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Abstract

Software Defined Networks (SDN) is a paradigm in which control and data planes of
traditional networking devices are decoupled to form a distrubuted model. Communication
between the separate planes requires a protocol such as OpenFlow to leverage programmable
routing and forwarding decisions on the network. In this model, Application Programmable
Interfaces (APIs) make it possible to inject policy and forwarding rules via the control plane
or controller. The most prominent challenges resulting from the separation is link security
between the separated elements through which private network data is now traversing.

One main area of concern is the method of transmission with which the majority of
Open-Source controllers currently communicate. The preferred practice is for a Transport
Layer Security (TLS) channel initiation by an OpenFlow switch wishing to communicate
with a controller. Many developers have replaced the TLS method of communication with
straight Transport Control Protocol (TCP) due to handshake sequence issues caused by
certificate exchange during the TLS connection phase.

This thesis and the subsequent research will ask questions on security around the con-
troller to device links that pass flow tables , network abstractions and multi-layer information
to multiple controlled network elements.

The main objective of this research is to develop testing procedures that allow for
accurate and repeatable experiments. Therefore, in researching security vulnerabilities
between controllers and forwarding devices, benchmarking performed on secure links tests
the capability of authentication mechanisms to function properly under load.

The outcomes of this research include a series of quality industry standard tests to
benchmark typical SDN controllers and forwarding devices. A critical analysis of typical
devices at low, medium and high loads. An SDN security taxonomy is presented to help with
future categorising of device testing in context of SDN architecture.
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Chapter 1

Introduction

1.1 Background and Motivation

In this section, a brief overview of traditional network devices will be given. It has
become increasingly obvious that the traditional paradigm of networking, based on propri-
etary networking devices, is not meeting the demands of modern networking. Traditional
proprietary network routing devices house multiple planes which define the boundaries of
architecture. The control plane provides logical intelligence controlling forwarding behaviour
through routing protocols. The data or forwarding plane forwards traffic based on logic of
the control plane. Configuration and monitoring take place via the management plane. The
operating system software implements complex protocols that manage interaction between
the planes. Interpretation of control software varies between vendors and configuration
syntax can vary between models from the same vendor. Software packages contain multiple
technologies often beyond the consumer’s requirements and technical staff’s sophistication
to implement them. Furthermore, the cost of constantly upgrading and patching propri-
etary network operating system software and replacing hardware inflates the company’s ICT
budget.

In a relatively short history of the Internet and World Wide Web, there are several
developments capable of triggering the extent of digital disruption that the industry is
currently witnessing.

Improvement of Wide Area Network (WAN) connection protocol increased efficiency
between Internet Service Providers (ISP). Corporate networks benefited from the availability
of leased lines and hence, remote offices and branches had access to HQ.

Interior Gateway Protocols (IGP) steadily evolved and improved to meet the requirements
necessary to provide a reliable network infrastructure capable of handling increased personal
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and business data. LAN routing improved ensuring the corporate network kept pace for this
increase.

Virtualisation of network elements provide data centre network engineers opportunities
to overlay routing, switching and provisioning solutions in multi-tenanted installations.
Operating system software platforms for server and desktop computer leverage cloud services
network features are made possible through data centre storage.

Data has migrated to the cloud front with a decline in on premise hardware installations.
Innovation occurred, primarily governed by afore mentioned gradual changes to network
speed, delivery and sheer data increase.

This is innovation by necessity and less as avant-garde. From around 2014, change
appears to have driven process and innovation for corporate and carrier networks.

Despite 20 years of research and experimentation from academics and through vendor
labs, nothing had really changed until this point. From 2014 to the present, change has been
rapid and occurring in a quantum leap for areas such as cloud services.

Advancements in network virtualisation created opportunities for isolated experimenta-
tion and research which could be replicated to live networks. The rate of change followed
successful implementation of distributed forwarding devices.

Addressing security with this change continues to fall behind. Evolution of security
measures to address emerging attack vectors within communication methods used in the
distributed model are not progressing at the same pace as adoption for the technology.

Protocols utilised in achieving control and data plane distribution fail simple testing and
attack simulation. Communication methods between devices used in lab experiments have
migrated into commercial installations and continue to be the common practice for SDN
controller development.

Using insecure connection methods increase the attack surface for the distributed model.
The scale of vulnerability for attacks in some cases is directly related to the role of controller
and forwarding devices in the software defined topology. Dynamic roles such as load-
balancing and fail-over exacerbate connection issues for authentication and creation of secure
links.

Adopting and using programmable networks introduces agility and flexibility for the
network engineer. Moreover, the attraction for less expensive devices and non-proprietary
system operating software is a major factor in the adoption.

Nonetheless, security issues remain embedded regardless of sophisticated solutions
adopted by industry to utilise SDN in LAN and WAN topologies.
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This thesis looks at the ability to exploit weaknesses in the standard communication
method used for channel operations in the majority of controller instantiations.

1.2 Problem statement

In this section arguments will be presented for and against the adoption of SDN in the
corporate network, campus network and data centre.

Uptake and adoption of SDN is mostly prominent in the data centre. Multi-tenanted
networks can reap a big benefit leveraging what an OpenFlow enabled network has to offer
in flexibility and rapid change across the infrastructure. A flow-based paradigm is well suited
to protect traffic on each network slice for each virtual tenant.

OpenFlow switches can determine the logical network for every flow and tunnel the
traffic to the end of the logical flow. When compared with a traditional method of associating
a VLAN to a physical interface. Furthermore, the typical network architecture of Core,
Distribution and Access layers binds the organisation to equipment procurement cycles of
approximately three years. Innovation in this model is difficult to achieve due to inflexibility
in the layered model.

In a technology dependent environment like university campus, corporate design compa-
nies and engineering firms with high-end processing and compute requirements, change is
often required spontaneously to meet the needs of staff or contractors.

Introduction of new services means passing a company policy and acceptance tests. This
could mean weeks of testing just to ensure the software can be deployed in the next image
build.

The current network architecture and looking forward for the next two decades is heavily
reliant and will evolve into further virtualisation of network functions and the over bearing
architecture will be virtualised.

The virtualisation model is the only possible method of sustaining demands of the digital
society we have become. Commerce in many developed countries is experiencing a cyclic
two/three-year disruption throughout large companies. The digitalisation of the world is
driving this disruption. Ideas and innovation occur more rapidly than ever before. Music,
movies, medical records, urban data Internet of Things (IoT) available online are a small
example of how businesses are disrupted.

Digital disruption in the network means changes and advancements on how the disruption
is managed from an infrastructure perspective to support the pace at which data is stored,
classified, shared, secured, and parsed for scientific analysis.
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Information and Communications Security is a business requirement for continuity. The
introduction of technology based on fundamentally insecure process simply exacerbate the
problem. For digitalisation and disruption to proceed at the projected pace, communications
infrastructure requires solid foundations and scalable, secure solutions.

Numerous threat analysis have been completed on OpenFlow controllers in the last decade
[27] [13] [32] [29] [16]. There is no change in the protocol beyond extra features released
in updates which are based on an attempt to stay on course with the rapid advancement
in virtualisation of networks and the abstraction and blurring of network device roles and
functions at the data centre and ISP level. The requirement for a security policy that checks,
and forces TLS between controller and switch has not changed in the time this research had
been undertaken.

1.3 Aims and Objectives

Designing and managing network innovation becomes difficult in a closed proprietary
model. To implement change through the current infrastructure model, skilled personnel log
into each device and make the changes locally. Potentially, this method of administration is
exposed to the risk of erroneous configuration commands that can be difficult to troubleshoot.
Applying change in a corporate network containing routers, switches, firewalls and load
balancers takes careful project planning and management to avoid downtime and loss of
production. The current state of provider and corporate networks comprise three decades of
development through which very little has changed operationally. The task of maintaining
a modern network continues to be a model of vendor lock-in with devices reaching end of
life or being too old to run the latest version of system software. Meanwhile, the demand
for flexible mobile services has grown exponentially over the last decade. Flexibility is lost
in the static service production procedures. A representation of multiple plane architecture
housed in one device is shown in Fig 1.1.

Internet popularity and adoption grew rapidly in the mid-1990s. The modest demands
of file transfer and email for academics were outpaced by the interest from the public and
commerce.

By the late 1990s it became obvious the current infrastructure couldn’t cope with the
adoption and interest the internet had generated. Researchers developed and tested new
protocols with the idea of improving network services and delivery speeds. However,
standardising and passing new ideas through validation via the Internet Engineering Task
Force (IETF) was a slow frustrating process. Nevertheless, the IETF has continued to be a
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Fig. 1.1 Control and data plane in one device

voice of reason and order in an environment where a rich source of ideas, developments and
experiments grow constantly from academic endeavour. Without guidance, the Information
and Communications Technologies industry would struggle to reach today’s level of technical
sophistication.
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1.4 Structure of the thesis

• Chapter 1 presents a background to traditional networking. A background is also given
for Software Defined Networking (SDN) with a comparison to traditional methods.
This chapter also offers an argument on one hand for the benefits of implementing
SDN networking and on the other hand for valid security implications of doing so.

• Chapter 2 covers a history of SDN with a section discussing threat vectors and security
of the SDN technology.

• Chapter 3 Looks at the OpenFlow protocol suite and the associated virtualisation
methods employed in testing and implementing SDN.

• Chapter 4 presents data and results from throughput, latency and attack experiments.

• Chapter 5 concludes the thesis and looks into future work and possible research
opportunities.



Chapter 2

SDN Literature - History, Threats and
Security

2.1 History

This section will give a brief history of attempts to introduce programmability into
network operation. Significant changes to industry standards, operation guidelines and
validation of protocols in the last ten years make it easier to introduce innovation to the
network. Some argue that this is a step backwards. However, innovation and flexibility of
network infrastructure are now more achievable.

In this new era of communications networks, leadership is changing. The Institute of
Electrical and Electronics Engineers (IEEE) and Internet Engineering Task Force (IETF) had
the responsibility of fostering good practice, relationships and promoting internet standards
that make up the Internet Protocol Suite (TCP/IP). Whilst some view the IETF process as
cumbersome and time consuming, the original design philosophy of the Defence Advanced
Research Projects Agency (DARPA) team of engineers was to have the internet support
multiple types of communications services. In addition, the resources used in the internet
architecture must be accountable.

The IETF is an open standards organisation with no formal membership. Hence, mem-
bership comprises an international community of network designers, operators, vendors, and
researchers concerned with the evolution of the internet architecture.

The IEEE is the biggest technical professional society in the world and is a rich offering
of publications, standards, and certifications.

The components of the internet are networks, which are interconnected to provide some
larger service. To this end, the need for a steering and validation organisation is important
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to ensure development of interconnecting services and programs following strict protocol
guidelines for future stability.
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The innovation we see today is not a product of overnight success in communications
technology. Clearly, it is an accumulation of contributions over a period of 20 years. The
importance of the innovation from the early period has been punctuated by milestones
culminating in what we are witnessing in research innovation currently.

However, it could be argued that lengthy processes and stringent procedures in place
during the first two significant decades of communications protocol development slowed
innovation and disrupted progress. Examples of this disruption are evident in the original
design of Wide Area Network (WAN) transport protocols unable to cope with demand within
a decade of implementation.

This is not necessarily poor design, rather a lack of foresight to the exponential growth
and popularity of the interconnected networks. As a result, in some cases, the fix has often
been a scrambled attempt to patch the technology as opposed to a long-term overhaul of a
problematic area of networking.

Multi-Protocol Label Switching (MPLS) is an excellent example of the need to find a
better method of routing due to exponential growth of internet applications. MPLS is a
technique sitting somewhere between Internet Protocol-over-Asynchronous Transfer Mode
(IP-over-ATM) and multilayer switching. MPLS bridged these original technologies as a
technique to become one of the most successful developments in the last 15 years. However,
the need for MPLS highlights rapid change in the use and operation demands of the internet.

The IP-over-ATM standard was first released in 1994 under RFC 1577 [19]. The IETF
established the MPLS working group in early 1997. Whilst initiatives into label switching
techniques from Toshiba, Cisco and IBM appeared between 1994 to 1996, the first Request
for Comment 3469 [30] for MPLS was released in 2000. The longevity and resilience of the
MPLS technique is an example of IETF contribution to the industry.
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Today, most people consider the internet, as one of the basic requirements for existence
and others believe that the internet should be a human right. From a technical perspective,
the internet continues to be a collection of devices, often poorly configured, passing billions
of packets per day between boundaries of countries with differing laws and security polices
pertaining to the ownership of data.

Examples in separating architecture design boundaries date back to the mid-1990s.
Network administrators and engineers resisted the unpopular notion [9] of isolating the
control and forwarding elements in routers. Somewhat paradoxically, in-box advancements
assisted researchers in enabling distributed control outside traditional networking devices.
Fig 2.1 represents significant events in the history of network programmability research and
progress.

1995 2000 2005 2010 2015

Tennenhouse Weatherall

Smart Packets

RCP

OpenFlow

PCE ForCES

Mininet OpenVSwitch

ONOS

Fig. 2.1 Innovation timeline for programmability in Networking

Routing protocols including Open Shortest Path First (OSPF) using area-based routing
and Border Gateway Protocol (BGP) introducing route reflectors, isolate and share the planes
along with logical knowledge of the network to increase efficiency.

Meanwhile, Simple Network Management Protocol (SNMP) and Network Configuration
Protocol (NETCONF) [22] provided methods of interrogating network Management Infor-
mation Base (MIB) to perform network management. SNMP V1 was first proposed in the
late 1980s.

Individual vendor’s improvements per device benefit the throughput and line speed data
flows with the introduction of in-box virtualisation in addition to research and development
on Application Specific Integrated Circuits (ASICS).

Active networks identify an era from the mid to late 1990s through which a (DARPA)
sponsored research program sought to introduce programmable functions into the network
with application programming interfaces (APIs). Smart Packets [26][31] investigated the
possibility of injecting code into network nodes with a vision for a network architecture,
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Activenet design for programmable nodes. A call to the greater research community failed to
create any momentum from the ideas.

Netscript [4] describes a network layer utility using passive data streams to communicate
between network elements, namely routers. This effort pursued development of a method for
extending existing protocols. Beyond the Active Networks initiative, significant historical
events in network design and research endeavours can be viewed in three separate phases.

2.1.1 Control Data Separation

Routing Control Platform (RCP) addresses the issues in fully distributed path-selection
computation that (BGP) routers must perform [2] [8]. The method discusses and introduces
a helping method for the routers in selecting best paths to forward packets on behalf of the
router.

A study into the effects of openness and flexibility of SDN networking [22] argues
that separation of forwarding and control elements has many researchers concentrating on
designing and implementing an SDN enabled network. However, issues compounded by
separation of the architecture exist and are analysed in this study including downgraded
efficiency relative to controller channel connections to forwarding switches. As speed and
congestion increases table lookup and matching degrades throughput in the infrastructure.

While ForCES [5] is a separate research design project to SDN, both methods leverage the
architectural boundaries of control and forwarding within the design of resources. ForCES
forwarding nodes (FF-N) use Logical Function Blocks (LFB) to interact with the forwarding
nodes and ForCES protocol. SDN forwarding protocols such as OpenFlow employ flow
tables for increased flexibility in building match criteria for flows.

