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Abstract 
 
Furrow and border irrigation practices in Australia and around the world are 
typically inefficient. Recent advances in computer-based surface irrigation 
decision support technology have the potential to improve performance, but have 
had little uptake. Despite considerable academic achievements with individual 
components of the technology, the implementation of this knowledge into usable 
tools has been immature, hindering adoption. In particular, there has been little 
progress in encapsulating the different decision support components into a 
standalone system for surface irrigation. Therefore, the research problem 
addressed in this dissertation aims to develop a new decision support system for 
furrow and border irrigation aimed at increasing the usability of the technology, 
and improving decision making capabilities.  Specifically the research hypothesis 
is: 
 
“That calibration, optimisation, and parameter analysis capabilities can be 
developed and integrated with an accurate and robust simulation model into a 
decision support system to improve furrow and border irrigation performance.”  
 
Six research objectives have been identified to support the hypothesis including: 
(RO1)  investigate existing surface irrigation modelling technology to determine a 
model and solution technique structure suitable for incorporating into a decision 
support system; (RO2) develop a robust reliable simulation engine for furrow and 
border irrigation for automation within a decision support system under 
optimisation and systematic response evaluation; (RO3) investigate and develop 
parameter estimation (calibration) capabilities for the decision support system; 
(RO4) investigate and develop optimisation capabilities for the decision support 
system; (RO5) investigate and develop parameter response (design charts) 
capabilities for the decision support system; and (RO6) develop an object-
oriented framework to combine the components developed in Research 
Objectives 2 to 5 with data management facilities and a graphical user interface.  
  
Successful completion of these objectives has resulted in the development of a 
decision support system for furrow and border irrigation featuring an automation-
capable hydrodynamic simulation engine, automated full-hydrodynamic inverse 
solution, automated optimisation of design and management variables, and 
automated user-definable real-time generation of system response. This was 
combined with a highly flexible object-oriented program structure and web-
browser-like graphical user interface. Each of these components represents a 
unique implementation of the required functionalities, differing from the 
established software packages (such as SIRMOD and WinSRFR) that use 
alternate technologies with no automation or optimisation capabilities. 
 
Development of the hydrodynamic simulation engine has involved the refinement 
of the commonly used implicit double-sweep methodology with the objectives of 
achieving robustness and reliability under automation. It was subsequently found 
that only subtle changes and manipulations were required in much of the 
numerical methodology, including derivation of simplified solution equations. The 
main focus of this research has targeted the computational algorithms that drive 
the numerical solution process. Key factors effecting robustness and reliability 
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were identified in a study of simulation operation, and treated through these 
algorithms. Validation was undertaken against output from the SIRMOD 
simulation engine, with robustness and reliability tested through tens of 
thousands of simulations under optimisation and automated system response 
evaluation. 
 
The calibration facilities demonstrated that the inverse-solution using the full-
hydrodynamic model is a viable and robust methodology for the unique 
identification of up to three infiltration/roughness parameters. Two optimisation-
methods were investigated during this research with objective-functions based 
upon either a volume-balance time-of-advance equation, or complete simulations 
of the hydrodynamic model. A simple but robust optimisation algorithm was 
designed for this purpose. While the volume-balance method proved fast and 
reliable, its accuracy is reduced due to the underlying assumptions and simplistic 
model structure. The hydrodynamic method was shown to be accurate, although 
it suffered slow execution times.  It was therefore decided to use the two 
methods in tandem during the solution process where the faster volume-balance 
method is used to provide starting estimates for the more accurate 
hydrodynamic method. Response-surface investigation for the advance-based 
objective function identified a unique solution when solving for three parameters. 
 
It was found that the automated unconstrained optimisation of design and 
management practices is limited to the selection of one solution variable (time to 
cut-off) due to non-unique multi-variable solutions. Nevertheless, the developed 
facilities provide a unique benchmarking of irrigation performance potential. This 
research has used the earlier-developed optimisation algorithm to automate 
simulations using a prototype objective-function based upon user-defined 
weightings of key performance measures. A study of the response-surfaces of 
different configurations of the objective-function identified parabolic ridges of 
alternate solutions, so, in practice, the optimisation process simplifies down to 
optimising only one parameter: time-to-cutoff. It was also recognized that the 
performance-based objective functions are highly sensitive to numerical 
discretisation inconsistencies that occur between simulations, which impede 
solution convergence. 
 
The highly customisable, automated, system response evaluation facilities 
developed in this research offer potential as both a research and practitioner 
tool, capable of multidimensional analysis of irrigation systems subject to 
temporal and spatial infiltration variations. A preliminary study demonstrated the 
importance of infiltration variation on irrigation decision-making, and provided 
initial guideline layout designs that combined the effects of variable infiltration 
and three decision variables using a fixed management strategy of minimising 
runoff. A limited range of response outputs for a fixed management objective 
negated the potential benefit of visualising a large number of dimensions. 
Nevertheless, this study provided direction for the subsequent software 
development with recommendations including: representing system outputs as 
contours and iso-curves, rather than by the chart axes; representing different 
infiltration conditions in separate design charts; allowing the user to assign 
variables to each chart axis; and representing only two decision variables in each 
chart. 
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Finally, the simulation, calibration, optimisation and parameter analysis 
components were combined with a database and graphical user interface to 
develop the FIDO (Furrow Irrigation Decision Optimiser) decision support system. 
There were three focus areas during this marriage of components; firstly, an 
object-oriented structure was developed to accommodate program elements 
concentrating on separating the graphical user interface components from other 
task related objects for flexible future development; secondly, a database was 
developed using XML-based technologies to store property, paddock, event and 
model information; and thirdly, a user-friendly graphical user interface was 
created with web-browser-like functionality. The software design evolved through 
many different prototypes with its current design being heavily influenced from 
the successes and mistakes of the previous attempts.  
 
This work represents the first coordinated attempt to develop a decision support 
system for furrow irrigation linking a database, simulation engine, calibration 
facilities, optimisation facilities, and parameter analysis capabilities. A major 
feature of this work is that all components of the system have been developed 
from first principles using an object-oriented structure, with the primary goal of 
implementation into a decision support system. This research has contributed to 
the development of a professional-quality software package to improve the 
decision-making capabilities of researchers, irrigation consultants, and irrigators. 
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Contributions to theory and practice from this research 
 
This dissertation has covered a wide range of topic areas in developing a 
decision support system for furrow and border irrigation. A summary of the major 
contributions to theory and practice arising from this research include: 
• Development of a robust, reliable and flexible hydrodynamic simulation 

engine for furrow and border irrigation for automation within a decision 
support system under optimisation and systematic response evaluation. This 
includes: 

o  Refinement of existing simulation technologies including the 
simplification of the algebraic equations for the Preismann double-
sweep solution technique; 

o Development of an object-oriented structure to simplify operation and 
improve flexibility and future development; and 

o Identification and solution to convergence problems associated with 
hydrodynamic modelling.  

• Development of an automated hydrodynamic inverse solution technique for 
estimating soil infiltration (and roughness) parameters. This includes: 

o Development of a simple reliable optimisation algorithm; 
o Development of a simple volume-balance-based inverse technique for 

calibrating with a minimum of field data, and for generating initial 
parameter estimates for the hydrodynamic solution; and 

o Investigation of parameter response-surfaces for the inverse problem 
identifying a unique solution when estimating three infiltration 
parameters. 

• Development of an automated optimisation technique for design and 
management practices, with an emphasis on quantifying the potential of 
irrigation performance. This includes: 

o Development of a user-defined objective-function for optimisation of 
irrigation design and management practices;  

o A study of the system response for optimising irrigation performance 
identifying that an unlimited range of management options exists to 
achieve an optimum level of performance; 

o The subsequent recommendation of optimisation on only one design 
or management parameter due to the non-unique solution and noise 
in the system response; and  

o Provides and automated facility for benchmarking the performance 
potential of an irrigation. 

• Development of an automated guideline generation facility for design and 
management of surface irrigation, and system response evaluation, based on 
repeated runs of the hydrodynamic simulation. This includes:  

o Evaluation of a range of alternative design and management 
guidelines that emphasise the sensitivity of temporal variations in 
infiltration; and 

o Development of highly configurable user interface tools for selection 
of design and management variables/parameters, configuration of 
charts, and filtering of results. 

• Encapsulation of these technologies within a user-friendly, and highly 
automated decision support system. This includes: 
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o Development of a four-level database for property, paddock, event 
and simulation data, and for monitoring temporal and spatial system 
changes; 

o Development of an object-oriented program structure focusing on 
adaptability for future enhancements and inclusions; and 

o Development of a simple to use web-browser-like graphical user 
interface, emphasising progressive-disclosure concepts, to help 
improve adoption of the technology to more users. 

 
This research has aided in the development of a new decision support system for 
furrow and border irrigation, which will serve as both a practical tool, and a 
research platform for many years to come. 
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Chapter 1      Introduction: Towards the development of a 

decision support system for furrow & border irrigation 

 
 

1.1 Introduction 
Surface irrigation, including furrow and border irrigation, is the simplest and most 
common method of irrigating crops used throughout the world today.  In Australia 
it accounts for 57% of the total irrigated area (Australian Bureau of Statistics 
2005). These systems have the potential to be very efficient, but in practice, they 
are probably the most inefficient method of irrigation with typical water use 
efficiencies ranging from 30% to 60% (Raine and Backer 1996; Smith 1988). 
Computer software programs developed over the last twenty years can 
potentially increase these efficiencies through helping irrigators improve design 
and management decisions.  However, few irrigators or extension officers 
currently use any form of simulation model or decision support tool to optimise 
performance (Raine and Walker 1998).  Complexity, limited functionality and 
reliability problems are possible barriers to the adoption of these tools.   
 
The goal of this chapter is to introduce and discuss the research problem of 
developing a new decision support system aimed at improving the practices of 
furrow and border irrigation, which are the prevalent forms of surface irrigation in 
Australia. This chapter has five main objectives:  (1) it will present the 
background to this research;  (2) the research question and hypotheses are 
introduced;  (3) justification for this research is presented;  (4) the methodology 
used in this research is discussed;  and (5) the outline of this dissertation is 
presented. 
 

1.2 Background 
Surface irrigation is the technique of artificially applying water to agricultural soils 
where the soil is used to transmit and infiltrate the water over the field.  The 
water is transported along the field in furrows or borders utilising gravity and 
hydrostatic pressure differences as the transport mechanisms.  Water infiltrates 
into the soil during this process, which serves to supply moisture for plant growth 
and provides a delivery mechanism for essential nutrients while leaching and 
diluting salts in the soil.   
 
Surface irrigation systems have the potential to be very efficient and return high 
crop yields (Hodgson et al. 1990).  However, in practice they are typically 
inefficient with design and management based upon traditional and primitive 
methods with little knowledge of the efficiency and uniformity of the design. 
 
Recent studies of the Australian cotton industry found that average surface 
irrigation application efficiencies are as low as 48%, with individual irrigation 
efficiencies lying between 17% and 100% (Dalton et al. 2001; Smith et al. 2005).  
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Similarly, typical application efficiencies of 40% to 80% were measured for 
irrigated vineyards (Smith 1988). In the Australian sugar industry, a review of 
surface irrigation practices revealed that application efficiencies averaged from 
31% to 62%, with individual irrigations ranging from 14% to 90% (Raine and 
Bakker 1996).  Factors most effecting efficiency includes field-length, irrigation 
cut-off times, water application rates, furrow shape, soil type and amount of 
cultivation.  
 
However, these studies have also shown that significant improvements can 
easily be achieved through the adoption of better design and management 
practices, to minimise losses caused by tail-water runoff and deep percolation.  
Optimising these practices through the use of computer simulation models has 
revealed that irrigation water-use efficiencies of over 90% can be achieved at the 
field level (Raine et al. 1995; Anthony 1995; Smith et al. 2005).  
 
Therefore, computer simulation models offer considerable potential to aid in the 
decision-making processes of irrigation design and management.  They represent 
a cheap and accessible means to experiment, trial and optimise surface 
irrigation practices.  This was proven in many studies that have shown that they 
are sufficiently accurate to be used in practical applications (Maheshwari et al. 
1993a, 1993b; Hornbuckle et al. 2003; Abbasi et al. 2003; Ismail & Depeweg 
2005). Also, as an added bonus of their use, they force the irrigator to account 
for, and measure, his existing management practices. 
 
However, despite more than twenty years of research and development, these 
tools are yet to reach their potential for improving on-field irrigation performance, 
having seldom been used in engineering practice (Playan et al. 2000).  In 
Australia (and around the world), the adoption of this technology by irrigators and 
consultants has been poor (Raine and Walker 1998), despite recent workshops 
and training courses (http://www.ncea.org.au) to promote their use.  While 
model-developers promote the virtues of their products, the reality is that these 
software applications have been developed as research tools and not 
practitioner tools, using primitive software engineering technologies. General 
opinion indicates that the existing models are complex, not robust, sensitive to 
input data and difficult to operate.  Also, they typically perform only the task of 
performance-evaluation and neglect other decision support requirements such 
as data management, infiltration parameter estimation, automatic design 
optimisation, and design-chart generation. 
 
A fundamental cause of all of these limitations and problems lies not in the 
science of the models, but in deficiencies in structural and interface design.  
Typically, these programs are developed by engineers and scientists who have 
been researching the simulation mathematics, and who have limited software 
engineering experience.  Modern software engineering methodologies can 
potentially overcome these problems by simplifying the complexities of the 
design task (including solution of the model) while greatly improving the utility of 
the product.  
 
This dissertation presents an essential initial step in improving the utility of 
simulation model technology through applying modern software engineering 
practices to furrow and border irrigation modelling science. This research 

http://www.ncea.org.au/�


Chapter 1    Introduction: Towards the development of a decision support system for furrow & border irrigation 

   3 

assumes that a thorough understanding of both irrigation hydro-informatics and 
modern software engineering is a prerequisite to design a decision support tool 
that will see practical use, and consequently improve surface irrigation practices. 
 
Therefore, the research problem for this dissertation is designed to investigate 
surface irrigation decision support technologies; develop strategies for 
overcoming gaps in the existing technologies; and incorporating these strategies 
into a new decision support system for furrow and border irrigation. 
 

1.3 The research problem 
In brief, the research problem is to develop an integrated decision support 
system for furrow and border irrigation aimed at increasing the usability of the 
technology to improve decision-making capabilities. Specifically the research 
hypothesis is: 
 
“That calibration, optimisation, and parameter analysis capabilities can be 
developed and integrated with an accurate and robust simulation model into a 
decision support system to improve furrow and border irrigation performance.”  
 
Six specific objectives have been designed to support this hypothesis and solve 
the research problem: 
 
Research Objective 1: Investigate existing surface irrigation modelling 
technology to determine a model and solution technique structure suitable for 
incorporating into a decision support system. Determine why existing surface 
irrigation software tools have been poorly adopted by industry. It aims to identify, 
describe and analyse the processes used by surface irrigation researchers in 
simulating the processes of furrow and border irrigation, and interfacing this 
technology with decision makers. 
 
Research Objective 2: Develop a robust, reliable simulation engine for furrow 
and border irrigation for automation within a decision support system under 
optimisation and systematic response evaluation. Based upon the findings of 
Research Objective 1, develop a simulation engine for furrow and border 
irrigation that is reliable, flexible and reusable to incorporate into the decision 
support system, and that can cope under the rigors of automation. 
 
Research Objective 3: Investigate and develop parameter estimation 
(calibration) capabilities for the decision support system. This facility will allow 
for the automatic determination of any combination of soil infiltration parameters 
and/or roughness parameter. This includes calibration on irrigation advance 
and/or runoff hydrographs. 
 
Research Objective 4: Investigate and develop optimisation capabilities for the 
decision support system. This involves developing a user-defined objective-
function for irrigation design and management. Optimisation capabilities should 
allow for inclusion of any input parameter combination. 
 
Research Objective 5: Investigate and develop parameter response (design 
charts) capabilities for the decision support system. This involves developing 
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tools to allow design and management charts to be automatically generated for a 
range of infiltration conditions. This facility should also allow response-surfaces 
of simulation parameter interactions to be generated for sensitivity, parameter, 
and objective-function analyses. 
 
Research Objective 6: Develop an object-oriented framework to combine the 
components developed in Research Objectives 2 to 5 with database facilities 
and a graphical user interface. The objective is concerned with interfacing the 
science with the user in the simplest way possible. This will ultimately effect how 
well the software will be adopted by users of various levels. 
 

1.4 Justification of research 
This research is justified on four interrelated bases. Firstly, decision support for 
furrow and border irrigation is an under-researched area. A review of the 
literature provided no evidence of a holistic approach to combining the field-level 
decision support requirements. Instead, research has focused on the individual 
components of decision support such as; simulation and performance evaluation 
(e.g. Walker and Skogerboe 1987; Katopodes 1994; Singh and Bhallamudi 
1996); infiltration parameter estimation (e.g. Khatri and Smith 2005; Gillies and 
Smith 2005); optimisation of practices (e.g. Bautista and Wallender 1993; Ito et 
al. 1999; Valiantzas 2001); and design chart generation (e.g. Zerihun et al. 
1993; Hornbuckle et al. 2003). Questions then arise as to what constitutes a 
decision support system for furrow and border irrigation, and how the individual 
components of the system should be combined and interact.  
 
Secondly, problems and limitations are generally known to exist in all of the 
current furrow and border irrigation tools; including issues of reliability, 
complexity, and versatility. Evidence for this is difficult to source in the literature, 
which tends to focus on the benefits of the technologies, but is found amongst 
users, and through self-investigation of the different software. It is thought that 
these problems and limitations are hindering the adoption of the technology. 
 
Very little of the irrigation research undertaken over the last 20 years has been 
developed into an operational form of software available to users. Only two 
models have succeeded to gain limited, but widespread, acceptance: SIRMOD 
(Walker 2003) and SRFR (Strelkoff et al. 1998). Research bodies around the 
world seem to be split into different allegiances to either one of these products. 
 
Thirdly, there is a need to combine a range of decision support tools for furrow 
and border irrigation design and management into a single, easy to use package. 
Currently, different tools exist for different decision-making purposes. For 
example, the INFILT (developed in Chapter 4) software package is used solely 
for determining the infiltration properties of the soil. These results could then be 
entered into one of the singularly focused simulation models such as SIRMOD 
or SRFR to determine irrigation performance (Interestingly, the underlying 
models used in these separate processes are often fundamentally different). 
Optimisation of irrigation management can then be undertaken using a trial and 
error approach of repeated simulations of the model. Therefore a tool is required 
to integrate commonly performed tasks such as performance evaluation, data 
management, spatial and temporal performance review, infiltration parameter 
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estimation, automatic optimisation of design variables, parameter response 
investigation, and sensitivity analysis of design variables. 
 
Finally, the simplicity, utility, flexibility and reliability of decision support tools 
could be greatly enhanced through the use of modern software engineering 
practices. These practices offer the potential to simplify the transformation of the 
modelling mathematics into computer equivalent code, with associated benefits 
including improved readability of code, powerful debugging capabilities, 
interchangability of components, enhanced exception handling, faster operating 
speeds, flexible inputs and outputs, and accessibility for reuse. New software 
engineering tools allow simple yet powerful graphical user interfaces to be 
developed using advanced third party libraries, which are intuitive to use, 
progressively disclose advanced capabilities, and are compatible with other 
software and the operating system.  
 

1.5 Definitions 
This section will define the key terms and concepts of this research so that the 
direction and focus of the dissertation can be established. These key terms and 
concepts include: terminology of surface irrigation; design and management of 
surface irrigation; surface irrigation modelling; and decision support systems for 
surface irrigation. The importance of these definitions warrants detailed 
discussion. 

1.5.1 Defining surface irrigation practices 
Surface irrigation in the context of this dissertation pertains to the practices of 
furrow and border irrigation. In particular, the software tool that is developed is 
most suitable for both of these practices, even though most of the validation 
produced in this following chapters is for the special case of furrow irrigation. In 
the context of this dissertation, the term “surface irrigation” will be used to imply 
both furrow and border irrigation, but not practices such as basin irrigation, 
which would require a different modelling approach. It also doesn’t include surge 
or cutback irrigation (even though these are forms of furrow irrigation) since the 
technology is not widely used in Australia. 
 

1.5.2 Defining design and management of surface irrigation. 
In Australia, surface irrigation design and management consists of three main 
components: designing the field layout, scheduling irrigations; and managing the 
irrigation events. Field design encapsulates decisions pertaining to field-length 
and width, furrow size and shape, furrow spacing, and field slope (including 
variable slopes). Water delivery systems must also be considered. Scheduling 
relates to how much water to apply and when to apply it. Managing irrigation 
events considers choosing decision variables such as flowrate, time-to-cutoff, 
and application depth to water the field. Management can also consider 
irrigation-advance location to guide cutoff, but this will not be investigated in this 
dissertation. 
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1.5.3 Defining surface irrigation modelling 
A surface irrigation model is a computer based simulation tool used in aiding the 
design and management of a surface irrigation event.  The model consists of a 
series of mathematical equations that simulate the physical hydraulic processes 
of the irrigation event.  These equations are linked to an interface through which 
the user manipulates the simulation by entering data representing the physical 
properties of the irrigation system.  The equations are usually solved at discrete 
time and distance intervals using a suitable finite difference or finite element 
technique.  Operation of the model produces a series of graphical or textural 
outputs representing the simulated performance of the event.   
 
The term “model” can be used to define both the mathematical constructs used 
to simulate irrigation, and the computer program in which these equations 
reside. To differentiate between the two, the term “simulation engine” will 
hereafter be used interchangeably with the term model to define the 
mathematical components; while the software program will be referred to as the 
“decision support system”. 
 

1.5.4 Defining decision support systems for furrow and border irrigation. 
A decision support system for furrow and border irrigation integrates a surface 
irrigation model (simulation engine) with a range of other design and 
management tools into a single software package. 
 
The principal role of the decision support system is to simulate an irrigation event 
given a set of measured inputs; that is, to predict quantities that are time-
dependent and difficult or impractical to measure, given a set of time 
independent measured input quantities.  During a typical simulation, the flow 
rate and cross-sectional area of flow are predicted at various locations along the 
furrow length for each time interval.  As well, the advance is predicted during the 
initial phase of the event.   
 
However, if the advance is known, the model can be used to obtain estimates of 
other parameters, which are normally measured; for instance, infiltration.  The 
solution of the infiltration parameters from a measured advance is known as the 
inverse solution.  This is an important technique, as infiltration is a property that 
is very difficult to physically measure due to the temporal and spatial variability of 
the soil.   
   
Lastly, the model should contain an optimisation algorithm allowing automatic 
solution of the irrigation design parameters; that is parameters that the irrigator 
has direct control over such as time to cut-off and inflow rate.  Absence of this 
algorithm leads to excessive operator input while manually trying different design 
parameters configurations in repeated trial simulations.   
 

1.6 Delimitations of scope 
This research has five main delimitations of scope: focus upon Australian furrow 
and border irrigation practices; focus upon engineering aspects of in-field design 
and management; focus upon the conceptual design of the decision support 
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system; focus upon a target audience of irrigators, consultants and researchers; 
and   focus on validation against existing technology. These will be discussed in 
turn. 
 

1.6.1 Focus upon Australian furrow and border irrigation practices. 
This research focuses upon the two most predominant forms of surface irrigation 
in Australia; furrow and border irrigation.  Both of these practices can be 
modelled using the same set of 1D-algorithms with modifications to the furrow 
geometry parameters. Other forms of surface irrigation such as basin and bay 
irrigation are more suited to a 2D modelling approach (although the 1D approach 
has been commonly used in the past), and will not be considered in this 
dissertation. Also, surge and cutback irrigation will not be considered, as they are 
currently not widely used in Australia. Even though the tools developed in this 
dissertation will work for both furrow and border irrigation, validation will 
predominantly focus on furrow irrigation, since the research focus is at risk of 
becoming too broad. Also blocked furrow conditions were also not validated for the 
same reason. 
 

1.6.2 Focus upon engineering aspects of in-field design and management 
This research is concerned with the in-field related irrigation design and 
management issues such as field and furrow design, and determination of 
optimal inflow rates and cut-off times. This includes all aspects related to the 
hydraulic modelling of water flowing down along a furrow. This does not include 
management issues such as irrigation scheduling, or the economic assessment 
of irrigation performance. Decision support capabilities will be targeted at the 
field level, and does not include on-farm factors such as distribution in channels, 
farm storages and agronomic considerations. 

1.6.3 Focus upon conceptual design of a decision support system. 
This research aims to present a conceptual design of a decision support system 
for furrow and border irrigation. A prototype decision support system will be 
developed as part of the research to validate and test the design effectiveness. 
Nevertheless, the emphasis of this dissertation will be focused upon design 
concepts rather than the physical product. Unfortunately, it is beyond the scope 
of this dissertation to study the adoption of the newly developed technology by 
irrigators and consultants.  

1.6.4 Focus on irrigators, consultants and researchers. 
The design of the decision support system targets a wide range of user types 
including irrigators, consultants and researchers. Appropriate and innovative 
software engineering principles must be adhered to in order to avoid biasing the 
software towards any particular group.  

1.6.5 Focus upon validation against existing proven technology. 
The decision support tools developed as part of this study are validated against 
existing proven technology, rather than actual field experiments. For the 
simulation engine, this involved comparing modelled outputs against that from 
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SIRMOD, which has been the subject of several previous studies, including a 
case study as part of this dissertation (which was based on actual field-data).  
 

1.7 Outline of dissertation 
This research in this dissertation is presented in eight parts. It follows a structure 
resembling that of the decision support system being developed. After a brief 
introduction and literature review, different components of the decision support 
system are presented in individual chapters. This includes component topics 
such as the simulation engine; calibration module; optimisation module; 
parameter analysis module; and program structure and user interface. Finally, 
the conclusions arising from this research are presented in the last chapter along 
with implications of this research and recommendations for future work. 
 
Chapter 1 (this chapter): An introduction to the dissertation is presented. Firstly, 
a brief background is given into the research problem before the research 
hypotheses are proposed. The subsequent sections are based upon defining the 
terminology, basic theory and limitations faced during the research.  
 
Chapter 2: A literature review of existing surface irrigation modelling techniques 
and limitations is presented. It focuses on four modelling technologies used in 
surface irrigation; that is, the volume-balance, hydrodynamic, zero-inertia, and 
volume-balance models. Finally, it presents a case study of SIRMOD, which is 
one of the most successful models used for furrow and border irrigation decision 
support. 
  
Chapter 3: A new simulation “engine” for furrow and border irrigation modelling 
is developed. This engine aims to overcome the limitations of existing models 
outlined in Chapter 2. This will form the “central core” of the decision support 
system being developed in this dissertation. The chapter presents a 
redevelopment of the most commonly used simulation methodology into a 
simpler form.  These techniques are then incorporated into a new object-oriented 
structure designed to coexist inside a modern user-friendly decision support 
system. Techniques are discussed to achieve simulation robustness. The engine 
is validated against the SIRMOD model that was studied in Chapter 2. 
 
Chapter 4: The parameter estimation or “calibration” requirements of a decision 
support system for furrow and border irrigation are investigated. Not all input 
parameters used in a simulation model can be directly measured in the field. Soil 
parameters representing infiltration and roughness need to be estimated 
indirectly through some form of “inverse” modelling. A simple volume-balance 
“inverse” technique (INFILT) was developed in the stages of this research and 
presented in this chapter. This work is then followed up with the development of 
a more powerful hydrodynamic-model technique for incorporation into the 
decision support system, which uses the INFILT methodology to provide starting 
estimates. The method is validated against real field data while objective-
function response-surfaces are generated providing insight into the complexities 
of the solution process. 
 
Chapter 5: The work in this chapter focuses upon the development of the 
optimisation capabilities for the decision support system. A flexible new 
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objective-function equation is derived for optimising irrigation management and 
design practices. Different formations of this function are examined with results 
highlighting ridges of constant objective-function value for different design 
combinations. This equation is linked with an optimisation engine using an 
object-oriented structure to create the optimisation module for the software. 
Because of the nature of the system response, it is recommended that only time-
to-cutoff be included in the optimisation process which simplifies the operation in 
the presence of minute variations in the volume-balance caused by numerical 
discretisation errors. 
  
Chapter 6: The concept of “decision support” in terms of design charts and 
guidelines is introduced in this chapter. An initial case study is undertaken as an 
early part of this research. A key feature of this work is the application of 
historical records to disseminate guidelines for low, average and high infiltration 
conditions. The design problem is then considered for the automatic generation 
of design charts within the decision support system. Features of the developed 
tool include; 4D analysis capabilities by incorporating the fourth variable through 
multiple charts, or slider-bar functionality; variable exchange functionality; and 
response-surface filtering. Sample charts are provided. 
 
Chapter 7: The components developed in the previous four chapters are now 
combined with a database and a simple user interface to develop a new decision 
support system for furrow and border irrigation. Software engineering issues are 
initially discussed in this chapter before a suitable object-oriented program 
structure is developed to accommodate program elements. A new XML-based 
surface irrigation database is developed as the central core of the decision 
support system. Finally, a simple graphical user interface is developed with 
“hyperlinking” capabilities to mimic web-browser functionality.  
 
Chapter 8: The conclusions and implications of this research are presented in 
this chapter. The work undertaken in the previous chapters is summarised in 
order to highlight the logical progression of ideas and issues studied in 
addressing the research hypotheses. Conclusions are presented for the research 
hypothesis, and associated research objectives. Practical Implications of this 
research are discussed along with limitations of the results. Finally, 
recommendations for future research and development are presented. 
 

1.8 Conclusions 
This chapter has laid the foundations for this research. Principally it has defined 
the research problem as developing a decision support system for furrow and 
border irrigation to improve surface irrigation practices by combining modern 
software engineering practices with proven irrigation science theory.  
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Chapter 2 Background to surface irrigation  
decision support 

 

2.1 Introduction 
Computer-based decision support software has the potential to greatly improve 
surface irrigation design and management practices.  Over the last fifty years, 
much research has been undertaken into the development of decision support 
tools focusing on the separate research areas of simulating irrigation events, 
estimating the soil infiltration parameters, and optimising current practices.  
However, very little of this research has been applied operationally indicating that 
there are problems with the current technology.  
 
A major objective of this dissertation is to develop a new decision support system 
for surface irrigation that will overcome these problems in order to place this 
technology in more hands.  Therefore, a comprehensive review of the literature is 
required to understand the strengths and weakness of the current technology.  
The goal of this chapter is to address this task in order to determine the 
structural and functional requirements of new software.  
 
The research reported in this chapter focuses upon four main tasks: (1) to 
present the background theory for the decision support of surface irrigation 
practices; (2) to undertaken a comprehensive literature review of surface 
irrigation decision support technology, including simulating irrigation events, 
estimating the soil infiltration parameters, and optimising current practices; (3) 
to evaluate the most commonly used surface irrigation software through a 
literature review and case study; and (4) to consolidate these findings to 
establish a direction for the development of a new decision support system. 
 
This chapter is accompanied by two appendices containing a full derivation of 
the continuity and energy equations used in simulation modelling (Appendix 2.1), 
and a case study to evaluate the commonly used SIRMOD (Walker 2003) 
software package (Appendix 2.2). 

2.2 Surface irrigation background 

2.2.1 History 
Surface irrigation is one of the oldest known forms of irrigation with records 
showing the practice being used in the Middle East going back thousands of 
years.  Today it is still the most common method for applying water to promote 
crop growth despite post Second World War interest in pressurised forms of 
irrigation such as sprinkler and trickle irrigation.  While pressurised forms have 
reduced labour requirements including the need for land-levelling, surface 
irrigation systems are still often favoured due to lower capital and operating 
costs, simplicity of maintenance, and the need for unskilled labour (Walker & 
Skogerboe 1987).   
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2.2.2 Techniques 
Surface irrigation practices have evolved into a variety of configurations, 
although the distinctions between them are not always clear.  Depending upon 
the way that the water is transported across the field, they can loosely be 
classified into furrow, border, basin, and wild flooding: 
• Furrow irrigation involves the water being transmitted down the field via small 

channels or furrows.  The crop is usually located between the furrows and the 
water is allowed to run freely from the end of the field (although blocked 
furrows do exist).   

• Bay or border irrigation is the irrigation of long rectangular fields divided into 
graded borders, with longitudinal slope and free draining.  Level borders, 
however, are not free draining.   

• Basin irrigation is the irrigation of small, relatively flat enclosed areas, not 
allowing for runoff.  Interest in level basin irrigation has resulted due to 
advantages of potentially high distribution uniformities, high efficiency (due to 
minimal deep percolation and no runoff), and reduced labour requirements 
(Hoffman and Martin 1993).   

 
Inflow techniques add further dimension to this classification by distinguishing 
between continuous, cutback, and surge forms of irrigation practice: 
• Continuous inflow involves a uniform inflow rate throughout the irrigation until 

termination. 
• Cutback regimes involve an initially high inflow rate to advance the water to 

the end of the field as quickly as possible to improve application uniformity, 
and then a reduction in the inflow rate to reduce runoff losses. 

• Surge irrigation is the intermittent application of water down a furrow or 
border in a series of on and off time periods.  Surge irrigation is used as a 
management tool to improve efficiency and uniformity, although the 
mechanisms contributing to these improvements are not fully understood.  It 
is known however that the soil’s infiltration rate is reduced during surge 
irrigation leading to a quickening of the advance in subsequent surges 
(Hoffman and Martin 1993).  This is thought to result principally from surface 
sealing effects resulting in a reduction in deep percolation losses.  Surge 
irrigation is largely confined to the United States with the practice not yet 
adopted by farmers in Australia.   

 

2.2.3 Phases of the irrigation cycle 
There are four distinguishable phases that occur during a typical surface 
irrigation event; namely the advance, storage, depletion, and recession phases: 
• The advance phase occurs when water is introduced into the furrow or bay 

and flows downstream on initially dry soil. 
• Storage occurs once the advance reaches the end of the field.  There is a 

continuous volume of water on the surface of the furrow or bay. 
• Once the inflow rate is cutoff, the depletion phase begins where the surface 

water level at the top end of the furrow or bay begins to fall.  Some refer to 
this as the vertical recession phase. 

• The recession phase exists when a zero surface water depth is encountered 
at the top end of the furrow or bay.  A distinguishable dry/wet boundary front 
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then propagates along the furrow in the direction of flow.  Sometimes this is 
known as the horizontal recession phase. 

 

 

 
Figure 2.1: (a) Water surface profiles and (b) advance and recession characteristic curves for 

different phases of the irrigation cycle. 

 
Combinations of these phases can sometimes exist such as simultaneous 
“advance and depletion” and “advance and recession”.  These occur when the 
inflow is terminated before the advance reaches the end of the field culminating 
in a pulse of water moving down the furrow. 
 
Furrow end conditions designate further categorisation.  “Ponding” at the 
downstream end occurs when the end of the furrow or border has been 
purposely blocked to prevent runoff. Otherwise, “free-draining” conditions exist. 
 

2.2.4 Design and management practices 
Surface irrigation design and management are separate practices requiring 
different considerations and treatments.  For example, irrigation design involves 
selecting field parameters (such as application method, drainage method, furrow 
cross-section, field-length and slope) prior to the first irrigation occurring with the 
multiple goals of simplifying management, maximising performance, and 
minimising costs.  Irrigation management involves controlling the distribution and 
amount of water for an individual irrigation event (typically through selection of 
flow rate, time-to-cutoff and application depth) to maximise plant uptake and 
minimise costs and water losses.  
 

2.3 Surface irrigation decision support 

2.3.1 What is a decision support system for surface irrigation? 
A decision support system for surface irrigation is computer-based software for 
aiding the design and management of surface irrigation.  Wikipedia  
(www.wikipedia.org) provides a generalised definition for these systems: 
“Decision support systems are a class of computerised information systems or 
knowledge based systems that support decision making activities.” 

http://www.wikipedia.org/�
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The fundamental component of these systems in the context of surface irrigation 
is the simulation model.  The model consists of a series of mathematical 
equations that simulate the physical hydraulic processes of the irrigation event.  
These equations are linked to an interface through which the user can 
manipulate the simulation by entering data representing the physical properties 
of the irrigation system.  The equations are usually solved at discrete time and 
distance intervals using a suitable finite difference or finite element technique.  
Operation of the model produces a series of graphical or textural outputs 
representing the simulated performance of the event.   
 
Other components of a surface irrigation decision support system could include; 
a database for storage and retrieval of input data, and to serve as a repository 
for processed results; an optimisation algorithm for calibration and optimisation 
of model outputs; and analyses to pre-process and post-process input data and 
model outputs.  The system is typically encapsulated by a graphical user 
interface and contains graphical and textural reporting facilities to communicate 
information. 
 

2.3.2 Uses of the decision support system 
A principal role of a surface irrigation decision support system is to evaluate the 
performance of an irrigation event.  Given a set of measured (time-independent) 
inputs, the irrigation model is used to simulate an event, so as to predict 
quantities that are time-dependent and difficult or impractical to measure.  
During a typical simulation, the flow rate and cross-sectional area of flow are 
predicted at various locations along the furrow length for each time interval.  As 
well, the advance is predicted during the initial phases of the event.  From this, 
the performance of the irrigation can be evaluated in terms of efficiency, 
uniformity, and volumes. 
 
However, if the advance is known, the model can be used to obtain estimates of 
other parameters, which are normally measured; for instance, infiltration.  The 
solution of the infiltration parameters from a measured advance is known as a 
solution to the “inverse problem”.  This is an important technique, as infiltration 
is a property that is very difficult to physically measure due to the temporal and 
spatial variability of the soil.  
   
Lastly, repeated simulations of the model using different combinations of design 
variables are fundamental for optimising design and management strategies.  
These variables are usually those that the irrigator has direct control over such 
as time-to-cutoff and inflow rate.  Optimal strategies can be determined through 
a manual trial and error approach of running the model; or systematically 
simulating all combinations of the variables to generate design curves; or 
through a structured optimisation strategy.  The addition of an optimisation 
algorithm to automatically determine these variables is a higher objective for a 
decision support system. 
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2.3.3 The need for decision support systems 
Extensive research has been undertaken towards improving decision making 
involved in the design and management of surface irrigation, yet irrigation 
practices have changed little over the past decades.  While recent technology 
has introduced a wide range of tools and techniques to draw upon, their 
adoption has been slow and generally poorly coordinated.  Decisions are more 
often influenced by local policy, neighbouring practices, consultants’ experiences 
and preferences, and availability and cost of materials, rather than by evaluation 
and comparison of methods for the site of interest.  
 
Field trials and computer modelling are becoming more commonplace in 
developed nations and have set the standard for surface irrigation decision 
making, although both are limited in their current form.  Computer models offer 
the greatest potential but so far have really only been used as research tools, 
indicating that there are problems with the current technology/software.  
 
Therefore, an opportunity exists to develop a decision support tool for surface 
irrigation that will overcome these problems and place this technology in more 
hands.  It needs to simplify the multidimensional nature of the decision process 
by simultaneously comparing and demonstrating different techniques and 
methods over a range of conditions. 
 

2.3.4 Research for decision support systems 
Research into decision support systems has been directed in three principal 
areas including: 

• simulation of furrow and border irrigation; 
• solving the “inverse problem”; and   
• optimising design and management practices. 

 
Simulation models have been the main focus of surface irrigation research over 
the last fifty years.  There is a considerable body of literature on simulation 
modelling, which unfortunately is not all encompassing.  While the 
methodologies presented are typically sound and often novel, the depth of the 
subject area has meant that many topics have been poorly treated. 
 
Solution of the “inverse problem” has been the second most researched area of 
furrow and border irrigation decision support.  The “inverse problem” relates to 
using the simulation technology in “reverse” to estimate field parameters (such 
as the infiltration or hydraulic roughness parameters) through a calibration of the 
simulated outputs against measured field data (such as the advance, or runoff 
hydrograph).  Simple methods have been developed which have proven useful, 
but the research is yet to take full advantage of current technology. 
 
The least treated research area is that of using simulation technology to optimise 
design and management practices.  Different methodologies have been 
presented to optimise these practices including generation of design charts, 
computer optimisation, and real-time control of irrigation systems.  The relative 
lack of depth in this subject area is indicative of both the infancy of the 
technology, and problems associated with the basic simulation capabilities. 
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Background modelling theory and a review of the literature in each of these three 
areas will now be presented. 
 

2.4 Background to simulation modelling 
The simulation model is the primary component of a surface irrigation decision 
support system, and the success of secondary tools is dependent upon the 
effectiveness of the simulation model.  Therefore, before a literature review of 
surface irrigation decision support technologies can be undertaken, an 
understanding of the background theory of simulation modelling is required.  This 
theory will now be discussed in terms of the underlying model equations; 
simplifications to the model; infiltration model; numerical solution techniques; 
and dimensionless formulations of the equations. 
 

2.4.1 Model equations 
Computer simulation of water flowing and infiltrating along the furrow or border 
during surface irrigation is governed by the laws of mass and momentum 
conservation.  The mathematical equations describing these laws are generally 
known as the de Saint-Venant Equations  (often the “de” is omitted).  They 
consist of two separate hyperbolic partial differential equations1; one 
representing continuity (Eqn. 2.1); and one representing momentum (Eqn.2.2).  
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Where q is the inflow rate per unit width, x is the distance along the furrow, z is 
the rate of infiltration per unit length, y is the depth of flow, t is the irrigation time, 
g is the gravitational constant, S0 is the furrow slope, Sf is the energy slope, v is 
the velocity of the surface flow, and r is the lateral inflow (rainfall) rate.  
 
For completeness, a derivation of these equations is presented in Appendix 2.1 
as many texts fail to state the assumptions underlying the derivation; are not 
thorough in the derivation; and neglect to include lateral inflows and outflows. 
 

2.4.2 Simplification of the model 
The solution of these equations is complex, and as yet, no analytical solution to 
the complete equations has been found.  Therefore researchers have typically 
used a combination of numerical methods and simplifying assumptions to obtain 
a solution.  The simplification of these equations can be categorised into four 
main types based on the level of modification.  These include the solution of the 
full set of hydrodynamic equations, the zero-inertia approximation, the kinematic-

                                                 
1 Note that this form of the equations is most suited to flow in borders. A different form of the 
equations, that better represents flow in furrows (in terms of Q and A, rather than q and y), will be 
presented in Chapter 3, and used in the developed software.  
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wave approximation; and the volume-balance method. These will now be 
discussed in turn. 
 
Solutions based on the full set of hydrodynamic equations 
The complete form of the Saint Venant Equations (Equations 2.1 & 2.2) 
represents the most accurate description of the water flow over the ground 
surface.  However, complex numerical methods are required for their solution, 
being costly both in programming complexity and execution times. 
 
Solutions based on the zero-inertia approximation 
The first level of simplification of the Saint Venant Equations involves removing 
the inertial, or acceleration, terms in the equations.  The acceleration terms are a 
source of fragility, especially if the flow is near critical.  Their removal from the 
momentum equation leads to a more robust solution, as the equations are now 
parabolic, rather than hyperbolic (Strelkoff and Falvey 1993).  The momentum 
equation then becomes: 
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Numerous studies (Katopodes and Strelkoff 1977b; Clemmens 1979; Fangmeier 
and Strelkoff 1979; Elliot et al. 1982; Schwankl and Wallender 1987) have 
shown that this zero-inertial approach can accurately simulate flow in borders 
and furrows.  Surface irrigation is typically characterised by sub-critical flow with 
Froude numbers close to 0.3, meaning that the zero-inertia assumptions are 
seldom violated.  
 
Application of this approximation is relatively simple and computer execution 
times small even though it is usually solved numerically.  Several researchers 
have formulated analytical and quasi-analytical solutions in recent years. 
 
Solutions based on the kinematic-wave approximation 
The kinematic-wave approximation is the next level of simplification to the Saint-
Venant equations.  This approximation further simplifies the zero-inertia 
equations by assuming that the water surface slope is relatively small compared 
to the other terms of the equations.  The momentum equation then becomes: 
 

fSS =0 ................................................................................................................................................................................... (2.4) 

 
The model assumes uniform flow conditions at the furrow inlet and outlet, but 
not along the furrow reach due to lateral outflows (infiltration). Effectively, the 
assumption is that the bed slope can approximate the frication slope, and that 
flow is “uniform” only over discrete distances. The absence of the depth gradient 
term ( xy ∂∂ / ) from the equation implies that the depth at the top end of the 
furrow will instantaneously reach the value of normal depth as soon as flow 
commences, rather than rising gradually as you would expect in practice.  
 
Many analytical solutions to these equations have been found including explicit 
and implicit “time of advance” equations.  Numerical solutions are still used as 
well, and are simple to code and operate very efficiency.  
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The limitation of the method is that it is only applicable to special conditions that 
don’t void the underlying assumptions. For example, the method cannot handle 
backwater effects due to the uniform flow boundary condition at the furrow 
outlet, so it cannot be used for blocked, or partially blocked furrow ends. 
 
Solutions based on the volume-balance approximation 
The volume-balance model represents the simplest approximation of the Saint 
Venant equations where the momentum equation is usually replaced with an 
assumption of average depth of flow or a predetermined water-surface profile.  
Shape factors are often used along with empirical “power” relationships to define 
advance trajectories.  The depth of flow at the top end of the field is assumed to 
be the normal depth for the applied flowrate.  Only the continuity equation from 
the Saint-Venant equations is used and is usually solved algebraically. 

2.4.3 Infiltration model 
The most commonly used infiltration functions in surface irrigation modelling 
include the Kostiakov-Lewis, Modified-Kostiakov-Lewis, Phillip, and Horton 
equations (Table 2.1).  These are empirical equations and are primarily designed 
for non-cracking soils, neglecting to consider instantaneous crack filling (Maihol 
and Gonzalez 1993). However, it is not uncommon for these equations to be 
modified through the addition of a crack-fill parameter. Physically based models 
such as the Green and Ampt equation (Eqn. 2.9) may be better suited to the 
cracking situation, but are difficult to incorporate in simulation models and apply 
to field situations (Evans et al. 1990).  
 

Table 2.1: List of commonly used infiltration equations in surface irrigation modelling 

Source Equation  
Kostiakov-Lewis (Kostiakov 

1932; Lewis 1937) Z ktop
a=  (2.5) 

Modified-Kostiakov-Lewis Z kt f top
a

o op= +  (2.6) 

Phillip (1957a) 
oopop ftktZ += 2

1

 (2.7) 

Horton (1940) Z e f trt
o op

op= − +−γ ( )1  (2.8) 

Green and Ampt (1911) I K h
Z
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⎣⎢
⎤
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1 ( )θ θ
 (2.9) 

SCS, USDA, also Evans et 
al. (1990) Z kt Cop

a= +  (2.10) 

Maheshwari-Jayawardane 
(1992) 

also Maihol-Gonzalez 
(1993) 

oplc tiZZ +=  (2.11) 

Wallender-Rayej (1985) Z kt f t Sop
a

op= + +  (2.12) 

where Z is the cumulative infiltration ; top is the opportunity time for infiltration to occur; a, k and r 
are fitted empirical parameters; fo is the steady state infiltration rate; I is the infiltration rate; θs is 
the saturated moisture content; θi is the initial moisture content; K is the hydraulic conductivity in 
the wetted zone; h’ is the suction at the wetting front, γ is cumulative infiltration at top=0 if steady 

state had been reached at top=0; C is deferred infiltration volume; il is the saturated hydraulic 
conductivity of the restricting layer; Zc is the initial depth of infiltration required for crack filling and 

absorption; and   S is the volume of cracks per unit area. 
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With the exception of the Green and Ampt equation (Eqn. 2.9), all of the 
equations are of a similar form.  That is, they are composed of variations of a 
non-linear component, a steady state component, and sometimes an 
instantaneous crack-fill component.  Also, the actual role of each equation-part is 
not necessarily fixed, and is dependant upon the parameter values. For example, 
the Kostiakov-Lewis Equation (Eqn. 2.5) could be used to represent any one of 
the three components. In general this equation represents non-linear infiltration. 
However, if the parameter a is set to 0, it would represent instantaneous crack-fill; 
and if a is fixed at 1, then it would represent steady-state infiltration. 
 

2.4.4 Numerical solution techniques 
While dozens of attempts have been made to develop surface irrigation models 
over the last century, only a relatively small range of solution techniques has 
been employed.  Early work involved the solution of volume-balance models 
involving only simple algebraic equations.  The limitations of these models were 
recognized early and with the advent of modern computers, attempts were made 
to solve variations of the more complex hydrodynamic models, which have 
proved impossible to solve algebraically in the purest form.  Therefore, iterative 
numerical solution techniques are required to solve the models. 
 
Conceptually, the modelling consists of two levels of approximation: firstly, the 
governing equations represent an approximation to reality; and secondly, the 
numerical method chosen is an approximation to the analytical solution of the 
governing (differential) equations.  Numerical methods used include the method 
of characteristics, finite differencing, finite element analysis, and finite volume 
analysis.  Finite differencing is the most commonly used method in surface 
irrigation modelling. 
 

Method of Characteristics 
This technique simplifies the problem of solving the two partial differential 
equations (continuity and momentum) by transforming them into four ordinary 
differential equations (Stephenson and Meadows 1986).  This technique was 
used long before the advent of modern computers through graphical solution 
methods.  These days, numerical techniques are used through explicitly solving 
the transformed equations on an irregular space-time grid formed by the 
intersection of disturbance-trajectories (characteristics curves).  A limitation of 
the method, due to the irregular grid, is that inputs to the characteristic 
equations must constantly be interpolated from the previous calculations.  This is 
both computationally intensive and a potential source of compounding error.  For 
an extensive treatment of this theory, see Courant and Hilbert (1962). 

Finite differencing numerical methods 
The majority of surface irrigation models, including the latest state-of-the-art 
models such as SIRMOD (Walker 2003) and SRFR (Strelkoff et al. 1998), utilise 
finite differencing techniques to approximate the differential equations.  These 
methods involve replacing the partial derivative terms in the governing equations 
with discrete approximation terms (since it is the derivative terms which prohibit 
the formulation of an analytical solution).  This is the most common solution 
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technique used in surface irrigation modelling, as it is in most problems involving 
one-dimensional, steady or time-dependant flow (Chaudhry 1993). 
 
Finite difference techniques can be categorised into implicit or explicit 
techniques. Implicit techniques solve “simultaneously” for all of the unknown 
variables at a time-step, where as explicit techniques will solve for the unknowns 
in a “marching” cell-by-cell fashion.  Explicit techniques are generally simpler to 
program and easier to debug, but they are more susceptible to instability 
problems (Chaudhry and Mays 1993).  Stability checks such as the “Courant 
condition” (Courant et al. 1928; 1948; and   1956) must be performed to ensure 
that the nodes at which each solution is sought, lie within the zone of 
dependence of the neighbouring nodes that are used in the derivative 
approximations.  Also, in surface irrigation modelling (though not necessarily in 
general) explicit methods are assumed to be an order of magnitude less 
computationally efficient than the implicit techniques (although no evidence 
could be found of actual comparisons). 
 

Other numerical methods 
Other possible methods for solution of the model equations for furrow and border 
irrigation include finite element and finite volume analysis.  Finite element 
methods have been used for modelling furrow irrigation conditions (Shayya et al. 
1993), modelling sediment and chemical transport (Katopodes 1994), and two 
dimensional analysis of furrow infiltration (Vogal and Hopmans 1992), but has 
not found widespread application in modelling general open-channel and 
irrigation flow conditions.  Singh and Bhallamudi (1997) developed a finite 
volume method to solve the two-dimensional governing equations of basin 
irrigation.  
 

2.4.5 Dimensionless solution formulations 
Dimensionless formations of the finite difference forms of the continuity and 
energy equations have been used by many researchers for modelling surface 
irrigation (e.g. Strelkoff 1985; Rayej and Wallender 1985). The main advantage 
of a dimensionless solution of the model equations is that it allows significant 
reductions in the amount of data generated and presented, without loss of 
generality (Strelkoff and Clemmens 1994).  These dimensionless solutions are 
independent of the systems of units used. Dimensionless variables appear in the 
form of ratios of the normalised quantities used.  Dimensionless solutions have 
been favoured for creating design charts due to the reduced number of variables 
present (Ram and Singh 1985).  
 

2.5 Simulation model development 
The mathematical modelling of surface irrigation is not new.  Volume-balance 
models had been developed as early as the 1930’s, and the advent of modern 
personal computers in the 1970’s saw more complex forms of model being 
introduced with energy and momentum components.  A review of the evolution of 
these models will now be undertaken focussing on the four separate types of 
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simulation model available including: volume-balance models; kinematic-wave 
models; zero-inertia models, and hydrodynamic models. 
 

2.5.1 The evolution of volume-balance models 
The first attempts at simulating the advance-phase of surface irrigation used 
volume-balance models that apply the continuity equation (Eqn. 2.1) over the 
entire flow profile and use simplifying assumptions to replace energy and 
momentum effects.  They are still of interest today because of their simple form 
which is easy to program into a computer, and couple with optimising and batch-
processing algorithms. Both analytical and iterative solutions have been 
developed, with key differences between methods lying in the underlying 
assumptions for surface and sub-surface geometry. 
 
The first attempt at an analytical solution was by Lewis and Milne (1938) who 
derived an integral equation for advance time in terms of inflow, mean surface 
water depth and cumulative infiltration.  Philip and Farrell (1964) later used 
Laplace transforms to simplify the integral equation for different infiltration 
equations.  
 
The first iterative numerical scheme for solving the volume-balance equations 
was developed by Hall (1956) in what has been described as a “landmark 
contribution” (Al-Azba and Strelkoff 1994) to the research.  This method for 
solving the advance laid the foundation for physically based numerical irrigation 
models and has regularly been referenced in journal articles and books ever 
since.  Hall’s approach used an iterative numerical scheme over a sequence of 
time-steps where normal depth at the upstream end was assumed along with a 
power-law shape factor for the surface stream-depth profile yielding a 
“reasonable” approximation of the actual advance. 
 
Another algebraic volume-balance model was later developed by Strelkoff (1977) 
for generating approximate advance and recession curves for border irrigation.  
He approximated the surface volume by using a simple surface shape profile, 
and assuming normal depth at key points along the surface.  Results were 
compared to other more complex mathematical models, and to laboratory and 
field experiments with results of “useful quality”. 
 
This technique was later modified for furrow irrigation by Levien and Souza 
(1987), using a power function to represent furrow geometry and a simple 
Kostiakov function to represent infiltration.  Having validated the model against 
field data as well as other models, the authors claimed “reasonable results” but 
believed that it was more accurate than many of the more complex models. 
 
At the same time, Rayej and Wallender (1987) also produced a volume-balance 
model for open furrow irrigation.  They used the same assumptions made by 
Strelkoff (1977) along with a modified Kostiakov infiltration equation, and a 
power equation to represent furrow geometry.  During the recession phase, the 
flow-area at the downstream end was assumed proportional to the distance of 
the recession from the downstream end.  This was questioned later by Xu and 
Singh (1990) who thought it more reasonable to assume that flow “depth” 
instead of flow “area” should be proportional to the recession distance. Low 
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computational efficiency and programming complexity were also acknowledged 
as a limitation of the method. 
 
Xu and Singh (1989, 1990) developed an analytical volume-balance model to 
simulate all phases of the irrigation cycle for borders and furrows.  A parabolic 
shape was assumed for surface and subsurface profiles during the advance 
phase; the coefficients of which were determined in the region of gradually varied 
flow away from the advance front.  Recession was simulated using a simple 
iterative technique by Strelkoff (1977) that assumes that the surface profile is 
linear during this phase and that “the downstream end flow is normal and 
declines proportionally to the receding tail position measured from the 
downstream end”.  The furrow irrigation version of the model can be applied to 
any form of furrow shape by transformation into an equivalent semicircular 
shape. 
 
Another volume-balance approach used by several authors involves replacing the 
energy equation with a Muskingum storage-discharge relationship (Singh and He 
1988; Singh et al. 1988; Wilson and Elliot 1988).  Singh demonstrated this 
method for both furrows and borders (with a modified Kostiakov infiltration 
equation) and found that it “satisfactorily” predicts water movement and 
infiltration distribution for all phases of the irrigation cycle, with errors 
comparable with other models.  However, the model contains twelve input 
coefficients making it difficult to calibrate for a volume-balance model.  The main 
advantage of the model is that it is simple to program and executes rapidly.  
 
Wilson and Elliot (1988) used a modified version of the Muskingum flood-routing 
approach to predict the advance, along with a second routing method that 
assumes that the flow is approximately steady within each furrow reach.  Each 
method used a power function to describe the surface and subsurface profiles.  
Both models predicted advance times accurately on soils that quickly reach 
steady state infiltration and had relatively high infiltration losses.  However, the 
second method was found to over-predict the advance on low infiltration soils.  
 
Al-Azaba and Strelkoff (1994) revisited the work of Hall (1957) showing that the 
original technique had problems associated with volume-balance errors 
occurring at the infiltration wetting front, and accumulating over each successive 
time-step.  They found that errors could be as high as 10% for small advance 
times, but the error decreased with increasing time.  This is also not uncommon 
with today’s more complicated hydrodynamic models.  The authors neglected to 
point out that the higher volume-balance errors correspond with smaller 
volumes.  However, they did present a more accurate model by redeveloping the 
technique and calculating volumes at each time-step rather than computing 
incremental changes.  They also modified the model to account for the sharp 
curvature of the infiltration profile at the advance front. 
 
In recent work, Greek researcher John Valiantzas has undertaken considerable 
research with volume-balance models.  In 1993, he developed a simple model to 
predict advance in borders using a volume-balance equation with an adjusted 
surface shape factor and the zero-inertia motion equation evaluated at the head 
of the border (Valiantzas 1993).  A system of two equations containing the two 
unknowns of advance position and upstream depth were solved at each time-
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step.  The method performed well against the zero-inertial solution and four well-
documented field irrigations.  It also proved accurate on borders with small slope 
where volume-balance models traditionally fare poorly. 
 
Four years later, he developed a new algebraic form of volume-balance model 
(Valiantzas 1997a,b) describing the time variation of the subsurface water 
profile.  This equation was developed by solving the modified Hall technique (Al-
Azaba and Strelkoff 1994) for different values of the exponent of the Kostiakov 
equation.  By “systematic” analysis of the results, a relationship was derived 
relating the subsurface water profile to time for infiltration represented by the 
Kostiakov Equation.  This analysis was then extended to other infiltration 
equations.  However, a limitation of the resulting equations is that the advance 
time in the model is given implicitly.  Therefore, its calculation requires the use of 
an iterative numerical technique such as the Newton-Raphson method.  
Nevertheless, the resulting equations were found to be substantially more 
accurate than previous algebraic volume-balance equations utilising the power 
advance assumption. 
 
Valiantzas (1999a,b) readdressed the problem of the iterative nature of the 
method two years later, when he analysed the behaviour of dimensionless 
advance curves for various combinations of infiltration parameters.  He found 
that by expressing the advance problem in terms of conveniently selected 
dimensionless variables, the various advance curves (obtained using the 
modified Hall technique), could be described by a single advance curve 
independent of the infiltration parameters.  A “simple” explicit time-of-advance 
equation was then derived to explain this curve.  The proposed formula was 
compared against the kinematic-wave numerical results with good agreement.  
 
The next year, Valiantzas (2000a,b) admitted that this technique was not as 
simple as he had initially suggested.  A disadvantage of the method is that the 
advance relationship described by the model is presented as three equations of 
different mathematical form, lacking the simplicity of the popular SCS empirical 
equation (U.S. Department of Agriculture 1983), with the extra calculations 
required deemed significant.  Therefore he derived another simpler equation 
based on the systematic analysis of dimensionless zero-inertia numerical 
solutions, yielding good agreement with the zero-inertia model. 
 
Once again in the following year, Valiantzas (2001) simplified the previous model 
further, proposing a new time-of-advance equation equivalent in simplicity to the 
SCS equation.  This equation is derived as an extension of the two small-time 
large-time explicit advance time solutions.  He evaluated this against the SCS 
equation, which was found to perform poorly against his new design.  He also 
tested the equation against observed furrow data, and a zero-inertia model and 
found good agreement with both. 
 

2.5.2 The evolution of kinematic wave models 
First proposed by Lighthill and Whitman (1955) for modelling overland flow, the 
kinematic-wave approximation was widely utilized soon after in catchment 
hydrology and for predicting flood movement in rivers (Henderson and Wooding 
1964; Wooding 19665a,b).  This hydrologic application of the model was 
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extended to sloping, free draining borders by Chen (1970) using the method of 
characteristics. Smith (1972) made improvements to Chen’s work, while also 
introducing his own solution technique based on finite difference approximations 
to the partial differential equations. 
 
Walker and Humpherys (1983) highlighted that the kinematic-wave 
approximation developed for borders, could easily be modified for furrows by 
including a description of furrow cross-section along with a wetted perimeter 
dependant infiltration function. This was later modified by Ross (1986) in a 
model called “KIM” using a variable time-step (to keep the space-step 
approximately constant) and a volume-balance approach to calculate recession 
times. 
 
Rayej and Wallender (1988) developed a kinematic-wave model to solve for the 
time-of-advance to specified locations down the field using the implicit double-
sweep technique of Liggett and Cunge (1975). However, at this stage of model 
development, the coding requirements were found to be extensive and 
computational times long, even for this simple model type. Wallender and 
Yokokura (1991) followed on from this work, using an explicit Newton Raphson 
solution method that iteratively adjusts the time-step to ensure that the nodes 
fall at fixed locations, rather then using fixed node locations and solving implicitly 
for the time-step. This proved to be more computationally efficient than Rayej 
and Wallender’s method, while providing identical results. 
 
Shayya, et al. (1993) developed a unique model for all phases of furrow irrigation 
based upon application of the one-dimensional Galerkin formulation of the finite-
element method to the numerical solution of the kinematic-wave equations. The 
Kostiakov-Lewis infiltration equation was used without wetted-perimeter 
compensation.  Results showed that the method produced “excellent” 
predictions of the advance and recession trajectories for “almost” all simulations 
of the available field tests.  Simulation times of thirty seconds on a “386” 
computer suggests that the method is an order of magnitude slower than the 
implicit finite difference method. 
 
One researcher who has contributed greatly towards developing the kinematic 
wave models is Vijay P. Singh of the USA. For over twenty years from the late 
1970’s, he provided a comprehensive mathematical treatment of kinematic 
wave modelling of surface irrigation. In his early work with Sherman (Sherman 
and Singh 1978, 1982; Singh and Sherman 1983), and later with Ram (Singh 
and Ram 1983, 1984) he refined a model using a variety of numerical solution 
techniques (one being the Kinematic Wave Train method of Ram et al. 1983) for 
different phases of the irrigation cycle.  These solution techniques were 
simplified in later work becoming part numerical, part analytical (Singh and Ram 
1985). 
 
Singh and Ram (1983) tested the model against data from thirty-one 
experimental borders. They concluded that while it was quite good at simulating 
advance and recession, it struggled to handle the depletion phase adequately.  
This agrees with an earlier study that Singh was involved in (Chen et al. 1981) 
and also that of Smith (1972). In the following year, Singh and Ram (1984) 
further developed the solution for the transient infiltration case in the “Kinematic 
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Wave Train” formulation.  This method can be used with many infiltration models 
and uses a semi-analytical recursive solution technique. 
 
They then focused on providing quantitative estimates regarding the accuracy of 
the model through the development of dimensionless advance and recession 
curves for border irrigation (Ram and Singh 1985).  In the majority of cases, they 
found the model to be “sufficiently accurate”. 
 
In 1986, in a series of papers with Ram and Prasad, Singh presented a quasi-
steady state integral model for both closed and free draining border irrigation 
(Ram et al. 1986a,b). They used a semi-analytical method for solving the 
governing equations for all phases of the irrigation cycle.  The continuity and the 
quasi-steady state approximation of the momentum equation were integrated for 
the depth and velocity distributions of the surface water while a Kostiakov 
infiltration function predicted the subsurface distribution.  Results were reported 
as “satisfactory” with prediction errors between twenty and thirty percent.  The 
following year, Singh published several more papers (Singh and Yu 1987a,b,c) on 
this model. 
 
This work was continued in 1989 with a model for free draining borders 
simulating all phases of the cycle (Jain and Singh 1989).  This was based upon 
the integral formulation with a Newton-Raphson iterative scheme and could 
accommodate any infiltration function.  Very low volume-balance errors were 
encountered while testing against field data.  However, Singh later reported that 
this technique might converge slowly under some situations (Reddy and Singh, 
1994). 
 
To address this problem, Reddy and Singh (1994) reinvestigated the 
linearisation scheme that Strelkoff and Kotopodes (1977) had used to directly 
solve the non-linear equations.  They rederived explicit algebraic expressions for 
the linearised form of the kinematic-wave equations, for computation of advance 
and runoff rate in furrow irrigation.  A modified Kostiakov-Lewis infiltration 
equation was used in the derivation.  They used a deforming control volume 
approach during the advance phase while resorting to a fixed control grid for the 
storage and runoff phases.  The authors didn’t consider the depletion and 
recession phases suggesting that in general, these phases are insignificant in 
furrow irrigation.  They compared their results with field data, and also a zero-
inertia model and found close agreement between them all.  They also derived a 
differential equation to estimate the error between the kinematic-wave and zero-
inertia forms of the model by assuming a constant infiltration rate.  This equation 
could then be used to define the limits of usability for the kinematic-wave model 
in furrow irrigation. 
 
Turbak and Morel-Seytoux (1988) also assumed a constant infiltration rate when 
they developed an analytical solution to the kinematic wave model for all phases 
of the irrigation cycle.  The authors acknowledge that the assumption of a 
constant infiltration rate would introduce a significant prediction error.  
Nevertheless, this modelling attempt highlighted that an analytical solution could 
be found through the use of a simplified linear infiltration assumption.  
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This method was revisited by Maihol and Gonzalez (1993) for the recession 
phase when developing an analytical furrow irrigation model targeted at real-time 
applications on cracking soils.  The advance phase of the model was solved 
using a Laplace transform solution of the Lewis-Milne (volume-balance) equation 
containing a linear crack-fill infiltration function, to produce an “implicit” time-of-
advance equation.  As with Turbak’s method, the simplified infiltration equation 
limits the utility of the method, especially during later stages of the irrigation, and 
on cracking soils that may have a “zero” final infiltration rate. The authors also 
suggested that the linear form of the infiltration equation facilitates the need for 
statistical analysis to overcome the problem of spatial variability.   
 
These attempts at an analytical solution were not lost on Australian researchers 
Austin and Prendergast (1997), who were more successful in their approach to 
develop a simple analytical irrigation model based upon the kinematic wave 
approximation.  The model was specifically targeted at cracking clay soils, and 
included a simple linear infiltration function deemed suitable for describing 
infiltration into soils exhibiting shrinkage and cracking upon drying.  The two 
parameters used in the function have physical significance allowing pre-irrigation 
estimation of these parameters in the field.  It is because of the linear nature of 
this function (that is, a constant rate of change of infiltration over time) that an 
analytical solution to the kinematic wave model was able to be derived for all 
phases.  The method is simple enough that it can be undertaken using hand 
calculations without the use of a personal computer.  Initial results were good 
enough to warrant future research. 
 

2.5.3 The evolution of zero-inertia models 
In a “ground-breaking” paper, Strelkoff and Katopodes (1977) developed the 
first zero-inertia model for border irrigation.  They borrowed the idea of using the 
zero-inertia approximation from Brakensiek et al. (1966), and from Harder and 
Armacost (1966) who utilised the technique in river-flood routing.  Problems in 
adapting these methods to border irrigation were identified in the region of the 
advance front where the depth is zero, and with convergence problems towards 
the end of the depletion phase.  They dismissed the use of an explicit solution 
technique because of these convergence problems and therefore presented an 
implicit double sweep technique solving the integrated form of the governing 
equations in the x-t plane, paving the way for the state-of-the-art models of today.  
For each time-step, a series of non-linear equations were first linearised and then 
solved using the double-sweep algorithm.  Solution techniques were presented 
for each individual phase with “satisfactory” results.  This was later verified by 
Fangmeier and Strelkoff (1979), while the method was later modified for closed-
end borders by Clemmens (1979). 
 
Five years later and following on from the work of Strelkoff and Katopodes, Elliott 
et al. (1982) presented the first zero-inertia model for furrow irrigation advance. 
The model equations were linearised and then solved on a moving Langrangian 
solution grid using a double-sweep algorithm.  They related both depth and 
wetted-perimeter to cross-sectional flow area using a power relationship, 
something that again has become popular.  They presented only the advance 
phase of the simulation, deeming it of greatest interest as it is most responsible 
for the uniformity in the final distribution of infiltrated water (the other phases of 
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the irrigation were later presented in a book by Walker and Skogerboe, 1987).  
Field data were used to validate the model concluding that significant errors 
were not introduced by neglecting the acceleration terms, nor by linearising the 
series of algebraic equations.  
 
The authors followed up this work the following year by non-dimensionalising the 
zero-inertia equations so as to be able to present graphically, a series of 
dimensionless advance curves for irrigation design (Elliot et al. 1983a).  It is 
interesting to note that this team abandoned this dimensionless approach (which 
is still used by researchers such as Strelkoff and Katopodes), when developing 
their popular SIRMOD model. 
 
Schwankl and Wallender (1987, 1988) presented a zero-inertia furrow model 
with variable infiltration and hydraulic characteristics.  The method was novel in 
that the model equations were solved at specified space increments rather than 
specified time increments using an explicit finite differencing technique.  This 
allowed them to vary infiltration and hydraulic properties at locations along the 
furrow corresponding to measurements of infiltration, roughness and geometry.  
They found great benefit in this, stressing the importance of wetted perimeter 
effects on infiltration. 
 
Australian researcher Ross developed a zero-inertia model for furrow and border 
irrigation in 1987 (Ross, 1987). Aptly named “ZIM” (Zero-Inertia Model), the 
model followed on from the work of Strelkoff and Katopodes (1977) and Elliot et 
al. (1982) using a Newton-Raphson technique in the solution process. This 
model managed to earn some early recognition with Australian primary industry 
researchers, although later models (such as SIRMOD and SRFR) soon 
overshadowed it. 
 
Schmitz and Seus (1989, 1990, 1992) developed a zero-inertia model for 
irrigation in borders and furrows.  The model is unique in that an analytic solution 
replaced the finite difference approximation to the derivative terms in the model. 
Up until this time, analytical solutions could only be achieved for volume-balance 
approaches.  However, it is not an explicit time-of-advance model, and does 
require iteration over successive time-steps.  The model can be used with any 
infiltration equation and a range of furrow geometries can easily be 
accommodated.  The authors claimed that the model is very accurate and 
numerically economic avoiding the normal errors introduced by numerical 
discretisation.  They compared the model against a full hydrodynamic model and 
also field data showing “excellent agreement”.  Unfortunately, along with many 
other models discussed, it doesn’t seem like any further development has taken 
place in the time since it was first published.  
 
Oweis and Walker (1990) modified the method of Elliot at al. (1982) for the 
situation of surge flow.  The model simulates all phases of the irrigation cycle 
including simultaneous advance and recession, which is regularly overlooked by 
researchers.  Unfortunately, although this phase combination is crucial in surge 
flow modelling, the authors still only offered a brief coverage of the topic passing 
up an opportunity to publish in an important but little understood area.  
Nevertheless, the model appears to be successful, and would later on contribute 
to the development of SIRMOD.  Neglecting the inertial terms was thought to 
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have minimal impact on the accuracy of the simulation despite the relatively high 
flow velocities associated with surge irrigation. 
 
Katopodes (1994) developed a unique and powerful model for simulating the 
surface irrigation advance that also calculates the velocity profile of the surface-
water wetting front.  This complex technique makes possible the analysis of 
particle suspension and chemical transport, which is in fact the reason for its 
development.  A two dimensional finite element approach in the vertical plane is 
used to solve the Navier-Stokes equations in the region of the wave front.  Zero-
inertia theory is then used a short distance upstream where a fully developed 
vertical structure is encountered.  The model is not suggested as a tool to 
analyse or design border irrigation flow and the author admits that it could not 
compete with any of the recent hydrodynamic models with results differing 
considerably from a zero-inertia model.  It presents as a first attempt to model 
surface irrigation based on the turbulent Navier-Strokes equations addressing 
the problem of point-source contamination from irrigation runoff. 
 

2.5.4 The evolution of hydrodynamic models 
Nearly all furrow irrigation models up until the late 1970’s employed volume-
balance methodologies.  While hydrodynamic modelling had commenced a 
decade earlier, it had met with little success.  Since then, most interest in 
hydrodynamic modelling has been directed towards using explicit solution 
techniques to solve the equations, with stability problems and slow computation 
times reported. The most successful methodology (and benchmark standard) 
appears to be the implicit double-sweep technique of Walker and Skogerboe 
(1987).  
 
Wilke (1968) presented one of the first attempts at using a hydrodynamic model 
using the method of characteristics, but computational difficulties near the 
advance front prevented accurate predictions of the advance trajectory. The first 
“successful” attempts at simulating all phases of the irrigation cycle using the 
full hydrodynamic model were made by Basset (1976) and Katopodes and 
Strelkoff (1977b) using finite differencing techniques based on the method of 
characteristics.  Long simulation times and the high cost of producing runs on 
shared computing systems stirred much interest in simplifying the model by 
neglecting accelerations terms in the momentum equation.   
 
Fonken et al. (1980) presented a complete hydrodynamic model of all phases of 
border irrigation.  The authors employed a Newton-Raphson-based numerical 
integration technique applied to control volumes in replacing the method of 
characteristics (which was popular throughout the previous decade), with great 
improvements in numerical efficiency.  The numerical costs associated with 
running this new model were comparable to that of the simpler zero-inertia 
models of the time.  Interestingly, the model was presented as a useable tool, 
rather than academic concept, which tended to add some credibility to the 
science at that time. 
 
The underlying model for the SIRMOD software was presented by Walker and 
Skogerboe (1987) in their textbook for surface irrigation theory and practice. The 
method uses a Eulerian integration approach to approximating the Saint-Venant 
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equations and solving with the implicit double-sweep technique of Liggett and 
Cunge (1975). The authors have presented what is probably the most 
comprehensive treatment of hydrodynamic simulation modelling for furrow 
irrigation to date, and includes treatments for initial conditions and downstream 
boundary conditions. Given the success of the SIRMOD software (see Section 
2.9), this model has set the standard for surface irrigation models. 
 
