

Figure A7.4.3: Early attempt at calibration. Calibration inputs are located in a separate pane in

the input panel. Cumulative infiltration is presented as an output of the calibration.

Figure A7.4.4: Advanced calibration interface used in XFIDO (Extended FIDO). This version was
never operational, but was developed to help debug the calibration, with the ability to try different

simulation stability measures and see the effect on the calibration response.

Appendix 7.5. Evolution of the FIDO ’s optimisation GUI

 331

Appendix 7.5 Evolution of FIDO’s optimisation GUI

Figure A7.5.1: Early optimisation interface. Early version of the optimisation interface showing the

optimisation priority setter. This was the second version of the setter tool adding a pie chart to
help visualise priority proportions. This solution caused several problems relating to the

proportional nature of the task. Changing the setting of one bar inadvertently changed the other
weightings automatically as the relative position between the bars changed. Also several

different setting arrangements could be used to achieve the same result.

Figure A7.5.2: Early objective-function setter. Updated version of the objective-function priority
setter presented as a popup dialog. This version was created from two TeeChart objects, rather

than a series of standard controls. This tool was designed so that moving one slider bar
automatically updated the position of the other slider bars in proportion. In practice, this proved

to be an awkward solution with an unnatural feel.

Appendix 7.5. Evolution of the FIDO ’s optimisation GUI

 332

Figure A7.5.3: Advanced objective-function setter. Prototype version of the current objective-
function priority setter. This version is a custom made component with “handles” that appear

when the mouse is moved over the pie-chart. In this way, the user has direct control over
adjusting priority proportions, overcoming problems associated with the previous slider controls.

 Appendix 7.6 Evolution of FIDO ’s parameter analysis GUI

 333

Appendix 7.6 Evolution of FIDO’s parameter analysis GUI

Figure A7.6.1: First version of parameter analysis interface. First version of the parameter

analysis interface showing a calibration response-surface. This version was limited in that only
one output could be shown at a time.

Figure A7.6.2: Updated parameter analysis interface. An updated version of the parameter

analysis interface with an objective-function priority-setter to dynamically change the objective-
function response-surface in real time. Different outputs are selectable via different options in
the input panel. Different input options are also presented. These options are only shown when

the parameter analysis tab is selected.

 Appendix 7.6 Evolution of FIDO ’s parameter analysis GUI

 334

Figure A7.6.3: Multiple views in parameter analysis interface. Updated version of the previous

interface with advanced options hidden in different input panel views. Multiple outputs can now
be compared simultaneously.

Figure A7.6.4: Multiple outputs in parameter analysis interface. Advanced interface from the

XFIDO (Extended FIDO) version. This version was developed as a debugging tool for the
simulation. This was the first version to present a slider bar to study output for a third parameter.

Outputs can then be animated through adjusting the slider bar position.

 Appendix 7.6 Evolution of FIDO ’s parameter analysis GUI

 335

Figure A7.6.5: Prototype of current parameter analysis interface. Prototype interface for the
current version of FIDO. In this example, field-length is represented by the slider-bar at the

bottom of the screen. Optimisation priority was temporarily omitted from this version.

Figure A7.6.6: Prototype showing 3rd parameter expansion. Prototype of current version showing

the third parameter expanded as a series of charts of application efficiency with each chart
representing a different field-length.

 Appendix 7.6 Evolution of FIDO ’s parameter analysis GUI

 336

Figure A7.6.7: Prototype contour plotter. First version of the user-defined parameter analysis in

which the user “drags and drops” performance outputs onto a user-defined grid of charts. In this
example, the different columns represent different infiltration properties.

 Appendix 7.7 Evolution of the FIDO database GUI

 337

Appendix 7.7 Evolution of FIDO’s database GUI

Figure A7.7.1: Original FIDO database. First version of the FIDO database interface. This version

used the Microsoft Access database engine with specialised database controls. Data was
separated into a site database and an event database which were displayed in tables. This
interface was seen as overly complex, with too much information being presented at once.

Figure A7.7.2: Updated FIDO Database. An updated version of the database interface with an

extra table for design and management results.

 Appendix 7.7 Evolution of the FIDO database GUI

 338

Figure A7.7.3: Tab filtering in early FIDO database. This version tries to simplify the database

interface by using tabs to filter field information, furrow details, irrigation details, irrigation results
and calibration measurements. This was ultimately seen as a failed attempt at simplification as

the end result was just as complex as the previous versions.

Figure A7.7.4: Prototype of current database. This is a prototype of the current version of FIDO

using the XML-based database structure. This structure has four levels including property,
paddock, event and simulation information. The database output presented in the right hand

window is in raw XML format with no stylesheet transformation applied.