Path Computation Element (PCE) addresses the compute of network paths [7]. An
element in this case is defined as a network node capable of computing a network path or
route based on information stored on a Traffic Engineering Database (TED). The benefit
of this proposal to calculate Label Switched Path (LSP) values for the management of
Multi-Protocol Label Switching (MPLS) paths and health of the link through the MPLS
domain.

2.1.2 OpenFlow and Network Operating Systems

The number of SDN controllers has grown since the release of the first network operating
system NOX [12]. Academic endeavours from Stanford and Berkeley universities with input
from Nicira Networks successfully created a programmatic interface to the network. The
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motivation for the work came partially from frustration in the lack of freedom on academic
networks within the universities. Released as an experimental protocol by Stanford university
in 2008, OpenFlow [21] was initially installed across two buildings at the campus to promote
the adoption by Stanford and other universities.

Openflow is based on Ethernet switches and runs an internal flow table that can commu-
nicate with standard interfaces. Version 1.1 of the protocol was released in 2001 and was
defined by the Open Networking Foundation (ONF) as the first standard communications
interface defined between the control and forwarding layers of SDN architecture.

2.1.3 Network Virtualisation

PlanetLab [3] is presented as an overlay testbed. The ambition was for over 1,000 nodes
as a globally-distributed collection of diverse connections. To achieve the diversity and
geographical distribution, applicants to the program offer a piece of on-premise hardware
exposed to the internet. A Linux operating system is maintained on the hardware by the
PlanetLab technicians, creating an alternative Internet of sorts. Contributing institutions
could request a slice of the distributed network to experiment, monitor, analyse and observe
behaviour of distributed storage, network mapping or new technologies.

Fig. 2.2 GENI Fig. 2.3 PlanetLab Fig. 2.4 FIRE

PlanetLab currently consists of 1,353 nodes at 717 sites worldwide. This research became
closely based around a National Science Foundation (NSF) project Global Environment for
Network Innovations (GENI) [6] and provided a platform for researchers to experiment and
develop trials for new Internet architectures.

A group of researchers met with government officials in Zurich in 2007. By 2008, Future
Internet Research and Experimentation (FIRE) [11] was formed with a budget of 40 million
Euro. A recent strategy listed by FIRE is an idea for a Digital Single Market to enhance the
European Commission’s (EU) position as a world leader in the digital economy. A common
purpose for the project platforms was the vision of a purpose built globally connected slice of



2.1 History 13

test internet. These clean-slate architectures broadened the vision of control and data plane
separation.

Researchers at Stanford University were responsible for developing Mininet [18]. The
Mininet prototyping environment is complimentary to the ‘Clean Slate’ initiatives of PlantLab
and GENI. Using standard Linux operating systems, Mininet hosts, links, switches and
controllers connect via a virtual Ethernet pair to simulate a wired connection between two
virtual interfaces. The idea of a large network running on a laptop within a virtual machine
was a revolution in testing and attacking the network and advanced research on SDN by
providing a safe environment to experiment on early distributed control and forwarding
elements. Topologies can be built quickly with controller, switches and hosts configurable
in either command line (CLI) or graphical user interface (GUI) mode. The inclusion of
OpenVswitch [24] to the repository introduced real world functionality with support for
distribution across physical servers once testing was validated in a virtual environment.

Packet switching techniques have improved vastly, utilising Forwarding Information Base
(FIB) and Routing Information Base (RIB) feature development. Moreover, in-box isolation
of control and data planes are standard virtualisation feature in many vendor platforms.
Path Computation Execution (PCE) is aided by introducing micro processing separate from
standard routing table calculations and interface caching algorithms. Furthermore, PCE has
become a fundamental building block for label switching techniques including (MPLS).

Virtualisation techniques helped blur the lines between the traditional layered approach
to networking with each layer working in isolation relying on very little interaction between
the layers above and below. However, the control plane still bore a heavy load of Central
Processing Unit (CPU) compute, providing the data plane with information necessary to
maintain Non-Stop Forwarding and High Availability (HA) to device interfaces in the process
of creating and updating RIB, FIB and adjacency tables.

Notwithstanding the advancements in single device hardware and software capabilities,
the ability to react to network behaviour and demand of services is hindered by proprietary
systems. Consumers expect a convergence model that equates to Any Time, Any Where, Any
Device (ATAWAD) [1]. As the demand grows, so do challenges for network administrators
and Internet Service Providers (ISPs). The expectation to have all devices able to connect
to the internet and seamlessly access the user’s assets tests platform flexibility due to the
lack of a defined network perimeter. Users and devices are moving constantly connecting
often with a mixture of hardware platforms for the same model of device. Short intervals
of streaming video or application requirements online requires agility of the network and
flexibility in administration of services to deliver.
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2.2 Cloud computing

The cloud computing paradigm enables ubiquitous access to shared pools utilized for
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS). The multi-layers of Network virtualisation developments have served data centre
requirements linking and meshing network protocols and functions. Network overlay fabrics
leverage the virtualisation concept to form the cloud offerings including proprietary and open
source products.

SaaS reduces the cost of software ownership removing the technical requirement to
install, manage and license the software.

At a lower level of the cloud services, PaaS abstracts the environment dealing with
operating system and server system software along with the underlying hardware and network.

Further down the stack, the fundamental building blocks of cloud services is defined by
IaaS. Brokerage services for IaaS are common with the competition to offer complete virtual
data centres growing among providers. Adopting an IaaS service gives the client a high level
of control over their infrastructure without the investment and inflexibility of on-premise
servers.

Traditional network protocols including IP and Border Gateway Protocol (BGP) were
designed for the internet of the 1980s without the foresight of what the information technology
would become in less than two decades.

Whilst IP and BGP were both engineered to be reliable and robust, the original (IETF)
development held no vision of the changes driven by shear volume of data that we now
generate as a society. To overcome rigid design of internet protocols, Data Centre network
engineers leveraged the flexibility of overlay networking solutions. In the infrastructure
design of network overlay, software is used to abstract and virtualise other connections. In
a physical network, a link will exist between two nodes. The network overlay utilises
the physical network to provide a path for routing or switching in which tagging and
encapsulation methods allow traffic to move through the software defined overlay without
knowledge of the physical network. Multi-tenant provider networks utilise this environment
for rapid provisioning and deployment of PaaS and IaaS. High speed network equipment
onsite at data centres allow ISPs and cloud services providers a link to Metro Ethernet. One
of the main benefits in performance for users with access to the high-speed metro network
is by-passing the internet. Cloud vendors focus their business to move the cloud closer to
densely populated areas of users to mitigate the issues in internet connections.
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2.3 Data centres

The overwhelming adoption of SDN is occurring in the data centre. Within the last
decade, the complexity of interconnected networks has grown with the introduction of data
centre storage, cloud-based applications and multiple devices for which data should be always
available, across all types of services.

Due to virtualised infrastructure, many major data centres can utilise space housing
multiple servers and services on one piece of hardware. Much of the complexity exists in the
networking infrastructure for the data centre. An ISP must now provide a means of access to
all storage facilities. Adoption of SDN and NFV provides an overlay fabric applied to the
traditional network physical infrastructure.

To achieve the concept of ATAWAD and produce seamless network connectivity to so-
called cloud applications, the use of network overlays allows mapping of physical nodes to
virtual connections, circuits, routing and forwarding. Network programmability is allowing
data centre architects and engineers to mitigate the drawback of traditional layer 2 protocols
like Spanning Tree Protocol (STP). The greatest bane to data center engineers was, and to a
large extent still is (STP, 802.1d) [20]. Created to prevent loops in densely connected Layer 2
topologies, STP wastes resources by blocking 50 percent or more of the links in a redundantly-
connected network, it has terrible failover times, and is prone to misconfiguration. Over the
years there have been many enhancements to STP to reduce its adverse effects in networks:

Spanning Tree Solutions

• Rapid Spanning Tree Protocol (RSTP, 802.1w) reduces failover from 30 to 50 seconds
to 6 seconds.[20]

• Multiple Spanning Tree Protocol (MSTP, 802.1s) improves utilisation of VLAN groups
to mitigate blocking.

• Link Aggregation Control Protocol (LACP, 802.1ax) bundles multiple parallel links so
STP treats them as a single link.

• Shortest Path Bridging (SPB, 802.1aq) and Transparent Interconnection of Lots of
Links (TRILL) to utilise shortest path first algorithms normally seen at Layer 3 to
prevent loops and shorten failover times.

Are these solutions considered patches on a problematic protocol? In the case of SPB and
TRILL, replacing STP altogether for a different loop prevention scheme. If there were no
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trees in the topology, there would be no need for Spanning Tree. The development by various
vendors of switching fabrics in recent years has a goal of replacing STP with virtualisation.
The concept is to create a flat virtualised data plane that gives the appearance of a single
switch and is a compelling case for the deployment of SDN base networks.

2.4 Connectivity through providers

With benefits and cost savings achieved within the data centre, tier 1 and 2 ISPs now seek
a Software Defined Wide area Network (SD-WAN) solution.

Areas of the Internet may experience some re-synchronising of paths and link outages.
However, it is rare that a region is unavailable and does not allow transmission traffic between
two nodes. Redundancy will provide a path between the transit ISPs within the region. Major
outages are further down the chain of hierarchy falling to the responsibility of a tier 3 ISP or
local service that has become unavailable due to failure or human error.

For a tier 3 ISP (last mile provider), the very nature of business is to procure new
customers, realise their requirements, provision the network and bring them online with their
purchased transit agreement. The tier 3 customer is generally not involved in agreements that
the tier 3 provider has with upstream transit. Hence, the majority of change occurring at tier
3 has potential to disrupt business and affect customers financially. Successful ISPs at tier 3
have adopted automation and best practices for testing and recording change management.

Service Level Agreements (SLAs) create a mechanism for ensuring transit purchased is
available as close to the five nines as possible (99.999 percent uptime). The ISP will provide
a quality and type of service reflecting agreements in the SLA.

As the demand for seamless, fast access to private and third-party services grows within
business and private sector, routers and switches have evolved to serve the demand. Tradi-
tional methods of packet matching at Layer 3 proved a bottleneck to speed increases in data
transmission on the LAN and out to the WAN. Vendors addressed this problem individually
however the results were very similar. From a discussion based on vendor specific, security
hardened network devices installed on a corporate LAN, it is difficult to extract information
from the devices without physical access to the router or switch.

The security discussion around PCEP and private routing domains changes somewhat,
the corporate data is passing through a tier 3 provider on its way to a remote interconnected
network via the internet. It is not feasible to have a route capable device for every customer
purchasing transit from an ISP. Network virtualisation provides segregation at layer 2 and
layer 3 within the provider core meaning multiple customers are able to share a single network
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element. With the utilisation of MPLS and Virtual Routing Functions (VRF), this is a sound
method of segregation and security for private routing domains. SDN has played a part at
this level already. In the last five years projects have provided the successful segregation of
routing domains and protocols at the network edge allowing rapid recovery from traditionally
cumbersome protocols.

Nippon Telegraph and Telephone

Nippon Telegraph and Telephone (NTT) integrated a solution recognised as a BGP route
controller into the edge devices of their own corporate network to prevent the need for BGP
within these devices. In this case, the routing information is passed to the OpenFlow controller
which builds a flow table based on the BGP controller’s knowledge of the customers network.
Once the OpenFlow controller establishes a VLAN for the corresponding IP address, the
information is pushed to the OpenFlow agent and onto the edge forwarding devices.

Fig. 2.5 NTT SD WAN Architecture (ONF TR -506 2014)

The concept shown in figure 2.5 is an example of the necessity to isolate private routing
domains and information. The peering required between client and provider is a common
model of internet connectivity through a large transit network.

Delays in re-convergence experienced by BGP after a link failure remains a well known
problem with the protocol. Traditionally, internet routes are summarised into a customer
routing table to speed up table lookup. To minimise lookup time from the customer perspec-
tive, in the event of a path failure, routes comprising internet paths are copied down to the
client devices and inversely, some of the private routing information is configured with the
ISP. Additionally, common practice is to configure VRF on the Provider Edge (PE) router to
isolate traffic at layer 3.
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The secure channels between OpenFlow agents in the BGP route controller and PE
routers must perform encrypted transmission across transport and auxiliary links. A failure
to ensure this is maintained, would expose customers to each other within their respective
routing domains at the MPLS edge.

Google B4 Traffic Engineering

Another successful example of the legacy to hybrid migration can be viewed in Google’s
optimisation of application data between data centres with the B4 project [15].

The motivation was to enable OpenFlow on internet facing user traffic and optimise that
traffic between two Google global data centres. The link between the targeted data centres
are capable of carrying ten percent of Internet traffic.

Fig. 2.6 Google B4 network traffic optimisation (ONF TR - 506 2014)

Without Traffic Engineering (TE), the links between the centres carry a variety of user
based services traffic including Google+, Gmail, YouTube, Google Maps and others.

A pre-migration assessment of the links exposed inefficient prioritising of application
data. The project was implemented in three stages to mitigate disruption due to the monolithic
size of the undertaking. Architecture design for the B4 project is shown in fig 2.6.

The result produced a WAN fabric enhanced by the optimisation of links at 95 percent
constant service achieved by segregating like traffic types per link.

Whilst the B4 network is an excellent example of improving scalability, flexibility and
enhanced management in a WAN based, OpenFlow enabled environment, it is impossible
to realise the impact on security or failure within Google’s operational domain. Ownership
across all tiers of infrastructure is a distinct advantage for this engineering project.
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2.5 Software Defined Networking

Software Defined Networking (SDN) is an emerging paradigm utilising the intelligent
control plane by physically separating it from the data plane and distributing control from a
single controller to multiple forwarding components. To declare SDN an emerging paradigm
doesn’t disregard the history of attempts to introduce programmability in networking. Con-
versely, no other attempt has disrupted the industry or driven innovation across all sectors.

Fig. 2.7 An overview of SDN operation flow and control (ONF - 521 2016)

SDN in its current instantiation has gained traction in the industry. Hardware vendors
supporting the OpenFlow protocol grew from 2015. Adoption of the OpenFlow APIs allowing
programmability within the network gained popularity from 2007 to 2010. The notion of
allowing applications direct access into private, isolated routing and storage domains, is one
some consider as the most disruptive and advanced development networking has witnessed.
The de-coupling of control and data plane for network elements solves many problems for
network designers and engineers cost primarily, as the controller holds all the intelligence for
the network, the data plane/switch devices require only simple bare-metal, from any vendor
and do not require expensive feature-rich operating systems. Network changes take place
in one location the controller. The other devices simply pass, and forward packets based
on the flow table. Network monitoring with SDN allows the network to respond to its own
changes and congestion. SDN gives us the ability to turn our entire network or data centre
into a cloud and slice flow space via network overlay technologies and virtualisation.

