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ABSTRACT

Simulations involving processes at very different time scales can
be so slow to converge that starting in one state and waiting for a
representative sample of the state space to be explored is not fea-
sible. Under these circumstances we need to find a different way
to explore a representative range of states in order to obtain valid
results in a reasonable time. Internet traffic is an example of this
situation. This is due to the fact that it is made up of clearly iden-
tifiable flows and a significant proportion of overall bytes occur
in long-lived flows, whose overall duration will in many cases be
longer than can be simulated.

In this paper we develop a method which constructs a “randomly
selected state” of Internet traffic from scratch — snapshot simula-
tion. The technique is applied to a realistic model of Internet traffic
and is used to confirm theoretical results for the number of active
flows in a router which adopts either Fair Queueing or Shortest
Job First as its queueing discipline. Snapshot simulations are also
compared to conventional simulations of the same systems and it is
shown that although convergence to the same results appears to be
occurring, satisfactory accuracy cannot be obtained in a reason-
able time by the conventional simulations. Simulation of a prac-
tical high-performance queue discipline, SJF-n, in which only the
largest n flows at any time are de-prioritized, is also simulated and
shown to give good performance for quite low n.

1. INTRODUCTION

An important measure of performance in the Internet is the du-
ration of time between the initiation of a request and the complete
delivery of a response. This is a complex event, including a num-
ber of related components, and it is therefore appropriate to break
it into simpler components. It would be a good step if we merely
knew the distribution of the time between the initiation of a flow,
and its completed delivery. This measure of Internet performance
is known as flow completion time, and it has been observed that
analytic formulae for flow completion time distributions are not
presently available [1].

When the queue discipline is Fair Queueing (FQ), flow comple-
tion times for shorter flows are largely determined by the number of
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active longer flows present during the lifetime of a flow. For other
queue disciplines, also, a complete knowledge of the distribution
of the number of active flows gives us critical insight into the be-
haviour of flow completion times. For this reason we concentrate,
in this paper, on simulation techniques which allow us to estimate
the distribution of the number of active flows.

Analytic modeling and simulation of Internet traffic behaviour
currently focusses on scenarios because long-range dependence of
traffic means that accurate simulation of a realistic traffic model
requires simulation of processes at very different time scales. Sim-
ulation of processes at dramatically different time scales is infeasi-
ble unless some technique for avoiding the massive complexity of
simulating the short time-scale processes for the entire duration of
a process occurring at the long time scale is used.

To address this problem of having to simulate a mountain of de-
tail for the considerable duration of the important long flows, the
technique of Time-stepped hybrid simulation was introduced in [2].
In this approach, details in the simulation of the TCP protocol are
appropriately reduced, and by introducing chunks of time, simula-
tion of individual packets is also largely avoided. The approach of
the present paper is quite different in that the level of detail simu-
lated varies depending upon the arrival time of a flow. Although the
simulations presented in this paper are predominately at a higher
level of detail, so that individual packets are not simulated, such
details could in principal be included for some packets, the ones
most relevant to the moment under observation.

We confine out attention in this paper to the queueing disciplines
Fair Queueing (FQ) [3], Shortest Job First (SJF) [4] and the dis-
cipline SJF-n which gives low priority to the n largest flows, and
treats the remainder according to FQ. These disciplines are defined
for arbitrary flows (not necessarily subdivided into packets) com-
peting for the resources of an outgoing link at a router. If packets
are taken into account, FQ must be implemented by a round-robin
service quantum for each competing flow, and likewise SJF can-
not not allow delivery of a packet from a flow to be interrupted,
even when a shorter flow arrives. Even this model of queueing
in a router is an oversimplification since the process of allocating
resources between flows in a router relies on active queue man-
agement (AQM) in the router and the operation of the TCP and
UDP protocols in individual hosts. However, at this stage, incor-
porating these details has not been undertaken. The fact that queue
disciplines approximating FQ and SJF-n can be implemented by an
appropriate AQM is discussed elsewhere (in particular, see [4]).

In a wide range of situations SJF, or the closely related Shortest
Remaining Processing Time First (SRPT) [5], have been shown
to be optimal. So results for SJF can show us how much worse
than optimal FQ is. The discipline SJF-n on the other hand is a
discipline which we shall see performs nearly as well as the optimal



SJF discipline and yet is practical to implement (as investigated in
[6]); this discipline is difficult to analyze except by simulation. It
is explained below, also, how systems with other queue disciplines
can be simulated by the same technique.