During the late 1980’s there was considerable interest in simulating irrigations 
using fixed node locations and solving for the time-of-advance using volume-
balance, kinematic wave, and zero inertia models (Wallender 1986, Rayej and 
Wallender 1988; Schwankl and Wallender 1988). A benefit of specifying node 
locations is that different infiltration functions (uniform or stochastic) can be 
used along the furrow. Wallender and Rayej (1990) presented the first attempt at 
developing a hydrodynamic furrow irrigation advance model using this approach 
with an explicit shooting algorithm. This explicit solution technique was used to 
solve for flow-area and flowrate on a cell-by-cell basis in the upstream direction, 
given the location of the wave front and an initial value of the time-step.   
 
The authors contend that since flow in surface irrigation is typically subcritical, 
downstream conditions can propagate upstream and this type of solution 
technique was ideally suited to this situation.  They contrasted this against the 
more common two-point boundary value solution using the double sweep 
technique, implying (without supporting evidence) that this latter approach would 
not handle this situation very well.  They added that the explicit shooting 
algorithm simplified the coding by decoupling the model equations allowing 
greater flexibility in resolving instability problems at locations on the solution grid 
where hydraulic conditions change.  They criticised the double sweep technique 
that at that time was solved using fixed time-steps without the ability to fix node 
locations. However, many of the authors’ underlying hypotheses for developing 
the model were later shown to be unfounded. 
 
Bautista and Wallender (1992) later expanded on this research to include the 
storage, depletion, and recession phases of the irrigation, and to simulate 
simultaneous advance and recession. The authors presented a numerical 
analysis showing that the specified space solution is computationally more 
efficient than the traditional specified time solutions. However, computation 
times were in the order of minutes rather than seconds, which is an order of 
magnitude larger than the implicit double sweep methodologies. Convergence 
issues were also identified and the authors suggested different research options 
to improve this. While results suggested that the model was successful, no 
evidence could be found that the model was developed further, possibly due to 
the problems associated with long computation times. 
 
Greek researchers Sakkas, Bellos and Klonaraki (1994) developed a model 
based upon the complete hydrodynamic equations for all phases of the irrigation 
cycle.  The explicit two-step numerical solution technique of MacCormack and 
Warming (1973) was used to solve the equations, proving to be the main “new” 
information presented.  As usual, the model provided “satisfactory” results.  This 
explicit technique allowed the decoupling of surface and subsurface flow models, 
which for simplicity can then be operated in sequence.  A simple Kostiakov-like 
infiltration equation was used in the presented example but reference was made 
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of some preliminary work which used the physically based Philip equation; a 
benefit of the decoupling process.  
 
This benefit was highlighted two years later by Indian researchers Singh and 
Bhallamudi (1996), who identified the flexibility of the explicit finite difference 
method over the implicit technique for handling different infiltration equations.  
They developed yet another hydrodynamic model which was solved using the 
explicit MacCormack method.  Interestingly, no reference was made to the work 
of their Greek colleagues.  However, they did use a different infiltration model, 
that of the Parlange equation (Haverkamp et al. 1990).  The Kostiakov equation 
was also employed in a separate variation of the model.  A simple sub-grid 
technique was introduced to implement a small grid size at the location of the 
wetting front to avoid the occurrence of negative depths, while maintaining a 
courser grid at other locations to improve computational efficiency.  The amount 
of effort by the researchers to improve solution speed highlights a deficiency in 
the model; that of long computation times.  While there is no doubt that today’s 
modern computers would handle the explicit techniques more quickly, they tend 
to be an order of magnitude slower than the implicit double-sweep techniques for 
the same level of accuracy. 
 
A double-sweep technique was used by Tabuada et al. (1995), who coupled a 
two-dimensional infiltration model with the Saint Venant equations to simulate 
the interaction of surface water depth and soil water movement during all 
phases of the irrigation cycle.  Richards’ equation was used for infiltration as it 
takes into account the initial soil water conditions before the irrigation and the 
surface water depth during the irrigation.  The model aimed to provide insight 
into the infiltration phenomenon involved in furrow irrigation, tracking the 
position of the soil-water wetting front through time.  This allows greater 
investigation of different inflow rates, furrow spacings and furrow shapes to 
improve irrigation efficiency.  However, computational intensity was deemed as a 
practical limitation of the model, which had very long computation times on 
powerful super-computers of that era.  
 
The MacCormack solution method was also used by Dholakia et al. (1998) to 
simulate all phases of border irrigation using the hydrodynamic (HDFD), zero-
inertia (ZIFD), and kinematic wave (KWFD) models. A key feature of the 
methodologies is that consistent discretisation in implementing the boundary 
conditions and pseudo viscosity has eliminated the need for special grid 
treatments (e.g. moving grid, deformable gird, subgrid techniques) for the 
advance and recession fronts. Computation times for the hydrodynamic model 
ranged from 75 sec to 300 sec on a 486 computer, which is nearly twice that of 
the kinematic wave model. Simulated outputs from the models were compared 
against measured data with good agreement found, although the authors 
suggest that the hydrodynamic model is the most suitable model for simulating 
all irrigation phases. 
 

2.6 “Inverse” methodologies 
Optimal design and management of furrow irrigation practices using simulation 
models requires accurate identification of soil infiltration and hydraulic 
roughness properties.  These soil characteristics are one of the dominant factors 
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in determining the performance (efficiency and uniformity) of furrow irrigation 
applications and exert their influence by controlling the rate of advance of the 
irrigation water down the furrow or bay.  Knowledge of the spatial average values 
is required for the optimisation of furrow irrigation management while the 
temporal range of values is required for field design.  
 
Substantial recent work has been directed towards developing methods to 
measure the infiltration properties of the soil.  A volume balance at the end of 
the event (through measuring inflow and outflow) such as that presented by 
Merriam and Keller (1978) is a useful check on infiltration parameters estimated 
during the event. Strelkoff et al. (1999) proposed that surface volumes 
measured over time could also be used in the estimation. Devices have also 
been specifically developed for measuring infiltration (e.g. Turral & Malano 
1996).  
 
However, it is the “inverse solution” methodology for determining infiltration 
parameter values that has generated most interest in surface irrigation; that is, 
determining the infiltration parameter values from the measured irrigation 
advance, and/or surface depth profile, and/or runoff hydrograph. An advantage 
of this is that parameters can be estimated in “real-time”, before the irrigation 
has been completed.  Over the last 40 years, many methods have been 
developed to solve the inverse problem differing in their data requirements, 
assumptions, ease of analysis and accuracy (Strelkoff and Clemmens 2001).  
 
The inverse methods can be broadly sorted into three main categories.  The first 
two categories involve those methods that use a direct application of the volume-
balance (or sometimes kinematic-wave) equations, which are manipulated in 
some way in order to determine the infiltration parameters.  These first two 
categories differ in the way in which the infiltration parameters are extracted, 
with the first including methods employing a graphically based procedure, while 
the second includes those that use a numerical solution technique.  The third 
category involves those methods that require repeated simulations using an 
optimisation technique to minimise the error between the measured and 
predicted advance and/or surface profile measurements. 
 
Note that several attempts have also been made to derive generalised infiltration 
relationships for different soil types.  These include efforts by the US Department 
of Agriculture (1975), Merriam and Clemmens (1985), and Walker (1989). Soil 
roughness characteristics (Manning n) are also typically categorised for different 
hydraulic situations.  While these generalisations may have some credit in field 
design, they are less suitable for irrigation management where spatial and 
temporal variability effects must be considered. 
 

2.6.1 Graphical solution techniques for the “inverse problem” 
Several methods for solving the inverse problem were developed in the 1950s 
and 60s which required the use of manual curve fitting techniques on graph 
paper, and were usually quite time consuming and labour intensive.  Finkle and 
Nir (1960) developed a simple graphical procedure to solve a volume-balance 
model to calculate infiltration in borders.  This method is based upon the inverse 
procedure of Hall (1956) and was aimed at improving on earlier work by Bauwer 
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(1957), which required a minimum of three sets of irrigation measurements (with 
different flow rates, volumes, and cutoff times) on adjacent borders.  However, 
Finkle and Nir’s method also required intensive measurements at many points 
inside the test border.  It was later found that this method places much 
emphasis on the advance during the first few minutes of the irrigation, which is 
subject to field measurement errors (Turner and Clift 1984). 
 
Philip and Farrell (1964) developed an analytical solution for the irrigation 
advance based upon a Laplace transformation of the Lewis and Milne equations 
(1938).  This work provided the foundation for much of the later research in time-
of-advance solutions (e.g. Or and Silva 1996) and numerically based inverse 
methodologies.  Infiltration is estimated through plotting on graph paper, the 
Laplace-transformed volume-balance equation for large irrigation times, and 
calculating the slope and intercept to extract the sorptivity and saturated 
hydraulic conductivity of the Philip infiltration equation (Eqn. 2.7).  A limiting 
assumption of constant cross-sectional flow area in time and space is applied. 
This method was later shown to be valid only for short times, failing to predict the 
correct long-term infiltration behaviour (Knight 1980), and was also criticized for 
its time-consuming procedure (Shepard et al. 1993).  
 
This method was revisited by Norum and Gray (1970) who instead utilised 
dimensionless curves superimposed on nomographs to determine the infiltration 
coefficients through curve-matching, with the advantage that the complete 
advance curve could be used, instead of just points at large times.  However, 
both methods are restricted to certain forms of infiltration equation and 
therefore have limited field application (Maheshwari et al. 1988).   
 
An advantage of the previous two methods (associated with using the Laplace 
transformation methodology) is that no assumptions about the functional form of 
the advance equation are necessary to determine infiltration from the advance 
(Smerdon and Blair 1988).  In earlier work, Gray and Ahmed (1965) had 
developed a different volume-balance methodology for calculating infiltration in 
border dyke systems.  Power functions were used to approximate both advance 
and infiltration relationships with a least squares methodology used to calculate 
power-coefficients.  The power function approximations proved to be a 
disadvantage of the method, along with the physical measurement and 
mathematical representation of surface water storage with time (Norum and 
Gray 1970).  Nevertheless, the power approximations used in this methodology 
have been reused in many of the later techniques, including the industry-
standard “two-point” method (Elliot and Walker 1982).  
 
Another Laplace model was developed by Wilke and Smerdon (1965) which, like 
the method of Norum and Gray (1970), uses a dimensionless form of the 
Laplace transformed system equations and graphical curve matching to estimate 
the infiltration parameters.  However, this method multiplies a surface profile 
shape factor by the measured upstream cross-sectional area of flow to calculate 
surface storage.  
 
Christiansen et al. (1966) developed a graphical technique, which requires the 
plotting of advance data on log-log paper to obtain the coefficients of a power 
advance equation.  Infiltration volumes (calculated as the difference between 
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inflow and surface volumes) are then plotted against time from which the 
Kostiakov infiltration parameters are then estimated.  In a later study, Elliot and 
Eisenhauer (1983) found that errors in surface flow estimates could be as high 
as 46% using this method. 
 
Detar (1989) presented a modification of Christiansen’s work producing 
essentially the same results, but with a more direct approach.  The concept of 
average opportunity time was introduced to plot the infiltration function directly 
from tabulated data, hence simplifying the methodology. 
 
Cahoon (1998) used a kinematic wave model iteratively to systematically vary 
the Kostiakov infiltration parameters over a grid of input values.  For each pair of 
a and k parameters, the predicted and measured advance and runoff 
hydrographs were compared.  Solution of the field average combination could be 
interpolated from the charts.  He observed that a wide range of infiltration 
parameters can lead to an acceptable coincidence between the measured and 
simulated advance and runoff hydrographs.  Simultaneously fitting both advance 
and runoff data provided a smaller solution space than fitting each singularly. 
 

2.6.2 Numerical approximation techniques for the “inverse problem” 
Numerical solution techniques to the inverse problems became popular in the 
1980’s when computers became more accessible.  Some methods relied on 
numerical solutions to the previous graphical procedures, while others employed 
particular assumptions to simplify the equations so that an analytical solution to 
the infiltration parameters could be found.  These numerical techniques were 
typically only designed for determining the infiltration parameters, and not the 
hydraulic roughness parameter.                                                                                                           
 
Lal and Pandya (1972) developed a simple volume-balance technique to 
estimate the Kostiakov-Lewis infiltration parameters.  The method was designed 
to be programmed into a computer and uses least squares fitting to determine 
the coefficients to an exponential form of advance equation, and also the 
infiltration parameters.  Extensive field measurements of advance and surface 
storage were required (suggested at 20m intervals) over time.  The accuracy of 
the solution is determined by the extent and accuracy of field measurements 
taken.  Maheshwari et al. (1988) found that this technique places much 
emphasis on the beginning of the irrigation, when accurate measurements are 
hard to obtain. 
 
Burt et al. (1982) developed a similar volume-balance approach to the previous 
method using numerical integration.  The method is more numerically intensive 
than the “two-point” method and it requires the surface profile to be measured at 
several locations along the furrow.  However, it still requires only two advance 
measurements, taken at the middle and end of the field.  Elliot and Eisenhauer 
(1983) found that errors in estimated surface volume were around 3%. 
 
Elliott and Walker (1982) and Elliott and Eisenhauer (1983) developed the “two-
point” method, which has become the most popular procedure for solving the 
inverse problem.  Its simple numerical solution technique makes it suitable for 
hand calculations, as well as implementing into computer code.  This method 
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incorporates the modified Kostiakov-Lewis equation into a volume-balance 
model to solve for the infiltration parameters a and k.  The final infiltration-rate 
fo  must be estimated or measured separately.  Input data includes the cross-
sectional area of the flow at the upstream end of the furrow or bay.  Only two 
irrigation advance points are required.  These are used to generate two non-
linear volume-balance equations that are solved for the two unknown infiltration 
parameters.  In the process of generating these equations, a simple power 
equation is used to represent the advance.  A logarithmic transformation is used 
to linearise the volume-balance equations giving two linear algebraic equations 
in two unknowns.  
 
Smerdon et al. (1988) and Blair and Smerdon (1988) expanded on the work of 
Elliott and Eisenhauer (1983).  Six forms of “two-point” volume-balance methods 
(including three infiltration equations and two advance equations) were 
evaluated before suggesting a simple and direct method based upon the 
Kostiakov infiltration equation and the power advance equation.  
 
Clemmens (1991) used a modification of the double-sweep technique commonly 
used in solving the continuity and momentum equations to determine one global 
parameter at each time step. The modification derived double-sweep coefficients 
for the Kostiakov infiltration parameter k, the Manning n, and global time-step. 
Another procedure allowed for determining Kostiakov a and k during the 
advance. However, it was subsequently found that these attempts were subject 
to errors caused by assumptions at the advance tip with regards to surface 
storage volumes. Nevertheless, this lead to further research in real-time control 
application where advance measurements were used to estimate the trade-off 
between infiltration and roughness using Bayesian statistical method (Clemmens 
and Keats 1992). 
 
Renault and Wallender presented a series of papers (1991, 1992 and 1994) on 
determining infiltration using advance rates (rather than times) in a methodology 
they called “ALIVE” (Advance Linear Velocity).  They developed a “time of 
advance-rate” equation using the Laplace transform of a flow-rate-balance 
equation (instead of a volume-balance equation) using a methodology borrowed 
from Philip and Farrell’s (1964) solution of the flow-volume equation.  They 
derived a function for advance-rate with two exponential terms, using a Horton 
(1940) law to represent infiltration.  When using this to solve the inverse 
problem, four characteristics of the measured advance-velocity diagram were 
used to calculate the two Horton-infiltration parameters and one surface storage 
parameter.  This process involves fitting two linear equations to the advance-
velocity diagram: firstly for the initial rapid advance that occurs along the top end 
of the furrow, and then to steadier advance for the remainder of the furrow.  In 
practice, the rapid advance phase could not be accurately measured.  The 
authors promoted this method for its ability to determine the steady state 
infiltration term without having to measure runoff.  In later work (1994), they 
demonstrated how this technique could be used to detect and evaluate 
heterogeneous soil properties at different sections of the field. 
 
Shepard et al. (1993) developed a simple one-point method using a volume-
balance equation and over-conditioning the advance and infiltration functions.  
The method uses the Philip infiltration and power advance relationships to derive 
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a simple algebraic expression to determine the Philip infiltration coefficients 
using only one measured advance point (preferably at the end of the field).  To 
derive this expression, a constant value of 0.5 was used for the exponent term in 
the power advance equation.  This assumption would have very limited 
applicability on most soils. Khatri and Smith (2005) found that the method 
continually failed to provide a reasonable prediction of cumulative infiltration, 
and it also failed to match the measured advance curves.  It was found to under-
predict infiltration at all times up until the final advance time. 
 
Scaloppi et al. (1995) developed a volume-balance methodology to determine 
the Kostiakov or modified Kostiakov infiltration parameters.  This approach 
requires advance and/or runoff data, resulting in three different procedures to 
determine infiltration.  Some mathematical approximations are suggested to 
simplify the amount of field measurement and numerical computation.  The 
results from the three procedures were found to vary considerably, with most 
variability found with smaller advance times. 
 
Valiantzas et al. (2001) developed their own one-point method using a power 
advance equation and the USDA infiltration function (Eqn. 2.10) with a constant 
value for the parameter c.  A differential algebraic relationship between the 
infiltration and irrigation parameters was derived requiring a Newton-Raphson 
iterative procedure to solve for two infiltration parameters. Khatri and Smith 
(2005) found that like the previous one-point method, this method under-
predicts infiltration up until the final advance time, and poorly represent the 
measured advance.  It was found that this method cannot describe initial high 
infiltration rates (including crack-fill) because of the fixed value of the infiltration 
parameter C.  Allowing parameter C to vary resulted in improved performance of 
the method. 
 
In earlier work, Valiantzas (1994) was able to determine both roughness and 
infiltration parameters in border irrigation through a simple iterative analysis 
using both the full advance, and surface depth measurements at a single station.  
Approximate estimates of the infiltration parameters were obtained using simple 
algebraic equations and are successively corrected using a zero-inertia model. 
 
Other techniques have been developed by Singh and Chauhan (1973), Reddell 
(1981), Clemens (1982), Ottoni and Warrick (1983), and Scaloppi (1984), Izadi 
et al. (1988), which have received relatively little recognition from other authors 
in the literature. 
 

2.6.3 Optimisation-based techniques for the “inverse problem” 
The most promising method for solving the inverse problem is through repeated 
simulations using an optimisation technique to match predicted and measured 
quantities.  Many methods have been developed since the 1980’s making use of 
the rapid rise in computing power, and optimisation technologies.  These 
methods can be categorised into those that employ time-of-advance equations, 
and those that utilise full irrigation simulations.  
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While the time-of-advance methods usually provide rapid solutions, they are 
often limited (by their analytical structure) by the forms of infiltration equations 
that they can employ, and also by which objective-functions (and hence 
measured data) can be used.  Typically, they are based upon a volume-balance 
or kinematic-wave approximation to the full hydrodynamic model, which can lead 
to errors under certain field situations. 
 
Using optimisation with complete simulations to solve the inverse problem has 
the advantage that there are no restrictions on the objective-function and 
solution parameters that are used.  However, the main limitation is in speed and 
radius of convergence in the optimisation.  Complete simulations inherently have 
some amount of noise in their results resulting from the discretisation process in 
the solution procedure.  This can lead to convergence problems using sensitive 
optimisation tools.  Most of the tools developed have demonstrated these 
problems. 
 
Maheshwari et al. (1988) adopted a Hooke-Jeeves pattern search optimisation 
algorithm to solve a volume-balance model.  The objective-function was the 
minimisation of the difference between the measured and estimated infiltrated 
volumes.  The model allowed for the adoption of any time dependant infiltration 
equation and also any form of advance equation.  Data requirements included 
measurements of the advance, surface storage depths, runoff, channel 
geometry, and inflow.  They concluded that the method showed promise.  
 
Conjugate gradient and variable metric optimisation techniques were used by 
Katopodes et al. (1990) to determine three parameters from a zero-inertia 
model.  Two of the parameters were a and k from the Kostiakov infiltration 
equation while the third parameter was the Manning n.  The objective-function 
used was the minimisation of the error between the measured and estimated 
depths of flow on the surface.  The method is limited in that it requires the 
measurement of the advance, surface storage depths, field slope, inflow, and 
channel width.  The optimisation process required good initial estimates with 
convergence problems identified when solving for the three parameters. In 
another paper, Katopodes (1990) suggested that only one parameter can be 
identified from advance data only, and two to three parameters can be 
determined from surface depth profile measurements. 
 
In later work, Yost and Katopodes (1998) readdressed the convergence 
problems of this method, implementing a “fixed-point” algorithm that permitted 
unconditional global convergence on the solution.  This is a slow-converging but 
reliable optimisation process which can be switched to a localised gradient 
technique after several iterations to speed convergence.  Both infiltration and 
hydraulic resistance parameters could be determined reliably using a zero-inertia 
model and calibrating against surface depth measurements.  Parameter scaling, 
gradient modification and switching optimisation algorithms were required to 
make this method robust and efficient.  This method was suggested to overcome 
what was seen as a general problem of limited radius of convergence associated 
with optimisation based inverse methods. 
 
Walker and Busman (1990) used a Simplex optimisation algorithm to determine 
the modified Kostiakov-Lewis infiltration parameters using a kinematic-wave 
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model and measured advance data.  Having demonstrated that the technique 
works, they applied it to mimic the situation of real-time control, in which the 
infiltration parameters are continuously recalculated as more and more advance 
data became available during the irrigation.  The results showed that the 
parameters could be determined with sufficient accuracy from early advance 
data for situations of slow to linear advance rate.  They neglected to discuss the 
efficiency and reliability of the Simplex method and any difficulties involved in the 
optimisation. 
 
The real-time solution of the inverse problem was also investigated by Azevedo 
(1992) with applications for variable-inflow irrigations with feedback control 
systems.  A kinematic-wave model was combined with a non-linear search 
optimisation algorithm for constant inflow irrigation that was later applied to the 
variable inflow situation.  It was found that some non-uniqueness of the inverse 
furrow advance problem can exist, although this had little effect on computations 
of application efficiencies and runoff hydrographs. 
 
A Marquardt optimisation algorithm was used by Bautista and Wallender (1993a) 
to solve a hydrodynamic model for the modified Kostiakov-Lewis infiltration 
parameters.  The parameters were found by minimising the error between the 
measured and predicted advance times or velocities, the latter of which was the 
more successful.  They concluded that solving for three infiltration parameters 
was too difficult, the result being overly influenced by noisy data.  They only had 
confidence in their results when solving only for the Kostiakov a and k 
parameters. 
 
Smith (1993) developed a method utilising the volume-balance model from the 
two-point method of Elliott and Walker (1982).  In this method, the Kostiakov-
Lewis parameters were found by minimising the volume-balance error using a 
Steepest Descent optimisation procedure.  His results, although initially 
appearing to be considerably different from the results of the two-point method, 
produced a cumulative infiltration curve that was almost identical.  However, 
unlike the two-point method, the steady state infiltration rate did not need to be 
measured as it was determined in the optimisation.  Data required were the 
cross-sectional area of water at the upstream end of the furrow, inflow rate and 
three or more points on the irrigation advance. In practice, the method had a 
limited range of convergence, and slow computation times. 
 
Hume (1993) presented a solution to the infiltration characteristic of a cracking 
clay soil using a regression approach to the volume-balance technique, and 
utilising automatic data gathering techniques.  This technique enables the fitting 
of any form of infiltration function through a least squares regression approach. 
 
A ‘flexible tolerance’ algorithm was developed to work with the SRFR model by 
Calejo and de Sousa (1996) to estimate the Kostiakov Lewis infiltration 
parameters and hydraulic roughness parameter using advance and/or recession 
data. The flexible tolerance algorithm was chosen because of its global 
convergence ability. However, convergence problems were identified when 
optimising on two or more parameters. The most accurate results were achieved 
when using both advance and recession data, while significant errors were 
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recorded when calibrating on recession data alone. No evidence could be found 
that this method was developed futher. 
 
Camacho et al. (1997) developed an infiltration parameter estimation (IPE) 
methodology for management and control of furrow irrigation in real time.  The 
method is based upon a kinematic-wave model and a downhill simplex 
optimisation method optimising on measured and predicted advance.  The 
method is unique in that the model can compute the spatial and temporal 
variability of infiltration due to variations in the wetted perimeter.  The same 
model can then be used to simulate the irrigation and suggest a cutback rate 
and time-to-cutoff.  The simulated results were compared against SIRMOD 
output with some discrepancies.  Nevertheless, this represents one of the few 
instances where the same model is used for both calibration and simulation. 
 
Walker (2005) presented a stepwise multi-level optimisation scheme to calculate 
infiltration and roughness parameters, for any form of simulation model.  In an 
effort to simplify field requirements, the procedure requires inflow and outflow 
hydrographs, but does not require individual advance measurements.  Through 
an understanding of the parameter verses response sensitivities, a 
“decomposed” or stepwise multilevel approach to estimating the parameters is 
used, as opposed to searching automatically and simultaneously for all 
parameters within a feasible parameter range.  Potentially, this offers the 
advantages of simplicity, stability and ease of implementation at the cost of long 
computation times. It could be implemented manually using the existing 
SIRMOD and SRFR software, although it could easily be automated. The author 
suggests, “the most important advantage of the multilevel approach is that it is 
easier to manage and control periodic convergence failures within the simulation 
model” (Walker, 2005, p131).  
 
However, the piece-wise nature of the optimization has potential problems. For 
example, as each parameter is optimised/calibrated in turn, the previously 
adjusted parameter no long longer represents the optimal condition. Given this, it 
is questionable whether the final calibrated figures are optimal, and it is 
concerning that the author infers that the inherent accuracy is due to estimating 
different parameters from different parts of the irrigation.  Probably, the greatest 
influence on accuracy is that the method includes a greater proportion of the 
irrigation response on which to calibrate, so that the calibrated parameters will 
naturally be more accurate than simpler “advance-only” methods.  
 
Both advance and runoff measurements were included in the inverse solution of 
Gillies and Smith (2005).  The method employs a volume-balance model using 
the optimisation algorithm developed and presented in Section 4.4.2 of this 
dissertation.  Objective-functions are developed for advance-only, and then 
combined advance-runoff situations.  In the advance-runoff example, the 
objective-function uses runoff-volumes rather than runoff-rates, and weighting 
parameters are introduced to change the sensitivity of the individual objective-
function components.  Results of their study suggest that infiltration can be 
calculated more accurately when both advance and runoff data are collected.  In 
effect, this enables an extrapolation of the infiltration curve to greater times.  The 
dual methodology is limited to advance and storage phases of the irrigation, and 
cannot be employed during recession phases.  In later work, Gillies et al. (2006) 



Chapter 2        Background to surface irrigation decision support 

   39 

modified the technique to account for variable inflow irrigations by introducing an 
accumulated inflow term, instead of the previous average inflow assumption.  
They found that this provided accurate results under variable inflow irrigation so 
long as it is not applied where inflow changes rapidly. It cannot be applied to 
traditional cutback inflow irrigations. 
 

2.7 Optimisation of furrow and border irrigation design and 
management 
Optimisation of surface irrigation design and management practices has 
historically been undertaken through trial and error over many seasons, and 
through extensive field experimentation.  Simulation models have provided a new 
tool to optimise practices, although this is not a straightforward process, with 
considerable user input required to run multiple simulations.  Relatively little 
research has been undertaken to simplify, and/or automate this process. 
However, other options are also available. 
 
In general, there are four types of methods available to determine optimum 
design and management parameters: 

• Human-based learning (or “action learning”); 
• design charts; 
• simulation models; and   
• automated feedback control systems. 

Research into these methods is reviewed below. 

2.7.1 Human based learning for optimising design and management 
As the transfer of computer-based technology is still in its infancy stage, the trial 
and error approach to improving design and management practices is still 
encouraged at the farm level with an emphasis on measurement and 
quantification of performance.  A survey by Maheshwari and Patto (1990) 
showed that most Australian irrigators “guess” the design variables (flowrate, 
length, and slope) that dominate surface irrigation performance.  
 
A “technology-gap” exists between farming and research organizations, which 
extension officers worldwide are trying to bridge through demonstration field 
trials and participatory action groups.  While this aspect of improving design and 
management practices is not a focus of this dissertation, it does warrant a 
mention because it is a useful medium to communicate practical findings from 
decision support system outputs.  Also the decision support software provides a 
means to measure changes in practice. 
 
Field research in Australia (e.g. Raine and Bakker 1996; Raine & Shannon, 
1996) has revealed a range of simple inexpensive measures, which can improve 
performance and are attractive to farmers.  A range of methods to improve 
application efficiencies were identified and grouped according to whether they 
modified the soil, water or design parameters.  Results showed that water use 
could be reduced by 50% through modification of field-length, time-to-cutoff, 
water inflow rate, furrow shape and cultivation practices.  While the value of 
these results should not be underestimated, the techniques employed in this sort 
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of research are expensive and time consuming and are limited to a narrow range 
of conditions 
 

2.7.2 Design charts for optimising design and management 
Design charts (or field design and management guidelines) are a paper-based 
design and/or management tool, and were one of the first support tools for 
surface irrigation decision-making.  Historically they have been developed from 
field trials, empirical relationships, and simple analytical functions.  Recently, 
simulation models provide a more convenient means of developing these charts. 
They are presented as contours or three-dimensional surfaces of performance 
plotted against the decision variables. 
 
Before personal computers were readily available, design charts developed from 
field experimentation provided a simple means to design irrigation fields.  Hall 
(1960) developed a simple graphical method using the advance function to 
design border checks to achieve maximum application efficiency. 
 
Strelkoff and Shatanawi (1985) produced a series of dimensionless normalised 
graphs (based upon generalised “ultimate outcome solutions”) for wide, sloping, 
plane, free draining borders.  With the use of a calculator, these curves allow the 
determination of the final distribution of infiltration water, runoff volume and 
efficiency for any combination of management (required depth of infiltration, 
flowrate, time-to-cutoff) and field parameters (bottom slope, length and 
roughness, infiltration parameters).  
 
Zerihun et al. (1993) developed design-management “nomographs” for free 
draining graded furrows.  This represents plots of efficiency, time-to-cutoff and 
uniformity coefficient contours in a length-flowrate space for a given set of field 
parameters.  The nomograph can be used to determine the combinations of 
length, flowrate, and time-to-cutoff for an optimum combination of efficiency and 
uniformity. 
 
One of the most successful attempts at guideline generation was through the 
development of the BORDER software application (Strelkoff et al. 1996). 
BORDER was originally released as a DOS-based design and management tool 
for border irrigation with tailwater runoff. It consists of a stored database of pre-
run irrigation simulations with an algorithm for retrieving and displaying the 
results for a range of design and operating parameters. The outputs are 
presented in the form of contour plots of selected irrigation performance 
measures for different combinations of design and management parameters. It 
has recently been incorporated into the WinSRFR decision support system.  
 
In more recent research, Hornbuckle et al. (2003) used the SIRMOD simulation 
model to develop design charts to demonstrate a potential application of the 
software.  These charts were designed to present application efficiencies, 
distribution uniformities, infiltration volumes and runoff volumes for different 
combinations of inflow and time-to-cutoff.  The authors contend that by recording 
irrigation properties for a previous irrigation season, these charts can be created 
and used in the following season to improve irrigation practices.  This assumes 
that infiltration characteristics remain constant over the season and is 



Chapter 2        Background to surface irrigation decision support 

   41 

acknowledged as a limitation of the method.  Previous work by Hornbuckle 
(1999) demonstrated that usually only small differences in the infiltration 
characteristics occur after the first irrigation of the season.  Nevertheless, they 
recommend that infiltration characteristics for both the first irrigation and the 
later irrigations be used to represent infiltration over the season. 
 

2.7.3 Computer optimised practices for design and management 
Computer simulation models offer the greatest potential to optimise design and 
management practices.  Optimum parameter combinations can be determined 
through repeated simulations using existing simulation models, although the 
quality of these results is largely dependant on the operator’s skill in using the 
model.  Acknowledged reliability problems and high complexity of existing models 
have hindered efforts to accommodate an optimisation algorithm to remove the 
dependence of a skilled operator. 
 
The few existing self-optimising models are limited in their range of objective-
functions and optimisable parameters and have failed to reach their potential.  
Self-optimising models have long been considered the last stage in model 
development by irrigation researchers, but the decisions derived from such tools 
are valid only as long as conditions remain constant in the field.  Variations in 
field parameters such as soil infiltration must be considered when optimising. 
 
Before 1990, the optimisation of irrigation design and management practices 
using computer simulation software was limited by the need to apply a trial and 
error approach.  Since then, very few attempts have been made to develop 
automated optimising capabilities into a surface irrigation decision support 
system.  None have succeeded to achieve practical use.  To understand the 
difficulties involved in developing such a system, one should consider that even 
the most popular simulation tools require considerable user input and guidance.  
 
Geometric programming techniques were used by Reddy and Clyma (1981) to 
optimise the design of free draining borders while considering net economic 
benefit.  Similar methods were used by Holzapfel et al. (1986) who used a linear 
programming economic model to optimise the design of free draining borders.  
They used a log-transformed objective-function to maximise the profit of the crop. 
A year later Holzapfel and Marino (1987) resolved the problem using a non-linear 
optimisation technique.  In these last two examples, the soil was considered 
homogeneous, while relationships between irrigation performance and design 
variables (inflow, cutoff time, and field-length) were derived through regression 
analysis. 
 
Smerdon and Blair (1987) made the first serious attempt at combining an 
optimisation algorithm with a hydraulic model to optimise irrigation efficiency.  
They combined a kinematic wave model with the golden section optimisation 
method to determine the time-to-cutoff. 
 
Singh et al. (1987) developed a model for optimisation of inflow rate and time-to-
cutoff in closed end borders using the Strelkoff zero-inertia model (1985) and a 
quasi-Newton optimisation algorithm.  They developed an objective-function 
based upon maximising the “deficit/excess efficiency” term by Blair and 
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Smerdon (1988).  In effect, this function attempts to minimise runoff and deep-
drainage components of the irrigation.  While their results would suggest that the 
optimum design parameters were identified successfully, the authors neglect to 
mention any difficulties associated with the optimisation process. 
 
Wallender et al. (1990) used a volume-balance simulation model (including a 
runoff water recovery component) to provide input into a profit calculation model 
to maximise profit as a function of inflow rate and irrigation time.  Objective-
function response-surfaces were generated to determine the optimum design 
values, instead of using an automated optimisation algorithm. 
 
Another alternative to automated optimisation was in the form of a regression-
based model for border irrigation called BICADM (Maheshwari and McMahon 
1991; Maheshwari 1994).  Multiple regression analyses on the input and output 
data from SRFR simulation model were carried out resulting in an approximation 
to the parent model, free from its associated reliability and time problems.  The 
accuracy of the new model was comparable to the original, demonstrating that a 
mathematically complex model such as the Strelkoff simulation could be used to 
develop a simpler model for specific field conditions.  It was suggested that this 
type of model would be ideal for optimisation purposes, relieving the 
computational load of the original model while maintaining its accuracy 
 
The optimal management of a cutback furrow irrigation system was analysed by 
Bautista and Wallender (1993) using a cost minimisation objective-function 
subject to achieving a specified proportion of the irrigation requirement.  A 
kinematic-wave simulation model with wetted-perimeter dependant infiltration 
was combined with an economic model to formulate the objective-function and a 
Box optimisation algorithm used to undertake the search.  Response contours of 
the objective-function were plotted against the decision variables to analyse 
different cutback strategies and economic settings.  Results showed the 
response-surface to be insensitive to changes in the decision variables around 
the optimal solution and the authors acknowledged some convergence 
problems.  Both discrete and continuous cutback functions were investigated 
with little difference in performance resulting between the two. 
 
Ito et al. (1999) used a kinematic-wave simulation model in conjunction with a 
Box and constrained grid search optimisation algorithm to maximise economic 
“return to water”.  This research was aimed at investigating the effect of a lack of 
infiltration and furrow geometry data on the design and economic return to water 
for furrow irrigation systems.  Optimisations were carried out for both actual and 
partial information cases and monetary loss due to lack of infiltration data was 
calculated.  Monetary loss was found to be lower for systems with high inflow 
rates. 
 
An optimisation algorithm was not used by Valiantzas (2001) who addressed the 
furrow irrigation design problem through an analytical time-of-advance solution.  
For a specified length of furrow, the inflow rate (and time-to-cutoff) could be 
found using a simple algebraic equation to minimise the cost of the furrow 
system (independent of water and labour costs) in terms of the inflow volume.  
The results were validated against the optimum values obtained from a zero-
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inertia model and were in close agreement.  The method was also extended to 
solve for the optimal furrow length. 
 

2.7.4 Real time automated control 
Recent technology advances have provided numerous mechanical devices to aid 
irrigation design and management.  These include measurement devices used to 
monitor soil moisture, flow rates, depths and irrigation advance, and laser-
grading machines to accurately level the field.  Variable rate inflow valves exist 
for use in cutback and surge irrigation while efficient delivery systems exist to 
transfer the water into the furrows.  Of particular interest is the recent 
development of automated control systems for furrow irrigation. 
 
Several real-time automated control systems have been developed for irrigation 
management.  There is no doubt that these systems will dominate surface 
irrigation in the future, but at present they are virtually untried and far too 
expensive to implement into existing systems.  The advantage of these systems 
would be in achieving high performance results while reducing labour 
requirements.  However, the use of simulation software to manage irrigations 
may produce similar performance results without the high capital and 
maintenance costs of automated systems.  
 
Researchers Reddell and Latimer (Reddell 1981; Reddell and Latimer 1987; 
Latimer and Reddell 1989, 1990) developed the “Advance Rate Feedback 
Irrigation System” (ARFIS) that senses the advance of water at two stations down 
the field.  These measurements are relayed to a computer through a telemetry 
system and used to calculate an infiltration function for input into a volume-
balance model to calculate suitable management parameters.  Once calculated, 
these results are sent to a flow control system that regulates the inflow to match 
the existing infiltration rate in a cutback procedure. Upon shutdown of the inflow 
valve, performance figures are calculated. 
 
Katopodes and Tang (1991) developed a self-adaptive control system for surface 
irrigation advance.  The goal of their system is to use sensors, a zero-inertia 
simulation model and an algorithm to adjust inflow rate to obtain an ideal 
distribution of water.  An objective-function is constructed based upon 
minimising discrepancies between actual and desired advance rate.  In their 
system, field sensors measure the water surface profile as water advances down 
the field.  Infiltration and roughness parameters are estimated using this data, 
before the optimum advance trajectory for these conditions is retrieved from a 
database.  An optimisation algorithm is then used to determine an adjusted 
inflow rate to improve the distribution of water.  This continues for a few minutes 
before the process is restarted over again.  The authors report “satisfactory” 
performance of the system given that most of the steps of the system rely on 
ideal conditions for data collection and implementing the control actions. 
 
Hibbs et al. (1992) also used an adaptive control algorithm to automate furrow 
irrigation management (called FAAC).  Using a flume and runoff depth sensor, 
infiltration is estimated in real-time using a volume-balance model before the 
computer adjusts inflow to control outflow at a desired rate.  Tests showed that 
the adaptive control algorithm was accurate enough to restrict furrow outflow at 
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a desired rate.  The results were compared to a constant inflow system, and the 
FAAC system was found to substantially decrease discharge and tailwater losses 
with a small decrease in cumulative infiltration.  Application efficiencies were 
increased when the furrow was initially dry. 
 
 

2.8 Decision support software for furrow and border irrigation 
Very little of the research into simulation modelling, inverse methodologies, and 
design and management tools has been developed into user-friendly software 
applications.  While a number of tools and ad-hoc constructions have been built 
for specific applications, very few have developed into serious decision support 
packages for surface irrigation design and management.  Some early packages 
that were developed include BASCAD (Boonstra and Jurriens 1988), BICADM 
(Maheshwari and McMahon 1991), FISDEV (Zerihun and Feyen 1992) through 
to SURDEV (Jurriëns 2001), BASIN (Clemmens et al. 1995) and BORDER 
(Strelkoff et al. 1996). However the must successful software developments are 
the SIRMOD (Walker 1997), and SRFR/WinSRFR (Strelkoff et al. 1998; AARC 
2006) software packages, which have both seen long-term and widespread use 
amongst research groups, and have had some practical application.  
 
SIRMOD was developed at Utah State University to simulate both border and 
furrow irrigation for continuous flow irrigations as well as surge flow and cutback 
methodologies.  It employs a full hydrodynamic model, as well as zero-inertia and 
kinematic-wave approximations.  The ability of the software to accurately predict 
advance and recession in relatively short furrows has been verified by many 
authors including the developers of the model (Walker and Humphries 1983).  
SIRMOD was originally developed for research and teaching purposes and has 
been successfully used at both Utah State University and the University of 
Southern Queensland since 1987 (Raine and Walker 1998).  The tool is 
continually being further developed. 
 
SRFR is software from the United State Department of Agriculture (USDA) that 
has existed as a DOS program for over fifteen years, although it was recently 
redeveloped as a Windows program.  SRFR employs a zero-inertia model and can 
accommodate a range of spatially and temporally varying input parameters 
including slope, furrow cross-sections, infiltration and hydraulic roughness.  It is 
also currently serving as a platform for simulating constituent transport (Strelkoff 
et al. 2001).  It has also been used in many research projects in Australia (e.g. 
Maheshwari et al. 1993a,b; Wood, et al. 1998; Hardie et al. 2002; Victorian DPI 
2004). 
 
Both of these tools are primarily simulation engines; that is they are specifically 
designed for simulating surface irrigation to determine irrigation performance.  
They can both be used manually to optimise practices but do not contain 
automatic optimisation capabilities.  Also, they do not allow the solution of the 
“inverse problem” using the simulation model.  However, both packages contain 
a built-in database of typical soil-infiltration properties, although the reliability of 
these for Australian conditions is doubtful. 
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In terms of accuracy, both packages have now been evaluated by several 
researchers (Maheshwari and McMahon 1993a; Raine and Walker 1998; 
Hornbuckle et al. 2003) who all rated the performance as satisfactory to good.  
For example, Maheshwari and McMahon (1993a) investigated the performance 
of SIRMOD and SRFR models along with four other border irrigation models. 
Over sixty irrigations were monitored and the models applied.  It was concluded 
that the Walker model was the best for predicting advance times and the 
Strelkoff best for the recession.  More generally, it was found that the models 
employing the hydrodynamic and zero-inertia approaches were the most 
appropriate.  There was no difference in the results between the hydrodynamic 
and zero-inertia approaches of the Walker model.  This supports the assumption 
that other authors have made regarding negligible effects of inertia terms in 
border irrigation.  Maheshwari and McMahon (1993a) found that the kinematic-
wave models had a tendency to underpredict the recession. 
 
During the research for this dissertation, considerable time was spent using and 
evaluating these tools.  The initial impression of both packages was that they are 
very powerful and impressive looking, at the expense of being overly complex 
and difficult to use.  The interfaces were limited and relatively user-unfriendly.  
Both packages often crashed when unrealistic data was entered, while SIRMOD 
often required adjustment of the time-step parameter to achieve convergence.  
Considerable practice and experience with the tools was required to use them 
successfully. 
 
While some people have found SIRMOD and SRFR to be stable, robust and fast 
(Garcia-Navarro et al. 2004), evidence of the angst experienced by other users is 
found in a paper by Maheshwari (1994).  Having previously tested several of the 
leading models in “real” field conditions, he remarked that “the use of <the 
model> for design purposes on cracking soils was found to be tedious and time 
consuming, particularly if the number of simulation runs required are excessive 
(say >10)”.  
 
New Windows versions of both SIRMOD and SRFR software packages were 
released in 2006 (USDA 2006; AARC 2006), but not in time to be properly 
evaluated as part of this research. Both have gone to great lengths to improve 
flexibility and reliability of the software with many advanced features, including 
simple inverse-solutions, and design capabilities. For example, WinSRFR now 
combines the functionality of the individual SRFR, BORDER and BASIN 
software. Recent dialog with Professor Wynn Walker has provided some comment 
on these software programs stating, “robustness <problems> has been improved 
but not eliminated… software packages tend to feel like the research model of 
old. Some model parameters remain and need to be hidden. The inverse solution 
tends to be simple, and, while the design algorithms are good, they do not 
optimise – optimal design still depends on trial and error. Both use a lot of code 
remnants from earlier versions for some components.” (Walker pers.comm. 
2007). 
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2.9 General discussion 
Several gaps in the research can be identified from the reviews on simulating 
surface irrigation, solution of the inverse problem, and optimisation of design 
and management practices.  These will now be discussed in turn. 
 
The literature review of simulation modelling methodologies reveals that not all 
areas of research have been given thorough treatment.  For example, relatively 
few surface irrigation models have been created to simulate all phases of the 
irrigation cycle with most research directed towards modelling the advance (Xu 
and Singh 1990).  Ironically, it is the advance phase that has been most 
successfully modelled and needs the least treatment.  It is not uncommon for 
papers claiming to model a surface irrigation event, to only describe the 
procedure for the advance phase.  To find an adequate coverage of the other 
phases, one must start to look in Ph.D. dissertations (e.g. Kafshgiri 1984) and in 
books such as Walker and Skogerboe (1987). 
 
Problems associated with solution techniques have rarely been discussed.  The 
computer algorithms and numerical solution techniques for solving the model 
equations are the most fragile part of the technology, especially with the 
hydrodynamic and zero-inertia models that are difficult to solve.  Yet relatively few 
authors mention any performance problems associated with their methodologies.  
Accuracy is often discussed, but robustness is hardly ever mentioned.  Also, the 
research typically focuses upon the mathematical treatment of the 
methodologies, but very few authors present algorithms for transforming the 
mathematics into its computer code equivalent.  
 
It was also found that some authors have often benefited by segregating models 
for border and furrow irrigation and publishing separate papers for each.  
However, the model and solution techniques for the two irrigation practices are 
very similar with the differences occurring in the treatment of infiltration and 
wetted perimeter effects.  
 
The review of the inverse methodologies has highlighted that the “two-point” 
method has been very popular with researchers, with several variations of the 
technique being presented.  It has also probably been the most commonly used 
method in practice, and has regularly been used to calculate infiltration 
parameters for input into SIRMOD and SRFR (it is inbuilt in the most recent 
versions).  However, the difference in model structures between the “two-point” 
method (volume-balance) and target simulation tools (hydrodynamic and zero-
inertia) is a potential source of error. This was also identified by Walker (2005).  
Unfortunately, the literature review showed that very few of the suggested 
inverse techniques employ the full hydrodynamic model. 
 
The literature review of optimisation of practices revealed little information about 
the nature of objective-function response that was involved with the 
methodologies.  Investigation of response-surfaces is crucial in evaluating the 
performance of automatic optimisation capabilities.  Instead, none of the 
automatic optimisation methodologies provided any clear evidence of successful 
solution.  Once again, it appears authors have failed to report the limitations of 
their techniques. 
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In current practice, probably the most accessible way of optimising irrigation is 
still through a trial and error approach of repeatedly running the simulation.  
Manual optimisation requires a degree of skill on behalf of the operator, and can 
lead to problems caused by entering unrealistic parameter values.  For example, 
during the case study presented in Appendix 2.2, SIRMOD was found to be 
sensitive to the range of input parameter values and the program often 
“crashed” with the input of unrealistic data. 
 

2.10 Direction for developing a new decision support system for 
furrow and border irrigation. 
Having performed a comprehensive literature review and an evaluation of the 
SIRMOD software, it was decided to base the new decision support system on a 
hydrodynamic simulation model using a methodology similar to that employed by 
SIRMOD and SRFR. However, the focus will be on automating this simulation 
engine for optimisation and system response evaluation. An inverse technique 
will need to be developed and incorporated into the system using the same 
hydrodynamic model, to avoid calibration using a different type of model.  There 
is also a need to develop an optimisation algorithm to facilitate the calibration 
process and automatically determine the optimum design and management 
parameters.  Response-surface generation facilities should be added to enable 
evaluation of the optimisation and calibration performance.  This feature can 
then be used to generate design charts for irrigation management and design.  
The new system will need to refine the existing computational methodologies to 
improve system robustness, while maintaining accuracy.  Data management 
facilities will also be required given the range of analyses that is potentially 
available to the system.  This will deliver a decision support system that provides 
tools for each of the major decision support requirements. 
 

2.11 Conclusions 
This chapter has presented the concept of decision support systems for furrow 
and border irrigation.  A literature review was undertaken into the three main 
surface irrigation research areas of simulation modelling, solution of the “inverse 
problem” and optimisation of design and management practices.  It was found 
that gaps exist in the literature, especially with: simulating the later stages of the 
irrigation cycle; converting the mathematical model into computer code form; 
ensuring simulation robustness; calibrating using the complete hydrodynamic 
simulation model; parameter analysis of system responses; and automating the 
optimisation process.  Functionality requirements for the development of a new 
decision support system were identified as simulation, calibration, optimisation, 
parameter-analysis and data management. 
 
The remainder of this dissertation presents research into these “gap” areas while 
developing the functionality for a new decision support system for furrow 
irrigation.  
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Chapter 3 Development of a simulation engine  
for furrow and border irrigation decision support 

 
 

3.1 Introduction 
Review of the literature of furrow and border irrigation modelling in Chapter 2 
has highlighted that existing surface irrigation models are accurate for many 
practical applications, but suffer from reliability and usability problems. The goal 
of this chapter is to overcome these limitations by developing a new simulation 
engine (henceforth known as the FIDO simulation engine) based upon the 
modification and refinement of existing techniques, which can be incorporated 
into a decision support system for furrow and border irrigation. 
 
This research presented in this chapter has six main objectives: (1) it will outline 
design criteria considered when developing the FIDO simulation engine; (2) it 
will present the model and solution technique formulation, including the 
redevelopment of Preismann double-sweep solution technique for furrow and 
border irrigation into a simpler form; (3) it will develop an object-oriented 
algorithm capable of transforming the mathematics of this model and solution 
technique into a tool capable of being implemented into a modern user friendly 
decision support system; (4) observations about the simulation behaviour will be 
discussed; (5) four treatments to the simulation are presented to achieve 
simulation robustness; and   (6) the simulation engine will be validated against 
the existing SIRMOD simulation tool. 
 
This chapter is accompanied by two appendices containing the source-code 
(Appendix 3.1) and validation results for the simulation engine (Appendix 3.2). 
 

3.2 Background to simulation engine design 
To design a simulation engine for furrow and border irrigation, one must first 
understand what a simulation engine is, what it is composed of, and what the 
primary design-objectives are. Two main aspects of the design must be 
considered: firstly concerning the model and solution technique formulation; and 
secondly regarding the software algorithm design. Finally, an understanding of 
the complexity of the design task is fundamental towards overcoming barriers 
faced by developers in the past. 
 

3.2.1 What is a simulation engine? 
A simulation engine (for furrow and border irrigation) is a computer-based model, 
which mathematically predicts the physical processes of water flowing down a 
furrow and infiltrating into the soil over time. The simulation engine is not a 
“stand-alone” computer program built around a user-interface; rather it is only a 
sub-module of a computer program or decision support system for surface 
irrigation. Forming the central core of this decision support system, it is crucial 
that it be as accurate, reliable and robust as possible. The useability and 
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flexibility of all of the other components of the system depend upon the 
simulation engine being able to repeatedly and reliably deliver an accurate set of 
results without user intervention. 
 
Simulation involves solving the hydrodynamic equations for flow rate and flow 
area during each irrigation phase either on a predefined grid, or on a grid defined 
during the advance phase. Combinations of different irrigation phases and grid 
design along with the presence of two possible furrow-end conditions leads to 
many simulation configurations. Robust solution of all configurations is required 
for inclusion of the engine in computer-managed processes (such as 
optimisation) where physically unrealistic input data may be encountered. 
 

3.2.2 Elements of the simulation engine 
The simulation engine is composed of three conceptual elements (Figure 3.1): 

• differential (model) equations; 
• a numerical solution technique; and   
• a computer algorithm for managing the simulation. 

 Figure 3.1: Fundamental Components of the Simulation Engine. 

 
The differential equations (model equations) are a mathematical representation 
of the physical laws and processes of water flowing down a furrow and infiltrating 
into the soil. These processes are very complicated to describe mathematically, 
and the equations take on a differential form making them very difficult to solve. 
Therefore a numerical solution technique is required to solve the equations 
iteratively by approximating the differential terms, linearising, and solving the 
resulting set of simplified equations. The computer or software algorithm forms 
the controller or manager of the simulation. Its purpose is to oversee the 
operation of the solution technique and provide input/output functionality.  
 
Past surface irrigation research has focussed mainly on the first two of these 
elements, with less emphasis on the logistics of converting the mathematical 
equations, simulation options and constraints into their computer language 
equivalent.    
 

Software Algorithm 
Input, output and internal process control 

Numerical Solution Technique 
Approximates and solves the Differential Equations 

Differential Equations 
Approximates Reality 
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3.2.3 Objectives of simulation engine development  
The primary goal of the work in this chapter is to develop a simulation engine 
capable of being implemented into a decision support system for furrow and 
border irrigation. This involves (a) the refinement and modification of existing 
techniques in dealing with the model equations and solution techniques, and (b) 
the development of a new object-oriented computer algorithm for controlling the 
simulation. 
 
The target decision support system is required to support operations such as 
optimisation, calibration and response-surface generation for a range of 
management operations. For this to occur, three primary objectives of the 
simulation engine must be achieved: 
• It must be accurate, robust and reliable; 
• It must be flexible in handling a range of physical scenarios and conditions; 

and   
• It must be reusable in a variety of applications within a decision support 

system. 
These objectives will now be discussed in more detail. 

Accuracy, robustness and reliability.  
Accuracy, robustness and reliability are three criteria used to assess the 
performance of the simulation engine. These are related more to the underlying 
mathematical model and numerical solution techniques rather than the engine’s 
computer algorithm. 
 
Accuracy relates to how well the simulation model replicates the physical 
processes of surface irrigation. Factors that can influence the accuracy of the 
simulation engine include: 

• Limitations in the mathematical model: For example, the full 
hydrodynamic model is considered more accurate than the volume-
balance model for simulating more conditions in surface irrigation; 

• Errors resulting from the discretisation process in the solution technique; 
• Numerical approximations: For example, an approximation is used during 

the recession phases of the simulation whereby upstream cells are 
removed when the depth of flow is less that 5% of the normal depth. 
Although the flow is still finite, an approximation of zero depth and zero 
flow is then used for the following time-step; and    

• Poor grid refinement. Simulation detail may be missed if the time-step or 
distance-step is too large. 

 
Robustness is a somewhat ambiguous term with different meaning to different 
people and contexts. According to Strelkoff and Falvey (1993), robustness 
implies an absence of sawtooth fluctuations in the numerical results, even under 
severe flow conditions. The ASCE Task Committee on Irrigation Canal System 
Hydraulic Modelling (1994) suggested that a robust model was simply one that 
could continue the numerical solution through potentially troublesome 
circumstances without encountering errors, which could cause the program to 
terminate. 
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Reliability combines the attributes of accuracy and robustness and implies a 
proven ability to consistently deliver accurate simulation results over a period of 
time and conditions.  

Flexibility 
Flexibility defines the ability of the simulation engine to successfully model a 
range of scenarios. This could include different management techniques such 
variable inflow methods, blocked furrow irrigation, or it could mean handling 
spatially variable input parameters. 

Reusability 
Reusability is an attribute of the computer algorithm in relation to the simulation 
engine’s ability to be used in a variety of contexts. For example, the same 
simulation engine should be able to be used in simulation, calibration, 
optimisation and analysis roles, or even be used as a sub-model in a larger 
modelling toolkit. 
 

3.2.4 Model and solution technique considerations 
As outlined in Chapter 2, a variety of numerical techniques and treatments exist 
to solve the hydrodynamic equations for surface irrigation simulation. Therefore 
many decisions need to be made when formulating the underlying model and 
solution techniques used in the simulation engine: 
• Which form of the hydrodynamic equations should be used as the basis of 

the model: full-form, zero-inertia, kinematic-wave or volume-balance? 
• Should a dimensionless form of the equations be used? 
• What are the irrigation phases that need to be modelled? 
• Should the simulation be one-dimensional or two-dimensional? 
• What sort of approximation to the partial differential equations should be 

used: finite differencing, finite elements or something else (like neural 
networks)? 

• What sort of coordinate system should be used for the discretisation process: 
regular grid, moving grid, or method of characteristics? 

• What type of solution technique should be used: an implicit technique or 
explicit technique? 

• During the advance phases, do we use a fixed time-step and solve for the 
advance distance, or do we use a fixed distance-step (predefined grid) and 
solve for time? 

• During the recession phases, do we try and solve for the recession trajectory, 
or use an approximation methodology? 

• How do we accurately model rapidly changing conditions (inflow on, inflow 
off, transition to runoff) without violating stability constraints (such as 
“Courant”)? 

• What boundary conditions need to be applied? 
• How should infiltration be treated? 
• How do we set parameter constraints without compromising numerical-

stability? 
These questions (and those to follow) will be addressed throughout the 
remainder of this chapter.  
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3.2.5 Software algorithm design considerations 
Very little information has been published by irrigation researchers on how to 
transform the mathematical hydrodynamic equations and iterative solution 
techniques into their equivalent computer code (some have presented 
programming algorithms, including Schmitz and Seus 1991 and; Tabuada et al. 
1994). One could then wonder how closely modern programming practices have 
been adhered to in these transformations given that the latest generation of 
surface irrigation software has been criticised as being unreliable.  
 
These days, almost all software-engineering (with graphical user interfaces) is 
undertaken using object-oriented programming (OOP) techniques, given the 
power and flexibility that this methodology offers (the reader is referred to texts 
such Riel 1996 and Coad et al. 1993 for more information).  OOP was chosen 
over procedural techniques for the development of the simulation engine and 
FIDO decision support system.  
 
Good OOP design is a difficult skill with many complex decisions required during 
the initial design stage. Key questions arise such as: 

• How should the software components be modularised? Should the 
objects be data-centred (categorised based upon data considerations), or 
model-centred (categorised based upon irrigation characteristics such as 
phases)? 

• How should the data objects be formulated: what information should they 
store, and how much processing ability should they encapsulate? 

• How should memory be managed given that many megabytes of data 
could be generated? 

• How should the engine cope with any errors that arise? 
• How can switching between irrigation phases be handled: using memory 

pointers, conditional statements, OOP “virtual methods” (a powerful 
technique utilising OOP’s “polymorphism2” capabilities)? 

• Which parameters should be made available to the program interface? 
• How much of the design should be accessible (using OOP “scoping” 

techniques) to future developers so that modification and expansion can 
be easily undertaken? 

 

3.2.6 Programming complexity issues 
A single mathematical equation is usually quite simple to translate into its 
programming language equivalent form. Consider however, if there are dozens of 
equations that need only slight changes under certain conditions. Then the 
computer algorithm will need to be modified to account for these variations using 
logical and conditional statements. Note that it would be very dangerous to have 
multiple copies of the main algorithm with slight variations. As well as increasing 
the size of the code, this can easily introduce errors if part of the main algorithm 
needs to be modified since the changes would have to be made in more than 
one place in the code. Good programming practices dictate that each equation 
should be written only once and that conditional programming statements should 
be used to apply these equations in the appropriate order. The effect of all of this 

                                                 
2 See www.wikipedia.org for further information. 
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is that the computer code quickly becomes more complex than the initial set of 
equations.  The complexity of the computer code grows proportionally (and 
sometimes exponentially) with the number of variations in the model. 
 
Considering this, the problem of simulating water flowing down a furrow is a very 
complex programming exercise. It is a very dynamic problem with the 
programmer not knowing beforehand the number of time-steps, distance-steps 
and iterations that will occur, and even which irrigation phases will need to be 
simulated. The number of input variables will also vary for different users with 
the requirement that a field could be broken up into several reaches of different 
slope, geometry, roughness, and infiltration characteristics. Furthermore, there 
are also a range of management techniques that must be considered such as 
different inflow methods (constant, variable, cutback, or surge) and furrow-end 
treatments (blocked or free draining).  
 
Despite all these variations, researchers have typically presented very little 
information on how to replicate these conditions in the software algorithms. In 
terms of the research community, it could be assumed that this is seen as 
programming problem, rather than part of the hydraulic engineering task. Only 
those who have taken the research past the academic level can appreciate the 
effort required, especially given the immature software engineering technologies 
that were available until recently. Nevertheless, the lack of professional software 
engineering expertise into the development of the computer algorithms remains 
a major reason why surface irrigation models have had reliability and flexibility 
problems.  
 

3.3 Model and solution technique formulation 
The first step in developing a simulation engine for furrow and border irrigation 
involves defining the underlying model and solution techniques. This includes 
identifying model inputs and outputs as well as describing the coordinate system 
for the discretisation process. Key model and solution technique equations must 
then be derived for main body of the simulation, for the starting calculations, for 
different furrow end treatments, and for the simulation termination. Boundary 
conditions, initial parameter estimates, and parameter ranges must also be 
identified. 

3.3.1 Choosing the underlying model 
The full form of the one-dimensional hydrodynamic equations (Saint Venant 
Equations) for open channel flow was chosen as the basis of the underlying 
model in the FIDO simulation engine. The inclusion of these equations instead 
of the simpler and easier-to-program zero-inertia form of equations was justified 
based upon: 

• The findings of the literature review conducted in Chapter 2 that identified 
the advantages of the more complex full hydrodynamic models in terms of 
accurately simulating a wide range of conditions; 

• The proven ability of the Walker model (which also uses the full form of 
these equations) which has been shown to be accurate under many 
conditions (Maheshwari et al. 1993a and 1993b; Hornbuckle et al. 
2003); and    
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• Increased computing power (leading to faster simulations) and modern 
software engineering techniques and diagnostic tools, which have 
overcome many of the obstacles faced by researchers in the past when 
using this type of model (many of who typically defaulted to the simpler 
equation forms). 

 
The full form of the hydrodynamic equations is essentially a set of hyperbolic 
partial differential equations (the most difficult type of partial differential 
equations to solve) with no known analytical solution. Therefore, a numerical 
procedure is needed to approximate the differential terms in the equations in 
order to extract the simulation information. The furrow reach is broken up into 
finite cells, and the solution for each cell is then computed over incremental 
time-steps.  This is the most complex process in the system, and the success of 
the simulation engine is heavily dependant on the power and efficiency of the 
solution technique used. 
 
Chapter 2 highlighted that much of the early surface irrigation hydrodynamic 
modelling research (and continuing today) utilised a dimensionless form of the 
underlying equations in order to reduce the number of independent parameters 
that they contain. This was deemed important in the early days as computing 
power was very limited, and many different techniques were employed to reduce 
the computational load. However, the trade-off from this was that extra 
processes were involved to dimensionalise and non-dimensionalise the inputs 
and outputs, and the solution parameters on their own, had no physical meaning. 
The true benefit of this is questionable. The main issue raised was that the 
added complexity of dimensionalising/non-dimensionaling negates the (possible) 
benefit of improved computational performance. Also, there is little evidence 
(other than anecdotal evidence) to prove that there is any real performance 
benefit. Elliot et al. (1982) experimented with the dimensionless form of 
equations in early research, however, Walker’s SIRMOD model (which has roots 
from this early work) did not utilise this form of the equations. Therefore, the 
dimensionless form of the equations was not used in the simulation engine 
developed in this chapter. 
 

3.3.2 Choosing a numerical solution technique 
The implicit Preismann double-sweep technique (Liggett and Cunge 1975) is 
redeveloped in this chapter into a more generalised form. The review of the 
literature in Chapter 2 has highlighted the potential of the double-sweep method 
in terms of simulation speed and success. The method uses finite differencing to 
approximate the differential terms in conjunction with a Newton-Raphson 
procedure to linearise and solve the equations at each time-step. The resulting 
matrix is banded and solved using an efficient Gaussian solution technique that 
bears the name of the method – the “double sweep” technique. The method 
results in coefficients being calculated in a forward sweep starting from the 
upstream cell before the model parameters can be calculated in a backward 
sweep. 
 
Use of an implicit solution technique such as this allows conditions at nodes to 
be determined simultaneously rather than on a node by node basis. This 
“supposedly” removes the burden of conditional stability that is inherent in the 
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explicit form of solution techniques (although this will later be shown in Section 
3.6.4 to be unfounded). Many explicit techniques exist which have the benefit of 
being simpler to program, but have been found to be slow in operation and 
dependant on stability restrictions. For example, an explicit shooting method 
technique (based on the work of Wallender and Rayej 1990) was trailed during 
the early stages of this research, but was found to be an order of magnitude 
slower than the implicit double-sweep methods3. This finding is supported by 
other researchers publishing long execution times for their explicit solution-
technique based models (Singh and Bhallamudi 1997).  
 
Several variations of the double-sweep method have proven successful in 
surface irrigation modelling. However, the solution equations that have been 
published, such as those by Walker and Skogerboe (1987) with fixed-time-steps, 
and those by Strelkoff (1992) with fixed-distance-steps, are not in their simplest 
form. The simpler and more generalised form developed here is easier to convert 
into computer code, and allows either fixed time-step or fixed distance steps to 
be used, depending on the simulation requirements. 
 
The formulation of the method developed in this chapter borrows heavily from 
both forms of the published equations. Both forms of the equations are similar 
even though one is “time-step-based” and the other is “distance-step-based”. 
Strelkoff’s equations have the addition complexity of a global unknown time-step 
parameter allowing for solution on a predefined grid. However, by removing this 
term from the Strelkoff algorithm, the equations are effectively the same.  
 
The new equations developed in this work also include the global unknown time-
step parameter, giving the option of solution at fixed node locations. However, in 
practice, the FIDO simulation engine rarely makes use of this feature, normally 
using fixed time-steps and solving for the advance distance.  
 
At first glance, it may seem more sensible to have a predefined solution grid and 
solve for the unknown advance time to each of the nodes. This would allow 
nodes to be located at points of interest down the furrow. For example, nodes 
could be placed at locations where field measurements were captured such as 
advance time, flow-rate or flow-area. However, problems with the technique 
could arise once the advance rate becomes very small and the time-step 
becomes larger. Firstly, the time-step variable could become so large that it 
introduces convergence problems and volume-balance errors. Secondly, the 
advance may never reach the target node. In either case, new nodes may have to 
be added during the time-step. This requires both some judgement as to where 
to place the new node, and also some interpolation of the new node parameter 
values at the previous time-step. This process may have to be repeated many 
times during the course of a simulation. In practice, the fixed-time-step method is 
the simpler (mathematically, and programmatically) and more robust method of 
the two. 
 
Having the global unknown time-step parameter in the generalised equations is 
still useful. If it is known that runoff is just about to occur, this feature can be 
used during the time-step to fix a node at the end of a furrow before performing 

                                                 
3 These results have not been included in this dissertation. 
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the calculations. Otherwise, a trial and error method is required to try and match 
up the last node location with the position of the furrow end.  
 

3.3.3 Solution grid formation 
Two coordinate systems are commonly employed when using the finite difference 
forms of solution technique such as the double-sweep method. One is the 
Eulerian integration approach (Figure 3.2a) which uses a stationary rectangular 
grid structure; and the second is a “deformable control volume” method (Figure 
3.2b) which uses a deforming cell (trapezoidal) grid structure where the cells 
have a forward velocity, and is often incorrectly called the “Lagrangian” system in 
the literature. 
 
The Eulerian system has been chosen as the default coordinate system in the 
FIDO simulation engine due to its inclusion in the Walker model. However, the 
engine has been designed to accommodate either coordinate system, in keeping 
with its general open structure geared towards future development. The 
differences in computer code materialise in both the model equations and 
derivative terms, and also the parameter referencing. The “deformable control 
volume” form of the finite difference equations (see Eqns. 3.7 and 3.8) contain 
extra terms that disappear when the cells become rectangular. The model 
parameter-objects (see section 3.5.3) contain a switch that can swap cell 
coordinate systems (using “pointer” convention). At present, switching between 
systems is internal and changeable only by the developer.  
 
 

 
Figure 3.2: Eulerian (a) and “deformable control volume (Lagrangian)” (b) grid structures. 

 
The benefit of one system over the other is questionable as there is no evidence 
in the literature of comparative performance. Many of the older models (such as 
Souza 1981; Rayej and Wallender 1985; Wallender and Rayej 1990) used the 
“deformable control volume” coordinate system while the advance was moving 
down the field and then switched to the Eulerian system once runoff occurred. 
However, the Eulerian form was adopted throughout for the FIDO simulation 
engine as fewer calculations are required. 
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3.3.4 Input requirements 
There are thirteen input variables required by the simulation engine in order to 
perform a simulation (Table 3.1). These parameter values are passed into the 
engine through an input-object (model record), stored in a database and are 
editable through the user interface (see Chapter 7). SI units are used for each 
parameter in the calculations, even though a different set of units may have 
been entered into the interface by the user. 
 

Table 3.1: Input variables required by the simulation engine. 

Management 
Variables 

Field 
Variables 

Soil 
Parameters 

Furrow 
Parameters 

Flow rate, Qin  field-length, L Kostiakov a 1σ  

time-to-cutoff, ct  field slope, So Kostiakov k 2σ  

Z-Required, reqZ  Manning n Kostiakov fo 1ρ  

   2ρ  
 
The field, soil and furrow variables are all vector types4 to store a range of values 
to account for spatially varying properties of a furrow. The flowrate variable is 
also a vector to account for variable inflow. The validation of the simulation 
engine presented in this dissertation is based upon spatially and temporally 
uniform conditions so the default size of these vectors is “1”. 
 
Each variable is tested before being loaded into the simulation engine. 
Simulation will not take place if any of the parameter values are undefined or 
outside of predefined limits. The furrow variables 1σ , 2σ , 1ρ  and 2ρ  (empirical 
shape factors representing the furrow geometry) are also calculated at this time. 
These parameters are generated from the top-width, mid-width, bottom-width 
and maximum depth parameters located in the input record, although they can 
also be explicitly defined through the user interface. 
 

3.3.5 Simulation engine outputs 
The simulation engine is designed to be the central core of the decision support 
system supplying simulation output data for external analysis. Two types of 
outputs are generated: solution node information representing the physical 
properties of the flow and infiltration profiles at each time-step; and summary 
values describing irrigation performance. The second of these is calculated on a 
need-to-know basis for any time-step so as to minimise the demand on computer 
system resources. 
 

3.3.6 Solution node outputs 
During the simulation, the values of a number of variables are calculated and 
stored in the output object at each grid point in time and space. This includes the 
cross-sectional area of flow (At,x), flowrate (Qt,x), cumulative infiltration depth (Zt,x) 
                                                 
4 The vector form of these variables is disabled in the presented version of the simulation engine. 
Future versions of the software will see these feature enabled. The validation presented is for 
uniform conditions. 
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and the node location (Xt,x). Note that Xt,x needs to be stored at each time-step 
given the possibility of cells being removed or repositioned during the simulation. 
Other parameters that are stored at each time-step include total-time, delta-time 
( tdt ), the downstream cell-index, and upstream cell-index. Finally, maximum flow 
depth, maximum cumulative infiltration volume, number of time-steps, and total 
number of iterations are also recorded. 
 

3.3.7 Summary outputs 
The traditional measures of irrigation performance of “Application Efficiency” and 
“Storage Efficiency”, along with “Application Uniformity” (as opposed to the more 
commonly used “Distribution Uniformity”) and the percentage “Volume-balance 
Error” are calculated and stored in the output-object for any time-step. These 
performance measures are defined based upon volume-balance principles and 
may differ from what other authors define as standards. The main reason for 
choosing these indicators is that firstly they can be calculated at any time during 
the simulation5; and secondly, they are simple to calculate and can easily be 
explained (to farmers) through simple diagrams.  
 
Application efficiency (AE):   is the ratio of the amount of water that is stored in 
the root zone (below reqZ ) to the total amount of water applied to the field (Figure 
3.3). Most researchers fail to include the surface water volume in the calculation 
because they only need to calculate application efficiency once the simulation is 
completed. By adding this term, we are able to monitor application efficiency 
throughout the irrigation. In this case, the surface water storage is classed as a 
temporary “loss”, reducing the magnitude of the application efficiency. 
 

%100×
−−−

=
InflowVol

SurfaceVolRunoffVollDrainageVoInflowVolAE  ................................... (3.1) 

 
 

 
Figure 3.3: Components used in calculating Application Efficiency. 

 
 

                                                 
5 The traditional measure of distribution uniformity can only be calculated once the advance has 
been completed. 
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Storage efficiency (SE): is the ratio of the volume of water stored in the root-zone 
(defined by reqZ ) to the total storage capacity of the root-zone (Figure 3.4). 
 

%100
1000

×
××

=
hFieldLengtZ

StoredVolSE
req

....................................................................................................... (3.2) 

  

 
 

Figure 3.4: Components used in calculating Storage Efficiency. 

 
Application uniformity (AU):  is described as how evenly the water is applied along 
the furrow (Figure 3.5). 
 

%100
10000,

×
××

+
=

hFieldLengtZ
lDrainageVoStoredVolAU

t

.................................................................................................... (3.3) 

 
where 0,tZ is the infiltration depth at the top end of the furrow. This normally 
corresponds with the maximum infiltrated depth. 
 
 
 
 
 
 
 
 
 
 

  
  
  

Figure 3.5: Components used in calculating Application Uniformity. 

 
Volume-balance error (VBE): is not an irrigation performance measure but a 
measure of model accuracy. 
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Other summary values that are calculated and stored in the output-object 
include: inflow volume; surface volume; stored volume; drainage volume; runoff 
volume; and error volume. Other performance indicators such as “Tail Water 
Ratio” and “Deep Percolation Ratio” are not generated but are easily calculated 
from the data provided in the output object. 
 

3.4 Refinement of the numerical method 
Translating and embedding the numerical solution technique into a computer 
algorithm is a complex task. Robustness, flexibility and reusability of the model 
are highly dependent on the effectiveness of this procedure. Reducing the 
solution equations to their simplest form before translation is a prerequisite for 
efficient, flexible, and robust programming. However, neither Walker’s nor 
Strelkoff’s published solution equations have been reduced into their simplest 
form. Therefore, these equations have been rederived from first principals in this 
chapter to achieve this objective.  
 
The new equations differ from that published by Walker and Strelkoff through the 
calculation of “intermediate values”, which significantly simplifies the algebra. 
The solution from these equations should be identical to that of those published, 
and will probably have little effect on the efficiency of the solution. However, the 
benefit is a much easier-to-understand implementation of the solution leading to 
both simpler translations into computer code, and a better basis for future 
modification and enhancement. 
 

3.4.1 Principal formulation 
The derivation of the solution technique that follows is a generalised form of the 
solution equations, which includes the global unknown time-step parameter as a 
solution variable. Modifications to the technique are required to tailor it to 
specific irrigation conditions such as different irrigation phases and furrow end 
conditions. Later sections in this chapter will cover these adjustments. 
 