Fig 2.8 shows a centralised controller with distributed data forwarding.
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Fig. 2.8 SDN De-coupled view of control and data planes (ONF - 521 2016)

Architecture

An SDN network is defined as a programmatic abstracted interaction with a network. The
concept of an application plane is introduced allowing southbound applications to influence
the management of network elements. SDN applies the flexibility of software to the entirety
of the networking space. A logical view of the SDN controller is shown in fig 2.9

Fig. 2.9 SDN Controller Logic (Edge.P 2018)

2.6 Threat modelling

The adoption of SDN controllers based on OpenFlow has expanded the attack surface
for traditional attack vectors. In some cases, it introduces new and more potent versions



2.6 Threat modelling 21

of existing attack methods. Examples of these attacks are TCP SYN-flood and Denial of
Service vulnerabilities. Fig 2.10 shows a simplified but typical programmatically capable
network installation with the following assets. Control Plane, Data Plane and Application
Plane.

Fig. 2.10 Traditional and SDN threat vectors (Edge.P 2018)

The diagram also shows several attack vectors that have been consistently identified
within traditional networks and the SDN infrastructure. There are three distinct attack vectors
that have been highlighted as being unique to SDN.

Vectors 3, 4 and 5 are produced as a direct result of separation or decoupling of the
control and data/forwarding planes.

This thesis and most of the asociated analysis will be concentrated predominately on
vector 1 and 3. Vector 1 is an attack vector present in both distributed and closed network
topologies.

In identifying the specific threats owned by the threat vectors specified in the above Fig
2.10, it is important to quantify the model of SDN network to which this reference is applied.
Firstly, it can be assumed that the typical OpenFlow switch and controllers mentioned in the
previous chapter are the basis for all threat analysis, testing and attacking recorded in the
research.

A typical OpenFlow controller and switch configuration is the starting point for many
complex scenarios that could potentially include multiple controllers and switches, load
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balancing connections between multiple switches and auxiliary connections from the same
controllers.

Potential architecture possibilities aside, it is critical to identify threats and compose
counter-measures for the OpenFlow system that is the basis of a programmable network.
Therefore, in identifying threats, the threat will be applied to the simple controller/switch
initially with a small amount of time being dedicated to an expanded threat scenario.

2.7 Threats

Threats are based on data flows and interaction of SDN components and interaction with
external actors. This is done in accordance with the Spoofing, Tampering, Repudiation,
Information disclosure, Denial of Service, Elevation of Privileges (STRIDE) methodology
according to the Microsoft Corporation [25]. Table 2.1 shows the relationship of attacks and
the specific security property affected.

2.7.1 Table of threats

Table 2.1 Table of Threats

Attack Type Security Property
Spoofing Athentication
Tampering Integrity
Repudiation Non-Repudiation
Information Disclosure Confidentiality
Denial of Service (DOS) Availability
Elevation Authorisation

2.7.2 Spoofing

The impersonation of the OpenFlow Configuration Point (OFCP) is a potential attack
from the control plane and is an attempt to disrupt the network elements (NE) attached to
the controller. An attack on the configuration point where OpenFlow messages are being
processed by the controller could mean an adversary has control over policy injection,
port state, flow tables and routing domain information that would be normally private to
networking elements. If the infrastructure is compromised at this level, very little of the
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network elements would remain secure with most private information available for alteration,
information harvesting or theft.

2.7.3 Tampering

Because of the ability to impersonate the OFCP, all messages sent between the NE and
the controller have the potential for tampering of some degree. At this point nothing is secure
on the switch/controller channel. As well as intercepting and altering genuine messages
between the devices, false policy and flow information can be passed to the switch and an
attempt made to re-route information and network traffic away from the original path or to a
device that is under resourced to handle the extra traffic.

2.7.4 Repudiation

A repudiation threat involves carrying out a transaction in such a way that there is no
proof after the fact of the principals involved in the transaction. This is a threat that might
lead to financial losses, legal implications, and lawsuits if not solved by appropriate and
legitimate proof. Hence, repudiation has to be dealt with utmost care in all online/ offline
transactions.

In the context of software defined networks, non-repudiation may involve the ability for
a system to counter the repudiation threats. Strong encryption, logging features and the use
of digital signatures will prevent information disclosure (covered in the next section).

2.7.5 Information disclosure

The resultant ability to gain access to OpenFlow communication channel due to non-
mandatory security policy and lack of encrypted channels between controllers and network
elements allows a threat actor to begin the planning and harvesting of information that will
allow a future DOS attack on the installation. By collecting statistical data on flow tables and
their capacity to hold a specific amount of information the actor has the knowledge required
to overwhelm ports and flow databases. This is done by simply re-directing flows towards
the ports with weak forwarding ability.

2.7.6 Denial of service

Once flow table entries can be modified, the next stage of the attack is to manipulate
flows from multiple ingress ports to one of few egress ports and overwhelm the egress ports.
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Fake switches can also be utilised to increase the burden on the processing and forwarding of
the network elements. Interrogation of port capability and flow table capacity statistics from
previous stages can be used to design traffic flows and hinder the ability to process flows.

A recommended mitigation technique at controller setup is to configure secured auxiliary
connections to improve the performance of the switch – controller connection.

2.7.7 Elevation of privileges

After successfully impersonating an OFCP, the actor may have the opportunity to elevate
privileges by altering or generating policy.

2.8 Severity and location of attacks

In the analysis of attacks and where they might occur in relation to SDN and traditional
attack vectors, a simple single topology was assumed as the starting point for analysis. The
very attraction for an SDN implementation to convert and liberate the virtualised resources
in networks makes installation insecure. The model for data storage and availability is one of
shared resources in the data centre and the ISP level of operation.

2.9 Security and SDN

There has, over the last three years, emerged a classic split in the research community
with regard to SDN controllers, switches and the methods with which programmability
is introduced into the network. One of the aims of this paper is to outline, document
and comment on the inadequacies and major issues surrounding OpenFlow based SDN
controllers.

2.9.1 Security for SDN

The contrasting developments in the networking industry are taking this technology,
which is in some regard still experimental, and creating security solutions on a fundamentally
insecure platform. These solutions include; Network Forensics, Security Policy Alteration
and Security Service Insertion [27] [23] [17] [28]

The thing to keep in mind however, is that some of the documented solutions are extremely
functional, elegant, and practical and will help in solving many network issues. Security with
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SDN.This situation drives the need to ensure the underlying SDN infrastructure is secure,
can be secured easily and can be monitored to check integrity is maintained. It simply is not
good enough that security solutions are being designed on protocols with flawed security.



Chapter 3

OpenFlow Protocols and Virtual
Environments

3.1 The Open Flow protocol

Software Defined Networking has roots at Stanford University where Martin Casado
completed a PhD under supervisors Nick McKeown, Scott Shenker and Dan Boneh in 2008
[12]. Development of OpenFlow began around this time and the Stanford computer science
department promoted the term SDN.

Control of OpenFlow was transferred to the research community placed under the auspices
of the not-for-profit Open Network Foundation (ONF) in 2011. The ONF was co-founded
by Nick McKewon and Scott Shenker with support from over 150 networking-equipment,
semiconductor, computer, software, telecom and data-centre companies. The philosophy
behind the foundation primarily is to advance innovation in the networking industry. A theme
promoted by McKewon et al during the early development at Stanford University.

Fig 3.1 shows the relationship of switch and controller utilising the OpenFlow protocol
for communication between the control plane, forwarding element and pipeline processing
of the switch.
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Fig. 3.1 The OpenFlow Protocol Components (ONF TS - 215 2016)

3.2 OpenFlow operation

As a control protocol, OpenFlow brings standardisation to connections between controller
and switch. This is the primary function of OpenFlow which can be defined as:

• flow instructions that comprise the forwarding behaviour of the switch

• messages the switch sends to the controller to inform the controller of changes effecting
forwarding.

• a packet format containing the instructions and messages.

• a protocol for sending and receiving messages between the controller and switch.

This representation is the basis of all OpenFlow enabled switches functioning as a pure
OpenFlow element. A hybrid version of this configuration employs traditional Ethernet
switching with OpenFlow virtualised over some of the physical ports on the device. For
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testing and analysis, the experiments carried out in this thesis use a mixture of software and
hardware switches.

The OpenFlow switch can be described in several components as shown in Fig 3.2.
The switch agent conveys the OpenFlow protocol to one or more controllers. The switch
components are discussed in the following sections.

The controller also conveys to the data plane using the internal protocol. The switch agent
translates commands from the controller to send to the data plane. The data plane performs
all packet forwarding and manipulation according to flow rules. However, in some cases, it
will send packets to the switch agent for further handling in the absence of a matching flow
rule.

Fig. 3.2 Data flow through the OpenFlow Switch (ONF TS - 215 2016)

The data-path and pipeline manage the flow of packets between flow tables. Every packet
is compared to a least a single flow table. Flow entries at the table level will consist of match
fields used to compare extracted header information from ingress packet flows.

A match in the table uses the flow rule instruction set to extract actions taken on matched
packets. This could include dropping the packet, punting the packet to another flow table, or
pushing it to an egress port.
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3.3 Switch components

An OpenFlow Logical switch consists of one or more flow tables and a group table to
perform lookups and forwarding. One or more channels connect to external controllers. The
switch communicates with the controllers and the controllers manages the switch using the
OpenFlow switch protocol.

Fig 3.3 shows the main switch components of an OpenFlow switch. Packets are processed
at the first flow table and may continue to be processed at different tables in the pipeline.
Flow entries match packets in priority order, with the first matching entry in each table being
used. If a matching entry is found, the instructions associated with the specific flow entry are
executed.

Table 3.1 Main components of a flow entry in a flow table

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Each flow entry contains the fields shown in table 3.1.

1. Match Fields: Match against packets. Includes ingress ports and packet headers. The
field may also contain metadata from a previous table.

2. Priority: Precedence can be set for the flow entry using Differentiated Services Code
Point (DSCP).

3. Counters: Counters are updated when packets are matched.

4. Instructions: Setting instructions can be executed by the controller and is the basis
of policy and matching actions. Once the instructions are set, they are executed on a
match.

5. Timeouts: This is the maximum amount of time a flow can sit idle in the switch before
the flow is expired.

6. Cookies: A data value that operates outside the packet matching domain and can be
used for flow statistics, modification or deletion of flows.

7. Flags: these alter the way flow entries are managed.
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OpenFlow pipeline

Fig. 3.3 Pipeline processing

OpenFlow-compliant switches come in two types: OpenFlow-only, and OpenFlow-hybrid.
OpenFlowonly switches support only OpenFlow operation, in those switches all packets are
processed by the OpenFlow pipeline, as shown in fig 3.3, and can not be processed otherwise.
OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching
operation, i.e. traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing,
IPv6 routing), ACL and QoS processing. Those switches should provide a classification
mechanism outside of OpenFlow that routes traffic to either the OpenFlow pipeline or the
normal pipeline. For example, a switch may use the VLAN tag or input port of the packet
to decide whether to process the packet using one pipeline or the other, or it may direct all
packets to the OpenFlow pipeline. This classification mechanism is outside the scope of this
specification. An OpenFlow-hybrid switch may also allow a packet to go from the OpenFlow
pipeline to the normal pipeline through the NORMAL and FLOOD reserved ports.
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OpenFlow Ports

OpenFlow ports behave in the same way they would on any other switch. Ports are
designated ingress or egress depending on the traffic flow. As with normal switching, ports
are dedicated and for changes to occur i.e. adding, removing, or changing ports, this must be
managed carefully.

For OpenFlow switches, the controller is responsible for the changing and altering flow
tables in the event of changes to ports. OpenFlow switches support the concept of OpenFlow
only or a Hybrid switch which is capable of supporting physical and logical ports for ingress
and egress. OpenFlow defines three types of standard ports and an OpenFlow switch must
support all three.

. Physical ports map directly to the ports on a bare-metal switch and could be shared by
a number of logical ports through virtualisation.

. Logical ports are non-physical and do not respond to any physical interface. These
interfaces are often virtualised into loopback, null and link aggregation interfaces to
handle the virtual switching functions available.

. Reserved ports are designated for internal processing including flooding and hand-off
for flows. (Reserved ports can be either required of optional. See appendix B for a full
list of required ports)
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Channel connections

The logical OpenFlow switch as a de-coupled data-forwarding element connects to the
OpenFlow controller via a channel used for passing network information, flow rules and
policy affecting how the switch handles phases of the flow management and messages relating
to how unknown flows are processed.

Channel connections operate over at least TCP and therefore do not require message
reliability mechanisms from the OpenFlow protocol.

Ideally, channel setup will be via TLS. OpenFlow 1.3 and greater also ships with SSL
which is not as secure as TLS. Furthermore, SSL mechanisms are prohibited by the IETF for
inclusion in protocol development and maintenance meaning TLS is the current best practice
secure connection option.

Secure connection start-up is not mandatory in any of the current instantiations of
OpenFlow controllers deemed production ready on the market today.

On the original OpenFlow specification (and all versions since) the default method
of communication is TCP or TLS implemented between the control layer device and the
forwarding elements. It is possible for the switch or controller to initiate this authentication
method. Intitial pairing and communication occurs on a user-specific port or the default port
of 6653.

Fig. 3.4 OpenDayLight Hello
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The field OFPHET_VERSIONBITMAP asks for the highest version of the OpenFlow
protocol available on the controller.

1 / * Header on a l l OpenFlow p a c k e t s . * /
2 s t r u c t o f p _ h e a d e r {
3 u i n t 8 _ t v e r s i o n ; / * OFP_VERSION . * /
4 u i n t 8 _ t t y p e ; / * One of t h e OFPT_ c o n s t a n t s . * /
5 u i n t 1 6 _ t l e n g t h ; / * Length i n c l u d i n g t h i s o f p _ h e a d e r . * /
6 u i n t 3 2 _ t x i d ; / * T r a n s a c t i o n i d a s s o c i a t e d wi th t h i s p a c k e t .
7 R e p l i e s use t h e same i d as was i n t h e
8 Reques t t o f a c i l i t a t e p a i r i n g . * /
9 } ;

The construction of the OpenFlow header displayed in fig 3.4. This request for a pairing is
the initial attempt at forming a neighborship with the device on the other end of the link. The
pairing process shown in fig 1.11 shows a TCP pairing for devices.

Fig. 3.5 Network byte order (Edge.P 2018)

OpenFlow controllers manage switches over one or more networks. A reliability mecha-
nism is required to manage the connection in terms of session start up, error checking, flow
control and session tear down. The channel should provide TCP/IP connectivity. TLS or
TCP handle all reliable channel maintenance for the connection once it is established. Whilst
the preferred method is to utilise TLS, this rarely happens.

This negotiation of versions is an important phase in the process of channel establishment
because of features that may not be available for certain versions of OpenFlow. Tests have
shown that under severe load, the controller and switch can disregard the
OFPHET_VERSIONBITMAP field and actually accept a connection from a lower protocol
version. Depending on features, it is a vulnerability if the connection pre-requisites for the
older version degrade the connection standard due to outdated security protocols.
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OpenFlow messages

The switch sends a HELLO message to the controller (it is also possible for the connection
to be initiated from the controller.) Fig 3.3 shows the field for matching OpenFlow versions
as devices begin the pairing process.