 Appendix 7.7 Evolution of the FIDO database GUI

 339

Figure A7.7.5: Prototype data editor. Prototype data editor window for the current FIDO version.
The XML data cannot be directly edited so a tree based data editor was incorporated into this

prototype version. The same system exists in the current version but with more refined formatting.

Figure A7.7.6: Database performance summaries. Prototype summary analysis for performance

results. This analysis provides a range of options to investigate spatial and temporal performance
of the irrigation.

 Appendix 7.7 Evolution of the FIDO database GUI

 340

Figure A7.7.7: Infiltration summaries. Infiltration summary analysis for investigating spatial and

temporal variations in infiltration.

	Chapter 1 Introduction: Towards the development of a decision support system for furrow & border irrigation
	1.5 Definitions
	1.5.1 Defining surface irrigation practices
	1.5.2 Defining design and management of surface irrigation.
	1.5.3 Defining surface irrigation modelling
	1.5.4 Defining decision support systems for furrow and border irrigation.

	1.6 Delimitations of scope
	1.6.1 Focus upon Australian furrow and border irrigation practices.
	1.6.2 Focus upon engineering aspects of in-field design and management
	1.6.3 Focus upon conceptual design of a decision support system.
	1.6.4 Focus on irrigators, consultants and researchers.
	1.6.5 Focus upon validation against existing proven technology.

	1.7 Outline of dissertation
	1.8 Conclusions

	Chapter 2 Background to surface irrigation decision support
	2.1 Introduction
	2.2 Surface irrigation background
	2.2.1 History
	2.2.2 Techniques
	2.2.3 Phases of the irrigation cycle
	2.2.4 Design and management practices

	2.3 Surface irrigation decision support
	2.3.1 What is a decision support system for surface irrigation?
	2.3.2 Uses of the decision support system
	2.3.3 The need for decision support systems
	2.3.4 Research for decision support systems

	2.4 Background to simulation modelling
	2.4.1 Model equations
	2.4.2 Simplification of the model
	2.4.3 Infiltration model
	2.4.4 Numerical solution techniques
	Method of Characteristics
	Finite differencing numerical methods
	Other numerical methods

	2.4.5 Dimensionless solution formulations

	2.5 Simulation model development
	2.5.1 The evolution of volume-balance models
	2.5.2 The evolution of kinematic wave models
	2.5.3 The evolution of zero-inertia models
	2.5.4 The evolution of hydrodynamic models

	2.6 “Inverse” methodologies
	2.6.1 Graphical solution techniques for the “inverse problem”
	2.6.2 Numerical approximation techniques for the “inverse problem”
	2.6.3 Optimisation-based techniques for the “inverse problem”

	2.7 Optimisation of furrow and border irrigation design and management
	2.7.1 Human based learning for optimising design and management
	2.7.2 Design charts for optimising design and management
	2.7.3 Computer optimised practices for design and management
	2.7.4 Real time automated control

	2.8 Decision support software for furrow and border irrigation
	2.9 General discussion
	2.10 Direction for developing a new decision support system for furrow and border irrigation.
	2.11 Conclusions

	Chapter 3 Development of a simulation engine for furrow and border irrigation decision support
	3.1 Introduction
	3.2 Background to simulation engine design
	3.2.1 What is a simulation engine?
	3.2.2 Elements of the simulation engine
	3.2.3 Objectives of simulation engine development
	Accuracy, robustness and reliability.
	Reliability combines the attributes of accuracy and robustness and implies a proven ability to consistently deliver accurate simulation results over a period of time and conditions.
	Flexibility
	Reusability

	3.2.4 Model and solution technique considerations
	3.2.5 Software algorithm design considerations
	3.2.6 Programming complexity issues

	3.3 Model and solution technique formulation
	3.3.1 Choosing the underlying model
	3.3.2 Choosing a numerical solution technique
	3.3.3 Solution grid formation
	3.3.4 Input requirements
	3.3.5 Simulation engine outputs
	3.3.6 Solution node outputs
	3.3.7 Summary outputs

	3.4 Refinement of the numerical method
	3.4.1 Principal formulation
	3.4.2 First cell calculations
	3.4.3 Advance phase calculations
	3.4.4 Runoff conditions
	3.4.5 Lateral flow conditions
	3.4.6 Boundary conditions
	3.4.7 Initial parameter estimates
	3.4.8 Parameter constraints

	3.5 Computer algorithm development
	3.5.1 Developing a structure
	3.5.2 Model algorithm Figur
	3.5.3 Input parameter objects
	3.5.4 Output objects
	3.5.5 Phase switching
	3.5.6 Exception handling

	3.6 Observations on simulation characteristics
	3.6.1 Cell sizes decrease downstream
	3.6.2 Sources of volume-balance error
	3.6.3 Sources of instability
	3.6.4 Effect of solution grid structure.
	3.6.5 Recession approximations can cause instability
	3.6.6 Transition to runoff