The behavior of flows in the Internet depends upon the traffic
conditions that they encounter in a complex manner. For a good
understanding of the performance experienced by flows we need a
model which includes sufficient details of this complex interaction
between flows, and the resources they are accessing. At one ex-
treme, we have the situation where all flows sharing a certain link
are simultaneously bottlenecked by this resource (the fully bottle-
necked case). At another extreme, the flows appearing at this cer-
tain link are all bottlenecked at other locations (the uncongested
case — since there is no congestion at the router being observed). A
realistic model allows for both cases simultaneously: flows which
are bottlenecked here, and therefore compete with other for the ca-
pacity of the link, and flows which are bottlenecked elsewhere, and
therefore behave in a manner independent from the other flows. All
the models simulated in this paper are of the fully bottlenecked va-
riety — all flows are congested at the router under study — however
cases where some or all of the flows experience congestion else-
where can readily be simulated by the same methods.

Up to now, analytic solutions have been developed only for sep-
arate models of the uncongested case [7] and the fully bottlenecked
case which can be analysed as a process sharing queue using the
invariance result obtained in [8], which is derived also in [9]. The
simulation of the uncongested case presented in [7] makes use of
a technique related to snapshot simulation in order to enable satis-
factory results in reasonable simulation times. Conventional simu-
lations were started in a carefully selected variety of initial states.
The initial states varied with respect to the number of “long flows”
present, where a “long flow” was defined to be a flow which per-
sists for the entire duration of the simulation. The simulations in
[7] were still very long and nevertheless could provide confidence
in regard to accuracy for a limited range of system parameters.

Naive simulations, which do not make use of any importance
sampling technique, have also been used but without providing any
confidence as to their accuracy. It is also common practise to sim-
ulate scenarios, in which some specific configuration of long flows
is assumed to provide the background for other shorter flows which
compete for resources, e.g. with NS2 [10]. Such simulations can
make no claim to characterizing typical characteristic behaviour of
the Internet.

The simulations carried out in this paper are in accordance with
an overall statistical model of flows (as presented in Subsection
2.1) but are much faster than traditional simulations (comparisons
are presented in Section 4). There is no inherent restriction on the
level of detail which could be included. Although the simulations
here include no more than basic details, at the heart of the snap-
shot simulation method lies a conventional simulation which can
include arbitrary details.

The difficulty of derivation of analytical results, for either the un-
congested or the fully bottlenecked cases, and the approximations
required to justify their derivation demand that their validity and
accuracy be checked by simulation. In addition, the more practi-
cal case where some flows are uncongested and others are bottle-
necked, which at present has not been treated analytically, can be
tackled by the simulations presented here.

The approach to simulation which we use here is to estimate the
stationary distribution by sampling a stationary process at a random
moment in time — a snapshot. This method of simulation proceeds
through exploration of the range of possible events affecting the
present moment in time, from the more significant, to the less sig-

nificant.

The reason this approach is enormously faster is that although
the simulation takes into account events from the distant past, it
does not simulate unnecessary fine details from the distant past.
Very short flows (of which there are vastly more than long flows)
are simulated in full detail only in the very recent past, short flows
only in the recent past, and so on. Of events from the distant past,
only the very longest flows are simulated in full detail, and there
are only a very small number of these occurring.

In Section 2, the model of Internet traffic adopted in this paper is
set out. In Section 3, the simulation algorithm is described in detail.
In Section 4, results obtained using the simulation method of this
paper are compared with analytical results for the same models,
and concluding remarks are presented in Section 5.

2. SYSTEM MODEL
2.1 Internet Traffic Model

Internet traffic has been found to be long-range dependent and
self-similar [11]. A simple explanation of this which is widely ac-
cepted is that Internet traffic is made up of flows and the byte counts
of these flows have a heavy tailed distribution, such as the Pareto
distribution [12, 13, 14].

It is common to assume that the arrival times of flows forms
a Poisson process, i.e. a process of arrival times which is com-
pletely uncorrelated. Measurements have shown that this is not
the case, however it has been shown in [15] that even if flow ar-
rivals are correlated, this effect on overall characteristics of traffic
is secondary by comparison with the heavy-tailed character of the
individual flows. A Poisson arrival process of heavy-tailed flows
remains, therefore, a satisfactory basic model of Internet traffic.