Table 3.2 OpenFlow message Types

Message Type Number Message Category
HELLO 0 Symmetric Message
ERROR 1 Async Message
ECHO REQUEST 2 Symmetric Message
ECHO REPLY 3 Symmetric Message
EXPERIMENTER 4 Symmetric Message

Switch Configuration Messages
FEATURES REQUEST 6 Controller/Switch Message
FEATURES REPLY 6 Controller/Switch Message
GET CONFIG REQUEST 7 Controller/Switch Message
GET CONFIG REPLY 8 Controller/Switch Message
SET CONFIG 9 Controller/Switch Message

Asynchronous Messages
PACKET IN 10 Async Message
FLOW REMOVED 11 Async Message
PORT STATUS 12 Async Message

Controller Command Messages
PACKET OUT 13 Controller/Switch Message
FLOW MOD 14 Controller/Switch Message
GROUP MOD 15 Controller/Switch Message
PORT MOD 16 Controller/Switch Message
TABLE MOD 17 Controller/Switch Message
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Fig. 3.6 OpenDayLight Hello reply packet

OpenFlow messages belong to a category of message depending on their type and are
represented as type number in the packet header and are categorised as shown in Table
3.2. HELLO, ERROR, ECHO REQUEST, ECHO REPLY and EXPERIMENTER are all
immutable messages and are required to discover and setup the secure or non-secure channel
to the other network devices. This creates a security attack point for any network element as
flooding of HELLO packets is the beginning of a DOS attack.

Table 3.3 Version capabilities for the OpenFlow protocol

Version Match Fields Statistics
Ingress Port Per table statistics
Ethernet: src, dst, type, VLAN Per flow statistics

1.0 IPv4: src, dst, proto, ToS Per port statistics
TCP/UDP: src port, dst port Per queue statistics

1.1 Metadata, SCTP, VLAN tagging Group statistics
MPLS: label, traffic class Action bucket statistics

1.2 OpenFlow Extensible Match (OXM)
IPv6: src, dst, flow label, ICMPv6

Per-flow meter
1.3 PBB, IPv6 Extension Headers Per-flow meter band
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Fig. 3.7 OpenDaylight features request packet

Shown in figs 3.7 and 3.8 is the process by the controller to interrogate the switch for
a list of features available for the version of software on the OpenFlow switch. The switch
replies with the features list. Table 3.3 lists features available with major version releases.

Fig. 3.8 OpenDaylight Hello features reply packet
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Connection Setup

The OpenFlow switch communicates with the OpenDaylight or other OpenFlow based
controllers like RYU, NOX or ONOS. The connection to the controller initiates from the
switch via a Uniform Resource Identifier (URI). The configuration of the URI represents the
transport protocol, the network, and the port number to connect to devices. An example is
shown below:

URI Options

tcp:192.168.10.20:6633

tcp:192.168.10.20

tls:192.168.10.20:6633

tls:[3ffe:2a00:100:7031::1]:6633

Following a successful connection setup, standard OpenFlow messages exchange between
the controller and switch over the channel. An OFPT_FEATURES_REQUEST, sent by the
controller activates discovery of the basic capabilities of the switch. Capability of buffers,
number of tables and connection type are examples of discovery.

OpenFlow controllers manage switches over one or more networks. A reliability mecha-
nism is required to manage the connection in terms of session start up, error checking, flow
control and session tear down. The channel should provide TCP/IP connectivity. TLS or
TCP handle all reliable channel maintenance for the connection once it is established. Whilst
the preferred method is to utilise TLS, this rarely happens. Once the switch and controller
have detected each other on the network, the controller issues a reply to the switch.

Auxiliary Connections

Whilst auxiliary unreliable transport protocols UDP and DTLS are optional and allowed
for channel connections, these protocols are only able to use a small subset of OpenFlow
protocol messages and fields.

OpenFlow rule creation

An OpenFlow enabled switch will react to ingress packets in one of two ways. This is
dependent on whether a flow rule, or match, is present for installed flow rules.
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• Proactive: With this method, rules are inserted into switches before they are needed.
(This is possible because the packet matches an existing rule)

• Reactive: Rules are inserted into switches in response to packets observed by the
controller via TABLE_MISS messages. This response is normally to a packet that does
not match a rule. The switch encapsulates the packet and sends it to the controller for
a decision. The controller can either acknowledge the message and ignore the packet
or respond with an action to apply an optional rule to install in the switch flow table to
match future packets.

Fig. 3.9 Multiple connections TCP/TLS (Flowgrammable.com 2017)

If the switch/controller platform is secured according to specification, the flow rules for a
switch can only be installed by an OpenFlow controller over a TCP connection initiated by
the switch. Unfortunately, the flexibility of allowing the platform to run in a basic listener
mode is attractive to network operators for reducing complexity. In this mode, the controller
can allow TCP connections from any network source that introduces major vulnerabilities
due to the lack of authentication and access control.

In this mode it is possible that a rouge or fake switch can bind to the controller, with the
feature in later versions for the protocol to run concurrent controller connections to switches
in this situation. Fig 3.9 shows multiple SDN controllers with multiple switches connected.
As the number of connected switches grows, the complexity of ensuring a robust certificate
exchange mechanism is implemented. The controllers shown in fig 3.9 are handling secure
and insecure switch connections.

When a switch is handling a reactive rule creation there are two ways of dealing with the
new flow. Either the complete packet or a portion of the packet header is transmitted to the
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controller to resolve the query. Sending the complete packet, especially in a high data flow
connection, would be taxing on bandwidth. If only the header were sent, it would be stored
in Ternary Content-addressable Memory (TCAM) or node memory whilst waiting for a flow
entry to be returned.

Considering that the default method for secure channels to initiate pairing is plain TCP,
the controller is now vulnerable. If the controller and the switch are not configured for TLS,
SSH or any other type of key exchange for access control, there is no limit to the number of
fake/rouge switches that could be introduced to the topology. Secondly. With numerous new
flows introduced, the node memory would be quickly bottlenecked, and the switch would be
overloaded. This is the beginning of a Denial of Service (DoS) attack.

As the OpenFlow protocol has matured and developed, it is important to note that the
mechanism for initial communication and subsequent rule handling has changed very little.

Version 1.0.0 of the OpenFlow protocol required TLS. However, for the release of version
1.4.0, clear TCP was allowed as an option.

The changes have predominately occurred in the addition of message types and the ability
to have concurrent controller connections. These changes were added to version 1.3.3. This
addition has included negotiation of master and equal status roles of controllers in multiple
connection scenarios previously mentioned in earlier in th chapter.

Load balance roles

• Equal is a default role. The switch exchanges the same OpenFlow messages to each
controller and does not distinguish or load balance between them.

• Master is similar to the equal role but there can only be one master. If a master is
utilised, all other switches will become slaves.

• Slave is the role of all switches except the master once a master is set.
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Below are the contents of an OpenFlow packet negotiating load balance roles:

1 h a n d l e _ r o l e _ r e q u e s t _ m e s s a g e ( s t r u c t o f p _ r o l e _ r e q u e s t r o l e _ r e q u e s t ) {
s t r u c t o f p _ r o l e _ r e q u e s t r o l e _ r e p l y ;

2 I * pseudo−code t o v a l i d a t e t h e g e n e r a t i o n _ i d . Here t h e
3 * g e n e r a t i o n _ i s _ d e f i n e d and c a c h e d _ g e n e r a t i o n _ i d a r e g l o b a l
4 * v a r i a b l e s * I
5 i f ( g e n e r a t i o n _ i s _ d e f i n e d && ( i n t 6 4 _ t ) ( r o l e _ r e q u e s t . g e n e r a t i o n _ i d −

c a c h e d _ g e n e r a t i o n _ i d ) < 0)
6 {
7 s e n d _ e r r o r _ m e s s a g e (OFPET_ROLE_REQUEST_FAILED , OFPRRFC_STALE) ;
8 }
9 e l s e

10 {
11 c a c h e d _ g e n e r a t i o n _ i d = r o l e _ r e q u e s t . g e n e r a t i o n _ i d ; g e n e r a t i o n _ i s _ d e f i n e d

= t r u e ;
12 I * Here c o n n e c t i o n i s t h e c o n n e c t i o n d a t a s t r u c t u r e which i s
13 * m a i n t a i n e d by t h e s w i t c h * I c o n n e c t i o n . r o l e = r o l e _ r e q u e s t . r o l e ;

r o l e _ r e p l y . r o l e = r o l e _ r e q u e s t . r o l e ;
14 r o l e _ r e p l y . g e n e r a t i o n _ i d = c a c h e d _ g e n e r a t i o n _ i d ; send_openf low_message (

c o n n e c t i o n , r o l e _ r e p l y ) ;
15 }
16 }
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Testing Methods and Equipment Used

In this section methods used in evaluation and analysis will be presented. To assess
security for switch to controller secure channels, a variety of hardware and software were
used. Evaluating connection quality and robustness should include tests to challenge and
stress the connections. Combinations of switch controller connection were used in different
topologies to simulate the data centre or corporate environment. A data centre environment
network has the potential for load balancing between controllers. meaning connections could
be established and dropped continuously over a short period.

The controller to switch connection relationship is important in the testing of secure
connections. In a load balancing scenario, controllers are required to start on slave and master
roles to satisfy the relationship between the controller clusters. In failing to return to the
optimum role at the end of a load balancing event, does the controller fail safe?

4.1 Guidelines for openFlow device behaviour in the test
environment

Testing in this section will follow the Open Networking Foundation guidelines as set out
in OpenFlow Controller Benchmarking Methodologies [10].

In a secure environment, the following secure channel behaviour steps must be recognised.

a) In any switch to controller OpenFlow connection, the preference is for a TLS negoti-
ation for the secure channel between devices. Private Key Infrastructure (PKI) must
be in force on the controller with a trusted source for the Certificate Authority (CA).
The controller will pass the public certificate to the switch prior to forming a secure
encrypted connection at Secure Sockets Layer (SSL).
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b) When switch to controller secure channel connections fail, the failure should fall back
to a secure connection on restart. This is viewed as a connection failure as opposed to
device failure. Connection failure could be caused by:

- Overloading of channel capacity.

- Corruption on one or both ends of the link.

- Loss of communication caused by congestion.

c) Secure channel connections created on the fly (load balancing events) should come up
as TLS secure connections when slave controllers are bought online.

Table 4.1 shows configuration parameters for the controller.

Table 4.1 Controller Configuration Parameters

Parameter Comments Iteration 1 Iteration 2
Channel Type TCP or TLS TCP TLS

Role Request Must be able to send Role Request
message once an OF channel is
established in a switch

Enabled Enabled

Topology Discovery LLDP or any other protocol to
discover topology

Enabled Enabled

Echo Request/Reply Optional parameter. Depending on
the frequency of transmission, it
might affect the test outcome.

Disabled Enabled
with
frequency
n1/sec

Support multiple
controller interaction

Must support interaction with other
controller and elect new master
when current master goes down

Enabled Enabled

In proactive mode, an OpenFlow enabled switch contains a flow table matching flow infor-
mation and flows arriving on the ingress ports. In reactive mode the switch will not have a
matching flow table for flows and will either drop the packet, or generate a TABLE_MISS
result and send the packet to the controller in a PACKET_IN message.

The controller reacts to the PACKET_IN message by setting and appropriate flow for the
packets. This behaviour is an opportunity to exploit the controller and test the resilience of the
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connections. Controller performance is heavily influenced by the processing of PACKET_IN
messages to achieve good network convergence and recovery. By writing custom packets
with a fake or devised flow match and flooding the OpenFlow switches, a situation is created
where the switch will continually write TABLE_MISS events and hence send all packets to
the controller for a flow table entry.

4.2 OpenFlow controller capacity

Channel resilience and robustness can be measured initially through determining the
capacity of the channel. Testing the capacity of the channel requires connecting multiple
OpenFlow forwarding devices to the controller in an ever-increasing number and measuring
throughput and latency for each added switch set.

4.2.1 Scenario 1 Load balancing

The objective is to test resilience of secure channels in the event of load balancing setting
for the network. In a load balancing topology, the secondary controllers will start on demand
to take the extra load experienced in the network. Based on the secure environment steps
earlier mentioned in section, secondary, slave controllers are required to start in secure TLS
mode to satisfy behaviour.

4.2.2 Scenario 2 Forced TABLE_MISS

Switch to controller secure connections are required to cope with multiple or continuous
TABLE_MISS events at the OpenFlow enabled switches caused by flooding of custom,
corrupt packets into the switches.

4.2.3 Scenario 3 Controller failure

While planning for an SDN based network deployment, it is required to know the
OpenFlow controller’s capacity of channel handling. Therefore a thorough benchmarking of
the channel is needed. It is important to know how many simultaneous channels a controller
can support, and at which rate the controller is able to establish connection with switches.
Controller failure testing is designed to look at switch behaviour and general topology
workload. Once a baseline is established, the controller must be connected to multiple
OpenFlow switches through secured connections.
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Recovery time is also an important factor in negative failure of the secure connections
between devices. Recovery is measured in the ability of the controller to re-discover the
network topology and re-connect to forwarding elements. Secure links can only be formed
once the flooding of Link Layer Discover Protocol (LLDP). The LLDP messages are re-
ceived through PACKET_IN messages. Rapid end-to-end path convergence is reliant on the
discovery process for the topology.

Table 4.2 is showing configuration parameters for switches.

Table 4.2 Switch configuration parameters

Parameter Comments Iteration 1 Iteration 2
Channel Type TCP or TLS TCP TLS
Multipart Reply Should be able to reply to Multipart

Request from controller
Disabled Enabled

4.3 Cisco OpenFlow beta Testing Trial

Ara Institute of Canterbury is currently taking part in a trial as part of a testing lab for
benchmarking of the ‘Faucet’ SDN OpenFlow controller against the Cisco 9300 Catalyst
switch. The trial team was in weekly contact with the developers from Cisco to trial new
updates and capabilities coded into the Cisco version of OpenFlow, reporting back on findings,
bugs, successes and failures directly to Cisco.

The Faucet controller, a derivative of the RYU controller, was developed by Research
and Education Network New Zealand (REANZ) in conjunction with Waikato University and
is now installed in multiple corporate networks in Australia and New Zealand. Faucet is
supported by multiple large vendors including Allied Telesis, HPE-Aruba, NoviFlow and
Cisco. Including the Cisco 9300 in the test lab equipment list for this thesis is a bonus to the
project even at the late stages of the testing.
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4.4 Equipment Required

4.4.1 OpenVswitch

This is an open source, production ready multi-layer soft switch with native support for
well-known management interfaces and protocols. The Open vSwitch community maintains
and develops the capabilities of libraries, documentation and uses cases from all over the
networking community. For researchers and developers, this technology provides and
environment to quickly spin up a topology capable of emulation for security, monitoring,
Quality of Service and automated control in minutes. Full support is for all OpenFlow
versions up to v 1.5.