	3.7 Achieving simulation robustness.
	3.7.1 Early time-step calculations
	3.7.2 Parameter monitoring during iterations
	3.7.3 Pre-testing time-step to remove collapsing cells
	3.7.4 Automatic time-step management

	3.8 Validation
	3.8.1 Accuracy of results
	3.8.2 Operation speed

	3.9 Conclusions

	Chapter 4 Estimation of soil infiltration and hydraulic roughness parameters
	4.1 Introduction
	4.2 Background to estimation of soil infiltration and roughness parameters
	4.2.1 Objectives of calibration module development
	4.2.2 Elements of the calibration module
	4.2.3 Limitations of existing techniques

	4.3 Preliminary study – INFILT volume-balance solution technique
	4.3.1 Derivation of method
	4.3.2 Optimisation technique
	4.3.3 Comparison with other methods.
	4.3.4 Volume-balance errors
	4.3.5 Objective-function response-surfaces
	4.3.6 Data handling
	4.3.7 Findings of the preliminary study

	4.4 FIDO hydrodynamic inverse technique
	4.4.1 Algorithm design considerations
	4.4.2 Derivation of FIDO hydrodynamic inverse method
	4.4.3 Developing an object-oriented structure
	4.4.4 Calibration module algorithm
	4.4.5 Objective-function algorithms
	4.4.6 Achieving operational efficiency
	4.4.7 Response-surfaces

	4.5 Validation
	4.6 Conclusions

	Chapter 5 Automatic optimisation of design and management parameters
	5.1 Introduction
	5.2 Background to optimising surface irrigation practices
	5.2.1 What is the automatic optimisation of surface irrigation practices?
	5.2.2 Objectives of optimisation-module development
	5.2.3 Elements of the optimisation-module
	5.2.4 Methodology considerations

	5.3 Objective-function formulation
	5.4 Computer algorithm development
	5.4.1 Developing a structure
	5.4.2 Objective-function algorithm
	5.4.3 Optimisation algorithm
	5.4.4 Decision variable selection and constraints

	5.5 Investigation of objective-function response.
	5.5.1 Response of irrigation performance measures
	5.5.2 System response for different management strategies
	5.5.3 Closer examination of response-surface characteristics
	5.5.4 Variations in system response for different field-lengths

	5.6 Optimisation validations.
	5.7 Discussion
	5.8 Conclusions

	Chapter 6 Automated generation of field design and management guidelines
	6.1 Introduction
	6.2 Background to automating the development of field design and management guidelines
	6.2.1 What is automated generation of field design and management guidelines?
	6.2.2 Objectives for developing a system for automating field-guideline generation.
	6.2.3 Elements of an automated system to generate field design and management guidelines

	6.3 Accounting for infiltration variation
	6.4 Preliminary Study: Development of guidelines for surface irrigation
	6.4.1 Field data
	6.4.2 Pre-analysis of infiltration data
	6.4.3 Evaluation of management strategies
	6.4.4 Investigation of design curves.
	6.4.5 Finalisation of guidelines
	6.4.6 Discussion of case study
	6.4.7 Recommendation from case study

	6.5 Computer algorithm development
	6.5.1 Developing a structure

	6.6 Analyses for displaying output
	6.6.1 Response-surfaces
	6.6.2 Guidelines for design and management

	6.7 Discussion of parameter-analysis facility
	6.8 Conclusions

	Chapter 7 Software engineering a decision support system for furrow and border irrigation
	7.1 Introduction
	7.2 Decision support system design criteria
	7.2.1 What is the FIDO decision support system
	7.2.2 Objectives of decision support system development
	7.2.3 Software engineering tools

	7.3 Program framework
	7.3.1 Design methodology
	7.3.2 Structural components
	User interface units
	Managers
	Analyses
	Tools

	7.3.3 Structural connections

	7.4 Developing a surface irrigation database
	7.4.1 Design considerations
	7.4.2 Schema representation of the data.
	Property data
	Paddock data
	Event data
	Model data

	7.4.3 Database connections
	7.4.4 Programming implementation of the database.
	Record objects
	Parameter objects

	7.4.5 Database development methodology

	7.5 Graphical user interface
	7.5.1 Principles of graphical user interface design
	7.5.2 Evaluation of existing interfaces
	7.5.3 Prototyping the interface
	7.5.4 Current interface functionality
	7.5.5 Interface layout
	7.5.6 Modules
	Database module
	Simulation module
	Calibration module
	Optimisation module
	Parameter analysis module

	7.6 Using the decision support system
	7.7 Conclusions

	Chapter 8 Conclusions, implications and recommendations
	8.3.2 Practical implications of this research
	8.4 Limitations
	Manning n
	Field slope
	Inflow
	Cross-sectional area of flow
	Final infiltration rate