This generalised numerical technique (to solve to the continuity and momentum 
equations) represents the solution to the finite difference approximations to the 
following equations, first described in Chapter 2 (Eqns. 2.1 and 2.2). Rewritten 
here in terms of Q and A (instead of q and y), they are: 
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where, A is the cross-sectional area of flow (m2), Z is the infiltrated volume/unit 
length (m3/m), Q is the flowrate (m3/sec), P is the hydrostatic pressure (N/m2), D 
is the drag force (friction force), and S0 is the field slope. 
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By multiplying through by t∂  and x∂  and replacing the partial differential terms 
with their finite difference approximations, Eqn. 2.1 then becomes: 
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and, Eqn. 2.2 becomes: 
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+ 1−θ( ) φ DJ − S0AJ( )+ 1− φ( ) DM − S0AM( )[ ]( ) XM − XJ( )dt = RM

........................................... (3.8) 

 
where φ  is a space-averaging coefficient and θ is a time-averaging coefficient. 
These values are typically equal to 0.6. The terms CR and MR are the residuals of 
continuity and momentum respectively. These residual values will be 
approximately equal to zero, and any deviation from zero will be attributed to a 
volume-balance error resulting from the finite differencing approximation used. 
The subscript referencing J, M, L and R represent the variable’s Eulerian grid cell 
representation (Figure 3.6) on the space-time solution grid. Each individual cell 
on the solution grid is represented by a pair of these equations. 
 
 

 
Figure 3.6: Eulerian Grid Cells and time-dependant (physical) representation. 

 
 

Lagrangian Components: 
These terms reduce to “0” when  
cells are rectangular (stationary). 
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The hydrostatic pressure P, can be related in terms of the cross-sectional area of 
flow A: 

( ) 2

2

11

2

1

1

1 σ

σ

σ

σ
+

−

+

=

A
P ........................................................................................................................................................... (3.9) 

 
Where 1σ  and 2σ  are furrow coefficients defined by: 

2
1

33.12 ρρ ARA = .............................................................................................................................................................. (3.10) 

 
The wetted perimeter can also be defined in terms of 1ρ  and 2ρ : 

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

24
3    

2
54

3

1

1 ρ

ρ
AWP .............................................................................................................................................. (3.11) 

 
The drag force (friction force) D is related by the following equation: 

212

1

2
ρ

ρ
−= AQnD .............................................................................................................................................................. (3.12) 

 
We can simplify Eqns. 3.7 and 3.8 by introducing the term dx, which represents 
the distance between cell node positions. Eqn. 3.7 then becomes: 
θ QL − QR( )+ 1−θ( ) QJ − QM( )[ ]dt

− θ AL + ZL( )+ 1−θ( ) AJ + ZJ( )[ ]dxLJ

+ θ AR + ZR( )+ 1−θ( ) AM + ZM( )[ ]dxRM

+ φ AJ + ZJ( )+ 1− φ( ) AM + ZM( )[ ]dxJM

− φ AL + ZL( )+ 1− φ( ) AR + ZR( )[ ]dxRL = RC

.............................................................................................. (3.13) 

 
Eqn. 3.8 then becomes: 

φQJ + 1− φ( )QM[ ]dxMJ − φQL + 1− φ( )QR[ ]dxRL(
           + θQR + 1−θ( )QM[ ]dxRM − θQL + 1−θ( )QJ[ ]dxLJ )1

g
∂RM

∂dt
dt = RM

....................... (3.14) 

 

where for convenience,  
dt
RM

∂
∂

is defined by: 

∂RM

∂dt
= θ QL

2

gAL + PL

−
QR

2

gAR + PR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + 1−θ( ) QJ

2

gAJ + PJ

−
QM

2

gAM + PM

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−θ φ DL − S0AL( )+ 1− φ( ) DR − S0AR( )[ ]dxRL

− 1−θ( ) φ DJ − S0AJ( )+ 1− φ( ) DM − S0AM( )[ ]dxMJ

......................................... (3.15) 

 
This simplification is useful when transforming the mathematics into its 
computer-code form, as dtRM ∂∂ /  already needs to be calculated as part of the 
double-sweep technique. Using the Eulerian coordinate system, these equations 
can be further simplified down to: 
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θ QL − QR( )+ 1−θ( ) QJ − QM( )[ ]δt

+ φ AJ + ZJ( )+ 1− φ( ) AM + ZM( )[ ]dxJM − φ AL + ZL( )+ 1− φ( ) AR + ZR( )[ ]dxRL = RC

(3.16) 

 
and, 

   φQJ + 1− φ( )QM[ ]dxMJ − φQL + 1− φ( )QR[ ]dxRL  ( )1
g

∂RM

∂dt
dt = RM ...................................(3.17) 

 
Now that the discretisation of the underlying model has been defined, we can 
begin to derive its solution. The double-sweep method that we are developing 
uses a Newton-Raphson procedure for solving these equations for unknowns A, 
Q (and possibly dx and/or dt,) for each cell on the solution grid.  This 
methodology effectively linearises the equations, whose solution is then 
determined iteratively.  
 
To implement this methodology, consider a single cell element (Figure 3.6) of the 
solution grid. The residuals CR and MR for this cell are first written in terms of a 
Taylor Series expansion, which linearises the expressions: 

RC1
n +1 = RC1

n + ∇RC1
n( )ΔRC1

n
.....................................................................................................................................(3.18) 

RM 1
n +1 = RM 1

n + ∇RM 1
n( )ΔRM 1

n
................................................................................................................................(3.19) 

 
where n is the iteration number. The derivation begins to differ from Walker’s 
solution at this point through the inclusion of the global value of the time-step 
parameter (dt) pertaining to all n, following the methodology of Strelkoff. Given 
starting conditions (starting values of the unknowns), the solution will continue to 
be improved over successive iterations.  Therefore the residuals at the improved 
solution are functions of current solution: 
RC1

n = RC AL
n,QL

n , AR
n ,QR

n ,dt n( )...............................................................................................................................(3.20) 

RM 1
n = RM AL

n,QL
n , AR

n ,QR
n ,dt n( ) ............................................................................................................................(3.21) 

 

The gradient terms, n
CR 1∇ and n

MR 1∇  are the Jacobian matrices: 

∇Rc1
n =

∂RC1

∂AL

, ∂RC1

∂QL

, ∂RC1

∂AR

, ∂RC1

∂QR

, ∂RC1

∂dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

.....................................................................................................(3.22) 

∇RM 1
n =

∂RM 1

∂AL

,∂RM 1

∂QL

,∂RM 1

∂AR

,∂RM 1

∂QR

,∂RM 1

∂dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

..............................................................................................(3.23) 

 

The difference terms n
CR 1Δ  and n

MR 1Δ  are: 

ΔRC n
1 = AL

n +1 − AL
n,QL

n +1 − QL
n ,AR

n +1 − AR
n ,QR

n +1 − QR
n ,dtn +1 − dtn( )= δAL ,δQL ,δAR ,δQR ,δdt( )

.....................................................................................................................................................................................................(3.24) 

ΔRM n
1 = AL

n +1 − AL
n,QL

n +1 − QL
n ,AR

n +1 − AR
n ,QR

n +1 − QR
n ,dtn +1 − dtn( )= δAL ,δQL ,δAR ,δQR ,δdt( )

.....................................................................................................................................................................................................(3.25) 
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Now rewriting Eqns. 3.18 and 3.19 in expanded form, we get: 
 

RC1
n +1 = RC1

n +
∂RC1

∂AL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAL +
∂RC1

∂QL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQL +
∂RC1

∂AR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAR +
∂RC1

∂QR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQR +
∂RC1

∂dt
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

n

δdt  

.................................................................................................................................................................................................... (3.26) 

RM 1
n +1 = RM 1

n +
∂RM 1

∂AL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAL +
∂RM 1

∂QL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQL +
∂RM 1

∂AR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAR +
∂RM 1

∂QR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQR +
∂RM 1

∂dt
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

n

δdt

.................................................................................................................................................................................................... (3.27) 

 

Because the residuals 1
1

+n
CR  and 1

1
+n

MR  will eventually tend towards zero, they 
are set to zero at each iteration leading to two linearised equations with four 

unknowns LAδ , LQδ , RAδ , RQδ . Therefore, by setting 01
1 =+n

CR  and 01
1 =+n

MR , 
Eqns. 3.26 and 3. become: 
 

−RC1
n =

∂RC1

∂AL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAL +
∂RC1

∂QL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQL +
∂RC1

∂AR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAR +
∂RC1

∂QR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQR +
∂RC1

∂dt
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

n

δdt ............ (3.28) 

−RM 1
n =

∂RM 1

∂AL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAL +
∂RM 1

∂QL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQL +
∂RM 1

∂AR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δAR +
∂RM 1

∂QR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

δQR +
∂RM 1

∂dt
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

n

δdt ..... (3.29) 

 
To simplify the notation, we can substitute algebraic variables for the partial 
derivate terms as follows: 
aiδAi−1 + biδQi−1 + ciδAi + diδQi + eiδdt = −RC i ......................................................................................... (3.30) 

piδAi−1 + qiδQi−1 + riδAi + siδQi + uiδdt = −RM i ........................................................................................ (3.31) 

 
where i denote the cell index. This is slightly different to Strelkoff’s formulation 
(but similar to Walker’s) in that the indexing of the solution variables has 
purposely been shifted to the left (i becomes i-1) to simplify the explanation of 
the system. For example, the left hand side of the first cell is now indexed as 0, 
while Strelkoff has it indexed as 1. This has no effect on the results at all, but 
impacts directly on the readability of the mathematics and computer code. This 
subtle transformation has helped to derive a more simplified version of the 
solution technique.  
 
These linearised equations form the basis of the double-sweep technique. 
Therefore, N pairs of these equations (where N represents the number of cells 
for the current time-step) can be put into matrix form and solved iteratively until 
the change in the solution variables (between iterations) becomes negligible.  
 
Unfortunately, the matrix algebra required for solving such a (potentially) large 
set of equations is complex. However, the matrix is banded which leads to a 
particularly efficient solution using the double-sweep methodology. This solution 
technique is formulated by assuming that a linear combination of the flowrate, 
flow-area and time-step increment variables exist for each node on the solution 
grid: 

iiiii FdtHAEQ ++= δδδ ......................................................................................................................................... (3.32) 
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For the case of only two cells in the solution grid, the previous three equations 
can be put into matrix form: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

2

2

2

1

1

0

3

2

1

1

0

0

22

22222

22222

11111

11111

00

1

1

F
R
R
R
R
F

dt
Q
A
Q
A
Q
A

HE
usrqp
edcba
usrqp
edcba
HE

M

C

M

C

δ
δ
δ
δ
δ
δ
δ

.........................................................(3.33) 

 
Defining the matrix in this way allows the solution sweep to start from the 
upstream cell and iterate through to the downstream cell. We begin the sweep by 
determining auxiliary coefficients for each cell. These coefficients are derived by 
combining Eqns. 3.30 to 3.32. From this point onwards, the derivation follows 
closely to Strelkoff’s methodology, with the structural form of the equations 
appearing very different to that derived by Walker. Beginning the derivation, Eqn. 
3.32 written for the first cell is: 
δQ0 = E0δA0 + H0δdt + F0 .......................................................................................................................................(3.34) 

 
Then Eqn. 3.30 written for the last cell is: 

1111110101 CRdteQdAcQbAa −=++++ δδδδδ ...........................................................................................(3.35) 

 
Substituting Eqn. 3.34 into Eqn. 3.35, we get: 

111111010100101 )( CRdteQdAcFbdtHbAEbAa −=++++++ δδδδδδ ...........................................(3.36) 

 
Simplifying, this result, we now have: 

01111110110110 )()( FbRQdAcHbedtEbaA C −−=+++++ δδδδ ....................................................(3.37) 

 
Then 0A∂  equals: 

011

111111011
0

)(
Eba

QdAcHbedtFbR
A oC

+
−−+−−−

=
δδδ

δ ...........................................................................(3.38) 

 
We can simplify this equation by introducing the new terms U,V, Z, and W: 

0010100 WdtZQVAUA +++= δδδδ ...................................................................................................................(3.39) 

 
Where 

011

1
0 Eba

cU
+
−

= ................................................................................................................................................................(3.40) 

011

11
0 Eba

QdV
+

−
=

δ
.................................................................................................................................................................(3.41) 

011

11
0

)(
Eba
HbeZ o

+
+−

= .......................................................................................................................................................(3.42) 

011

011
0 Eba

FbR
W C

+
−−

= .........................................................................................................................................................(3.43) 
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We now need to repeat this process for Eqn 3.31. Rewriting Eqn 3.31 for the first 
cell, we have: 

1111110101 MRdtuQsArQqAp −=++++ δδδδδ ........................................................................................... (3.44) 

 
Then substituting Eqn 3.34 into Eqn 3.44: 

111111010100101 )( MRdtuQsArFqdtHqAEqAp −=++++++ δδδδδδ ......................................... (3.45) 

 
Simplifying this we get: 

01111110110110 )()( FqRQsArHqudtEqpA M −−=+++++ δδδδ ................................................. (3.46) 

 
Then substituting Eqn 3.38 into Eqn 3.46: 

(p1 + q1E0) −RC1 − b1F0 −δdt(e1 + b1H0) − c1δA1 − d1δQ1

a1 + b1E0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                             + δdt(u1 + q1H0) + r1δA1 + s1δQ1 = −RM 1 − q1F0  
......................................... (3.47) 

 
Expanding these terms we get: 
− p1 + q1E0( ) RC1 + b1F0( )− p1 + q1E0( )(e1 + b1H0)δdt − p1 + q1E0( )c1δA1

− p1 + q1E0( )d1δQ + u1 + q1H0( ) a1 + b1E0( )δdt + a1 + b1E0( )r1δA1 + a1 + b1E0( )s1δQ1

= − RM 1 + q1F0( ) a1 + b1E0 ( )                                                       
.......... (3.48) 

 
Finally, grouping the solution variables together, the equation becomes: 

δQ1 =
− p1 + q1E0( )c1 + a1 + b1E0( )r1

p1 + q1E0( )d1 − a1 + b1E0( )s1

δA1

+
− p1 + q1E0( ) e1 + b1H0( )+ u1 + q1H0( ) a1 + b1E0( )

p1 + q1E0( )d1 − a1 + b1E0( )s1

δdt

+
− p1 + q1E0( ) RC1 + b1F0( )+ a1 + b1E0( ) RM 1 + q1F0( )

p1 + q1E0( )d1 − a1 + b1E0( )s1

.......................................................................... (3.49) 

 
 
Notice that this equation now takes the form of Eqn. 3.32: 
δQ1 = E1δA1 + H1δdt + F1 ........................................................................................................................................... (3.50) 

 
 
Therefore, we now have equations to represent the coefficients E, H and F: 

E1 =
− p1 + q1E0( )c1 + a1 + b1E0( )r1

p1 + q1E0( )d1 − a1 + b1E0( )s1

................................................................................................................... (3.51) 

 

H1 =
− p1 + q1E0( ) e1 + b1H0( )+ u1 + q1H0( ) a1 + b1E0( )

p1 + q1E0( )d1 − a1 + b1E0( )s1

.......................................................................... (3.52) 

 

F1 =
− p1 + q1E0( ) RC1 + b1F0( )+ a1 + b1E0( ) RM 1 + q1F0( )

p1 + q1E0( )d1 − a1 + b1E0( )s1

..................................................................... (3.53) 
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These equations are very similar to those derived by Strelkoff (albeit with 
different indexing) although they are not yet in their simplest form.  There is a 
recurring pattern within these equations, so if we now introduce new temporary 
parameters )1(T  to )7(T , we are able to reduce these equations even further: 

011)1( EbaT += ................................................................................................................................................................(3.54) 

011)2( EqpT += ...............................................................................................................................................................(3.55) 

011)3( HbeT += ...............................................................................................................................................................(3.56) 

011)4( HquT += ..............................................................................................................................................................(3.57) 

011)()5( FbRT C += ..........................................................................................................................................................(3.58) 

011)()6( FqRT M += ........................................................................................................................................................(3.59) 

)1(1)2(1)7( TsTdT −= .......................................................................................................................................................(3.60) 

 
Therefore, the coefficients E, H and F now become: 

( )
)7(

)1(1)2(1
1 T

TrTc
E

+−
= .................................................................................................................................................(3.61) 

( )
)7(

)1()4()2()3(
1 T

TTTT
H

+−
= .........................................................................................................................................(3.62) 

( )
)7(

)1()6()2()5(
1 T

TTTT
F

+−
= ..........................................................................................................................................(3.63) 

 
We can also rewrite Eqns. 3.40 to 3.43 using this formulation: 

)1(10 /TcU −= ...................................................................................................................................................................(3.64) 

)1(10 /TdV −= ....................................................................................................................................................................(3.65) 

)1()3(0 /TTZ −= ................................................................................................................................................................(3.66) 

)1()5(0 /TTW −= ................................................................................................................................................................(3.67) 
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Therefore, going back to a more generalised form with subscript i representing 
the cell-node index, the double-sweep solution equations can be summarised as: 

iiiii FdtHAEQ ++= δδδ ......................................................................................................................................... (3.68) 

11111 −−−−− +++= iiiiiii WdtZQVAUA δδδδ ..................................................................................................... (3.69) 

 
where 

)7()2()1( /)( TTcTrE iii −= ........................................................................................................................................... (3.70) 

)7()2()3()1()4( /)( TTTTTHi −= .................................................................................................................................. (3.71) 

)7()2()5()1()6( /)( TTTTTFi −= ................................................................................................................................... (3.72) 

 
and 

)1(1 /TcU ii −=− ................................................................................................................................................................ (3.73) 

)1(1 /TdV ii −=− ................................................................................................................................................................ (3.74) 

)1()3(1 /TTZi −=− ............................................................................................................................................................. (3.75) 

)1()5(1 /TTWi −=− ............................................................................................................................................................ (3.76) 

 
Then, the temporary variables are expressed as: 

1)1( −+= iii EbaT .............................................................................................................................................................. (3.77) 

1)2( −+= iii EqpT ........................................................................................................................................................... (3.78) 

1)3( −+= iii HbeT ............................................................................................................................................................ (3.79) 

1)4( −+= iii HquT ........................................................................................................................................................... (3.80) 

1)5( −+= iiiC FbRT .......................................................................................................................................................... (3.81) 

1)6( −+= iiiM FqRT ........................................................................................................................................................ (3.82) 

)1()2()7( TsTdT ii −= ....................................................................................................................................................... (3.83) 

 
 
To solve for the incremental changes to the solution parameters ( iQδ  and iAδ ), 

the temporary variables )1(T  to )7(T and auxiliary coefficients E, H, F, U, V, Z and 
W are calculated for each cell (for the current time-step) using Eqns. 3.70 to 
3.83,  progressing in a forward sweep starting from the upstream cell and 
marching to the downstream cell. Once these parameters have been calculated, 
Eqns. 3.68 and 3.69 are used in a backward sweep to calculate the incremental 
changes to solution variables iQδ  and iAδ . 
 
Once the incremental changes to solution parameters for all cells have been 
calculated, the actually solution parameter values can be updated using: 

i
n
i

n
i AAA δ+=+1

............................................................................................................................................................... (3.84) 

i
n
i

n
i QQQ δ+=+1

............................................................................................................................................................. (3.85) 

i
n
i

n
i dtdtdt δ+=+1

........................................................................................................................................................... (3.86) 

 
The computer algorithm (developed in section 3.5 of this chapter) will be 
responsible for determining which of these parameters will form part of the 
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solution. During the advance phase, the simulation is solved for flowrate, flow-
area and advance distance. In this case, the coefficients of the time-step 
parameter are disabled (equal 0) in the double sweep algorithm. More specific 
solution treatments are presented in the remainder of this chapter. 
 

3.4.2 First cell calculations 
During the first time-step, the solution grid is composed of a single triangular cell 
with the J, M and R subscripted variables equal to zero (Figure 3.7). The two 
unknowns in the system of equations are AL and dx.  

dx=??
QL=Qin

AL=??
ZL=f(dt)

QR=0
AR=0
ZR=0

QJ=0
AJ=0
ZJ=0

L R

M J

dt=f ixed

 
Figure 3.7: First cell representation. 

 
For this cell, the continuity and momentum equations (Eqns. 3.7 and 3.8) 
therefore reduce to: 

( )( ) CLRLLL RXXZAtQ =−+−δθ ....................................................................................................................(3.87) 

−
1
g

φQLδx +
1
g

θ QL
2

AL

δt + θPLδt + θφ DL − S0AL( )δx = RM ..................................................................(3.88) 

 
By substituting dxδ  for RQδ  in the residual of continuity and residual of 
momentum equations (Eqns. 3.30 and 3.31), we are able to solve for the 
incremental advance distance for this time-step. With this substitution, and 
removing the redundant terms for this time-step, Eqns. 3.30 and 3.31 reduce 
down to: 

CL RdxdAa −=+ 111 δδ .................................................................................................................................................(3.89) 

ML RdxsAp −=+ 111 δδ ................................................................................................................................................(3.90) 

 
Therefore, we have two unknowns ( LAδ  and dxδ ) in two equations. We can 
isolate LAδ  and dxδ  by substituting one equation into the other. To isolate LAδ , 
we substitute Eqn. 3.90 into Eqn. 3.89 for 1dxδ to get: 

C
LM

iL R
s

ApRdAa −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+

1

1
1

δδ ....................................................................................................................(3.91) 

 
Then simplifying, we have: 

111111 sRAdpdRAsa CLML −=−− δδ ...................................................................................................................(3.92) 
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Grouping like terms together: 

δAL a1s1 − p1d1( )= RM di − RC s1 ........................................................................................................................... (3.93) 

 
Finally, we can isolate the incremental change in the solution parameter: 

1111

11

aspd
dRsRA MC

L −
−

=δ ..................................................................................................................................................... (3.94) 

 
The same procedure can be following to isolate 1dxδ , whereby this time, we 
substitute Eqn. 3.94 into Eqn. 3.90 for LAδ . After simplifying the equations and 
isolating 1xδ , we get: 

1111

11
1 aspd

pRaRdx CM

−
−

=δ ................................................................................................................................................... (3.95) 

 
These equations are used iteratively, as LAδ  and dxδ  are only the incremental 
changes in the solution variables. The updated parameter value of LAδ  can be 
calculated using Eqn. 3.84, and the updated value of dx can be calculated using: 

i
n
i

n
i dxdxdx δ+=+1

......................................................................................................................................................... (3.96) 

 
Therefore, given starting values of AL and dx (see Table 3.3) , then LAδ  and dxδ  
are calculated at each iteration and the new solution variables are recalculated 
until convergence is achieved (no further changes in the solution variables). 
 

3.4.3 Advance phase calculations 
As in the first-cell calculations, solving for the advance phase in the simulation 
involves substituting dxδ  for RQδ  in the residual of continuity and residual of 
momentum equations (Eqns. 3.30 and 3.31) for the downstream triangular cell. 
This assumes that a linear combination of the distance-step and flow-area exists 
at the downstream cell (similar to Eqn. 3.32) on the solution grid: 

iiii FAEdx += δδ ........................................................................................................................................................... (3.97) 

 
To solve for the advance, a fixed time-step size is used and the system of 
equations is solved for the incremental advance distance dx for each time-step. 
For the case of only two cells on the solution grid (Figure 3.8), the system of 
equations can be represented by: 
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Q2=0
A2=0
Z2=0

dt=f ixed

Q1=??
A1=??
Z1=f(t)

Q0=Qin
A0=??
Z0=f(t)

dx1=??

RC2=f(Q1,A1,dx1)
RM2=f(Q1,A1,dx1)

RC1=f(Q0,A0,Q1,A1,dt)
RM1=f(Q0,A0,Q1,A1,dt)

 
Figure 3.8: Two cell grid representation. 

 
The assumptions of zero-flowrate and zero-flow-area exist at the front end of the 
triangular downstream cell. The unknowns in the two-cell example are 0A , 1Q , 

1A and dx . The solution begins by calculating the temporary variables )1(T  to 

)7(T and auxiliary coefficients E, F, U, V and W for each cell using Eqns. 3.70 to 
3.83, progressing in a forward sweep starting from the upstream cell and 
marching to the downstream cell. Time-step auxiliary coefficients H (Eqn. 3.71 ) 
and Z (Eqn. 3.75) no longer need calculating since dt is not a solution variable. 
Once these coefficients have been calculated, Eqns. 3.68, 3.69 and 3.97 are 
used in a backward sweep to calculate the incremental changes in the solution 
variables iQδ , iAδ  and for the last cell, dxδ . Finally, the solution variables are 
updated using Eqns. 3.85, 3.84 and 3.96. 
 
This algorithm can be used throughout the advance phase. However, at the end 
of the advance phase, it is very unlikely that a node will coincide with the exact 
location of the field end. Therefore, special treatment is required to match up the 
location of the last node with the end of the field. In this situation, the global 
unknown time-step parameter dt is included as a solution variable and the 
distance-step parameter dx is held constant.  
 
To implement this, the simulation is monitored until the advance exceeds the 
field-length. Once this occurs, the last time-step is reset (including its solution), 
and a new node is positioned at the furrow outlet. The last cell is then tested to 
ensure that it is large enough to avoid convergence problems. From 
experimentation, it was found that the last cell should be at least a quarter of the 
width of the previous cell, otherwise the last two cells should be joined together. 
The generalised double sweep algorithm (Eqns. 3.70 to 3.83 and Eqns. 3.85 to 
3.86) is then used to solve for dt instead of dx.  
 

3.4.4 Runoff conditions 
Special consideration must be taken once the advance reaches the end of the 
field and runoff occurs. Normal flow is assumed at the furrow outlet and is 
calculated using Manning’s equation as a boundary condition. The double sweep 
technique is therefore modified to solve for these changed conditions. This 
modification occurs only in the last cell, whereby an explicit formulation of RAδ  is 
presented that differs to what other researchers (e.g. Elliot et al. 1982) have 
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presented. Therefore, beginning the derivation, the boundary condition for the 
last cell is represented by the Manning Equation: 

Qrunoff =
ρ1S0( )

1
2

n
AR

ρ2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

................................................................................................................................................ (3.99) 

This can be simplified by introducing the coefficients α  and ω : 
ωα Rrunoff AQ = ..................................................................................................................................................................(3.100) 

where 

2
2ρω = ..............................................................................................................................................................................(3.101) 

and 

( )
n
S 2

1

01ρα = ...................................................................................................................................................................(3.102) 

 
By differentiating Eqn. 3.99 with respect to RA , we have: 

( )

R

runoff
R

R

runoff

A
Q

A
dA

dQ
δ

δ
ωα ω == −1

.........................................................................................................................(3.103) 

 
Rearranging this we have: 

( )
RRrunoff AAQ δωαδ ω 1−= ...........................................................................................................................................(3.104) 

 
Now we can substitute this equation into Eqns. 3.28 and 3.29 to remove RQδ  
from the equations: 

( )
R

R

C
R

R

C
L

L

C
L

L

C
C A

Q
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Q
Q
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⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=− −11
.........................................................(3.105) 

( )
R

R

M
R

R

M
L

L

M
L

L

M
M A

Q
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A
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Q
RA

A
RR δωαδδ ω
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⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=− −1
......................................................(3.106) 

 
Once again, to simplify the notation, we can substitute algebraic variables 
(previously defined in Eqns. 3.30 and 3.31) for the partial derivative terms as 
follows: 

RLL
n

C AcQbAaR δδδ *
1111 ++=− .........................................................................................................................(3.107) 

RLL
n

M ArQqApR δδδ *
1111 ++=− ......................................................................................................................(3.108) 

 
In this example, 1c and 1r have changed to *

1c and *
1r  which are defined by: 

( )

R

C
R

R

C

Q
RA

A
Rc

∂
∂

+
∂
∂

= −1*
1

ωωα ....................................................................................................................................(3.109) 

And, 
( )

R

M
R

R

M

Q
RA

A
Rr

∂
∂

+
∂
∂

= −1*
1

ωωα ..................................................................................................................................(3.110) 

 
Now, to generate an equation to calculate RAδ , we can rework Eqn. 3.48 with a 
few changes to reflect the updated boundary conditions. Therefore Eqn. 3.48 
rewritten for the last cell, and including *

1c and *
1r is: 
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− p1 + q1E0( ) RC1 + b1F0( )− p1 + q1E0( )c1
*δA1 + a1 + b1E0( )r1*δA1 = − RM 1 + q1F0( ) a1 + b1E0 ( ) 

 ................................................................................................................................................................................................. (3.111) 

 
Rearranging the terms in the equation we get: 
δA1 a1 + b1E0( )r1* − p1 + q1E0( )c1

*( )= p1 + q1E0( ) RC1 + b1F0( )− RM 1 + q1F0( ) a1 + b1E0 ( )(3.112) 

 
Then 1Aδ equals: 

δA1 =
p1 + q1E0( ) RC1 + b1F0( )− RM 1 + q1F0( ) a1 + b1E0 ( )

a1 + b1E0( )r1* − p1 + q1E0( )c1
* .................................................................. (3.113) 

We can simplify this equation by reintroducing the temporary variables that were 
previously defined in Eqns. 3.77, 3.78, 3.81 and 3.82: 

δA1 =
T 2( )T 5( ) − T1( )T 6( )

T1( )r1
* − T 2( )c1

* ................................................................................................................................................. (3.114) 

 
This equation is called immediately after the end of the forward sweep. After 
calculating 1Aδ , Eqn. 3.99 is called to calculate the corresponding normal flow 
associated with this cross-sectional area. The backward sweep calculations then 
follow as per usual. 
 

3.4.5 Lateral flow conditions 
A stage may be reached during the recession phases of the simulation whereby 
flowrates become very small, leading to very little downstream propagation of the 
flow profile. In the case of simultaneous advance and recession, this may result 
in the advance front of the surface profile receding back upstream, as infiltration 
dominates the volume-balance. At this stage, solution of the full momentum 
equation is prone to instability problems. In this case, the simulation engine can 
directly transform this surface water into the infiltrated volume over incremental 
time-steps, with little effect on the simulated performance figures. 
 
Therefore, for each cell (i) with surface water present, and while the surface 
water volume is greater than the incremental infiltrated volume for the time-step 
z(dt), the cumulative infiltration volume ( )itZ ,  is calculated by:  

( ) ( ) )(,1, dtzZZ itit += − ............................................................................................................................................... (3.115) 

( ) ( ) )(,1, dtzAA itit −= − ................................................................................................................................................ (3.116) 

 
For the very last remaining portion of surface water, which is less than z(dt): 

( ) ( ) ( )ititit AZZ ,1,1, −− += .............................................................................................................................................. (3.117) 

( ) 0, =itA ............................................................................................................................................................................ (3.118) 

 

3.4.6 Boundary conditions 
Boundary conditions can be segregated based upon the different phase-
combinations of the simulation (Table 3.2).   
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Table 3.2: Boundary conditions for different phase combinations 

Phase Upstream conditions Downstream conditions 

Advance tint QQ ,,0 =  
0, =tLastcellQ  

0, =tLastcellA  
Storage with blocked-
furrow tint QQ ,,0 =  0, =tLastcellQ  

Storage with runoff tint QQ ,,0 =  2

2

1

,
,

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

o

tLastcell
tLastcell S

nQ
A  

Depletion with block-
furrow 

0,0 =tQ  0, =tLastcellQ  

Depletion with runoff 0,0 =tQ  2

2

1

,
,

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

o

tLastcell
tLastcell S

nQ
A  

Recession with blocked-
furrow 

0,1 =− tFirstcellQ  

0,1 =− tFirstCellA  
0, =tLastcellQ  

Recession with runoff 
0,1 =− tFirstcellQ  

0,1 =− tFirstCellA  
2

2

1

,
,

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

o

tLastcell
tLastcell S

nQ
A  

Advance and depletion 0,0 =tQ  
0, =tLastcellQ  

0, =tLastcellA  

Advance and recession 
0,1 =− tFirstcellQ  

0,1 =− tFirstCellA  

0, =tLastcellQ  

0, =tLastcellA  

Advance (last cell) tint QQ ,,0 =  
 

0, =tLastcellQ  

0, =tLastcellA  
1

1
−

−−= t
lastcell

t XhFieldLengtdx  

Advance and recession 
(last cell) 

0,1 =− tFirstcellQ  

0,1 =− tFirstCellA  
 

0, =tLastcellQ  

0, =tLastcellA  
1

1
−

−−= t
lastcell

t XhFieldLengtdx  
 
 

3.4.7 Initial parameter estimates 
Unfortunately, the iterative double-sweep methodology has a limited range of 
convergence.  Good initial starting estimates are crucial for convergence on the 
final solution. Fortunately, the starting information can usually be obtained from 
the final solution at the previous time-step. Table 3.3 presents formulae for the 
starting estimates for different irrigation phases.   
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Table 3.3: Initial parameter estimates for different irrigation phases. 

Phase Initial Estimates 

Advance (first cell) ( )( )fodtakQQ a
in +−= −1*

0 ,  
( ) 2

0

1

01

2*

0

ρ

ρ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

S
nQ

A ,  
0A
dtQdx in=  

Advance For x>1,     1
1

−
−= t

x
t
x QQ ,     1

1
−
−= t

x
t
x AA ,    1−= tt dxdx  

Storage with blocked-
furrow      1−= t

x
t
x QQ ,     1−= t

x
t
x AA    

Storage with runoff    1−= t
x

t
x QQ ,     1−= t

x
t
x AA  

Depletion with block-
furrow    1−= t

x
t
x QQ ,     1−= t

x
t
x AA  

Depletion with runoff    1−= t
x

t
x QQ ,     1−= t

x
t
x AA  

Recession with blocked-
furrow For x>1,     1

1
−
−= t

x
t
x QQ ,     1

1
−
−= t

x
t
x AA  

Recession with runoff For x>1,     1
1

−
−= t

x
t
x QQ ,     1

1
−
−= t

x
t
x AA  

Advance and depletion For x>1,     1
1

−
−= t

x
t
x QQ ,     1

1
−
−= t

x
t
x AA ,    1−= tt dxdx  

Advance and recession For x>1,     1
1

−
−= t

x
t
x QQ ,     1

1
−
−= t

x
t
x AA ,   1−= tt dxdx  

Advance (last cell) 
For x>1,     1

1
−
−= t

x
t
x QQ ,     1

1
−
−= t

x
t
x AA ,   

1
1

−
−−= t

lastcell
t XhFieldLengtdx  

Advance and recession 
(last cell) 

For x>1,     1
1

−
−= t

x
t
x QQ ,     1

1
−
−= t

x
t
x AA ,   

1
1

−
−−= t

lastcell
t XhFieldLengtdx  

 
This table combined with the boundary conditions in Table 3.2 is sufficient to 
achieve convergence in almost all cases. However, sometimes, special treatment 
is required at times of rapid system change such as the transition between 
advance and runoff, and also when the inflow is terminated. These treatments 
will be discussed later in this chapter. 
 

3.4.8 Parameter constraints 
As the solution variables oscillate around their true values during convergence, 
they need to be constrained to physically realistic values to maintain system 
harmony. All of the solution variables must remain positive, while the inflow rate 
and corresponding normal depth of flow influence the upper-limit for flowrate 
and flow-area. Therefore, parameter limits include: 

intx QQ ≤≤ ),(0 .............................................................................................................................................................. (3.119) 

ntx AA ≤≤ ),(0 ............................................................................................................................................................... (3.120) 

1000 ),( ≤≤ txdx  (nominal value) ............................................................................................................................... (3.121) 

 
The effect of these constraints on convergence will be discussed later in this 
chapter. 
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3.5 Computer algorithm development 
Having derived the mathematical equations for the model and its solution, the 
next step in developing the simulation engine was to derive a computer algorithm 
to manage and control the simulation operation. In doing so, six key elements of 
the computer algorithm needed to be carefully defined including: 

• the structure of the simulation engine; 
• the simulation model algorithm; 
• the input parameter objects; 
• the output parameter objects;  
• the phase switching mechanism; and   
• exception handling facilities (error management). 

 

3.5.1 Developing a structure 
The FIDO simulation engine has been developed using an object-oriented 
structure using the C++ language. While simulation speed was a design issue, 
the object-oriented design approach was adopted despite the view that well 
written procedural code can potentially run faster. The benefits of the object 
orientated approach in this instance include: 

- Simpler code structure; 
- Easier readability of code; and   
- Multiple input/output objects. 

 
Designing an object-oriented algorithm involves breaking up the structure of a 
system into different modules and objects that can interact with each other and 
also with external elements. These objects should have some level of 
“intelligence” being able to perform tasks and follow instructions. They should 
also have a memory, being able to store information. Decisions need to be made 
at the design stage regarding the level of modularity required for the system. For 
the case being considered here, this level need not be high at all. The simulation 
engine could in fact operate as a simple linear system with one set of inputs and 
one set of outputs; a “black box” in effect (Figure 3.9).  
 

Figure 3.9: Basic linear or “Black Box” functionality of simulation engine. 

 
 
The engine itself would be an object that encapsulates the model code, solution 
techniques, and internal parameters. The input data and output data would also 
be objects that contain parameters (which again are objects) and can be passed 
in and out of the engine. The simulation engine would also contain other internal 
parameter objects that are inaccessible to other parts of the program (otherwise, 
they should be part of the input object). Figure 3.10 shows the storage structure 
of these objects as used in FIDO. The output-object is located inside of the 
input-object for convenience; it is simpler to pass “one” object around the 
decision support system than it is for “two”. 

Outputs Inputs Simulation Engine 
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Figure 3.10: Simulation Engine Object Structure 

 
In reality, the connections between the objects are varied. The algorithms require 
extensive use of memory-pointers that essentially give the objects “hands” by 
which they attach to other objects. This alleviates the continual copying of 
information (which is slow) when passing from one object to another. This is 
achieved through careful design of the parameter objects that make use of 
polymorphism to alleviate repetition of code between the different parameter 
types. In this case, the performance penalty (operation speed) associated with 
using polymorphic parameter objects was overshadowed by their benefits. The 
final design of these parameters is actually quite complex given the amount and 
variety of tasks that they are required to perform (this will be discussed later in 
this chapter). Figure 3.11 provides a more in-depth look at how all of these 
objects interact. 
 

Figure 3.11: Parameter object and model-object interaction in the FIDO simulation engine. 

 
In this example, the breaking down of the structure is biased towards the data 
components rather than the mathematical components. This can be justified 
since the decision support system is not required to interact with the simulation 
engine outside of this basic input/output functionality. For this reason there is no 
need to further modularise the model code. An added advantage of this type of 
structure is that it allows for many data-objects to exist in memory 
simultaneously (although processing by the simulation engine occurs one at a 
time) allowing for easy comparison of different results, and input data. 

Simulation Engine Input Object Output Object 
 

Parameter Objects 
 

contain contain
s 

contain

Parameter Objects 
 

Passed in by DSS 
 from database 

Parameter Objects 
 

Extracted later on by 
whatever needs it! 

T1DGridParameter 

TSplitOptValueTreeObject 

TFIDOSimulation 

TTFIDOModelDataTreeObject 
TOutputObject 

Connections 

Connections T2DGridParameter 

T1DInputParameter 
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Other alternatives to this design were investigated during the development 
process. However, they were considered too complex with little or no extra 
benefit in meeting the design specification of the simulation engine.  
 
One alternative was to use polymorphism to create a custom “simulation 
(engine) object” and derive child objects from this for different irrigation 
configurations. (e.g. “blocked” vs. “free-draining” furrow end conditions). 
However, the complexity involved in switching scenarios would have been the 
same whether it was performed inside or outside of the simulation engine. This 
would also have added the extra burden in managing memory, whereby the 
simulation engine would need to be created and deleted each time a different 
scenario was modelled. With the current design, the simulation engine is created 
at program start-up, and remains there until the program is closed down. Virtual 
methods associated with polymorphism could also have slowed down simulation 
times unnecessarily if they are called during each iteration. However, one 
possible advantage of this technique would be in future development work, 
whereby other developers could more easily create new variations of the 
simulation without altering the original code. This is still possible with the existing 
design, but it would possibly have been simpler and more flexible using 
polymorphic techniques. 
 
Another alternative that was considered was to split up the simulation engine 
object at the “irrigation-phase” level. This would involve having a single 
“simulation (engine) object” and using polymorphism again by creating a custom 
phase object, and deriving child objects for each different phase of the irrigation 
(e.g. “advance”, “storage” “recession”, etc). The phase-objects would contain the 
solution techniques, boundary conditions and initial conditions for each phase. 
This could simplify the code by removing much of the conditional statements 
from the code. Each object would encapsulate functions specific for that phase, 
including error handling techniques. However, the problems outlined in the 
previous example could again surface here with polymorphism potentially 
slowing down simulation times. There would still be memory management 
issues; do we create/destroy phase objects each time we change phases, or 
possibly create every single phase object in memory at once? Another bottleneck 
could be the copying and transferring of information in and between phase 
objects. 
 
Putting time-penalties through overuse of polymorphism aside, the main reason 
for going with the suggested model structure was because it was the simplest.  
 

3.5.2 Model algorithm  
Figure 3.12 outlines the model algorithm used by the simulation engine when 
running a simulation. The algorithm revolves around two main loops; one for 
incrementing the time-step, and one for incrementing the iteration step. When 
implementing this algorithm, modular coding is used to eliminate code repetition 
and simplify development. If a piece of code needs to be accessed from more 
than one place, then it is placed in its own unique method. Breaking the code 
down this way into its smallest elements naturally encourages modular 
programming, simplifying the algorithm and code maintenance and minimising 
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the likelihood of coding errors. Use of good naming conventions of these 
methods tends to self-document the code, especially when called from a 
controller method containing nothing more than method-calls and 
conditional/logic statements. This is demonstrated by comparing the Simulate() 
method in the simulation engine source code (Appendix 3.1) with the algorithm 
in Figure 3.12.  

Figure 3.12: Algorithm used in the simulation engine for running simulations. 

 
Another feature of the algorithm is that it allows output to be generated even in 
the case of simulation failure. Although the current version of the simulation 
engine has proved to be extremely robust, earlier development work had 
identified the need to provide sensible output in the event of such a failure. 
External analyses attached to the simulation engine behave unpredictably if 
unrealistic results are fed into them. Therefore the algorithm is designed to 
output the last “good” set of results from the simulation, which in the case of a 
terminated simulation, would be results generated from the time-step before 
failure occurred. In most cases, the final performance measures would be very 
close to the true values, since these types of failures occur predominately during 
the latter parts of the simulation after the advance has completed. 
 

Main FIDO Simulation Algorithm      
 

1. Load record from database -links input model data and output object parameters. 
2. Reset simulation -clears memory for all parameters objects and initialises switches. 

While still simulating 
3. Increment time-step -updates time-step integer and flags new step. 
4. Set up memory for parameters -adds just enough memory to each parameter for this step. 
5. Reset iteration count -resets iteration count and convergence flag. 
6. Determine irrigation components –checks current elements (inflow, advance, etc). 
7. Set solution function pointers –determines which solution functions to use. 
8. Determine solution cell range –sets upstream and downstream cells. 
9. Set parameter estimates -sets estimates for Q, A, X, and T based on previous time-step. 
10. Set boundary conditions -sets boundary conditions for current phase 

While still converging 
try 
11. Update iteration count – increase iterations and reset convergence checks. 
12. Calculate auxiliary coefficients –initial sweep 
13. Update parameter estimates –final sweep (reverse of previous step) 
14. Check convergence –check each parameter for convergence 
Catch errors 
15. Deal with the problem –find a solution to be implemented next time-step. 

 
15. Check for abnormalities –check if time steps needs repeating due to problems. 
16. Remove empty cells –remove collapsed cells (upstream and downstream)  
17. Check if still simulating –stop if all cells have collapsed.  

 
18. Update output object properties –updates endcell, max Z, max A, time-step information 
19. Update Analyses –updates any analyses that may be attached to simulation (e.g. the animation). 

` 
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3.5.3 Input parameter objects 
Object-orientated programming techniques were used to create input parameter 
objects to represent the solution variables such as Q, A, dx and dt (among 
others). This effectively adds a “brain” to the parameters so that they have both 
processing and memory management capabilities as well as the usual storage 
functionality. Traditionally, these parameters would have been an array of 
“floats” or “doubles”. Now they contain information about upper and lower 
constraints, temporary storage vectors, solution tolerances, solution cell 
information (including differentiation between Eulerian and Lagrangian grids), 
and functions for setting initial values, updating new estimates and adjusting 
storage sizes.  
 
Three different types of data storage objects have been used in the simulation 
engine, which have been called T1DGridParameter, T1DInputParameter, and 
T2DGridParameter objects. These are all ultimately derived from the “abstract 
base class” (which by definition, cannot be used to store data) called 
TCustomGridParameter, which implements the polymorphism functionality (by 
introducing “virtual” methods”) and setting the structure of its children.  Figure 
3.13 demonstrates the relationships and key functionality of the parameters. 

 

 Figure 3.13: Structure of the object-oriented input parameter types used in FIDO. Note that 
the T1DInputParameter contains a pointer to an input parameter located in simulation input 

object. 

 
A multi-value input parameter object called TSplitOptValueTreeObject has 
been created to house spatially and temporally variable input parameter values 
(such as for non-uniform infiltration, roughness, furrow geometry, field-slope and 

TCustomGridParameter 
Defines of the structure of the 

parameter-objects. Contains upper 
and lower limits, tolerance values, and 

defines “virtual” methods (for 
“polymorphism”) for child classes. No 

storage for data is allocated at this 
level. 

T1DGridParameter 
Contains a one-dimensional storage vector 

for data. Used to represent model 
parameters such as dt, upstream cell, 
downstream cell. Contains storage for 

logging convergence values if necessary.  

T1DInputParameter 
Contains a link (pointer) to an input 

parameter (TSplitOptValueTreeObject) 
in the current data record. This forms 

the connection between the user 
interface and the model parameters. 
Used to represent input parameters 

such as inflow rate, fieldslope, furrow 
geometry parameters and infiltration 

parameters.  

T2DGridParameter 
Contains a two-dimensional storage 

vector for data. Used to represent cell 
parameter such as Q, A, Z and X as well 

as internal velocity and pressure, and 
wetter perimimeter parameters. Contains 
cell reference (L,R,J,M) for Eulerian and 
Langrangian Cells. Convergence storage 

is updated for two-dimensions. 

TSplitOptValueTreeObject 
This is the input parameter which 

is located in the model record, 
and is presented in the user 

interface. The user can directly 
edit this value. It is capable of 
being split into several values 

representing different locations 
along the furrow or different 

periods in time. 
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inflow).  This parameter object is linked to the input object through a pointer in a 
corresponding T1DGridParameter parameter object.  
 
All of child parameter-object types have been designed to manage memory 
efficiently. At any one time, the storage containers inside of these objects have 
been sized exactly to that of the current memory demand. That is, bulk memory 
allocation is not employed, rather memory is allocated dynamically at each time-
step according to the current requirements. For the T2DGridParameter types, 
this involves a triangular storage structure as the number of cells on the solution 
grid increases (during the advance phase of the irrigation) with each time-step 
(Figure 3.14). 
 

 
Figure 3.14: Memory allocation technique employed by theT2DGridParameter types. 

 

3.5.4 Output objects 
Storing the results of the simulation engine externally in a specially designed 
object allows the user to compare the results of many different simulations 
simultaneously. A single output object TSimulationOutputObject is used 
to store all of the simulation outputs described in Section 3.5.5. Outside of the 
basic storage functionality, the object contains the methodology to calculate the 
irrigation performance parameters for any time-step. 

3.5.5 Phase switching 
The simulation engine employs a special C++ container type called a set (an 
associative container that supports unique keys, allowing fast retrieval of the 
keys) to keep track of the physical processes occurring during an irrigation 
simulation. This set (called TPhaseComponents) can contain up to six different 
elements relating the state of the irrigation (although due to obvious physical 
limitations, they can not all occur simultaneously). This includes advance, 
recession, inflow, runoff, ponding, and lateral flow phases. 
 
Figure 3.15 describes the logic in defining the contents of the set. At the start of 
the simulation, the set is initially empty. Then at the beginning of each time-step, 
this algorithm is called to see which of these elements are currently active. Any 
active elements are added to the set, and any inactive elements are removed. At 
any stage during the calculations, the set can quickly be examined to aid in the 
internal decision-making. Although a speed penalty is incurred through extra 
conditional operations during the calculations, the conditional checks are fast 
since no values or functions need to be examined. 

Time Step 
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Figure 3.15: Algorithm for adding/remove phase component to the "set" 

 
In early versions of the simulation engine, sets were not used. Instead, a series 
of switches were used for the individual phases and phase-combinations of the 
irrigation cycle. During each time-step, a “checking-function” would be called 
whereby the current state of irrigation phase was decided upon (from about 
fifteen different alternatives), and function-pointers were assigned according to 
this state. During simulation, these function pointers were called instead of the 
actual required function. This proved quite powerful, dramatically cutting down 
on the number of conditional statements required throughout the calculations, 
with all of the decision making being done in the initial “checking-function”. 
However, the problem was that it resulted in an excessive amount of code with 
many functions repeated with only minor changes between them. This simulation 
engine became very difficult to work with from the developer’s perspective. It was 
tremendously difficult to debug, and there was little confidence in any part of 
code because there was just too much to manage effectively. The use of sets in 
the latest version has reduced the total volume of code to a third of the original 
code amount. 
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3.5.6 Exception handling 
Exception handling (error management) has been implemented at potential 
problem sources minimising the impact on the simulation progress. It aims to 
improve reliability allowing convergence problems to be identified and handled 
with a more appropriate grid structure or better initial parameter estimates. The 
try/catch statements implemented around Steps 11-14 in the algorithm (  
Figure 3.12) aim to trap errors during the double-sweep solution process, where 
they are most likely to occur. If an error does occur at this level (normally a 
convergence error), the time-step can be adjusted or restarted without user-
intervention through exception handling techniques. Sometimes erroneous 
results can occur despite apparent convergence success. These abnormalities 
are checked outside of this loop to verify that the simulation is behaving, as it 
should and that convergence wasn’t achieved through unusual circumstances. 
 

3.6 Observations on simulation characteristics 
Having derived the simulation mathematics and program algorithms, the next 
step in the development process was to combine these by writing the computer 
program, which is presented in Appendix 3.1. From this point on, research 
focused upon refining, testing and debugging the program. A key part of this work 
was directed at studying and observing the characteristics of the simulation. 
Based upon these observations, measures were then implemented to improve 
robustness and reliability. Therefore, several key observations of the 
characteristics of the simulation will now be discussed including: 

• cell sizes decrease towards the downstream end; 
• volume-balance errors are greatest at furrow inlet; 
• instability is greatest during rapidly changing conditions; 
• grid structure influences simulation performance; 
• recession approximations can lead to instability; and   
• transition to runoff can cause oscillations in runoff hydrograph. 

 

3.6.1 Cell sizes decrease downstream 
During the advance phases of the simulation, nodes on the solution grid are 
created based upon the position of the advance front at each time-step. 
Therefore an extra node is created for each successive time-step. By the time the 
advance reaches the end of the field, the node spacings are much smaller then 
they are at the top end of the field. One advantage is that the smaller sized 
solution cells are located in positions where the later stages of the recession will 
predominate. This helps in the solution of a potential weak link in the simulation. 
Unfortunately, the larger cells are located at the top end of the field where a finer 
grid resolution is also required to capture rapidly changing inflow conditions.  
 

3.6.2 Sources of volume-balance error 
It was observed that volume-balance errors predominate at the upstream end of 
the furrow. The top end of the furrow is the location of the most dynamic and 
rapidly changing quantities of the simulation; that of instantaneous inflow and 
instantaneous cut-off. In the first instance, the system instantaneously switches 
between no-flow and high-flow conditions. Percentage-wise, the volume-balance 
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error during this time-step could be as high as 30% to 40%, but volumetrically it 
is still very small in terms of the whole irrigation water balance. In the second 
instance, the flow change is reversed from high-flow to no-flow, but it still occurs 
instantaneously. On both of these occasions, the effect will be most pronounced 
at the upstream end of the furrow. Therefore, it is recommended that extra 
nodes should be placed at this location to help account for the rapidly changing 
conditions. 
 
Another source of volume-balance error can be attributed to numerical instability. 
Approximations are made during the recession stages of the irrigation which can 
cause convergence problems leading to volume-balance errors. Effectively, 
system accuracy is often compromised to achieve numerical stability. 
Fortunately, these compromises usually result in only a very small error in terms 
of the overall volume-balance. 
 

3.6.3 Sources of instability 
Instability in the solution technique is most likely to occur during stages of rapidly 
changing conditions. This is primarily due to the difficultly in obtaining good 
parameter starting values during these periods. This is especially noticeable 
during phase transitions from advance to storage, from storage to depletion, and 
from depletion to recession, and also during later stages of the recession. Figure 
3.16 show a progression of time-step iteration counts for a typical simulation, 
highlighting periods of instability.  
 

 
Figure 3.16: Typical iterations log for different irrigation phases 

 
Some general observations from studying convergence during the course of this 
work include: 

• Good initial starting estimates are crucial for avoiding stability problems. 
• The advance phase is the most robust simulation phase, typically 

converging in two iterations. It has proven consistently reliable under all 
conditions. 

• The storage phase is also generally robust, once the transition from 
advance to storage is completed. However, difficulty is often encountered 
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during this transition, although it rarely requires special treatment to 
achieve convergence. 

• The transitions from storage to depletion and depletion to recession are 
key sources of instability, given the difficulties in obtaining good initial 
estimates of the surface and flow profiles.  

• Most failures occur during the recession phases of the simulation, 
especially when the recession is very rapid, and flow rates and flow 
depths are very low. For example, saw-tooth fluctuations in the surface 
and flow profiles have been observed during the later stages of the 
recession. 

 
Parameter convergence monitoring capabilities were embedded into the FIDO 
simulation engine to study the nature of instability patterns and convergence 
issues on the individual solution parameters Q, A, dx and dt. This was a key 
debugging tool that has contributed to four strategies for improving simulation 
robustness presented later in this chapter. 
 
These capabilities provide insight into the sources of instability during periods of 
convergence difficulties. For example, Figure 3.17 shows an output of this 
extended analysis corresponding to a transition from the depletion phase to the 
recession phase in a typical irrigation (as shown by the peak in Figure 3.16). The 
two surface plots represent the absolute values of incremental parameter 
changes for A and Q for different node positions and iterations. In this example, 
the source of instability is located in the region of rapidly changing conditions at 
the upstream end of the furrow.  
 
 

 
Figure 3.17: Convergence Log for A and Q parameters during transition from depletion phase to 

recession phase. The surface water and infiltration profiles are shown in the top chart. 
Convergence was achieved in 12 iterations. 

 
Another example (Figure 3.18) highlights the difficulties in achieving 
convergence during the later stages of the recession. This example resulted in 
catastrophic failure of the simulation, which was terminated after 100 iterations 
of the time-step. A low-flow, low-volume surface profile was present during the 
previous time-step. Solutions to this problem are presented later in this chapter. 
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Figure 3.18: Example of convergence failure during the recession phase. 

 

3.6.4 Effect of solution grid structure. 
It was found that another source of error exists if the nodes on the solution grid 
are spaced erratically. During repeated trials with different configurations of the 
simulation engine, the most stable and reliable simulations occurred when the 
solution grid was regular. Note this does not imply that the solution grid was 
“uniform”, but rather that changes in cell sizes occurred gradually from one cell 
to the next. For example, Figure 3.19 demonstrates the effect on the solution 
grid of increasing and decreasing the time-step midway through the simulation. 
Errors have been introduced in both cases due to the sudden change in time-
step. It was noted that convergence was also slower in both these cases.  
 

 
Figure 3.19: Effect of a sudden change in time-step on advance trajectory. 

 

Consequently, this could imply problems when solving for the unknown time-step 
parameter (as in the fixed-distance-step method), especially when the advance is 
very slow and struggling to reach the next node on the solution grid. In this 
example, the time-step solution could be very large, with a subsequent penalty in 
stability and volume-balance error. For this reason, the fixed-time-step 
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methodology was preferred over this method when designing this simulation 
engine.  
 
 
This also highlights that the implicit double-sweep solution technique is reliant 
upon stability restrictions on the solution grid structure. This is despite popular 
belief that only the explicit solution techniques are subject to this condition. 
Other authors have also verified this. For example, Strelkoff and Falvey, (1993) 
reported that “… implicit schemes in which the simultaneous equations are 
solved with a double-sweep method- having one boundary condition picked up at 
the upstream end … and another picked up at the downstream end - exhibit 
oscillations if the Froude number exceeds unity by more than just a little or for 
more than just a short time”.  
 
Since the FIDO simulation engine uses a fixed time-step to implicitly locate 
nodes in the x-direction, careful management of this time-step size is required to 
avoid convergence problems. 
 

3.6.5 Recession approximations can cause instability 
All existing surface irrigation models make approximations during the recession 
phases. That is, none of the existing models actually solve simultaneously for the 
time for the recession to pass each node6. Typically, the recession is defined 
when the depth of flow at a cell node is less than 5% of the normal depth. 
However, numerically speaking it is not uncommon for the depth of flow to be 
negative before the recession flag is activated (Figure 3.20). It was observed that 
this can cause irregularities in the recession curve due to the true recession 
point not coinciding with the nodes on the solution grid. Although it may have 
little effect on the accuracy of performance results, the effect is more 
pronounced on the reliability of the solution technique with convergence 
problems occurring in extreme cases. To deal with this, a monitoring system 
needs to be implemented to check for convergence problems at this location. 
This will be discussed later in this chapter. 
 
 

                                                 
6 During this research, considerable time was spent trying to solve implicitly for both dx and dt 
during the simultaneous advance and recession phase of the irrigation. This involved deriving a 
new double-sweep algorithm whereby the direction of the two sweeps is reversed. Unfortunately, 
robustness could not be achieved, and the solution matrix was ill-conditioned. That it, there was 
an infinite number of solutions within the range of the remaining simulation times, as the cell 
flow-rate and flow-area could turn out to be 0 in the solution. This work was abandoned in favour 
of the more reliable approximation method. However, it may be possible to derive a single unique 
solution with different techniques and further research. 
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Figure 3.20: Problems with recession definition 

 
 

3.6.6 Transition to runoff 
It was often observed that the simulated transition from advance to runoff 
caused a fluctuation, or dampened oscillation, in the runoff hydrograph (Figure 
3.21a). This characteristic is not unique to this simulation engine, but was also 
observed to occur in SIRMOD (Figure 3.21b).  
 

 
(a) 

 
(b) 

Figure 3.21: Fluctuations in runoff hydrograph in (a) FIDO simulation engine and (b) 
SIRMOD output. 

This phenomenon seems to occur more frequently and severely when the time-
step size is suddenly reduced in order to position the last node with the end of 
the field (e.g. if the time-step was reduced from 5mins to 2mins for the last 
advance step).  It was also observed to occur when initial starting estimates of 
the furrow end parameters are poor.  In either case, convergence is usually 
achieved but the solution parameters are obviously inaccurate, although its 
effect on the overall accuracy of the simulation is thought to be minimal.  These 
errors dampen quickly over successive time-steps as the furrow end conditions 
become more uniform. It appears that the system is weakly linked to the 
boundary conditions that are insensitive to the parameter variations, but this 
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requires further investigation. Fortunately, this situation can usually be avoided 
by ensuring that the time-step size for the last advance step is close to, or larger 
than, the default time-step. This may require “undoing” the “previous” time-step 
before adopting a larger time-step size to match endpoints.  
 

3.7 Achieving simulation robustness. 
It quickly became apparent when writing this computer program that deficiencies 
in the published methodologies are understated. Given the lack of information 
that exists on undertaking these transformations, it is important to document 
these idiosyncrasies and their solutions for future reference. The following 
techniques have been employed in the FIDO simulation engine to achieve the 
design goals of robustness and reliability: 

• implement small time-steps for first few iterations; 
• monitor parameter convergence during iterations; 
• pre-test time-steps to remove collapsing cells; and   
• automatic time-step refinement. 

 

3.7.1 Early time-step calculations 
It was previously mentioned that the upstream end of the furrow is potentially the 
main source of volume-balance error and numerical instability. This is because it 
is a location of rapidly changing conditions; that is, when the inflow is turned on 
and also turned off. It is also the location of the largest solution cell, which is 
generated during the first time-step. One way to minimise these problems is to 
introduce smaller solution cells in this region. This can be done by using small 
time increments for the first few time-steps: 

default
i

i dtdti 5    5;for =<= ................................................................................................................................... (3.122) 

 
where i is the current time-step index. 
 

3.7.2 Parameter monitoring during iterations 
Publications have typically neglected to mention critical solution problems such 
as parameter limits. Due to the iterative nature of the solution process, 
convergence on the final parameter values is obtained after oscillation around 
the true parameter values. If the true parameter values are very small, then the 
solution parameters may take on unrealistic or negative values during the 
convergence process. While this isn’t really a problem if we consider that we are 
just solving a large set of equations in matrix form, it is a problem when these 
equations are representing physical processes and that all sorts of side-effects 
can spawn if our solution parameter values are unrealistic. Therefore we need to 
constrain our solution parameters to within a physically realistic range. These 
constraints must be applied the instant that a limit is exceeded and not just at 
the end of an iteration, otherwise errors will be introduced in adjacent cells 
during the marching technique. 
 
Unfortunately, one of the side effects of constraining a parameter is that 
repeated mirrored-oscillations in the improved parameter values can sometimes 
occur over successive iterations. Usually, the mirroring of the oscillations occurs 
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when the constraint is first applied to a parameter, and continues until that same 
constraint is forced to be reapplied. Then the process restarts over again. 
Therefore the process becomes stuck in an infinite loop and convergence never 
occurs (Figure 3.22). 
 

 
Figure 3.22: Repeating mirrored-oscillations 

 
To overcome this, the solution parameter objects automatically monitor 
oscillations during each time-step, and report back to the simulation engine 
when any mirroring effect occurs. This typically happens during the recession 
phase and results when a finite (but small) depth of flow at the recession front is 
constrained to zero (as discussed in section 3.6.5); that is, when the true 
recession position does not coincide with the solution grid node locations.  
 
Once oscillations have been reported, the cell in which the oscillations occur is 
removed from the current time-step. If the recession is sufficiently rapid (i.e. on 
steep slopes, or high infiltration soils), it may be possible that several cells are 
removed in one step during the process. As mentioned earlier, this may 
compromise solution accuracy (i.e. a very small error could be introduced) for a 
marked increase in simulation robustness. 
 

3.7.3 Pre-testing time-step to remove collapsing cells 
During the recession phase(s), a simple but effective technique is available to 
reduce instability in the numerical system, by removing upstream cells that are 
likely to collapse during the time-step, before they collapse. During the recession, 
there are no inflows into the upstream solution cell, while outflows can involve 
both infiltration and surface-flows into adjoining cells. While the surface flows 
cannot be determined until the end of the time-step, the potential infiltration 
volume is known (or can be estimated if wetted-perimeter effects are being 
accounted for) at the commencement of the time-step. Therefore, if it is obvious 
that the potential infiltrated volume for the time-step is greater than the surface 
water volume in the cell, then the upstream cell can be removed before the time-
step is simulated (making sure to account for the infiltrated water). This avoids 
potentially having to constrain negative flow and storage values during the time 
step (as explained in Section 3.6.5), which is a major cause of instability. More 
than one upstream cell can be removed in a single pre-test. However, any 
subsequent cells must also test for possible inflows by considering the outflow of 
the adjoining upstream cell at the previous time-step. 
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3.7.4 Automatic time-step management 
A simple “time-step management” technique has been developed and 
implemented into the simulation engine to ensure that simulations are 
completed without convergence errors. Given the simplicity and success of the 
technique, one could easily suspect that’s its role in the simulation process is 
trivial. On the contrary, the robustness of the simulation is severely compromised 
without strict adherence of the technique’s rules.  
 
It was found during testing that many instability problems could be resolved if the 
time-step was changed mid-way through a time-step convergence loop. This 
process involves testing the convergence of the solution variables during the 
iterations, and if problems were acknowledged, then the time-step would be 
restarted with a different step-size. Usually, only a change of a few seconds was 
required to “kick” the simulation through its problem. This procedure was only 
implemented as a last resort having concluded that repeated oscillations (as 
outlined in the previous section) were not the source of the problem.  
 
In the rare event of this failing to rectify the problem, the entire simulation would 
then be rerun using a different default time-step size. 
 

3.8 Validation 
The FIDO simulation engine has been validated by comparing its results with 
that from SIRMOD (e.g. see Figure 3.23). The literature review (Chapter 2) and 
case study (Appendix 2.2) confirmed that SIRMOD can accurately simulate a 
wide range of field conditions. Therefore, agreement between the results from 
FIDO and SIRMOD would confirm that the FIDO simulation engine is also 
accurate. This hypothesis is reinforced by the fact that the models share the 
same hydrodynamic model and that the solution techniques are similar albeit for 
the recession, runoff and stability management techniques. 
 

Figure 3.23: Sample output of validation of FIDO simulation engine against SIRMOD 
results. Blue lines are the FIDO output; Red lines are the SIRMOD output. 

 
 

 

Flowrate (m^3/sec) 0.0016   
Time-To-Cutoff  (mins) 1070   
Field-Length  (m) 520   
Field Slope 0.0015   
Manning n 0.1   
Kostiakov A 0.074   
Kostiakov K  (m^3/min^a/m) 0.076   
Kostiakov Fo  (m^3/min/m) 0.00003   
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3.8.1 Accuracy of results 
Eighteen data-sets representing a variety of free-draining irrigation conditions 
were used to validate FIDO against SIRMOD. Appendix 3.2 shows the outcome 
of these runs by overlaying advance and recession profiles of each model. An 
example of this output is presented in Figure 3.23. In all cases the advance 
curves generated by each model were identical, while recession curves were 
usually similar but not identical. Some differences were observed to occur 
between runoff hydrographs. 
 
A scatter-plot analysis was also undertaken for each of the volume-balance 
components and efficiencies, showing good agreement between the two models’ 
outputs (Figure 3.24). Results for inflow, stored and total-infiltration volumes 
were practically identical, while small discrepancies appeared with the 
application efficiency, uniformity, and loss components.  
 
 

   

   

  

 

Figure 3.24: Scatter-plot analysis of FIDO vs SIRMOD outputs 

 
Each model calculates uniformity differently, so this difference was not 
unexpected. The variations in the loss components (drainage and runoff) can be 
explained through slightly different treatments of simulated runoff between the 
models, and possibly by the stability measures in FIDO impacting on the volume-
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balance results. For example, if instabilities are detected in the later stages of 
the irrigation, FIDO is able to switch to simulating only lateral flows, which is 
likely to have the greatest effect on the runoff and drainage results. As these are 
typically smaller components of the volume-balance, variations will appear more 
dramatic than for larger quantities such as inflow and stored volumes. It is likely 
that the stability measures will be downgraded in future versions of the software 
with further fine-tuning of the model. 
 

3.8.2 Operation speed 
The FIDO model has undergone several attempts over its development cycle at 
optimising the mathematical algorithms to minimise the overall simulation time. 
This is an important consideration given that the engine is to be used in 
calibration, optimisation and parameter analysis roles requiring potentially 
hundreds of repeated simulations. Running on the current generation Pentium 4 
computers, simulation times typically range from a few hundredths of a second 
to up to three or four seconds using a ten-minute simulation time-step. The 
longer simulation times mostly occur when the simulation engine encounters 
difficulties and has to apply special treatment to individual time-steps to achieve 
convergence. Longer irrigation cutoff times also contribute to larger simulation 
times. The response-surface generation discussed in Chapters 5 and 6 provided 
total simulation times of approximately one hour to perform 10,000 simulations. 
 

3.9 Conclusions 
This chapter has described the development of a new object-oriented simulation 
engine capable of being implemented into a decision support system for furrow 
and border irrigation. This involved adaptation of the Walker and Strelkoff 
solution techniques, including the derivation of a simplified form of solution 
equations, and new algorithm for solving runoff. An object-oriented computer 
algorithm was developed for controlling the simulation, featuring intelligent input 
parameter objects. Robustness and reliability of the simulation engine was 
ensured by the development and implementation of four different treatments to 
avoid convergence problems. The simulation engine was validated against the 
SIRMOD model. 
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Chapter 4 Estimation of soil infiltration and hydraulic 
roughness parameters 

 
 

4.1  Introduction 
Accurately determining the spatial average value of the soil infiltration 
characteristic is a prerequisite for surface irrigation decision support operations. 
For example, evaluating irrigation performance is currently a two-stage process, 
whereby the infiltration parameters are typically estimated using a simple 
volume-balance model (such as the “two-point method”) before being imported 
into a more complex hydrodynamic model for running the simulation. However, 
this is a potential source of error in the modelling process due to differences 
between the models’ structures.  
 
The goal of this chapter is to develop parameter estimation (calibration) 
capabilities for the FIDO decision support system that avoids this source of error 
by determining the soil infiltration and/or hydraulic roughness parameters using 
the same model that is used to perform the simulation. In practice, this will allow 
any of the three Kostiakov-Lewis infiltration parameters and/or the hydraulic 
roughness coefficient to be determined using a simple but powerful optimisation 
algorithm to minimise the error between the measured and predicted irrigation 
advance and/or runoff hydrograph. 
 
The research in this chapter has five main objectives; (1) to present a 
background to developing calibration faculties for the decision support system; 
(2) to present as a preliminary study, the development a simple optimisation-
based volume-balance inverse technique for determining the soil infiltration 
parameters; (3) using the optimisation-methodology developed in the previous 
task, to develop a more complex hydrodynamic inverse technique for the 
determination of any of the soil infiltration and/or the hydraulic roughness 
parameters; (4) to analyse the response-surfaces of the advance-based 
objective-functions; and (5) to validate the performance of the hydrodynamic 
inverse method using real field data. 
 
This chapter is accompanied by a single appendix containing the output of the 
calibration validation showing simulated advance curves resulting from both the 
volume-balance and hydrodynamic inverse methods (Appendix 4.1). 
 
 

4.2 Background to estimation of soil infiltration and roughness 
parameters 
The inverse methods employ a form of simulation-model to determine infiltration 
parameters through matching field measurements with the simulated outputs. 
This alternative usage of the simulation model is essentially a calibration 
technique, yet no software packages are currently available which combine both 
simulation and calibration capabilities using the same model. Infiltration is 
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typically calculated using a simple volume-balance model with these results 
being imported later into the more complex hydrodynamic model. However, this 
may cause inaccurate results due to the differences in model structure and the 
empirical nature of the inverse technique. 
 
Models used to solve the inverse problem consist of two parts.  The first is an 
equation describing the process of infiltration, or entry of water into the soil.  The 
modified Kostiakov-Lewis equation is the infiltration equation, which is most 
often used with furrow irrigation (Walker and Skogerboe 1987): 

ττ o
a fkI += ..................................................................................................................................................................... (4.1) 

 

where I is the cumulative infiltration (m); τ is the time (min) that water is 
available for infiltration into the soil, otherwise known as the opportunity time; a 
(dimensionless) and k (m3/mina/m) are fitted parameters; and fo  (m3/min/m) is 
the steady-state or basic infiltration rate for the soil.  This equation is well suited 
to most soil types as it takes into consideration the basic infiltration rate.  Failure 
to do this can lead to an underestimation of the cumulative intake (Hanson et al. 
1993). 
 
The second part of the inverse solution is a representation of the distribution of 
water temporarily stored on the surface of the furrow or bay.  This links the 
infiltration equation to measurable parameters such as the inflow, surface water 
depth and the irrigation advance.  This component of the solution usually takes 
the form of either a volume-balance model (consisting of the continuity equation 
only), or hydrodynamic advance model (consisting of a continuity equation and a 
momentum equation). 
 

4.2.1 Objectives of calibration module development  
The primary goal of the research in this chapter is to develop a calibration 
module for estimating soil infiltration (and roughness parameter) capable of 
being implemented into a decision support system for furrow and border 
irrigation. Specific objectives of the calibration module are: 

• Unique infiltration and roughness parameters must be determined 
without user intervention; 

• It must be capable of using any form objective-function (and hence 
measurement data) including those based upon advance and/or runoff 
data; 

• It must be able to include any combination of soil and/or roughness 
parameters. 

4.2.2 Elements of the calibration module 
The calibration module required for solving the inverse problem to estimate soil 
infiltration and roughness parameters is composed of five principal components 
(Figure 4.1): 

• calibration parameters; 
• a simulation engine;  
• field measurements; 
• an objective-function; and   
• an optimisation engine. 
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Figure 4.1: Fundamental components of the calibration module. 

 
The calibration parameters represent the soil infiltration and/or hydraulic 
roughness parameters that we wish to estimate. The simulation engine is 
required to provide the simulated outputs to compare with the field 
measurements. The field measurements include data such as advance-
trajectory, surface water depths, recession-trajectory and/or runoff hydrographs. 
The objective-function calculates the error between the field measurements and 
simulated outputs. The optimisation engine is the computer algorithm that 
manipulates the calibration parameters in order to minimise or maximise the 
objective-function response without user intervention. 
 
The conceptual input/output functionality of the calibration module is displayed 
in Figure 4.2. This suggests that the calibration parameters such as a, k, fo 
and/or Manning n are passed into the optimisation module. An objective-function 
is also required as input to the module. These input choices can be selected by 
the user through an appropriate graphical user interface. The calibration process 
is then performed by automatically curve-matching the measured and predicted 
advance and/or runoff data. The calibrated parameter values are then presented 
as output from the module, and returned to the decision support system. 
 

Optimisation 
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Manipulates the 
calibration 

parameters and 
evaluates system 
response to solve 

the inverse-
problem 

Objective Function 
Calculates sum of the squares of the error between measured and 
simulated outputs. 

Simulation Engine 
Simulates furrow irrigation based on the current value of 
the design parameters. 

Calibration Parameters 
Variables of interest, that we wish to estimate. 

Field Measurements 
Can include measurement such as advance trajectory, 
surface water depths, recession trajectory, or runoff 
hydrographs. 
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Figure 4.2: Conceptual input/output functionality of the Calibration module. 

 

4.2.3 Limitations of existing techniques 
Inverse techniques have proven the most popular and reliable methods of 
parameter estimation of soil infiltration and hydraulic roughness parameters. 
However, despite all of the methodologies available, there is currently no “best” 
method for determining these parameters. This is evidenced by recent work by 
the US Water Conservation Laboratory who is developing a new software tool for 
estimating infiltration and roughness parameters (Tamimi et al. 2003). The 
software has two goals: firstly, to provide a tool for evaluating different 
parameter-estimation methods in order to develop recommendations and 
guidelines; and   secondly, to apply the most appropriate methodology for the 
data which is available. 
 
The main problem with the existing methods is that they typically provide only a 
crude “calibration” of the target simulation model. Inaccuracies result from 
differences between the calibration and simulation model structures, ineffective 
solution techniques, and a deficit of reliable input data.  
 