4.4.2 VMware ESXi

For a larger hypervisor working surface, ESXi has been idea for basing larger testing
environments. There is a good selection of server hardware available for use as an SDN test
bed. Utilising ESXi for this type of project minimises setup time for complex experiments
allowing researchers to quickly revert between results and compare throughput of devices.
There has been excellent adoption in the Open Source community making many devices
available via virtual appliance format (OVA). Using Open Virtualisation Format machines
and Vagrant development files, almost any configuration is available for use in this project.
The ability to snapshot configurations and test conditions allow experiments to be reverted
quickly back to a known state and re-run the test.

4.4.3 Mininet

This was developed by researchers at Stanford University to mitigate restrictive use of
the universities network for testing and developing. Mininet is available as a pre-built virtual
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machine, source code or package installation including an upgrade capability. Using process-
based virtualisation, the software is capable of producing complex network components for
simulation testing with a lightweight virtual footprint. Another feature is the ability for a
Linux server to house the OpenFlow controller, the switch, and benchmarking utilities on the
same device. For testing purposes, the time saving is significant.

Fig. 4.1 Mininet editor topology (Edge.P 2018)

4.4.4 OpenFlow controllers

OpenDaylight

This is the main product of the ONF and labelled production ready. The OpenDaylight
Controller is implemented solely in software and is kept within its own Java Virtual Machine
(JVM). This means it can be deployed on hardware and operating system platforms that
support Java. For best results, it is suggested that the OpenDaylight controller uses a
recent Linux distribution and at least Java Virtual Machine 1.7. At the time of the Carbon
release in May 2017, the project estimated that over 1 billion subscribers were accessing
OpenDaylight-based networks, in addition to use within large enterprises
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RYU

The RYU Controller is an open source SDN Controller which is designed to increase the
speed of a network by making it easy to manipulate and change how traffic is forwarded.
RYU provides software components with well-defined API that makes it easy for developers
to create new network management and control applications. RYU supports various protocols
for managing network devices, such as OpenFlow, Netconf, OF-config, etc.

Faucet

The Faucet controller, a derivative of the RYU controller, was developed by REANZ in
conjunction with Waikato University and is now installed in multiple corporate networks in
Australia and New Zealand. Faucet is supported by multiple large vendors including Allied
Telesis, HPE-Aruba, NoviFlow and Cisco. Including the Cisco 9300 in the test lab equipment
list for this thesis is a bonus to the project even at the late stages of the testing.

GNS3 network simulator

The GNS3 simulator is a powerful network simulation tool with numerous options for
testing and benchmarking almost any device from all major vendors of switch, route, compute,
storage or monitoring solutions available today. The most recent inclusions are Docker and
OpenVSwitch (OVS).
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Testing and Performance Evaluations

5.1 Attacking the network

The following section documents tests carried out on OpenFlow controllers from an
OpenFlow switch perspective. The testing assumes access to the communication channel is
possible due to the absence of secure transport protocol communications between the control
and data planes of the network. Without the secure link established, controllers are easy
targets for port and packet mapping attacks leading to complete control of the connections.

Attacking the network is carried out with the use of modified Python scripts. The scripts
are created to allow two phases of attack - a reconnaissance phase and an attack phase. The
use of LLDP as a discovery protocol provides an advantage for the installation of switch
and controller with each device easily discovering the other at the end of the communication
channel.

Using the network topology shown in fig 4.2, it was possible to flood and overwhelm the
OpenDaylight controller. If an adversary is able to talk directly to a OFCP from a rouge or
fake switch, private network information and flow tables from other switches give the threat
actor a complete picture of the network.

5.1.1 Reconnaissance

An OpenFlow controller that is using TCP and LLDP protocols is completely discoverable
by simple fingerprinting techniques. Using LLDP to discover and enumerate the controllers
southbound interface, the information harvested is used against the controller to mount
more tailored attacks including DDos, Man in the middle, Replay or elevation of privileges.



5.1 Attacking the network 49

Fig. 5.1 GNS3 Topology for attacking OpenFlow controllers

Knowing the vulnerabilities of a target controller or its components ensures actors the ability
to use known or craft new attacks.

Applying the reconnaissance scripts and running them on a Linux machine in the network,
fingerprinting the machine displays local network information about the controller. Scripts
used in the initial attack included: (Script samples available in Appendix 1)

lldp-replay

Used to discover devices listening on the network. The script replays LLDP traffic
observed at a given interface back out the same interface.

– iface - Interface to use

– count - Times to replay

– capture - Capture LLDP frame to file

– replay - Replay captured LLDP frame from file
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arpmon

Arpmon monitors ARP requests and responses recieved at a particular interface. In watch
mode, it simply prints details of ARP traffic seen. In map mode the script will create a table
of IP address to MAC bindings on sniffed ARP traffic.

– iface - Interface to use

– mode - Set mode (watch or map)
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controller-detect

This module attemps to fingerprint the network controller. Using LLDP traffic, it will
dump the contents of the LLDP message and start a port scan for the purposes of detecting
northbound and southbound interfaces.

– iface - Interface to use

– lldp - Determine controller based on LLDP traffic

– target - Determine controller based northbound interface

– ports - Set ports to scan when –target is specified

5.1.2 Attack

As previously discussed in section 1.13, SDN networks are vulnerable to attacks that
exist in conventional networks. Additionally, SDN topologies introduce new attack vectors.

ARP cache poisoning problems in SDN networks are exacerbated when controllers
deliver ARP messages to the data plane and forwarding elements which in turn will pass the
message onto a host connected to the port of a data plane forwarding device.

Furthermore, in and SDN network, it is possible to poison the ARP cache of a data plane
element without the controller observing the attack.

dp-arp-poison

This poisons the target ARP cache without the controller observing the attack. Relies on
the flows being installed for ARP traffic and this traffic not being sent to the controller by the
flow. In other words, avoiding a TABLE_MISS event.

– iface - Interface to use

– victim - IP address of victim

– victim-mac - MAC address of victim

– loop - Continue poisoning until stopped
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1 NXST_FLOW r e p l y ( x i d =0x4 ) :
2 c o o k i e =0 x20000000000000 , d u r a t i o n =1.357 s , t a b l e =0 , n _ p a c k e t s =1 ,
3 n _ b y t e s =42 , i d l e _ t i m e o u t =5 , i d l e _ a g e =0 , p r i o r i t y =1 , arp , i n _ p o r t =2 ,
4 d l _ s r c =9e : 7 9 : f1 : 9 7 : f1 : 6 8 , d l _ d s t =66:5 b : 5 1 : bb : ae : eb a c t i o n s = o u t p u t : 1
5

6 c o o k i e =0 x20000000000000 , d u r a t i o n =0.359 s , t a b l e =0 , n _ p a c k e t s =0 ,
7 n _ b y t e s =0 , i d l e _ t i m e o u t =5 , i d l e _ a g e =0 , p r i o r i t y =1 , arp , i n _ p o r t =1 ,
8 d l _ s r c =66:5 b : 5 1 : bb : ae : eb , d l _ d s t =9e : 7 9 : f1 : 9 7 : f1 : 6 8 a c t i o n s = o u t p u t : 2

Above is a sample rule to allow an ARP request to traverse the network.

dp-mitm

This module is used to perform a Man in the Middle attack (MITM) without poisoning
the controllers view of the network.

– ip - Interface to use

– target1 - IP address for first target

– target1- MAC - MAC address for first target

5.1.3 Attacks and prevention

The preceding sections and numerous papers written on successful attacks makes it clear
that the OpenFlow protocol as a communications transport is completely vulnerable unless
some form of mutual authentication is provided and enforced at each end of the connection.
With so many documented cases, a recent trend is to speed up attacks and reduce time in
enumerating and fingerprinting interfaces and decrease the time it takes to discover and
attack an SDN network using OF as a transport. Future work needs to look closely at how
we can prevent easily mounted attacks on both known and new, more sophisticated versions
of switch (OVS).
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5.2 Testing

Testing of the OpenFlow protocol is possible in both physical and virtual environments.
Physical switches are available through numerous vendors but remained expensive at the time
testing was carried out. After many unsuccessful attempts to procure or loan demonstration
devices from vendors, a switch was finally loaned from Cisco Sytems. The device is a
Cisco Catalyst 9300. The loan is combined with a testing program for a Beta version of the
OpenFlow protocol software modified to support the 9300 switch.

As part of the research in this project, we look at methods used for discoverability of
an OpenFlow enabled switch, initiating of connection to the controller and the subsequent
ongoing transmission between the devices. Whilst the research is concerned mainly with
security on secure channels within the topology, additional attack vectors because of TLS
establishment failure raise further questions.

Traditional threat vectors that are present in a traditional network perpetuate in an SDN
enabled installation. If fact, there are new threats identified with the introduction of a
distributed model.

Before testing SDN controllers for the ability to deal with concurrent OpenFlow connec-
tions from multiple switches in a production environment, it is necessary to benchmark the
controllers for latency capabilities in processing PACKET_IN messages to realise changes in
behaviour for the production environment.

1 c o n t r o l l e r = ’ 1 0 . 0 . 4 2 . 5 ’
2 # c o n t r o l l e r = ’ 1 7 2 . 1 6 . 4 . 1 5 8 ’
3 p o r t = ’ 6633 ’
4 l o o p s =20
5 msPerTes t = ’ 10000 ’
6 # msPerTes t = ’3000 ’
7 macPerSwi tch =1000
8 s t a r t u p D e l a y =100
9 warmup=1

10 # s w i t c h amount a r r a y
11 # swSet =( 10 14 16 18 20)
12 swSet =( 16 )
13 # swSet =( 10 15 20 30 )

The following tests were processed on OpenDaylight, Faucet and RYU controllers. Testing
was carried out using the Cbench benchmarking tool. When running in latency mode for a
given number of unique MAC addresses per switch, cbench sends a PACKET_IN request
only after the PACKET_OUT reply is received for the previous request. This gives the
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number of packets a controller can process if sent serially. Taking the inverse of the cbench
output for latency mode will give the average time required by the controller to process a
PACKET_IN request.

As shown in output above, the tool targets a designated controller by IP address on the
specified port to fake increasing numbers of switches connected to the controller. It should
be noted, the small increment of switch numbers, swSet = ( 10 14 16 18 20), could be taken
as emulating increased traffic from an array of network devices connected to the controller
connecting/disconnecting like load balancing or disconnection in relation to path decisions at
the controller dictating path control for various packet types, protocols or applications.

Logging these outputs gives a snapshot of lengthy controller operation which can be
variably set via msPerTest=’10000’.

While the increase and frequency of messaging is stabilised and controlled, the OF
switches are able to deal with the steady flood of PACKET_IN messages. The control is in
the warmup and delay between each increment within the switch set. The fexibility of the
Cbench tool allows the tester to design monitoring schedules fine tuned to suit the device and
environment.

5.2.1 Performance evaluation

To maintain consistency across all performance testing and evaluation, it is necessary
to normalise the operational capabilities of controllers. Baselining tests are designed to
evaluate devices and data paths for throughput thresholds and provide consistency for future
testing. Once a baseline is established, security testing methods can be carried out with the
confidence that the capacity of the device at the time of testing is accurately known.

Consistency is key to security testing. If the secure link fails to establish or re-establish a
connection due to concurrent and multiple controller connections, a window of vulnerability
appears for the network and routing domain.

It is interesting to note in Fig 4.3 below that at the point of between five and seven
switches in the latency testing, the controller actually handled more flows per second and
stabilised to as-steady deviation for the remainder of the test.
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Fig. 5.2 OpenDaylight Cbench test plot

Fig. 5.3 Ryu Cbench test plot
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In the most recent versions of OpenFlow including the latest version1.3.3, an added
feature is the ability to have concurrent connections to multiple controllers. This feature
adds a failover/redundancy to the topology and is attractive to designers for cases where loss
of controller connectivity in mission critical scenarios is not an option. This also creates a
complexity to the setup and maintenance of the controller to switch channel. In the early
adoption of the SDN/OpenFlow, the most common method of secure channel communication
was in fact no authentication.

Another real issue for concurrent connections is the bottlenecks that occur once the
flow rate is increased. Some OpenFlow controllers behave unpredictably once the flow
rate increases above a certain threshold. Malformed packets can cause shut down of the
controller (an attack in itself). If the controller does not shutdown, the increased flow rate
can cause the handshake malfunctions between switch and controller to the point where the
HELLO packet that contains a negotiation of OpenFlow version number (match is required)
is disregarded and the connection is possibly made between devices containing miss-matched
version numbers.

5.2.2 SDN Utilisation and Adoption

The use of software and virtualisation to improve network fabric processes continues
to drive the ICT industry in meeting the challenges created by today’s connected, online
lifestyles and business methods. This thesis presented an analytical view into security within
a technology which has seen widespread adoption in the last 5 years. The adoption of new
network technologies in this era can often equate to the adoption of a composite of protocols
embedded into the technology without the knowledge of what is ‘under the hood’. Whilst
one would currently purchase a network switch with the knowledge that it is either OpenFlow
capable or not, many vendor, complete solution, packages house the insecure protocols
discussed in this paper.

In the case of private customer routing domains within the data centre, networks are
nearing the point of full automation from customer on-boarding to actual customer data
present on the provider network. Considering the implications of insecure protocols discussed
in this thesis, is security guaranteed? SDN techniques are required to accommodate vendor-
specific components. In the process of adoption, network, policy and operational personnel
teams are becoming more diverse in membership and skill set. Project teams and Network
Operation Centre (SOC) personnel are required to deal with other candidate protocols other
than OpenFlow which is simply one of the many candidates mentioned throughout this thesis.
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SDN techniques are an instantiation of the policy-based management framework. Within
this context, SDN techniques can be used to activate capabilities on demand, to dynamically
invoke network and storage resources, and to operate dynamically adaptive networks accord-
ing to events (e.g., alteration of the network topology), triggers (e.g., dynamic notification of
a link failure), etc. Because the complexity of activating SDN capabilities is largely hidden
from the end user and is software handled, a clear understanding of the overall ecosystem is
needed to figure out how to manage this complexity and to what extent this hidden complexity
does not have side effects on network operation.

The concept of introducing programmability into communication networks is not new.
With numerous examples introduced over the last 20 years, including telephone system
programmability projects, nothing has the potential to disrupt compared with the introduction
of SDN. Initial disruption came to the data centre in the form of virtualisation and the blurring
of roles between Application Developers and Operations Engineers emerge as a consolidation
to the role of DevOps.

The disruption is not confined to changes in communication networks and standards.
It will affect skill sets required to administer the SDN aware network. Current network
engineers will be required to have some software and scripting skills as automation becomes
the standard method of deploying and maintaining a network.

The manufacturers of network devices are currently feeling this disruption through the
growing deployment of network white boxes. (A device constructed of non-proprietary
components. Silicon, hardware etc).The ideal personnel to administer an SDN based network
will be programmers with core networking knowledge. How well does this profile fit the
skills market today? Can we realistically allow programmers to implement applications and
policy network wide without fully understanding the underlying infrastructure? Who owns
the resultant outage in the case of an errant code at layer 2 or 3 or a security breach across
multiple tenants in the case of ISP/Data Centre installations?