If © is Pareto distributed:

x\ 7Y >
Pr(t>x) = () x5 (1)
1, otherwise.
and the corresponding density is
dPr(x<r§x+dx): %(%) , x287. @)
dx 0, otherwise.

A typical choice for parameters is Y= 1.1, 8 = 1. With these
settings, for example, 50% of flows will have their size less than or
equal to 0.5 71 =277,

Different ways to measure the size of a flow, f, include: fotal
bytes (1(f)), duration (d(f)), and rate (r(f)). Each of these is
relevant in certain contexts. In the simple case where the rate is
fixed, they are related by

d=r/r.

Generally we shall assume that the Pareto distribution applies to the
size of flows. The distribution of the rate at which a flow is served
cannot be specified as a descriptive system parameter because in
normal operation it will depend upon the conditions which apply at
the time.

However, it is more reasonable to suppose that with each flow
is associated a certain maximum rate, R(f), above which this flow
cannot be forced to operate, even in an empty network. If we spec-
ify an a-priori distribution, e.g. an exponential distribution, for
R(f), the consequential value for r(f), at any point in time, may
be deduced from the conditions which apply at the time.

If we aggregate statistics of network observations in proportion
to the affected bytes instead of according to the affected flows we



discover an implicit Pareto distribution with a much heavier tail.
Let D denote the length of a flow containing a byfe chosen at ran-
dom. Then
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1, otherwise.

which is another Pareto distribution but with shape parameter y— 1
now instead of y. As a consequence, a high proportion of bytes are
transported in a very small proportion of flows. Denote by ¢, the
length of a flow such that 20% of all bytes are in larger flows. Then
¢; =519 =9765625. From (1) the proportion of flows larger than
this is 9765625~ 11 &~ 0.00000002 = 0.000002%. So 0.000002%
of flows carry 20% of the bytes. A similar calculation shows that
10~2% of flows contain 10% of all bytes. In general p proportion
of bytes are carried in

Prop, = p7'1 @)

of the largest flows. The feature that a small number of large flows
contain a remarkably large proportion of bytes is well established
[16, 17].

2.2 Processing Model

Denote the size of the flow, f, by t(f). In the FQ server, the
capacity of the server is shared equally among all flows currently
active at the server. In the SJF case, flows are served strictly in order
of priority determined by t(f), shorter flows ahead of longer ones,
pre-empting any longer flows which are active when they arrive.
In the SJF-n case, when there are fewer than n flows present, the
discipline is identical to SJE. When more than n flows are present,
the flows shorter than the n longest are given equal access to the
server in the same manner as FQ, but the long flows receive no
service.

The system utilization due to flows shorter than T is denoted by

p(t), so, using (2),
ch (DG e
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and the overall processor utilization is denoted simply by p = p(e0) =

AYO
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3. THE SIMULATION TECHNIQUE

The simulation proceeds by repeatedly simulating instantaneous
snapshots (states) at a certain moment in time, which, since the ori-
gin of our time scale is arbitrary, we take to be time 0. Each such
simulation is an independent, typical, view of the state of the sys-
tem being simulated. Each snapshot is simulated, in turn, by using
the observation that the flows arriving at a router in the Internet
form a two dimensional Poisson process, where one dimension is
the conventional dimension of time-of-arrival, and the other dimen-
sion is flow size. Whereas a conventional simulation exploits the
Poisson property of the flow arrival instants, the simulation algo-
rithm presented here is based, instead, on the independence of the
arrivals of flows of different sizes.

This approach of generating flows in increasing order of their
size, rather than increasing order of arrival is only used to generate
the flows. (The flows can just as easily be generated in decreasing

p(t) =

order of size — this makes no difference to subsequent processing
when the discipline is FQ.) These flows are then stored in a list in
order of arrival. Once all flows have been generated and stored,
a conventional simulation, in normal time order, takes place. All
arrivals and departures need to be simulated, and when departures
occur, if the discipline is FQ, the remaining processing time asso-
ciated with all the flows which are currently sharing the outgoing
link is updated. In the case of the SJF discipline we can take advan-
tage of the fact that flows are generated in increasing order of size
to reduce the simulation stage to a triviality. By the time all flows
have been generated, it is already clear how many flows are will be
active at time 0. The SJF-n discpline, on the other hand, is a little
more complicated than FQ, and it is necessary to maintain a list of
currently active flows, in order of their size, during the simulation.
This is obviously necessary since the selection of which flows are
served depends on the relative size of the other flows present.