Despite recent attempts at combining optimisation algorithms with hydrodynamic 
and zero inertia models, the two-point method (Elliot and Walker 1982) has been 
the most commonly used technique to solve the inverse problem. This is partly 
due to the simplicity of the two-point method not requiring specialised software 
making it cheap and easily accessible. It is regularly taught in irrigation courses 
and is included in many irrigation texts. In comparison, the software-based 
optimisation techniques have not been made readily available to the public 
suggesting that problems outlined in the literature may be more serious than 
indicated. As well, the data requirements of the two-point method are minimal 
compared to many of the alternatives. Those techniques requiring the 
measurement of a surface depth profile are the least practical as this is a 
relatively complicated and expensive task.  
 
Because only two points on the irrigation advance are used in the two-point 
method, a possibility for error exists if either of the points is not representative of 
the advance.  Although only two points are required, the method still remains 
information expensive in that the basic infiltration rate and cross-sectional area 
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still need to be measured.  Errors in the measurement of these quantities can 
lead to inaccuracies in the infiltration parameter values. 
 
A limitation of all but the latest methods involving optimisation is that they 
require a lot of input data including advance measurement, surface depth 
profiles, inflow and outflow hydrographs. Temporal variations in the infiltration 
parameters are also important. The infiltration conditions of the soil tend to 
change between irrigation applications due to factors such as initial moisture 
content and degree of compaction. Therefore the infiltration parameters should 
be measured while the particular irrigation event is in progress. With existing 
optimisation methods there are typically three factors hindering this operation 
including the low speed of optimisation, the need for user intervention, and the 
need to measure fo . 
 

4.3 Preliminary study – INFILT volume-balance solution technique 
As a preliminary study towards developing the calibration module for the decision 
support system in this dissertation, a simple volume-balance technique (INFILT) 
was developed to overcome many of the problems associated with the existing 
inverse techniques7. During the early stages of this research, it was not known 
whether structural differences between the simulation model (hydrodynamic 
model) and the inverse method (volume-balance model) would introduce 
significant errors in the simulation results. While the findings of this initial work 
were promising, it was subsequently found that these structural differences 
needed to be accounted for in the simulation model by adjusting the Manning n 
parameter (see Appendix 2.2). Nevertheless, this study was invaluable in 
developing the optimisation code used in the decision support system and for 
identifying the problems associated with the determination of the infiltration 
parameters. 
 
The INFILT method couples a volume-balance model with an optimisation 
algorithm to minimise the error between the predicted and measured advance. 
The method differs from existing approaches in that only advance data and 
inflow rates are required. The average cross-sectional area of the furrow and the 
final infiltration rate are treated as fitted parameters and need not be measured.  
 
The method improves on the two-point method using a model of similar form.  It 
utilises the full irrigation advance (at least two advance points) while data 
requirements are reduced substantially by the omission of the need to measure 
the flow-area and final infiltration rate. This is possible through using an 
optimisation technique to find the values of the three infiltration parameters and 
the average cross-sectional area of flow. 
 
By including the cross-sectional area of flow as one of the fitted parameters, it is 
treated empirically rather than as a physical parameter. Its resulting magnitude 
will then reflect the effect of spatial changes in the above-mentioned variables. 
 

                                                 
7 This work was developed into a stand-alone software package called INFILT and published in 
the Journal of Irrigation Science (McClymont and Smith 1996). 
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The method may be suited to automation or real time control. A barrier to these 
processes is that the solution technique undertaken must provide the results 
quickly and without human interaction.  Therefore a simple optimisation 
procedure is also required. However, the main purpose of the method is for 
application in conventional manually controlled surface irrigation, and the 
optimisation procedure described is well suited for either purpose. 
 

4.3.1 Derivation of method 
The proposed method follows from that of Smith (1993). It is based upon the 
volume-balance equation derived by Elliott and Walker (1982) for the two-point 
method, and is only applicable while there is no runoff from the end of the field.  
This volume-balance model is simply stated as: 
Q t V Vo I S= + ....................................................................................................................................................................... (4.2) 

 
where Qo is the inflow (m3/min); t is the time (min) since commencement of the 
irrigation; VI  is the volume (m3) of water infiltrated; and   VS  is the volume (m3) of 
water temporarily stored on the surface. 
 
Eqn. 4.2 is modified by the substitution of τ = −t tx  to give Eqn. 4.3: 
I k t t f t tx x

a
o x= − + −( ) ( ) ........................................................................................................................................ (4.3) 

 
where Ix  is the depth of infiltration (m) at a distance x (m) from the top of the 
field, and tx  is the time (min) for the advance to reach the distance x 
downstream.  Eqn. 4.3 can be expressed in terms of x by assuming that the 
advance follows a power function relationship: 
x ptx

r= ..................................................................................................................................................................................... (4.4) 

 
where r and p are empirical parameters.  Substituting this into Eqn. 4.3 and 
integrating over the wetted length of the field determines the total volume VI  of 
water infiltrated in time t: 

V I dxI x

x

= ∫
0

......................................................................................................................................................................... (4.5) 

 
The parameter p disappears in the integration.  The volume of water VS  stored on 
the surface can be calculated from: 
V A xS y o= σ .......................................................................................................................................................................... (4.6) 

 
where σ y  (dimensionless) is a surface storage shape parameter; and Ao is the 
average cross-sectional area of surface water at the upstream end of the furrow 
or bay. 
 
Substitution of Eqn. 4.5  and Eqn. 4.6 into Eqn. 4.2 gives the volume-balance 
equation as used in the two-point method of Elliott and Walker (1982): 

Q t A x kt x f tx
ro y o z

a o= + +
+

σ σ
1

................................................................................................................................. (4.7) 
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where σ z  (dimensionless) is subsurface storage shape parameter and is given 
by: 

σ z
a r a

a r
=

+ − +
+ +

( )
( )( )

1 1
1 1

...................................................................................................................................................... (4.8) 

 
To solve the above equations for the infiltration parameters, an objective-
function is formulated based upon minimising the sum of the squares of the 
error between the predicted and measured advance.  Eqn. 4.7 is rewritten as; 

r
tfktA

tQx
oa

zoy

o

+
++

=

1
σσ

.......................................................................................................................................... (4.9) 

 

The objective-function is then; 
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where xi the measured advance distance and ti is the measured time at advance 
point i; and N is the total number of advance points. 
 
To apply the method, a power curve regression first needs to be undertaken to 
calculate r from Eqn. 4.4.  It is preferable that a non-linear regression technique 
be employed rather than the log-transformed linear regression as used in the 
two-point method.  It was found that the simple log-transformation procedure 
placed too little emphasis on the later advance points.  This could also be 
overcome using a weighted log-transformation. 
 
A second non-linear optimisation (Eqn. 4.10) is then used to determine the four 
parameters a, k, fo , and σ y oA . 
 

4.3.2 Optimisation technique 
In the early stages of this development, a computer program was written to test 
different optimisation algorithms. The Steepest Descent and Newton's methods 
of optimisation were initially employed to solve for the infiltration parameters.  It 
was found that the Steepest Descent method provided reasonable results, 
although optimisation times were often long with thousands of iterations 
required.  Newton's method failed to converge on the optimum solution when 
attempting to solve for four parameters. 
 
A new procedure was therefore developed with the main goals of robustness and 
global convergence. This new method avoids the calculation of derivatives 
through a “common sense” approach of “forcing” the objective-function to 
decrease by changing the design parameters individually. This process 
undertakes several separate optimisations with only one design parameter 
changing in each. However, this process by itself is extremely slow. To increase 
the rate of convergence and to adopt the nature of a gradient search method, 
the routine follows up the individual changes with a “group” parameter change. 
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This is undertaken by changing all of the parameters together in the direction of 
the resultant vector obtained from the sum of the individual parameter vectors 
(Figure 4.3). 
 
 

 
Figure 4.3: Step-cycle involved for two parameters 

 
For example, for an objective-function with two design parameters, the steps in 
the minimisation process are; 
(a)  Select initial values for the two parameters. 
(b) Change the first parameter until the objective-function can be lowered no 

further. 
(c) Change the second parameter until the objective-function can be lowered no 

further. 
(d) Change both parameters as a group in the direction of the resultant vector 

from Steps 2 and 3 until the objective-function can be lowered no further. 
(e) Repeat (b) to (d) until the optimum design parameters have been found. 
 
This method has the advantage over traditional methods in that it is 
mathematically simple and forces the objective-function to increase/decrease 
with the individual parameter changes. 
 
To test the optimisation method, it was first applied to a well-known test function 
for optimisation methods: Rosenbrock’s function: 
 
f x x x x( ) ( ) ( )= − + −100 12 1

2 2
1

2
........................................................................................................................(4.11) 

 
where x1 and x2 are the design parameters, and f(x) is the function to be 
minimised. Figure 4.4(a) shows the response-surface for this function. 
 
Twenty-five pairs of initial estimates were chosen to test the optimisation method 
with each test converging on the true optimum response value. Optimisation 
times were less than 4 seconds, running on an outdated Pentium 1 processor. In 
each case the final parameter estimates were the same at x1=1.0 and x2=1.0. 
Figure 4.4b demonstrates the paths taken by the algorithm for the different 
initial starting estimates. Straight lines on the graph indicate rapid convergence. 
The curved lines, corresponding to the positive initial estimates of x2, appear to 
follow the response-surface contours (Figure 4.4a) and demonstrate the longest 
optimisation times. 
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Figure 4.4: (a) Response-surface of Rosenbrock's function; (b) Response trajectory of 25 sets of 

initial starting estimates. 

 
Having developed the optimisation algorithm, it was then applied to solve the 
inverse problem using the object-function presented in Eqn. 4.10. The steps 
followed in the process were: 
Step 1:  Initial values are selected for a, k, fo , and σ y oA . 
Step 2: Perturbation sizes are set for each parameter. Experience has shown the 
following to be suitable starting values: 
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Step 3: Each parameter is then individually incremented or decremented by an 
integer number j of these perturbations, continuing while the objective-function 
(Eq.10) is decreasing, for example: 
a a j p SSE SSEi i a a i i= ± × <− −1 1     while     ........................................................................................... (4.13) 

 
Step 4: The parameters are then changed as a group by the same individual 
amounts as in Step 3, again until the objective-function can be lowered no 
further: 
 
X X J P SSE SSEi i

T
i i= +− −1 1      while    <  ......................................................................................... (4.14) 

 
where: 

 
(a) 

 
(b) 
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where the integers J  are those as determined in Step 3.  The effect of changing 
the parameters as a group is in effect a pseudo-gradient search method.  
 
Step 5: Steps 2 to 4 are then repeated until the objective-function value can no 
longer be reduced by changing the parameters either individually or as a group.  
At this stage, the magnitude of the perturbation for each parameter is decreased 
and the process repeated. It is recommended that upper and lower limits 
(preferably 1 and 0 respectively) can be placed on each parameter during the 
optimisation so that unrealistic values are not obtained. 
 
The optimisation process was found to have a wide range of convergence on the 
optimum solution.  Tests undertaken, using both the upper and lower constraints 
as the initial estimates for the four fitted parameters, converged on the same 
parameter values as those employing more reasonable intermediate initial 
estimates.  Optimisation times typically ranged from less than 30 seconds on a 
486 computer to under 1 second on a new generation Pentium 4.  All tests were 
undertaken without user input. 
 
Another advantage of the method is that the user can easily set the values for 
any particular parameters.  In this way, if the values of fo  and σ y oA  are known or 
can be assumed, the program can mimic the Two-Point method. Similarly 
parameters in the Phillip infiltration equation can be determined by setting a to 
0.5. 
 
 

4.3.3 Comparison with other methods. 
Advance data and results (Walker and Busman 1990) for four irrigation events 
were used to evaluate the method. The infiltration parameter values obtained 
from the method are presented in Table 4.1 along with the measured values 
published by Walker and Busman and their results for the Simplex and two-point 
methods. To further facilitate a quantative comparison (in terms of SSE), values 
of σ y oA  for each of the published parameter sets were estimated through 
optimisation using Eq.4.10, since the authors did not publish the measured 
values. These “optimum” values and associated SSE are also presented in Table 
4.1. 
 
. 
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Table 4.1: Parameter and objective-function values for the proposed method compared to the 
results from Walker and Busman (1990) (σ y oA  and SSE values were calculated for each set). 

 INFILT Measured Simplex Two Point 
Flowell Wheel     

a 0.444 .534 0.530 0.644 

k (m3
/min

a
/m) 0.00224 0.00280 0.00280 0.00150 

fo  (m/min) 0.00033 0.00022 0.00022 0.00022 

σ y oA  (m
2

) 0.00667 0.00385 0.00385 0.00571 

SSE 151.3 1089.78 1089.78 1543.5 

Flowell Nonwheel     
a 0.788 0.673 0.681 0.698 

k (m3
/min

a
/m) 0.00190 0.00220 0.00260 0.00190 

fo  (m/min) 0.00001 0.00022 0.00015 0.00022 

σ y oA  (m
2

) 0.00689 0.00698 0.00501 0.00796 

SSE 138.4 412.4 287.7 433.3 

Kimberly Wheel     
a 0.453 0.212 0.084 0.200 

k (m3
/min

a
/m) 0.00591 0.00880 0.0160 0.01030 

fo  (m/min) 0 0.00017 0.00019 0.00017 

σ y oA  (m
2

) 0.00085 0.00554 0.00251 0.00318 

SSE 71.0 1494.1 2866.4 1285.4 

Kimberly Nonwheel     
a 0.625 0.533 0.514 0.504 

k (m3
/min

a
/m) 0.00578 0.00700 0.00850 0.00890 

fo  (m/min) 0 0.00017 0.00017 0.00017 

oy Aσ  (m
2

) 0.0035 0.002124 0 0 

SSE 91.7 128.4 180.0 176.0 

 
On first inspection, the results from the method seem to differ considerably from 
the others.  However, evaluation of the method is best undertaken by 
substituting the derived parameter values into the target model, the modified 
Kostiakov-Lewis infiltration equation (Eqn. 4.1).  Figure 4.5 shows the resulting 
cumulative infiltration curves 
 
It can be seen from these curves that the results of the method compare 
favourably with those of Walker and Busman (1990).  The only significant 
discrepancy occurs for the Kimberly wheel furrow (Figure 4.5c).  Here the 
cumulative infiltration differs from the curves of Walker and Busman (1990) by 
about 10mm at the intermediate opportunity times.  However, the SSE values for 
this trial as presented in Table 4.1 indicate that the published results fit the 
advance data relatively poorly.  
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Figure 4.5: Cumulative infiltration curves for the Flowell wheel, Flowell nonwheel, Kimberly wheel, 
Kimberly nonwheel furrows, comparing the results of the method to that of Walker and Busman 

(1990) (_____ INFILT, _ _ _ _ measured, . . . . . . . Simplex, _ . _ . _. _ Two Point). 

 
 

4.3.4 Volume-balance errors 
Volume-balance errors (VBE) were calculated (Eqn. 4.16) at different advance 
points for the Flowell nonwheel furrow (Figure 4.6). 

     VBE =  inflow vol.- ( surface storage + infiltrated vol.)
inflow vol.

× 100% .................................(4.16) 

 
A high initial volume-balance error of 20% is indicative of the relatively low 
volume of water applied at that point. The remaining errors are relatively low and 
support the model's validity.  
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Figure 4.6: Volume-balance errors for the Flowell nonwheel furrow of Walker and Busman (1990) 

4.3.5 Objective-function response-surfaces 
The best way of evaluating the performance of an optimisation-based solution 
technique is to generate a response-surface for the design parameters, in order 
to visually validate the optimised results. This is simple when there are only two 
design-parameters, which can be evaluated in the form of a single three-
dimensional surface, or as a contour-plot in two dimensions. However, the 
situation becomes complicated when there are more than two design-
parameters, leading to a solution space greater than that which we can 
physically visualise. In this case-study example, we have four design-parameters 
(a, k, fo   and σ y oA ) leading to a solution space in five dimensions. 
 
To overcome this problem, a range of response-surfaces was plotted for 
combinations of the various parameters (Figure 4.7). The two parameters not 
shown on each surface were held constant at their optimum values. To display 
the full range of possible SSE values over the selected parameter range, the 
logarithm of the error was plotted on the vertical axis.   
 
Figure 4.7a shows a strong parabolic relationship between the a and k 
parameters with a well-defined minimum.  However, the a- fo  and k- fo  surfaces in 
Figure 4.7b and Figure 4.7f show long valleys corresponding to relatively fixed 
values of a and k respectively.  This would suggest that the objective-function is 
less sensitive to changes in the fo  parameter. 
 
 An obvious potential limitation of the method is that the σ y oA  parameter, which 
represents the amount of water stored on the surface, is treated empirically.  If 
the value is not correct in a physical sense, then the predicted infiltration may be 
affected.  However, it can be seen from the surfaces showing the influence of the 
σ y oA  parameter (Figure 4.7c to e) that there is a true minimum on which the 
optimisation process can focus. This characteristic provides some reassurance 
that including the σ y oA  parameter in the optimisation is a viable option, and that 
the values obtained should be realistic. 
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Figure 4.7: Objective-function response-surfaces for the Flowell nonwheel furrow of Walker and 
Busman (1990).  
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By treating σ y oA  as an empirical parameter, the method accounts for variations 
in geometry (slope, cross section, roughness) along the length of the furrow 
better than is possible by the use of an assumed σy with a measured Ao. 
 
The treatment of fo  as an empirical parameter is only likely to become a problem 
with high infiltration soils involving short advance times.  Under these 
circumstances, the fitted value may tend to zero and be much lower than the 
true physical value.  This difficulty arises due to the inability of the model to 
differentiate between the transient and steady state components of infiltration at 
short advance times.  This observation is in agreement with Bautista and 
Wallender (1993b) who found that the reliability of the parameter estimates 
increased for relatively long advance times. 

  

4.3.6 Data handling 
Two facets of the proposed technique that warrant consideration, and that are 
universal to all similar calculation methods, are the use of unconditioned data, 
and the sensitivity of the model to measurement errors. 
 
The temptation to condition the data arises from a desire to make the 
optimisation process as efficient as possible; this efficiency being measured in 
terms of the speed and reliability of convergence, and in the accuracy of the 
results.  Possible data conditioning strategies include; 

•  the use of an optimum number of advance points; 
•  the deletion of early advance data points; and   
•  the use of smoothed advance data. 

 
It is reasonable to assume that the optimum number of advance measurements 
required for the solution technique will vary according to the quality of advance 
data.  As a general rule, the use of a small number of advance points will lead to 
fast convergence on a solution.  A greater number of advance points are needed 
to maintain accuracy in the presence of noisy or imperfect data.  However, an 
excessive number of advance points may complicate the optimisation process so 
that the true optimum may not be found, hence reducing the accuracy of the 
solution.  
 
Deletion of the early time advance data was investigated.  It was found that the 
optimisation time was greatly reduced without significantly altering the results, 
indicating that less importance can be placed upon early advance data.  This is in 
general agreement with the work of DeTar (1989) who suggested that data from 
the first quarter of the field could be neglected. 
 
The Flowell nonwheel advance data from Walker and Busman (1990) were also 
used to determine the effect on the solution of smoothing the advance data.  The 
power advance curve determined in the initial regression was used to generate 
pairs of advance data (x and t) for the subsequent optimisation process. 
Convergence on the solution was improved using the smoothed data.  However, 
the cumulative infiltration curves (Figure 4.8) generated from the measured and 
smoothed advance data differ considerably over the full application duration. 
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Figure 4.8: Cumulative infiltration curves for original and smoothed Flowell nonwheel advance 

data of Walker and Busman (1990) (______measured; . . . . . . . .smoothed) 

 
This difference is not an argument against smoothing but an indication of the 
limitations of the power curve to represent the advance and warrants further 
investigation.  That the proposed method can handle a degree of noise without 
conditioning of the data is adequate demonstration of its utility.  However, the 
reliability of the solution will still depend on the quality of the input data.  
 
The only input data required by the method are the inflow rate and the advance.  
It is the measurement of the inflow rate that is most likely to be a source of error 
in determining the parameters.  Errors in the measurement of the advance are 
not cumulative, and the model is designed to handle such noisy data. 
 
To show the effects of inflow measurement errors, the inflow for the Flowell 
nonwheel furrow (Walker and Busman, 1990) was varied by ±10%.  The resulting 
effect on the parameters can be seen in Table 4.2.  In all three cases, the 
proportion of water on the surface remains the same at a given point in time 
(t=432min).  Therefore increasing the inflow rate effectively increases the 
volume of water predicted on the surface and vice versa. 
 

Table 4.2: Effect of flowrate variations on the resulting parameter values for Flowell nonwheel 
furrow data from Walker and Busman (1990). The measured inflow is varied by ±10%. 

% of measured inflow 90% 100% 110% 

Inflow (m3/min) 0.108 0.12 0.132 

a 0.790 0.791 0.791 

k (m3/mina/m) 0.00171 0.00190 0.00208 

fo   (m/min) 0 0 0 

σ y oA  0.00621 0.00692 0.00762 

SSE (m2) 137.47 137.49 137.43 

surface water as % of inflow 
at t=432min 

 
3.65% 

 
3.66% 

 
3.66% 
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Increasing the flowrate also increases the cumulative infiltration (Figure 4.9). The 
resulting infiltration curves differ by nearly 20 mm after 300 minutes; far greater 
than that seen in comparing the different calculation methods.  We can also infer 
that the error induced in the parameters by incorrect inflow measurements is 
likely to be greater than that caused by any inability of the method to exactly 
model the volume-balance. 
 

 
Figure 4.9: Effect of flow measurement errors on cumulative infiltration of Flowell nonwheel 

furrow of Walker and Busman (1990) at t=432 min (. . . . . -10%real flow; _____ real flow; _ . _ . _ 
+10% real flow) 

 

4.3.7 Findings of the preliminary study 
A volume-balance method was developed for the estimation of the infiltration 
characteristics of a soil from surface irrigation advance data. Important features 
of the method are that it: 

• has an optimisation based on minimising the difference between 
predicted and measured advance curves which requires no manual 
intervention; 

• includes the final infiltration rate fo  and the average cross-sectional area 
of flow σ y oA  as parameters evaluated in the optimisation; 

• is able to handle noisy advance data effectively without the need to 
condition data before use; and   

• requires a minimum of field data, but accurate inflow data. 
 
Initial testing of the model indicates that it is a useful tool for determining the soil 
infiltration characteristic. Since it was developed, hundreds of copies of the 
INFILT software package have been downloaded over the Internet, and it has 
been used in university (http://www.usq.edu.au) and training courses 
(http://www.ncea.org.au),   and also in practice for the last ten years.  However, 
it must be recognised that since it is structurally different to the target 
hydrodynamic simulation model, the potential for error exists when using the 
results for any decision support operation. Nevertheless, the cumulative 
infiltration curves generated from the method compared well with the measured 

http://www.usq.edu.au/�
http://www.ncea.org.au/�
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values, and those from the Simplex and two-point methods.  Spatial variations in 
the geometric and hydraulic properties of the furrow should be accounted for and 
reflected in the infiltration parameter values through the inclusion of σ y oA  as a 
derived parameter.   
 
The simple optimisation algorithm developed for use in the method was found to 
be more reliable than the Newton and Steepest Descent methods. The speed, 
accuracy, and wide range of convergence of this algorithm may make the model 
suitable for use in real time control of furrow and border irrigation. It was decided 
that it is also suitable for inclusion in the hydrodynamic inverse solution 
developed in the next section. 
 
 

4.4 FIDO hydrodynamic inverse technique 
The optimisation methodology used in deriving the INFILT technique can be 
extended to determine the infiltration and hydraulic roughness coefficients using 
the full form of the hydrodynamic model. This overcomes the common problem of 
calibrating using one model (volume-balance model), and simulating with 
another model (hydrodynamic model). With this new methodology, the same 
model is used for both simulation and calibration. 
 
In this instance, no time-of-advance equation is available to generate the 
advance profile. Complete simulations need to be performed, and the simulated 
advance (and/or runoff) trajectory extracted and compared with the measured 
data. Because all of the irrigation phases can be generated during the 
simulation, a range of objective-functions could be used in the calibration based 
upon the advance, recession, surface storage, and runoff, or combinations of 
each. 
 

4.4.1 Algorithm design considerations 
Using complete simulations during the calibration process introduces many new 
algorithm design considerations when compared to using a simple time-of-
advance equation. While there are many benefits from using complete 
simulations during the optimisation, the solution process is generally much more 
complex, and many times slower than time-of-advance techniques. 
 
One problem is that simulated outputs typically contain a degree of noise related 
to the discretised-solution process, which could impede the optimisation 
algorithm from finding the global minima.  This manifests itself in the form of a 
rough uneven response-surface with bumps and pits which researchers 
commonly (and often wrongly) refer to as local minima.  
 
Another problem can exist where the spatial or temporal locations of the 
measured data do not coincide with the simulation outputs. Interpolation 
algorithms such as cubic-splines must then be used to match pairs of data. This 
is more complicated when the simulated advance doesn’t reach the measured 
node locations, as the response-surface must be generated using an equal 
number of measurements stations for each iteration of the calibration. A 
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negative advance (front end recession) can also occur during simulations that 
must be taken into consideration. 
 
However, one of the main benefits of using the more complex approach is for the 
common case when the inflow is cutoff before the advance reaches the end of 
the field. Simultaneous advance and recession is likely to occur which cannot be 
adequately treated using the time-of-advance methods. 
 

4.4.2 Derivation of FIDO hydrodynamic inverse method 
The procedure for solving the inverse technique using the hydrodynamic-model is 
the same as that defined in Steps 1-5 in Section 4.3.2, except that the objective-
function is now different and results from complete or near-complete simulations 
of the irrigation. Cubic-spline interpolation is used to match pairs of measured 
and predicted data, while penalty functions are introduced to ensure consistent 
data counts when comparing measured and predicted data. 
 
The objective-function is determined by the availability of input data and is 
defined as the sum of the square of the errors between the measured and 
predicted data. The model can be calibrated using advance data, runoff 
hydrograph data, or a combination of both8. If runoff data are not available, then 
only the advance phase(s) of the simulation will be used in the calibration. If 
runoff data exists, then all phases of the simulation are included.  
 
Any of the three parameters of the modified Kostiakov-Lewis infiltration equation 
can be included in the optimisation along with the Manning n roughness 
coefficient. The flexibility of the optimisation algorithm allows easy 
selection/deselection of calibration parameters.  
 

4.4.3 Developing an object-oriented structure 
The FIDO calibration component has been developed using an object-oriented 
structure in the C++ language. Some of the benefits of using an object-oriented 
design were discussed in Chapter 3. In this example, reusability of the objects is 
an important design consideration since the simulation engine, optimisation 
engine and objective-function objects will be reused by other components of the 
decision support system. 
 
Figure 4.10 shows an overview of the object-oriented components of the 
calibration module including: 

• a calibration manager, for overseeing the operation of the calibration 
process, and providing all input/output functionality of the system; 

• an objective-function module, for storing different objective-function 
objects including those based upon the advance, runoff, and combined 
advance and runoff; 

                                                 
8 The surface profile and/or complete recession trajectory could also be used but are less 
suitable to incorporate into objective functions since they are more difficult, and time-consuming 
to measure in the field. Implicitly, by including runoff as a component of the calibration, the final 
advance and recession times are automatically accounted for. Therefore, when runoff data is 
used, it could be argued that the calibration is also being performed on the recession. 
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• a simulation engine, for determining the simulated output; 
• simulation parameter objects, which are the data storage containers for 

all of the simulation data including the measured data (advance, runoff 
etc) and calibration parameters; and   

• an optimisation engine, which controls the optimisation process. This 
contains special parameter objects for linking to the calibration 
parameters and a pointer to the selected objective-function. 

 
 

 
Figure 4.10: Object-oriented components for calibration module. 

 
The optimisation parameter objects (called TOptimisationParameter) 
contained in the optimisation engine, are specially design “intelligent” objects 
that have multiple roles. They contain much of the functionality for linking the 
optimisation engine to the calibration parameters, as well as storage facilities for 
tracking parameter changes during the optimisation. They also contain many 
methods for interacting with the optimisation. 
 

4.4.4 Calibration module algorithm 
Figure 4.11 outlines the model algorithm used by the calibration module when 
estimating the soil infiltration and/or hydraulic roughness parameters. The 
algorithm revolves around one main loop for iterating through a range of data-
files. This allows many calibrations to be performed in one go, simplifying the 
task for the user.  
 
 

TOptimisationEngine 
Performs optimisation 

TCalibrationManager 
Contains links to data, objective 
function module, and optimisation 
engine. Controls the data input/ 
output to the calibration. 

Pointer linkages to 
calibration- 

parameters and  
objective function 

TObjectiveFunctionModule 
 
 
 
 
 
 
 
 
 
 
 
Contains all of the different objective 
functions for optimisation, calibration and 
response-surface generation. 
 

Advance Function 

Runoff Function 

Advance/Runoff Function 

TSimulationParametersObject 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Stores simulation data including the 
calibration parameters 
 

Kostiakov a 

Kostiakov k 

Kostiakov fo 

Manning n 

TSimulationEngine 
Runs the simulation 

Optimisation Parameter 1 

Optimisation Parameter 2 

Optimisation Parameter 3 

Optimisation Parameter 4 

Measured Data 
i.e. advance, runoff hydrograph 
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FIDO Main Calibration Algorithm 
 

1. Get User Input - Get user input for the objective-function and design parameters. 
2. Reset system –resets parameters, timer, and calibration progress 
3. Load Objective-function –load the user-selected objective-function 
4. Alert User – lets user know of impending calibration, changes cursor etc. 
Iterate through datasets that need calibrating 

5. Load current data-set –if necessary, opens file and allocates memory for parameters 
6. Create optimisation objects -these objects link the calibration parameters to the optimisation 
If current data-set is ready to be calibrated 
 7. Connect data-set to optimisation objects - establishes linkages. 
 8. Run optimisation  
 9. Update calibrated parameters into database – store results but keep original parameters.. 
10. Alert user to calibration progress. – update progress, provide message. 

 
11. Finalise system –perform summary calculation, stop time, alert user 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: Calibration module algorithm 

 

4.4.5 Objective-function algorithms 
Advance-based objective-function 
An objective-function based upon advance measurements aims to minimise the 
sum of the squares of the error between the measured and predicted advance 
times for different measurement stations. Figure 4.12 shows the algorithm for 
this function. When the function is called, the simulation engine and the 
objective-function error value are initially reset. The simulation is then performed 
and checked for successful completion. In the unlikely event that the simulation 
fails, a default penalty error is assigned to the function response.  
 
The simulation solution nodes are not expected to coincide with the advance 
measurement stations.  Therefore, the simulated advance trajectory is loaded 
into a special array for generating cubic-splines, in order to match up the spatial 
locations of the measured and predicted advance points for the objective-
function calculations.  
 
In the case where infiltration is very large, and the simulated advance does not 
reach some of the measured advance stations, the last predicted advance point 
can be repeatedly used as the reference point for calculating the error when 
iterating through the remaining advance stations. In effect, this introduces a 
significant time penalty to the function while the time-gap increases between the 
later advance measurements and the final simulated advance location. 
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Figure 4.12: Objective-function algorithm for advance data. 

 
 
Runoff-based objective-function 
Objective-functions based upon runoff hydrograph measurements can be derived 
in two different ways: firstly, by minimising the error between the measured and 
predicted runoff rates at each time-step; and secondly by minimising the error 
between the measured and predicted runoff volumes for each time-step. It was 
decided to use the second approach for the decision support system, since this 
is easier to calculate, and is less likely to be influenced by noise and 
discretisation errors.  
 
Figure 4.13 shows the algorithm for the suggested runoff-based objective-
function. As in the previous example when the function is called, the simulation 
engine and the objective-function error value are initially reset before running the 
simulation and checking that it performed correctly. If successful, the simulated 
runoff hydrograph is loaded into a special array for performing cubic spline 
interpolations before calculating the error value. 
 

Advance-based Objective Function Algorithm 
Set SSEAdvance = 0. 
Reset Simulation  
Load New Parameters 
Run Simulation 
IF( Simulation was successful) 
{ 

Generate Advance Curve Fit (Cubic Spline) 
For( x=0 to number of measured data) 
{ 

 If (Front end recession has not occurred) 
 { 

if(Last simulated Advance point<Last measured Advance Point) 
{ 

SSEAdvance = SSEAdvance + ( MeasuredTime(x) – InterpolatedTime(x) )2 
} 
else 
{ 

SSEAdvance = SSEAdvance + ( MeasuredTime(x) – InterpolatedTime(last) )2 
This penalises the response values since the change in time will become very large. 

} 
} 

} 
} 
Else 
{ 

SSEAdvance = NULL   This leaves a hole in the response-surface which the optimisation penalises. 
} 
Return the result to the optimisation algorithm. 
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Figure 4.13: Objective-function algorithm for runoff data. 

 
Combined “advance and runoff”-based objective-function 
The objective-function based upon both advance and runoff data is more 
complex than in the previous examples because it is composed of both time-
based and volume-based quantities. Therefore, user-defined weighting 
coefficients are introduced to equalise the relative magnitudes of the two error 
quantities.  
 
Figure 4.14 presents the algorithm for this function. The procedure follows that 
of the previous objective-functions where advance and runoff errors are 
calculated as before. The resulting error portions are then multiplied by the 
weighting coefficients before being added together.  
 
 

Runoff-based Objective Function Algorithm 
Set SSERunoff = 0. 
Reset Simulation  
Load New Parameters 
Run Simulation 
IF( Simulation was successful) 
{ 

Generate Runoff Curve Fit (Cubic Spline) 
For( t=0 to number of measured data) 
{ 

SSERunoff = SSERunoff + ( MeasuredVolume(t) – InterpolatedVolume(t) )2 
Note: if the last simulated time is less than the last measured time, then the  
interpolated volume will be 0 for that time, and no penalty function needs 
to be introduced. 

} 
} 
Else 
{ 

SSERunoff = NULL   This leaves a hole in the response-surface which the optimisation penalises. 
} 
Return the result to the optimisation algorithm. 

 
 



Chapter 4            Estimation of soil infiltration and hydraulic roughness parameters 

   118 

 
Figure 4.14: Objective-function algorithm for combination advance and runoff data. 

 

4.4.6 Achieving operational efficiency 
One of the problems with using an objective-function based upon complete 
simulations of the hydrodynamic model is that convergence on the optimal 
solution is slowed down due to the time it takes to undertake individual 
optimisation iterations. Optimisations are typically an order of magnitude slower 
using the hydrodynamic method than compared to using objective-functions 
based upon time-of-advance equations. In early testing of this research, it was 
immediately apparent that this could limit the functionality of the decision 
support operations with some calibrations taking over ten minutes to complete 
(with an average time of approximate two minutes) using a modern Pentium 4 
processor. Processing times were highly dependent on the quality of the initial 
parameter estimates for the optimisation. 
 
Another problem is that despite all of the robustness measures encapsulated in 
the simulation engine, it could not always handle the extreme conditions that it 
was sometimes asked to simulate. For example, unrealistic parameter 
combinations are often encountered during the optimisation process 

Advance and Runoff-based Objective Function Algorithm 
Set SSERunoff = 0 
Set SSEAdvance = 0 
Set SSETotal = 0 
Reset Simulation  
Load New Parameters 
Run Simulation 
IF( Simulation was successful) 
{ 

Generate Advance Curve Fit (Cubic Spline) 
Generate Runoff Curve Fit (Cubic Spline) 
For( x=0 to number of measured data) 
{ 

 If (Front end recession has not occurred) 
 { 

if(Last simulated Advance point<Last measured Advance Point) 
{ 

SSEAdvance = SSEAdvance + ( MeasuredTime(x) – InterpolatedTime(x) )2 
} 
else 
{ 

SSEAdvance = SSEAdvance + ( MeasuredTime(x) – InterpolatedTime(last) )2 
This penalises the response values since the change in time will become very large. 

} 
} 

} 
For( t=0 to number of measured data) 
{ 

SSERunoff = SSERunoff + ( MeasuredVolume(t) – InterpolatedVolume(t) )2 
Note: if the last simulated time is less than the last measured time, then the  
interpolated volume will be 0 for that time, and no penalty function needs 
to be introduced. 

} 
SSETotal=  w1 x SSEAdvance +  w2 x SSERunoff 
Where w1 and w2 are user-defined weighting coefficients. 

} 
Else 
{ 

SSETotal = NULL   This leaves a hole in the response-surface which the optimisation penalises. 
} 

Return the result to the optimisation algorithm. 
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representing extremely high infiltration conditions. In this situation, the irrigation 
advance may only travel a few metres down the furrow, with several metres of 
infiltration occurring. While a simple time-of advance equation can adequately 
find a solution to this, it is outside of the operational range of the hydrodynamic 
model as configured for the decision support system9. 
 
Therefore, to improve the operational efficiency of the calibration module, it was 
decided to combine both of the methods developed in this chapter. That is, the 
INFILT method was incorporated into the calibration module to provide “good” 
starting parameter estimates for the optimisation involving the hydrodynamic-
based objective-function. As well as speeding up the optimisation, this avoids the 
likelihood of the hydrodynamic-based objective function having to simulate any 
extreme infiltration conditions.  
 
The two-stage methodology is characterised by a spike in the objective-function 
output during the optimisation when the objective functions are switched; that is, 
when the volume-balance calibrated parameters are inputted into the 
hydrodynamic-based objective function. This is an indication of the error 
associated with performing a calibration using a method with a different model 
structure to the target simulation model. Figure 4.15 demonstrates this effect by 
showing the output10 of a typical advance-based calibration, with an annotation 
showing the transition (spike) between objective-functions. 
 
 

 
Figure 4.15: Advanced calibration output showing parameter and objective-function variations 

during optimisation. Arrow indicates the transition from the INFILT method to the 
hydrodynamic-based objective function. 

                                                 
9 With extra refinement, it could be configured to handle this situation. 
10 This is an advanced-user analysis in FIDO, and is not normally displayed as part of the 
calibration process. 
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4.4.7 Response-surfaces 
The surfaces generated during the initial case study in this chapter (Figure 4.7) 
presents one way of investigating the system response and optimisation 
accuracy by plotting a response-surface for each combination of the design-
parameters. However, the true nature of the global minima remains unclear in 
these outputs, since many different reference coordinate systems are used when 
switching parameter-axis relationships.  One way to overcome this is to generate 
a series of response-surfaces for the two most sensitive parameters (a and k), 
with separate surfaces presented for different combinations of the remaining 
design parameter (fo).  
 
Figure 4.16 presents an example of this analysis for the hydrodynamic form of 
the advance-based objective-function11. To improve visualisation of the outputs, 
the objective-function values are represented as the “log” of the sum of the 
squares of the error between the measured and predicted advance. Each surface 
represents a different value of Kostiakov fo, and is generated by systematically 
varying the Kostiakov a and k parameter values. 
 
These results prove that there is a true global minimum for the optimisation 
process to focus. It lies within a sharp deep parabolic-shaped value valley, which 
flattens and increases in magnitude for non-optimum values of fo.  The surfaces 
appear to be “smooth”, but closer inspection reveals some surface roughness, 
which is not expected to impede the optimisation process. 
 

4.5 Validation 
Validation of the hydrodynamic inverse technique with the advance-based 
objective-function was performed within the FIDO decision support system by 
running calibrations for real field data (thirteen irrigations), and investigating the 
simulated advance-curves based upon the calibrated modified-Kostiakov 
infiltration parameters12. The results of this validation are presented in Appendix 
4.1 with a sample output presented in Figure 4.17. For comparison, and to show 
the error inherent with mixing model structures, the simulated output for the 
INFILT-calibrated infiltration parameters are shown in red on the charts.  
 
These results show perfect agreement between the measured and simulated 
outputs based upon the hydrodynamic method, while the INFILT-based results 
often show significant deviation from the measured advance. In earlier research 
with the INFILT method, this was accounted for by performing a second manual 
calibration by adjusting the Manning n parameter when the calibrated infiltration 
parameters were entered into the simulation model (see Appendix 2.2). The new 
method alleviates the need for this, both simplifying the calibration process and 
providing a more accurate result though computer based-optimisation. 
 

                                                 
11 Results for the other objective-functions have not been included in this dissertation, and will be 
followed up with future studies. 
12 For this study, the Manning n parameter was not included in the calibrations. Also, the 
recession-based objective-functions were not evaluated and will be followed up with later studies. 
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Figure 4.16: Hydrodynamic response-surface investigation for different values of Kostiakov fo. 
Note that the spikes in the response-surface are artefacts of the grid size, and do not indicate 

local (or multiple) minima. 

 
 
 



Chapter 4            Estimation of soil infiltration and hydraulic roughness parameters 

   122 

 

 

Measured 
Advance  

x(m) t(min) 

100 234 

200 426 

300 724 

400 988 

500 1246  

Flowrate (m^3/sec) 0.00194167 NOTE: INFILT value 
=1.941667 l/sec 

Time-to-cutoff  
(mins) 

1690 NOTE: SIRMOD value =1690 
mins Old Value 1689 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.03 

Kostiakov a 0.09162      Previous: 
0.10155 

Kostiakov k 
(m^3/min^a/m) 

0.15781662      Previous: 
0.13916 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 280 NOTE: SIRMOD value =0.28 
m Old Value 0.111 

Furrow top width (m) 0.72 
Furrow mid width 

(m) 0.48 
Furrow bot width (m) 0.3 

Furrow max depth 
(m) 0.2 

 

Figure 4.17: Sample calibration output. The red advance curves result from the INFILT 
calibration, while the blue curves result from the hydrodynamic calibration. 

 
 
An important aspect of the validation that is not shown by these outputs is that 
the entire operation was performed using a single mouse-click without user 
intervention. This was performed by clicking on the “Calibrate” hyperlink for the 
property data record in the FIDO decision-support system (see Chapter 7 for 
more information). The total calibration time was under fifteen minutes for the 
thirteen sets of data (on a Pentium M 1.6GH processor). 
 

4.6 Conclusions 
Two new optimisation-based inverse methodologies were developed for 
determining the infiltration properties (and in the second method, hydraulic 
roughness) of the soil. The first method uses a volume-balance time-of-advance 
equation with a purpose built optimisation algorithm requiring a minimal number 
of field measurements. The method was found to be reasonably accurate, fast 
and reliable (the method has successfully been used in practice for the last ten 
years), although structural differences between it and the hydrodynamic 
simulation model were identified as a potential source of error.  
 
The second method uses the same optimisation algorithm with the full 
hydrodynamic model in the objective-function calculations. This requires 
simulations to be run for each optimisation step, allowing a range of objective-
function types to be used. This allows field measurements other than the 
advance to be used in the calibration whilst also accommodating situations 
where the inflow is cutoff before the advance reaches the end of the furrow. The 
hydrodynamic method was found to be accurate, but an order of magnitude 
slower than the volume-balance method. It was therefore decided to use the two 
methods in tandem during the solution process. Therefore, the faster volume-
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balance method is first used to determine an approximation of the solution 
parameters, before using these results as input for the hydrodynamic method.  
 
This technique proved reliable with a validation of the hydrodynamic inverse 
method (advance-based objective function) showing that the simulated outputs 
from the optimised infiltration parameters provided excellent agreement with the 
measured advance. Simulated outputs from the INFILT-calibrated infiltration 
parameters showed poorer agreement with the measured advance highlighting 
the error that exists when mixing simulation and calibration model structures.  A 
response-surface investigation of both methodologies identified true minima for 
the optimisation to focus upon. Some “roughness” was apparent with the 
hydrodynamic method due to numerical discretisation errors; although it is not 
thought that this presents a serious problem to the solution process.  
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Chapter 5  Automatic optimisation of design and 
management parameters 

 
 

5.1 Introduction 
The automatic, optimal and reliable determination of design and management 
parameters to achieve maximum irrigation performance is a desirable goal in 
developing a surface irrigation decision support system. However, it remains a 
“stumbling block” for researchers whose attempts have been largely unreliable 
and inflexible. While a great deal of research has been undertaken in developing 
simulation models, very few have tried to couple these models to an optimisation 
algorithm, mainly due to limitations of the underlying model. Also, most of this 
research has been directed at maximising economic performance rather than the 
engineering performance of the irrigation. 
 
Therefore, the goal of this research is to develop an optimisation-module for the 
FIDO decision support to enhance furrow and border irrigation design and 
management. In the process, a user-defined objective-function (based upon 
maximising the engineering performance of the irrigation system) has been 
proposed and tested demonstrating the potential of the methodology, and also 
its limitations. It was subsequently found that a range of optimal parameter 
configurations exists for this objective-function. Therefore it was recommended 
that only one design variable be included in the optimisation process. Response-
surface “roughness” derived from numerical approximations in the simulation 
process was also found to impede the optimisation process. A key benefit of the 
tool, other than guiding design and management, is automatically benchmarking 
the potential performance of the irrigation system. 
 
The research in this chapter has five main objectives: (1) to present a 
background of optimisation-module development outlining the design issues 
under consideration; (2) to develop a new user-defined objective-function for 
optimising furrow and border irrigation performance; (3) to develop an object-
oriented algorithm for implementing automatic optimisation capabilities into the 
FIDO decision support system; (4) to evaluate response-surfaces for different 
configurations of the objective-function; and (5) to demonstrate the utility of the 
new method highlighting its strengths and weaknesses. 
 
Two appendices accompany this chapter. The first presents the results of a 
response-surface analysis of different objective-function formulations (Appendix 
5.1), and the second presents output from optimisations performed using the 
FIDO software (Appendix 5.2). 
 

5.2 Background to optimising surface irrigation practices 
Before developing the optimisation-module for the decision support system, the 
operational functionality of the module needs to be clearly defined, the 
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objectives of the development identified, the components of the module 
recognized, and methodology concerns considered. Each of these will now be 
discussed in turn. 
 

5.2.1 What is the automatic optimisation of surface irrigation practices? 
In the context of this dissertation, the automatic optimisation of surface irrigation 
practices is the process of using the decision support software to automatically 
calculate the optimum values of design and management variables to maximise 
the “engineering performance” of irrigation systems. This involves the coupling of 
an optimisation algorithm to the simulation engine to minimise a user-defined 
objective-function based upon four key hydraulic performance parameters 
relating to engineering performance; maximise storage efficiency, maximise 
application uniformity, minimise runoff, and minimise deep drainage. 
 
The literature review (Chapter 2) showed that most of the irrigation optimisation 
procedures have focused upon optimising economic profit associated with 
performing the irrigations. In doing so, many authors have linked the hydraulic 
simulation model to external factors including crop return, irrigation scheduling, 
water quality, and labour and water costs. While this is potentially very powerful, 
it was assumed in the current research that maximum economic profit is 
inherently highly correlated to the minimisation of water losses while achieving 
the required depth of application in a uniform manner. Therefore, external 
economic and social factors were not considered as part of this research. 
 

5.2.2 Objectives of optimisation-module development  
The primary goal of the work reported in this chapter is to develop an 
optimisation-module capable of being implemented into a decision support 
system for furrow and border irrigation. This involves (a) coupling an optimisation 
algorithm with the simulation engine using an object-oriented programming 
structure, and (b) developing an objective-function for generating system 
response. The specific performance objectives of the optimisation-module are: 

• It must be able to determine the optimum design and management 
parameter without user intervention; 

• The answer provided must be independent of the parameter starting 
estimates input into the optimisation; 

• The objective-function should be configurable for a range of design and 
management priorities, and also interchangeable with other objective-
function types;  

• There should be no restriction on the type of irrigation parameters 
included in the optimisation process. A limit on the maximum number of 
design parameters will be set to three; and   

• The major components of the optimisation-module including the 
optimisation algorithm and simulation engine must be interchangeable 
with other alternatives for future development. 
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5.2.3 Elements of the optimisation-module 
Conceptually, the optimisation-module required for optimising surface irrigation 
practices is composed of four principal elements (Figure 5.1): 

• decision variables; 
• a simulation engine;  
• an objective-function; and   
• an optimisation engine. 
 

 
Figure 5.1: Fundamental elements of the optimisation component. 

 
The decision variables represent the model variables of interest that we are able 
to change in the field to improve our irrigation performance. In furrow and border 
irrigation, this typically includes management variables such inflow-rate and 
time-to-cutoff, but could also include field design variables such as field-length 
and slope. The simulation engine is required to evaluate irrigation performance 
for the given set of decision variables. The objective-function represents a 
minimisation or maximisation function that is composed of irrigation 
performance values, or possibly external factors including costs associated with 
irrigating and growing the crop. The optimisation engine is the computer 
algorithm that manipulates the decision variables in order to minimise or 
maximise the objective-function, which it must achieve without user intervention. 
 
The conceptual input/output functionality of the optimisation-module is displayed 
in Figure 5.2.  This suggests that the design or management variables such as 
flowrate and/or time-to-cutoff are passed into the optimisation-module. An 
objective-function is also required as input to the module. These input choices 
can be selected by the user through an appropriate graphical user interface. The 
optimisation process is then performed before the optimised variables are 
presented as output from the module, and returned to the decision support 
system. 
 

Optimisation 
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Objective Function 
Calculates system response by evaluating simulated output. 
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Variables of interest, that we wish to optimise. 
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Figure 5.2: Conceptual input/output functionality of the optimisation-module. 

 
 

5.2.4 Methodology considerations 
From the review of the literature (Chapter 2), it doesn’t appear that any of the 
research into automatic optimisation of furrow and border irrigation design and 
management variables has been developed into publicly available software for 
decision support. Software such as BORDER (Strelkoff et al. 1996) and 
BICADM (Maheshwari and McMahon 1991) do have a similar role but are based 
respectively on a stored database of runs, and a regression analysis of runs, for a 
fixed number of conditions and do not employ optimisation. No clear evidence 
could be found to provide reasons for the lack of progression of the technology, 
although it could be inferred that there are problems with the simulation engines, 
and/or problems with the optimisation algorithms in the techniques presented. 
 
Conceptually, the automatic optimisation requirement is a simple mechanism. If 
the simulation engine is accurate and robust, the optimisation algorithm is 
powerful, and the objective-function is well defined, then theoretically, 
determining the optimum parameter values should be straightforward. However, 
in practice this turns out not to be the case. 
 
Problems can occur at the simulation level. While a simulation engine may prove 
robust and reliable simulating normal field conditions, it is very likely that 
problems will arise when trying to model the range of parameter combinations 
that will be presented during the optimisation. It is an unfortunate reality that 
unusual conditions will be presented to the simulation engine at some time 
during the optimisation process. While parameters can be constrained to 
minimise this, the constraint domain across a multi-parameter spectrum is 
dynamic and not rectangular. Therefore, the simulation engine must be robust 
enough to handle impractical irrigation configurations. 
 
Problems can occur at the optimisation level. Speed of optimisation and radius 
of convergence are issues to be considered. Many methodologies exist that could 
be used, with each having different strengths and weaknesses. Modern 
optimisation practices often recommend using a combination of methods in 
order to take advantage of each method’s strengths.  
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Problems can occur at the objective-function level. There needs to be a unique 
minimum or maximum in the objective-function response-surface in order for the 
optimisation to determine the optimum parameter values. If a ridge or valley of 
peak objective-function values is present (as was found with this research) then 
multiple sets of optimum parameter values will exist. The surface also needs to 
be smooth and free of local minima. Any roughness in the response-surface that 
may occur due to numerical approximation in the simulation procedure could 
impede the optimisation process in its trajectory across the surface.  
 
These were all issues faced during the development of the optimisation-module. 
 

5.3 Objective-function formulation 
Given that the simulation engine and optimisation algorithm have already been 
developed in other chapters of this dissertation, the only new piece of theory that 
needed to be developed for the optimisation-module (other than the computer 
algorithm) was the formulation of an objective-function for the optimisation.  
 
It was apparent from very early on in this research that the objective-function 
should be customisable, due to the range of management conditions that could 
be considered. The traditional approach to design and management using 
hydraulic simulation models was typically based upon the objectives of 
maximising application efficiency, storage efficiency, and distribution uniformity. 
However, these objectives can change depending on site constraints (e.g. soil 
characteristics, water availability) and management variables (e.g. agronomic 
limitations, labour requirements).  
 
For example, over-irrigation is the main contributor to irrigation inefficiencies. An 
irrigator typically over-irrigates by at least 30% to achieve the required depth of 
application over 80% of the field (Trout 1990). Furrow-to-furrow inflow and 
infiltration variations leave portions of the field under-irrigated. The natural 
response of the irrigator is to apply more water to maintain crop yields. In this 
situation, the management decision that the irrigator is faced with is not one of 
improving efficiencies, but one of balancing water and nutrient losses with that of 
crop yield.  
 
Another example is where an irrigation system recycles the runoff-water. The 
optimisation objective may then require more emphasis on minimising deep 
percolation than runoff, whereas a system growing crops sensitive to water 
logging would more appropriately be optimised according to opportunity time and 
application efficiency. The objective-function chosen will also depend on whether 
the user is optimising field design or management practices. 
 
For this research, an objective-function was developed using a weighting system 
based on the user-specified preference of minimising runoff, minimising deep 
percolation, maximising storage, and maximising application uniformity: 
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where OFV* is the temporary objective-function value that can vary in range from 
0 to 1.0; w1,w2,w3,w4 are weighting coefficients that add up to 1.0; RV is the 
runoff volume; TV is the total applied volume; DPV is the deep percolation 
volume; SE is the storage efficiency; and AU is the application uniformity.  
 
Complete simulations must be undertaken to calculate the objective-function. 
For a (theoretically) perfect irrigation with 100% storage efficiency, 100% 
uniformity and no losses, the value of OFV* would be equal to 1.0. 
 
Another key consideration in developing the objective-function is that the 
advance needs to reach the end of the furrow to avoid having parts of the field 
left under-watered. It could not be guaranteed that Eqn. 5.1 would avoid this 
occurrence. Therefore, an optional penalty-function can be applied to ensure that 
the entire furrow is watered. This is formulated based on two conditions. Firstly, if 
the advance has reached the end of the field (or if the penalty-function is 
ignored), the objective-function value is calculated as: 

*OFVOFV = .................................................................................................................................................................... (5.2) 

 
Otherwise, if the field is under-watered, the objective-function value becomes: 

0=OFV ............................................................................................................................................................................... (5.3) 

 
Therefore the objective of the optimisation is to minimise a reconfiguration of the 
value of OFV, which is represented by formulation: 

[ ]OFVMinunctionObjectiveF −0.1: ............................................................................................................... (5.4) 

 
Alternatively, this could be formulated as a maximisation problem. 
 
Another option that was considered during this research was to constrain the 
design based upon individual elements of the objective function. For example, 
using storage efficiency as a constraint could be used to insure the completion of 
the advance phase, rather than using the penalty function. Individual 
performance components could even be removed from the objective function if 
used as a constraint. However, the optimisation engine does not consider 
“external” constraints in its present form. Therefore it was decided to limit the 
study to use the objective function presented above, as it should still be able to 
implicitly handle any suggested design and management demands.  
 

5.4 Computer algorithm development 
Aspects of the computer algorithm that had to be developed for the optimisation-
module include; an object-oriented structure for performing the optimisation; and   
an algorithm for implementing the objective-function. 

5.4.1 Developing a structure 
The FIDO optimisation-module has been developed using an object-oriented 
structure using the C++ language. The benefits of using object-oriented code 
have been highlighted in Chapters 3 and 4, and also hold true here. 
 



Chapter 5        Automatic optimisation of design and management parameters 

   131 

The object-oriented structure required for the developing the FIDO optimisation 
component is similar to that developed in Chapter 4 for the calibration 
component. The main difference between these structures is that the 
optimisation component does not need to incorporate measured data when 
calculating the objective-function.  

 
Figure 5.3: Object-oriented components for optimisation algorithm. 

 
The central object in this structure is the TOptimisationManager class 
(henceforth known as the optimisation manager). This class contains all of the 
functionality to communicate with the decision support system and perform the 
task of optimising irrigation practices. It contains pointer links to the 
TObjectiveFunctionModule, which is a repository for all the available 
objective-function objects. The TSimulationEngine class is linked to each 
objective-function and is not required by the optimisation manager. However, the 
TOptimisationEngine component is linked to the optimisation manager, 
which controls to operation of the optimisation process.  
 
Before optimisation commences, pointer links are used by the optimisation 
manager to connect the selected decision variables (from the 
TSimulationParametersObject object) and objective-function to the 
optimisation engine. The optimisation engine commences operation by changing 
the design values and updating the objective-function. Results are stored for 
each iteration and the progress is reported back to the optimisation manager, 
which passes this information back to the decision support system. When the 
optimisation is completed, the new values of the decision variables are stored 
alongside their original values (no replacement is undertaken) for further post-
processing and reporting. 
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5.4.2 Objective-function algorithm 
Figure 5.4 outlines the algorithm used to calculate the objective-function value 
for each step of the optimisation. Calculation involves running the simulation 
before checking that it was successful. The function will then calculate the 
individual performance parameters and temporary objective-function value. If the 
advance reaches the end of the furrow during a simulation, the function will 
return the temporary value, otherwise it penalises the result (if desired). Once the 
new objective-function value is returned to the optimisation algorithm, the 
process restarts. 
 
 
Reset Simulation 
Load New Parameters 
Run Simulation 
if (Simulation was successful) 
{ 
    Calculate Performance Values 

    Calculate temporary objective-function value (OFV*) 
    Apply penalty function if required, to calculate objective-function value (OFV) 
   
} 
else 
{ 
    Objective-function Value = NULL   This leaves a hole in the response-surface which the optimisation penalises 
} 
Return the result to the optimisation algorithm 
 

Figure 5.4: Objective-function algorithm 

 

5.4.3 Optimisation algorithm 
The literature review (Chapter 2) has identified that a range of optimisation 
techniques have been used to optimise irrigation performance, with no particular 
methodology being seen as superior. However, from a programming perspective, 
the algorithm chosen must be numerically efficient, and be robust enough to 
handle a degree of noise in the results.  
 
Chapter 4 outlined the development of a simple optimisation algorithm designed 
to satisfy these requirements through not requiring derivative function 
calculations and by forcing parameters to change in the presence of local 
minima. The same algorithm is reused here to determine the optimum design 
and management parameters for furrow and border irrigation. Other benefits of 
this algorithm are that it can easily incorporate any objective-function, and it can 
handle any number and type of design variables (without having to redevelop the 
objective-function each time). 
 

5.4.4 Decision variable selection and constraints 
Due to limitations that will be highlighted in the next section, the current version 
of the software has been temporarily “hobbled” so that time-to-cutoff is the only 
decision variable that can be included in the optimisation. Nevertheless, the 
optimisation-module has been designed so that the user can choose which 
design and management variables are included in the optimisation. This 
currently includes field-length, slope, discharge, time-to-cutoff, and the required 
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depth of infiltration, but can be extended to include functions representing 
variable inflow and variable field slope.  
 
Upper and lower variable constraints have been linked to each decision variable 
and can be changed by the user. The range of these constraints must be 
practically feasible and implementable in the field. For example, flowrate must 
be greater than the steady state infiltration rate of the soil, and small enough not 
to cause soil erosion.  This range can be further narrowed by considering the 
range of flows that can be delivered by the irrigator’s infrastructure. Narrow 
parameter ranges can simplify the optimisation through avoiding having to 
evaluate impractical designs. 
 
Under real field conditions, many of the decision variables including flowrate and 
field-length have a fixed integer set of acceptable values. Field-length is generally 
dictated by property and paddock boundaries, which can only be practically split 
into “fractions”. Flowrate is often dictated by manufacturers’ siphon or gate 
sizes. Therefore it would be beneficial for the parameters to take on predefined 
discrete integer values during the optimisation. However, this has not been 
considered for this initial version of the software. The nature of this research was 
more academic, with the primary objective of determining the “optimum” design. 
Therefore, further research is required to equate this to real field conditions, as 
the optimisation engine will need some modifications to cope with discrete 
parameter values. 
 

5.5 Investigation of objective-function response. 
Response-surfaces for different combinations of flowrate, time-to-cutoff and 
objective-function weighting coefficients have been generated to study the 
suitability of Eqns. 5.1 to 5.4 as an objective-function for furrow and border 
irrigation design and management. For this study, the penalty function (Eqn. 5.3) 
was omitted from the objective-function calculations as the purpose was to 
investigate the fundamental shape of the response-surface without any 
modifications. 
 
This study was broken into four stages. Firstly, the response-surfaces for the 
different irrigation performance measures were generated to understand the 
nature of each component, their interrelationships and their contribution to the 
objective-function response. Secondly, the basic form of the objective-function 
response-surface was compared for different management strategies. Thirdly, 
the response-surface for the default-configuration objective-function was closely 
examined to identify key characteristics. Finally, this response-surface was 
regenerated for different combinations of a third decision variable (field-length) 
to further investigate the nature of the peak response. 
  

5.5.1 Response of irrigation performance measures 
The first objective of this study was to investigate the response-surfaces for 
different irrigation performance measures including objective-function response, 
irrigation efficiency measures, and volume-balance components. Figure 5.5 
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presents the response-surfaces from this analysis including that derived from the 
default configuration of the user-defined objective-function (w1=w2=w3=w4=0.25).  
 
All figures are characterised by the absence of a unique global maximum. Peak 
regions are characterised by ridges, plateaus, and constraint-defined-highpoints 
(which are pseudo-maxima with no practical benefit). They are also free from 
local maxima, which should at least help the optimisation process detect the 
peak locations.  

 
 

Figure 5.5: Response-surfaces for irrigation performance measures 

 
The objective-function response-surface (shown in the top-left hand corner of the 
figure) is characterised by a ridge of near-constant performance values. This 
suggests that many different combinations of flowrate and time-to-cutoff can be 
used to achieve a similar level of performance. The ridge aligns very closely with 
constant levels of application efficiency, storage efficiency, and application 
uniformity. With the exception of runoff volume, the individual volume-balance 
components do not share this characteristic surface curvature.  
 
Figure 5.5 shows the interrelationships between key performance outputs. For 
example, application efficiency is seen to decrease as storage efficiency and 
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application uniformity increase. In the region of the intersection of these surfaces 
lies the ridge of maximum performance as defined by the objective-function 
response. Other graphs in Figure 5.5 indicate that application efficiency 
decreases as inflow volume, runoff volume and drainage volume increase. 
 
Figure 5.5 also demonstrates how objective-functions with surfaces exhibiting 
constraint-defined-highpoints are ill-suited for optimising performance. For 
example, the response-surface for application efficiency exhibits a pseudo 
maximum at the lower limit of flowrate and time-to-cutoff. In practice, choosing 
these design values would lead to a very poor irrigation associated with very low 
values of storage efficiency and application uniformity (as can be seen from the 
corresponding surfaces). Therefore, application efficiency cannot be used on its 
own as an objective-function for irrigation management (unless other 
performance indicators are used as external constraints). 
 
 

5.5.2 System response for different management strategies 
The second part of this study investigated different combinations of objective-
function weighting factors to examine the different forms of the objective-
function response. The weighting factors were chosen based upon practical 
management alternatives such as maximising performance efficiencies, 
minimising loss components, or emphasising particular performance 
components over others. These results are summarised in Table 5.1 while the 
graphical response-surface outputs are presented in Appendix 5.1.  Both 
orthographic and perspective views of the objective-function response-surfaces 
have been included to help visualise the true nature of the surfaces. 
 
For each combination of weighting factors summarised in Table 5.1, the 
objective-function response-surface failed to demonstrate a unique global 
maximum for the optimisation to focus. The results ranged from having a ridge of 
maximum performance (e.g. the equal weightings example), to a plateau of 
maximum performance (e.g. maximising storage efficiency), to an undefined 
asymptotic-like maximum (e.g. maximise application uniformity). This suggests 
that optimal management decisions based upon these strategies are going to 
require extra information so that practical constraints can be added to the 
system to better define the optimal solution. With these constraints in place, a 
unique “apparent” maximum may possibly be found. The alternative is to limit 
the number of decision variables included in the optimisation. 
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Table 5.1:   Summary of response-surface results for different optimisation weightings.  

Example name w1 w2 w3 w4 
Maxima 

Identified Surface optimum type 

Equal weightings 25% 25% 25% 25% defined, 
multiple “Level” Parabolic ridge 

See Figure A5.1.1 Notes:  Presence of near level ridge. 

Maximise storage efficiency 0% 0% 100% 0% defined, 
Infinite Plateau 

See Figure A5.1.2 Notes:  Surface is the same as the response-surface for Storage Efficiency. 
Maximise application 

uniformity 0% 0% 0% 100% undefined Asymptotic  

See Figure A5.1.3 Notes:  Surface is the same as the response-surface for Application Uniformity 

Minimise runoff 100% 0% 0% 0% defined, 
infinite Plateau 

See Figure A5.1.4 Notes: 

Minimise drainage 0% 100% 0% 0% Defined, 
infinite undefined 

See Figure A5.1.5 Notes: dependent on time-to-cutoff 
Maximise storage efficiency 50% 50% 0% 0% undefined Optima increasing 

See Figure A5.1.6 Notes:     at parameter limits. 

Neglect application uniformity 33% 33% 33% 0% Defined, 
infinite “Level” Parabolic ridge 

See Figure A5.1.7 Notes:  Presence of near level ridge. 
Emphasise maximising 

storage efficiency 16% 16% 50% 16% Defined, 
infinite “Level” Parabolic ridge 

See Figure A5.1.8 Notes:  Presence of near level ridge. 
Emphasise maximising 
application uniformity 16% 16% 16% 50% Defined, 

infinite “Level” Parabolic ridge 

See Figure A5.1.9 Notes:  Presence of near level ridge. 

Emphasise minimising runoff 50% 16% 16% 16% Defined, 
infinite “Level” Parabolic ridge 

See Figure A5.1.10 Notes:  Presence of near level ridge. 
Emphasise minimising 

drainage 16% 50% 16% 16% Defined, 
infinite “Sloping” Parabolic ridge 

See Figure A5.1.11 Notes:  Presence of near level ridge. 

 

5.5.3 Closer examination of response-surface characteristics 
The third part of this study investigates prominent features of a typical objective-
function response-surface. Figure 5.6 presents such a surface (which is a 
detailed view of that displayed in Figure 5.5) derived from the default objective-
function configuration, where weighting coefficients are set equally to 25%.  Note 
that “bumps” displayed in the surface are mainly a result of the grid spacing 
used in generating the surface, and are not indicative of any error or irregularity. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5.6: Response-surface for equal weightings of the objective-function components. 

 
As indicated in the previous analysis, the resulting response-surface shows a 
“near-level” curved ridge of maximum objective-function value. However, closer 
examination of the ridge (Figure 5.6 c&d) reveals that it is not perfectly level, and 
that a very slight slope exists, showing performance decreasing with increased 
time-to-cutoff.  
 
From a practical point of view, it can be argued that this effect is negligible and 
that different combinations of these design values occurring along the ridge will 
achieve a “similar” level of performance. This suggests that the optimisation 
process simplifies down to optimising on only one parameter; time-to-cutoff. Even 
if this assumption is incorrect, and that the slope does indicate that some 
“optimal” configurations would perform better than others, the nature of the 
slope implies that the better performing irrigations will occur at the higher inflow 
rates. In this case, the best management decision would be to choose the largest 
inflow rate possible for “safe” irrigation (avoiding erosion) and optimise on time-
to-cutoff. 
 
The effect of the sloping ridge may not be as significant as that presented in 
Figure 5.6. Given that the surfaces presented here are generated over a wide 
range of flowrates and cutoff times (O.5 l/s<Qin<10 l/s and 2 hrs<tc<18 hrs), 
the variation in peak performance values over the physically viable ranges would 
be considerably less than shown here.  For example, an irrigator’s inflow 
capabilities may range from 2 l/s to 5 l/s with irrigation times ranging from 5 hrs 
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to 10 hrs. This would restrict the optimisation to the central portion of the 
response-surface, with considerably less performance variation. 
 
There is also a suspicion that significant volume-balance errors are influencing 
these results for lower values of time-to-cutoff. Figure 5.7 shows a magnified 
view of volume-balance errors which range from about -0.2% to -4%. This shows 
that the larger (more negative) volume-balance errors occur at the very low 
values of time-to-cutoff. One reason for this is that the fixed time-step of ten 
minutes that was used for all simulations during the response-surface generation 
is ill-suited for such low cutoff times, resulting in relatively few nodes in the 
simulation solution grid. Another reason is that the difficult-to-model 
simultaneous advance and recession phase predominates with these low cutoff 
times, which is prone to higher volume-balance errors. A third reason for this is 
that “percentage volume-balance errors” are magnified for small values off 
applied water, as is associated with the small cutoff-times.  
 
 

  

Figure 5.7: Dependence of volume-balance error on time-to-cutoff. 

 
Unfortunately, these volume-balance variations could have a significant effect on 
the robustness of the optimisation process. This form of surface roughness can 
sometimes manifest itself as local minima, independent of the optimisation 
process used.  This effect would be more pronounced with more than one 
solution variable included in the optimisation.  
 
The sloping ridge effect was also found to be influenced by the value of the z-
required variable, with larger values of z-required producing more level ridges 
(Figure 5.8). This appears to be a result of deep drainage having a larger impact 
(percentage wise) on the objective-function when using small values of z-required 
at lower cutoff times, while deep drainage has less of a contribution when larger 
values of z-required are modelled. This seems to introduce a slight shift in the 
surface trajectory that manifests itself as a change in slope of the peak response 
ridge.  
 



Chapter 5        Automatic optimisation of design and management parameters 

   139 

 
(a)  

 
(b) 

Figure 5.8: Influence of z-required on slope of maximum-ridge (a) z-req =0.075 m and (b) z-
req=0.15 m 

 
While a true sensitivity analysis was not carried out on the three decision 
variables, a similar analysis by Zerihun et al. (1996) showed that flowrate and 
time-to-cutoff have the highest impact on irrigation performance, with the system 
being less sensitive to field length. The authors also stressed that these results 
are subjective indicating the difficulty in undertaking the multivariate analysis. 
 

5.5.4 Variations in system response for different field-lengths  
The last part of this study involved regenerating the default-configuration 
objective-function response-surfaces for different field-lengths. This enabled 
further investigation of the nature of the ridge of peak response. In particular, it 
was unknown whether the ridge would remain level for different field-lengths, or 
whether it would increase in slope or convert into a true global maximum. It was 
also unknown whether the maximum attainable performance level would 
increase or decrease with changes in field-length.  
 
Advanced features of the FIDO parameter analysis component (see Chapters 6 
and 7) were used to help visualise these results. This included overlaying all 
response-surfaces onto the same chart, and filtering the results so that only the 
ridge of peak response was visible (Figure 5.9). In this example, different 
coloured response-surfaces represent different field-lengths. 
 
The ridge of peak response was observed to move around the parameter space, 
but maintained the same maximum attainable performance level for each field-
length. This implies that the maximum irrigation performance can be attained for 
a large range of combinations of the three decision variables. Given that these 
are the key variables that can be changed by an irrigator, this greatly simplifies 
decision making by reducing the dimensionality of the problem. That is, in 
principle, the design and management of surface irrigation can be undertaken by 
fixing two of the decision variables and optimising on the remaining variable.  
Typically, field-length and inflow rate would be fixed, and time-to-cutoff would be 
determined through optimisation.  
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(a) 

 
(b) 

 
(c) 

Figure 5.9: Relationship between (a) and (c) peak objective-function values (filtered) and (c) 
volume-balance errors. 

5.6 Optimisation validations. 
To test the utility of the optimisation module, the irrigation data used to validate 
the simulation model (Chapter 3) was optimised for time-to-cutoff, using the 
default-configuration of the user-defined objective-function. The penalty function 
(Eqn.5.3) was not applied, and inflow rates were set at their measured values 
rather than at the maximum permissible rate (which was suggested in 5.5.3). 
  
Solving for one parameter is a relatively straightforward and robust process using 
the optimisation algorithm developed in Chapter 4. However, the small variations 
in volume-balance errors exhibited across the surface (shown in Figure 5.7 and 
Figure 5.9c) would be expected to impede the optimisation process when 
optimising on more than one variable. In practice, global convergence was easily 
achieved irrespective of the initial parameter starting estimates. 
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Appendix 5.2 presents the output of the optimisations taken directly from the 
FIDO decision support software. A sample of this output is presented in Figure 
5.10 showing the comparison of irrigation performance values for both the 
measured data and optimised results.  
 
Optimisation 1. Run by at 09::26 17/11/2006 

 

 

Optimisation Parameter Measured  Optimised Comments 
Flowrate 0.001486 0.001486  
Time-to-cutoff 1248 870  
Performance Measure Measured Optimised Comments 
Application Efficiency 67.1 94.2  
Storage Efficiency 100 97.7  
Application Uniformity 95.6 91.8  
Applied Volume 111510.7 77569.2  
Runoff Volume 26965.2 262.7  
Stored Volume 74880 73189.4  
Drainage Volume 9715.8 4201.5   

 
 

Figure 5.10: Sample output from optimisation validation in Appendix 5.2. Blue lines denote 
optimised outputs, while red lines represent the measured condition. 

 
The change in performance values is summarised at the property level in Figure 
5.11. The optimised results demonstrate a marked improvement in application 
efficiency accompanied by a subtle reduction in storage efficiency and 
application uniformity. This suggests that the irrigator has over-watered their field 
in order achieve the required depth of application at the lower end of the furrows. 
 

 
Figure 5.11: Comparison of performance values for optimised versus measured results. (where 

AE is application efficiency, SE is storage efficiency, and DU is application uniformity)  

 
In this study, the optimised designs consistently watered the whole furrow, even 
in the absence of the penalty function. In most cases, a very small amount of 
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runoff did occur. However, in one instance, considerable runoff was seen to 
occur suggesting that the optimum management strategy will not always involve 
minimising runoff. That is, sometimes runoff is required in order to increase 
storage efficiency and application uniformity. 
 

5.7  Discussion 
This research is a first attempt at developing an optimisation-module for a 
decision support system for furrow and border irrigation. It provides a simple and 
efficient mechanism to demonstrate how to improve the performance of an 
individual irrigation event. Although problems with the methodology have been 
identified, this research provides a platform through which more powerful 
optimising capabilities can be developed.  
 
Two main difficulties were encountered with the existing methodology. Firstly, the 
objective-function does not present a unique optimised solution, but a range of 
solutions providing similar levels of performance. Secondly, the response-surface 
is characterised by surface roughness that inhibits the optimisation process 
(note that this has very little impact when only optimising on one decision 
variable such as time-to-cutoff). 
 