In an undocumented case within VMware Australia, developers proposed testing applica-
tions via the VMware Network Virtualisation and Security Platform (NSX) for local testing
on the branch production installation. The response from the networking team inquired if the
developers had knowledge of which areas of the network would be affected by the testing,
whether the network would experience outages and who would be responsible for finding
and eradicating errors. This level of knowledge for a programming team is beyond the scope
of most software engineers and subsequently, new policy was developed to allow developers
access to forwarding elements of the network if it was clearly documented they understood
how the testing would affect the network.
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Fig. 5.4 SDN security taxonomy

The interest and subsequent discussion and development in SDN is partly based on the
vision that networks can gain agility, robust monitoring, and security from the introduction of
policy injection and programmability offered by these developments. Educational institutions
are discovering the need to address a new type of student emerging. Somewhere between
and Electro-Technologist, Network Engineer and Software Engineer exists a space where the
demands of Internet of Things (IoT) with wireless sensors capable of measuring numerous
elements and activities, complex virtualised network functions to collect and quantify data
and software engineering to optimise and secure the network fabric privately and in the data,
centre cannot be addressed by a single discipline.

The SDN security taxonomy illustrated in fig 5.1 presents a scheme for categorising areas
of SDN architecture, tools and objectives for selected items. Policy Development aligned
with the categories would ensure consistency across technologies with attention on standards
and environments aligned with objectives.



Chapter 6

Conclusion and Future Directions

6.1 Recommendation for Future Works

Experimenter policy

The OpenFlow protocol is on a steady version development path with later iterations
attempting to satisfy a market that demands more abstraction for the multi-tenant data centre
installations. SD-WAN is becoming an option for service providers to build flexibility into
the edge network.

The EXPERIMENTER field available in all versions since its invention, is the logical
place to consider policy to enforce connection monitoring and regulation. The field is an
immutable message written into the protocol for future development and research and if used
is passed as a method for writing actions on a match within the OpenFlow flow tables. This
paper is one of very few attempts at actual policy.

Policy development

Researching a protocol such as OpenFlow is a huge task and consumes so much time
analysing all aspects of the technology. The direction of this research paper has changed
somewhat from the idea of ‘Security in the Software Defined Network’ three years ago. In
that time, many more papers have been written about security and many on attacking the
protocol given the lack of security. The intention is to carry this work forward in the direction
of policy and prevention. Policy development: For policy development, the idea is based on
the communication method used between the controller and switch or switches. Approaches
could include:
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• As a priority, flow tables must support TABLE_MISS flow entries to process misses.
Outcomes are sent to the controller, DHCP or to a subsequent table. Writing a reactive
rule based on public and private addressing is one idea for managing control channel
security and whether it should be forced.

• In response to a reactive flow, if a packet has no flow match and is sent to the controller
as part of the table-miss, policy should check the connection and look for the presence
of an encrypted connection, the ability to create a secure connection or send a network
notification that says packets will be dropped as part of the denial process until a secure
connection is estalished.

The experimenter field

As opposed to other extensions, experimenter messages are not associated with a specific
OpenFlow object, and therefore can be used to create entirely new APIs and manage entirely
new objects.

1 / * E x p e r i m e n t e r e x t e n s i o n message . * /
2 s t r u c t o f p _ e x p e r i m e n t e r _ m s g {
3 s t r u c t o f p _ h e a d e r h e a d e r ; / * Type OFPT_EXPERIMENTER . * /
4 u i n t 3 2 _ t e x p e r i m e n t e r ; / * E x p e r i m e n t e r ID :
5 * − MSB 0 : low−o r d e r b y t e s a r e IEEE OUI .
6 * − MSB != 0 : d e f i n e d by ONF. * /
7 u i n t 3 2 _ t e x p _ t y p e ; / * E x p e r i m e n t e r d e f i n e d . * /
8 / * E xp e r im en te r−d e f i n e d a r b i t r a r y a d d i t i o n a l d a t a . * /
9 u i n t 8 _ t e x p e r i m e n t e r _ d a t a [ 0 ] ;

10 } ;

The use of the EXPERIMENTER field requires absolute knowledge of the protocol
and how best to utilise the extensible nature of OpenFlow Extensible Message (OXM). It
is feasible that fingerprinting and exploit methods are the best developed ways of quickly
establishing connection status and building the secure connection. To build a secure TLS
connection, is not a trivial matter and another part of policy could look at the readiness of the
interface to become secure.
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Since this research began three years ago the industry has moved so far and so fast
in terms of adoption and development of an advancement considered the most disruptive
technology in network communications since TCP/IP. How far have we really progressed
with regard to the initial questions this paper was originally asking?

How can we ensure integrity of the secure communication channel between an OpenFlow
switch and controller? Are we witnessing another blind push for a technology that has not
matured before being implemented in major installations and the foundation technology of
numerous multi-tenanted data centre and cloud solutions?

What actually constitutes a software-programmed network? SDN is often confused with
NFV and Industry is tiring of the hype that is to be SDN. Furthermore, some suggest the
hype of the programmatical network has come and gone. The hype curve has been and gone.

Whatever one thinks of the past, present or future of this technology, it is making a
difference to everyone who picks up a smart device, logs into a corporate network using
cloud services. In fact, any use of the internet will mean contact with some form of SDN.

If SDN has indeed matured over the past 20 years, the deployment to WAN has still to
make an impact on large-scale networks. As previously mentioned, NTT’s innovative use of
edge routing improvements and the Google B4 network are among the largest independent
projects deployed as in house developments.

Numerous technology companies including Cisco, Big Switch and HPE offer turnkey
solutions with a large price tag and a closed source architecture often with OpenFlow as the
underlying protocol. It is not obvious if these offerings employ the security methods outlined
in this paper. In the case of HPE, OpenDaylight is the underlying controller for the data
centre installation.

Solutions offered by the large players are cost-prohibitive. There are alternatives that
require knowledge across many of the available Open Source technologies. Central Office
Redesigned as a Data Centre (CORD), developed through the ONF is one such alternative.
However, adopting a solution such as CORD requires network operators to have expertise
in a number of projects including SDN, NFV and multiple cloud technologies. One may
consider this as a ‘Back to the Future’ scenario.

For two decades, Linux threatened to take over the corporate world of server and desktop
deployment operating systems. Why did it never happen? All the parts were there, you just
had to put it together to make it viable for your business. Consequently, Linux hardly dented
the Microsoft share of this market.

Looking at the last decade, Linux is stealthily making an impact in areas of IoT, SDN and
embedded devices. CORD potentially gathers a cluster of excellent, developing technologies
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and if implemented successfully, turns your central office into a datacentre and natively
provides programmable cloud services to the branch offices. This includes data, voice,
conferencing, and security all built on free, open source software. You just need to make
it work. OpenStack, Docker and Onos make up an impressive suite of programs to spin
up CORD. The philosophy behind CORD is to utilise the role of the CO. More commonly
referred to as the telephone exchange in Australia and New Zealand.

The aim is to eliminate the hundreds of closed proprietary devices that reside in that
space and replace them with white boxes and open source network overlay. In other words,
build a cloud in the central office and populate it with a datacentre that serves all the remote
sites that comprise an enterprise regardless of size.

The role of SDN is without doubt, still not completely grounded the in ICT industry at
this point. One thing is for certain however, it will continue to be developed as the preferred
method of automating networks to provide agility and speed to changes in large enterprise
environments, within LANs and multi-tenanted data centres. Some questions remain:

• What is the future of SDN in the WAN?

• What part will SDN play in the IoT?

• Will OpenFlow remain as the industry preferred protocol to develop SDN?

• How much of future security direction will rely on SDN for solutions?

The answers to the above are bound to be answered if not in a timely manner, at least
in hind sight of future issues emanating from the sheer pace with which we are developing,
adopting, and deploying technologies not proven as reliable. The problem of security in
protocols including OpenFlow, require additional research.
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Appendix A

Attack Scripts

A.1 Reconnaissance phase

A.1.1 arpmon.py

Adapted from Dylan Smyth

1 i m p o r t modules . sdnpwn_common as sdnpwn
2

3 from scapy . a l l i m p o r t *
4 i m p o r t s y s
5 i m p o r t s u b p r o c e s s
6 i m p o r t e r r n o
7 i m p o r t s i g n a l
8

9 c l a s s p a c k e t H a n d l e r :
10

11 mode = None #Modes = watch , map
12 hostMacMap = {}
13 h o s t L i s t = None
14 c u r r e n t P a c k e t =" " ;
15

16 d e f _ _ i n i t _ _ ( s e l f ) :
17 c u r r e n t P a c k e t =" " ;
18

19 d e f p a c k e t I n ( s e l f , p k t ) :
20 c u r r e n t P a c k e t = p k t ;
21
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22 i f ARP i n p k t :
23 s e l f . a r p I n ( p k t ) ;
24

25 d e f a r p I n ( s e l f , p k t ) :
26 a rpTypes =[ ’ ’ , ’who− i s ’ , ’ i s−a t ’ ] ;
27 t r y :
28 arpType = arpTypes [ p k t . op ] ;
29 e x c e p t :
30 arpType =" Unknown " ;
31

32 s r c I p = p k t . p s r c
33 srcMac= p k t . hwsrc
34 d s t I p = p k t . p d s t
35

36 i f ( s e l f . mode == " watch " ) :
37 # p r i n t ( " \ n " ) ;
38 i f ( a rpType == "who− i s " ) :
39 p r i n t ( " From " + s t r ( s r c I p ) + " ( " + s t r ( srcMac ) + " ) " +

arpType + " t o " + d s t I p ) ;
40 e l i f ( a rpType == " i s−a t " ) :
41 p r i n t ( s t r ( s r c I p ) + " " + arpType + " " + s t r ( srcMac ) + " t o "

+ d s t I p ) ;
42

43 e l i f ( s e l f . mode == "map" ) :
44 i f ( s t r ( d s t I p ) n o t i n s e l f . hostMacMap ) :
45 s e l f . hostMacMap [ d s t I p ] = " ? "
46 i f ( s t r ( s r c I p ) n o t i n s e l f . hostMacMap ) :
47 s e l f . hostMacMap [ s r c I p ] = srcMac
48 printHostMacMap ( s e l f . hostMacMap ) ;
49 e l s e :
50 i f ( s e l f . hostMacMap [ s r c I p ] != srcMac ) :
51 s e l f . hostMacMap [ s r c I p ] = srcMac
52 printHostMacMap ( s e l f . hostMacMap ) ;
53

54 d e f pr intHostMacMap ( hostMacMap ) :
55 s u b p r o c e s s . c a l l ( " c l e a r " )
56 p r i n t ( " IP \ t \ t \ t \ tMac " ) ;
57 f o r h i n s o r t e d ( hostMacMap ) :
58 p r i n t ( h + " \ t \ t \ t " + hostMacMap [ h ] ) ;
59

60 d e f s i g n a l _ h a n d l e r ( s i g n a l , f rame ) :
61 p r i n t ( " " )
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62 sdnpwn . message ( " S t o p p i n g . . . " , sdnpwn .NORMAL)
63 e x i t ( 0 )
64

65 d e f i n f o ( ) :
66 r e t u r n " M o n i t o r s ARP r e q u e s t s and r e s p o n s e s r e c e i v e d a t a p a r t i c u l a r

i n t e r f a c e . Watch mode s imp l y p r i n t d e t a i l s o f ARP t r a f f i c s een . Map
mode w i l l c r e a t e a t a b l e o f I P s mapped t o MAC a d d r e s s e s based on
s n i f f e d ARP t r a f f i c . "

67

68 d e f usage ( ) :
69

70 sdnpwn . addUsage ( "− i | −− i f a c e " , " I n t e r f a c e t o use " , True )
71 sdnpwn . addUsage ( "−m | −−mode " , " S e t mode ( watch o r map ) " , True )
72

73 r e t u r n sdnpwn . ge tUsage ( )
74

75 d e f run ( params ) :
76

77 i n t f = sdnpwn . ge tArg ( [ "−− i f a c e " , "− i " ] , params )
78 mode = sdnpwn . ge tArg ( [ "−−mode " , "−m" ] , params )
79

80 i f ( ( mode != None ) and ( i n t f != None ) ) :
81 p k t H a n d l e r = p a c k e t H a n d l e r ( ) ;
82 p k t H a n d l e r . mode = mode
83 sdnpwn . message ( " S t a r t i n g s n i f f e r on i n t e r f a c e " + i n t f + " \ n " ,

sdnpwn .NORMAL) ;
84 s i g n a l . s i g n a l ( s i g n a l . SIGINT , s i g n a l _ h a n d l e r )
85 s n i f f ( i f a c e = i n t f , p rn = p k t H a n d l e r . p a c k e t I n )
86 e l s e :
87 p r i n t ( i n f o ( ) )
88 p r i n t ( usage ( ) )

A.1.2 sdn-detect.py

Adapted from Dylan Smyth

1 i m p o r t modules . sdnpwn_common as sdnpwn
2 from scapy . a l l i m p o r t *
3 i m p o r t n e t i f a c e s
4 i m p o r t t ime
5 from s c i p y i m p o r t s t a t s
6
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7 d e f i n f o ( ) :
8 r e t u r n " D e t e r m i n e s i f a ne twork i s l i k e l y t o be an SDN by o b s e r v i n g

Round−T r i p Times (RTT) f o r t r a f f i c . "
9

10 d e f usage ( ) :
11 sdnpwn . addUsage ( "−m" , " P r o t o c o l t o use ( ICMP | ARP) ( D e f a u l t ARP) " )
12 sdnpwn . addUsage ( "− t " , " IP o f l o c a l h o s t t o send t r a f f i c t o ( D e f a u l t s

t o d e f a u l t ga teway ) " )
13 sdnpwn . addUsage ( "− i " , " I n t e r v a l a t which p a c k e t s a r e s e n t ( D e f a u l t 1 ) "

)
14 sdnpwn . addUsage ( "−c " , " Number o f p a c k e t s t o send . More p a c k e t s means

b e t t e r d e t e c t i o n a c c u r a c y . ( D e f a u l t 10) " )
15 sdnpwn . addUsage ( "−v " , " Enab le v e r b o s e o u t p u t " )
16

17 r e t u r n sdnpwn . ge tUsage ( )
18

19 d e f run ( params ) :
20 g l o b a l v e r b o s e
21

22 v e r b o s e = F a l s e
23 t e s t M e t h o d = " a r p "
24 d s t I P = " "
25 c o u n t = 10
26 i n t e r v a l = 1
27

28 i f ( "−m" i n params ) :
29 t e s t M e t h o d = ( params [ params . i n d e x ( "−m" ) + 1 ] ) . l ower ( )
30 i f ( "− t " i n params ) :
31 d s t I P = params [ params . i n d e x ( "− t " ) +1]
32 i f ( "− i " i n params ) :
33 i n t e r v a l = f l o a t ( params [ params . i n d e x ( "− i " ) + 1 ] )
34 i f ( "−c " i n params ) :
35 c o u n t = i n t ( params [ params . i n d e x ( "−c " ) + 1 ] )
36 i f ( "−v " i n params ) :
37 v e r b o s e = True
38

39 i f ( d s t I P == " " ) :
40 sdnpwn . message ( "No t a r g e t g iven , u s i n g d e f a u l t ga teway " , sdnpwn .