Any simulation procedure may be placed after the flow gener-
ation stage and there are no inherent limitations on the range of
statistics which can be collected during this simulation.

3.1 Simulation in order of Size

The flows form a non-homogeneous point process in the two-
dimensional space spanned by time, on one axis, and flow size, on
the other. We can therefore generate flows in increasing order of
size and decide on the arrival time after choosing the size. (Or,
we could subdivide the space spanned by time of arrival and size
of flow in a different way, and generate flows in an order different
from time of arrival and also different from size.) Let us suppose,
to be more specific, that our simulation is be confined to the period
of time (—7,0). With probability 1 no two flows will have exactly
the same length. We will only consider flows which arrive in the
interval (—7,0) . In this case, the expected number of flows with

size in the interval (T,c0) will be AT (%)ﬂ, in accordance with (1),
to give the correct weight for this range of flow sizes.

Here is an inefficient and slightly inaccurate method to simulate
these flows in order of size. Choose a small number, A , suffi-
ciently small that the probability of two flows arriving both with
lengths in the interval (t,T+ A) is very small, for any T > 8, and
also choose a large integer, K, sufficiently large that the probabil-
ity of a flow larger than KA arriving in the interval (—T,0) is very
small. Now, for each k = 1,. .., K, choose a Bernoulli random vari-

=Y =Y
able with probability of 1 given by AT ((%) - (%)

to determine whether a flow of length in the interval (kA, (k+1)A)
occurs or not. For each of these flows, assign its length to be a
number in the interval (kA, (k+ 1)A) and select a pseudo-random
number uniformly distributed on the interval (—T',0) as its arrival
time. For sufficiently small A and sufficiently large K this method
will simulate the flow sizes and arrival times accurately.

A faster and completely accurate simulation method can easily
be identified. Instead of subdividing the flow axis into small inter-
vals, we can simulate the random intervals between the successive
lengths of the flows which occur, in the same way that we simu-
late a Poisson processes on the time axis by simulating inter-arrival
times. The non-homogeneity of the Poisson process of flow sizes
can be taken into account as follows. First define the monotonic
function ¥ : 1) — Y = (1) by

-
w(t) = E(#{flows of length < t}) = AT (%) NG)
Suppose {T1,...,T,} is the set of flow sizes which occur in the

interval (—7,0). This is a non-homogeneous Poisson process on
(0,0). Now consider the set of points {y; = y(11),...,¥x =



y(1tk)} . Let us show that this is a homogeneous Poisson process
with intensity 1 on (0,AT). Denote the inverse of the function y by
0, i.e. it is the unique function such that y(¢(x)) = x for all x > 0.

To prove that {y,...,¥g} is a homogeneous Poisson process
with intensity 1 it suffices to show that: (a) the number of ys in one
interval is independent from the number in any disjoint interval; (b)
the expected number in an interval of length A is A.

Part (a) follows because the number of flows with sizes in one
interval is independent from the number with sizes in a disjoint
interval — and since W is monotonic two disjoint intervals of flow
sizes are mapped to two disjoint intervals of y values ; to check (b)
consider the expected number occurring in an infinitesimal interval
of sizes, e.g. (u,u+du). It is sufficient to confirm (b) on infinitesi-

mal intervals. Let T= ¢(u) and dt = %Ef)du sodu= d"é—f)dt. The
expected number of flows in the interval (t,T+ d7) is (by the defi-
nition of () as the expected number of flows in the interval (§,7))
y(t+dt)—y(t)) =u+ d“é—(:)dr—u =u+du—u=du,i.e. the ex-
pected number of ’s in the interval (u,u + du) is du, as we wished
to show. This shows that the process {y,...,yx} is Poisson, with
rate 1, on (0,AT).