The first problem is not necessarily a drawback of the methodology. From a 
practical point of view, having a range of decision variables providing the same 
level of performance is probably an advantage, greatly simplifying the design 
problem. However, it is possible that this feature could be an artefact of a poorly 
defined objective-function. Given the nature of the different surfaces presented, 
it is likely that tighter constraints and limits will need to be applied to the 
decision variables and objective-functions before multi-variable optimisations are 
viable. This may include testing designs for satisfactory levels of performance. In 
effect, this is analogous to the linear programming example of applying 
constraints to better define the objective-function solution space. 
 
The second problem is probably inevitable. So long as numerical approximations 
are used in the solution of the hydrodynamic equations, there will be some 
degree of noise in the objective-function response-surface. This didn’t cause any 
significant problems during this analysis, but it is very likely to impede a multi-
variable optimisation. The volume-balance components included in the objective-
function seem to be especially sensitive to these variations. Three opportunities 
exist to minimise the effects of this problem. Firstly, the simulation model 
solution technique could be refined to improve numerical accuracy and stability. 
Options available for this could include; general optimising of code; decreasing 
the simulation time-step size (although this will cause optimisation times to 
increase); improving the stability measures introduced into the solution process; 
or even adopting a simpler model type. Secondly, the objective-function could be 
redefined to include elements that are less susceptible to numerical errors. For 
example, using the irrigation advance curve in the calibration objective-function 
was found to be relatively insensitive to these errors (although this would not be 
suitable for design and management). Finally, the optimisation algorithm could 
be updated to a more robust and globally convergent form. 
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Another problem for future optimisation research is contending with the spatial 
and temporal variability of infiltration. For an individual furrow, the optimal time-
to-cutoff is usually that which results in the advance just reaching the end of the 
furrow causing minimal runoff (as was shown earlier, this is not always the case, 
especially with low infiltration soils). Given that infiltration varies from furrow to 
furrow, if a constant cutoff-time is used for the entire irrigation, some of the 
furrows are likely to be under-watered with the advance not reaching the furrow 
end. Therefore the objective-function must include a component representing 
infiltration variability to ensure maximum performance across the field. 
 
Another limitation of this study is that it doesn’t segregate the independent tasks 
of design and management. In this case, a single objective-function has been 
developed to represent both requirements. Although this function can be useful 
for field design purposes, a more suitable function would be one that aims to 
simplify irrigation management through minimising the effects of infiltration 
variability. This would involve incorporating seasonal irrigation summary 
information into the objective-function to optimise field-length and/or slope to 
minimise the range of management options over the season.  The form of this 
function will require further research. 
 
Despite these problems and limitations, the objectives of this study (Section 
5.2.3) have been satisfied. As the optimisation included only one decision 
variable, global convergence was attained without user-intervention, with the 
results independent of the initial parameter estimates. While the software was 
limited to only optimising on time-to-cutoff, there is really no restriction on the 
type and number of decision variables that can be included in the optimisation. 
This is only limited by the type of objective-function that is linked into the module. 
Because of the object-oriented design of this module, different objective-function 
types, optimisation algorithms, and simulation components can easily be 
interchanged. 
 
It is inevitable that this type of tool will not appeal to all practitioners. Many will 
prefer an interactive design capability, while others will require an engineer 
somewhere in the loop. Nevertheless, a key benefit of the tool that should appeal 
to all, is that it can be used to automatically benchmark the performance 
potential of an irrigation event. Subsequent design and management 
configurations can than be compared against this optimum value.  
 

5.8 Conclusions 
An optimisation-module for the automatic design and management of surface 
irrigation was developed for the decision support system. This involved 
combining the simulation engine with an optimisation algorithm and a user-
configurable objective-function. The objective-function consists of components 
relating to the design and management priorities of maximising storage 
efficiency, maximising application uniformity, minimising runoff, and minimising 
deep drainage.  
 
It was originally envisaged that this optimisation-module would undertake multi-
variable optimisations, such as simultaneously optimising key decision variables 
(e.g. flowrate, time-to-cutoff and field-length). However, a study of the response-
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surfaces of the objective-function formulations failed to identify a global 
maximum for the optimisation process to focus upon. Instead, the surface 
maximum was typically in the form of a “level” parabolic ridge. When 
combinations of the three key decision variables were analysed, this ridge was 
found to move around in parameter space at a constant level of attainable 
performance. This implies that maximum performance can be attained for many 
combinations of the three decision variables that greatly simplify decision 
making by reducing the dimensionality of the problem. That is, in principle, the 
design and management of surface irrigation can be undertaken through fixing 
two of the decision variables and optimising on the remaining one. And added 
benefit of this tool is that it can be used to automatically benchmark the 
performance potential of an irrigation event.   
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Chapter 6 Automated generation of field design and 
management guidelines 

 
 

6.1 Introduction   
Chapter 5 has reviewed and demonstrated the benefits and problems associated 
with the automated optimisation of design and management practices. While that 
methodology provides an optimum real-time management solution, it fails to 
present an overall picture of the design and management problem, including the 
effect of spatial and temporal variability of infiltration. Field design and 
management guidelines (also known as design charts) offer a medium to present 
this extra information, based upon the recorded irrigation history for a particular 
location. 
 
Field design charts were one of the earliest forms of design and management aids 
dating back to the 1960s and were derived from analytical and empirical 
relationships based upon extensive field trials. Recent simulation models provide a 
simpler and more efficient way to develop these charts based upon repeated 
simulations of different irrigation configurations. However, this can be a time-
consuming process. For example, design charts that were developed as a 
preliminary study during this research (Section 6.4) took approximately three 
standard working weeks to develop. Therefore, there is a need to develop an 
automated facility to generate these types of charts and to incorporate this facility 
into the FIDO decision support system. This facility is referred to as the “parameter-
analysis module”. 
 
The research presented in this chapter has five main objectives: (1) to present a 
background for developing the parameter-analysis module outlining the design 
issues under consideration; (2)  to develop a methodology for accounting for the  
spatial and temporal variability of infiltration for inclusion in guideline development; 
(3) to investigate design curve generation through a preliminary case study in order 
to define the required functionality of the parameter analysis tool; (4) to develop a 
suitable object-oriented algorithm to automate the process of generating design 
and management guidelines; and (5) to generate sample guidelines using the 
software. 
 

6.2 Background to automating the development of field design and 
management guidelines 
Before developing the parameter-analysis module for the decision support system, 
the module and its outputs need to be clearly defined, the components of the 
module recognised, and the objectives of the development identified. Each of these 
will now be discussed in turn. 
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6.2.1 What is automated generation of field design and management 
guidelines? 
The literature review (Chapter 2) identified field design and management guidelines 
as a paper-based design tool generated from the systematic analysis of parameter 
responses (irrigation performance) using an irrigation model. Also known as 
parameter-analysis outputs, design curves, design charts, and response-surfaces, 
these guidelines were one of the first management and design tools available for 
surface irrigation (although it is doubtful whether they were ever effectively applied 
in practice). Initially, they were developed from field trial information, empirical 
relationships, and simple analytical functions. In recent times, they have been 
generated from the output of computer simulation models in the form of iso-curves 
and contours. 
  
Many different configuration options exist when setting up design charts. Decisions 
must be made regarding how many charts to present, what to include in each chart, 
which elements will be represented by each chart axis, and which elements, or 
mixture of elements, will be plotted as iso-curves or contours. The last decision is 
probably the most important one, as it defines the segregation of the system 
outputs (irrigation performance values) from the system inputs (decision variables), 
and it ultimately affects the way in which the chart data will be generated.  
 
For example, if the contours and iso-curves represent irrigation performance, then 
system inputs such as flow-rate, time-to-cutoff, and field-length will be represented 
by the chart axes. Potentially, this requires thousands of simulations to be run to 
account for all combinations of the decision variables. The only practical way of 
generating these outputs is to use an automated process of running the simulation 
and updating the results.  
 
The alternative to this is to represent irrigation performance on one or more of the 
chart axes. Then iso-curves representing different values of the decision variables 
are plotted in the chart space. Typically, only four or five iso-curves will be generated 
for each decision variable. In this situation, only a relatively small number of 
simulations need to be run to account for a smaller number of design parameter 
combinations. This is suitable for manually run simulations.  
 

6.2.2 Objectives for developing a system for automating field-guideline 
generation. 
The primary goal of the research in this chapter is to develop an automated tool for 
generating field design and management guidelines (charts) capable of being 
implemented into a decision support system for furrow and border irrigation. This 
involves developing a new object-oriented computer algorithm for controlling the 
simulation and generating performance outputs based upon a user’s specification. 
In particular, key objectives of the parameters-analysis module are: 

• It must be able to automatically generate the system response given basic 
user direction; 

• The results must be able to be configured to account for the multi-
dimensional nature of parameter/objective-function response; and   

• The module must be able to take into consideration the effects of spatial 
and temporal variation of the soil properties. 
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To maximise the effectiveness of the module, it should be configurable by the user 
in order to evaluate different forms of output. For example, the users should be able 
to develop design curves based upon different decision variables and objective-
functions. The module should not be limited to analysing irrigation performance, but 
could be used to generate any kind of response-surface (as was demonstrated in 
Chapters 4 and 5). Successful development of these features will ensure that the 
module will be an effective research tool, as well as an operational tool for design 
and management. 
 

6.2.3 Elements of an automated system to generate field design and 
management guidelines 
The parameter analysis module developed for the FIDO decision support system is 
composed of seven principal components (Figure 6.1): 

• design parameters; 
• field measurements; 
• a simulation engine;  
• objective-functions;  
• a parameter analysis manager; and   
• graphical analyses. 

 
Figure 6.1: Fundamental components of the parameter-analysis module. 

 
The design parameters represent the variables of interest that are manipulated in 
order to generate a response-surface. The objective-functions calculate the 
performance measures, and the error between the field measurements and 
simulated outputs. The simulation engine is required to provide the simulated 
outputs for calculating response-surface outputs from the objective-functions. The 
field measurements include data such as advance trajectory, surface water depths, 
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recession trajectory and/or runoff hydrographs and are used when the response-
surface is based upon one of the calibration objective-functions. The parameter 
analysis manager provides the computer algorithm that controls the response-
surface generation. The goal of the parameter analysis module is to allow the user 
to generate guidelines for management and design with a minimum of effort. 
 
The conceptual input/output functionality of the parameter-analysis module is 
displayed in Figure 6.2. Design and/or management variables such as flowrate 
and/or time-to-cutoff are passed into the parameter-analysis module along with an 
objective-function and a measure of the infiltration characteristic for the analysis. 
These input choices can be selected by the user through an appropriate graphical 
user interface. System response information is then generated by the module 
before three-dimensional surfaces and contours (and the underlying data) are 
presented as output from the module, and returned to the decision support system 
for display and further analysis. 
 

 
Figure 6.2: Conceptual  input/output functionality of the parameter–analysis module 

 

6.3 Accounting for infiltration variation 
A key consideration in developing design charts for irrigation design and 
management is that they must take into account the spatial and temporal variability 
of the soil. This could be achieved through lumping measured irrigation 
characteristics together to produce an “averaged” set of design curves. 
Unfortunately, this doesn’t provide any information on the range of performance 
results that could be expected for different infiltration conditions. Therefore, the 
upper and lower ranges of infiltration variability could also be included in this 
analysis to provide confidence limits on design and management decisions. 
 
A simple method for implementing this is to generate three sets of design charts for 
high, low and average infiltration properties of the soil. This involves a pre-
processing of paddock-specific infiltration data to determine three sets of the 
modified Kostiakov-Lewis infiltration parameters. This requires a range of 
cumulative infiltration curves for a nominal opportunity-time from a paddock’s 
recorded history (Figure 6.3).  
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Figure 6.3: Infiltration range is calculated from high/low and average of paddock- specific infiltration 

curves. 

 
The infiltration parameter sets representing high and low infiltration can be selected 
directly from the historical set of cumulative infiltration curves. These are chosen 
from curves with the highest and lowest cumulative infiltration values at the 
nominated opportunity time.  
 
The average infiltration characteristic is more difficult to determine and requires an 
optimisation algorithm to fit the infiltration equation parameters to match the 
averaged result of all infiltration curves. The optimisation algorithm developed in 
Chapters 4 and 5 was used for this purpose. However, a new curve-matching 
objective-function was developed to plug into the optimisation, based upon 
minimising the error been the average infiltration curve, and the fitted equation 
curve (Figure 6.4). 
 
 

 
Figure 6.4: Objective-function algorithm for calculating average infiltration curve 

 

In comparison to the curve-matching objective-functions presented in Chapter 4, 
this procedure is simple and efficient as no simulation-runs or cubic spline 
interpolations are required in the calculations. Both the averaged and fitted 
equation infiltration curves are generated using the same constant time-interval.  
 
In practice, optimising on the three infiltration parameters performed quickly (in 
only a fraction of a second). However, problems were encountered during 
development that hindered the optimisation from converging on the true global 
minimum. In particular, the optimisation was observed to repeatedly default to 
fitting a straight line through the averaged infiltration curve (Figure 6.a). It was 
assumed that this was because of a flattening on the response-surface for the 

Average Infiltration Parameters Algorithm 
Set SSE = 0. 
For(t=0 to number of desired time-increments) 
{ 

SSE = SSE + ( AverageCumulativeInfiltration(t) – PredictedCumulativeInfiltration(t) )2 

} 
Return the result to the optimisation algorithm. 
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objective-function, causing a sticking point in the optimisation. This was overcome 
(Figure 6.b) by increasing the sensitivity of the optimisation algorithm. 
 
 

 
(a) 

 
(b) 

Figure 6.5: Cumulative infiltration curve fitting results showing (a) “sticking point” encountered in 
early research, and (b) correct curve fitting results. 

 

6.4 Preliminary Study: Development of guidelines for surface irrigation 
As a preliminary study in developing the parameter analysis module, site-specific 
design and management guidelines were prepared by repeated manual simulations 
using the SIRMOD simulation model. The analysis was undertaken to show the 
effect of infiltration variation on irrigation decision-making, and assist in developing 
the functionality of the parameter analysis tool. 
 
The guidelines were developed based upon including the three main decision 
variables (flowrate, time-to-cutoff, and field-length), along with infiltration variability 
into a single set of design charts. Data was provided from seventeen surface 
irrigations monitored in the Burdekin Delta region in Queensland Australia. 
 

6.4.1 Field data 
The data used in study were collected from irrigations on sugar cane at the 
Jarvisfield site (Raine and Bakker 1996) during 1994-95 season. Irrigation advance 
and volume-balance parameters were usually measured on two furrows for each 
irrigation, and those with more than four advance measurements and complete 
volume-balance measurements were used in the analysis. The average root zone 
soil deficit was 0.6 ML/ha and the average volume applied was 1.4 ML/ha. 
Application rates varied from 2.0-3.4 L/s with an average of 2.6 L/s. The average 
irrigation time-to-cutoff was 644 mins with a range of 453 to 913 mins. 
 

6.4.2 Pre-analysis of infiltration data 
From the seventeen measured irrigations, twenty-two infiltration functions were 
evaluated for use in the simulation model and for assessing infiltration variability 
(Figure 6.6a). The Kostiakov-Lewis infiltration parameters were calculated for each 
set of data using the modified two-point method (Elliot and Walker 1982), while the 
manning n parameter in the SIRMOD model was also adjusted using the measured 
advance to finalise the calibration (which usually only required a small adjustment). 
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Then high, low and average infiltration functions were calculated using the methods 
proposed in Section 6.3 for an 800 min opportunity time. 
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Figure 6.6: Summary of infiltration information Jarvisfield site throughout the 1994/95 irrigation 
season. (a) Cumulative infilgration curves (b) cumulative infiltration opportunity time of 500mins 

 
Infiltration was found to vary considerably between furrows during the same 
irrigation, and with time over the season. Total infiltrated volumes for individual 
irrigations varied from 1.2 to 2.4 ML/ha over the season for an arbitrary time-to-
cutoff of 500 mins (Figure 6.6b). The substantial spatial and temporal variability 
observed during these irrigations reinforces the need to consider the complete 
range of infiltration characteristics during the generation of design charts.  
 
 

6.4.3 Evaluation of management strategies 
Before developing new design charts, two different management strategies were 
evaluated using the simulation model and compared against the measured results. 
The first strategy involved applying the optimum flowrate and time-to-cutoff 
calculated for the seasonal average infiltration function to all of the irrigations 
throughout the season. This was done to evaluate the effectiveness of using an 
average infiltration function in the decision making process, as would be done when 
using generalised decision curves.  
 
The second management strategy involved manually optimising flowrate and time-
to-cutoff for each irrigation during the season. The objective of this optimisation was 
primarily concerned with maximising application efficiency whereby the irrigation 
was designed so that the advance would just reach the end of the field with zero 
runoff occurring.  It was intended that this real-time control strategy could be later 
be used to generate design charts of “optimised performance”. 
 
The results of this analysis are presented in Table 6.1. Manual optimisation of the 
management practices using the seasonal average infiltration function suggests 
that an application rate of 3.7 L/s with a cutoff time of 190 mins should be applied 
throughout the season. Results from using this strategy indicated that the average 
application efficiency would increase from the measured value of 41% to 71%. 
However, this corresponded with a decrease in storage efficiency from the 
measured value of 98% to 83%. The high measured value of storage efficiency is 
indicative of the commercial practice of completely refilling the root zone. Where 
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management parameters were optimised for each irrigation during the season, the 
average application efficiency was seen to increase to 93% with a storage efficiency 
of 90%. Distribution uniformities remained similar for each management option. 
 

Table 6.1: Performance results for different management practices in the Burdekin Delta Region. 

Management 
practice 

Application 
Efficiency (%) 

Storage 
Efficiency (%) 

Distribution 
Uniformity (%) 

Seasonal water 
application 

(ML/ha) 
Measured 41 (±2) 98 (±2) 92 (±2) 26.4 

Optimised from 
average 

infiltration 
function 

 
71 (±2) 

 
83 (±2) 

 
93 (±1) 

 
17.9 

Real time 
control 

93 (±2) 90 (±2) 88 (±3) 12.2 

 
Results are presented as the mean (± standard error) 

 
 
These results indicate the danger of using the average infiltration function in 
isolation for design and management, because of the potential for a significant 
reduction in storage efficiency. However, results based upon this function do 
provide very useful information and can be used as a “starting point” in the design 
process. That is, the optimum design can be derived for this situation, before 
considering alternative infiltration conditions that are likely to occur, to provide a 
range of possible outcomes. Design values can then be defined based on upon a 
margin of safety.  
 
On the other hand, the real-time control situation provides an efficient design, but 
can only be used while the irrigation is occurring, or in “post-analysis” mode to 
determine the performance potential of an irrigation (as was done in this study). It is 
this second methodology that can be used to develop design charts, by reporting 
optimised solutions for a range of decision variables.  
 
Therefore, both of these strategies can contribute to the development of design 
charts through (a) including the generalised infiltration information as a starting 
point in the design process, and (b) composing the charts from the output of 
optimised simulations. 
 

6.4.4 Investigation of design curves. 
At the time of this preliminary case study, neither SIRMOD nor the FIDO simulation 
engine was capable of being incorporated into any automated batch-processing 
procedure. That is, SIRMOD had no provision for running in a batch mode (and still 
hasn’t), while FIDO wasn’t robust enough for the purpose. Therefore, the design 
curves developed in this study were generated from manually run simulations, 
necessitating that irrigation performance be represented by the vertical chart axes. 
Even though very few variations of the decision variables were analysed, this still 
turned out to be a very time-consuming process with the entire study taking about 
three weeks to complete.  
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At the start of the study, some experimentation with different design chart 
configurations was undertaken to investigate the nature of the response, and to 
evaluate the effectiveness of each chart-configuration. The first attempt (Figure 6.7) 
was designed to investigate the effect of field-length on irrigation performance using 
the seasonal average infiltration function for a fixed inflow rate (2.6l/s) and a range 
of cutoff-times (190min, 360mins, and 720mins). In each case, application 
efficiency was observed to increase with increasing field-length due to a reduction 
in tailwater losses. This coincided with a minor reduction in storage efficiency as it 
became increasing difficult to completely fill the root-zone at the furrow outlet for 
long field-lengths. 
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Figure 6.7: Application efficiency ( - ) and storage efficiency ( - - -) for a simulated irrigation 

performance using the seasonal average infiltration function, a fixed water application rate of 2.6l/s 
and a range of irrigation periods from 190-270 mins. 

 
In a second example (Figure 6.8), the maximum application efficiency and optimum 
field-length were presented for the high, low and average infiltration functions, and 
a range of cutoff times. This highlights the effect of infiltration variability on 
performance and optimum field design, demonstrating that the optimal field-length 
for high infiltration conditions is less that half of that for low infiltration conditions. 
However, for this site, application efficiencies were never higher than 70% for the 
high infiltration condition, irrespective of the field-length and cutoff time. In was 
found that deep drainage losses were accounting for the low efficiencies. 
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Figure 6.8: The effect of field-length of the maximum application efficiency of the soil with low, 

average and high infiltration characteristics when water is applied at 2.6l/s for a range of irrigation 
periods. 

6.4.5 Finalisation of guidelines 
While both of the previous examples (Section 6.4.4) provide useful information, they 
are limited by the use of a fixed inflow rate. Therefore, to better represent the multi-
dimensional nature of the design problem, the three key decision variables 
(flowrate, time-to-cutoff, and field-length) were combined into the same set of 
design charts (Figure 6.9).  The only way to achieve this was to apply a fixed 
management strategy, whereby zero-runoff occurred during the irrigations. This is 
equivalent to the real-time irrigation situation presented in the Section 6.4.3. To 
achieve this, field-length was included as a “quasi” system output. That is, each 
irrigation was simulated using an initial infinite field-length and a preset flowrate 
and time-to-cutoff. The final irrigation advance location was then designated as the 
effective field-length for the zero-runoff strategy. By assigning effective field-length 
to the horizontal axis, and irrigation performance to the vertical axis, iso-curves for 
different flowrates and time-to-cuff can be plotted on the charts. A matrix of six 
charts was produced with the columns representing different infiltration 
characteristics and the rows representing different irrigation performance 
measures. 
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Figure 6.9: Design charts based on (a & d) high, (b & e) average and (c & f) low infiltration 
characteristics. 

 
From these charts, it is possible to choose an acceptable level of irrigation 
performance for the average infiltration characteristic, and read off the range of 
design values for flowrate, time-to-cutoff and field-length to achieve this 
performance. By repeating this for each infiltration characteristic, a range of design 
values can be selected to ensure an acceptable level of performance for the 
different conditions. It is then up to the user to select a suitable design with an 
appropriate safety margin.  
 

6.4.6 Discussion of case study 
The finalised form of the design charts is dominated by three main factors. Firstly, 
the multidimensional nature of the analysis, which includes describing infiltration 
variation, necessitated that several charts be developed (instead of a single chart) 
to try and simplify explaining the system response. Secondly, the technology 
available at the time wasn’t suitable for automating the process to generate 
complete response-surfaces. Therefore the only option available was to represent 
the system outputs by the chart axes and plot a small range of decision variable iso-
curves. Thirdly, optimised runs with a zero-runoff objective were needed to develop 
the charts in order to accommodate three decision variables. 
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At the time, the prospect of producing design charts describing so much information 
and being based upon optimised simulation runs was seen as an exciting and 
potentially revolutionary tool for design and management. However, several 
deficiencies are apparent which limit their practical application. 
 
Possibly the biggest limitation is that only a small portion of the system response is 
presented in the charts. Specifically, the curves are generated for the zero-runoff 
situation, which was assumed to be the optimum management strategy. Therefore, 
they are limited to evaluating and designing irrigations for this specific situation, 
and are invalid when runoff occurs or is desired. That is, they fail to describe the 
performance response for non-optimal and alternative priority design and 
management practices. Because of this they can be misleading. 
 
Also, the charts are not intuitive and can be difficult to interpret, especially for an 
untrained user. Readability is impaired as the iso-curves tend to be bunched 
together and interpolation is difficult because of a non-linear interpolation space. 
There are also many blank regions on the charts including whole charts being 
empty. 
 
The initial two design charts (Figure 6.7 and 6.9) that describe only two decision 
variables are generally simpler to understand. However, they are still (arguably) 
difficult to use, possibly because the chart axes represent both system inputs and 
outputs. A third decision variable can be represented by producing multiple copies 
of the charts and substituting decision variables. For example, time-to-cutoff or 
flowrate could replace field-length on the horizontal axis, which changes the charts 
from a design tool to a management tool.  This was the approach of Hornbuckle et 
al. (2003) who developed design curves with time-to-cutoff on the horizontal axes 
(instead of field-length) and iso-curves representing different flowrates (Figure 
6.10).  The relative simplicity of these charts reinforces the benefits of representing 
only two decision variables. 

 
Figure 6.10: Example of a design chart by Hornbuckle et al.  (2003) for furrow irrigated field on a 

self-mulching clay soil with furrow length 200m. The solid line in upper chart corresponds to 
distribution uniformity, and in the lower chart corresponds to the infiltrated volume. 
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6.4.7 Recommendation from case study 
In retrospect, trying to include variable infiltration effects and three decision 
variables was probably too ambitious with the potential benefits of visualising a 
large number of dimensions being negated by a limited range of response outputs 
for a fixed management objective. Nevertheless this provided a basis for developing 
the guideline-generating capabilities for the decision support software. 
 
The key findings of this study which were used to develop the parameter-analysis 
module include: 

• It is preferable to represent system outputs as contours and iso-curves, 
rather than by the chart axes. This will maximise the visualisation of the 
system response and not limit it to showing the results for a particular 
management strategy. 

• It was better to represent different infiltration conditions in separate design 
charts, rather than trying to incorporate all this information into one chart.  

• The choice of which variables can be assigned to each chart axis should be 
user defined, as different configurations can provide different explanations 
of the response, and different operational objectives (e.g. design versus 
management). 

• Preferably only two decision variables should be represented in each chart, 
although multiple system outputs could be represented. 

 

6.5 Computer algorithm development 
Aspects of the computer algorithm that were developed for the parameter-analysis 
module include; an object-oriented structure for generating and displaying the 
system response; objects for defining the analysis and storing and manipulating the 
response; and analysis objects for configuring and displaying the outputs 
 

6.5.1 Developing a structure 
Parameter-analysis facilities for the decision support system were developed using 
an object-oriented structure using the C++ language (Figure 6.11). This structure is 
more complex than that developed in the previous chapters, and warrants a more 
concise explanation. 
 
The central object in this structure is the TParameterAnalysisManager class 
(henceforth known as the parameter analysis manager). This class contains all of 
the functionality to communicate with the decision support system and perform the 
task of generating response-surfaces and design charts. It contains pointer links to 
the TObjectiveFunctionModule, which is a repository for all of the available 
objective-function objects. Two graphical analyses have been developed for 
displaying and arranging contours and response-surfaces 
(TSurfaceParameterAnalysis and TUserDefinedParameterAnalysis). The 
TSimulationEngine class is linked to each objective-function and is not required 
by the parameter analysis manager. 
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Figure 6.11: Object-oriented components for design and management guideline generation. 

 
 Integral parts of this system are the response objects (derived from 
TCustomResponseObject) that manage and store the system response data in n-
dimensional arrays (TPADataArrayObject) corresponding to n decision variables 
(n<=3). Each response object can contain a range of these arrays to hold all of the 
system response information for the selected objective-function. There are two 
forms of these objects: those that store performance response information 
(TPerformaceResponseObject); and those that store calibration response 
information (derived from TCustomCalibrationResponseObject) of which there 
are several types for different calibration objective-functions. The parameter 
analysis manager is designed so that many of these response objects can be stored 
in memory simultaneously in order to compare outputs and accumulate information 
from different scenarios into a single set of design charts. 
 
 Figure 6.12 shows the class hierarchy of the response objects. The virtual base 
class TCustomResponseObject contains the functionality to add new response 
data, load and save the response data to and from a file, rearrange the order of the 
dimensions of the response data, as well as pointer linkages to the parameter 
analysis manager, objective-function module, selected objective-functions, and 
individual parameter components (to remap parameter configurations).  It contains 
a special definition object called T_PADefinition which contains enumerated 

TParameterAnalysisManager 
Contains links to data, objective 
function module, and optimisation 
engine. Controls the data input/ 
output to the optimisation. 

TSimulationEngine 
Runs the simulation 

TObjectiveFunctionModule 
 
 
 
 
 
 
 
 
 
 
 
Contains all of the different objective functions 
for optimisation, calibration and response-
surface generation. 
 

Performance Objective Function 

Advance Function 

Runoff Function 

Advance/RunoffFunction 

TSurfaceParameterAnalysis 
Routines for displaying 3D response-surfaces. 
Contains instances of 3D surface chart series. 

TUserDefinedParameterAnalysis 
Routines for displaying and arranging contours 
of irrigation performance for generating 
guidelines for design and management 

TSimulationParametersObject 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Stores simulation data including the 
calibration parameters 
 

Model Parameters 
i.e. includes inflow, time-to-
cutoff, field-length, field slope, 
furrow geometry parameters, 
infiltration parameters, Manning 
n, Z-required. All are available 
for inclusion into the parameter 
analysis facilities.  

 

Measured Data 
i.e. advance, runoff hydrograph 

ResponseObject  
Storage object for response-surface data. Serves 
as source data for the 3D surface chart series, 
and contour chart series. 

ResponseObject  
Storage object for response-surface data. Serves 
as source data for the 3D surface chart series, 
and contour chart series. 

ResponseObject  
Output object for response-surface data. 
Different forms of Response objects exist for 
different objective function. 
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types of all the elements of a parameter-analysis operation including objective-
function type, infiltration type (high, low, average, measured), grid sizes, and 
selected parameter types.  
 

 Figure 6.12: Storage and definition objects of Parameter Analysis Manager 

TPADataArrayObject 
This is a storage object for holding the different response 
values calculated from the various objective functions. The 
array has a three dimensional capacity, and uses a special 
enumerator type to align parameter types with each 
storage dimension. This storage medium can be “plugged” 
into the 3D surface chart series and contour chart series to 
provide data values for graphing without having to copy 
values in memory. 
 
Main methods 
UpdateModelValue(x, y, z, value) – add new response value 
to array 
CalcMaxResponseValue() – calculate max/min response 
value 
WriteToXML() – write contents of data array file 
ExtractFromXML() – read file contents into data array 
CalculateArangementOrder(parameter x, parameter y, 
parameter z) – determine parameter arrangement order 
from the current parameter types. 
Main properties 
Data[x][ y][ z] – storage array for response data 
ArrangementOrder - XYZ, XZY, YXZ, YZX, ZXY, ZYX 
Name – descriptive name of generated object 
XGridSize – size in x dimension 
YGridSize  - size in y dimension 
ZGridSize – size in z direction 
UpperResponseLimit – maximum response value 
LowerResponseLimit  - minimum response value 

TCustomResponseObject 
This is a custom parent class from which more specific 
response objects will be derived. This contains all of the 
output information required for generating response-
surfaces or contours. Contains a number of instances of 
the TPADataArrayObjects depending on the objective 
fuction defined in the TPA_Definition object. 
 
Main methods 
LoadFromFile – add new response value to array 
SaveToFile– calculate max/min response value 
UpdateXParameter (nosteps,index) – write contents of data 
array file 
UpdateYParameter (nosteps,index) – read file contents into 
data array 
UpdateZParameter (nosteps,index) – read file contents into 
data array 
ConnectXYZParameters () – determine parameter 
arrangement order from. 
SaveParameterValues () – determine parameter 
arrangement. 
RefreshParameterValues () – determine parameter 
arrangement. 
Main properties 
SimulationData – storage array for response data 
FilePointer - XYZ, XZY, YXZ, YZX, ZXY, ZYX 
Definition – descriptive name of generated object 
ArrangementOrder  
DataArray[index] 
DataArrayCount 
DataArrayList 
ObjectiveFunction* 
ObjectiveFunctionModule* 
ParameterAnalysisManager* 
XParameter* 
YParameter* 
ZParameter* 

 

TPA_Definition 
This is the definition object for the parameter response 
analyses. Includes information about objective function, 
infiltration type (high, low, averge, measured, design 
parameters, and dimensional size for each parameter. 
 
Main Properties 
ObjectiveFunctionType 
InfiltrationType  
GridSize1  
GridSize2 
GridSize3 
Parameter1; 
Parameter2; 
Parameter3; 
Parameters; 

TPerformaceResponseObject 
This is the definition object for the parameter 
response analyses. Includes information about  
 
Main Properties 
ApplicationEfficiency 
StorageEfficiency    
Distribution 
Uniformity  
RunoffVolume   
 

DrainageVolume 
InflowVolume 
InfiltrationVolume 
VolumeBalanceError 
ObjectiveFunctionValue 

TINFILTResponseObject 
This is the definition object for the parameter 
response analyses. Includes information 
about  
 
Main Properties 
CalculateArrayLimits 
UpdateDataValues 

TAdvaneRunoffResponseObject 
This is the definition object for the parameter 
response analyses. Includes information 
about  
 
Main Properties 
AdvanceSumSquaredError 
RunoffSumSquaredError 
CalculateArrayLimits 
UpdateDataValues 

TRunoffResponseObject 
This is the definition object for the parameter 
response analyses. Includes information 
about  
 
Main Properties 
CalculateArrayLimits 
UpdateDataValues 
Size3 
Parameter1; 
Parameter2  

TAdvanceResponseObject 
This is the definition object for the parameter 
response analyses. Includes information 
about  
Main Properties 
CalculateArrayLimits 
UpdateDataValues 

TCustomCalibrationResponseObject 
This is the definition object for the parameter 
response analyses. Includes information about  
 
Main Properties 
ObjectiveFunctionValue 
CreateDataArrays 
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Child classes derived from TCustomResponseObject contain the individual 
storage functionality associated with the linked objective-functions, as well as 
specialised functions for updating the storage arrays and calculating maximum and 
minimum response values. 
 
The response object has been designed to work efficiently with other elements of 
the decision support system. The n-dimensional arrays in which the response 
information is stored are part of an especially designed class called 
TPADataArrayObject. The array has a three dimensional capacity, and uses a 
special enumerator types to align decision variable types with each storage 
dimension. This storage medium can be “plugged” into the 3D surface chart series 
and contour chart series to provide data values for graphing without having to copy 
values in memory. 
 
The TPADataArrayObject class facilitates remapping of the parameter 
dimensions between the storage data array and response object through 
parameter-pointers located in the response object base class ( Figure 6.13). This 
allows a switching of variables when instances of TPADataArrayObject class are 
“plugged” in the graphical outputs. For example, flowrate and time-to-cutoff could 
be interchanged providing a mirroring effect of the graphical response-surface. 
Alternatively, field-length could be interchanged with flowrate to switch from a 
management scenario to a design scenario. 
 
Before any parameter analysis operation commences, a dialog is presented to the 
user to select the key elements of the study for the current selected record. This 
includes the decision variables (from the TSimulationParametersObject 
object), objective-function, and grid sizes for each decision variable. Pointer links 
are then established between the parameter analysis manager, selected decision 
variables and objective-function. Response-surface data is then generated by the 
manager and stored in the response object, through changing the design values 
and updating the objective-function. Progress is reported back to the parameter 
analysis manager, which passes this information back to the decision support 
system. When the response-surface data has been generated, the data is saved to 
disk and linked to the selected record. 
 

 Figure 6.13: Mapping of dimensions from the Response object to the data array object. 

XParameter 

YParameter 

ZParameter 

ptrXParameter 

ptrYParameter 

ptrZParameter 

ArrangementOrder 

Parameters dimensions are “virtually” rearranged (remapped) according to the ArrangementOrder variable. 
This is done using pointers to access different memory segments of the stored data matrix. This allows direct 
memory access to different configurations of the response data during surface and contour generation; e.g. 
Flowrate vs TimeToCuttof, Flowrate vs Fieldlength, Fieldlength vs TimeToCutoff. 

Pointer connections 
remapping parameters. 

TPADataArrayObject 
 

Response Object 
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6.6 Analyses for displaying output 
Two analyses have been developed for displaying the outputs from the parameter 
analysis manager. This includes a three-dimensional response-surface analysis 
(TSurfaceParameterAnalysis), and a two-dimensional design chart analysis 
(TUserDefinedParameterAnalysis).  

6.6.1 Response-surfaces 
The response-surface analysis (TSurfaceParameterAnalysis) is designed to 
maximise the visualisation of the system outputs in two, three or four dimensions. 
Visualising the fourth dimension is achieved through “chart-splitting” or through a 
slider-bar control of the third decision variable. The analysis is highly interactive with 
many interface components for changing surface features, coordinate systems, and 
parameter interactions. Key features of this analysis include: 

• Interaction with a third decision variable using a slider-bar control; 
• System response for different values of the third decision variable can be 

expanded into separate charts (“chart-splitting”), removing the interaction 
with the slider-bar control; 

• Any of the decision variables can be interchanged with one another on the 
chart axes and slider-bar control. 

• Synchronized zooming, panning and rotation capabilities for all charts. If the 
view of one chart is changed, then the other charts are also updated 
accordingly; 

• Merging of response-surfaces into a single chart to visualise surface 
interactions; 

• User-selectable outputs including the ability to incorporate results from more 
than one analysis; 

• Parameter response filtering to hide/show different parts of the response-
surface (for example, see Figure 5.9); 

• Different colouring options including fixed colours, colour gradient, and 
colour palette, and also user-defined transparencies; and 

• Different surface outputs including solid surface, contours, wire-frame and 
dot-points. 

  
Sample outputs from the response-surface analysis have already been presented 
the Chapters 4 and 5 when validating the calibration and optimisation modules. 
 

6.6.2 Guidelines for design and management 
The user-configurable two-dimensional (contour) design-chart analysis 
(TUserDefinedParameterAnalysis) was developed to allow custom generation 
of design and management guidelines. Many of the features that were developed 
for the response-surface analysis have also been incorporated in this analysis 
including: the slider-bar control for the third parameter; parameter response filtering 
to hide/show different parts of the response-surface; and different colouring 
options for the outputs. Key features of this analysis, that differ from the response-
surface analysis include: 

• A user-definable chart array, whereby the user can configure the number of 
chart-rows and chart-columns for setting up the design analysis; 

• A custom editor for assigning decision variables to individual chart axes; 
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• Drag and drop set-up of system-outputs onto the design charts; 
• Multiple system outputs allowable for each chart, with filtering options 

available to improve readability; and 
• Custom captioning of each chart. 

 
Figure 6.14 shows a sample output from this analysis for three different infiltration 
conditions. The charts were developed in under five minutes through running three 
separate parameter analyses for each infiltration condition; setting up a 3x2 array 
of charts; assigning flowrate and time-to-cutoff variables to the individual chart 
axes; and dragging and dropping the “application efficiency” and “storage 
efficiency” outputs onto the charts.  
 

 
Figure 6.14: Sample design chart output from the parameter-analysis module.  

 
In using these charts, the user would be advised to choose values of the decision 
variables that would correlate with the blue regions of the charts, which represent 
regions of high efficiency. Typical design selections would lie in the region of the 
parabolic intersection of the two outputs for the individual infiltration conditions. 
From these charts, the user can deduce that application efficiency decreases with 
increasing infiltration conditions, and that a maximum application efficiency of 
around only 50% can be achieved under the high infiltration state. These charts 
also show how easy it is to overwater the field, with large areas of peak storage 
efficiency evident. 
 

6.7 Discussion of parameter-analysis facility 
The usefulness of the parameter-analysis module has already been demonstrated 
through the generation of the response-surfaces presented in Chapters 4 and 5. 
This was a purely academic application of the tool, yet it only demonstrated a small 
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proportion of its capabilities. From a practical point of view, the tool offers the 
potential to quickly and easily generate a set of design and management guidelines 
given historical paddock infiltration data. 
 
A potential limitation of the module is that it is not capable of generating curves in 
the form presented in the preliminary case study. That is, the tool cannot represent 
system outputs by the chart axes, but instead must display them as contours with 
the decision variables represented by the axes. It is possible to include this 
capability in a later version of the software, and even utilise the optimisation 
algorithm to generate system outputs as was done manually in the case study. 
However, having studied these output formats, it was decided that the most useful 
method is that which has been developed here, with the influencing factor being the 
need to visualise as much as the system response as possible. 
 
 

6.8 Conclusions 
A preliminary study was carried out to show the importance of infiltration variation 
on irrigation decision-making, and to provide a first attempt at generating design 
charts. The resulting charts combined the effects of variable infiltration and three 
decision variables using a fixed management strategy of minimising runoff. A 
limited range of response outputs for a fixed management objective negated the 
potential benefit of visualising a large number of dimensions. Nevertheless, this 
study provided the basis for the subsequent development of the guideline-
generating capabilities for the FIDO decision support system.  
 
Recommendations from the study included representing system outputs as 
contours and iso-curves, rather than by the chart axes; representing different 
infiltration conditions in separate design charts; allowing the user to assign 
variables to each chart axis; and representing only two decision variables in each 
chart. These features were then incorporated into the parameter-analysis module 
using a detailed object-oriented structure to combine the key elements of a 
manager-controller class, design parameters, field measurements, simulation 
engine, objective-functions, and two highly interactive graphical analyses. 



Chapter 6       Automated generation of field design and management guidelines 

   164 

 
 
 
 
 
 
 



Chapter 7         Software engineering a decision support system for furrow irrigation 

   165 

Chapter 7 Software engineering a decision support 
system for furrow and border irrigation 

 
 

7.1 Introduction 
The literature review (Chapter 2) has highlighted the usability and reliability 
problems with existing surface irrigation design and management software.  The 
research presented in the subsequent chapters has attempted to overcome 
these problems by developing new object-oriented tools for furrow and border 
irrigation design and management tasks.  The goal of this chapter is to combine 
these tools with a database and a simple user interface to develop a new 
decision support system for furrow and border irrigation called FIDO (Furrow 
Irrigation Decision Optimiser).  
 
The research in this chapter has four main objectives: (1) it will discuss the 
software engineering design options available while developing the application; 
(2) a suitable object-oriented program structure is developed to accommodate 
program elements; (3) it will develop a new XML-based surface irrigation 
database; and (4) a simple graphical user interface is created using advanced 
third-party libraries. 
 
This chapter is accompanied by seven appendices providing further information 
on the software engineering tools used to develop the decision support system 
(Appendix 7.1), the XML-based data structures (Appendix 7.2), and the evolution 
of the FIDO simulation (Appendix 7.3), calibration (Appendix 7.4), optimisation 
(Appendix 7.5), parameter analysis (Appendix 7.6), and database (Appendix 7.7) 
graphical user interfaces.  
 

7.2 Decision support system design criteria 
Before developing the decision support system, the operational functionality of 
the system needs to be clearly defined, the objectives of the development 
identified, and the software engineering tools presented.  Each of these will now 
be discussed in turn. 
 

7.2.1 What is the FIDO decision support system 
The FIDO decision support system is a computer software tool combining a 
database, graphical user interface and surface irrigation design and 
management tools into a single program.  The required functionality of the 
software is to: 
• store property, paddock, event and model information; 
• evaluate the performance of existing irrigations; 
• estimate infiltration parameters from irrigation advance and/or runoff data; 
• assess the optimum performance potential of existing irrigations;  
• review and compare performance, infiltration and optimum potential over 

time; 
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• evaluate performance sensitivity to changes in design and management 
parameters and options; and   

• create site-specific design charts for irrigation design and management. 
 

7.2.2 Objectives of decision support system development 
The primary goal of this chapter is to develop a decision support system for 
furrow and border irrigation by combining the tools developed in Chapters 3 to 6 
into a single program containing a database and graphical user interface.  This 
involves: 
1. developing an object-oriented structure to accommodate program elements:  

This structure must separate the graphical user interface components from 
other task related objects while sharing resources and communicating 
effectively between elements.  It must remain flexible for future development. 

2. developing a database to store property, paddock, event and model 
information: The database is required to store measurements, modelled 
results, and other irrigation information.  Average irrigation and infiltration 
performance at the property, paddock and event levels needs to be 
monitored and automatically recalculated each time model results are 
updated.  The database should use a format accessible to other applications 
while existing irrigation data formats (such as SIRMOD and INFILT data 
files) should be easily imported. 

3. creating a user-friendly graphical user interface:  The interface must be 
simple and intuitive to use and not distract the user from the tasks of 
irrigation evaluation, design and management.  Therefore, recognized 
principles of graphical user interface design need to be adhered to.  It should 
utilise proven third-party components and libraries to maximise programming 
efficiency and power. 

 
The target audience of this tool is primarily researchers, and irrigation 
consultants.  However, this is not trying to limit this software away from users at 
the farm level.   

 

The scope of this chapter is limited to presenting a decision support system for 
furrow and border irrigation capable of demonstrating the components 
developed in Chapters 3 to 6.  The goal is not to develop a commercial quality 
software product ready for distribution within its target market.  This would 
require a further number of months of development, testing and bug fixing.  
However, the structure, database and interface as presented in this chapter are 
valid contributions to this eventual ambition. 
 

7.2.3 Software engineering tools 
FIDO has been developed in C++ as a Win32 application under Microsoft 
Windows using Borland C++ Builder and the Visual Class Library 
(www.borland.com).  XML (eXtensible Mark-up Language), XSD Schema, and 
XSLT technologies (www.w3.org/XML) were chosen to develop the database 
components of the software while prototyping was undertaken using XML Spy 
Suite software (www.altova.com).  Several third party libraries including TeeChart 
(www.teemach.com) and VirtualTreeView (www.delphi-gems/VirtualTreeview) 

http://www.borland.com/�
http://www.w3.org/XML�
http://www.altova.com/�
http://www.teemach.com/�
http://www.delphi-gems/VirtualTreeview�
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feature prominently throughout the FIDO decision support system.  A description 
and discussion of these software engineering tools is presented in Appendix 7.1. 
 

7.3 Program framework 
FIDO has been designed using a multi-threaded object-oriented design structure 
that separates the graphical user interface code from the separate but 
interrelated tasks of data storage, simulation, calibration, optimisation, and 
parameter analysis.  Task and storage orientated objects called “managers” 
have been developed for each of these elements encapsulating their features 
within.  Special analyses have been developed to post-process and display 
outputs from the managers.  Tools such as the simulation and optimisation 
engines remain external to these managers and analyses, but are easily 
accessible to each. 
 

7.3.1 Design methodology 
Developing a framework for the decision support system has centred on the 
primary goal that the graphical user interface remains external to the 
mathematical libraries and databases.  In this manner, the decision support 
system can be compiled as a library sans user interface and distributed to other 
researchers and developers for inclusion in their projects.  This has already been 
applied in undergraduate and postgraduate projects (Ma 1994; Gillies, M. 
pers.comm. 2005-2006). 
 
Separating the user interface from the rest of the program is contrary to the 
natural programming doctrine of using a “Rapid Application Development (RAD)” 
tool such as Borland C++ Builder.  These RAD environments encourage “form-
based” programming where the simplest path for developers is to encapsulate 
non-interface code inside the automatically created form-classes.  The developer 
creates user-interface components and controls graphically at design time that 
are then instantly accessible to the non-interface code.  While this is powerful 
when creating smaller applications, large decision support systems such as 
FIDO require careful code and object management to simplify program structure 
and reduce memory loadings.  Externalising the interface plays a large role in this 
simplification. 
 
Because of the size of the FIDO project (consisting of over two hundred 
individual object types contained in over one hundred and fifty “.cpp” files), early 
development consisted of creating five separate programs to focus upon the 
separate tasks of data-management, simulation, calibration, optimisation and 
parameter analysis.  The main purpose of this was to increase development 
efficiency through faster compile and linking times.  However, it also had the 
added advantage of improving the overall program structure through better 
object design and management.  That is, the program objects have been 
designed better as a result of having to work under a range of operating 
environments.  Having the system work in the absence of a user interface has 
further enhanced this. 
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7.3.2 Structural components 
The structure of FIDO can be broken down into five conceptual element groups 
of “user interface units”, “managers”, “tools”, “analyses” and the “project”.  
These can be further classified into their graphical user interface and program 
code components (Figure 7.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1: Conceptual view of FIDO program elements showing separation between graphical 
user interface and other program code.  Arrows represent communication lines between objects. 

 

User interface units 
The user interface units consist of forms and dialogs containing a range of 
graphical controls.  While the appearance and content of these elements will be 
discussed in detail later in the Chapter, it’s the structure and order of the units 
that is examined here. 
 
All of the main interface units are derived from the TForm class (the “form” 
component in Borland’s Visual Class Library) and represent a visual “window” 
or form inside of FIDO.  The key form is T_MainForm that is the first unit created 
when FIDO is started, and the last to be deleted upon closing down.  
T_MainForm ultimately contains and controls instances of all other interface 
elements with the responsibility of displaying, resizing and positioning them.  
Other form elements embed seamlessly into T_MainForm so that it appears that 
only one window exists. 
 
Figure 7.2 highlights the relationships between T_MainForm and the other main 
interface units, forming three embedded window layers.  T_MainForm 
constitutes the first window layer.  The second layer consists of two possible 
input-related forms (T_RecordSelectorForm and T_ParameterInputForm) 
and two possible output-related forms (T_DatabaseMainForm and 
T_AnalysesForm).  A third window layer exists for database manipulation where 
a further three possible output-related forms are available 
(T_DatabaseRecordsForm, T_ReportForm, and  T_BrowserOutputsForm). 
Two of these forms, T_BrowserOutputsForm and T_AnalysesForm, are 
similar in structure in that they both contain specialised controls to provide the 
graphical interface for the “analysis objects”. 
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Finally, there are also three dialogs available (T_RuntimeDialog, 
T_ParameterAnalysisDialog, and T_ChartEditorDialog) which appear to 
float above the main window upon activation. 
 
 
 

Figure 7.2: Main user-interface units in FIDO showing relative positions and parent objects.  
Layers designate parent/child relationships  and "OR" symbol suggests that either one element or 

another will be shown depending on current program conditions. 

 
 
T_MainForm also contains non-interface elements such as the “Program 
Manager” (see next section).  While this may appear to contravene the original 
design goal of separation of interface and non-interface code, in this instance, it 
is only an object which is contained and not fragments of code.  Any developer 
who uses FIDO as an external library can easily relocate this object. 
 

Managers 
“Managers” are the workhorses in the FIDO program containing the execution 
loops for generating output and performing the decision support tasks.  Three 
different types of managers are used in FIDO (Figure 7.3) and include the 
program manager, storage managers, and task managers: 
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Figure 7.3: Derivation of manager objects used in FIDO. 

 
1) The program manager (TProgramManager) is designed primarily as the 

execution point and communication centre for all decision support 
operations.  All major non-interface components are created and contained 
inside of this manager including the other managers and tools.  This 
effectively unifies the program code keeping it separate from the user 
interface.  It is through this manager that the user interface units 
communicate with the task managers and analyses responsible for decision 
support operations.  

2) Storage-managers are responsible for grouping related data or methods.  
This manager-type is conceptual since existing examples are not derived from 
a common ancestor, although they still have a similar purpose.  Three 
independent examples exist in FIDO:  
• TDatabaseManager contains several graphical analyses for summarising 

the stored data.  This includes an XML-based report generation feature to 
display a user-customisable review of the selected records.  Historical 
performance and infiltration analyses are also available along with the 
ability to explore measured input data.  

• TUsersManager contains a database of user information.  This 
information is used to track changes to data-variables, and in report 
generation. 

• TObjectiveFnManager is used to centrally store the different objective-
function objects used in the calibration, optimisation and parameter 
analysis. 

3) Task-managers are designed to perform particular actions or tasks such as 
running a simulation or calibration.  FIDO contains several of these 
managers and these are derived from a common parent called 
TCustomManager.  This base class is itself derived from an independent 
operating thread class (TThread) so that mathematical processes do not 
monopolise processor time.  This multi-threading capability allows the user to 
interact with the graphical user interface while simulations and optimisations 
are being performed.  Task Managers include: 

TDatabaseManager 

TOptimisationManager 

TCalibrationManager 

TSimulationManager 

TCustomManager

TParameterAnalysisManager 

(2) Storage Managers (3) Task Managers 

Pointer 
 Connection 

TThread

TUsersManager 

TObjectiveFnManager 

Pointer 
 Connections 

TProgramManager 

Contains instances of all other managers 

(1) Program Manager 



Chapter 7         Software engineering a decision support system for furrow irrigation 

   171 

• TSimulationManager for irrigation evaluation tasks; 
• TCalibrationManager for calibration and parameter estimations; 
• TOptimisationManager for optimisation of irrigation performance; and   
• TParameterAnalysisManager for in-depth parameter evaluation. 

 

Analyses 
Output from the different managers is sent to the “analysis” objects for post-
processing and display.  It is through these analyses that detailed graphical and 
textural outputs are presented to the user.  An example of this is the animation of 
water flowing down a furrow developed in TAnalysisSIM_FlowAnimation 
(see Figure 7.18 in Section 7.5.6) 
 
All analysis objects are ultimately derived from a specially created class called 
TCustomAnalysis (Figure 7.4), which has been designed to “plug-in” to the 
user interface units T_AnalysesForm and T_BrowserOutputsForm containing 
the graphing and spreadsheeting functionality.  The base class 
TCustomAnalysis is itself derived from an independent operating thread class 
(TThread) to extend the program’s multithreading capabilities. 
 

 

Figure 7.4: Derivation of analysis classes in FIDO. 

TThread 
Independent operating thread. 
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Further abstraction of the base class continues through the development of the 
specialised virtual classes; TSimulationAnalysis which adds extra common 
functionality for simulation, calibration and optimisation operations; and   
TAnalysisPACustom which contains information common to the “parameter 
analysis” tasks. 
 
In all, FIDO currently (at the time of writing) contains eight analyses, although 
more can easily be developed and added at a later time. These current analyses 
are created and stored in their corresponding task-managers and include: 
• two database analyses including THistoricalSummaryAnalysis and 

TInfiltrationSummaryAnalysis for summarising historical performance 
and infiltration; 

• two simulation analyses including TAnalysisSIM_FlowAnimation and 
TAnalysisSIM_SolutionGrid for graphically animating the simulation 
outputs and presenting advance, recession and runoff information; 

• one analysis called TAnalysis_Calibration for displaying calibration “fits” 
of measured and predicted advance; 

• one analysis called TAnalysis_Optimisation for viewing optimisation 
progress; and   

• two analyses for detailed parameter analysis of response-surfaces and 
curves:  TAnalysisPA_Surfaces and TAnalysisPA_UserDefined. 

 

Tools 
FIDO contains two main tools which are available to the task managers:  the 
simulation engine, (TSimulationEngine as developed in Chapter 3); and the 
optimisation engine (TOptimisationEngine as developed in Chapter 4).  These 
tools are created inside the program manager  (TProgramManager) so that 
only one instance of each is required, so as to be accessible to all managers. 
 
Project 
The project object (TFIDOProjectTreeObject) is the main database control in 
FIDO. It contains routines to load and save data, and is responsible for 
communicating with the program manager (TProgramManager) to pass 
information in and out of the task managers and analyses. 
 

7.3.3 Structural connections 
Although the “user interface units”, “managers”, “tools” and “analyses” are 
separate objects, they are not designed to function independently.  Instead they 
coexist with each other through a network of external links and parent-child 
relationships. 
 
Figure 7.5 demonstrates these relationships for the main program elements. 
This shows how the program manager (TProgramManager) is located inside of 
T_MainForm, and that all other managers and tools are located inside of 
TProgramManager.  While the database manager (TDatabaseManager) has no 
parent/child relationship with any of the task managers, connections still exist 
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between them through external links.  Likewise, the objective-function manager 
(TObjectiveFnManager) is linked to three of the task managers using the 
same mechanism. 
 
 

 

TProgramManager

TUsersManager

TSimulation

TDatabaseManager 
• TAnalysis_HistoricalSummary 
• TAnalysis_InfiltrationSummary 
• Analysis_TimeSeries 

TOptimisationEngine 

TObjectiveFunctionManager 
• AdvanceFn 
• AdvanceAndRunoffFn 
• RunoffFn 
• IrrigationPerformanceFn 

TCalibrationManager 
• TAnalysis_Calibration 

TSimulationManager 
• TAnalysis_FlowAnimation 
• TAnalysis_SolutionGrid 
 

TOptimisationManager 
• TAnalysis_Optimisation 

TParameterAnalysisManager 
• TAnalysis_Surfaces 
• TAnalysis_UserDefined 
 

T MainForm

T AnalysesForm

T DatabaseMainForm 

T ParameterInputForm 

T RecordSelectorForm

 
Figure 7.5: FIDO structure demonstrating interactions and connections between the central 
“user interface units”, “managers”, “tools” and “analysis” components. The project object is 

visible to all components. 

 
“Pointers” (programming term for memory referencing) are used extensively 
throughout FIDO as the mechanism for these links.  Using pointers establishes 
visibility between the non-related objects that extend in one direction through 
related links.  For example, through pointer connectivity, the simulation engine 
(TSimulationEngine) is accessible to the database manager 
(TDatabaseManager), which in turn is linked to the other task managers.  The 

TFIDOProjectTreeObject
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task managers then automatically have access to the TSimulationEngine as 
they are sharing the link with TDatabaseManager.  However, the reverse is not 
true since TSimulationEngine does not know anything about the database 
manager or the task managers.  This is because the reverse link has not been 
defined, and in practice it is not required.  
 
Figure 7.5 also shows how the analysis objects are stored in their respective 
storage and task managers.  The large transparent arrows that underlay these 
objects indicate how the managers and analyses interact with the different input 
and output user interface units.  Note that different interfaces are used for 
database and non-database related tasks. 
 

7.4 Developing a surface irrigation database 
The FIDO database component (project object) is a key component of the 
decision support system from which all tools receive and send information.  It 
has been developed using XML and XML-Schema technologies, and is based 
upon a four-tier hierarchical structure of property, paddock, event and model 
information.  Data is not stored in flat file or relational tables as in traditional 
database design (although this approach was used in early development), but 
through parent-child relationships between the four structural elements.  The 
primary element is the property data, which is stored as independent XML data 
files containing all information relating to the property, including the paddock, 
event and model data.  The project object (TFIDOProjectTreeObject) serves 
to link all of the property data and facilitate searching and retrieving 
requirements. 
 
Developing the database was a complex process.  The design methodology was 
evolutionary with many prototypes being developed using different structures 
and technologies.  Nevertheless, having learnt from earlier “failures”, the current 
XML database has been designed and developed in an organised manner.  This 
included the steps of identifying design issues, designing schema 
representations of the data, establishing database connections, designing 
object-oriented computer code for the database, and establishing an efficient 
development methodology.  These issues will now be discussed in turn. 
 

7.4.1 Design considerations 
The current database has evolved over many years and through several changes 
in structure and technologies.  In many ways, its design has been dominated by 
available technologies with early versions using the Microsoft Access database 
and Borland Database Engine.  After many attempts, it was decided that the flat 
file and relational database methodologies were not well suited to the 
progressive disclosure objectives of the software design.  That is, the primary 
purpose of this database is not the traditional store/search/filter methodology of 
large data repositories.  Rather its purpose is to embed itself into the object-
oriented framework of the decision support system, with traditional tables and 
databases being replaced by intelligent objects that help form the program 
structure.  In the current version, XML and XML Schema technologies are used 
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to facilitate these requirements, serving as communication and storage medium 
for disk access, and integration with external software and libraries.  
 
One implication of this is that the database is not “live”.  That is, the data 
structure and values are loaded into memory when the user opens a project, 
which initiates a copy of the XML data into program memory.  The original stored 
data remains unchanged until the user chooses to save the program data back 
over the original database.  Forgetting to save the database will mean that all 
changes to the program data are lost.  In comparison, the early attempts at using 
Microsoft Access database meant that data was constantly being read and 
rewritten to the database. 
 
XML has many attractive features for database development including a 
standardised format allowing the data to be accessed by other applications and 
platforms.  Saving the data in the XML format serves to preserve the structural 
relationship of the data as well as the data values.  There is also little overhead 
in using XML, compared to having one of the commercial database engines 
installed on the user’s computer.  However, one disadvantage of using XML as a 
data store, is that the entire database structure is loaded into memory during 
initialisation13.  However, given that the data requirements of a large irrigation 
database would only be in the order of megabytes (easily handled by today’s 
computers), this should not be a problem.  
 
Nevertheless, careful memory management was seen as a design objective to 
ease the burden on the system.  FIDO ensures that while the database structure 
is always loaded in memory, the property data (other than the names and IDs 
and filenames) are not loaded into memory until required, where they will stay 
until the program is terminated.  This is made possible by storing the property 
details separately from the database structure and using dynamic memory 
allocation techniques to assign memory for storage variables only when required.  
Both the record files and the database structure are stored in XML format. 
 
In an early design using the XML technologies, relational tables for each record 
type were used to form the FIDO database with each set of data being saved in 
their own files. That is, each property, paddock, event and model data record was 
saved in its own individual file and stored in four separate data tables. The 
project file maintained data connections between the elements. From a practical 
point of view, this proved to be too complex with a typical database containing 
hundreds of XML data files.  Backing up data and exchanging data with other 
users are important design considerations, and this was difficult to undertake 
with so many files in different directories. The software engineering required to 
manage the databases and import files was also complicated.  Therefore, the 
idea was abandoned for the single property file format that is simple to copy and 
exchange. 
 

7.4.2 Schema representation of the data. 
Appendix 7.2 presents the schema representations of the FIDO database 
elements including property, paddock, event and model data.  XML-based 

                                                 
13  There are many exceptions to this. 
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property records represent the top level of these schemas, and are saved in their 
own separate property files.  Paddock data, event data, and model data are then 
located inside each property file, and are pre-linked together by the XML 
structure.  Each property record is then linked into the FIDO database by an 
XML–based project file that stores each record in a list.  
 
In developing the schemas, common group data elements were identified to exist 
for all of the record types; a feature that will later be used in the programming 
implementation.  These common data elements include: 

• Identification information; 
• Table specific data; 
• Linked documents; 
• Images; 
• Performance summary; 
• Infiltration summary; and   
• Tally Summary (counts). 

Specific information relating to each record type will now be discussed. 

Property data 
The property database has the responsibility of storing the property related 
information such as owner details and property location (Figure A7.2.1).  This 
data type represents the highest level in the FIDO database structure. Summary 
statistics are recorded for child (paddock) records, however these results are 
processed no further as summarising across properties has no practical benefit. 

Paddock data 
The paddock database holds key paddock information (Figure A7.2.2) including 
basic field measurements for “auto-insertion” into newly created model records.  
This data type represents the second level of the FIDO database structure. 

Event data 
The event database holds information specific to the day on which an irrigation 
occurred including climate data and management options (Figure A7.2.3).  
Although this record is intended to represent an actual irrigation event, it is not 
designed to store any simulation model input data.  This is because more than 
one set of input data can exist for an irrigation depending on how many furrows 
were monitored.  Therefore, storage of this data was left to the model data type. 

Model data 
The model data type is the most complicated of the irrigation records (Figure 
A7.2.4).  The “data” component of the record contains the model parameters 
required to run the simulations (which were discussed in Chapter 3.3.4).  The 
furrow parameters may be stored in either physical or empirical form (included 
for input of furrow profile-meter results).   
 
There are also some structural differences between this record type and the rest 
including: 
• irrigation performance is represented by only one results-field instead of 

three.  That is, we cannot calculate high, low and average performance from 
a single set of simulation results; 
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• calibration and optimisations results are stored here;  and 
• no tally or infiltration summary fields are included.  
 

7.4.3 Database connections 
The FIDO project object (TFIDOProjectTreeobject) is essentially a database 
object, which links all of the property data, and facilitates searching and 
retrieving requirements. Only the property filenames are initially stored in the 
project object until the user requests more information.  The connections 
between the different properties are made externally through a project file (in 
XML format) that contains the entire database structure.  Figure 7.6 represents 
the schema structure of this XML file showing how the record name and 
filename are the only information stored along with the structural information.  
The “0…∞” symbol appearing in the figure indicates that there is no limit on the 
number of property records that the database may contain. 
 

 
Figure 7.6: Schema representation of main FIDO database connections. 

 

7.4.4 Programming implementation of the database. 
The programming implementation of the FIDO database uses an object-oriented 
structure closely resembling the schema structure presented in section 7.4.2.  It 
consists of a project object (TFIDOProjectTreeObject), a series of record 
objects for property, paddock, event and model data (derived from 
TFIDOCustomDataTreeObject), and many parameter objects for storing data-
field values. These will now be discussed in turn 
 
Project object 
First presented in Section 7.3.2, the project object (TFIDOProjectTreeObject) 
contains a list of property objects, as well as temporary lists for active (selected) 
property, paddock, events and model data records. It contains routines for 
reading and writing to the XML files, and standard database functionality for 
adding, deleting, and modifying records. 
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Record objects 
A series of record objects for property, paddock, event and model data have 
been derived from a common base class (TFIDOCustomDataTreeObject). 
Figure 7.7 displays the type and functionality of these object-classes and their 
common ancestors.  
 

 
Figure 7.7: Derivation of record object classes in FIDO. 

 
The structural organisational levels of the database are maintained through lists 
contained in each record object (defined in TFIDOCustomDataTreeObject). 
That is, paddock objects are stored in lists located in each property object, event 
objects are stored in lists located in each paddock object, and so on. These lists 
are updated during loading of the XML data files, and through modifications 
initiated by the program manager. 
 
The TFIDOCustomDataTreeObject also defines statistical storage types for 
tally, performance and infiltration summaries, which are required on all database 
levels. Because these summary components are common to each child class, 
statistical operations can be called recursively and efficiently, updating each 
level in succession (Figure 7.8). For example, a property-object can request that 
its infiltration statistics be updated. This will spawn a cycle whereby each 
paddock-object listed for that property will request a similar action. Then every 
event-object listed for each paddock will again repeat the request. When the 
request filters down to the model data objects, the required information will then 
be passed backwards and be summarised at each level.   
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Figure 7.8: Sequence of summary calculations performed by TFIDOCustomDataTreeObject 
children. 

Parameter objects 
Powerful parameter objects have been developed to store and manipulate data-
field information. These objects have the ability to: 

• Display themselves in the Virtual TreeView control (see Appendix 7.1). 
• Load/save themselves to disk using XML format 
• Send themselves to XML Report 
• Allow the user to edit them in the tree 
• Allow comments to be added and stored 
• Store “author” and “last-modified” information 
• Allow user filtering of data.  

 
Over thirty different parameter object types are used in FIDO. Figure 7.9 shows 
the design hierarchy of those relating to the data-field information.  
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Figure 7.9: Parameter object design hierarchy as used in FIDO. 

 
 

7.4.5 Database development methodology 
Defining the structures of the property, paddock, event and model elements was 
a complicated process, and the final designs are the result of continual 
refinement and evolution over a period of months. The XMLSpy Suite software 
was indispensable for this purpose as it quickly and easily facilitated the 
synchronisation between the XML Schemas and C++ record classes.  
 
This involved a three step process of: (a) designing/modifying an XML-Schema 
for each database element using the XMLSpy Suite software; then (b) writing 
the equivalent C++ code to generate “sample” output XML files; and then (c) 
validating the these files against each schema until the outputs and design 
structures agree.  The C++ code is in the form of specialised database classes or 
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“record and database objects” that contains the storage variables, and also 
methods to input and output the desired XML file.  
 

7.5 Graphical user interface 
Modern design conventions have been used to develop the graphical user 
interface for the FIDO decision support system.  Lack of adherence to these 
conventions in the past has arguably been one of the leading contributors to the 
poor adoption rates of surface irrigation design and management software.  
Frustrations born out of trying to use a poorly designed interface do nothing to 
foster confidence in the effectiveness of the software and the complexities 
inherent in these types of mathematical models have traditionally manifested 
themselves in the interfaces. 
 
The concept of the FIDO decision support system is complex, with its five main 
functional requirements and a large range of input and output parameters.  
Hiding this complexity from the user is the one of the primary goals of the design 
of the graphical user interface, which acts as the communication medium 
between human and computer.  The effectiveness of the interface can be judged 
by how simply and intuitively the user can perform the tasks of surface irrigation 
database management, simulation, calibration, optimisation and parameter 
analysis.  Therefore careful consideration has been given towards user issues 
and software design procedures in developing the FIDO graphical user interface. 
 

7.5.1 Principles of graphical user interface design 
Numerous texts and articles exist defining the principles of graphical user 
interface design (Tognazzini 1992; Cooper and Reimann 2003, Tidwell 2005).  
Although software technology is quickly outdated these days, the general 
principles behind graphical user interface design remain the same.  Ten 
commonly used principles that have been adhered to in the design of the FIDO 
user interface include: 
1. Keep it simple and transparent:  Allow the user to concentrate on the task 

and not be distracted by the interface.  Design the interface to show only 
useful and relevant information, and hide elements that compete with this.  
Don’t clutter the interface and overload the user with too many buttons and 
options.  Use “progressive disclosure” techniques to limit what the user sees 
at any given moment. 

2. Maintain consistency with appearance and behaviour: The application should 
be consistent with itself and with other applications.  Consistency allows the 
user to apply their existing knowledge of other applications and environments 
to understand the new application.  This includes using common commands, 
controls and layout. 

3. Provide appropriate user feedback: Maintain a sensible level of feedback to 
the user to keep them informed of the current program status.  For each 
action a user makes, provide feedback that the system has received input 
and is operating on it.  Feedback can include text or status bar messages, 
cursor changes, progress indicators, simple animations, audio alerts, and 
sometimes popup messages.   

4. Design the application to be self-evident: Comprehensive online help and 
manuals are automatic requirements for any application, but the program 
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should be designed so that the user need not use them.  The goal is to design 
an interface that requires no further explanation through careful use of 
labels, buttons, controls, hints and messages. 

5. View warning and errors messages as potential flaws in the application: 
Users dislike being told something is wrong.  The goal of the program should 
be to prevent these errors from occurring, rather than complaining about 
them.  Design the interface to guide the user to enter appropriate data by 
constraining formats, presenting valid options and disabling dependant steps 
until the dependencies are satisfied. 

6. Create a safe environment for exploration: Good programs allow the user to 
investigate features and functions without fear of getting lost or 
loosing/changing information.  This involves making actions reversible, 
supporting “undos”, creating a good sense of “home”, and providing various 
paths for completing tasks.  

7. Design controls to be intuitive: Users should be able to anticipate a control’s 
behaviour from its visible properties.  Metaphors should be used whenever 
possible to describe the controls behaviour (i.e. trashcan icon in Windows). 

8. Minimise “modal” behaviours: Avoid locking users into situations by 
presenting multi-tasking capabilities with escape options.  

9. Allow user customisation: Design to allow users to simplify tasks that they 
repeat often, and present outputs in a format of their choosing.  

10.  Use multimedia effects sparingly: Sound, colour, and animation can make an 
application look professional, but a balance is required to maximise their 
effectiveness.  They should be used only as a secondary mean of 
communication.  Remember that many users may be colour blind or deaf. 

7.5.2  Evaluation of existing interfaces 
In developing the graphical user interface for the FIDO decision support 
software, the interfaces of the two leading surface irrigation software packages, 
SIRMOD and SRFR, were studied to determine their strengths and weaknesses. 
Both of these programs evolved through several revisions during the course of 
this study; from DOS-based programs into Windows-based software. However, it 
was the versions that were available between 1999 and 2005 that have had the 
greatest influence on the design of the FIDO user-interface. 
 
Both software packages have gone through several evolutions of interface design 
during their development cycle.  Both have similar interface capabilities with 
animated graphical outputs, and dialog based inputs.  Both packages operate 
with a distinct modal behaviour segregating input, output, and simulation 
operations. It was found that while the outputs from both tools were useful and 
attractive, the interfaces were awkward to use and lacked flexibility. 
 
SIRMOD has evolved over several versions primarily as a DOS-based research 
tool, and was converted to Windows in 1997/98, in an effort to simplify and 
modernise the interface.  In SIRMOD, only one set of data can be open at a 
time.  It makes extensive use of tabbed dialog windows to enter the simulation 
parameter data (Figure 7.10a), with results being presented in a range of 
graphical and tabular outputs (Figure 7.10b-d) including an animation of water 
flowing down and infiltration into the furrow (Figure 7.10b). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.10: SIRMOD user-interface screenshots:  (a) shows one of the many input dialogs;  
(b) animation of water flowing along and infiltrating into furrow;  (c) tabulated input parameters;  

and (d) plotted output of advance and recession characteristics. 

 
The SIRMOD interface appears simple on first viewing with relatively few 
buttons and menu options.  However, the complexity of the interface soon 
becomes apparent once the “Field Characteristics” dialog or the “Model 
Parameters” dialog is opened.  While parameters in these dialogs are cleverly 
grouped in common categories, one of the downfalls of this presentation is that 
every parameter is shown, independent of which modelling options are selected.  
No attempt has been made to hide parameters that are not required for the 
current set of management options.  From experience gained through SIRMOD 
training workshops at the NCEA (National Centre for Engineering in Agriculture) in 
Toowoomba, this has caused considerable confusion among users.  Many of the 
parameters are empirical and poorly labelled, while some of the physical 
parameters listed are not required for the simulation, but the user has no way of 
knowing this. 
 
Unlike SIRMOD, SRFR has remained a DOS-based program for most of its 
development cycle (until just recently) featuring a “Windows-like” graphical user 
interface and well organised operational structure.   In the most recent DOS-
based version, inputs are entered into a dialog that is much less cluttered than in 
SIRMOD, but offers fewer input options (Figure 7.11a).  A flow animation output 
is available (Figure 7.11b) along with other graphical and textural outputs (Figure 
7.11c-d). 
 
While the SRFR interface is relatively uncluttered, a major criticism of the 
interface is that it feels “unfamiliar” to use, given the DOS-based interface that 
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fails to maintain consistency with other Window’s software.  The controls aren’t 
intuitive, and there is distinct “modal” behaviour with little sense of “home”.  
Being developed in a non-Windows environment also introduces compatibility 
problems with printing and importing/exporting data and results. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.11: Screenshots of the SRFR interface:  (a) shows the main parameter input dialog;  
(b) represents the animation of water flowing along and infiltrating into the furrow;  (c) 

demonstrates curves of advance, recession, inflow, runoff, and infiltration;  and (d) shows the 
infiltration distribution again, along with the performance summary figures. 

 
Probably the most attractive feature of both programs’ interfaces is the 
simulation animation of the water flowing down along the furrow.  Experience has 
found that users are initially intrigued by this and its potential to demonstrate 
water infiltrating below the root-zone.  All of the other graphical outputs are also 
useful, but are inflexible in terms of exploration and presentation; that is, the 
user cannot “zoom” or “pan” around the charts or compare them directly with 
other outputs.  They lack the potential flexibility that professional quality third-
party charting packages offer. 
 