NORMAL)
41 t r y :
42 d s t I P = n e t i f a c e s . ga teways ( ) [ ’ d e f a u l t ’ ] [ n e t i f a c e s . AF_INET ] [ 0 ]
43 e x c e p t :
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44 sdnpwn . message ( " Could n o t d e t e r m i n e gateway a d d r e s s . P l e a s e
s p e c i f y a t a r g e t u s i n g t h e − t o p t i o n . " , sdnpwn .ERROR)

45 r e t u r n
46 sdnpwn . message ( " D e f a u l t ga teway d e t e c t e d as " + d s t I P , sdnpwn .NORMAL

)
47

48 t r y :
49 i f ( tes tForSDN ( t e s tMe thod , d s t I P , count , i n t e r v a l ) ) :
50 sdnpwn . message ( "SDN d e t e c t e d ! " , sdnpwn . SUCCESS)
51 e l s e :
52 sdnpwn . message ( "SDN n o t d e t e c t e d " , sdnpwn .WARNING)
53 e x c e p t P e r m i s s i o n E r r o r a s e :
54 sdnpwn . message ( " Needs r o o t ! " , sdnpwn .ERROR)
55

56 d e f tes tForSDN ( t e s tMe thod , d s t I P , count , i n t e r v a l ) :
57 g l o b a l v e r b o s e
58 r t t = [ ]
59 sentMS = 0
60

61 i f ( t e s t M e t h o d == " icmp " ) :
62 sdnpwn . message ( " T e s t i n g wi th ICMP" , sdnpwn .NORMAL)
63 icmp = ( IP ( d s t = d s t I P ) / ICMP ( ) )
64 f o r i i n r a n g e ( 0 , c o u n t ) :
65 sentMS = i n t ( round ( t ime . t ime ( ) * 1000) )
66 r e s p = s r 1 ( icmp )
67 r t t . append ( ( i n t ( round ( t ime . t ime ( ) * 1000) ) ) − sentMS )
68 t ime . s l e e p ( i n t e r v a l )
69

70 e l i f ( t e s t M e t h o d == " a r p " ) :
71 sdnpwn . message ( " T e s t i n g wi th ARP" , sdnpwn .NORMAL)
72 f o r i i n r a n g e ( 0 , c o u n t ) :
73 sentMS = i n t ( round ( t ime . t ime ( ) * 1000) )
74 r e s p = a r p i n g ( d s t I P )
75 r t t . append ( ( i n t ( round ( t ime . t ime ( ) * 1000) ) ) − sentMS )
76 t ime . s l e e p ( i n t e r v a l )
77

78 i n i t V a l u e = r t t [ 0 ]
79 r t t . pop ( 0 )
80 # Per form T−T e s t t o check i f f i r s t l a t e n c y v a l u e i s s i g n i f i c a n t l y

d i f f e r e n t from o t h e r s i n our sample
81 r e s = s t a t s . t t e s t _ 1 s a m p ( r t t , i n i t V a l u e )
82 i f ( v e r b o s e == True ) :
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83 sdnpwn . message ( " I n i t i a l RTT : " + s t r ( i n i t V a l u e ) , sdnpwn . VERBOSE)
84 sdnpwn . message ( "RTTs f o r o t h e r t r a f f i c : " + s t r ( r t t ) , sdnpwn . VERBOSE

)
85 sdnpwn . message ( " C a l c u l a t e d p−v a l u e f o r i n i t a l RTT i s " + s t r ( r e s [ 1 ] )

, sdnpwn . VERBOSE)
86 i f ( r e s [ 1 ] < . 0 5 and a l l ( i < i n i t V a l u e f o r i i n r t t ) ) : # I f t h e p−v a l u e

i s l e s s t h a t 5% we can say t h a t i n i t V a l u e i s s i g n i f i c a n t
87 r e t u r n True
88 e l s e :
89 r e t u r n F a l s e

A.1.3 controller-detect.py

Adapted from Dylan Smyth

1 i m p o r t s i g n a l
2 i m p o r t t ime
3 from s c i p y i m p o r t s t a t s
4 i m p o r t h t t p . c l i e n t a s h t t p c
5

6 i m p o r t modules . sdnpwn_common as sdnpwn
7

8 d e f s i g n a l _ h a n d l e r ( s i g n a l , f rame ) :
9 # Handle C t r l +C h e r e

10 p r i n t ( " " )
11 sdnpwn . message ( " S t o p p i n g . . . " , sdnpwn .NORMAL)
12 e x i t ( 0 )
13

14 d e f i n f o ( ) :
15 r e t u r n " A t t em p t s t o f i n g e r p r i n t t h e ne twork c o n t r o l l e r . "
16

17 d e f usage ( ) :
18

19 sdnpwn . addUsage ( "− i | −− i f a c e " , " I n t e r f a c e t o use " )
20 sdnpwn . addUsage ( "− l | −− l l d p " , " De te rmine c o n t r o l l e r based o f f LLDP

t r a f f i c " )
21 sdnpwn . addUsage ( "−d | −−dump−l l d p " , "Dump t h e c o n t e n t s o f t h e LLDP

message " )
22 sdnpwn . addUsage ( "−n | −−i g n o r e−c o n t e n t " , "Do n o t d e t e c t c o n t r o l l e r

based on LLDP c o n t e n t " )
23 sdnpwn . addUsage ( "− t | −− t a r g e t " , " De te rmine c o n t r o l l e r based

n o r t h b o u n d i n t e r f a c e " )



A.1 Reconnaissance phase 72

24 sdnpwn . addUsage ( "−p | −−p o r t s " , " S e t p o r t s t o scan when −− t a r g e t i s
s p e c i f i e d . " )

25 sdnpwn . addUsage ( "−x | −−proxy " , " De f i ne a proxy s e r v e r t o use when −−
t a r g e t i s s p e c i f i e d . " )

26 sdnpwn . addUsage ( "−v | −−v e r b o s e " , "Show v e r b o s e o u t p u t " )
27

28 r e t u r n sdnpwn . ge tUsage ( )
29

30 d e f l l d p L i s t e n ( i n t e r f a c e , dumpLLDP , ignoreLLDPContent ) :
31 s n i f f ( i f a c e = i n t e r f a c e , p rn = l l d p L i s t e n e r C a l l b a c k ( i n t e r f a c e , dumpLLDP ,

ignoreLLDPContent ) , s t o r e =0 , s t o p _ f i l t e r = l l d p S t o p F i l t e r )
32

33 d e f l l d p L i s t e n e r C a l l b a c k ( i n t e r f a c e , dumpLLDP , ignoreLLDPContent ) :
34 d e f p a c k e t H a n d l e r ( p k t ) :
35 g l o b a l l l d p T i m e T r a c k
36 l l d p C o n t e n t s = { "ONOS" : "ONOS D i s c o v e r y " }
37 #LLDP : 0 x88cc , BDDP: 0 x8942
38 i f ( p k t . t y p e == 0 x88cc ) :
39 l l d p T im e = i n t ( round ( t ime . t ime ( ) ) )
40 i f ( l e n ( l l d p T i m e T r a c k ) > 0) :
41 i f ( l l d p T i m e == l l d p T i m e T r a c k [ −1]) :
42 r e t u r n # Th i s i s a s i m p l e way t o t r y t o d e t e c t d u p l i c a t e LLDP

messages b e i n g p i c k e d up by t h e s n i f f e r .
43 l l d p T i m e T r a c k . append ( l l d p T i m e )
44 i f ( ignoreLLDPContent == F a l s e ) :
45 f o r c i n l l d p C o n t e n t s :
46 i f ( l l d p C o n t e n t s [ c ] i n s t r ( p k t ) ) :
47 sdnpwn . p r i n t S u c c e s s ( "LLDP c o n t e n t s matches " + c )
48 e x i t ( 0 )
49 i f ( dumpLLDP == True ) :
50 p r i n t ( p k t )
51 r e t u r n p a c k e t H a n d l e r
52

53 d e f l l d p S t o p F i l t e r ( p k t ) :
54 g l o b a l l l d p T i m e T r a c k
55 i f ( l e n ( l l d p T i m e T r a c k ) >= 6) :
56 r e t u r n True
57 e l s e :
58 r e t u r n F a l s e
59

60 d e f run ( params ) :
61 g l o b a l l l d p T i m e T r a c k
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62

63 l l d p T i m e T r a c k = [ ]
64

65 d e f a u l t G u i P o r t s = { " F l o o d l i g h t & OpenDayLight " : 8080 , " OpenDayLight (
DLUX S t a n d a l o n e ) " : 9000 , " OpenDayLight (DLUX w/ t Kara f ) & ONOS" :
8181}

66 defau l tGuiURLs = { " F l o o d l i g h t " : " / u i / i n d e x . h tml " , " OpenDayLight (DLUX)
" : " / d lux / i n d e x . h tml " , " OpenDayLight ( Hydrogen ) " : " / i n d e x . h tml " , "
ONOS" : " / onos / u i / l o g i n . h tml " }

67 g u i I d e n t i f i e r s = {}
68 o f d p I n t e r v a l s = { " F l o o d l i g h t " : 15 , " OpenDayLight ( L i th ium & Helium ) " :

5 , " OpenDayLight ( Hydrogen ) " : 300 , " Pox ? " : 5 , " Ryu? " : 1 , " Beacon " :
15 , "ONOS" : 3}

69

70

71 i f a c e = None
72 v e r b o s e = F a l s e
73 dumpLLDP = F a l s e
74

75 s i g n a l . s i g n a l ( s i g n a l . SIGINT , s i g n a l _ h a n d l e r ) # Ass ign t h e s i g n a l
h a n d l e r

76

77 dumpLLDP = sdnpwn . checkArg ( [ "−−dump−l l d p " , "−d " ] , params )
78 ignoreLLDPContent = sdnpwn . checkArg ( [ "−−i g n o r e−c o n t e n t " , "−n " ] , params

)
79 v e r b o s e = sdnpwn . checkArg ( [ "−−v e r b o s e " , "−v " ] , params )
80

81 i f ( sdnpwn . checkArg ( [ "−− l l d p " , "− l " ] , params ) ) :
82 # T e s t by o b s e r v i n g LLDP t r a f f i c on an i n t e r f a c e
83 i f a c e = sdnpwn . ge tArg ( [ "−− i f a c e " , "− i " ] , params )
84 i f ( i f a c e i s None ) :
85 sdnpwn . message ( " P l e a s e s p e c i f y an i n t e r f a c e wi th −− i f a c e o p t i o n " ,

sdnpwn .ERROR)
86 r e t u r n
87 sdnpwn . message ( " C o l l e c t i n g 6 LLDP f ra me s . Th i s may t a k e a few

m i n u t e s . . . " , sdnpwn .NORMAL)
88 l l d p L i s t e n ( i f a c e , dumpLLDP , ignoreLLDPContent )
89 sdnpwn . message ( " Got a l l LLDP f r a me s . G e t t i n g mean t ime between

f r a me s . . . " , sdnpwn .NORMAL)
90 t imeBetweenMessages = [ ]
91 t imeBetweenMessages . append ( ( l l d p T i m e T r a c k [ 1 ] − l l d p T i m e T r a c k [ 0 ] ) )
92 t imeBetweenMessages . append ( ( l l d p T i m e T r a c k [ 3 ] − l l d p T i m e T r a c k [ 2 ] ) )
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93 t imeBetweenMessages . append ( ( l l d p T i m e T r a c k [ 5 ] − l l d p T i m e T r a c k [ 4 ] ) )
94

95 meanTimeBetweenMessages = 0
96 f o r i i n t imeBetweenMessages :
97 meanTimeBetweenMessages += i
98 meanTimeBetweenMessages = round ( ( meanTimeBetweenMessages / l e n (

t imeBetweenMessages ) ) )
99

100

101

102 sdnpwn . message ( "Mean t ime between f r a me s i s : " + s t r (
meanTimeBetweenMessages ) , sdnpwn .NORMAL)

103

104 matches = 0
105 f o r k i n o f d p I n t e r v a l s :
106 i f ( ( meanTimeBetweenMessages < ( o f d p I n t e r v a l s [ k ] + ( o f d p I n t e r v a l s [ k

] / 1 0 0 * 5 ) ) ) and ( meanTimeBetweenMessages > ( o f d p I n t e r v a l s [ k ] − (
o f d p I n t e r v a l s [ k ] / 1 0 0 * 5 ) ) ) ) :

107 sdnpwn . message ( "Mean t ime matches " + k , sdnpwn .NORMAL)
108 matches +=1
109 i f ( matches == 0) :
110 sdnpwn . message ( " Could n o t d e t e r m i n e c o n t r o l l e r from LLDP t i m e s . " ,

sdnpwn .NORMAL)
111

112 e l i f ( sdnpwn . checkArg ( [ "−− t a r g e t " , "− t " ] , params ) ) :
113 # T e s t u s i n g a URL
114 t a r g e t = sdnpwn . ge tArg ( [ "−− t a r g e t " , "− t " ] , params )
115 sdnpwn . message ( " T e s t i n g v i s i b i l i t y o f n o r t h b o u n d i n t e r f a c e on h o s t "

+ s t r ( t a r g e t ) , sdnpwn .NORMAL)
116 p o r t s = sdnpwn . ge tArg ( [ "−−p o r t s " , "−p " ] , params )
117 i f ( p o r t s i s None ) :
118 p o r t s = [ ]
119 f o r p i n d e f a u l t G u i P o r t s :
120 p o r t s . append ( d e f a u l t G u i P o r t s [ p ] )
121 e l s e :
122 p o r t s = p o r t s . s p l i t ( " , " )
123

124 sdnpwn . message ( " Enumera t ing p o r t s . . . " , sdnpwn .NORMAL)
125 f o r p i n p o r t s :
126 t r y :
127 conn = h t t p c . HTTPConnection ( t a r g e t , i n t ( p ) )
128 i f ( sdnpwn . checkArg ( [ "−−proxy " , "−x " ] , params ) ) :
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129 conn . s e t T u n n e l ( ( sdnpwn . ge tArg ( [ "−−proxy " , "−x " ] , params ) ) )
130 r e q = conn . r e q u e s t ( "GET" , " / " )
131 sdnpwn . message ( "Made HTTP c o n n e c t i o n t o " + s t r ( t a r g e t ) + " on

p o r t " + s t r ( p ) , sdnpwn . SUCCESS)
132 f o r c i n d e f a u l t G u i P o r t s :
133 i f ( d e f a u l t G u i P o r t s [ c ] == p ) :
134 sdnpwn . message ( " P o r t used by " + s t r ( c ) + " f o r GUI

i n t e r f a c e " , sdnpwn . VERBOSE)
135 sdnpwn . message ( " T e s t i n g GUI URLs f o r p o r t " + s t r ( p ) , sdnpwn .