Having established that the ys are Poisson with intensity 1 on
(0,AT), we now switch our point of view and simulate the s as a
way to generate the flow lengths. Since the ys and the flow lengths
are related to each other by an invertible mapping, if one of them
has the desired joint distribution, so does the other. When we simu-
late the ys, we can generate the flow lengths by using the transfor-
mation ¢, the inverse of the transformation which maps from flow
lengths to ys.

Since it is a homogeneous Poisson process, the y sequence can
be generated by drawing a sequence of exponential random num-
bers, &1,..., Exu 1, with mean 1, such that

k
wie=Y &, k=1, K+1,
j=1

and Vi < AT < YK+1-

We then calculate a corresponding sequence of flow lengths by
the rule T, = ¢(Wy); these must then have the same joint distribution
as the lengths of the flows which arrive in (—T7,0).

Next we will consider how to repeat this argument, in a slightly
more complicated form, in order to derive a faster scheme for gen-
erating flow sizes with the correct joint distribution.

The majority of flows in this simulation will be very short and
will occur at times well before 0. Since these flows will have min-
imal impact on the state of the simulation at time 0, a simple tech-
nique to speed up the simulation will be to skip the details of any
flows which will terminate well before 0, taking them into account
instead merely by their impact on the rate of service of the longer
flows. The statistics we aim to collect are all based only on the
presence or otherwise of flows at time 0, so it is not necessary to
accurately simulate details which have minimal effect on the flow
state at that time.

3.2 How to Generate Fewer Flows

The selection of the length of flows is achieved using a general-
ization of the procedure outlined in the previous subsection. Rather
than justify this generalization, let us simply describe the procedure
and prove that the generated process of flows has the correct statis-
tics subsequently.

The procedure begins by selecting pseudo-random negative ex-
ponentially distributed random numbers, &1, ..., k.1, with mean
equal to 1, stopping as soon as the sum of these numbers exceeds E.
The formula for E will be given shortly. We then set y; = Z’j‘-zl &,

k=1,...,K+1, and set 7, = ¢(y;), k = 1,...,K — these are the
flow lengths — with ¢ = qFl, in which w is the function

y(t) = E (#{flows of length < 1}). (7)

This procedure appears to be identical to the procedure intro-
duced in Subsection 3.1. However in equation (7) no mention is
made of when the flows arrive. Previously flows were constrained
only to arrive in the interval (—7,0). Now we change this assump-
tion to something a little more interesting.

To speed up our simulations dramatically, instead of simulating
all the flows which arrive in the interval (—7',0) , for some fixed T',
we now simulate only flows arriving in the interval (—d(t),0), in
which d (1) is a linear function of T, the length of the flow. The func-
tion d will be chosen larger than the duration of the flow, but suffi-
ciently close to it to significantly reduce the effort expended simu-
lating short flows which complete well before time 0 and therefore
have minimal impact on the state at time 0. With this in mind, we
chose d(1) = (l‘fig)C’ in which W here is a parameter which allows
us to control the error due to not simulating shorter flows. The min-
imum value we can sensibly use for W is 1 — with this value most
flows which will still be alive at time 0 will be simulated; larger
values of W should at least be tried. The largest value we have used
in the simulations reported here is 1000.

Having chosen which flows will be simulated, let us now evalu-
ate (7):

y(t) = /;%((g)i%ld(u)du
TAY fu\ Y- u
- /a SY(S) ' 1(1V—Vp)cd”
A TruN -~
- (1jvg)c/g (S) du
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The expected number of flows is therefore
YW
(1=p)C(y—1)

and the function ¢, the inverse of y, needed to generate flow lengths
from the random numbers yy, is

1—p)C(y— )y
( p}isgv )w> T (10)

E=y(=) = ®

o) =5(1-

3.3 The Simulation Algorithm

The simulation algorithm is shown in Algorithm 1. An imple-
mentation of this algorithm in the C programming language, with
extensive testing and debugging facilities, has been written, tested
and validated. The code may be viewed in [18].