At the time of writing this, new versions of both products had only just been 
released, so there was no time for them to have any real influence on the FIDO 
interface design. SIRMOD has been redeveloped into an internal program for 
the US Department of Agriculture called NRCS_Surface (USDA, 2006) and was 
not available for evaluation, although it appears that the interface has changed 
very little to that reviewed earlier. Of more significance, are the substantial 
changes to the SRFR software with the introduction of a Windows version called 
“WinSRFR” in 2006.  
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The developers of WinSRFR (AARC 2006) have gone to great lengths to provide 
a user-friendly interface to encapsulate the combined functionality of the SRFR, 
BORDER (Clemmens et al. 1996) and BASIN (Clemmens et al. 1995) software. 
Nevertheless, WinSRFR still uses a very traditional form of interface architecture 
with many tabs, buttons, information elements, and modal dialogs all mixed 
together. To simply its operation, it is embedded with an extensive amount of 
textural guidance and suggestions to help the user navigate through the 
program. On most screens, the user will find instructions on how to proceed, with 
many “question and answer” type scenarios.  
 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7.12: Screenshots of the WinSRFR interface:  (a) Project Management Window; (b) 
Event Analysis World; (c) Inflow management screen; (d) hydraulic roughness and infiltration 

characteristics; (e) infiltration outputs; and (f) simulation animation. 
 (Screenshots sourced from the WinSRFR 1.0 User Manual, 2006)  
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WinSRFR uses an analogy of “Worlds” to separate the tasks of event analysis, 
simulation, physical design, and operational analysis. These represent four 
separate interface pages that are linked by a central database (Figure 7.12a). 
Many tabs exist at the bottom and top of each page to switch between different 
inputs and outputs. A prominent feature is the amount of text on each page to 
guide the user through the process (Figure 7.12b).  Separate pages exist for 
many of the input variables and parameter such as inflow (Figure 7.12c) and 
infiltration and roughness (Figure 7.12d). Outputs are very similar to the DOS-
based version and still lack the flexibility of a modern graphics library (Figure 
7.12e,f). 
 
While the design of WinSRFR is a big improvement over the previous versions, it 
is now a much more complex and “daunting” piece of software, reflecting the 
diversity of new decision support tasks that it is required to perform. There is 
always a large amount of information being presented to the user at any one 
time, despite attempts at both grouping and segregating functionalities. Only 
time will tell how users will react to the complexity of the interface, and whether it 
will encourage new users to adopt this technology.  
 
A common limitation of all of software packages is the modal behaviour of 
operation.  That is, the user is forced to be in either “input mode”, “output 
mode”, or “action mode”, with many steps required to progress from one stage to 
the next.  For comparison, recent programming practices would encourage inputs 
and outputs to coincide and harmonise, while the “actions” would be designed to 
run “multi-threaded” in the background.  
 

7.5.3 Prototyping the interface 
The current version of the FIDO interface has evolved over many different 
configurations.  Appendices 7.3 to 7.7 demonstrate the range of designs that 
have been developed and tested during the prototyping.  Initially, many poor 
design choices were made while encapsulating the complexity and volume of 
tools required by the decision support system.  Many of these problems were 
present because of the limitations of the software engineering tools, 
underdeveloped programming skills, and a lack of clarity in getting away from the 
simulation-centred design philosophy of the SIRMOD and SRFR software.  
Therefore, the initial prototypes of the decision support software were 
characterised by four main problems. 
 
Firstly, initial versions of the software tried to provide general access to all 
operations of the decision support system from the main interface screen.  This 
was done by configuring different analyses on separate pages accessible from 
the “tabs” located at the top and/or left hand side of the screen.  In practice, this 
was found to clutter the interface and provoked confusion from evaluators.  This 
also required that the user go to a particular page before conducting an 
operation such as simulation or calibration, adding extra unnecessary steps to 
the process.  In later versions, a single button with a drop down menu linking the 
analyses was added to the toolbar to remove the tabs, and provoke the “action” 
(simulate, calibrate etc) before going to the analysis page.  In the current version, 
this feature was removed in favour of “hyperlinks” in the database report.  In this 
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way, actions are only presented if the action can be performed.  This naturally 
provides progressive disclosure of the actions, and hyperlinks to the actions 
coincide seamlessly into the report.  In effect, actions are now performed in a 
web-browsing-like manner. 
 
Secondly, the first few versions of this software presented the focus of the 
interface on the currently loaded set of irrigation data.  While a database was 
present, its main role was to provide alternative sets of data for this focus.  
However, this limited the use of the tools to analysing only a single set of data at 
a time, even though multiple sets of simulation results could be loaded 
simultaneously.  It was only in the most recent version of the software that this 
central focus was shifted to the database itself, whereby the main focus or 
“home” is the entire database, and the secondary focus is any of the property, 
paddock, event or furrow records.  This also allows progressive disclosure of 
analyses that are compatible with the selected record type. 
 
Thirdly, the initial software versions were composed of too many types and 
number of interface components.  This had two pronounced effects.  The first 
effect was that the interface became cluttered with too many controls, and too 
many options presented simultaneously for the user.  A good example of this is 
the initial database functionality, which contained an embedded version of 
Microsoft Access to maintain records.  With this database came a range of 
controls, tables, and tools for navigating, editing, displaying and searching the 
database, when only a limited amount of functionality was actually required.  
There were also flexibility issues with using this feature as most of the 
functionality was built in and couldn’t be easily customised.  It also added to the 
size of the software and required the Access database engine to be installed on 
the computer along with software.  The second effect of having too many 
components was that the software engineering became increasingly difficult to 
maintain.  Typically, these components were employed using the RAD (rapid 
application development) functionality of dragging and dropping the components 
onto forms.  In software engineering terms, this “individualises” the component 
rather than existing in a generalised form of array that could be treated as a 
group.  Extra programming was then required to achieve this “group” 
functionality.  The final result was that the initial software versions were plagued 
by excessive amounts of interface code that was difficult to maintain. 
 
Finally, the object-oriented program structure was poorly developed in the initial 
versions of the software.  This was primarily caused by immature programming 
skills at that stage of development.  By utilising more object-oriented 
programming features in the later versions, a more powerful and less complex 
graphical user interface could be achieved.  For example, using polymorphic 
“Tree Parameters” provided the means to simultaneously develop the database 
structure, a visual database-navigator tool, database editing facilities, database 
reporting facilities, and file input/output operations.  Also, a consistent look and 
feel to the analyses was achieved throughout the program by using an object-
oriented structure to derive each analysis from the same parent class. 
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7.5.4 Current interface functionality  
The current version of FIDO is designed to behave with web-browser-like 
functionality.  Built around the irrigation database, the user is able to navigate 
through the program, exploring data and analyses similar to browsing an Internet 
site.  However, in this case, the information that the user sees comes from the 
database, rather than the Internet14.  This is achieved through displaying all of 
the information, data, results and hyperlinked-actions inside a HTML report 
(created through XML /XSLT transformations) for the selected database record.  
Familiar web-browser controls such as “home”, ”back”, “next” and bookmarks 
exist, with the report for the selected record serving as the homepage for the 
user to return to after performing any actions.  
 
Built closely around progressive-disclosure techniques, few options and 
information are presented to the user at “start-up”, with more becoming 
available as the user progresses through different tasks.  A basic-level user may 
spend all of their time just viewing and updating the ”reports”, while an 
advanced-level user may probe deeper into more complex analyses.  Menus are 
also context sensitive to the current task being undertaken with currently 
unavailable commands being hidden until required. 
 

7.5.5 Interface layout 
The current version of the FIDO software is characterised by a graphical 
interface designed using a three-panel layout (Figure 7.13): 

• a top panel contains menus, toolbars and status bar; 
• a left panel contains user input information including a database 

navigator control, and simulation input data for the analyses; and   
• a right (main) panel contains output information (and inputs as well when 

viewing the database).  This includes both HTML reports and other more 
complex analyses. 

 
A splitter bar is used between the input and output windows for resizing and 
presentation purposes.  The user can alternate between hiding and showing the 
input panel by clicking the splitter bar. 
 

 
Figure 7.13: Layout of the FIDO graphical user interface. 

 

                                                 
14 The potential exists for later versions of the software to store and access irrigation data from 
an internet server. 
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There are many advantages of this layout.  Firstly, the user need not be 
concerned with arranging “windows” and “dialogs”, as with “multiple document 
interfaces”.  In this example, graphical information is always automatically 
arranged, maximised and centred.  Preference is given to displaying data 
“wholly” rather than trying to display too much information at once.  
 
Secondly, task-inputs are always available to the user at their location in the left 
hand panel.  This allows for instantaneous and simultaneous updating of the 
program outputs.  The alternative to this is to display input options in dialogs 
(such as SIRMOD) where the outputs are quite often not updated until these 
dialogs are closed. 
 
Finally, the large status bar continually keeps the user informed of the program’s 
state and progress.  Menu and tool bars are placed in their usual position at the 
top of the screen in accordance with the “principle of consistency”.  Other 
toolbars are used in the program and are located inside the input and output 
panels.  These are duplicate commands designed to be located conveniently next 
to the objects that they act upon, but are also located in the main menu or main 
toolbar. 
 

7.5.6 Modules 
From the developer’s perspective, the FIDO user interface can be divided into 
five main sub-modules coinciding with the five main requirements of the decision 
support system, including: 

• Database module; 
• Simulation Analyses; 
• Calibration Analyses; 
• Optimisation analyses; and    
• Response-surface generation and parameter analyses. 

 
From the user’s perspective, this modularisation is not apparent as it is hidden 
by the progressive disclosure and encapsulation techniques applied.  These five 
interface modules will now be discussed in turn.  
 

Database module 
The database and its interface form the “centrepiece” of the decision support 
system.  The database is not only a source of input data, but it is also a 
repository of results with associated analyses to post-process and summarise 
irrigation and infiltration performance.  The database interface serves as a 
“home” location for program navigation, and presents the principal user-interface 
components of the software.  
 
Early versions of the database interface (Appendix 7.7) employed the Microsoft 
Access database engine, and a series of data tables and tab fields.  The current 
version has replaced this methodology with an XML database which opens up 
the interface to a progressive disclosure oriented design.  It consists of four main 
components including: 

• the database navigator panel; 
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• the database reporting window; 
• the database editing window; and   
• performance and infiltration summary analyses. 

 
The database navigator panel (Figure 7.14) allows the user to navigate, select 
(and to some extent, edit) the property, paddock, event and model data using the 
VirtualTreeView component.  The tree-like structure permits a “progressive 
disclosure” of the data greatly simplifying the interface.  The record names 
displayed in the tree are complex “tree-parameters” (derived from 
TCustomTreeParameter), which communicate with the database and contain 
file input/output capabilities.  They have an associated drop-down menu with 
special options for the selected record. 
 

 
Figure 7.14: Database navigation panel showing drop down menu of commands. 

 
The database reporting window (Figure 7.15(a) and (b)) is the central reporting 
tool in the decision support system.  All program inputs and outputs can be 
presented in this window using customisable reporting templates.  The reports 
are automatically generated in HTML format after selecting a record, through 
transforming the record’s XML data-file using a XSLT stylesheet (template).  A 
key feature of this technology is that the stylesheets are external to the decision 
support software, and can be redesigned or modified at any time by people other 
than software developer.  In an ideal situation, a graphic designer could be 
employed to develop new eye-catching reports for the software. 
 
The software has been designed to load any number of report stylesheets at one 
time, so that the user can switch between different reports and treatments of the 
same data-set.  Because the resulting reports are in HTML format, hyperlinks 
can be added to the reports, to initiate actions such as editing the data, running 
the simulation and performing a calibration/optimisation/parameter-analysis.  As 
the source data is in XML format, any type of attribute information can be 
associated with the data and displayed in the reports, including comments, units 
and “date-modified”.  
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(a) 

 
(b) 

Figure 7.15: Sample database reports displayed in the database-reporting window. (a) Property 
record report showing property statistics, and linked images. (b) Model record report showing 

simulation input data and results. 

 
The database-editing window (Figure 7.16) hides behind the reporting window 
and is invoked if the user selects any of the hyperlinked parameters.  This editor 
is required as the user is not able to directly edit the data in the transformed 
HTML report15.  When editing the database, the selected record is displayed 
using VirtualTreeView component that provides editors for the different variable 
types.  The user is returned back to the database report window when the 
“enter” key is pressed, or the “return to report view” button is clicked at the top 
of the editor. 
 

                                                 
15 Several technologies could have been used to directly edit the transformed HTML report. 
However, each have associated limitations and complexities and were not included in this version 
of the software. For example, edit dialogs could have been embedded into the stylesheet, and 
would appear in the HTML report to allow editing. However, to get the edited values back into 
the database, a “post” button would be required on the form, and extra programming needed to 
do the processing. Also the visual appearance of the report is diminished when cluttered with edit 
boxes. 
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Figure 7.16: Database editing window showing the editing of the “Furrow bot width” parameter.  

The database report window will be revoked once the user presses the “enter” key. 

 
Performance and infiltration summary analyses (Figure 7.17a,b) have been 
added to the database module to provide a direct summary of property, paddock, 
event and furrow data.  This interface component is presented using the 
TBrowerForm component to provide an interactive analysis for the user, who is 
able to select and explore a range of summary information at each level from the 
paddock through to the furrow. 
 

 
(a) 

 
(b) 

Figure 7.17: (a) Performance and (b) infiltration summary analyses. (note: screenshots are from 
an older version of FIDO, but the functionality is the same) 

 

Simulation module 
The primary interface for displaying simulation information is through the 
database report window whereby simulation outputs including 
advance/recession trajectories, inflow/outflow hydrographs, and performance 
information are displayed. The user selects the hyperlink for “simulate” in the 
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report of the selected record, and the report is automatically updated with the 
new results.  Multiple simulations are conducted if the selected record relates to 
a property, paddock, or event.   
 
The simulation module also contains other more detailed analyses including an 
interactive animation of the simulation.  Three main analyses exist for displaying 
advanced simulation information including: 

• a simulation summary analysis; 
• multiple record analyses; and   
• a simulation convergence analysis; 

 
The simulation summary analysis is a highly graphical interface for presenting 
simulation outputs.  Like SIRMOD and SRFR, an animation of the simulation 
surface water and infiltration profiles is available, although this version is 
interactive with a slider-bar control at the top of the screen to navigate through 
the animation.  Also present are the advance and recession trajectories, and the 
inflow and runoff hydrographs.   
 
When this analysis is activated, the database navigation panel is replaced with 
the list of selected simulation data, and subsequent field and management 
parameters.  These parameters can be edited through this facility with the 
simulated results being updated automatically (in the background in a separate 
operating thread) when the “return key” is pressed.  
 

 
Figure 7.18: Simulation Summary Analysis. 

 
One of the powerful analysis features of the FIDO decision support system is its 
ability to directly compare outputs from different irrigations.  A range of multiple 
record analyses have been created for this purpose including a flow animation 
analysis (Figure 7.19a) and solution grid analysis (Figure 7.19b).  Graphical 
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results can be compared side-by-side, overlaid, or stacked on top of each by 
setting the display format. 
 
 

  

Figure 7.19:  Advanced comparison of (a) animated flow profiles, and (b) simulation solution grid 
(advance/recession trajectories). 

     
Another advanced analysis that is available is a simulation convergence analysis 
(Figure 7.20).  This analysis was developed to study and debug the simulation 
engine and to optimise its performance.  Convergence plots of the simulation 
solution parameters (Q, A, dx and/or dt) are displayed along with the simulation 
animation, and iterations history.  A slider bar allows the user to explore 
convergence at different times during the simulation.  
 

 
Figure 7.20: Advanced simulation convergence analysis.  This is presented as a popup dialog. 
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Calibration module 
The graphical user interface for the calibration component of the decision 
support system is minimal.  If data is available, calibration can be initiated by 
clicking on the action hyperlink in the database report window for the selected 
record.  The calibration parameters and objective-function will be determined 
automatically based upon the type of measured input data.  Because calibration 
can take several minutes, a progress bar is displayed in the main title panel.  
When the calibration is completed, the report is updated with the calibrated 
results.  
 
An advanced calibration analysis (Figure 7.21) can optionally be activated to 
monitor parameter changes during the optimisation process.  Based upon 
several prototype versions (Appendix 7.4), graphs are displayed showing changes 
in the calibration parameters, objective-function value, and measured and 
predicted advance trajectory and/or runoff hydrographs. 
 

 
Figure 7.21: Advanced calibration-monitoring analysis. (note: screenshot is from an older version 

of FIDO) 

 

Optimisation module 
Like the calibration module, the graphical user interface for the optimisation 
component of the decision support system is also minimal.  Optimisation can be 
initiated by clicking on the action hyperlink in the database report window for the 
selected record.  Different hyperlinks can be added to the report to initiate 
different optimisation options.  An “objective-function setter” dialog (Figure 7.22) 
is then presented to the user to specify priority weightings for the objective-
function before a progress bar updates the user to the state of the optimisation.  
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This dialog is a unique graphical tool that has been created especially for the 
user to set the design weightings for the irrigation performance object function.  
The “objective-function setter” is in the form of a pie-chart with “user-sizable” pie 
pieces representing the weighting factors in the objective-function.  “Handles” 
appear on the pie pieces when the user passes the mouse over the pie-chart in 
order to resize the proportions.  
 
 

 
Figure 7.22: Optimisation objective-function priority setter. 

 
Several versions of this tool were created before selecting this final design (see 
Appendix 7.5).  Originally the tool consisted of four linear slider bars, where the 
user would adjust each in relation to each other to achieve the weighting-split.  
However, this caused several problems relating to the proportional nature of the 
task.  Changing the setting of one bar inadvertently changed the other weightings 
automatically as the relative position between the bars changed.  Also several 
different setting arrangements could be used to achieve the same result.  For 
example, an equal twenty-five percent weighting split could be achieved by 
setting all sliders at the same setting, regardless of the value of this setting.  In a 
later version, a pie chart was added above the sliders to try and provide a 
visualisation of the proportions.  Unfortunately, this did little to alleviate the 
problems.  Therefore, this new component was developed to allow the user to 
directly manipulate the pie settings. 
 
An advanced optimisation monitoring analysis also exists using the same 
interface as shown in Figure 7.21.  In this analysis, irrigation performance values 
are displayed instead of the measured data quantities. 
 

Parameter analysis module 
An advanced graphical user interface was developed for the parameter analysis 
module, to simplify the process of generating response-surfaces, and for 
generating guidelines for irrigation design and management.  The interface 
consists of several components including: 

• A parameter analysis setup dialog for designing the analysis; 
• A response-surface generation analysis;  
• A user-defined contouring analysis for generating guidelines for design 

and management; and   
• A filter tool for modifying the surface and contour series; 
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This interface was developed after several prototyping iterations (Appendix 7.6) 
with the current version reflecting the need for complex analysis capabilities, and 
a simple and manageable code base.  Earlier versions proved difficult to 
maintain and extend and were plagued by stability problems. 

 
In the current version, parameter analyses can be initiated from the database 
report window by clicking on an appropriate action hyperlink.  A parameter 
analysis setup dialog (Figure 7.23) is then presented to the user to define: 

• the objective-function to investigate; 
• the parameters to include in the analysis; 
• the type of infiltration property to use (measured, or highest, lowest or 

average for site); and   
• The step-count for each parameter in generating the response-surface. 

 
Analyses are generated and automatically saved.  A hyperlink to the saved file is 
added to the current record, and displayed in the database report window. 
 
 

 
Figure 7.23: Parameter analysis configuration dialog. 

 
The response-surface analysis (Figure 7.24a,b) was developed to simplify the 
investigation of multi-parameter interactions.  When three design parameters are 
included in the analysis (for example, flowrate, time-to-cutoff and field-length), 
the third parameter is represented by the scrollbar at the bottom of the window.  
Changing the position of the scrollbar updates the value of the third parameter 
and hence, changes the active response-surface (Figure 7.24a).  The third 
parameter can also be expanded, so that several graphs appear representing 
different values of the third parameter (Figure 7.24b).  At any stage, the 
parameter order can be interchanged so that other parameters can be 
expanded.  
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(a) 

 
(b) 

Figure 7.24: Response-surface generation for three design parameter.  (a) Third parameter is 
represented by setting of scroller-bar.  (b) third parameter is expanded, showing a separate 

response-surface for each value of the parameter. 

 
 
The user-defined contouring analysis (Figure 7.25) is the primary tool for 
generating guidelines for design and management.  It has already been briefly 
introduced in Chapter 6.  Once response-surfaces have been generated, they can 
be dragged and dropped onto any of a predefined number of charts to generate 
new contours.  Any number of response-surfaces can be superimposed to build 
up layers of contours.  The axis-types are defined corresponding to the available 
parameters.  Once a configuration has been created, it can be saved for later 
retrieval.  As with the response-surface analysis, the value of the third parameter 
can be adjusted by setting the position of the scrollbar at the bottom of the 
window. 
 

 

 
Figure 7.25: Design and management guideline analysis showing setting up of guideline grid. 
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For both of these analyses, a filter tool (Figure 7.26) has been developed to hide 
or show parts of the different response-surfaces depending upon a set criterion.  
For example, the user could hide parts of a surface or contour series where 
performance was greater than a designated value.  This creates a visible working 
envelope of design parameters where the irrigator should aim to operate the 
irrigation system. 
 
 

 
Figure 7.26: Response-surface filters for hiding/showing objective-function parameter ranges. 

Objective-function weightings can be assigned using the setter at the bottom of the dialog. 

 

7.6 Using the decision support system 
A typical usage of the decision support system would be: 
1. Update property, paddock, event and model information in the database; 
2. Select a property, paddock, event or furrow (model) record from the selector 

menu at the left of the screen. 
3. Calculate the soil infiltration parameters for each model record by calibrating 

using the measured advance data.  Clicking the “Calibrate” option from the 
action-menu starts the process for the selected record and its children.  

4. Simulate these records to assess the irrigation performances using the 
“Simulate” option.  

5. Assess optimum performance by selecting the “Optimise” option and 
prioritising irrigation management objectives.  

6. Develop a series of design charts to assess likely performance over a range 
of infiltration conditions using the “Analyse” option.  

 

7.7 Conclusions 
A decision support system for furrow and border irrigation was developed by 
combining the tools developed in Chapters 3 to 6 with a database and graphical 
user interface. There were three focus areas during this marriage of components; 
firstly, an object-oriented structure was developed to accommodate program 
elements concentrating on separating the graphical user interface components 
from other task related objects for flexible future development;  secondly, a 
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database was developed using XML-based technologies to store property, 
paddock, event and model information; and thirdly, a user-friendly graphical user 
interface was created with web-browser-like functionality. The software has 
evolved through many different prototypes versions with its current design being 
heavily influenced from the successes and mistakes of the previous attempts.  
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Chapter 8 Conclusions, implications and 

recommendations 

 
 

8.1 Introduction 
The objective of this dissertation was to develop a new decision support system 
for furrow and border irrigation aimed at increasing the usability of the 
technology to improve decision-making capabilities. Specifically the research 
hypothesis stated: “That calibration, optimisation, and parameter analysis 
capabilities can be developed and integrated with an accurate and robust 
simulation model into a decision support system to improve furrow and border 
irrigation performance.”  
 
This chapter presents the conclusions and implications of this research along 
with recommendations for future research. The discussion in this chapter has 
five main objectives: (1) it will provide a summary of the work undertaken in the 
previous chapters in order to highlight the logical progression of ideas and issues 
addressed in answering the research questions; (2) conclusions are presented 
for each of the research questions; (3) practical implications of this research are 
discussed; (4) the limitations of this research are acknowledged; and (5) 
recommendations are presented for future research and development. 
 

8.2 Overview of previous chapters 
Chapter 1 introduced the hypothesis and research objectives before explaining 
the relevance of the research problem. Justification for the research focused 
upon three interrelated problem areas: firstly, existing surface irrigation models 
aren’t being used due to problems inherent in the software. These problems 
included over-complexity, poor software engineering, and reliability problems. 
Secondly, there is a need to aggregate different surface irrigation model 
components into a single decision support system. These components included a 
database, simulation engine, calibration (parameter estimation) capabilities, 
optimisation capabilities, and parameter analysis components (design curves). 
Thirdly, there was a need to combine modern software engineering concepts and 
tools with existing surface irrigation simulation technology. 
 
The main purpose of Chapter 2 was to investigate the history, performance and 
potential of existing surface irrigation decision support technology. The 
background theory of surface irrigation and computer modelling of surface 
irrigation was initially presented as a basis for this research. Then a literature 
review was undertaken into the three main surface irrigation research areas of: 
simulation modelling; solution of the “inverse problem”; and optimisation of 
design and management practices.  It was found that gaps exist in the literature, 
especially with: simulating the later stages of the irrigation cycle; converting the 
mathematical model into computer code form; ensuring simulation robustness; 
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calibrating using the complete hydrodynamic simulation model; parameter 
analysis of system responses; and automating the optimisation process.  
Independent testing of existing surface irrigation models showed that they can 
accurately simulate surface irrigation, with the SIRMOD and SRFR models 
being identified as the most prominent simulation models. SIRMOD was then 
evaluated in a case study and found to satisfactorily simulate all phases of an 
irrigation, but was sometimes subject to stability problems. Functionality 
requirements for the development of a new decision support system were 
identified as simulation, calibration, optimisation, parameter-analysis and data 
management. 
 
 
Chapter 3 presented the development of a new simulation engine based upon 
the refinement and modification of existing surface irrigation modelling 
technology: notably, a complete hydrodynamic model and the Preismann double 
sweep solution technique. The first goal of the chapter was to revise the solution 
technique into a simpler and more generic form. An object-oriented structure was 
then developed to encapsulate the “model” and solution technique, and provide 
input/output capabilities. The simulation engine was then developed around this 
structure focusing upon memory management, exception handling, simulation 
reliability, code clarity and future expansion. Potential sources of convergence 
problems were identified in the simulation and several techniques were 
developed to improve simulation robustness. The complete simulation engine 
was validated against output from the SIRMOD model. 
 
Chapter 4 highlighted the need for using the same model for both simulation and 
soil infiltration and hydraulic roughness parameter estimations. Two different 
inverse methodologies for parameter estimation were developed; firstly, an 
optimisation-based volume-balance model (INFILT) was developed. This 
technique can determine any of the Kostiakov-Lewis infiltration parameters using 
inflow-rate and irrigation advance measurements. Secondly, a more complex 
hydrodynamic inverse technique was developed for determining any of the soil 
infiltration and/or the hydraulic roughness parameters. This second technique 
drew upon the optimisation-methodology developed and incorporated into 
INFILT. Because of long calculation times associated with the hydrodynamic 
method, starting estimates were obtained from the output of the INFILT 
method.  Three objective-functions were developed based upon advance 
measurements, runoff measurements, and combined advance and runoff 
measurements. These methodologies were then encapsulated into the decision 
support system using an object-oriented structure. Parameter response-surfaces 
were generated for the advance-based objective-function to identify a unique 
solution for up to four optimisable parameters. A validation was performed 
through analysis of the simulation results based upon the calibrated infiltration 
parameters. 
 
Automated design and management optimisation capabilities were developed for 
the decision support system in Chapter 5, with the added benefit of automated 
benchmarking of performance potential.  This involved using the optimisation 
technique developed in the previous chapter, and applying it to the case of 
optimising irrigation performance. A user-defined objective-function was 
developed based upon different weightings of maximising storage efficiency, 
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minimising runoff, minimising deep drainage, and maximising application 
uniformity. Investigation of typical response-surfaces revealed that a single 
“best” set of design parameters (flowrate, time-to-cutoff and field-length) rarely 
exists in practice due to a compensating effect by the individual components of 
the objective-function. This manifests itself in a near horizontal parabolic ridge 
that maintained constant values for various combinations of the decision 
variables. In fact, for nearly every possible value of each decision variable, 
maximum performance could be achieved through a unique combination of the 
other two variables. Therefore, an infinite number of potential solutions exists for 
a given irrigation system. Hence, the optimisation problem simplifies down to 
solving for one decision variable: time-to-cutoff. Solving for more than one 
parameter would have been impaired due to small variations in the volume-
balance errors across the response-surface. This was due to discretisation 
process used in the simulation solution technique. The method was validated by 
comparing the measured (simulated) results against the optimised results, with 
rapid and reliable convergence on the solution when optimising on only time-to-
cutoff. The optimised results demonstrated a marked increase in application 
efficiency accompanied by a small reduction in storage efficiency and application 
uniformity. 
 
In Chapter 6, field design and management guidelines were investigated in the 
process of developing an automated procedure for the decision support system. 
As a preliminary study, guidelines were prepared based upon a range of 
infiltration functions from seventeen surface irrigations. This involved presenting 
guidelines composed of low, high and average infiltration functions for the site. 
Charts were generated using a fixed management strategy of minimising runoff 
and presented iso-curves of flowrate and time-to-cutoff, with irrigation 
performance and field-length being represented on the chart axes. However, the 
potential benefits of visualising a large number of dimensions were negated by a 
limited range of response outputs for a fixed management objective. 
Nevertheless, this provided a direction for developing the guideline-generating 
capabilities. This included representing system outputs as contours and iso-
curves, rather than by the chart axes; representing different infiltration conditions 
in separate design charts; allowing the user to assign variables to each chart 
axis; and representing only two decision variables in each chart. Automation 
facilities were then created based upon an object-oriented structure. The 
generated guidelines are presented as contours of performance values 
accompanied with a user-defined envelope of working ranges. 
 
Chapter 7 focused upon the software engineering components of the decision 
support system. The main goal of this work was to combine the tools developed 
in the previous four chapters with a database and a simple user interface to 
develop a new decision support system for furrow and border irrigation. An 
object-oriented program structure was then developed to accommodate program 
elements. An XML-based surface irrigation database was presented along with a 
simple graphical user interface created using advanced third-party libraries. The 
resulting interface is based upon a web-browser-like design, and relies on 
progressive disclosure techniques to present advanced analyses. The 
evolutionary process of developing the final user-interface design was discussed 
with different prototype interfaces being presented. 
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8.3  Conclusions about the research problem 
The hypothesis for the research problem was successfully tested through the 
completion of the individual research objectives, and an understanding of the 
practical implications resulting from the research. Specifically the research 
hypothesis stated: “That calibration, optimisation, and parameter analysis 
capabilities can be developed and integrated with an accurate and robust 
simulation model into a decision support system to improve furrow and border 
irrigation performance.”   
 
Testing of this hypothesis has resulted in the development of a decision support 
system for furrow and border irrigation featuring an automation-capable 
hydrodynamic simulation engine, automated full-hydrodynamic inverse-solution, 
automated optimisation of design and management variables, and automated 
user-definable real-time generation of system response. This has been combined 
with a highly flexible object-oriented program structure and web-browser-like 
graphical user interface. This represents a unique holistic development and 
integration of components into a research and practitioner tool, with competing 
products offering alternate non-automated and non-optimising capabilities. The 
demonstrated successful validation of the intended functionalities was a 
prerequisite for supporting the hypothesis. 
  
Key conclusions from this research are that: 

• Only minor enhancements to the existing numerical technologies were 
required for automating the simulation engine, with the major focus of the 
study placed upon the operational algorithms to enhance robustness and 
reliability; 

• The inverse-solution using the full-hydrodynamic model is a viable and 
robust methodology for the unique identification of at least three 
infiltration/roughness parameters; 

• Automated optimisation of design and management practices is limited to 
the selection of one solution variable (time to cut-off) due to the 
identification of non-unique multi-variable solutions caused by the 
interdependency of key decision variables in relation to irrigation 
performance; 

• The automated optimisation facilities provide a unique benchmarking of 
irrigation performance potential; and 

• Automated system response evaluation facilities provide a useful 
research and practitioner tool, capable of multidimensional analysis of 
irrigation systems subject to temporal and spatial infiltration variation. 

 
In summary, the research into the development of the system supports the first 
part of the hypothesis: that is, that the decision support system can be 
developed through the suggested integration of components. While field-
evaluation of the decision support system was not a part of this research, there 
is much evidence to support the second part of the hypothesis that suggests that 
the decision support system can improve furrow and border irrigation 
performance though better decision-making. Six principal pieces of evidence 
addressed through the Research Objectives that support this includes: (1) that 
the improved robustness and flexibility of the simulation engine allows it to be 
used in a variety of decision support roles, to accurately and reliably provide 
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irrigation performance measures to the user; (2) that the parameter estimation 
(inverse method) facilities based upon the hydrodynamic model minimises errors 
associated with the traditional volume-balance methods, improving the accuracy 
of the simulated and optimised results, and ultimately, management decisions; 
(3) that the automated optimisation capabilities can quickly and easily provide 
guidance for optimising water use efficiencies for a range of strategies; (4) that 
the automated optimisation capabilities also provide a measure of “performance 
potential” for benchmarking practices; (5) that site-specific design charts can 
quickly and easily be developed to identify the irrigation system response, and 
define design and management strategies; and (6) that the decision support 
components combined with a database and simple graphical user interface 
enhances the flexibility and utility of the product, while simplifying its operation.  
 
Further evidence supporting the hypothesis, through successful completion of 
the research objectives and identification of practical implications of the 
research, are discussed in turn below. 
 

8.3.1 Discussion of the research objectives 
Research Objective 1: Investigate existing surface irrigation modelling 
technology to determine a model and solution technique structure suitable for 
incorporating into a decision support system.  Through a literature review and 
case study using the surface irrigation model SIRMOD, it was established that 
existing surface irrigation simulation technology is sufficiently accurate to use as 
the basis of a decision support tool for irrigation design and management. 
However, complexity, stability and usability issues were also identified with the 
technology, while gaps in the literature exist relating to strategies to address 
these problems. 
 
It was recognised that the SIRMOD and SRFR packages are the most important 
decision support tools in the industry. However, these tools remain relatively 
unused and offer limited functionality in the overall decision support context. 
Both tools were identified as having complexity, stability and usability problems. 
It was concluded that the sources of these problems are interrelated, with the 
primary source being at the software engineering level. For example, little 
documentation was found on how to transfer the mathematical algorithms and 
solution techniques into their computer code form. This is further complicated by 
a lack of information on how to simulate the later phases of the irrigation cycle 
including simultaneous advance and recession. Nevertheless, SIRMOD and 
SRFR are capable of simulating all phases of the irrigation cycle. Given that they 
have both proved to be sufficiently accurate, and are very similar in design, their 
underlying model structure and solution techniques were chosen as a basis for a 
new improved simulation engine.  
 
Research Objective 2: Develop a robust, reliable simulation engine for furrow 
and border irrigation for automation within a decision support system under 
optimisation and systematic response evaluation. Based upon the findings of 
Research Objective 1, a new hydrodynamic simulation engine was developed 
through combination and simplification of the SIRMOD and SRFR implicit 
solution techniques, development of an object-oriented structure, and 
identification and treatment of convergence and stability problems.  
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This research has revised the Preismann double-sweep solution technique for 
simulating furrow and border irrigation. It was found that the published equations 
of the SIRMOD and SRFR solution techniques were not reduced into their 
simplest form, so a new set of solution equations were rederived from first 
principals. These equations provide the same solution as the published methods, 
and probably have little effect on the efficiency of the solution. However, they 
differ from the published methods through the calculation of “intermediate 
values”, which significantly simplifies the algebra. The benefit is a much easier-
to-understand implementation of the solution leading to both simpler translation 
into computer code, and a better basis for modification to the solution technique 
(for example, solving explicitly for simultaneous advance and recession). A 
generalised model structure was presented allowing different modes of 
operation including switching between using a constant time-step size and 
solving for the advance node locations, or having fixed node locations and 
solving for advance times. Both Eulerian and Langrangian solution 
methodologies can be implemented and new treatments for the runoff phase 
and lateral flow conditions were also developed. 
 
The new simulation engine was developed using an object-oriented computer 
algorithm offering a flexible and stable platform for future research and 
development. It appears that this is the first attempt at using an object-oriented 
structure for surface irrigation modelling with previous attempts (including the 
SIRMOD and SRFR software) using procedural code. As well as providing a 
reference point for other researchers to follow, this work has simplified the 
process of implementing the simulation engine into other decision support 
software. This has already been demonstrated with the FIDO simulation engine 
being used in other research projects at both undergraduate and postgraduate 
levels (Dulin 2004; Gillies pers.comm. 2005-2006). 
 
Stability and convergence problems were identified and documented. Very little 
research has been published into circumventing these problems during the 
simulation, which can largely be attributed to the software algorithm rather than 
the underlying mathematics. Methods developed to improve simulation 
robustness include; using small time steps at the start of the simulation to locate 
more nodes at the top end of the furrow; parameter monitoring during iterations 
to avoid repeated mirrored oscillations with certain nodes; automatic time-step 
adjustment to avoid divergence; and forecasting node collapse at the 
commencement of a time-step to reduce the stress on the solution technique.  
 
The simulation engine proved to be accurate when validated against SIRMOD 
output, and reliable and robust when used in the subsequent optimisation tasks 
(Research Objectives 3 and 4).  
 
Research Objective 3: Investigate and develop parameter estimation 
(calibration) capabilities for the decision support system. The literature review 
and initial case study identified that using volume-balance methods as a means 
to calibrate the (hydrodynamic) simulation model can introduce errors into the 
system. Therefore parameter estimation capabilities were developed for the 
decision support system using optimisation-driven simulations of the 
hydrodynamic model. Because of long convergence times involved with running 
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hydrodynamic simulations, parameter estimates from a simpler volume-balance 
method (INFILT) were used as starting estimates into the hydrodynamic 
method. 
  
The INFILT method was developed as a preliminary study for this research, and 
is based upon a time-of-advance volume-balance equation linked to a specially 
developed optimisation algorithm. The optimisation algorithm adjusts the 
infiltration parameter values in order to minimise the error between the 
measured and predicted advance data. The method has proven to be fast, robust 
and reliable and has set a performance benchmark that has already been 
referenced by other authors (Hornbuckle et al 2005; Khatri et al 2005; Gillies et 
al 2005; Walker, 2005).  
 
The more complex and computationally intensive hydrodynamic method uses the 
same optimisation methodology as the INFILT method, but requires simulations 
to be performed instead of simple advance-time estimations. However, a benefit 
of this is that different objective function formulations can be used, based upon 
different field measurements including advance and runoff data or a 
combination of both. This was facilitated using an object-oriented algorithm to 
allow swapping of objective-functions and simulation parameters (and also 
optimisation algorithms, and even simulation engines).  
 
Validation of the hydrodynamic method (as well as the INFILT method) was 
performed for the advance-based objective-function and the modified Kostiakov 
infiltration parameters, and showed that after calibration, the simulated outputs 
aligned closely with the measured advance. Simulated outputs corresponding 
the INFILT-calibrated infiltration parameters did not align as closely to the 
measured advance, indicating the error that exists when mixing simulation and 
calibration model structures. A spike in the objective function output also 
demonstrated this during the optimisation, when the objective function is 
switched from the volume-balance to the hydrodynamic method. 
 
As well, response-surfaces were generated for these objective-functions 
demonstrating that there is a unique solution of the inverse problem. This has 
typically been inferred by other researchers but never proven due to the 
dimensionality constraints of investigating three or four parameters. By 
developing several response-surfaces in “a-k space” for combinations of the 
remaining design parameter (fo), it was shown that the surface minimum moves 
around in the in “a-k space”, although a true global minima exists overall. It was 
also shown that the general form of the response-surfaces is simple and regular, 
without defined local minima.  
 
 
Research Objective 4: Investigate and develop optimisation capabilities for the 
decision support system. Optimisation capabilities were added by combining the 
optimisation algorithm (developed in Research Objective 3) with the simulation 
engine and a user-defined objective-function within an object oriented structure. 
However, the system was found to be unsuitable for solving more than one 
decision variable (time-to-cutoff is recommended) due to the nature of the 
response-surface exhibiting multiple solutions and pronounced surface 
roughness due to discretisation errors in the simulation. 
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The research involved developing a new user-defined objective-function for 
optimising the performance of furrow and border irrigation. The novelty of this 
function is that it allows the user to set predefined weightings on each of the 
performance components in order to match the irrigation priorities of maximising 
storage efficiency, minimising runoff, minimising deep drainage, and maximising 
application uniformity. An optional penalty function was also implemented into 
this objective function in order to ensure that the advance reaches the end of the 
field. 
 
An investigation into the response-surfaces for different configurations of this 
objective-function found that a unique design solution does not exist, and that 
many combinations of the decision variables (flowrate, time-to-cutoff, and field-
length) can be used to achieve a similar level of performance. Therefore, it was 
recommended to limit the optimisation to solving only for time-to-cutoff. 
Furthermore, this has implications for irrigation design and management 
whereby it has traditionally been understood that a unique set of design 
variables exist to provide maximum system performance.  
 
This research has also identified that the objective-function response-surfaces 
are “roughened” because of variations in the volume-balance errors between 
different model runs. This can impede the optimisation algorithm from locating 
the surface maxima or minima. It was deduced that these inconsistencies are a 
result of the discretisation process used in the solution technique during each 
simulation. Even minute differences between different sets of model input data 
can introduce slight variations in the corresponding volume-balance errors 
because of the differences in solution grid structure.  
 
Validation was performed by comparing the measured and optimised results 
when optimising on time-to-cutoff. This demonstrated that a gain in application 
efficiency was easily attained accompanied by a small reduction in storage 
efficiency and application uniformity. This situation is representative of irrigators 
who typically over-water their field in order to completely fill the root zone. This 
analysis demonstrates the utility of the methodology to quickly and easily present 
an alternate management solution. It was found that optimisations ran quickly 
and robustly without user-intervention. Interestingly, it was found that the penalty 
function was not required to ensure that the field is not under-watered. 
 
An added benefit of the use of this tool is that is allows users to automatically 
benchmark the potential performance of an irrigation event. This will be a useful 
feature even for those who don’t find this sort of automated tool appealing. 
 
Research Objective 5: Investigate and develop parameter response (design-
charts) capabilities for the decision support system.  Parameter response 
evaluation capabilities were added by developing a detailed object-oriented 
structure to automate the process of running the simulation. The development 
process was guided by the recommendations from an initial case study focusing 
upon design-chart development. 
 
This study presented design-charts combining the effects of variable infiltration 
and three decision variables using a fixed management strategy of minimising 
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runoff. However, a limited range of response outputs for a fixed management 
objective negated the potential benefits of visualising a large number of 
dimensions. Nevertheless, the benefit of presenting a range of charts for 
different infiltration characteristics was recognized and recommended for the 
decision support software. Furthermore, it was recommended that system 
outputs be represented as contours with decision variables represented on the 
charts axes.  Decision variables should be kept to two per chart while the user 
should be able to define which variables are assigned to each chart axis. 
 
Based upon these findings, parameter analysis capabilities for the decision 
support system were developed allowing the user to generate different guideline 
configurations for a range of soil infiltration properties. Low, average, and high 
infiltration characteristics are determined from the paddock site history (based 
upon measured irrigation runs) to allow the user to identify an envelope of 
possible outcomes for an irrigation design. As well as providing practical field-
specific guidelines, this also represents a powerful research tool for 
understanding irrigation parameter relationships. The resulting charts can 
integrate large amounts of data into a simple, easy to follow format that offers 
great insight into irrigation performance. 
 
 
Research Objective 6: Develop an object-oriented framework to combine the 
components developed in Research Objectives 2 to 5 with database facilities 
and a graphical user interface. An object-oriented framework was developed for 
combining the decision support components based upon separating the 
graphical user interface from the decision support algorithms. A major feature of 
this work is that all components of the system have been developed from first 
principles and were guided by this framework, with the primary goal of 
implementation into a decision support system. 
 
This involved splitting components into managers, tools, analyses and interface 
elements. The open structure ensures interchangability of parts, and new 
analyses can be added without structural modification to the user interface. An 
XML-based database was also developed to store decision support inputs and 
outputs. Data and results are presented using XSLT stylesheet technology 
allowing an infinite range of interface configurations. This culminated in the 
software having a web-browser like functionality with progressing disclosure 
capabilities.  A key feature of the user-interface is that multiple irrigation events 
(or paddocks or furrows) can be analysed and evaluated simultaneously, and 
with a minimum of user input. 
 

8.3.2 Practical implications of this research 
The primary practical implication of this research is that it has contributed to the 
development of a professional-quality software package, capable of use in many 
market segments, including researchers, irrigation consultants, and also 
irrigators who have undertaken some training. While the goal of this research 
was not to present a commercially ready package, the software is well poised to 
be further developed to this level. Five specific implications for practice may be 
suggested as a result of this work.  
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(1) This research has laid the foundations to make surface irrigation decision 
support technology accessible to more users. It was identified early in the 
research that a likely reason why the technology hasn’t been widely adopted is 
because the existing technology is complex and difficult to use. Therefore, a key 
goal of this research was to make the software as simple as possible to improve 
accessibility. This has been addressed using an HTML-browser-like interface 
combined with modern programming and interface design conventions. This 
provides multi-level and transparent functionality for different user types. Data 
requirements have been minimised and presented using progressive disclosure 
techniques, while the mathematical operation of the model has been hidden 
from the user. The five major tools required for surface irrigation decision 
support (database, simulation, calibration, optimisation and parameter analysis) 
have been encapsulated under a single familiar web-like interface. Actions 
required to initiate operations have been minimised. In theory, once the user has 
entered the irrigation input data, operations such as calibration, simulation, and 
optimisation processes can occur automatically and simultaneously with a single 
click of a button, and without user-intervention. Conveniently, the software is 
customisable through its XML/XSLT interface with an infinite range of interface 
configurations possible to account for different users. 
 
(2) It has been recognised that using surface irrigation simulation technology 
encourages measurement and accountability of current practices. To use this 
technology, irrigators are required to measure how much water they apply, and to 
determine losses through estimation of infiltration and possibly runoff. The 
decision support system developed as a part of this research has the potential to 
further encourage this monitoring, through the inclusion of an inbuilt database 
for surface irrigation. This provides a simple tool to monitor irrigations in many 
paddocks over different irrigation seasons to measure the performance of 
current practices and improvements. 
 
(3) The provision of the database in the decision support system provides a 
secondary benefit in helping to account for spatial and temporal variations of the 
field parameters in decision-making. Irrigations monitored over a season can be 
analysed to determine the range of infiltration variation and corresponding 
irrigation performance. The envelope of conditions can then be used as input in 
the software to generate guidelines for planning subsequent irrigations. This is 
undertaken through the inbuilt automatic guideline generation facilities. A benefit 
of this feature is that it could be used by consultants or extension officers to 
develop a set of simple to use, paper-based management charts to give to 
irrigators who may not have the capabilities to run the software. 
 
(4) This research has provided tools to implement real-time management of 
furrow or border irrigation. For example, guidelines generated from irrigations 
over the previous season could be used to determine suitable estimates of 
flowrate and time-to-cutoff to perform the irrigation. Irrigation advance can then 
be monitored during the irrigation, and input into the decision support system 
while the irrigation is still occurring. The infiltration parameters can then be 
determined using the inbuilt parameter estimation facilities. The irrigation can 
then be terminated at a time suggested by the software to achieve optimum 
performance. This would typically involve cutting off the irrigation before the 
advance reaches the end of the field. While this type of analysis could be 
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undertaken with the existing modelling tools such as SIRMOD and INFILT, it 
would require considerable manipulation of the software in paddock. The new 
software would be able to perform these actions with a minimal effort – 
potentially by just entering the measured advance and inflow into the pre-
configured database record, and clicking one button to estimate both the soil 
infiltration parameters and optimise the irrigation. 
 
(5) The software provides a useful training tool for irrigators without having to 
resort to experimentation in the field. It offers a “computer game” like experience 
with graphical simulation animations, and automatic calculation and estimation 
facilities. Training courses for the SIRMOD and INFILT software run by the 
National Centre for Irrigation in Agriculture (http://www.ncea.org.au) have 
attracted considerable interest over the past few years. A major portion of this 
time was spent teaching users how to use the software. The simpler interface of 
the FIDO software would allow a greater focus upon management and design 
issues and utilise the inbuilt parameter estimation, optimisation and guideline 
generation facilities. 
 

8.4 Limitations 
Due to the range of subject areas presented in this dissertation, not all aspects 
of furrow and border irrigation decision support could be thoroughly treated. As 
explained in Chapter 1, this research has only focused upon the simplest forms 
of furrow and border irrigation in the context of Australian irrigation practices.  
However, provision has been made in the software for the future inclusion of 
more complex irrigation practices such as variable inflow irrigation, surge flow, 
and cutback irrigation. The spatial variability of field parameters such as furrow 
slope, furrow shape, hydraulic roughness, and soil infiltration has also been 
accounted for in the code but has not been implemented and tested. 
 
The current version of the software (at the time of writing) has not been 
operationally released. While the program structure and mathematical 
algorithms have been repeatedly refined and validated, program navigation, 
database management, and presentation of results still needs further 
refinement. The operational efficiency of the algorithms could also be improved, 
with simulations often resorting to stability control measures to complete 
successfully, and optimisations often slower than desired. More extensive 
software documentation and tutorials also need to be developed before the 
software is released. Finally, the completed decision support system still requires 
rigorous testing and debugging.  
 

8.5 Recommendations for further research and development 
Hopefully, this research will lead to further interest in decision support 
development for surface irrigation. The software developed provides a stable and 
flexible platform from which many directions of research could be undertaken. 
This includes research in each of the major decision support component areas 
addressed in this dissertation: simulation engine development; solution of the 
inverse problem; automatic optimisation of design and management practices; 

http://www.ncea.org.au/�
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development of guidelines for design and management of furrow and border 
irrigation; and software engineering aspects of the decision support system. 
 
Recommended areas of further research include: 

• Measuring the usability, accessibility and performance of the FIDO 
decision support system under real field practice.  

• Further investigation of parameter response and sensitivity analysis of 
furrow and border irrigation field parameters using the response-surface 
generation tools.  

• Accounting for the spatial and temporal variation of the soil properties in 
terms of simulation, calibration and optimisation. This could also include 
investigating the aggregation of irrigation performance response-surfaces 
for different irrigation properties as a means for improving management 
and design practices. 

• Including variable inflow methodologies (used in SIRMOD and SRFR) 
into the simulation engine in a robust, reliable manner, capable of 
implementation into the calibration, optimisation and response-surface 
generation tools. 

• Improving the performance of the simulation engine in terms of 
robustness and iterative efficiency. That is, to ensure robustness without 
having to resort to emergency procedures to achieve success, and to 
decrease the number of iterations required to achieve convergence. 

• Improving calibration and optimisation efficiency to reduce calculation 
times. 

• Increasing the flexibility of the automatic guideline generation facility to 
plot iso-curves of design variables (with performance measures located 
on the axes) instead of performance measures. 

• Investigating variations of field and furrow properties including non-linear 
furrow slopes, variable furrow shapes, and gradients of soil compaction as 
a means to improve irrigation performance. 

 

8.6 Concluding postscript 
This chapter has presented the key conclusions arising from this research in 
relation to the research hypothesis and research objectives. Both practical 
implications and limitations of this research have been identified, and 
recommendations for future research have been suggested. 
 
In summary, this research has drawn from the efforts of numerous researchers 
over the last twenty years and cumulated in the creation of a stable flexible 
platform from which more advanced furrow and border irrigation research can be 
initiated. As well, this research has contributed to the development of a 
professional quality decision support system, which will hopefully improve the 
accessibility of decision support technologies to more users.  
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Appendix 2.1 Derivation of the Saint Venant Equations 

with lateral inflows and outflow 

 
The following one-dimensional unsteady flow equations are derived through 
application of the principles of conservation of mass and momentum to an 
elemental control volume of fluid. This derivation is given for completeness as 
many texts fail to state the assumptions underlying the derivation, are not 
thorough in the derivation and neglect to include lateral inflows and outflows. 

A2.1.1 Assumptions 
• Flow is a translatory wave motion of long wavelength and low amplitude 

(Chadwick and Morfett, 1986 implying that the streamlines can be 
considered parallel. 

• The water surface profile varies gradually implying a hydrostatic pressure 
distribution with negligible vertical accelerations. 

• The velocity of the streamflow across the cross-sectional area of flow can 
be considered sufficiently uniform and can be represented by the average 
cross-sectional velocity. 

• The effects of momentum for the lateral inflow and outflow can be 
considered negligible. 

• Steady flow formula can be used to approximate resistance to flow. 
• The channel is rectangular of unit width and its slope is small. 

 

 
 

A2.1.2 Continuity Equation 
The principle of conservation of mass implies that for any time interval, the 
difference between the mass flow entering and the mass flow exiting an 
elemental control volume, is equal to the change of mass within the control 
volume. In terms of flowrate, the difference between the inflow and outflow for a 
control volume is equal to the rate of change of storage over the time interval. 
Therefore, over a fixed time interval t∂ ; 

Figure A2.1.1: Elemental control volume in open channel 
flow 
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timewithstorageinchangeofrateoutflowsinflows       =− .................................................................. (1) 

x
t
yxiqxrq outin Δ=Δ−−Δ+

∂
∂

................................................................................................................................... (2) 

where qin (m3/s) is inflow into the control volume, r (m2/s) is rainfall intensity 
(lateral inflow), qout (m3/s) is outflow from the control volume, i (m2/s) is the 
infiltration rate (lateral outflow), xΔ (m) is the thickness of the control volume, 

xq ∂∂ / is the change in inflow over the control volume width, and ty ∂∂ / is the 
change of depth with time. We can relate outq  in terms of inq  using; 
 

x
x
qqq inout Δ+=

∂
∂

............................................................................................................................................................... (3) 

 
Then substituting this back into Eqn.2 we have; 
 

x
t
yxix

x
qqxrq inin Δ=Δ−⎟

⎠
⎞

⎜
⎝
⎛ Δ

∂
∂

+−Δ+
∂
∂

........................................................................................................... (4) 

 
Expanding the brackets, the q terms cancel out to give; 
 

x
t
yxix

x
qxr Δ=Δ−Δ−Δ

∂
∂

∂
∂

......................................................................................................................................... (5) 

 
Then dividing through by xΔ  and rearranging, we are left with the continuity 
equation; 

 
 

A2.1.3 Momentum Equation 
The principle of conservation of momentum implies that a moving body will 
neither gain nor lose momentum unless an external force is applied. This is 
classically known as Newton’s second law of motion where the sum of the 
external forces on the body equals the rate of change of momentum; 

m of momentuof change rateforcesexternalofSum     = ................................................................... (7)  
 

F dM
dt

=∑ ............................................................................................................................................................................ (8) 

 
Equating the left hand side of this equation, we have four external forces acting 
on the control volume. If forces acting in the downstream direction are positive, 
we have;   

fgPP FFFFF
rightleft

++−=∑ .................................................................................................................................... (9) 

 

ir
t
y

x
q

−=+
∂
∂

∂
∂
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where PleftF and ightFPr  are the pressure forces acting on the left and right hand 

sides of the control volume respectively, gF is the downstream component of the 

gravitational force, and fF  is the frictional resistance force. We can relate 

ightFPr in terms of PleftF  using; 

⎟
⎠
⎞

⎜
⎝
⎛ Δ+= x

x
FFF P

PP leftright ∂
∂

............................................................................................................................................. (10) 

 
where xFP ∂∂ /  is the rate of change of pressure force across the thickness of the 
control volume. Substituting this into Eq. 9 we have; 

fg
P

PP FFx
x

FFFF
leftleft

++⎟
⎠
⎞

⎜
⎝
⎛ Δ+−=∑ ∂

∂
...................................................................................................... (11) 

 
The resultant pressure force acting on any section of the control volume 
(perpendicular to the channel bed) can be expressed using the relationship 

2/)( pgyAF = . In this case where we are dealing with unit width of channel, the 
cross-sectional area A is equal to the depth y giving; 

2

2
1 gyFp ρ= ........................................................................................................................................................................ (12) 

 
The gravitational force acting in the downstream direction is given by; 

og xSgyF Δ= ρ .................................................................................................................................................................... (13) 

 
where oS is the channel slope and is in fact an approximation as theoretically the 
tangent of the channel angle should be used. This is called the small slope 
approximation (Stephenson and Meadows, 1986).  
 
The friction force which retards the flow can be expressed in terms of a shear 
stress and the wetted area on which it is acting. 

xPFf Δ=τ ............................................................................................................................................................................ (14) 

 
where τ is the shear stress and P is the wetted perimeter. By equating the 
energy loss by the work done by the shear force, the following relationship is 
established; 

fgRSρτ = ............................................................................................................................................................................ (15) 

 
where fS is the slope of the energy line or friction slope and R is the hydraulic 
radius. Then substituting Eqn.15 into Eqn.14 and recalling that PAR /= , and for 
a unit width of channel yA =  we have; 

xgySF ff Δ= ρ ................................................................................................................................................................... (16)  

 
Substituting Eqns.12, 13 and 16 into Eqn.11  

foPP xSgyxSgyxgy
x

FFF
leftleft

Δ−Δ+⎟⎟
⎠

⎞
⎜⎜
⎝
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∂ 2

2
1

.................................................... (17) 
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Expanding the brackets, the PleftF  terms cancel out. After differentiating y with 
respect to x, we have;  

fo xSgyxSgyx
x
ygyF Δ−Δ+Δ−=∑ ρρ

∂
∂ρ

2
2

............................................................................................ (18) 

 
Taking xgyΔρ  out as a common factor, we can simplify this to obtain;   

∑ ⎟
⎠
⎞

⎜
⎝
⎛ −+−Δ= fo SS

x
yxgyF

∂
∂ρ ............................................................................................................................. 19) 

 
Now considering the RHS of Eqn.8, the change in momentum consist of two 
parts, a temporal momentum change and a spatial momentum change. 

x
tM

t
xM

dt
dM

∂
∂

+
∂

∂
=

)()(
............................................................................................................................................... (20) 

 
The momentum of the fluid is xvyM Δ= ρ  and the temporal momentum change 
is its time derivative; 

( )xvy
tt

xM
Δ

∂
∂

=
∂

∂ ρ)(
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................................................................................................................................... (22) 

 
The spatial momentum change is the space derivative of the momentum flux 
through the control surface 2xvyΔρ ; 

( )2)( xvy
xx

tM
Δ

∂
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=
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Then substituting Eqns.22 and 24 into Eqn.20; 

⎟
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To simplify this equation, we introduce another relationship for a channel of unit 
width; 
q vy= ....................................................................................................................................................................................... (26) 

 
Differentiating with respect to x we obtain; 
∂
∂

∂
∂

∂
∂

q
x

v y
x

y v
x
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Then substituting this into our continuity equation (Eqn.6), we have; 

t
yir

x
vy

x
yv

∂
∂

∂
∂

∂
∂

−−=+ ............................................................................................................................................... (28) 

 



Appendix 2.1 Derivation of the Saint Venant Equations with lateral inflows and outflow 

   233 

Adding a xvy ∂∂ /  term to both sides of this equation, the LHS now resembles the 
second bracketed term of Eqn25; 

x
vy
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vy

x
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∂
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∂
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Therefore, substituting Eqn.29 into Eqn.25 we have; 
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This equation can be simplified further as the tyxv ∂∂Δ /ρ  terms cancel out to 
give; 

x
vxvyirxv

t
vxy

dt
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Taking xyΔρ  out as a common factor, we simplify further to obtain; 
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Then combining Eqns.19 and 32; 
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Finally, by expanding the brackets, we obtain the second of the Saint Venant 
equations; 
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Appendix 2.2 Case study – evaluation of SIRMOD 

During the early stages of this research, SIRMOD was seen as the industry 
standard software package for simulating furrow and border irrigation in 
Australia. It was therefore decided to undertake a preliminary study to evaluate 
the effectiveness of SIRMOD as a platform for decision support development.  
 

A2.2.1 Outline of case study 
Volume-balance, surface advance and recession data were collected from 3 
different sugarcane farms in both the Burdekin Delta and Burdekin River 
Irrigation Areas. Over thirty individual irrigations were monitored with the results 
used to validate the performance of the surface irrigation model SIRMOD 
(Version 2.12).  
 
Where furrow dimensions, surface flow characteristics and the modified 
Kostiakov intake parameters were measured for individual irrigations and 
applied in the model, results for the predicted advance and infiltration were 
generally found to range within 22.2% and 16.9% of the measured parameters, 
respectively. However, the usefulness of a model lies in its ability to predict 
irrigation performance where this level of input data is unavailable.  
 
This study presents the results of a sensitivity analysis conducted to identify the 
relative effects on the model output of variations in the values of the input 
parameters. The use of infiltration parameters derived solely from the irrigation 
advance data and inflow is investigated along with the temporal variations in the 
measured infiltration functions.  
 

A2.2.2 Rational for study 
One of the perceived disadvantages of SIRMOD is its requirement for a 
substantial amount of measured data. This includes information on furrow profile 
shape and roughness, field size and slope, soil infiltration characteristics, 
irrigation inflow rates and event time. In practice this level of data tends to be 
difficult, time consuming and expensive to obtain. The question arises as to what 
effort is required or justified in data collection for the tool to be beneficial to the 
user. Therefore the case study was conducted to determine: (i) the ability of the 
model to simulate the physical event if all of the input data is available (model 
validation) and (ii) the usefulness of the model if some of the data is inaccurate 
or missing. The latter is undertaken in the form of a sensitivity analysis.  
 

A2.2.3 Materials and methods 
The individual performance of over thirty irrigations were monitored on three 
commercial furrow irrigated sugarcane farms in the Burdekin region during 
1994-95 (Raine, 1995a). Sites (Table A2.2.1) were selected to be representative 
of the soils, irrigation design and management practices of the region. In each 
case, irrigation water was applied at low pressures from a head box through 
collapsible fluming and cut-off fluming cups at the end of each furrow. At each 
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site, up to twenty furrows were irrigated with measurements undertaken on up to 
three individual replicated furrows. Field slope and furrow length were measured 
manually while electronic water meters (Great Lakes Instruments, Wisconsin) 
were used to measure inflow and outflow rates (and hence, the total volumes) of 
water applied and lost as tailwater. The inflow meter was mounted in a length of 
250 mm PVC pipe and installed in the layflat irrigation fluming between the 
headbox and the monitoring site. The outlet meters were mounted in 50 mm PVC 
tubing and sited within individual replicated furrows. The final intake rate for the 
furrow was determined as the difference between the inflow and outflow rates 
after the outflow rate had reached an effective maximum. Float sensors were 
sited at either 100 or 200 m intervals along the furrow length to measure water 
advance time, depth of flow and recession time.  
 
To reduce errors due to non-uniformities in furrow shape, furrow geometries were 
measured using a profile meter at up to six locations within the trial site. This 
data was averaged and the program PCSv1.42 (Raine, 1995b) used to produce 
the empirically fitted profile parameters ρ1, ρ2, σ1, σ2, γ1, and γ2 which were 
used as input on the SIRMOD "Page 3" screen to describe the surface water 
storage. These values were also used in the calculation of the Manning n, as 
described on page 118 of Walker and Skogerboe (1987). 
 

Table A2.2.1: Site information for irrigation trials. 

Site Surface 
texture 

Subsurface 
texture 

Average 
Slope 

Field 
Length (m) 

Inflow 
Range (l/s) 

Home Hill sandy clay 
loam 

sandy clay 
loam 0.001825 400 m 0.99 to 

3.50  

Rita Island sandy loam sandy clay 
loam 0.001864 350 m 1.32 to 

2.62  

Jarvisfield sandy clay 
loam sandy clay 0.000914 450 m 2.04 to 

3.31  
 
 
The modified Kostiakov-Lewis infiltration equation (Equation 2.7) was used to 
described the infiltration process. The average hydraulic area of the furrow was 
calculated using special software and used to calculate the infiltration 
parameters a and k using a modified version of the two point method of Elliott & 
Walker (1982). If, as sometimes did occur, the value of the parameter a was 
calculated as a negative number using the two-point method, it was set equal to 
zero and k was recalculated. This implies a linear infiltration curve predominately 
influenced by a high final infiltration rate. However, it most likely means that the 
final infiltration rate (fo) was over determined. 
 
A sensitivity analysis was undertaken using data from nine irrigation events, 
three tests from each site (Table A2.2.2). It was conducted by changing the 
measured input parameters individually by amounts larger than could be 
realistically encountered in practice. These were then used as input into 
SIRMOD and the output volume-balance recorded. In each case all other 
parameters were retained at their measured value. 
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Table A2.2.2: Irrigations tested in sensitivity analysis. 

Sites Home Hill Rita Island Jarvisfield 

Test names lv1120, lu56, 
lu139 j37, j74, j104 sh74, sh84, 

sh88 
 
 
The full hydrodynamic model option was used preferentially when undertaking 
the simulations in SIRMOD. However, where this model was unable to complete 
a simulation due to either programming errors or mathematical non-viability, the 
zero inertia model and kinematic wave model options were used.  
 
The program INFILT v3.01 (McClymont, 1995,  McClymont and Smith, 1996) 
was used to generate alternative values of the three infiltration parameters and 
the cross-sectional area of flow from the measured advance data. The program 
does this by determining all four parameters in a single optimisation process. The 
empirical profile parameters were matched to the area parameter value 
generated from INFILT v3.01 using the profile program PCSv1.42. These results 
were then used as input into SIRMOD and the output compared with field 
measurements to determine the necessity of directly measuring the infiltration 
parameters. The effect of variation in the infiltration function of successive 
irrigations on the cumulative infiltration was also investigated.  
 

A2.2.4 Validation of the model 
To test the model's validity, the results for predicted advance, and runoff and 
infiltration volumes, were compared against the measured quantities for over 70 
sets of individual furrow irrigation data (Table A2.2.3).  
 

Table 2.2.3: Summary of validation results. 

Output slope of 
trendline average error r2 

Predicted versus measured advance 
(Figure A2.2.1) 0.91 22.2% 0.83 

Predicted versus measured runoff 
volumes (Figure A2.2.2(a)) 1.2 151% 0.2 

Predicted versus measured infiltration 
volumes (Figure A2.2.2(b)) 0.8 16.9% 0.63 

 
 
Figure A2.2.1 shows the relationship between the measured advance times and 
those predicted by SIRMOD. The regression analysis shows a high correlation 
(r2=0.83) while the slope (0.91) of the trendline indicates that SIRMOD is 
slightly underpredicting the advance times. The average error between the 
predicted and measured advance times was 22.2%. 
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Figure A2.2.1: Comparison of measured and predicted advance times. 

 
A significant correlation (r2=0.63) was found between the measured and 
predicted infiltrated volumes with a regression coefficient of 0.8 (Figure A2.2.2b). 
This suggests that the model generally underpredicts the total infiltration during 
the irrigation. However, the average deviation was 16.9% of the measured 
infiltrated volume (or less than 10% of the total volume applied). Because of the 
direct relationship between the infiltrated and runoff volumes, an 
underprediction in infiltration resulted in an overprediction in runoff (Figure 
A2.2.2a). In this case the slope of the regression between the measured and 
predicted runoff was 1.2 and the correlation coefficient 0.2. The poor correlation 
coefficient reflects the proportionally small runoff volumes obtained in these 
trials. 
 
The average deviation from the measured runoff volumes appears high at 151% 
although again it is less than 10% of the total volume applied. This result is 
greatly influenced by several extreme results with errors over 2000%. Excluding 
these extremes, the deviations from the measured runoff volumes remains 
under 40% for the majority of tests. The 16.9% average deviation between 
measured and predicated infiltration volumes provides us with some 
reassurance that the model simulates the physical process with some reliability. 
However, this is for the case where all input data has been measured with a 
reasonable degree of accuracy. The sensitivity analysis undertaken in the next 
section indicates the response of the model to changes in input data. 
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Figure A2.2.2:  Comparison of measured and predicted (a) runoff volumes and (b) infiltrated 
volumes. 
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A2.2.5 Sensitivity analysis 

Manning n 
Figure A2.2.3(a) and (b) demonstrate the effect of changes in the Manning n 
parameter on the SIRMOD output where the Manning n was varied from 50% to 
250% of the measured value. These graphs indicate that increasing the Manning 
n increases the simulated infiltrated volume. This was expected as increasing the 
Manning n effectively increases the roughness of the furrow, slowing the 
advance and allowing more time for infiltration. However, the error induced is a 
less than 4% deviation in the measured infiltrated volume for up to a 150% 
increase in the Manning n. The maximum deviation from the measured runoff 
volumes of 30% is a reflection of the proportionally small actual runoff volumes. 
The maximum volume-balance error was only 2.9% of the total volume applied. 
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Figure A2.2.3: Effect of changes in Manning n on (a) runoff and (b) infiltrated volumes. 

 

Field slope 
The field slope parameter in SIRMOD was varied from 40% to 200% of the 
measured value. The results shown in Figure A2.2.4(a) and (b) indicate that by 
increasing the slope, we are effectively increasing the runoff and decreasing the 
infiltrated volume. Again, this was expected due to a faster advance.  
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Figure A2.2.4: Effect of changes in field slope on (a) runoff and (b) infiltrated volumes. 

 
The maximum errors induced by a reduction to 40% of the measured slope was a 
less than 3% deviation in infiltrated volume and 20% in the runoff volume. This 
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equates to 2.2% of the total inflow. Decreasing the slope had more effect on the 
simulated output quantities than an increase in slope.  
 

Inflow 
Inflow values ranging from 70% to 160% of the measured values were used as 
input to SIRMOD. The infiltration parameters and time to cutoff were entered as 
their measured values. This represents a situation which could occur if the 
infiltration parameters were calculated from a previous event, or using a point 
source method. 
 
Figure A2.2.5(a) demonstrates the effect of inflow on the measured runoff 
volumes. The deviation from the measured runoff is up to 600% for a 160% 
change in inflow (less than 60% of the total volume applied). The large deviations 
in simulated runoff volumes can be explained by the fact that changing the inflow 
rate has little effect on infiltration of water through the soil, which is dominated 
by the soil properties. This is best visualized at large irrigation times where the 
final infiltration rate will be dominating the infiltration process. 
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Figure A2.2.5: Effect of changes in inflow on; (a) runoff volume with constant infiltration 
parameters; (b) infiltrated volume with constant infiltration parameters; (c) runoff volume with 

recalculated infiltration parameters; and (d) infiltrated volume with recalcul 

 
The effect on the infiltrated volumes of varying inflow (Figure A2.2.5(b)) is less 
dramatic with deviations ranging up to 60% of the measured infiltration volume. 
The large errors occurring at low inflow values arise when the simulated advance 
does not reach the end of the field and all of the water applied infiltrates with no 
runoff. For the cases tested, this usually meant that the simulated volume of 
water applied was less than the measured infiltrated volume.  In practice, it 
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would be unlikely that the irrigator would apply an inflow rate below that required 
to reach the end of the field. Where runoff did occur, the largest infiltration error 
was only 7% of the total water applied. 
 
When the Kostiakov-Lewis infiltration parameters a, and k are recalculated for 
the changes in inflow, the magnitude of the error between the measured and 
predicted infiltration volumes increases dramatically (Figure A2.2.5(d)). The 
maximum deviation between infiltrated volumes is now nearly 50% which 
accounts for  39% of the total water applied. The error between runoff volumes is 
in fact reduced (Figure A2.2.5(c)) to nearly 300% (44% of the total water applied) 
for the same inflow changes, though this is of little consequence as it is only 
compensating for the larger infiltration errors.  
 
It should be noted that it was not possible to recalculate the infiltration 
parameters for the 40% inflow rate. This is not unreasonable as in practice it 
would be unlikely to find such a high advance rate from a low inflow rate.  
 
The general trend is that an increase in inflow, without changing the cutoff time, 
will increase both predicted runoff and infiltrated volumes, whether or not the 
infiltration parameters are altered. However, it is the runoff volume that is most 
greatly affected by an increase in inflow. 
 

Cross-sectional area of flow 
Figure A2.2.6(a) and (b) demonstrate the effect of changes in the cross-sectional 
area of flow parameter on the output volumes. Again, the infiltration parameters 
were not recalculated for the new area. Both runoff and infiltration volumes 
remained relatively unaffected by changes of 30% to 250% of the measured 
area. The greatest infiltration error was only 1% while for runoff it was just under 
3.5%. This corresponds to a maximum error of 0.62% of the total inflow volume. 
The scatter in the graphs is indicative of numerical rounding errors. 
 
When the infiltration parameters were recalculated to be consistent with the 
wetted perimeter corresponding to the change in area, we once again see an 
increase in the output volume deviations. Figure A2.2.6 (c) demonstrates a 
maximum runoff error of 60% for a 70% reduction in cross-sectional area. Figure 
A2.2.6 (d) shows a maximum infiltration error of 16% for a 120% increase in the 
measured area parameter. There is an increase in the total volume-balance error 
to 9.0% of the inflow volume. The general trend of these graphs indicate that an 
increase in cross-sectional area of flow will increase the runoff, reducing the 
amount of water infiltrated. As the results of Figure A2.2.6 (a) and (b) indicate 
little change in the associated output volumes, Figure A2.2.6 (c) and (d) are in 
effect demonstrating the result of changes in the cross-sectional area 
parameters on the Kostiakov-Lewis infiltration parameters. 
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Figure A2.2.6: Effect of changes in cross-sectional area of flow on; (a) runoff volume with 
constant infiltration parameters; (b) infiltrated volume with constant infiltration parameters; (c) 

runoff volume with recalculated infiltration parameters; and (d) infiltrated volume with 
recalculated infiltration parameters.  

 

Final infiltration rate 

The final infiltration rate parameter (fo) was varied by ±100% of the measured 
value (Figures A2.2.7(a) and (b)). This involved the recalculation of a and k, 
although this was not always possible for very high final infiltration rates. The first 
of these figures shows a maximum deviation from the measured runoff volume 
of 360% at a zero final infiltration rate. Figure A2.2.7(b) similarly shows that the 
maximum error occurs at the zero infiltration rate, with a deviation of nearly 50% 
from the measured infiltration volume. This corresponds to a maximum error of 
40% when expressed relative to the total inflow volume. Both figures 
demonstrate that an increase in the final infiltration rate leads to a reduction in 
runoff and hence, more water infiltrated into the soil. 
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Figure A2.2.7: Effect of changes in final infiltration rate on (a) runoff and (b) infiltrated volumes. 

 

A2.2.5 Mathematical convergence errors 
The volume-balance error predicted by SIRMOD is a measure of the success of 
the mathematical convergence in the model. It was found that for most 
parameter combinations tested, the mathematical convergence error returned by 
SIRMOD was less than one percent. That is, the solution converged and the 
predicted infiltrated and runoff volumes added up to equal the volume of water 
applied to the field. The exception to this was when the predicted advance did 
not reach the end of the field. In this case, the error was still usually less than 
20%.  
 

A2.2.6 Results using empirically fitted infiltration parameters 
Figures A2.2.8(a) and (b) show the magnitude of the volume errors incurred 
through using the output of INFILT v3.01 as input into SIRMOD. Five of the 
tests showed good agreement with the measured infiltration volumes with 
deviations of less than 12%. However, the three tests at the Jarvisfield site (j37, 
j74, j104) and the first test undertaken at the Rita Island site (sh74) showed a 
poor correlation between measured and predicted infiltration volumes. The 
maximum volume-balance error was for the event "j104" at 33.8% of the 
measured inflow volume. 
 