NORMAL)
136 f o r u i n defau l tGuiURLs :
137 t r y :
138 conn = h t t p c . HTTPConnection ( t a r g e t , i n t ( p ) )
139 conn . r e q u e s t ( "GET" , defau l tGuiURLs [ u ] )
140 r e s = conn . g e t r e s p o n s e ( )
141 r e q S t a t u s = r e s . s t a t u s
142 i f ( r e q S t a t u s >= 200 and r e q S t a t u s < 400) :
143 sdnpwn . message ( " Got " + s t r ( r e q S t a t u s ) + " f o r " +

defau l tGuiURLs [ u ] , sdnpwn . SUCCESS)
144 sdnpwn . message ( "URL a s s o c i a t e d wi th " + u + " GUI

i n t e r f a c e " , sdnpwn . VERBOSE)
145 e l s e :
146 i f ( v e r b o s e == True ) :
147 sdnpwn . message ( " Got " + s t r ( r e q S t a t u s ) + " f o r URL " +

s t r ( u ) , sdnpwn . VERBOSE)
148 e x c e p t E x c e p t i o n as e :
149 i f ( v e r b o s e == True ) :
150 sdnpwn . message ( " E r r o r t e s t i n g URL: " + s t r ( e ) , sdnpwn .

VERBOSE)
151 p r i n t ( " " )
152 e x c e p t E x c e p t i o n as e :
153 i f ( v e r b o s e == True ) :
154 sdnpwn . message ( "No c o n n e c t i o n t o " + s t r ( t a r g e t ) + " on p o r t "

+ s t r ( p ) , sdnpwn . VERBOSE)
155 sdnpwn . message ( s t r ( e ) , sdnpwn . VERBOSE)
156 e l s e :
157 sdnpwn . message ( "No d e t e c t i o n method g i v e n . E x i t i n g . " , sdnpwn .WARNING

)
158 p r i n t ( i n f o ( ) )
159 p r i n t ( usage ( ) )
160 r e t u r n
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A.2 Attack Phase

A.2.1 lldp-replay.py

1 i m p o r t s i g n a l
2 from scapy . a l l i m p o r t *
3

4 i m p o r t modules . sdnpwn_common as sdnpwn
5

6 c l a s s FrameHandler :
7 i f a c e =None
8 o u t F i l e =None
9

10 d e f _ _ i n i t _ _ ( s e l f , i f a c e , o u t F i l e ) :
11 s e l f . i f a c e = i f a c e
12 s e l f . o u t F i l e = o u t F i l e
13

14 d e f h a n d l e r ( s e l f , p k t ) :
15 i f ( p k t . t y p e == 0 x88cc ) : # f rame i s LLDP
16 sdnpwn . message ( " Got LLDP frame . . . " , sdnpwn .NORMAL)
17 wrpcap ( s e l f . o u t F i l e , p k t )
18

19

20 d e f s i g n a l _ h a n d l e r ( s i g n a l , f rame ) :
21 # Handle C t r l +C h e r e
22 p r i n t ( " " )
23 sdnpwn . message ( " S t o p p i n g . . . " , sdnpwn .NORMAL)
24 e x i t ( 0 )
25

26 d e f i n f o ( ) :
27 # D e s c r i p t i o n o f t h e what t h e module i s and what i t does . Th i s f u n c t i o n

s h o u l d r e t u r n a s t r i n g .
28 r e t u r n " Rep lays LLDP t r a f f i c o b s e r v e d a t a g i v e n i n t e r f a c e back o u t

t h e same i n t e r f a c e . "
29

30 d e f usage ( ) :
31 ’ ’ ’
32 How t o use t h e module . Th i s f u n c t i o n s h o u l d r e t u r n a s t r i n g .
33 sdnpwn_common c o n t a i n s f u n c t i o n s t o p r i n t t h e module usage i n a t a b l e .
34 These f u n c t i o n s a r e " addUsage " , " ge tUsage " , and " p r i n t U s a g e " . "

addUsage " and " ge tUsage " a r e shown below .
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35 The p a r a m e t e r s f o r addUsage a r e o p t i o n , o p t i o n d e s c r i p t i o n , and
r e q u i r e d ( True o r F a l s e )

36 ’ ’ ’
37 sdnpwn . addUsage ( "− i | −− i f a c e " , " I n t e r f a c e t o use " , True )
38 sdnpwn . addUsage ( "−c | −−c o u n t " , " Times t o r e p l a y ( D e f a u l t 1 ) " , F a l s e )
39 sdnpwn . addUsage ( "−w | −−c a p t u r e " , " C a p t u r e LLDP frame t o f i l e " , F a l s e )
40 sdnpwn . addUsage ( "−r | −−r e p l a y " , " Replay c a p t u r e d LLDP frame from f i l e

" , F a l s e )
41

42 r e t u r n sdnpwn . ge tUsage ( )
43

44 d e f run ( params ) :
45

46 s i g n a l . s i g n a l ( s i g n a l . SIGINT , s i g n a l _ h a n d l e r ) # Ass ign t h e s i g n a l
h a n d l e r

47

48 i f a c e = sdnpwn . ge tArg ( [ "−− i f a c e " , "− i " ] , params )
49 c o u n t = sdnpwn . ge tArg ( [ "−−c o u n t " , "−c " ] , params , 1 )
50

51 i f ( sdnpwn . checkArg ( [ "−−c a p t u r e " , "−w" ] , params ) ) :
52 o u t F i l e = sdnpwn . ge tArg ( [ "−−c a p t u r e " , "−w" ] , params )
53 f r a m e H a n d l e r = FrameHandler ( i f a c e , o u t F i l e )
54 sdnpwn . message ( " S t a r t i n g l i s t e n e r on i n t e r f a c e " + i f a c e , sdnpwn .

NORMAL)
55 s n i f f ( i f a c e = i f a c e , s t o r e =0 , p rn = f r a m e H a n d l e r . h a n d l e r , c o u n t =1 ,

f i l t e r =" e t h e r p r o t o 0 x88cc " )
56 sdnpwn . message ( "LLDP frame saved t o " + o u t F i l e , sdnpwn . SUCCESS)
57 e l i f ( sdnpwn . checkArg ( [ "−−r e p l a y " , "−r " ] , params ) ) :
58 i n F i l e = sdnpwn . ge tArg ( [ "−−r e p l a y " , "−r " ] , params )
59 p k t = r dp ca p ( i n F i l e )
60 f o r c i n r a n g e ( i n t ( c o u n t ) ) :
61 sendp ( pkt , i f a c e = i f a c e )
62 sdnpwn . message ( " Replayed " + i n F i l e + " " + s t r ( c o u n t ) + " t i m e s " ,

sdnpwn . SUCCESS)



Appendix B

Data Sheets and Specifications

B.1 Cisco 9300 Switch

B.1.1 Data Sheet

The Cisco® Catalyst® 9300 Series switches are Cisco’s lead stackable enterprise switch-
ing platform built for security, IoT, mobility, and cloud. They are the next generation of the
industry’s most widely deployed switching platform. Catalyst 9300 Series switches form
the foundational building block for Software-Defined Access (SD-Access), Cisco’s lead
enterprise architecture. At up to 480 Gbps, they are the industry’s highest-density stacking
bandwidth solution with the most flexible uplink architecture. The Catalyst 9300 Series
is the first optimized platform for high-density Wi-Fi 6 and 802.11ac Wave2. It sets new
maximums for network scale. These switches are also ready for the future, with an x86
CPU architecture and more memory, enabling them to host containers and run third-party
applications and scripts natively within the switch.

The Catalyst 9300 Series is designed for Cisco StackWise® technology, providing flexible
deployment with support for nonstop forwarding with Stateful Switchover (NSF/SSO), for
the most resilient architecture in a stackable (sub-50-ms) solution. The highly resilient
and efficient power architecture features Cisco StackPower®, which delivers high-density
Cisco Universal Power over Ethernet (Cisco UPOE®) and Power over Ethernet Plus (PoE+)
ports. The switches are based on the Cisco Unified Access™ Data Plane 2.0 (UADP) 2.0
architecture which not only protects your investment but also allows a larger scale and higher
throughput. A modern operating system, Cisco IOS® XE with programmability offers
advanced security capabilities and Internet of Things (IoT) convergence.
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B.1.2 The Fondation of Software-Defined access

Advanced persistent security threats. The exponential growth of Internet of Things (IoT)
devices. Mobility everywhere. Cloud adoption. All of these require a network fabric that
integrates advanced hardware and software innovations to automate, secure, and simplify
customer networks. The goal of this network fabric is to enable customer revenue growth by
accelerating the rollout of business services.

The Cisco Digital Network Architecture (Cisco DNA) with Software-Defined Access
(SD-Access) is the network fabric that powers business. It is an open and extensible, software-
driven architecture that accelerates and simplifies your enterprise network operations. The
programmable architecture frees your IT staff from time-consuming, repetitive network
configuration tasks so they can focus instead on innovation that positively transforms your
business. SD-Access enables policy-based automation from edge to cloud with foundational
capabilities.

B.1.3 Built for security, IoT, mobility, and cloud

The Cisco® Catalyst® 9300 Series switches are Cisco’s lead stackable enterprise switch-
ing platform built for security, IoT, mobility, and cloud. They are the next generation of the
industry’s most widely deployed switching platform. Catalyst 9300 Series switches form
the foundational building block for Software-Defined Access (SD-Access), Cisco’s lead
enterprise architecture. At up to 480 Gbps, they are the industry’s highest-density stacking
bandwidth solution with the most flexible uplink architecture. The Catalyst 9300 Series
is the first optimized platform for high-density Wi-Fi 6 and 802.11ac Wave2. It sets new
maximums for network scale. These switches are also ready for the future, with an x86
CPU architecture and more memory, enabling them to host containers and run third-party
applications and scripts natively within the switch.

The Catalyst 9300 Series is designed for Cisco StackWise® technology, providing flexible
deployment with support for nonstop forwarding with Stateful Switchover (NSF/SSO), for
the most resilient architecture in a stackable (sub-50-ms) solution. The highly resilient
and efficient power architecture features Cisco StackPower®, which delivers high-density
Cisco Universal Power over Ethernet (Cisco UPOE®) and Power over Ethernet Plus (PoE+)
ports. The switches are based on the Cisco Unified Access™ Data Plane 2.0 (UADP) 2.0
architecture which not only protects your investment but also allows a larger scale and higher
throughput. A modern operating system, Cisco IOS® XE with programmability offers
advanced security capabilities and Internet of Things (IoT) convergence.



B.2 OpenFlow Port Specifications 80

B.2 OpenFlow Port Specifications

B.2.1 Required Ports

OpenFlow ports are the network interfaces for passing packets between OpenFlow
processing and the rest of the network. OpenFlow switches connect logically to each other
via their OpenFlow ports, a packet can be forwarded from one OpenFlow switch to another
OpenFlow switch only via an output OpenFlow port on the first switch and an ingress
OpenFlow port on the second switch.

An OpenFlow switch makes a number of OpenFlow ports available for OpenFlow
processing. The set of OpenFlow ports may not be identical to the set of network interfaces
provided by the switch hardware, some network interfaces may be disabled for OpenFlow,
and the OpenFlow switch may define additional OpenFlow ports.

OpenFlow packets are received on an ingress port and processed by the OpenFlow
pipeline which may forward them to an output port. The packet ingress port is a property of
the packet throughout the OpenFlow pipeline and represents the OpenFlow port on which the
packet was received into the OpenFlow switch. The ingress port can be used when matching
packets. The Open- Flow pipeline can decide to send the packet on an output port using the
output action, which defines how the packet goes back to the network.

An OpenFlow switch must support three types of OpenFlow ports: physical ports, logical
ports and reserved ports.

B.2.2 Physical Ports

The OpenFlow physical ports are switch defined ports that correspond to a hardware
interface of the switch. For example, on an Ethernet switch, physical ports map one-to-one
to the Ethernet interfaces.

In some deployments, the OpenFlow switch may be virtualised over the switch hardware.
In those cases, an OpenFlow physical port may represent a virtual slice of the corresponding
hardware interface of the switch.

B.2.3 Logical Ports

The OpenFlow logical ports are switch defined ports that don’t correspond directly to
a hardware interface of the switch. Logical ports are higher level abstractions that may be
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defined in the switch using non-OpenFlow methods (e.g. link aggregation groups, tunnels,
loopback interfaces).

Logical ports may include packet encapsulation and may map to various physical ports.
The processing done by the logical port is implementation dependent and must be transparent
to OpenFlow processing, and those ports must interact with OpenFlow processing like
OpenFlow physical ports.

The only differences between physical ports and logical ports is that a packet associated
with a logical port may have an extra pipeline field called Tunnel-ID associated with it and
when a packet received on a logical port is sent to the controller, both its logical port and its
underlying physical port are reported to the controller.

B.2.4 Reserved Ports

The OpenFlow reserved ports are defined by this specification. They specify generic
forwarding actions such as sending to the controller, flooding, or forwarding using non-
OpenFlow methods, such as “normal” switch processing.

A switch is not required to support all reserved ports, just those marked “Required”

below.

• Required: ALL: Represents all ports the switch can use for forwarding a specific
packet. Can be used only as an output port. In that case a copy of the packet starts
egress processing on all standard ports, excluding the packet ingress port and ports that
are configured OFPPC_NO_FWD.

• Required: CONTROLLER: Represents the control channel with the OpenFlow con-
trollers. Can be used as an ingress port or as an output port. When used as an output
port, encapsulates the packet in a packet-in message and sends it using the OpenFlow
switch protocol. When used as an ingress port, this identifies a packet originating from
the controller.

• Required: TABLE: Represents the start of the OpenFlow pipeline. This port is only
valid in an output action in the list of actions of a packet-out message, and submits the
packet to the first flow table so that the packet can be processed through the regular
OpenFlow pipeline.

• Required: IN PORT: Represents the packet ingress port. Can be used only as an
output port, sends the packet out through its ingress port.
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• Required: ANY: Special value used in some OpenFlow requests when no port is
specified (i.e. port is wildcarded). Some OpenFlow requests contain a reference to a
specific port that the request only applies to. Using ANY as the port number in these
requests allows that request instance to apply to any and all ports. Can neither be used
as an ingress port nor as an output port.

• Required: UNSET: Special value to specify that the output port has not been set in the
Action-Set. Only used when trying to match the output port in the action set using the
OXM_OF_ACTSET_OUTPUT match field. Can neither be used as an ingress port nor
as an output port.

• Optional: LOCAL: Represents the switch’s local networking stack and its manage-
ment stack. Can be used as an ingress port or as an output port. The local port enables
remote entities to interact with the switch and its network services via the OpenFlow
network, rather than via a separate control network. With an appropriate set of flow
entries, it can be used to implement an in-band controller connection (this is outside
the scope of this specification).

• Optional: NORMAL: Represents forwarding using the traditional non-OpenFlow
pipeline of the switch. Can be used only as an output port and processes the packet
using the normal pipeline. In general will bridge or route the packet, however the
actual result is implementation dependent. If the switch cannot forward packets from
the OpenFlow pipeline to the normal pipeline, it must indicate that it does not support
this action.

• Optional: FLOOD: Represents flooding using the traditional non-OpenFlow pipeline
of the switch. Can be used only as an output port, actual result is implementation
dependent. In general will send the packet out all standard ports, but not to the ingress
port, nor ports that are in OFPPS_BLOCKED state. The switch may also use the
packet VLAN ID or other criteria to select which ports to use for flooding.
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