The empirically fitted infiltration parameter based model under-predicted 
infiltration in all cases. However, Figure A2.2.2(b) demonstrated that SIRMOD 
generally under-predicts infiltration, so this result may not wholly be attributed to 
the empirically fitted infiltration parameters. 
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Figure A2.2.8: Results from SIRMOD using infiltration parameters from INFILT v3.01, 
showing effect on (a) runoff and (b) infiltrated volumes. 

 
The optimisation undertaken in the INFILT v3.01 model is in effect a curve 
fitting exercise through the advance points (x,t). Therefore, you would expect the 
quality of the advance data to have an effect on the output parameter values. 
Table A2.2.4 shows the coefficients of variation for simple power curve 
regressions of the nine irrigations analysed. This data suggests that the irrigation 
data sets which produced poor correlations in the predicted volume-balance also 
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had high coefficients of variation and confirms that empirically fitted infiltration 
parameters are less reliable for "noisy" advance data.  
 

Table A2.2.2: Coefficients of variation for power curve regressions of the nine irrigation events 

Test lv1120 lu56 lu139 j37 j74 j104 sh74 sh84 sh88 
r2 0.01 0.12 3.42 2.33 2.22 2.66 3.33 0.29 0.20 

 

A2.2.7 Discussion of results of case study 
The first part of this analysis showed that SIRMOD is able to simulate the 
surface irrigation process adequately when sufficient data are available. When 
used with measured data, SIRMOD showed a tendency to under-predict both 
the rate of advance and the volume infiltrated.  
 
The underprediction by SIRMOD of the volumes infiltrated was also observed by 
Maheshwari and McMahon (1993b), a fact which they attributed to an 
uncertainty in the values they used for the infiltration parameters. Given that the 
same result occurred in the present study, this suggests that there could be a 
systematic error in SIRMOD which might be removed by an appropriate 
calibration procedure. Alternatively, this could be caused by the difference in 
structure between the two point method, and the simulation model leading to a 
“faulty” calibration. 
 
Here calibration is defined as the process whereby the value of a parameter is 
adjusted until the predicted result matches the measured result. The infiltration 
parameters and the Manning n are the only data input to SIRMOD which are not 
measured directly and which therefore provide an opportunity for calibration.  
 
In other applications of similar hydrodynamic models, for example in modelling 
river flows, the Manning n parameter is used as the calibration factor. One 
outcome of this is that it often results in unrealistically high values for n. A useful 
extension of the present study would be to explore the efficacy of attempting to 
calibrate SIRMOD against measured data prior to its use in optimisation of 
irrigation applications. 
 
The SIRMOD program will be most useful if it can be used with confidence in a 
predictive role. The sensitivity analysis reported in this paper showed that for 
prediction to be successful, an accurate estimate of the infiltration characteristic 
of the soil is a necessity. It was the infiltration parameters which had far greatest 
effect on the model results. However, it is also the infiltration parameters which 
are the most difficult to measure or estimate. Point measurements are expensive 
and do not account well for the spatial and temporal variation in the soil 
properties, while techniques based on the irrigation advance cannot be applied 
before the first irrigation.  Where possible, event based methods using data from 
the current or previous irrigation, should be employed. It is unlikely that an 
irrigator would measure the infiltration characteristic during each irrigation. This 
data would most likely come from some previous event. There is some slight risk 
in this practice as demonstrated by the temporal variation in infiltration at the 
Jarvisfield site. Using empirically fitted infiltration parameters may be a labour 
saving alternative to conventional event based methods although the process 
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should be undertaken with caution as poor advance data may influence the 
results. It was also shown that the model was relatively insensitive to changes or 
errors in the slope and the Manning n, while the cross-sectional profile of the 
furrow had little or no effect on the model results. Variation of the inflow had little 
influence on the volume infiltrated but had a significant effect on the runoff 
volume and hence the volumetric efficiency of an irrigation.  
 
From the work reported in this paper it can be concluded that SIRMOD is a 
useful tool for surface irrigation design and management, provided an accurate 
description of the infiltration properties of the soil is available. 
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Appendix 3.1  Simulation engine source code 
 
The following code listing represents the entire code base for the simulation 
engine, excluding that relating to the different “smart” parameter objects. 

A3.1.1 C++ Header file 
//--------------------------------------------------------------------------- 
 
#ifndef FIDOSimulationH 
#define FIDOSimulationH 
 
#include <Classes.hpp> 
#include <vector> 
#include <set> 
#include "TeeGeometry.hpp" 
#include "TeeGLCanvas.hpp" 
#include "TeeOpenGL.hpp" 
#include "SmartPointers.h" 
 
 
//--------------------------------------------------------------------------- 
#ifndef SIMNAMES 
    #define  MaxDepth   (*_MaxDepth) 
    #define  TopWidth   (*_TopWidth) 
    #define  MidWidth   (*_MidWidth) 
    #define  BotWidth   (*_BotWidth) 
    #define  sigma1     (*_sigma1) 
    #define  sigma2     (*_sigma2) 
    #define  rho1       (*_rho1) 
    #define  rho2       (*_rho2) 
    #define  ManN       (*_Manning_n) 
    #define  KosA       (*_Kostiakov_a) 
    #define  KosK       (*_Kostiakov_k) 
    #define  KosFo      (*_Kostiakov_fo) 
    #define  TotalTime  (*_TotalTime) 
    #define  StageArray (*_StageArray) 
    #define  DownstreamCell    (*_DownstreamCell) 
    #define  UpstreamCell  (*_UpstreamCell) 
    #define  Qin        (*_Qin) 
    #define  So         (*_So) 
    #define  dt         (*_dt) 
    #define  Dist       (*_X) 
    #define  Xinit      (*_Xinit) 
    #define  A          (*_A) 
    #define  Q          (*_Q) 
    #define  Z          (*_Z) 
    #define  D          (*_D) 
    #define  P          (*_P) 
    #define  WP         (*_WP) 
    #define  VP         (*_VP) 
    #define  dZdT       (*_dZdT) 
 
    #define  DQ         _Q->FDeltaValues 
    #define  DA         _A->FDeltaValues 
    #define  DX         _X->FDeltaValues 
    #define  DT         _dt->FDeltaValue 
 
    #define  SOl        _So->L 
    #define  Al         _A->L 
    #define  Ql         _Q->L 
    #define  Zl         _Z->L 
    #define  Dl         _D->L 
    #define  Pl         _P->L 
    #define  WPl        _WP->L 
    #define  ManNl      _Manning_n->L 
    #define  rho1l      _rho1->L 
    #define  rho2l      _rho2->L 
    #define  sigma1l    _sigma1->L 
    #define  sigma2l    _sigma2->L 
    #define  VPl        _VP->L 
    #define  dZdTl      _dZdT->L 
 
    #define  SOr        _So->R 
    #define  Ar         _A->R 
    #define  Qr         _Q->R 
    #define  Zr         _Z->R 
    #define  Dr         _D->R 
    #define  Pr         _P->R 
    #define  WPr        _WP->R 
    #define  ManNr      _Manning_n->R 
    #define  rho1r      _rho1->R 
    #define  rho2r      _rho2->R 
    #define  sigma1r    _sigma1->R 
    #define  sigma2r    _sigma2->R 
    #define  VPr        _VP->R 
    #define  dZdTr      _dZdT->R 
 
    #define  SOj        _So->J 
    #define  Aj         _A->J 
    #define  Qj         _Q->J 
    #define  Zj         _Z->J 
    #define  Dj         _D->J 
    #define  Pj         _P->J 
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    #define  WPj        _WP->J 
    #define  VPj        _VP->J 
    #define  dZdTj      _dZdT->J 
 
    #define  SOm        _So->M 
    #define  Am         _A->M 
    #define  Qm         _Q->M 
    #define  Zm         _Z->M 
    #define  Dm         _D->M 
    #define  Pm         _P->M 
    #define  WPm        _WP->M 
    #define  VPm        _VP->M 
    #define  dZdTm      _dZdT->M 
#endif 
 
enum TPhaseElements {peAdvance,peRecession,peInflow,peRunoff,pePonding,peLateralFlow}; 
typedef Set<TPhaseElements, peAdvance,peLateralFlow>  TPhaseComponents; 
 
typedef void __fastcall (__closure *TCalculateCellPositions)(int xpos); 
typedef double __fastcall (__closure *TDerivativeCellFunction)(void); 
typedef void __fastcall (__closure *TCalcAuxCoefficients)(void); 
typedef void __fastcall (__closure *TUpdateParamEstimates)(void); 
typedef void __fastcall (__closure *TResetSimulation)(void); 
 
 
 
 
enum TInitialSolutionDirection {sdTopToBottom,sdBottomToTop} ; 
enum TGridType {gtEulerian,gtLangrangian}; 
 
class TFIDOSimulation; 
class TFIDOModelDataTreeObject; 
class T1DInputParameter; 
class T1DGridParameter; 
class T2DGridParameter; 
class TCustomGridParameter; 
class ECustomFIDOException; 
class TFIDOOutputTreeObject; 
class TSimulationParametersObject; 
 
SmartPointer<TFIDOSimulation> __fastcall CreateFIDOSimulation(void); 
 
class TFIDOSimulation 
{ 
public: 
    __fastcall TFIDOSimulation(void); 
    __fastcall ~TFIDOSimulation(void){}; 
    bool __fastcall RunSimulation(void); 
    void __fastcall ResetSimulation(void); 
    int x,t; 
    bool stop; 
    bool CutoffTimeExceeded; 
    int lastcell,firstcell; 
    double FieldLength; 
    double ZRequired; 
    double TimeToCutoff; 
    double DefaultTimeStep; 
    double SimulationTimeStep; 
    double MaxZ; 
    double An; 
    int TotalIterations; 
    int ReducedSteps; 
    bool StopWhenRunoffOccurrs; 
    SmartPointer<T1DInputParameter> _Qin; 
    SmartPointer<T1DInputParameter> _So; 
    SmartPointer<T1DInputParameter> _MaxDepth; 
    SmartPointer<T1DInputParameter> _TopWidth; 
    SmartPointer<T1DInputParameter> _MidWidth; 
    SmartPointer<T1DInputParameter> _BotWidth; 
    SmartPointer<T1DInputParameter> _sigma1; 
    SmartPointer<T1DInputParameter> _sigma2; 
    SmartPointer<T1DInputParameter> _rho1; 
    SmartPointer<T1DInputParameter> _rho2; 
    SmartPointer<T1DInputParameter> _Manning_n; 
    SmartPointer<T1DInputParameter> _Kostiakov_a; 
    SmartPointer<T1DInputParameter> _Kostiakov_k; 
    SmartPointer<T1DInputParameter> _Kostiakov_fo; 
    T1DGridParameter*_dt; 
 
    T1DGridParameter*_TotalTime; 
 T1DGridParameter*_DownstreamCell; 
 T1DGridParameter*_UpstreamCell; 
    T2DGridParameter*_X; 
    T2DGridParameter*_A; 
    T2DGridParameter*_Q; 
    T2DGridParameter*_Z; 
 
    SmartPointer<T2DGridParameter> _D; 
    SmartPointer<T2DGridParameter> _P; 
    SmartPointer<T2DGridParameter> _WP; 
    SmartPointer<T2DGridParameter> _VP; 
    SmartPointer<T2DGridParameter> _dZdT; 
    SmartPointer<TList> GridParametersList; 
    bool StopOnException; 
    __property TResetSimulation OnResetSimulation = { read = FOnResetSimulation, write = FOnResetSimulation }; 
    __property TCalculateCellPositions CalculateCellPositions = { read = FCalculateCellPositions, write = 
FCalculateCellPositions }; 
    __property TGridType GridType={read=GetGridType,write=SetGridType}; 
    __property TSimulationParametersObject* CurrentSimData = { read = GetCurrentSimData, write = SetCurrentSimData 
}; 
    __property TFIDOOutputTreeObject* OutputObject = { read = GetOutputObject, write = SetOutputObject }; 
    __property std::vector<int> Iterations={read=FIterations}; 
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    void __fastcall LoadSimData(TSimulationParametersObject*SimData); 
    void __fastcall SetTimeStep(void); 
    void __fastcall EnableConvergenceLogging(void); 
    void __fastcall DisableConvergenceLogging(void); 
    __property int StopAtPoint = { read = GetStopAtPoint, write = SetStopAtPoint }; 
 
protected: 
    void __fastcall UpdateA(const int&i, const int&j); 
    void __fastcall UpdateA_LastCell(const int&i, const int&j); 
    void __fastcall UpdateA_Runoff(const int& i); 
    void __fastcall UpdateT(const int&i); 
    void __fastcall UpdateQ(const int&i); 
    void __fastcall UpdateX(const int&i); 
    void __fastcall CombineLastTwoCells(void); 
    void __fastcall ResetGridParameterDeltaValues(void); 
    bool __fastcall AreThereOscillationsAtRecessionFront(void); 
    bool __fastcall AreThereOscillationsAtAdvanceFront(void); 
 
    __property int CurrentCell={read=GetCurrentCell,write=SetCurrentCell}; 
 
 
    __property bool AllowRunoff={read=GetAllowRunoff,write=SetAllowRunoff}; 
    __property bool CutoffTimeReached={read=GetCutoffTimeReached}; 
    __property bool CellFlowsAreNegligible={read=GetCellFlowsAreNegligible}; 
 
    __property bool StillConverging = { read = GetStillConverging }; 
    __property bool StillSimulating = { read = GetStillSimulating }; 
    __property TCustomGridParameter*GridParameter[int index]={read=GetGridParameter}; 
    __property int CellCount ={read=GetCellCount}; 
 
    __property TCalcAuxCoefficients 
CalculateAuxCoefficients={read=FCalculateAuxCoefficients,write=FCalculateAuxCoefficients}; 
    __property TUpdateParamEstimates 
UpdateParameterEstimates={read=FUpdateParameterEstimates,write=FUpdateParameterEstimates}; 
     __property TDerivativeCellFunction dRC_dT = { read = FdRC_dT, write = FdRC_dT }; 
    __property TDerivativeCellFunction dRM_dT = { read = FdRM_dT, write = FdRM_dT }; 
    __property TDerivativeCellFunction dRC_dAr= { read = FdRC_dAr, write = FdRC_dAr}; 
    __property TDerivativeCellFunction dRM_dAr= { read = FdRM_dAr, write = FdRM_dAr}; 
    __property TDerivativeCellFunction dRC_dAr_LastCell= { read = FdRC_dAr_LastCell, write = FdRC_dAr_LastCell}; 
    __property TDerivativeCellFunction dRM_dAr_LastCell= { read = FdRM_dAr_LastCell, write = FdRM_dAr_LastCell }; 
    __property TDerivativeCellFunction dRC_dParam= { read = FdRC_dParam, write = FdRC_dParam}; 
    __property TDerivativeCellFunction dRM_dParam= { read = FdRM_dParam, write = FdRM_dParam}; 
    __property TDerivativeCellFunction dRC_dParam_LastCell= { read = FdRC_dParam_LastCell, write = 
FdRC_dParam_LastCell }; 
    __property TDerivativeCellFunction dRM_dParam_LastCell= { read = FdRM_dParam_LastCell, write = 
FdRM_dParam_LastCell}; 
 
    __property bool SolveForT = { write = SetSolveForT }; 
    __property bool SolveForX = { write = SetSolveForX }; 
    __property bool SolveForRunoff = { write = SetSolveForRunoff }; 
private: 
    bool NewTimeStep; 
    int SimulationRepeats; 
    int furtherestdownstreamcellindex; 
    double dummy; //delete this 
    double __fastcall dRMd(double&param); 
    double __fastcall dRCd(double&param); 
    bool FirstSim; //delete this 
    bool Convergence; 
    bool FieldLengthExceeded; 
    bool IterationsExceeded; 
    bool FieldLengthReached; 
    bool LogConvergence; 
    TGridType FGridType; 
    int MaxIterations; 
    TPhaseComponents Components; 
    double DampeningFactor; 
    double RMBodyTemp; 
    double theta,phi,inv_phi,inv_theta; 
//    intRemovedCellCount; 
    void __fastcall ResizeMemory(const int&xcount,const int&tcount); 
    double T1,T2,T3,T4,T5,T6,denom; 
    int maxxcount; 
    double a,b,c,d,e,g,p,q,r,u,w; 
    double _s; 
    double Xrl,Xmj,Xrm,Xlj; 
    std::vector<double>E; 
    std::vector<double>H; 
    std::vector<double>F; 
    std::vector<double>U; 
    std::vector<double>V; 
    std::vector<double>Y; 
    std::vector<double>W; 
    int FCurrentCell; 
    TInitialSolutionDirection InitialSolutionDirection; 
    double AMax; 
    double drmdt; 
    double LowLimitWeighting; 
    bool MakeLastCellDerivativeEqualZero; 
 
 
    std::vector<int>FIterations; 
    TResetSimulation FOnResetSimulation; 
    TCalculateCellPositions FCalculateCellPositions; 
    TCalcAuxCoefficients FCalculateAuxCoefficients; 
    TUpdateParamEstimates FUpdateParameterEstimates ; 
 
    TDerivativeCellFunction FdRC_dT; 
    TDerivativeCellFunction FdRM_dT; 
    TDerivativeCellFunction FdRC_dAr; 
    TDerivativeCellFunction FdRM_dAr; 
    TDerivativeCellFunction FdRC_dAr_LastCell; 
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    TDerivativeCellFunction FdRM_dAr_LastCell; 
    TDerivativeCellFunction FdRC_dParam; 
    TDerivativeCellFunction FdRM_dParam; 
    TDerivativeCellFunction FdRC_dParam_LastCell; 
    TDerivativeCellFunction FdRM_dParam_LastCell; 
    TSimulationParametersObject* FCurrentSimData; 
    TFIDOOutputTreeObject* FOutputObject; 
    int FStopAtPoint; 
 
    void __fastcall CreateParameters(void); 
    SmartPointer<T1DGridParameter> __fastcall Create1DGridParameter(SmartPointer<TList> List,AnsiString name,bool 
XOrientated); 
    SmartPointer<T1DInputParameter> __fastcall Create1DInputParameter(SmartPointer<TList> List,AnsiString 
name,bool XOrientated); 
    SmartPointer<T2DGridParameter> __fastcall Create2DGridParameter(SmartPointer<TList> List,AnsiString name); 
 
    TGridType __fastcall GetGridType(); 
    void __fastcall SetGridType(TGridType type); 
 
    void __fastcall SetCurrentCell(int cell); 
    void __fastcall SetSolutionFunctionPointers(void); 
    void __fastcall SetSolutionParameters(void); 
    int __fastcall GetCurrentCell(void); 
    bool __fastcall GetStillConverging(); 
    void __fastcall CalculateHydraulicParameters(int CellSide); 
    void __fastcall CalculateDerivativeValues(int cell) ; 
    void __fastcall DealWithTheProblem(ECustomFIDOException & Problem); 
    void __fastcall CalculateEulerianCellPositions(int xpos); 
    void __fastcall CalculateLangrangianCellPositions(int xpos); 
    void __fastcall RemoveUnwantedUpstreamCells(void); 
    void __fastcall RemoveUnwantedDownstreamCells(void); 
    void __fastcall SetupMemoryForParameters(void); 
    void __fastcall DetermineIrrigationStage(void); 
    void __fastcall DetermineSolutionCellRange(void); 
    TCustomGridParameter*GetGridParameter(int index); 
    void __fastcall RemoveEmptyCells(void); 
    void __fastcall CheckForAbnormalities(void) ; 
    void __fastcall CalculateCellParameters(void); 
    void __fastcall UndoTimeStep(void); 
    void __fastcall UpdateIterationCount(void); 
    void __fastcall ResetChecksAndTolerences(void); 
    bool __fastcall GetStillSimulating(); 
    void __fastcall ResetIterationCount(void); 
    void __fastcall CheckConvergence(void); 
    void __fastcall CheckForBreakInSimulation(void); 
    void __fastcall IncrementTimeStep(void); 
 
    void __fastcall SolveEquationsForFirstCellForDistance(void); 
    double __fastcall ResidualOfContinuity(void); 
    double __fastcall ResidualOfMomentum(void); 
    double __fastcall CalculateHydrostaticPressure(int xpos); 
    void __fastcall SetDerivativeFunctionPointers(void); 
    double __fastcall CalculateDragForce(int xpos); 
    double __fastcall CalculateWettedPerimeter(int xpos); 
    double __fastcall CalculateWettedPerimeterDependantInfiltration(int xpos); 
    double __fastcall CalculateKostiakovLewisInfiltration(int xpos); 
    double __fastcall CalculateVelocityPressureFactor(int xpos); 
    void __fastcall CalculateInfiltrationForLateralSurfaceFlow(void); 
    void __fastcall DetermineIrrigationComponents(void); 
    double __fastcall ZeroFunction(void); 
    void __fastcall RefineGrid(const int& t); 
    SmartPointer<TCurveFit>__fastcall CreateCurveFit(void); 
 
    double __fastcall RCTip(void); 
    double __fastcall RMTip(void); 
    void __fastcall SaveParameterEstimates(void); 
    void __fastcall UndoIteration(void); 
    int __fastcall GetPosAtGreatestDepth(void); 
    double __fastcall dRC_dX(void); 
    double __fastcall dRM_dX(void); 
    double __fastcall dZ_dA(const unsigned& xcoord,const unsigned& tcoord); 
    double __fastcall dZ_dT(const unsigned& xi); 
    double __fastcall dRC_dAl(void); 
    double __fastcall dRC_dQl(void); 
    double __fastcall dRC_dAr_Runoff(void); 
    double __fastcall dRC_dAr_Normal(void); 
    double __fastcall dRM_dAr_Normal(void); 
    double __fastcall dRM_dAr_Runoff(void); 
    double __fastcall dRC_dt(void); 
    double __fastcall dRM_dt(void); 
    double __fastcall dRM_dAl(void); 
    double __fastcall dRM_dQl(void); 
    double __fastcall dRC_dQr(void); 
    double __fastcall dRM_dQr(void); 
    double __fastcall dRM_dQr_Runoff(void); 
 
 
    double __fastcall ResidualOfMomentum_Runoff(void); 
    double __fastcall ResidualOfContinuity_Runoff(void); 
 
    void __fastcall SetAllowRunoff(bool); 
    bool __fastcall GetAllowRunoff(void); 
    void __fastcall SetInitialParameterEstimatesForFirstCell(void); 
    void __fastcall SetInitialParameterEstimates(void); 
    bool __fastcall GetCutoffTimeReached(void); 
    bool __fastcall GetCellFlowsAreNegligible(void); 
    void __fastcall CalculateAuxCoefficients1(void); 
    void __fastcall CalculateAuxCoefficients2(void); 
    void __fastcall UpdateParameterEstimates1(void); 
    void __fastcall UpdateParameterEstimates2(void); 
    void __fastcall UpdateParameterEstimatesForFirstCell(void); 
    int __fastcall GetCellCount(void); 
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    void __fastcall SetSolveForT(bool value); 
    void __fastcall SetSolveForX(bool value); 
    void __fastcall SetSolveForRunoff(bool value); 
    void __fastcall SetCurrentSimData(TSimulationParametersObject* value); 
    TSimulationParametersObject* __fastcall GetCurrentSimData(); 
    void __fastcall SetOutputObject(TFIDOOutputTreeObject* value); 
    TFIDOOutputTreeObject* __fastcall GetOutputObject(); 
    int __fastcall GetActiveModelCount(); 
    TSimulationParametersObject* __fastcall GetActiveModelSimData(int index); 
    void __fastcall UpdateOutputObjectProperties(void); 
    double __fastcall GetDampeningFactor(void); 
    void __fastcall SetStopAtPoint(int value); 
    int __fastcall GetStopAtPoint(); 
 
}; 
 
 
 
#endif 

 

A3.1.2 C++ Source File 
#include <vcl.h> 
#include "PreCompiledHeaders.h" 
#pragma hdrstop 
 
#include "Simulation.h" 
#include "FIDOModelTreeObject.h" 
#include "GridParameters.h" 
#include "SimulationExceptionHandling.h" 
#include "FIDOOutputTreeObject.h" 
#include "SimulationParametersObject.h" 
 
#include <math.h> 
 
SmartPointer<TFIDOSimulation> __fastcall CreateFIDOSimulation(void) 
{ 
    SmartPointer<TFIDOSimulation> Sim(new TFIDOSimulation); 
    #ifdef ASSIGN_SMART_PTR_NAMES 
    Sim.PtrName="CreateFIDOSimulation.Sim"; 
    #endif 
    return Sim; 
} 
 
__fastcall TFIDOSimulation::TFIDOSimulation(void) 
{ 
    CreateParameters(); 
    MakeLastCellDerivativeEqualZero=false; 
    FOnResetSimulation=0; 
    StopOnException=true; 
    MaxIterations=10; 
    DefaultTimeStep=600; 
    InitialSolutionDirection=sdTopToBottom; 
    theta=0.6; 
    phi=0.6; 
    inv_phi=0.4; 
    inv_theta=0.4; 
    GridType=gtEulerian; 
    LogConvergence=false; 
} 
 
void __fastcall TFIDOSimulation::LoadSimData(TSimulationParametersObject*SimData) 
{ 
    CurrentSimData=SimData; //CurrentSimData is a property, and many initialisations occur in the setter. 
    ResetSimulation(); 
} 
          
bool __fastcall TFIDOSimulation::RunSimulation(void) 
{ 
    SimulationRepeats=0; 
    SimulationTimeStep=DefaultTimeStep; 
    do 
    { 
        try 
        { 
            if(NewTimeStep) 
            { 
                IncrementTimeStep(); 
                SetupMemoryForParameters(); 
                ResetIterationCount(); 
                DetermineIrrigationComponents(); 
                SetSolutionParameters(); 
                DetermineSolutionCellRange(); 
                SetSolutionFunctionPointers(); 
                SetInitialParameterEstimates(); 
                ResetGridParameterDeltaValues(); 
 
            } 
            if((t==1||CellCount>1)&&stop==false) 
            { 
                do 
                { 
                    try 
                    { 
                        SaveParameterEstimates(); 
                        UpdateIterationCount(); 
                        if(FCalculateAuxCoefficients) 
                            CalculateAuxCoefficients(); 
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                        UpdateParameterEstimates(); 
                        CheckConvergence(); 
 
                        //think about constraining delta values to half the actual value 
                    } 
                    catch(ECustomFIDOException & Problem) 
                    { 
                        DealWithTheProblem(Problem); 
                        UpdateOutputObjectProperties(); 
                        return false; 
                    } 
                    catch(...) 
                    { 
                        MessageDlg("Unexpected Error!", mtError, TMsgDlgButtons() << mbOK, 0); 
                        throw; 
                    } 
                } 
                while(StillConverging); 
                    CheckForAbnormalities(); 
                RemoveEmptyCells(); 
                if(StopAtPoint>0&&Dist(t,lastcell)>StopAtPoint) 
                { 
                    UpdateOutputObjectProperties(); 
                    return true; 
                } 
 
            } 
            else 
                stop=true; 
        } 
        catch(...) 
        { 
            stop=true; 
            if(!LogConvergence) 
            { 
                --t; 
                --t; 
            } 
        } 
    }while(StillSimulating); 
 
    UpdateOutputObjectProperties(); 
    if((CellCount<=1&&t>1)||(StopWhenRunoffOccurrs&&(Components.Contains(peRunoff) 
 ||Components.Contains(peLateralFlow)))) 
        return true; 
    return false; 
} 
 
void __fastcall TFIDOSimulation::CreateParameters(void) 
{ 
    SmartPointer<TList> List (new TList); 
    GridParametersList=List; 
    #ifdef ASSIGN_SMART_PTR_NAMES 
    GridParametersList.PtrName="TFIDOSimulation.GridParametersList"; 
    #endif 
    _Qin=           Create1DInputParameter(List,"Inflow rate",false); 
    _So=            Create1DInputParameter(List,"Slope",true); 
    _MaxDepth=      Create1DInputParameter(List,"Max Furrow Depth",true); 
    _TopWidth=      Create1DInputParameter(List,"Top Furrow Width",true); 
    _MidWidth=      Create1DInputParameter(List,"Mid Furrow Width",true); 
    _BotWidth=      Create1DInputParameter(List,"Bot Furrow Width",true); 
 
    _sigma1=        Create1DInputParameter(List,"Sigma1",true); 
    _sigma2=        Create1DInputParameter(List,"Sigma2",true); 
    _rho1=          Create1DInputParameter(List,"Rho1",true); 
    _rho2=          Create1DInputParameter(List,"Rho2",true); 
    _Manning_n=     Create1DInputParameter(List,"Manning n",true); 
    _Kostiakov_a=   Create1DInputParameter(List,"Kostiakov a",true); 
    _Kostiakov_k=   Create1DInputParameter(List,"Kostiakov k",true); 
    _Kostiakov_fo=  Create1DInputParameter(List,"Kostiakov fo",true); 
 
    _D=             Create2DGridParameter(List,"Drag force"); 
    _P=             Create2DGridParameter(List,"Hydrostatic pressure"); 
    _WP=            Create2DGridParameter(List,"Wetted-perimeter"); 
    _VP=            Create2DGridParameter(List,"Veloctity pressure factor"); 
    _dZdT=          Create2DGridParameter(List,"Infiltration rate"); 
} 
 
SmartPointer<T1DGridParameter> __fastcall TFIDOSimulation::Create1DGridParameter(SmartPointer<TList> 
List,AnsiString name,bool XOrientated) 
{ 
    SmartPointer<T1DGridParameter> TempParameter(new T1DGridParameter(this,name)); 
    TempParameter->XOrientated=XOrientated; 
    #ifdef ASSIGN_SMART_PTR_NAMES 
    TempParameter.PtrName="TFIDOSimulation::Create1DGridParameter.TempParameter - "+name; 
    #endif 
    List->Add(TempParameter.Get()); 
    return TempParameter; 
} 
 
SmartPointer<T1DInputParameter> __fastcall TFIDOSimulation::Create1DInputParameter(SmartPointer<TList> 
List,AnsiString name,bool XOrientated) 
{ 
    SmartPointer<T1DInputParameter> TempParameter(new T1DInputParameter(this,name)); 
    TempParameter->XOrientated=XOrientated; 
    #ifdef ASSIGN_SMART_PTR_NAMES 
    TempParameter.PtrName="TFIDOSimulation::Create1DInputParameter.TempParameter - "+name; 
    #endif 
    List->Add(TempParameter.Get()); 
    return TempParameter; 
} 
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SmartPointer<T2DGridParameter> __fastcall TFIDOSimulation::Create2DGridParameter(SmartPointer<TList> 
List,AnsiString name) 
{ 
    SmartPointer<T2DGridParameter> TempParameter(new T2DGridParameter(this,name)); 
    #ifdef ASSIGN_SMART_PTR_NAMES 
    TempParameter.PtrName="TFIDOSimulation::Create2DGridParameter.TempParameter - "+name; 
    #endif 
    List->Add(TempParameter.Get()); 
    return TempParameter; 
} 
 
void __fastcall TFIDOSimulation::DealWithTheProblem(ECustomFIDOException & Problem) 
{ 
    Problem.HandleException(); 
   // CurrentSimData->SaveErrorReport(OutputObject->ErrorMessage); 
} 
 
TCustomGridParameter*TFIDOSimulation::GetGridParameter(int index) 
{ 
    if(index>=0&&index<GridParametersList->Count) 
        return (TCustomGridParameter*)GridParametersList->Items[index]; 
    return 0; 
} 
 
void __fastcall TFIDOSimulation::RemoveEmptyCells(void) 
{ 
    if(t>0&&CutoffTimeExceeded&&Convergence) 
    { 
 RemoveUnwantedUpstreamCells(); 
 RemoveUnwantedDownstreamCells(); 
          if(CellCount<=1&&t>1) 
             stop=true; 
    } 
 
} 
 
bool __fastcall TFIDOSimulation::GetStillSimulating() 
{ 
    return !stop; 
} 
 
void __fastcall TFIDOSimulation::SetCurrentCell(int cell) 
{ 
    FCurrentCell=cell; 
    for(int i=0;i<GridParametersList->Count;++i) 
        GridParameter[i]->CellIndex=cell; 
         
    OutputObject->_dt->CellIndex=cell; 
    OutputObject->_A->CellIndex=cell; 
    OutputObject->_Q->CellIndex=cell; 
    OutputObject->_Z->CellIndex=cell; 
    OutputObject->_X->CellIndex=cell; 
    OutputObject->_DownstreamCell->CellIndex=cell; 
 OutputObject->_UpstreamCell->CellIndex=cell; 
    OutputObject->_TotalTime->CellIndex=cell; 
} 
 
int __fastcall TFIDOSimulation::GetCurrentCell(void) 
{ 
    return FCurrentCell; 
} 
 
 
void __fastcall TFIDOSimulation::DetermineIrrigationComponents(void) 
{ 
    if(Components.Empty()) 
        Components=Components<<peAdvance<<peInflow; 
    else if(!Components.Contains(peLateralFlow)) 
    { 
        if(Components.Contains(peAdvance)) 
        { 
            if(FieldLengthReached) 
            { 
                if(AllowRunoff) 
                    Components=Components<<peRunoff>>peAdvance; 
                else 
                    Components=Components<<pePonding>>peAdvance; 
            } 
        } 
        if(CutoffTimeReached&&!Components.Contains(peRecession)) 
        { 
            Components=Components>>peInflow<<peRecession; 
            //stop=true; 
        } 
        if(Components.Contains(peRecession)) 
        { 
            if(CellFlowsAreNegligible) 
                Components=Components<<peLateralFlow>>peRecession>>peAdvance>>peRunoff>>pePonding; 
        } 
    } 
    if(StopWhenRunoffOccurrs&&(Components.Contains(peRunoff)||Components.Contains(peLateralFlow))) 
        stop=true; 
} 
 
bool __fastcall TFIDOSimulation::GetStillConverging() 
{ 
  return !Convergence; 
} 
 
void __fastcall TFIDOSimulation::DetermineSolutionCellRange(void) 
{ 
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    UpstreamCell(t)=(t!=1?UpstreamCell(t-1):UpstreamCell(t-1)+1); //hopefully, empty cells should be chopped at 
the end of the last itteration. 
    DownstreamCell(t)=(Components.Contains(peAdvance)?DownstreamCell(t-1)+1:DownstreamCell(t-1)); 
    firstcell=UpstreamCell(t); 
    lastcell=DownstreamCell(t); 
    if(lastcell>furtherestdownstreamcellindex) 
        furtherestdownstreamcellindex=lastcell; 
} 
 
void __fastcall TFIDOSimulation::UpdateIterationCount(void) 
{ 
 ++Iterations[t]; 
    ++TotalIterations; 
    _X->IncreaseDeltaValueSize(); 
    _dt->IncreaseDeltaValueSize(); 
    _A->IncreaseDeltaValueSize(); 
    _Q->IncreaseDeltaValueSize(); 
    _TotalTime->IncreaseDeltaValueSize(); 
 
     
    DampeningFactor=GetDampeningFactor(); 
    ResetChecksAndTolerences(); 
} 
 
void __fastcall TFIDOSimulation::CheckForAbnormalities(void) 
{ 
   if(t>0) 
   { 
        FieldLengthExceeded=(Dist(t,lastcell)>FieldLength); 
        if(!FieldLengthReached) 
        { 
            if(Dist(t,lastcell)==FieldLength) 
            { 
                FieldLengthReached=true; 
                FieldLengthExceeded=false; 
                //double dx1=Dist(t,lastcell)-Dist(t,lastcell-1); 
            } 
        } 
        if(!CutoffTimeExceeded&&TotalTime(t)>=TimeToCutoff) 
        { 
            CutoffTimeExceeded=true; 
           // stop=true; 
        } 
      if(t>1000) 
        stop=true; 
    } 
} 
 
 
void __fastcall TFIDOSimulation::ResetChecksAndTolerences(void) 
{ 
    _Q->ResetConvergenceParameters(); 
   _A->ResetConvergenceParameters(); 
} 
 
void __fastcall TFIDOSimulation::CheckConvergence(void) 
{ 
 
 if(!Components.Contains(peLateralFlow)&&(!_Q->Convergence||!_A->Convergence)) 
    { 
  Convergence=false; 
        if(AreThereOscillationsAtRecessionFront()) 
        { 
 
            if(firstcell<lastcell) 
            { 
                Q(t,firstcell-1)=0; 
          Z(t,firstcell-1)+= A(t,firstcell-1)/2.0; 
          A(t,firstcell-1)=0; 
                ++firstcell; 
                UpstreamCell(t)=firstcell; 
              //  Q(t,firstcell-1)=0; 
              //  A(t,firstcell-1)=0; 
 
            } 
        } 
        if(Components.Contains(peRecession)&&Iterations[t]>20) 
        { 
            Components=Components.Clear(); 
            Components=Components<<peLateralFlow; 
            if(!(StopWhenRunoffOccurrs&&(Components.Contains(peRunoff)||Components.Contains(peLateralFlow)))) 
            { 
                SetSolutionParameters(); 
                DetermineSolutionCellRange(); 
                SetSolutionFunctionPointers(); 
                SetInitialParameterEstimates(); 
                ResetGridParameterDeltaValues(); 
                Iterations[t]=0; 
            } 
            else 
            { 
                stop=true; 
            } 
                
 
        } 
        if(Iterations[t]>100) 
        { 
            Convergence=false; 
            throw EConvergenceFailure(this,OutputObject,"Exeeded "+AnsiString(100)+" Iterations on 
"+AnsiString(SimulationRepeats)+" occasions!"); 
        } 
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    } 
 else 
 { 
  Convergence=true; 
        IterationsExceeded=false; 
  NewTimeStep=true; 
 } 
    if(LogConvergence) 
        CurrentSimData->LogConvergence(); 
} 
 
 
bool __fastcall TFIDOSimulation::AreThereOscillationsAtRecessionFront(void) 
{ 
    if(Components.Contains(peRecession)&&Iterations[t]>10 
            &&(   (!_Q->Convergence&&_Q->CheckForOscillations(firstcell)) 
                ||(!_A->Convergence&&_A->CheckForOscillations(firstcell)) )) 
    { 
        return true; 
    } 
 
    return false; 
} 
 
 
bool __fastcall TFIDOSimulation::AreThereOscillationsAtAdvanceFront(void) 
{ 
    if(!Components.Contains(peInflow)&&Iterations[t]>10&&!_Q->Convergence&&_Q->CheckForOscillations(lastcell)) 
    { 
        if(_A->CheckForOscillations(lastcell)) 
            return true; 
    } 
    return false; 
} 
 
void __fastcall TFIDOSimulation::CheckForBreakInSimulation(void) 
{ 
 
} 
 
void __fastcall TFIDOSimulation::IncrementTimeStep(void) 
{ 
    if(!(FieldLengthExceeded)) 
        ++t; 
 
    NewTimeStep=false; 
} 
 
void __fastcall TFIDOSimulation::ResetIterationCount(void) 
{ 
 Convergence=false; 
 Iterations[t]=0; 
} 
 
void __fastcall TFIDOSimulation::UndoTimeStep(void) 
{ 
 
    t=t-1; 
 
    SetupMemoryForParameters(); 
    ResetIterationCount(); 
    DetermineIrrigationComponents(); 
    SetSolutionParameters(); 
    DetermineSolutionCellRange(); 
    SetSolutionFunctionPointers(); 
    SetInitialParameterEstimates(); 
 
    ResetIterationCount(); 
    SetInitialParameterEstimates(); 
 
    //for(int i=0;i<GridParametersList->Count;++i) 
   //     GridParameter[i]->UndoTimeStep(); 
} 
 
void __fastcall TFIDOSimulation::SetupMemoryForParameters() 
{ 
        int xcount,tcount; 
        tcount=t+1; 
        if( !(FieldLengthExceeded||FieldLengthReached)) 
            xcount=tcount; 
        else 
            xcount=furtherestdownstreamcellindex+1; 
} 
 
void __fastcall TFIDOSimulation::ResizeMemory(const int&xcount,const int&tcount) 
{ 
    E.resize(xcount); 
    H.resize(xcount); 
    F.resize(xcount); 
    U.resize(xcount); 
    V.resize(xcount); 
    Y.resize(xcount); 
    W.resize(xcount); 
 
    for(int i=0;i<GridParametersList->Count;++i) 
        GridParameter[i]->AdjustMemory(tcount,xcount); 
 
    OutputObject->_A->AdjustMemory(tcount,xcount); 
    OutputObject->_Q->AdjustMemory(tcount,xcount); 
    OutputObject->_Z->AdjustMemory(tcount,xcount);   //want to account for infilt even after advance receeds. 
    OutputObject->_X->AdjustMemory(tcount,xcount); 
    OutputObject->_DownstreamCell->AdjustMemory(tcount,0); 
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    OutputObject->_UpstreamCell->AdjustMemory(tcount,0); 
    OutputObject->_TotalTime->AdjustMemory(tcount,0); 
    OutputObject->_dt->AdjustMemory(tcount,0); 
    FIterations.resize(tcount); 
 
} 
 
void __fastcall TFIDOSimulation::SaveParameterEstimates(void) 
{ 
    for(int i=0;i<GridParametersList->Count;++i) 
        GridParameter[i]->SaveCurrentValues(); 
    OutputObject->_dt->SaveCurrentValues(); 
    OutputObject->_A->SaveCurrentValues(); 
    OutputObject->_Q->SaveCurrentValues(); 
    OutputObject->_Z->SaveCurrentValues(); 
    OutputObject->_X->SaveCurrentValues(); 
    OutputObject->_DownstreamCell->SaveCurrentValues(); 
 OutputObject->_UpstreamCell->SaveCurrentValues(); 
    OutputObject->_TotalTime->SaveCurrentValues(); 
} 
 
void __fastcall TFIDOSimulation::UndoIteration(void) 
{ 
    for(int i=0;i<GridParametersList->Count;++i) 
        GridParameter[i]->UndoLastChanges(); 
    OutputObject->_dt->UndoLastChanges(); 
    OutputObject->_A->UndoLastChanges(); 
    OutputObject->_Q->UndoLastChanges(); 
    OutputObject->_Z->UndoLastChanges(); 
    OutputObject->_X->UndoLastChanges(); 
    OutputObject->_DownstreamCell->UndoLastChanges(); 
 OutputObject->_UpstreamCell->UndoLastChanges(); 
    OutputObject->_TotalTime->UndoLastChanges(); 
} 
 
void __fastcall TFIDOSimulation::ResetSimulation(void) 
{ 
    t=0; 
    x=0; 
    maxxcount=0; 
    furtherestdownstreamcellindex=0; 
    stop=false; 
    CutoffTimeExceeded=false; 
    FieldLengthExceeded=false; 
    IterationsExceeded=false; 
    FieldLengthReached=false; 
    Components.Clear(); 
    ReducedSteps=1; 
    TotalIterations=0; 
    StopAtPoint=-1; 
    StopWhenRunoffOccurrs=false; 
    for(int i=0;i<GridParametersList->Count;++i) 
    { 
        GridParameter[i]->Reset(); 
        GridParameter[i]->InitialiseNewElementsFromInputData(); 
    } 
    OutputObject->_dt->Reset(); 
    OutputObject->_A->Reset(); 
    OutputObject->_Q->Reset(); 
    OutputObject->_Z->Reset(); 
    OutputObject->_X->Reset(); 
    OutputObject->_DownstreamCell->Reset(); 
 OutputObject->_UpstreamCell->Reset(); 
    OutputObject->_TotalTime->Reset(); 
 
    OutputObject->_A->InitialiseNewElementsFromInputData(); 
    OutputObject->_Q->InitialiseNewElementsFromInputData(); 
    OutputObject->_Z->InitialiseNewElementsFromInputData(); 
    OutputObject->_X->InitialiseNewElementsFromInputData(); 
    OutputObject->_DownstreamCell->InitialiseNewElementsFromInputData(); 
 OutputObject->_UpstreamCell->InitialiseNewElementsFromInputData(); 
    OutputObject->_TotalTime->InitialiseNewElementsFromInputData(); 
 
 
 
 
    _A->LowerLimit=0.0001;//0.02*pow(pow(  ManN[0]*(*_Qin)[0] , 2 )/(rho1[0]*So[0])  ,  1.0/rho2[0]); 
    NewTimeStep=true; 
 if(FOnResetSimulation) 
  FOnResetSimulation(); 
} 
 
void __fastcall TFIDOSimulation::RemoveUnwantedUpstreamCells(void) 
{ 
    int tempfirstcell=firstcell; 
    double tolvalue=A(1,0)*0.05; 
    while(tempfirstcell<lastcell&&A(t,tempfirstcell-1)<=tolvalue)   //need to validate this. 
    { 
        Q(t,tempfirstcell-1)=0; 
        Z(t,tempfirstcell-1)+= A(t,tempfirstcell-1)/2.0; //this is an average. 
        A(t,tempfirstcell-1)=0; 
        ++tempfirstcell; 
 } 
    UpstreamCell(t)=tempfirstcell; 
} 
 
void __fastcall TFIDOSimulation::RemoveUnwantedDownstreamCells(void) 
{ 
 int middlepos=GetPosAtGreatestDepth(); 
    int endcell=lastcell; 
   // double ALast=A(t,middlepos); 
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 for(int i=middlepos+1;i<endcell;++i) 
    { 
        if( A(t,i)<=_A->LowerLimit) 
        { 
   DownstreamCell(t)=i; 
            Q(t,i)=0; 
      Z(t,i-1)+= A(t,i)/2.0; //this is an average. 
      A(t,i-1)=0; 
   i=endcell; 
            lastcell=i; 
             Components=Components.Clear(); 
            Components=Components<<peLateralFlow; 
        } 
 //       ALast=A(t,i); 
 } 
 
    //for(int i=DownstreamCell(t);i<endcell;++i) 
//    { 
//        A(t,i)=0; 
//        Q(t,i)=0; 
//    } 
} 
 
 
void __fastcall TFIDOSimulation::SolveEquationsForFirstCellForDistance(void) 
{ 
    CurrentCell=1; 
    if(Iterations[t]==10) 
    {   A(1,0)      =   0.005; 
        Dist(t,1)   =   Q(t,0)*dt(t)/A(t,0); 
    } 
    if(Iterations[t]==20) 
    { 
        A(1,0)      =   0.0005; 
        Dist(t,1)   =   Q(t,0)*dt(t)/A(t,0); 
    } 
    CalculateCellParameters(); 
    //SetDerivativeFunctionPointers(); 
    a=dRC_dAl(); 
    d=dRC_dX(); 
    g=ResidualOfContinuity(); 
    p=dRM_dAl(); 
    _s=dRM_dX(); 
    w=ResidualOfMomentum(); 
 double denominator=d*p-_s*a; 
    DA[0][Iterations[t]-1]=  (g*_s-w*d)/denominator; 
    DX[1][Iterations[t]-1]=  (w*a-g*p)/denominator; 
} 
 
int __fastcall TFIDOSimulation::GetPosAtGreatestDepth(void) 
{ 
    double max=0; 
 int pos=UpstreamCell(t)-1; 
 for(int i=pos;i<=DownstreamCell(t);++i) 
    { 
        if(A(t,i)>max) 
        { 
            max=A(t,i); 
            pos=i; 
        } 
    } 
    return pos; 
} 
 
void __fastcall TFIDOSimulation::SetSolutionFunctionPointers(void) 
{ 
 //   if(firstcell==1) 
        InitialSolutionDirection=sdTopToBottom; 
 //   else 
   //     InitialSolutionDirection=sdBottomToTop; 
    if(!Components.Contains(peLateralFlow)) 
    { 
          if(t>1&&InitialSolutionDirection==sdTopToBottom) 
          { 
              FCalculateAuxCoefficients=CalculateAuxCoefficients1; 
              FUpdateParameterEstimates=UpdateParameterEstimates1; 
          } 
          else if(t>1) 
          { 
              FCalculateAuxCoefficients=CalculateAuxCoefficients2; 
              FUpdateParameterEstimates=UpdateParameterEstimates2; 
          } 
         else 
         { 
              FCalculateAuxCoefficients=SolveEquationsForFirstCellForDistance; 
              FUpdateParameterEstimates=UpdateParameterEstimatesForFirstCell; 
         } 
    } 
    else 
    { 
        FCalculateAuxCoefficients=0; 
        FUpdateParameterEstimates=CalculateInfiltrationForLateralSurfaceFlow; 
    } 
} 
 
 
void __fastcall TFIDOSimulation::CalculateAuxCoefficients1(void) 
{ 
    int lastindex=firstcell-1; 
    E[lastindex]=0; 
    H[lastindex]=0; 
 F[lastindex]=0; 
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    for (int index=firstcell;index<=lastcell;++index) 
    { 
        lastindex=index-1; 
        CalculateDerivativeValues(index); 
        T1=a+b*E[lastindex]; 
        T2=p+q*E[lastindex]; 
        T3=e+b*H[lastindex]; 
        T4=u+q*H[lastindex]; 
        T5=g+b*F[lastindex]; 
        T6=w+q*F[lastindex]; 
        denom=d*T2-_s*T1; 
        if(denom!=0) 
        { 
            E[index]=(  r*T1 -  c*T2 )/denom; 
            H[index]=( T4*T1 - T3*T2 )/denom; 
            F[index]=( T6*T1 - T5*T2 )/denom; 
        } 
        else 
        { 
            E[index]=0; 
            H[index]=0; 
            F[index]=0; 
        } 
        U[lastindex]= - c/T1; 
        V[lastindex]= - d/T1; 
        Y[lastindex]= -T3/T1; 
        W[lastindex]= -T5/T1; 
    } 
} 
 
void __fastcall TFIDOSimulation::CalculateAuxCoefficients2(void) 
{ 
    int nextindex; 
    E[lastcell]=0.000001; 
    if(Iterations[t]==1) 
        H[lastcell]=(dt(t)>0?(Dist(t,lastcell)-Dist(t,lastcell-1))/dt(t):0.01); 
    else 
        H[lastcell]=(dt(t)>0?(_X->FDeltaValues[t][Iterations[t]-1])/_dt->FDeltaValue[Iterations[t]-1]:0.01); 
 F[lastcell]=0; 
    for (int index=lastcell;index>=firstcell;--index) 
    { 
        nextindex=index-1; 
        CalculateDerivativeValues(index); 
        T1=c+d*E[index]; 
        T2=r+_s*E[index]; 
        T3=e+d*H[index]; 
        T4=u+_s*H[index]; 
        T5=g+d*F[index]; 
        T6=w+_s*F[index]; 
        denom=b*T2-q*T1; 
 
        E[nextindex]=(  p*T1 -  q*T2 )/denom; 
        H[nextindex]=( T4*T1 - T3*T2 )/denom; 
        F[nextindex]=( T6*T1 - T5*T2 )/denom; 
        U[index]= - a/T1; 
        V[index]= - b/T1; 
        Y[index]= -T3/T1; 
        W[index]= -T5/T1; 
    } 
   // F(lastcell)=F[lastcell-1]; 
} 
 
 
void __fastcall TFIDOSimulation::UpdateParameterEstimates1(void) 
{ 
    if(_X->IsSolutionParameter)      UpdateX(lastcell); 
    else if(_dt->IsSolutionParameter)UpdateT(lastcell); 
    else if(FieldLengthReached) 
    { 
 
        double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell); 
        double man_exp=rho2(lastcell)/2.0; 
        double ar=(A(t,lastcell));//>0?A(t,lastcell):0.00001); 
        double dqdar=man_mul*man_exp*pow(ar,man_exp-1); 
       // double da=F[lastcell]/(dqdar-E[lastcell]); 
//        double dq=E[lastcell]*da+F[lastcell]; 
        double CC=c+d*dqdar; 
        double RR=r+_s*dqdar; 
 
        double da=(T2*T5-T1*T6)/(T1*RR-T2*CC); 
 //       _A->Update(lastcell,da); 
        double dq=da*man_exp*man_mul*pow(A(t,lastcell),man_exp-1); 
        double newa=da+A(t,lastcell); 
 
      //  if(A(t-1,lastcell)==0&&newa>A(t,lastcell-1)) 
//        { 
//            da=A(t,lastcell-1)-A(t,lastcell); 
//            _A->Update(lastcell,da); 
//             CalculateAuxCoefficients(); 
// 
//        } 
//        else 
            _A->Update(lastcell,da); 
 
 
        dq=man_mul*pow(A(t,lastcell),man_exp)-Q(t,lastcell); 
 
        _Q->Update(lastcell,dq); 
// 
        // if(A(t-1,lastcell)==0&&A(t,lastcell)>A(t,lastcell-1)) 
//         { 
//            A(t,lastcell)=A(t,lastcell-1); 
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            Q(t,lastcell)=man_mul*pow(A(t,lastcell),man_exp); 
//         } 
 
 
 
//        UpdateA_Runoff(lastcell); 
 
     //   double last=Q(t,lastcell); 
     //   UpdateQ(lastcell);      2 
 
        //double norm=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(A(t,lastcell),rho2(lastcell)/2.0); 
     //   if( Q(t,lastcell)>norm) 
     //   { 
      //      double temp=Q(t,lastcell); 
       //     Q(t,lastcell)=norm; 
      //      int iteration=_Q->DeltaValues[lastcell].size()-1; 
      //      _Q->DeltaValues[lastcell][iteration]=norm-last;//+=norm-temp; 
 
         
      //  int iteration=_Q->DeltaValues[lastcell].size()-1; 
//        _Q->DeltaValues[lastcell][iteration]=Q(t,lastcell)-last; 
// 
    } 
    if(_X->IsSolutionParameter) 
        UpdateA_LastCell(lastcell-1,lastcell); 
    else 
        UpdateA(lastcell-1,lastcell); 
    UpdateQ(lastcell-1); 
    for(int index=lastcell-2;index>=firstcell;--index) 
    { 
        UpdateA(index,index+1); 
        UpdateQ(index); 
    } 
    UpdateA(firstcell-1,firstcell); 
} 
 
void __fastcall TFIDOSimulation::UpdateParameterEstimates2(void) 
{ 
    _A->FDeltaValues[firstcell-1][Iterations[t]-1]=0; 
    _Q->FDeltaValues[firstcell-1][Iterations[t]-1]=0; 
    _A->FDeltaValues[lastcell][Iterations[t]-1]=0; 
    _Q->FDeltaValues[lastcell][Iterations[t]-1]=0; 
    if(_dt->IsSolutionParameter)    UpdateT(firstcell-1); 
    for(int index=firstcell;index<=lastcell-1;++index) 
    { 
        UpdateA(index,index-1); 
        UpdateQ(index); 
    } 
  //  UpdateA_LastCell(lastcell-1,lastcell); 
  //  UpdateQ_LastCell(lastcell-1); //dont think I need to do anthing here. 
  //  However, we should check that DX doesn't play a role in any of the other calcs! 
  //  should also check that other dqvalue are equal to zero....  lines 2-5 should probably fix that.. 
 
    if(_X->IsSolutionParameter)     UpdateX(lastcell); 
 
 //   int i=lastcell; 
//    double ddx1=(H[i]*DT + F[i]); 
//    double ddx2=H[i]/Y[i]*(-W[i]-U[i]*DA[i-1]-V[i]*DQ[i-1]); 
// 
//    double ddx=(ddx1==0?ddx1*DampeningFactor:ddx2*DampeningFactor); 
//     _X->Update(i,ddx); 
 
} 
 
void __fastcall TFIDOSimulation::UpdateA(const int& i, const int& j) 
{ 
    _A->Update(i,(U[i]*DA[j][Iterations[t]-1] + V[i]*DQ[j][Iterations[t]-1] + Y[i]*DT[Iterations[t]-1] + 
W[i])*DampeningFactor); 
} 
 
void __fastcall TFIDOSimulation::UpdateA_LastCell(const int& i, const int& j) 
{                           //  
    _A->Update(i,(U[i]*DA[j][Iterations[t]-1] + V[i]*DX[j][Iterations[t]-1] + Y[i]*DT[Iterations[t]-1] + 
W[i])*DampeningFactor); 
} 
 
void __fastcall TFIDOSimulation::UpdateA_Runoff(const int& i) 
{ 
   // _A->Update(i,F[i]/(rho2(i)/2.0*pow(rho1(i)*So(i),0.5)/ManN(i)*pow(A(t,i),rho2(i)/2.0-1.0)-
E[i])*DampeningFactor); 
    _A->Update(i,(rho2(i)/2.0*pow(rho1(i)*So(i),0.5)/ManN(i)*pow(A(t,i),rho2(i)/2.0-1.0)-
F[i])/E[i]*DampeningFactor); 
} 
 
void __fastcall TFIDOSimulation::UpdateQ(const int& i) 
{ 
    _Q->Update(i,(E[i]*DA[i][Iterations[t]-1] + H[i]*DT[Iterations[t]-1] + F[i])*DampeningFactor); 
} 
 
void __fastcall TFIDOSimulation::UpdateX(const int& i) 
{ 
    _X->Update(i,(H[i]*DT[Iterations[t]-1] + F[i])*DampeningFactor); 
} 
 
void __fastcall TFIDOSimulation::UpdateT(const int& i) 
{ 
    _dt->Update(t,(-F[i]/H[i])*DampeningFactor); 
    TotalTime(t)=TotalTime(t-1)+dt(t); 
} 
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double __fastcall TFIDOSimulation::GetDampeningFactor(void) 
{ 
    return 1.0; 
} 
 
void __fastcall TFIDOSimulation::UpdateParameterEstimatesForFirstCell(void) 
{ 
    _X->Update(t,DX[t][Iterations[t]-1]); 
    _A->Update(0,DA[0][Iterations[t]-1]); 
} 
 
void __fastcall TFIDOSimulation::CalculateDerivativeValues(int cell) 
{ 
    double a2,b2,c2,d2,e2,p2,q2,r2,s2,u2; 
    CurrentCell=cell; 
    CalculateCellParameters(); 
    SetDerivativeFunctionPointers(); 
    g=ResidualOfContinuity(); 
    a=dRC_dAl(); 
    b=dRC_dQl(); 
    if(!(cell==lastcell&&Components.Contains(peRunoff))) 
    { 
        d=dRC_dParam(); //calc this one first- could get used on next line 
        c=dRC_dAr(); 
    } 
    else 
    { 
        c=dRC_dAr_Runoff(); 
        d=0; 
    } 
    e=dRC_dT(); 
    w=ResidualOfMomentum(); 
    p=dRM_dAl(); 
    q=dRM_dQl(); 
    if(!(cell==lastcell&&Components.Contains(peRunoff))) 
    { 
        _s=dRM_dParam(); //again... 
        r=dRM_dAr(); 
    } 
    else 
    { 
         r=dRM_dAr_Runoff(); 
        _s=0; 
    } 
    u=dRM_dT(); 
} 
 
void __fastcall TFIDOSimulation::CalculateCellParameters(void) 
{ 
    if(FCurrentCell==firstcell||InitialSolutionDirection==sdBottomToTop) 
        CalculateHydraulicParameters(FCurrentCell-1); 
    if(FCurrentCell==lastcell||InitialSolutionDirection==sdTopToBottom) 
        CalculateHydraulicParameters(FCurrentCell); 
    CalculateCellPositions(FCurrentCell); 
} 
 
void __fastcall TFIDOSimulation::CalculateHydraulicParameters(int CellSide) 
{ 
    WP(t,CellSide) =CalculateWettedPerimeter(CellSide); 
    Z(t,CellSide)  =CalculateWettedPerimeterDependantInfiltration(CellSide); 
    P(t,CellSide)  =CalculateHydrostaticPressure(CellSide); 
    D(t,CellSide)  =CalculateDragForce(CellSide); 
    VP(t,CellSide)  =CalculateVelocityPressureFactor(CellSide); 
    dZdT(t,CellSide) =dZ_dT(CellSide); 
 
} 
 
void __fastcall TFIDOSimulation::CalculateEulerianCellPositions(int xpos) 
{ 
    Xrl=Dist(t,xpos)-Dist(t,xpos-1); 
    Xmj=Dist(t,xpos)-Dist(t,xpos-1); 
    Xrm=0; 
    Xlj=0; 
} 
 
void __fastcall TFIDOSimulation::CalculateLangrangianCellPositions(int xpos) 
{ 
    if(xpos!=1) 
    { 
        Xrl=Dist(t,xpos)-Dist(t,xpos-1); 
        Xmj=Dist(t-1,xpos-1)-Dist(t-1,xpos-2); 
        Xrm=Dist(t,xpos)-Dist(t-1,xpos-1); 
        Xlj=Dist(t,xpos-1)-Dist(t-1,xpos-2); 
    } 
    else 
    { 
        Xrl=Dist(t,xpos)-Dist(t,xpos-1); 
        Xmj=0; 
        Xrm=Dist(t,xpos)-Dist(t-1,xpos-1); 
        Xlj=0; 
    } 
} 
 
double __fastcall TFIDOSimulation::ZeroFunction(void) 
{ 
    return 0; 
} 
 
double __fastcall TFIDOSimulation::ResidualOfContinuity(void) 
{ 
    return    +(theta*(Ql - Qr) + inv_theta*(Qj - Qm))  * dt(t) 
              -(theta*(Al + Zl) + inv_theta*(Aj + Zj))  * Xlj 
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              +(theta*(Ar + Zr) + inv_theta*(Am + Zm))  * Xrm 
              +(phi*(Aj + Zj)   + inv_phi*(Am + Zm))    * Xmj 
              -(phi*(Al + Zl)   + inv_phi*(Ar + Zr))    * Xrl   ; 
} 
 
double __fastcall TFIDOSimulation::ResidualOfContinuity_Runoff(void) 
{ 
    double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell); 
    double man_exp=rho2(lastcell)/2.0; 
    double qr=man_mul*pow(Ar,man_exp); 
 
    return    +(theta*(Ql - qr) + inv_theta*(Qj - Qm))  * dt(t) 
              -(theta*(Al + Zl) + inv_theta*(Aj + Zj))  * Xlj 
              +(theta*(Ar + Zr) + inv_theta*(Am + Zm))  * Xrm 
              +(phi*(Aj + Zj)   + inv_phi*(Am + Zm))    * Xmj 
              -(phi*(Al + Zl)   + inv_phi*(Ar + Zr))    * Xrl   ; 
} 
 
 
double __fastcall TFIDOSimulation::ResidualOfMomentum_Runoff(void) 
{ 
    double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell); 
    double man_exp=rho2(lastcell)/2.0; 
    double qr=man_mul*pow(Ar,man_exp); 
    double vpr; 
    if(Ar>=_A->LowerLimit) 
        vpr= pow(qr,2.0) / (9.81 * Ar)+Pr; 
    else 
        vpr=0; 
 
    drmdt=       theta*(VPl-vpr)+inv_theta*(VPj-VPm) 
                -theta*         (phi * (Dl - SOl * Al) + inv_phi * (Dr - SOr * Ar)) * Xrl 
                -inv_theta*     (phi * (Dj - SOj * Aj) + inv_phi * (Dm - SOm * Am)) * Xmj; 
    return  (   +(phi   * Qj + inv_phi   * Qm)* Xmj 
                -(phi   * Ql + inv_phi   * qr)* Xrl 
                +(theta * qr + inv_theta * Qm)* Xrm 
                -(theta * Ql + inv_theta * Qj)* Xlj )/9.81 + drmdt*dt(t) ; 
} 
 
double __fastcall TFIDOSimulation::ResidualOfMomentum(void) 
{ 
    drmdt=       theta*(VPl-VPr)+inv_theta*(VPj-VPm) 
                -theta*         (phi * (Dl - SOl * Al) + inv_phi * (Dr - SOr * Ar)) * Xrl 
                -inv_theta*     (phi * (Dj - SOj * Aj) + inv_phi * (Dm - SOm * Am)) * Xmj; 
    return  (   +(phi   * Qj + inv_phi   * Qm)* Xmj 
                -(phi   * Ql + inv_phi   * Qr)* Xrl 
                +(theta * Qr + inv_theta * Qm)* Xrm 
                -(theta * Ql + inv_theta * Qj)* Xlj )/9.81 + drmdt*dt(t) ; 
} 
 
double __fastcall TFIDOSimulation::RCTip(void) 
{ 
    return theta*Ql*dt(t) -(phi*(Al + Zl))*Xrl; 
} 
 
double __fastcall TFIDOSimulation::RMTip(void) 
{ 
 return -(phi*Ql+inv_phi*Qr)* Xrl/9.81  +  theta*(VPl-phi*(Dl-SOl*Al)*Xrl)*dt(t); 
} 
 
double __fastcall TFIDOSimulation::dRC_dt(void) 
{   //should check this 
    return          +(theta*(Ql-Qr)+inv_theta*(Qj-Qm)) 
                    -(theta*dZdTl  +  inv_theta*dZdTj)  *Xlj 
                    +(theta*dZdTr  +  inv_theta*dZdTm)  *Xrm 
                    +(phi*dZdTj    +  inv_phi*dZdTm)    *Xmj 
                    -(phi*dZdTl    +  inv_phi*dZdTr)    *Xrl 
                    ; 
} 
 
 
double __fastcall TFIDOSimulation::dRM_dt(void) 
{ 
    return   drmdt;//this term was calculated when calculating the Residual of Momentum. 
} 
 
double __fastcall TFIDOSimulation::dRC_dX(void) 
{ 
 return -phi*(Al + Zl);      //this is like this since it is the only bit to survive the massacre of the 
triangular cell tip. 
} 
 
 
double __fastcall TFIDOSimulation::dRM_dX(void) 
{ 
    return -phi*Ql/9.81 -theta*phi*(Dl-SOl*Al)*dt(t); 
 
} 
 
double __fastcall TFIDOSimulation::dZ_dA(const unsigned& xcoord,const unsigned& tcoord) 
{ 
   // if (A[xcoord,tcoord]==0) return 0; 
 //return (5.0/2.0-3.0/4.0*rho2)*pow(1.0/rho1,3.0/4.0)*pow(A[xcoord,tcoord],3.0/2.0-
3.0/4.0*rho2)*CalculateKostiakovLewisInfiltration(TotalTime[tcoord]-TotalTime[xcoord]); 
    return 0; 
} 
 
double __fastcall TFIDOSimulation::dZ_dT(const unsigned& xi) 
{ 
    if(Z(t,xi)==0)return 0;       //is this ok here??? 
    return (KosA(xi)*KosK(xi)*pow(TotalTime(t)-TotalTime(xi),KosA(xi)-1.0)+KosFo(xi)); 
} 
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double __fastcall TFIDOSimulation::dRC_dAl(void) 
{ 
  return -phi * Xrl -theta*Xlj; // - phi*Xrl*dZ_dA(x-1,t); 
} 
 
 
double __fastcall TFIDOSimulation::dRC_dQl(void) 
{ 
  return theta*dt(t); 
} 
 
double __fastcall TFIDOSimulation::dRC_dAr_Normal(void) 
{ 
    if(FCurrentCell==lastcell&&Components.Contains(peRunoff)==false) 
        return 0; 
    return -inv_phi*Xrl +theta*Xrm;  //-(1-phi)*(Dist[x,t]-Dist[x-1,t])*dZ_dA(x,t); 
} 
 
double __fastcall TFIDOSimulation::dRC_dAr_Runoff(void) 
{ 
//    return rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*d; 
    double drcdar=dRC_dAr_Normal(); 
    double drcdqr=dRC_dQr(); 
    return drcdar+ 
rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-1.0)*drcdqr; 
} 
 
double __fastcall TFIDOSimulation::dRM_dAl(void) 
{ 
    double dVl_dAl   =(Al>0          ? - pow(Ql , 2.0) / (9.81 *pow(Al,2.0))                         :0); 
    double dPl_dAl     =(Al>0          ? pow(sigma1l,-1.0/sigma2l)/sigma2l * pow(Al,1.0/sigma2l)       :0); 
    double dDl_dAl     =(Al>0&&Ql>0    ? (1.0-rho2l)*pow(ManNl,2.0)/rho1l * pow(Ql,2.0)/pow(Al,rho2l)  :0); 
    return (    theta*(dVl_dAl+dPl_dAl)  -  theta*phi*(dDl_dAl-SOl)*Xrl  )*dt(t); 
} 
 
double __fastcall TFIDOSimulation::dRM_dAr_Normal(void) 
{ 
    if(FCurrentCell==lastcell&&Components.Contains(peRunoff)==false) 
        return 0; 
    double dVr_dAr   =(Ar>0      ? -pow(Qr , 2.0) / (9.81 *pow(Ar,2.0))                         :0); 
    double dPr_dAr     =(Ar>0       ? pow(sigma1r,-1.0/sigma2r)/sigma2r * pow(Ar,1.0/sigma2r)      :0); 
    double dDr_dAr     =(Ar>0&&Qr>0 ? (1.0-rho2r)*pow(ManNr,2.0)/rho1r * pow(Qr,2.0)/pow(Ar,rho2r) :0); 
    return (    -theta*(dVr_dAr+dPr_dAr)  -  theta*inv_phi*(dDr_dAr-SOr)*Xrl )*dt(t); 
} 
 
double __fastcall TFIDOSimulation::dRM_dAr_Runoff(void) 
{ 
////    return rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*_s; 
//    return 
dRM_dAr_Normal()+rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*dRM_dQr(); 
 
        return 
dRM_dAr_Normal()+rho2(lastcell)/2.0*pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(Ar,rho2(lastcell)/2.0-
1.0)*dRM_dQr_Runoff(); 
} 
 
double __fastcall TFIDOSimulation::dRC_dQr(void) 
{ 
 
  return -theta*dt(t); 
} 
 
 
double __fastcall TFIDOSimulation::dRM_dQl(void) 
{ 
    double dVl_dQl   =(Al>0 ? 2.0*Ql / (9.81 *Al)                                    :0); 
    double dDl_dQl     =(Al>0 ?  2.0*pow(ManNl,2.0)/rho1l * Ql * pow(Al,1.0-rho2l) :0); 
  return -(phi*Xrl + theta*Xlj)/9.81 + theta*(dVl_dQl - phi*dDl_dQl*Xrl)*dt(t); 
} 
 
double __fastcall TFIDOSimulation::dRM_dQr(void) 
{ 
 
    double dVr_dQr   =(Ar>0  ? 2.0*Qr/(9.81*Ar)                                      :0); 
    double dDr_dQr     =(Ar>0  ? 2.0*pow(ManNr,2.0)/rho1r * Qr * pow(Ar,1.0-rho2r) :0); 
    return (theta*Xrm-inv_phi*Xrl)/9.81 - theta*(dVr_dQr + inv_phi*dDr_dQr*Xrl)*dt(t); 
} 
 
double __fastcall TFIDOSimulation::dRM_dQr_Runoff(void) 
{ 
    double man_mul=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell); 
    double man_exp=rho2(lastcell)/2.0; 
    double qr=man_mul*pow(Ar,man_exp); 
 
 
    double dVr_dQr   =(Ar>0  ? 2.0*qr/(9.81*Ar)                                      :0); 
    double dDr_dQr     =(Ar>0  ? 2.0*pow(ManNr,2.0)/rho1r * qr * pow(Ar,1.0-rho2r) :0); 
    return (theta*Xrm-inv_phi*Xrl)/9.81 - theta*(dVr_dQr + inv_phi*dDr_dQr*Xrl)*dt(t); 
} 
 
double __fastcall TFIDOSimulation::CalculateHydrostaticPressure(int xpos) 
{ 
 if(A(t,xpos)<=_A->LowerLimit)return 0; 
 return(pow(sigma1(xpos),-1.0/sigma2(xpos))/(1.0+sigma2(xpos))*pow(A(t,xpos),1.0+(1.0/sigma2(xpos)))); 
} 
 
double __fastcall TFIDOSimulation::CalculateDragForce(int xpos) 
{ 
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 if(A(t,xpos)<=_A->LowerLimit)return 0; 
  return(pow(ManN(xpos),2.0)/rho1(xpos)*pow(Q(t,xpos),2.0)*pow(A(t,xpos),1.0-rho2(xpos))); 
} 
 
double __fastcall TFIDOSimulation::CalculateWettedPerimeter(int xpos) 
{ 
    if(A(t,xpos)<=_A->LowerLimit)return 0; 
 return pow( 1.0/rho1(xpos) , 3.0/4.0 )*pow(A(t,xpos),5.0/2.0-3.0/4.0*rho2(xpos)); 
} 
 
double __fastcall TFIDOSimulation::CalculateVelocityPressureFactor(int xpos) 
{ 
    if(A(t,xpos)<=_A->LowerLimit)return 0; 
    return pow(Q(t,xpos),2.0) / (9.81 * A(t,xpos))+P(t,xpos); 
 
} 
 
double __fastcall TFIDOSimulation::CalculateWettedPerimeterDependantInfiltration(int xpos) 
{ 
 return CalculateKostiakovLewisInfiltration(xpos); 
} 
 
double __fastcall TFIDOSimulation::CalculateKostiakovLewisInfiltration(int xpos) 
{ 
    double OppTime=TotalTime(t)-TotalTime(xpos); 
 if(OppTime<=0)return 0; 
  return(KosK(xpos)*pow(OppTime,KosA(xpos))+KosFo(xpos)*OppTime); 
} 
 
 
void __fastcall TFIDOSimulation::CalculateInfiltrationForLateralSurfaceFlow(void) 
{ 
    double dz; 
    int finalcell=(Components.Contains(peAdvance) ?lastcell-1:lastcell); 
    dz=CalculateKostiakovLewisInfiltration(firstcell-1)-Z(t-1,firstcell-1); 
    if(dz>0.0001) 
    { 
        for(int i=firstcell-1;i<=finalcell;++i) 
        { 
 
            dz=CalculateKostiakovLewisInfiltration(i)-Z(t-1,i); //this will need changing. 
            if(dz<A(t-1,i)) 
            { 
                Z(t,i)=Z(t-1,i)+dz; 
                A(t,i)=A(t-1,i)-dz; 
 
            } 
            else 
            { 
                Z(t,i)=Z(t-1,i)+A(t-1,i); 
                A(t,i)=0; 
                Q(t,i)=0; 
                ++firstcell; 
                UpstreamCell(t)=firstcell; 
            } 
        } 
        for(int i=lastcell;i>=firstcell-1;--i) 
        { 
            if(A(t,i)==0) 
            { 
                --lastcell; 
                DownstreamCell(t)=lastcell; 
            } 
        } 
    } 
    else 
    { 
        for(int i=firstcell-1;i<=finalcell;++i) 
        { 
 
            { 
                Z(t,i)=Z(t-1,i)+A(t-1,i); 
                A(t,i)=0; 
                Q(t,i)=0; 
                firstcell=lastcell; 
                UpstreamCell(t)=DownstreamCell(t); 
            } 
        } 
 
    } 
 
} 
 
void __fastcall TFIDOSimulation::SetInitialParameterEstimatesForFirstCell(void) 
{ 
    double Qi; 
    SetTimeStep(); 
    if(KosA(0)!=1) 
        Qi=Qin(1)-(KosA(0)*KosK(0)*pow(dt(1),KosA(0)-1)+KosFo(0)); 
    else 
        Qi=Qin(1)-(KosA(0)*KosK(0)+KosFo(0)); 
    A(1,0)=pow(pow(Qi*ManN(0),2)/(rho1(0)*So(0)),1.0/rho2(0)); 
 Dist(t,1)=Qin(1)*dt(1)/A(1,0); 
} 
 
void __fastcall TFIDOSimulation::SetInitialParameterEstimates(void) 
{ 
    if(InitialSolutionDirection==sdBottomToTop) 
    { 
        UpstreamCell(t)=UpstreamCell(t)+1; 
        firstcell=UpstreamCell(t); 
    } 
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     for(int i=0;i<GridParametersList->Count;++i) 
        GridParameter[i]->InitialiseNewElementsFromInputData(); 
 
    OutputObject->_A->InitialiseNewElementsFromInputData(); 
    OutputObject->_Q->InitialiseNewElementsFromInputData(); 
    OutputObject->_Z->InitialiseNewElementsFromInputData(); 
    OutputObject->_X->InitialiseNewElementsFromInputData(); 
    OutputObject->_DownstreamCell->InitialiseNewElementsFromInputData(); 
 OutputObject->_UpstreamCell->InitialiseNewElementsFromInputData(); 
    OutputObject->_TotalTime->InitialiseNewElementsFromInputData(); 
    OutputObject->_dt->InitialiseNewElementsFromInputData(); 
    if(!Components.Contains(peLateralFlow)) 
    { 
    if(t!=1) 
    { 
        _X->InitialiseAsPrevious(); 
        if(FieldLengthReached) 
        { 
 
            Dist(t,lastcell)=Dist(t-1,lastcell); 
        } 
        else if(FieldLengthExceeded) 
        { 
            Dist(t,lastcell)=FieldLength; 
            double dx1=Dist(t,lastcell)-Dist(t,lastcell-1); 
            double dx2=Dist(t,lastcell-1)-Dist(t,lastcell-2); 
            if(dx1<dx2/4.0) 
                CombineLastTwoCells(); 
            SetTimeStep(); 
            return; 
        } 
        else 
        { 
            _X->InitialiseAsPrevious(); 
            Dist(t,lastcell)=Dist(t-1,lastcell-1)+(Dist(t-1,lastcell-1) - Dist(t-1,lastcell-2)); 
        } 
 
        _Z->InitialiseAsPrevious(); 
 
        if(Components.Contains(peAdvance)||Components.Contains(peRecession)) 
        { 
            _Q->InitialiseAsPreviousAndLast(); 
            _A->InitialiseAsPreviousAndLast(); 
        } 
        else 
        { 
            _Q->InitialiseAsPrevious();//AndLast();// 
            _A->InitialiseAsPrevious();//AndLast();// 
        } 
 
         
        if(Components.Contains(peRunoff)) 
        { 
            if(A(t-1,lastcell)==0) 
            { 
              
                if(lastcell>4) 
                    A(t,lastcell)=A(t-1,lastcell-5); 
                else if(lastcell>3) 
                    A(t,lastcell)=A(t-1,lastcell-4); 
                else if(lastcell>2) 
                    A(t,lastcell)=A(t-1,lastcell-3); 
                else if(lastcell>1) 
                    A(t,lastcell)=A(t-1,lastcell-2); 
                else if(lastcell>0) 
                    A(t,lastcell)=A(t-1,lastcell-1); 
            } 
 
                 else 
            { 
                A(t,lastcell)=A(t-1,lastcell); 
            
            } 
            
Q(t,lastcell)=pow(rho1(lastcell)*So(lastcell),0.5)/ManN(lastcell)*pow(A(t,lastcell),rho2(lastcell)/2.0); 
        } 
    } 
    else 
        SetInitialParameterEstimatesForFirstCell(); 
    if(Components.Contains(peInflow)) 
        Q(t,0)=Qin(t); 
    else 
        Q(t,0)=0; 
    if(Components.Contains(pePonding)) 
        Q(t,lastcell)=0;//sqrt(rho1(lastcell)*So(lastcell))/ManN(lastcell)* pow(A(t,lastcell),rho2(lastcell)/2.0); 
 
 
 
 
   
     SetTimeStep(); 
    if(Components.Contains(peRecession)) 
    { 
 
        double dz; 
        int finalcell= (Components.Contains(peAdvance)?lastcell-1:lastcell); 
        for(int i=firstcell-1;i<=finalcell;++i) 
        { 
            dz=CalculateKostiakovLewisInfiltration(i)-Z(t-1,i); //this will need changing. 
            if(dz>A(t-1,i)) 
            { 
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                Z(t,i)=Z(t-1,i)+A(t-1,i); 
                A(t,i)=0; 
                Q(t,i)=0; 
 
                for(int cell=i+i;cell<=finalcell;++cell) 
                { 
                    if(cell<lastcell) 
                    { 
                        A(t,cell)=(A(t,cell)+A(t,cell+1))/2.0; 
                        Q(t,cell)=(Q(t,cell)+Q(t,cell+1))/2.0; 
                    } 
                } 
                ++firstcell; 
                UpstreamCell(t)=firstcell; 
            } 
            else 
                i=finalcell+1; 
        } 
 
    } 
    if(InitialSolutionDirection==sdBottomToTop) 
    { 
        for(int i=firstcell-1;i<=lastcell;++i) 
        { 
            A(t,i)=A(t,i)*0.1; 
            Q(t,i)=Q(t,i)*0.1; 
 
        } 
        A(t,firstcell-1)=0;//.000001; 
        Q(t,firstcell-1)=0; 
        SolveForT=true; 
    } 
    } 
    else 
    { 
        _Q->InitialiseAsZero(); 
        _A->InitialiseAsZero(); 
        _Z->InitialiseAsPrevious(); 
        _X->InitialiseAsPrevious(); 
         SetTimeStep(); 
    } 
 
} 
 
 
void __fastcall TFIDOSimulation::SetTimeStep(void) 
{ 
    if(!FieldLengthExceeded) 
    { 
        if(t<=5) 
            dt(t)=double(t)/5.0*SimulationTimeStep; 
        else //(t>5&&t<200) 
        { 
             dt(t)=SimulationTimeStep; 
        } 
       
    } 
    else 
        dt(t)=SimulationTimeStep*(Dist(t,lastcell)-Dist(t,lastcell-1))/(Dist(t-1,lastcell-1)-Dist(t-1,lastcell-
2)); 
    TotalTime(t)=TotalTime(t-1)+dt(t); 
} 
 
void __fastcall TFIDOSimulation::SetSolutionParameters(void) 
{ 
    SolveForX=(Components.Contains(peAdvance)&&!FieldLengthExceeded); 
    SolveForT=FieldLengthExceeded;//(Components.Contains(peRecession)); 
    SolveForRunoff=Components.Contains(peRunoff); 
} 
 
 
TGridType __fastcall TFIDOSimulation::GetGridType() 
{ 
    return FGridType; 
} 
 
void __fastcall TFIDOSimulation::SetGridType(TGridType type) 
{ 
    FGridType=type; 
    if(type==gtEulerian) 
        FCalculateCellPositions=CalculateEulerianCellPositions; 
    else 
        FCalculateCellPositions=CalculateLangrangianCellPositions; 
} 
 
int __fastcall TFIDOSimulation::GetCellCount(void) 
{ 
    return DownstreamCell(t)-UpstreamCell(t)+1; 
} 
 
void __fastcall TFIDOSimulation::SetDerivativeFunctionPointers(void) 
{ 
    if(FCurrentCell!=lastcell) 
    { 
        dRC_dAr=dRC_dAr_Normal; 
        dRM_dAr=dRM_dAr_Normal; 
        dRC_dParam=dRC_dQr; 
        dRM_dParam=dRM_dQr; 
    } 
    else 
    { 
        dRC_dParam=dRC_dParam_LastCell; 
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        dRM_dParam=dRM_dParam_LastCell; 
        dRC_dAr=dRC_dAr_LastCell; 
        dRM_dAr=dRM_dAr_LastCell; 
    } 
} 
 
void __fastcall TFIDOSimulation::SetSolveForT(bool value) 
{ 
    _TotalTime->IsSolutionParameter=value; 
    _dt->IsSolutionParameter=value; 
    if(value) 
    { 
        dRC_dT=dRC_dt; 
        dRM_dT=dRM_dt; 
    } 
    else 
    { 
        dRC_dT=ZeroFunction; 
        dRM_dT=ZeroFunction; 
    } 
} 
 
void __fastcall TFIDOSimulation::SetSolveForX(bool value) 
{ 
    _X->IsSolutionParameter=value; 
    if(value) 
    { 
        dRC_dParam_LastCell=dRC_dX; 
        dRM_dParam_LastCell=dRM_dX; 
    } 
    else 
    { 
        dRC_dParam_LastCell=dRC_dQr; 
        dRM_dParam_LastCell=dRM_dQr; 
    } 
} 
 
void __fastcall TFIDOSimulation::SetSolveForRunoff(bool value) 
{ 
    if(value) 
    { 
        dRC_dAr_LastCell=dRC_dAr_Runoff; 
        dRM_dAr_LastCell=dRM_dAr_Runoff; 
    } 
    else 
    { 
        dRC_dAr_LastCell=dRC_dAr_Normal; 
        dRM_dAr_LastCell=dRM_dAr_Normal; 
    } 
} 
 
bool __fastcall TFIDOSimulation::GetCutoffTimeReached(void) 
{ 
    return CutoffTimeExceeded; 
} 
bool __fastcall TFIDOSimulation::GetCellFlowsAreNegligible(void) 
{ 
    for(int i=firstcell;i<=lastcell;++i) 
    { 
        if( Q(t-1,i)>0.001*Q(1,0) ) 
            return false; 
 
        if(Q(t-1,i)>0.001*Q(1,0)) 
            return false; 
    } 
    return true; 
} 
 
bool __fastcall TFIDOSimulation::GetAllowRunoff(void) 
{ 
    return true; 
} 
 
void __fastcall TFIDOSimulation::SetCurrentSimData(TSimulationParametersObject*newrecord) 
{ 
    FCurrentSimData=newrecord; 
    OutputObject=FCurrentSimData->OutputObject; 
    FCurrentSimData->UpdateModelParameters(); 
} 
 
void __fastcall TFIDOSimulation::SetOutputObject(TFIDOOutputTreeObject*object) 
{ 
    FOutputObject=object; 
    FOutputObject->ErrorMessage=""; 
    FOutputObject->IsHappy=true; 
    FOutputObject->LinkSolutionParameters(); 
} 
 
TSimulationParametersObject* __fastcall TFIDOSimulation::GetCurrentSimData() 
{ 
    return FCurrentSimData; 
} 
 
TFIDOOutputTreeObject* __fastcall TFIDOSimulation::GetOutputObject() 
{ 
    return FOutputObject; 
} 
 
 
void __fastcall TFIDOSimulation::UpdateOutputObjectProperties(void) 
{ 
    if(t>0) 
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    { 
        FOutputObject->EndCell=lastcell; 
        FOutputObject->FurtherestDownstreamCellIndex=furtherestdownstreamcellindex; 
        FOutputObject->TotalIterations=TotalIterations; 
        FOutputObject->MaxFlowDepth=pow(pow(  ManN(0)*(*_Qin)(1) , 2 )/(rho1(0)*So(0))  ,  1.0/rho2(0));; 
        FOutputObject->MaxFlowDepth=pow(FOutputObject->MaxFlowDepth/sigma1(1), 1.0/sigma2(1)); 
        if(t>0&&Z(t,0)>Z(t-1,0)) 
            FOutputObject->MaxZ=Z(t,0); 
        else 
            FOutputObject->MaxZ=Z(t-1,0); 
 
        FOutputObject->NumberTimeSteps=t; 
        FOutputObject->_sigma1->Resize(_sigma1->Size); 
        FOutputObject->_sigma2->Resize(_sigma2->Size); 
        for(int i=0;i<_sigma1->Size;++i) 
        { 
            (*FOutputObject->_sigma1)(i)=sigma1(i); 
            (*FOutputObject->_sigma2)(i)=sigma2(i); 
        }  // tidy this up later with by creating and assign fn. 
        FOutputObject->HasBeenSimulated=true; 
        FOutputObject->CalculatePerformanceValues(t); 
    } 
} 
 
// finite difference approximation... probably wont use it... 
double __fastcall TFIDOSimulation::dRMd(double&param) 
{ 
 double r1,r2,tem; 
    double tol=param*0.01; 
    CalculateCellParameters(); 
 r1=ResidualOfMomentum(); 
    tem=param; 
    param+=tol; 
    CalculateCellParameters(); 
    r2=ResidualOfMomentum(); 
 param=tem; 
    CalculateCellParameters(); 
    return (r2-r1)/tol; 
} 
 
// finite difference approximation... probably wont use it... 
double __fastcall TFIDOSimulation::dRCd(double&param) 
{ 
 double r1,r2,tem; 
    double tol=param*0.01; 
    CalculateCellParameters(); 
 r1=ResidualOfContinuity(); 
    tem=param; 
    param+=tol; 
    CalculateCellParameters(); 
    r2=ResidualOfContinuity(); 
 param=tem; 
    CalculateCellParameters(); 
    return (r2-r1)/tol; 
} 
 
 
void __fastcall TFIDOSimulation::CombineLastTwoCells(void) 
{ 
    Dist(t,lastcell-1)  =   Dist(t,lastcell); 
    A(t,lastcell-1)     =   A(t,lastcell); 
    Q(t,lastcell-1)     =   A(t,lastcell); 
    Z(t,lastcell-1)     =   A(t,lastcell); 
    //not sure if these are requrired... better to play safe 
    D(t,lastcell-1)     =   D(t,lastcell); 
    P(t,lastcell-1)     =   P(t,lastcell); 
    WP(t,lastcell-1)    =   WP(t,lastcell); 
    VP(t,lastcell-1)    =   VP(t,lastcell); 
    dZdT(t,lastcell-1)  =   dZdT(t,lastcell); 
 
 //   ++RemovedCellCount; 
    --lastcell; 
    if(furtherestdownstreamcellindex==lastcell+1) 
        furtherestdownstreamcellindex=lastcell; 
    --DownstreamCell(t); 
    SetupMemoryForParameters(); 
 
 
} 
 
 
 
void __fastcall TFIDOSimulation::RefineGrid(const int& time) 
{ 
    SmartPointer<TCurveFit>AFit=CreateCurveFit(); 
    SmartPointer<TCurveFit>ZFit=CreateCurveFit(); 
    SmartPointer<TCurveFit>QFit=CreateCurveFit(); 
    SmartPointer<TCurveFit>DFit=CreateCurveFit(); 
    SmartPointer<TCurveFit>PFit=CreateCurveFit(); 
    SmartPointer<TCurveFit>WPFit=CreateCurveFit(); 
    int firstcell =UpstreamCell(time); 
    int endcell= DownstreamCell(time); 
 for (int i=firstcell-1;i<=endcell;++i) 
    { 
        AFit->EnterStatValue (  Dist(time,i) , A(time,i)    ); 
        ZFit->EnterStatValue (  Dist(time,i) , Z(time,i)    ); 
        QFit->EnterStatValue (  Dist(time,i) , Q(time,i)    ); 
        DFit->EnterStatValue (  Dist(time,i) , D(time,i)    ); 
        PFit->EnterStatValue (  Dist(time,i) , P(time,i)    ); 
        WPFit->EnterStatValue(  Dist(time,i) , WP(time,i)   ); 
    } 
    double dx=double(Dist(time,endcell)-Dist(time,firstcell-1))/double(endcell-(firstcell-1)); 
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    double first=Dist(time,firstcell-1); 
    int count=0; 
    for (int i=firstcell-1;i<endcell;++i) 
    { 
        Dist(time,i)=first+double(count)*dx; 
        ++count; 
    } 
 
    for (int i=firstcell-1;i<=endcell;++i) 
    { 
        if(Dist(time,i)>0) 
        { 
            A(time,i) = AFit->CubicSpline (Dist(time,i)); 
            Z(time,i) = ZFit->CubicSpline (Dist(time,i)); 
            Q(time,i) = QFit->CubicSpline (Dist(time,i)); 
            D(time,i) = DFit->CubicSpline (Dist(time,i)); 
            P(time,i) = PFit->CubicSpline (Dist(time,i)); 
            WP(time,i)= WPFit->CubicSpline(Dist(time,i)); 
 
            if(A(time,i)<0) A(time,i)=0; 
            if(Z(time,i)<0) Z(time,i)=0; 
            if(Q(time,i)<0) Q(time,i)=0; 
            if(D(time,i)<0) D(time,i)=0; 
            if(P(time,i)<0) P(time,i)=0; 
            if(WP(time,i)<0)WP(time,i)=0; 
        } 
    } 
    ResetIterationCount(); 
    SetInitialParameterEstimates(); 
} 
 
SmartPointer<TCurveFit>__fastcall TFIDOSimulation::CreateCurveFit(void) 
{ 
    SmartPointer<TCurveFit>Fit(new TCurveFit); 
    Fit->Init(); 
    return Fit; 
} 
 
 
 
void __fastcall TFIDOSimulation::EnableConvergenceLogging(void) 
{ 
    LogConvergence=true; 
} 
 
 
void __fastcall TFIDOSimulation::DisableConvergenceLogging(void) 
{ 
    LogConvergence=false; 
} 
 
 
void __fastcall TFIDOSimulation::ResetGridParameterDeltaValues(void) 
{ 
     _X->ResetDeltaValues(); 
    _A->ResetDeltaValues(); 
    _Q->ResetDeltaValues(); 
    _TotalTime->ResetDeltaValues(); 
    _dt->ResetDeltaValues(); 
} 
 
 
 
 
 
void __fastcall TFIDOSimulation::SetStopAtPoint(int value) 
{ 
    FStopAtPoint = value; 
} 
 
int __fastcall TFIDOSimulation::GetStopAtPoint() 
{ 
    return FStopAtPoint; 
} 

 



Appendix 3.2 Validation of FIDO Simulation Engine against SIRMOD Output. 

   269 

Appendix 3.2 Validation of FIDO Simulation Engine against 
SIRMOD Output. 

 

Validation Output:   C_Turner's Property 
 
Field 19 7/10/2000 Furrow 1  Irrigation no:1 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-01\TURNER_F19\TUR00_fld19irr1fur1.cfg 

 

Flowrate (m^3/sec) 0.00194 NOTE: INFILT value =1.941667 l/sec   

Time-to-cutoff  (mins) 1690 NOTE: SIRMOD value =1690 minsOld Value 

1689   
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.10155    
Kostiakov k 
(m^3/min^a/m) 0.13916    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 280 NOTE: SIRMOD value =0.28 mOld Value 0.111 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 19 7/10/2000 Furrow ave  Irrigation no:1 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR00_fld19irr1furAVG.cfg 

 

Flowrate (m^3/sec) 0.00194 NOTE: INFILT value =1.941667 l/sec   

Time-to-cutoff  (mins) 1690 NOTE: SIRMOD value =1690 minsOld Value 

1689   
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.05    
Kostiakov a 0.08592 NOTE: SIRMOD value =0.08592    
Kostiakov k 
(m^3/min^a/m) 0.1469 NOTE: SIRMOD value =0.1469    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 222 NOTE: SIRMOD value =0.222 mOld Value 0.111 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 19 31/12/2000 Furrow ave  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR00_fld19irr3furAVG.cfg 

 

Flowrate (m^3/sec) 0.001486 NOTE: SIRMOD value =1.486 lps NOTE: INFILT 

value =1.486667 l/sec   
Time-to-cutoff  (mins) 1248    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.08    
Kostiakov a 0.13823 NOTE: SIRMOD value =0.13823    
Kostiakov k 
(m^3/min^a/m) 0.06337 NOTE: SIRMOD value =0.06337    
Kostiakov fo 
(m^3/min/m) 0    
Z-required (m) 144 NOTE: SIRMOD value =0.144 mOld Value 0.067 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 19 12/01/2001 Furrow ave  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr4furAVG.cfg 

 

Flowrate (m^3/sec) 0.00158    
Time-to-cutoff  (mins) 1070    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.1    
Kostiakov a 0.07352    
Kostiakov k  (m^3/min^a/m) 0.07585    
Kostiakov fo  (m^3/min/m) 0.00003 NOTE: SIRMOD value =0    
Z-required (m) 130 NOTE: SIRMOD value =0.13 mOld Value 0.068 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 19 24/01/2001 Furrow ave  Irrigation no:5 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr5furAVG.cfg 

 

Flowrate (m^3/sec) 0.00203    
Time-to-cutoff  (mins) 755    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.08    
Kostiakov a 0.2198 NOTE: SIRMOD value =0.2198    
Kostiakov k  (m^3/min^a/m) 0.03456 NOTE: SIRMOD value =0.03456    
Kostiakov fo  (m^3/min/m) 0.00002 NOTE: SIRMOD value =0    
Z-required (m) 112 NOTE: SIRMOD value =0.112 mOld Value 0.056 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 19 12/02/2001 Furrow ave  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr6furAVG.cfg 

 

Flowrate (m^3/sec) 0.002    
Time-to-cutoff  (mins) 875 NOTE: SIRMOD value =875 minsOld Value 445  
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.08    
Kostiakov a 0.18432 NOTE: SIRMOD value =0.18432    
Kostiakov k  (m^3/min^a/m) 0.04261 NOTE: SIRMOD value =0.04261    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 122 NOTE: SIRMOD value =0.122 mOld Value 0.061 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 19 26/02/2001 Furrow ave  Irrigation no:7 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F19\TUR01_fld19irr7furAVG.cfg 

 

Flowrate (m^3/sec) 0.0026    
Time-to-cutoff  (mins) 705    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.07    
Kostiakov a 0.082 NOTE: SIRMOD value =0.082    
Kostiakov k  (m^3/min^a/m) 0.08137 NOTE: SIRMOD value =0.08137    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 118 NOTE: SIRMOD value =0.118 mOld Value 0.059 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 20 9/10/2000 Furrow ave  Irrigation no:1 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR00_fld20irr1furAVG.cfg 

 

Flowrate (m^3/sec) 0.00505    
Time-to-cutoff  (mins) 680    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.12189 NOTE: SIRMOD value =0.12189    
Kostiakov k  (m^3/min^a/m) 0.13952 NOTE: SIRMOD value =0.13952    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 266 NOTE: SIRMOD value =0.266 mOld Value 0.134 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 20 10/12/2000 Furrow ave  Irrigation no:2 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR00_fld20irr2furAVG.cfg 

 

Flowrate (m^3/sec) 0.00511    
Time-to-cutoff  (mins) 594    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.01991 NOTE: SIRMOD value =0.01991    
Kostiakov k 
(m^3/min^a/m) 0.24978 NOTE: SIRMOD value =0.24978    
Kostiakov fo 
(m^3/min/m) 0 NOTE: SIRMOD value =0.000000    

Z-required (m) 286.608 NOTE: SIRMOD value =0.286608 mOld Value 
0.098 

Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 20 1/01/2001 Furrow ave  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr3furAVG.cfg 

 

Flowrate (m^3/sec) 0.0051    
Time-to-cutoff  (mins) 445 NOTE: SIRMOD value =445 minsOld Value 875  
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.12373    
Kostiakov k  (m^3/min^a/m) 0.10257    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 162 NOTE: SIRMOD value =0.162 mOld Value 0.081 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 20 11/01/2001 Furrow ave  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr4furAVG.cfg 

 

Flowrate (m^3/sec) 0.00468    
Time-to-cutoff  (mins) 450    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0 NOTE: SIRMOD value =0.000000    
Kostiakov k 
(m^3/min^a/m) 0.14413 NOTE: SIRMOD value =0.14413    
Kostiakov fo  (m^3/min/m) 0.00013 NOTE: SIRMOD value =0.000002    
Z-required (m) 302.13 NOTE: SIRMOD value =0.30213 mOld Value 

0.079 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 20 29/01/2001 Furrow ave  Irrigation no:5 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr5furAVG.cfg 

 

Flowrate (m^3/sec) 0.00395 NOTE: SIRMOD value =3.95 lps NOTE: INFILT 

value =3.95 l/sec   
Time-to-cutoff  (mins) 285    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.1606    
Kostiakov k  
(m^3/min^a/m) 0.0464 NOTE: SIRMOD value =0.0464    
Kostiakov fo  
(m^3/min/m) 0    
Z-required (m) 140 NOTE: SIRMOD value =0.14 mOld Value 0.072 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 20 13/02/2001 Furrow ave  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr6furAVG.cfg 

 

Flowrate (m^3/sec) 0.00548    
Time-to-cutoff  (mins) 468    
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.02    
Kostiakov a 0.13235 NOTE: SIRMOD value =0.13235    
Kostiakov k  (m^3/min^a/m) 0.10811 NOTE: SIRMOD value =0.10811    
Kostiakov fo  (m^3/min/m) 0.00004 NOTE: SIRMOD value =0.000001    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.1 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 20 26/02/2001 Furrow ave  Irrigation no:7 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_00-1\TURNER_F20\TUR01_fld20irr7furAVG.cfg 

 

Flowrate (m^3/sec) 0.00505 NOTE: SIRMOD value =5.05 lps   
Time-to-cutoff  (mins) 680 NOTE: SIRMOD value =680 minsOld Value 425  
Field-length  (m) 520    
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.12189 NOTE: SIRMOD value =0.12189    
Kostiakov k  (m^3/min^a/m) 0.13952 NOTE: SIRMOD value =0.13952    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 266 NOTE: SIRMOD value =0.266 mOld Value 0.095 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 17 11/01/2000 Furrow 8  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F17\TUR00_fld17irr4fur8.cfg 

 

Flowrate (m^3/sec) 0.00536    
Time-to-cutoff  (mins) 650    
Field-length  (m) 1160    
Field-slope 0.00141    
Manning n 0.02    
Kostiakov a 0.11259 NOTE: SIRMOD value =0.11259    
Kostiakov k  (m^3/min^a/m) 0.06531 NOTE: SIRMOD value =0.06531    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 142 NOTE: SIRMOD value =0.142 mOld Value 0.065 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 17 20/01/2000 Furrow 8  Irrigation no:5 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F17\TUR00_fld17irr5fur8.cfg 

 

Flowrate (m^3/sec) 0.00613    
Time-to-cutoff  (mins) 380    
Field-length  (m) 1160    
Field-slope 0.00141    
Manning n 0.02    
Kostiakov a 0.0744 NOTE: SIRMOD value =0.0744    
Kostiakov k  (m^3/min^a/m) 0.05012 NOTE: SIRMOD value =0.05012    
Kostiakov fo  (m^3/min/m) 0.00015 NOTE: SIRMOD value =0.000003    
Z-required (m) 128 NOTE: SIRMOD value =0.128 mOld Value 0.064 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Field 18 1/10/1999 Furrow 8  Irrigation no:1 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F18\TUR99_fld18irr1fur8.cfg 

 

Flowrate (m^3/sec) 0.00364    
Time-to-cutoff  (mins) 873    
Field-length  (m) 725 NOTE: SIRMOD value =725 mOld Value 750  
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.13103 NOTE: SIRMOD value =0.13103    
Kostiakov k  (m^3/min^a/m) 0.07486 NOTE: SIRMOD value =0.07486    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 140 NOTE: SIRMOD value =0.14 mOld Value 0.08 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   

 
 
 
Field 18 11/01/2000 Furrow 2  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\Turner_99-00\TURNER_F18\TUR00_fld18irr4fur8.cfg 

 

Flowrate (m^3/sec) 0.0035    
Time-to-cutoff  (mins) 600    
Field-length  (m) 725 NOTE: SIRMOD value =725 mOld Value 750   
Field-slope 0.00151    
Manning n 0.03    
Kostiakov a 0.29564 NOTE: SIRMOD value =0.29564    
Kostiakov k  (m^3/min^a/m) 0.02655 NOTE: SIRMOD value =0.02655    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 114 NOTE: SIRMOD value =0.114 mOld Value 0.059 
Furrow top width (m) 0.72  
Furrow mid width (m) 0.48  
Furrow bot width (m) 0.3  
Furrow max depth (m) 0.2   
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Validation Output:   N_Walton's Property 
Field 7a 25/09/2001 Furrow 2  Irrigation no:1 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr1fur2.cfg 

 

Flowrate (m^3/sec) 0.0027 NOTE: SIRMOD value =2.7 lps   
Time-to-cutoff  (mins) 1745    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.035    
Kostiakov a 0.27002    
Kostiakov k  (m^3/min^a/m) 0.07049    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 300 NOTE: SIRMOD value =0.3 mOld Value 0.15 
Furrow top width (m) 0.4  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7a 27/12/2001 Furrow 2  Irrigation no:2 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr2fur2.cfg 

 

Flowrate (m^3/sec) 0.004442 NOTE: SIRMOD value =4.442 lps   
Time-to-cutoff  (mins) 450 NOTE: SIRMOD value =450 minsOld Value 495   
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0.19263 NOTE: SIRMOD value =0.19263    
Kostiakov k 
(m^3/min^a/m) 0.06375 NOTE: SIRMOD value =0.06375    
Kostiakov fo 
(m^3/min/m) 0    

Z-required (m) 199.998 NOTE: SIRMOD value =0.199998 mOld Value 
0.078 

Furrow top width (m) 0.4  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7a 27/12/2001 Furrow 6  Irrigation no:2 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr2fur6.cfg 

 

Flowrate (m^3/sec) 0.004442 NOTE: SIRMOD value =4.442 lps   
Time-to-cutoff  (mins) 450 NOTE: SIRMOD value =450 minsOld Value 495 
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0.13452    
Kostiakov k  (m^3/min^a/m) 0.07844    
Kostiakov fo  (m^3/min/m) 0.00008 NOTE: SIRMOD value =0.000001    
Z-required (m) 96 NOTE: SIRMOD value =0.096 mOld Value 0.078 
Furrow top width (m) 0.4  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7a 14/01/2002 Furrow 2  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr3fur2.cfg 

 

Flowrate (m^3/sec) 0.00436 NOTE: SIRMOD value =4.36 lps   
Time-to-cutoff  (mins) 400    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0.10515    
Kostiakov k  (m^3/min^a/m) 0.07071    
Kostiakov fo  (m^3/min/m) 0.00005 NOTE: SIRMOD value =0.000001    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.065
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7a 14/01/2002 Furrow 4  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr3fur4.cfg 

 

Flowrate (m^3/sec) 0.00436 NOTE: SIRMOD value =4.36 lps   
Time-to-cutoff  (mins) 400    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0    
Kostiakov k  (m^3/min^a/m) 0.10071    
Kostiakov fo  (m^3/min/m) 0.00015 NOTE: SIRMOD value =0.000003    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.065
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7a 14/01/2002 Furrow 6  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr3fur6.cfg 

 

Flowrate (m^3/sec) 0.00436 NOTE: SIRMOD value =4.36 lps   
Time-to-cutoff  (mins) 400    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0    
Kostiakov k 
(m^3/min^a/m) 0.08913    
Kostiakov fo  (m^3/min/m) 0.00014 NOTE: SIRMOD value =0.000002    
Z-required (m) 191.13 NOTE: SIRMOD value =0.19113 mOld Value 

0.065 
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7a 27/01/2002 Furrow 7  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr4fur7.cfg 

 

Flowrate (m^3/sec) 0.003897 NOTE: SIRMOD value =3.897 lps   
Time-to-cutoff  (mins) 400    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.05    
Kostiakov a 0    
Kostiakov k  (m^3/min^a/m) 0.0367    
Kostiakov fo  (m^3/min/m) 0.00021 NOTE: SIRMOD value =0.000004    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.085
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7a 27/01/2002 Furrow ave  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr4furAVG.cfg 

 

Flowrate (m^3/sec) 0.003897 NOTE: SIRMOD value =3.897 lps   
Time-to-cutoff  (mins) 400    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0.00001 NOTE: SIRMOD value =0.00001    
Kostiakov k  (m^3/min^a/m) 0.05575 NOTE: SIRMOD value =0.05575    
Kostiakov fo  (m^3/min/m) 0.00006 NOTE: SIRMOD value =0.000001    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.085
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7a 20/02/2002 Furrow 2  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur2.cfg 

 

Flowrate (m^3/sec) 0.00437    
Time-to-cutoff  (mins) 450    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.03    
Kostiakov a 0.06954    
Kostiakov k  (m^3/min^a/m) 0.1037    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7a 20/02/2002 Furrow 4  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur4.cfg 

 

Flowrate (m^3/sec) 0.00437    
Time-to-cutoff  (mins) 450    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.05    
Kostiakov a 0.12549    
Kostiakov k  (m^3/min^a/m) 0.07019    
Kostiakov fo  (m^3/min/m) 0.00016 NOTE: SIRMOD value =0.000003    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7a 20/02/2002 Furrow 6  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur6.cfg 

 

Flowrate (m^3/sec) 0.00437    
Time-to-cutoff  (mins) 450    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0.15281    
Kostiakov k  (m^3/min^a/m) 0.06884    
Kostiakov fo  (m^3/min/m) 0.00004 NOTE: SIRMOD value =0.000001    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7a 20/02/2002 Furrow 8  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldAirr6fur8.cfg 

 

Flowrate (m^3/sec) 0.00437    
Time-to-cutoff  (mins) 450    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0.11616    
Kostiakov k  (m^3/min^a/m) 0.08008    
Kostiakov fo  (m^3/min/m) 0.00007 NOTE: SIRMOD value =0.000001    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.105
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7b 27/12/2001 Furrow 6  Irrigation no:2 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr2fur6.cfg 

 

Flowrate (m^3/sec) 0.00188    

Time-to-cutoff  (mins) 1035 NOTE: SIRMOD value =1035 minsOld Value 

1300   
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.1    
Kostiakov a 0.233316 NOTE: SIRMOD value =0.233316    
Kostiakov k 
(m^3/min^a/m) 0.02546    
Kostiakov fo  (m^3/min/m) 0.00009 NOTE: SIRMOD value =0.000002    
Z-required (m) 122 NOTE: SIRMOD value =0.122 mOld Value 0.065 
Furrow top width (m) 0.4  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7b 14/01/2002 Furrow 2  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur2.cfg 

 

Flowrate (m^3/sec) 0.00233    
Time-to-cutoff  (mins) 694    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.1    
Kostiakov a 0    
Kostiakov k  (m^3/min^a/m) 0.06171    
Kostiakov fo  (m^3/min/m) 0.00014 NOTE: SIRMOD value =0.000002    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.064
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7b 14/01/2002 Furrow 4  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur4.cfg 

 

Flowrate (m^3/sec) 0.00233    
Time-to-cutoff  (mins) 694    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.09    
Kostiakov a 0.08275    
Kostiakov k  (m^3/min^a/m) 0.04904    
Kostiakov fo  (m^3/min/m) 0.00009 NOTE: SIRMOD value =0.000002    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.064
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7b 14/01/2002 Furrow 6  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur6.cfg 

 

Flowrate (m^3/sec) 0.00233    
Time-to-cutoff  (mins) 694    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.1    
Kostiakov a 0.16665    
Kostiakov k  (m^3/min^a/m) 0.0391    
Kostiakov fo  (m^3/min/m) 0    
Z-required (m) 128 NOTE: SIRMOD value =0.128 mOld Value 0.064 
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7b 14/01/2002Furrow 8  Irrigation no:3 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr3fur8.cfg 

 

Flowrate (m^3/sec) 0.00491 NOTE: SIRMOD value =4.91 lps   
Time-to-cutoff  (mins) 505 NOTE: SIRMOD value =505 minsOld Value 694 
Field-length  (m) 650 NOTE: SIRMOD value =650 mOld Value 635   
Field-slope 0.001    
Manning n 0.04    
Kostiakov a 0.10758 NOTE: SIRMOD value =0.10758    
Kostiakov k  (m^3/min^a/m) 0.02967 NOTE: SIRMOD value =0.02967    
Kostiakov fo  (m^3/min/m) 0.00023 NOTE: SIRMOD value =0.000004    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.064 
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7b 27/01/2002 Furrow 2  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr4fur2.cfg 

 

Flowrate (m^3/sec) 0.0023507 NOTE: SIRMOD value =2.3507 lps   
Time-to-cutoff  (mins) 695    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.05    
Kostiakov a 0.05407 NOTE: SIRMOD value =0.05407    
Kostiakov k  (m^3/min^a/m) 0.05122 NOTE: SIRMOD value =0.05122    
Kostiakov fo  (m^3/min/m) 0.00004 NOTE: SIRMOD value =0.000001    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.085
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7b 27/01/2002Furrow 4  Irrigation no:4 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr4fur4.cfg 

 

Flowrate (m^3/sec) 0.0023507 NOTE: SIRMOD value =2.3507 lps   
Time-to-cutoff  (mins) 695    
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.05    
Kostiakov a 0.07832 NOTE: SIRMOD value =0.07832    
Kostiakov k  (m^3/min^a/m) 0.05099 NOTE: SIRMOD value =0.05099    
Kostiakov fo  (m^3/min/m) 0.00002 NOTE: SIRMOD value =0    
Z-required (m) 178 NOTE: SIRMOD value =0.178 mOld Value 0.085 
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
 
 
Field 7b 20/02/2002 Furrow 6  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr6fur6.cfg 

 

Flowrate (m^3/sec) 0.002    
Time-to-cutoff  (mins) 740 NOTE: SIRMOD value =740 minsOld Value 750 
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.09    
Kostiakov a 0.03777    
Kostiakov k  (m^3/min^a/m) 0.06997    
Kostiakov fo  (m^3/min/m) 0.0001 NOTE: SIRMOD value =0.000002    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.097 
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   
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Field 7b 20/02/2002 Furrow 8  Irrigation no:6 
SIRMOD Datafile: D:\PROJECTS\FIDO\Bin2\Data\SIRMOD_files\waltons\WAL_fldBirr6fur8.cfg 

 

Flowrate (m^3/sec) 0.002    
Time-to-cutoff  (mins) 740 NOTE: SIRMOD value =740 minsOld Value 750 
Field-length  (m) 635    
Field-slope 0.001    
Manning n 0.08    
Kostiakov a 0.09108    
Kostiakov k  (m^3/min^a/m) 0.05878    
Kostiakov fo  (m^3/min/m) 0.00002 NOTE: SIRMOD value =0    
Z-required (m) 200 NOTE: SIRMOD value =0.2 mOld Value 0.097 
Furrow top width (m) 0.5  
Furrow mid width (m) 0.25  
Furrow bot width (m) 0.1  
Furrow max depth (m) 0.25   

 
Created by David McClymont, NCEA on the 2006-08-24  
mcclymon@usq.edu.au using FIDO v1.01 (beta) 
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Appendix 4.1 Calibrated advance curves   
 

Calibration Summary:   C_Turner's Property 
Red lines respresent Simulations using INFILT calibrated infiltration parameters. Blue lines 
represent simulations using "Hydrodynamic Method" calibrated infiltrated parameters 
 
Field 19 7/10/2000 Furrow 1  Irrigation no:1 

 

Measured 
Advance  

x(m) t(min) 

100 234 

200 426 

300 724 

400 988 

500 1246 
 

Flowrate 
(m^3/sec) 

0.00194167 NOTE: 
INFILT value =1.941667 

l/sec 
Time-to-cutoff  

(mins) 
1690 NOTE: SIRMOD value 
=1690 minsOld Value 1689 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.03 

Kostiakov a 0.09162      Previous: 
0.10155 

Kostiakov k 
(m^3/min^a/m) 

0.15781662      
Previous: 0.13916 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 280 NOTE: SIRMOD value 
=0.28 mOld Value 0.111 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
 
Field 19 7/10/2000 Furrow ave  Irrigation no:1 

 

Measured 
Advance  

x(m) t(min) 

100 214 

200 438 

300 689 

400 948 

500 1194 
 

Flowrate 
(m^3/sec) 

0.00194167 NOTE: 
INFILT value =1.941667 

l/sec 
Time-to-cutoff  

(mins) 
1690 NOTE: SIRMOD value 
=1690 minsOld Value 1689 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.05 

Kostiakov a 0.07999      Previous: 
0.08592 

Kostiakov k 
(m^3/min^a/m) 

0.15949077      
Previous: 0.1469 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 222 NOTE: SIRMOD value 
=0.222 mOld Value 0.111 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 



Appendix 4.1 Calibrated advance curves 

   290 

 
 
Field 19 31/12/2000 Furrow ave  Irrigation no:3 

 

Measured 
Advance  

x(m) t(min) 

100 156 

200 338 

300 562 

400 770 

500 969 
 

Flowrate 
(m^3/sec) 

0.00148667 NOTE: 
SIRMOD value =1.486 lps 

NOTE: INFILT value 
=1.486667 l/sec 

Time-to-cutoff  
(mins) 1248 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.08 

Kostiakov a 0.125755      
Previous: 0.13823 

Kostiakov k 
(m^3/min^a/m) 

0.07233696      
Previous: 0.06337 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 144 NOTE: SIRMOD value 
=0.144 mOld Value 0.067 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max 
depth (m) 0.2 

 
 
 
 
Field 19 12/01/2001 Furrow ave  Irrigation no:4 

 

Measured 
Advance  

x(m) t(min) 

100 146 

200 293 

300 472 

400 651 

500 839 
 

Flowrate 
(m^3/sec) 0.00158 

Time-to-cutoff  
(mins) 1070 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.1 

Kostiakov a 0.07201      
Previous: 0.07352 

Kostiakov k 
(m^3/min^a/m) 

0.07994569      
Previous: 0.07585 

Kostiakov fo  
(m^3/min/m) 

0.0000294      
Previous: 0.00003 

Z-required (m) 130 NOTE: SIRMOD value 
=0.13 mOld Value 0.068 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
Field 19 24/01/2001 Furrow ave  Irrigation no:5 
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Measured 
Advance  

x(m) t(min) 

100 82 

200 214 

300 336 

400 472 

500 640 
 

Flowrate 
(m^3/sec) 0.00203 

Time-to-cutoff  
(mins) 755 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.08 

Kostiakov a 0.225925      
Previous: 0.2198 

Kostiakov k 
(m^3/min^a/m) 

0.03588277      
Previous: 0.03456 

Kostiakov fo  
(m^3/min/m) 

0.0000038      
Previous: 0.00002 

Z-required (m) 112 NOTE: SIRMOD value 
=0.112 mOld Value 0.056 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
 
Field 19 12/02/2001 Furrow ave  Irrigation no:6 

 

Measured 
Advance  

x(m) t(min) 

100 92 

200 212 

300 343 

400 480 

500 617 
 

Flowrate 
(m^3/sec) 0.002 

Time-to-cutoff  
(mins) 

875 NOTE: SIRMOD value 
=875 minsOld Value 445 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.08 

Kostiakov a 0.17031      
Previous: 0.18432 

Kostiakov k 
(m^3/min^a/m) 

0.04780402      
Previous: 0.04261 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 122 NOTE: SIRMOD value 
=0.122 mOld Value 0.061 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
Field 19 26/02/2001 Furrow ave  Irrigation no:7 



Appendix 4.1 Calibrated advance curves 

   292 

 

Measured 
Advance  

x(m) t(min) 

100 90 

200 180 

300 291 

400 393 

500 493 
 

Flowrate 
(m^3/sec) 0.0026 

Time-to-cutoff  
(mins) 705 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.07 

Kostiakov a 0.07068      
Previous: 0.082 

Kostiakov k 
(m^3/min^a/m) 

0.0868203      
Previous: 0.08137 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 118 NOTE: SIRMOD value 
=0.118 mOld Value 0.059 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
 
Field 20 9/10/2000 Furrow ave  Irrigation no:1 

 

Measured 
Advance  

x(m) t(min) 

100 78 

200 173 

300 278 

400 381 

500 485 
 

Flowrate 
(m^3/sec) 0.00505 

Time-to-cutoff  
(mins) 680 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.03 

Kostiakov a 0.112265      
Previous: 0.12189 

Kostiakov k 
(m^3/min^a/m) 

0.14946592      
Previous: 0.13952 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 266 NOTE: SIRMOD value 
=0.266 mOld Value 0.134 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 
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Field 20 10/12/2000 Furrow ave  Irrigation no:2 

 

Measured 
Advance  

x(m) t(min) 

100 98 

200 197 

300 297 

400 400 

500 502 
 

Flowrate 
(m^3/sec) 0.00511 

Time-to-cutoff  
(mins) 594 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.03 

Kostiakov a 0.00848      Previous: 
0.01991 

Kostiakov k 
(m^3/min^a/m) 

0.27023988      
Previous: 0.24978 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 
286.608 NOTE: SIRMOD 

value =0.286608 mOld 
Value 0.098 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
Field 20 1/01/2001 Furrow ave  Irrigation no:3 

 

Measured 
Advance  

x(m) t(min) 

100 56 

200 133 

300 203 

400 277 

500 360 
 

Flowrate 
(m^3/sec) 0.0051 

Time-to-cutoff  
(mins) 

445 NOTE: SIRMOD value 
=445 minsOld Value 875 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.03 

Kostiakov a 0.11379      
Previous: 0.12373 

Kostiakov k 
(m^3/min^a/m) 

0.11054496      
Previous: 0.10257 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 162 NOTE: SIRMOD value 
=0.162 mOld Value 0.081 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 
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Field 20 29/01/2001 Furrow ave  Irrigation no:5 

 

Measured 
Advance  

x(m) t(min) 

100 43 

200 96 

300 152 

400 210 
 

Flowrate 
(m^3/sec) 

0.00395 NOTE: SIRMOD 
value =3.95 lps NOTE: 

INFILT value =3.95 l/sec 
Time-to-cutoff  

(mins) 285 
Field-length  (m) 520 

Field-slope 0.00151 
Manning n 0.03 

Kostiakov a 0.132125      
Previous: 0.1606 

Kostiakov k 
(m^3/min^a/m) 

0.05786585      
Previous: 0.0464 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 140 NOTE: SIRMOD value 
=0.14 mOld Value 0.072 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
 
Field 20 13/02/2001 Furrow ave  Irrigation no:6 

 

Measured 
Advance  

x(m) t(min) 

100 60 

200 130 

300 209 

400 290 
 

Flowrate (m^3/sec) 0.00548 
Time-to-cutoff  

(mins) 468 
Field-length  (m) 520 

Field-slope 0.00151 
Manning n 0.02 

Kostiakov a 0.138605      
Previous: 0.13235 

Kostiakov k 
(m^3/min^a/m) 

0.11260512      
Previous: 0.10811 

Kostiakov fo  
(m^3/min/m) 

0      Previous: 
0.00004 

Z-required (m) 200 NOTE: SIRMOD value 
=0.2 mOld Value 0.1 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 
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Field 20 26/02/2001 Furrow ave  Irrigation no:7 

 

Measured 
Advance  

x(m) t(min) 

100 75 

200 153 

300 229 

400 302 

500 388 
 

Flowrate 
(m^3/sec) 

0.00476 NOTE: SIRMOD 
value =5.05 lps 

Time-to-cutoff  
(mins) 

680 NOTE: SIRMOD value 
=680 minsOld Value 425 

Field-length  (m) 520 
Field-slope 0.00151 
Manning n 0.03 

Kostiakov a 0.00602      
Previous: 0.12189 

Kostiakov k 
(m^3/min^a/m) 

0.19065816      
Previous: 0.13952 

Kostiakov fo  
(m^3/min/m) 0      Previous: 0 

Z-required (m) 266 NOTE: SIRMOD value 
=0.266 mOld Value 0.095 

Furrow top width 
(m) 0.72 

Furrow mid width 
(m) 0.48 

Furrow bot width 
(m) 0.3 

Furrow max depth 
(m) 0.2 

 
 
Created by David McClymont, NCEA on the 2006-08-24 
mcclymon@usq.edu.au using FIDO v1.01 (beta) 
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Appendix 5.1 Response-surface generation for different 
user-defined weightings of the objective-function 

 

 

  
 

  

Figure A5.1.1: Response-surface for equal weightings of the objective-function components. 

 

 

  
 

  

Figure A5.1.2: Response-surface for maximising storage efficiency. 
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Figure A5.1.3: Response-surface for maximising application uniformity. 

 
 

 

  
 

  

Figure A5.1.4: Response-surface for minimising runoff. 
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Figure A5.1.5: Response-surface for minimising deep drainage. 

 

 

  
 

  

Figure A5.1.6: Response-surface for maximising storage efficiency. 
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Figure A5.1.7: Response-surface for ignoring uniformity. 

 

 

  
 

  

Figure A5.1.8: Response-surface for emphasising maximise storage efficiency. 
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Figure A5.1.9: Response-surface for emphasising maximise application uniformity. 

 

 

  
 

  

Figure A5.1.10: Response-surface for emphasising minimise runoff. 
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Figure A5.1.11: Response-surface for emphasising minimise drainage. 
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Appendix 5.2 FIDO Optimisation Trial Results 
Note: Red lines in charts represent SIRMOD output, while blue lines are 
optimised outputs. 

Optimisation Output:   C_Turner's Property 
Sirmod vs Optimised Comparison 
 
Field 19, 7/10/2000:  Furrow 1  Irrigation no:1 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00194 0.00194  
Time-to-cutoff 1690 1198  
Performance Measure Measured Optimised Comments 
Application Efficiency 73.3 98.5  
Storage Efficiency 99.3 94.5  
Application Uniformity 96 92.7  
Applied Volume 196982.6139447.2 
Runoff Volume 49287.7 1623.9  
Stored Volume 144520.5137534.3 
Drainage Volume 3354.6 442.2   

 
 
Field 19, 7/10/2000:  Furrow ave  Irrigation no:1 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00194 0.00194  
Time-to-cutoff 1690 1126  
Performance Measure Measured Optimised Comments 
Application Efficiency 58.5 87.7  
Storage Efficiency 100 99.7  
Application Uniformity 97 93.8  
Applied Volume 196941.9131066.4 
Runoff Volume 56740.2 0  
Stored Volume 115440 115133.9 
Drainage Volume 24933.9 16066.6   
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Field 19, 31/12/2000:  Furrow ave  Irrigation no:3 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.0014860.001486 
Time-to-cutoff 1248 870  
Performance Measure Measured Optimised Comments 
Application Efficiency 67.1 94.2  
Storage Efficiency 100 97.7  
Application Uniformity 95.6 91.8  
Applied Volume 111510.777569.2  
Runoff Volume 26965.2 262.7  
Stored Volume 74880 73189.4  
Drainage Volume 9715.8 4201.5   

 
 
 
Field 19, 12/01/2001:  Furrow ave  Irrigation no:4 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured OptimisedComments 

Flowrate 0.00158 0.00158  
Time-to-cutoff 1070 710  
Performance Measure Measured OptimisedComments 
Application Efficiency 66.5 95.8  
Storage Efficiency 100 95.5  
Application Uniformity 93.2 89.3  
Applied Volume 101480.967308  
Runoff Volume 24265.4 0  
Stored Volume 67600 64581.4  
Drainage Volume 9734.9 2811.8   
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Field 19, 24/01/2001:  Furrow ave  Irrigation no:5 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation Parameter Measured OptimisedComments 
Flowrate 0.00203 0.00203  
Time-to-cutoff 755 573.8  
Performance Measure MeasuredOptimisedComments 
Application Efficiency 63.1 82  
Storage Efficiency 100 98.5  
Application Uniformity 91.4 87.4  
Applied Volume 92151.8 69888.8  
Runoff Volume 13932.9 598  
Stored Volume 58240 57395.1  
Drainage Volume 20094.6 11960   

 
 
 
Field 19, 12/02/2001:  Furrow ave  Irrigation no:6 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured OptimisedComments 

Flowrate 0.002 0.002  
Time-to-cutoff 875 538.4  
Performance Measure Measured OptimisedComments 
Application Efficiency 60.1 94.7  
Storage Efficiency 100 96.6  
Application Uniformity 95.8 90.7  
Applied Volume 105258.364608  
Runoff Volume 31066.1 180.9  
Stored Volume 63440 61277.3  
Drainage Volume 10883.3 3216.1   
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Field 19, 26/02/2001:  Furrow ave  Irrigation no:7 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured OptimisedComments 

Flowrate 0.0026 0.0026  
Time-to-cutoff 705 429  
Performance Measure Measured OptimisedComments 
Application Efficiency 55.3 91.5  
Storage Efficiency 100 89.8  
Application Uniformity 98.3 87.1  
Applied Volume 110708.366924  
Runoff Volume 39455.6 0  
Stored Volume 61360 55079.3  
Drainage Volume 10073.3 5724.6   

 
 
 
Field 20, 9/10/2000:  Furrow ave  Irrigation no:1 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00505 0.00505  
Time-to-cutoff 680 468.8  
Performance Measure Measured Optimised Comments 
Application Efficiency 66.7 94.8  
Storage Efficiency 100 97.7  
Application Uniformity 95.8 92.1  
Applied Volume 206557.7142046.4 
Runoff Volume 52799.3 642.4  
Stored Volume 138320 135166.3 
Drainage Volume 15960.2 6672.1   
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Field 20, 10/12/2000:  Furrow ave  Irrigation no:2 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00511 0.00511  
Time-to-cutoff 594 470.4  
Performance Measure Measured Optimised Comments 
Application Efficiency 80.1 100  
Storage Efficiency 98.2 97.1  
Application Uniformity 99.2 98.5  
Applied Volume 182312.1144224.6 
Runoff Volume 36312.4 0  
Stored Volume 146348 144661.3 
Drainage Volume 0 0   

 
 
 
Field 20, 1/01/2001:  Furrow ave  Irrigation no:3 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured OptimisedComments 

Flowrate 0.0051 0.0051  
Time-to-cutoff 445 325  
Performance Measure Measured OptimisedComments 
Application Efficiency 61.2 82.8  
Storage Efficiency 100 98.3  
Application Uniformity 95.6 91.2  
Applied Volume 136910.299450  
Runoff Volume 28582 0  
Stored Volume 84240 82826.8  
Drainage Volume 24602.2 17072.9   
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Field 20, 11/01/2001:  Furrow ave  Irrigation no:4 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured OptimisedComments 

Flowrate 0.00468 0.00468  
Time-to-cutoff 450 311.4  
Performance Measure Measured OptimisedComments 
Application Efficiency 76.1 100  
Storage Efficiency 62.2 55.9  
Application Uniformity 91.8 90.9  
Applied Volume 127683.187441.1  
Runoff Volume 30561.2 0  
Stored Volume 97706.6 87897.2  
Drainage Volume 0 0   

 
 
 
Field 20, 29/01/2001:  Furrow ave  Irrigation no:5 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation Parameter Measured OptimisedComments 
Flowrate 0.00395 0.00395  
Time-to-cutoff 285 225  
Performance Measure MeasuredOptimisedComments 
Application Efficiency 83.4 99.3  
Storage Efficiency 78.4 73.3  
Application Uniformity 94.7 92  
Applied Volume 67952.5 53325  
Runoff Volume 11283.4 380.8  
Stored Volume 57061.9 53358.7  
Drainage Volume 0 0   
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Field 20, 13/02/2001:  Furrow ave  Irrigation no:6 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00548 0.00548  
Time-to-cutoff 468 348  
Performance Measure Measured Optimised Comments 
Application Efficiency 66.6 88.2  
Storage Efficiency 100 97.3  
Application Uniformity 92.9 88.4  
Applied Volume 155402.4114422.4 
Runoff Volume 28175.4 0  
Stored Volume 104000 101237.7 
Drainage Volume 23720.8 13553.5   

 
 
 
Field 20, 26/02/2001:  Furrow ave  Irrigation no:7 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00505 0.00505  
Time-to-cutoff 680 468.8  
Performance Measure Measured Optimised Comments 
Application Efficiency 66.7 94.8  
Storage Efficiency 100 97.7  
Application Uniformity 95.8 92.1  
Applied Volume 206557.7142046.4 
Runoff Volume 52799.3 642.4  
Stored Volume 138320 135166.3 
Drainage Volume 15960.2 6672.1   
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Field 17, 11/01/2000:  Furrow 8  Irrigation no:4 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00536 0.00536  
Time-to-cutoff 650 440  
Performance Measure Measured Optimised Comments 
Application Efficiency 72.1 99.4  
Storage Efficiency 92.5 85.6  
Application Uniformity 96.7 93.6  
Applied Volume 210553.5141504  
Runoff Volume 58701.8 883.1  
Stored Volume 152287.8141059.7 
Drainage Volume 0 0   

 
 
 
Field 18, 1/10/1999:  Furrow 8  Irrigation no:1 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured Optimised Comments 

Flowrate 0.00364 0.00364  
Time-to-cutoff 873 512.4  
Performance Measure Measured Optimised Comments 
Application Efficiency 53 88.8  
Storage Efficiency 100 98.1  
Application Uniformity 96.5 91  
Applied Volume 190925.9111908.2 
Runoff Volume 63763 0  
Stored Volume 101500 99612.6  
Drainage Volume 25904.7 12512.4   
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Field 18, 11/01/2000:  Furrow 2  Irrigation no:4 
Optimisation 1. Run by at 09::26 17/11/2006 

 

Optimisation 
Parameter Measured OptimisedComments 

Flowrate 0.0035 0.0035  
Time-to-cutoff 600 503.4  
Performance Measure Measured OptimisedComments 
Application Efficiency 65.1 76.8  
Storage Efficiency 100 98.4  
Application Uniformity 89.4 85.8  
Applied Volume 126452.9105714  
Runoff Volume 12052.2 1391.8  
Stored Volume 82650 81364.6  
Drainage Volume 32044.4 23171   
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Appendix 7.1 Software engineering tools 
The choice of software engineering tools used in developing the FIDO decision 
support system has heavily influenced all aspects of its final design.  The 
importance of this cannot be understated, and therefore necessitates 
documentation and discussion.  Poor choice of tools can severely limit program 
functionality and may be irreversible once development is underway.  Hence, 
careful consideration is required at the commencement of the project as to the: 

• Choice of operating system; 
• Choice of programming language(s); 
• Choice of database environment; 
• Choice of development environments; and   
• Choice of third party tools and libraries. 

 

A7.1.1 Target operating system 
Microsoft Windows was chosen as the target operating system for FIDO.  Cross-
platform development was initially considered, but rejected on the grounds that:  

• It is assumed that the target audience for the software would have access 
to Microsoft Windows.  Many of these users would already be using 
SIRMOD or SRFR which can operate under the Windows environment 
(although there can be problems running SRFR as it is DOS based). 

• Cross-platform development severely limits the choices of libraries, tools, 
and languages available.  The true power of the FIDO software lies in its 
integration with existing third-party Windows-based libraries. 

 

A7.1.2  Programming languages 
C++ was used as the language of choice for developing FIDO, although others 
such as Object Pascal, Fortran and BASIC were also considered.  
 
The benefits of using C++ as a programming language for developing FIDO 
include: 

• It is an intermediate to high-level language: Computer languages can be 
roughly categorized between high and low level languages.  Higher level 
languages are distinguished as being closer to human languages and 
further from machine languages and are therefore easier to read, write 
and maintain but ultimately must be translated into machine language by 
a compiler or an interpreter 
(http://www.webopedia.com/TER/H_/high_level_language.html).  This 
process can occur at development time before “running” the program 
such as with C and Pascal, or it can occur at run-time with languages like 
BASIC. 

• It is a precompiled language: Precompiled languages such as C++ and 
Object Pascal offer considerable performance advantages over 
interpreted languages such as BASIC, and until recently have been 
considered the standard for writing “serious” applications.  

http://www.webopedia.com/�
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• Traditionally it has been a mathematical language: A large range of 
mathematical libraries exist in C and C++ which are not available in 
languages such as BASIC and Object Pascal (although this is changing). 

 
Another option that was investigated was the use Microsoft’s .NET technology 
(http://www.microsoft.com).  This would have permitted the use of the Managed 
C++ language (now known as C++/CLI) or C# which would be compiled to a 
“Common Language Runtime (CLR)” which is then interpreted at runtime.  This 
is quickly becoming the most popular technology for Windows’ software 
developers and offers considerable advantages in software reuse and 
development.  This language did not exist when this research started, and was 
still in its infancy when the most current version of FIDO was developed. At that 
time, there were a number of questions arising about the CLR’s mathematical 
performance.  Reviewing user comments on the internet revealed a full range of 
opinions as to its suitability.  It was thought that recursive mathematical 
operations “may” run as quickly as the fully compiled equivalent, since the 
technology compiles the code on the first iteration. Since FIDO has a modular 
structure separating interface and program code, it could quite easily be 
converted into a .NET program in the future, if a potential benefit is seen to exist 
(including third party support). 
 

A7.1.3 Database environment 
XML (eXtensible Mark-up Language) and XML Schema technology was chosen 
to develop the database components of FIDO.  XML is a simple and flexible text 
format originally designed for use in large-scale electronic publishing.  However, 
it is now widely used for data exchange and storage for all sorts of computing 
applications (www.w3.org/XML).  Its main characteristics include 
(www.dclab.com):  

• Only standard text (ASCII or UniCode) is used with a document;  
• All data is clearly identified inside user-defined tags; 
• The document remains unformatted although formatting information can 

be included in the XML tagging; and   
• The document usually conforms to a user-defined rule-set or template 

such as a schema or DTD (Document Type Definition) although this is 
optional. 

 
The two main benefits of using XML (www.dclab.com/xmlbenefits_p1.asp) as a 
database include: 

1. Content identification: text elements are identified on the basis of what 
they are and not what they look like.  Data is encapsulated within user-
defined tags.  For example, title information could be presented as 
<Title>This is the title</Title>. 

2. International standard: XML is now an international standard that is 
maintained by an independent standards committee.  Because of this it is 
compatible with a wide range of software products. 

 
In the early stages of this project, the database was originally developed using 
Microsoft Access and connected to the FIDO interface through Borland’s 
database controls that ship with Builder. 

http://www.w3.org/XML�
http://www.dclab.com/�
http://www.dclab.com/xmlbenefits_p1.asp�
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A7.1.4 Development environments 
Two main software engineering tools were used while developing FIDO.  Borland 
C++ Builder (www.inprise.com) was used as the integrated development 
environment for programming tasks, while XML Spy (www.altova.com) was used 
to develop the XML database and reporting components.  
 
Borland C++ Builder (Figure A7.1.1) was chosen over other programming 
development environments for two main reasons:  firstly because it is an object-
oriented programming environment for Windows using the C++ language (and 
also Object-Pascal); and   secondly, because it is compatible with the class-
leading third-party components TeeChart (www.teemach.com) and 
VirtualTreeView (www.delphi-gems/VirtualTreeview) which feature prominently 
throughout the FIDO decision support system.  
 

 
Figure A7.1.1: Borland C++ Builder has been used as the integrated development environment 

for developing FIDO. 

 
Other products which were also considered include Borland Delphi, Microsoft 
Visual C++, and Microsoft Visual Basic.  Delphi is Builder’s sister product and 
they both share the same Windows programming library (Visual Class Library) 
and compile to the same object-code.  However, Delphi was overlooked as it is 
an Object-Pascal programming environment, and not this author’s language of 
choice.  Visual C++ is arguably the industry leader in integrated development 
environments.  However, it is let down by the way it handles third-party 
components.  This area is the real strength of Builder (and Delphi) as it allows 
the developer to embed third-party components called “packages” directly into 
your own applications.  In contrast, Visual C++ requires dynamic link libraries 
that are external to the developed program, with very limited communication 
ability.  Visual Basic was also briefly considered at the start of the project, but 
was dismissed based on its slower performance, especially when dealing with 
mathematical equations.  However, it is often favoured by novice programmers 
for it simplicity. 
 

http://www.inprise.com/�
http://www.altova.com/�
http://www.teemach.com/�
http://www.delphi-gems/VirtualTreeview�
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XML Spy 2004 was used to develop the database and input/output components 
of FIDO and is now an industry standard for XML development.  XML Spy 
allows you to graphically create a database or file structure using schema 
technology (Figure A7.1.2).  
 

 
Figure A7.1.2: XML Spy 2004 has been used to develop the XML database and reporting 

capabilities of FIDO 

 

A7.1.5 Components and libraries 
The use of “packages” in the Borland C++ Builder development environment is 
one of its greatest attributes.  In the world of object-oriented programming where 
“reuse” is one of the primary goals, “packages” offer a simple means to 
distribute components so others can use them.  These days, there are numerous 
companies dedicated to component writing.  As a software developer, it makes 
good sense to use these third-party components rather than having to “reinvent 
the wheel”.  FIDO relies heavily on this technology making extensive use of two 
third-party components: TeeChart  and VirtualTreeView.  It also extensively uses 
the XML component library which ships with Borland C++ Builder.  Without 
these components, FIDO would look and feel very different to its current form.  It 
would also be much less powerful since these tools are widely regarded as “state 
of the art”.  
 
TeeChart is a class-leading and award-winning charting and plotting tool by 
Steema Software, written in Object-Pascal using the Visual Class Library.  
Because it uses this library, it works seamlessly in Borland C++ Builder, and is 
easily modified and customised.  FIDO incorporates dozens of TeeChart objects 
throughout its interface, in both original and modified form.  They are used for 
outputting results graphically, animating the simulation of water flowing down the 
furrow, and even as a slider-bar control for manipulating outputs (Figure A7.1.3). 
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(a) (b) 

 
(c) 

Figure A7.1.3: Examples of TeeChart as used in FIDO: (a) 3D surface for parameter analysis 
generation; (b) as a graphical animation of the simulation output; and (c) as a slider bar control. 

 
VirtualTreeView is a powerful treeview control that is used throughout FIDO as 
the graphical control for data entry, selecting and viewing (Figure A7.1.4).  This 
tool is quite unique in that it uses a different paradigm for tree management 
than other existing treeview controls.  This component does not know anything 
about the data it manages (other than its size) and uses “events” to retrieve 
information and display it to the screen.  It is very fast and has a very small 
memory footprint. 
   

 
(a) 

 
(b) 

 
(c) 

Figure A7.1.4: Examples of VirtualTreeView throughout FIDO: (a) As a data selector; (b) for 
data entry; and (c) as a grid control for data output. 
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The XML component library that ships with Borland C++ Builder is used 
extensively in FIDO for database management, report generation, and system 
file manipulation.  This key component in this library is TXMLDocument which 
uses an external “Document Object Model” (DOM) parser to analyse any XML 
document.  With it the user can load a document, read and modify it, and a save 
changes.  In FIDO, it is used closely in conjunction with the VirtualTreeView 
component. 
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Appendix 7.2 FIDO XML Data Structures 

 
Figure A7.2.1: Property Data Structure



Appendix 7.2. FIDO XML Database Structures 

   320 

 
Figure A7.2.2: Paddock Data Structure
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Figure A7.2.3: Event Data Structure
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Figure A7.2.4: Event Data Structure 



Appendix 7.3 Evolution of FIDO ’s simulation GUI 
 

   323 

Appendix 7.3 Evolution of FIDO’s simulation GUI 
 

 
Figure A7.3.1: Main interface version 1. This is the very first version of FIDO with textural outputs 

and simple animation. 

 

 
Figure A7.3.2: Simulation Animation, early version. First full working version of the FIDO 

simulation with detailed simulation outputs. Database was primitive with many controls that were 
only there for show. 
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Figure A7.3.3: Textural Outputs, early version. Textural outputs for flow-area, flowrate and 
infiltration. This was a very powerful feature of the early version and proved very helpful in 

debugging the simulation. However, it was also poorly written using a large amount of code and 
proved difficult to extend and maintain. 

 
 

  
Figure A7.3.4: Performance outputs, early version. Another output from the early version showing 

how irrigation performance varies with simulation time. 
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Figure A7.3.5: Simulation animation, early version. Early attempt at integrating all decision 

support components into a single program. Interface appears clean, many features remained 
operational. Measured advance data is incorporated in inputs and outputs. 

 
 

 
Figure A7.3.6:  Simulation animation, early version. This version attempts to simplify the interface 

through using task-buttons, and remove many of the unnecessary controls presented in the 
previous figure. 
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Figure A7.3.7: Advanced simulation outputs. This version tries to simplify the interface further by 

placing task buttons along the left hand side of the screen. Extra simulation outputs are 
presented. It appears that there was an error during the simulation. The software name was 

temporarily changed to DESSI (Decision Support for Surface Irrigation), but was later changed 
back to FIDO (proving that the initial name adopted by software is hard to change). 

 

 
Figure A7.3.8: XFIDO simulation. Advanced interface developed to help debug the simulation 

engine. Code-named XFIDO (Extended FIDO) it presented previously hidden simulation 
parameters, and new controls for stepping through and debugging the simulation. Advanced 
outputs were also presented including initial estimates for flow-area at each time-step. These 
estimates are shown as red dots on the animation which could be changed by dragging the 

points with the mouse. 
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Figure A7.3.9: Advanced XFIDO outputs. This version of the software was developed as a 

compact version with a minimum of features presented. This was created when the decision 
support software was becoming very large and difficult to maintain. It was therefore split into 

separate models for development purposes. 

 

 
Figure A7.3.10: Multiple simulations. Prototype of the current version of FIDO. This prototype 

version was never operational being plagued by instability problems. This version was the first to 
simultaneously display and compare multiple outputs. 

 
 



Appendix 7.3 Evolution of FIDO ’s simulation GUI 
 

   328 

 

 
Figure A7.3.11: Solution grids.  Solution grid analysis from the prototype of the current FIDO 

version. This proved to be a useful development tool for debugging the simulation engine with the 
capability to zoom into the grid to study irregularities. 
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Figure A7.4.1: First calibration attempt. First attempt at calibration using the hydrodynamic 

model. Calibration input options were permanently presented to the user. 

 

 
Figure A7.4.2: Early calibration interface. Early version of calibration interface, which has 

undergone structural simplifications since the previous version. Both “normal” and “advanced” 
calibration inputs were available. 
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Figure A7.4.3: Early attempt at calibration. Calibration inputs are located in a separate pane in 

the input panel. Cumulative infiltration is presented as an output of the calibration. 

 

 
Figure A7.4.4: Advanced calibration interface used in XFIDO (Extended FIDO). This version was 
never operational, but was developed to help debug the calibration, with the ability to try different 

simulation stability measures and see the effect on the calibration response. 
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Figure A7.5.1: Early optimisation interface. Early version of the optimisation interface showing the 

optimisation priority setter. This was the second version of the setter tool adding a pie chart to 
help visualise priority proportions.  This solution caused several problems relating to the 

proportional nature of the task.  Changing the setting of one bar inadvertently changed the other 
weightings automatically as the relative position between the bars changed.  Also several 

different setting arrangements could be used to achieve the same result. 

 

 
Figure A7.5.2: Early objective-function setter. Updated version of the objective-function priority 
setter presented as a popup dialog. This version was created from two TeeChart objects, rather 

than a series of standard controls. This tool was designed so that moving one slider bar 
automatically updated the position of the other slider bars in proportion. In practice, this proved 

to be an awkward solution with an unnatural feel.  
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Figure A7.5.3: Advanced objective-function setter. Prototype version of the current objective-
function priority setter. This version is a custom made component with “handles” that appear 

when the mouse is moved over the pie-chart. In this way, the user has direct control over 
adjusting priority proportions, overcoming problems associated with the previous slider controls.  
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Figure A7.6.1: First version of parameter analysis interface. First version of the parameter 

analysis interface showing a calibration response-surface. This version was limited in that only 
one output could be shown at a time. 

 

 
Figure A7.6.2: Updated parameter analysis interface. An updated version of the parameter 

analysis interface with an objective-function priority-setter to dynamically change the objective-
function response-surface in real time. Different outputs are selectable via different options in 
the input panel. Different input options are also presented. These options are only shown when 

the parameter analysis tab is selected. 



  Appendix 7.6 Evolution of FIDO ’s parameter analysis GUI 

   334 

 

 
Figure A7.6.3: Multiple views in parameter analysis interface. Updated version of the previous 

interface with advanced options hidden in different input panel views. Multiple outputs can now 
be compared simultaneously. 

 

 
Figure A7.6.4: Multiple outputs in parameter analysis interface. Advanced interface from the 

XFIDO (Extended FIDO) version. This version was developed as a debugging tool for the 
simulation. This was the first version to present a slider bar to study output for a third parameter. 

Outputs can then be animated through adjusting the slider bar position. 
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Figure A7.6.5: Prototype of current parameter analysis interface. Prototype interface for the 
current version of FIDO. In this example, field-length is represented by the slider-bar at the 

bottom of the screen. Optimisation priority was temporarily omitted from this version. 

 

 
Figure A7.6.6: Prototype showing 3rd parameter expansion. Prototype of current version showing 

the third parameter expanded as a series of charts of application efficiency with each chart 
representing a different field-length. 



  Appendix 7.6 Evolution of FIDO ’s parameter analysis GUI 

   336 

 
Figure A7.6.7: Prototype contour plotter. First version of the user-defined parameter analysis in 

which the user “drags and drops” performance outputs onto a user-defined grid of charts. In this 
example, the different columns represent different infiltration properties. 
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Figure A7.7.1: Original FIDO database. First version of the FIDO database interface. This version 

used the Microsoft Access database engine with specialised database controls. Data was 
separated into a site database and an event database which were displayed in tables.  This 
interface was seen as overly complex, with too much information being presented at once. 

 
 

 
Figure A7.7.2: Updated FIDO Database. An updated version of the database interface with an 

extra table for design and management results. 
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Figure A7.7.3: Tab filtering in early FIDO database. This version tries to simplify the database 

interface by using tabs to filter field information, furrow details, irrigation details, irrigation results 
and calibration measurements. This was ultimately seen as a failed attempt at simplification as 

the end result was just as complex as the previous versions. 

 

 
Figure A7.7.4: Prototype of current database. This is a prototype of the current version of FIDO 

using the XML-based database structure. This structure has four levels including property, 
paddock, event and simulation information. The database output presented in the right hand 

window is in raw XML format with no stylesheet transformation applied.  
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Figure A7.7.5: Prototype data editor. Prototype data editor window for the current FIDO version. 
The XML data cannot be directly edited so a tree based data editor was incorporated into this 

prototype version. The same system exists in the current version but with more refined formatting. 

 

 
Figure A7.7.6: Database performance summaries. Prototype summary analysis for performance 

results. This analysis provides a range of options to investigate spatial and temporal performance 
of the irrigation. 
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Figure A7.7.7: Infiltration summaries. Infiltration summary analysis for investigating spatial and 

temporal variations in infiltration.  
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