The argument given above, in Subsection 3.1, to show that the
procedure given there for generating flows does so according to
the correct joint distribution could be repeated here, with minor
adjustments, to show that the simulation algorithm generates flow
sizes according to the correct distribution. However, here is a dif-
ferent argument which shows the same thing: the ys generated in
this algorithm form a Poisson point process on the interval (0,E),
where E is given in (9). By a well known result characterizing
Poisson processes, the number of s is Poisson distributed, with
mean E, and the individual ys, when their order is ignored, have
a uniform distribution on (0,E). Let y; = W /E, k= 1,... K.
These are uniformly distributed on [0, 1]. Define ¢(u) = ¢(Eu) and



Algorithm 1 The Snapshot Simulation Algorithm

1: N =1000 {Number of snapshots in total }

2: fori—0;i <N;i«—i+1do

3:  ‘E < E(number of additional flows)

4 k—1

5:  for y; <« exprand(1); Wy < E; W < Yi_1 +exprand(1) do
6 T < O(Wr)

7 de—wr/(C(1-p))

8 Choose arrival time, o < uniformrand(—d,0)

9 k—k+1

End of construction of a simulation configuration
10:  Calculate number of active flows at time 0
11:  Accumulate results (e.g. histogram of number of active
flows)
End of simulation

V(x) = W(x)/E, so § is the inverse of the function . Then, if o
is a randomly chosen Vy,

P(Wo <u)=u an

S0
~ ~ X

PRI <0 =0 =9 =1-(3) . a2

which is to say, the numbers generated by applying the mapping 5
to the s will have a Pareto distribution with shape parameter y— 1
and minimum size §. This implies that the flow lengths generated
by Algorithm 1 will also have this distribution, as desired.

The reason these flow lengths have a Pareto distribution with
shape parameter y— 1 rather than with shape parameter v is that
we only generate the flows of size T which arrive in the interval
(—d(7),0). The density of the generated flow lengths has to be
weighted by d(1) or, in effect, by length, leading to the change of
shape parameter. A plot of the sample distribution of flow sizes
generated by Algorithm 1, gathered from a run of the implemented
algorithm, is shown in Figure 4.

3.4 Adjustment of Long Flows to Compensate
for Missing Short Flows

According to the plan outlined above, at each point in the simu-
lation, e.g. f, a range (J,k;) of shorter flow sizes are not simulated
(in detail), but instead are simulated merely changing the service
rate of the longer flows. Since flows of length T have arrival times
confined to the interval (—d(t),0),

(L—p)Ct
v

In order to match the original system as closely as possible it is
desirable that the effective load at any point in the simulation is
unchanged. We can do this by adding extra bytes to flows to com-
pensate for the missing short flows. The utilization due to these
flows shorter than k; is p(x;). The effect of these flows, when they
are 1present, is to slow down processing of other flows by the factor

T=p()" Hence, the extra bytes we should add to a flow of length ©

which arrives at time —¢ should be

=d '(—1)= (13)

p(ki)T
T —_—.
nt) 1—p(x)
The effect of adding these extra bytes is that flows arriving at
time —t are lengthened by the factor %, which is the same

as the effect which would have been caused by the now missing
shorter flows.

3.5 Simulation of more complex disciplines

The work presented here confirms the accuracy and efficiency
of the snapshot simulation technique for the two disciplines SJF
and FQ. Other queueing disciplines can, however, readily be incor-
porated into the simulation technique. The primary difference be-
tween a snapshot simulation and a conventional simulation is that
in a snapshot simulation the selection of events to be simulated is
based on the arrival time and size of the flows in question, whereas
in a conventional simulation all flows which arrive in a certain inter-
val of time are simulated. There is nothing obvious in the snapshot
approach which prevents any model at all from being successfully
simulated. The only complication is that flows which are absent (by
choice) must be simulated by their aggregate impact on the longer
flows which exist at the time.

In the disciplines which have been simulated in this paper, SJF
and FQ, we have simulated the missing flows by adding extra bytes
to the longer flows. The reasoning for this approach is that it en-
sures that the load of the model is consistent with the real system.
It also ensures that the load due to flows in a specified interval of
sizes (assuming the interval of sizes is above the threshold where
flows are included) is consistent with the original model.

This approach works with other disciplines as well. One could
create an artificial discipline which could not be satisfactorily simu-
lated by this technique — for example, a discipline which artificially
selected flows of certain sizes for special preferential, or prejudi-
cial, treatment. However, until such disciplines arise for reasons
other than merely to challenge our modeling assumptions, it seems
safe to adopt the extra bytes philosophy for modeling the missing
short flows.

For example, if we wished to take a snapshot approach to con-
ducting NS2 simulations, we could select the flows to simulate us-
ing the snapshot approach, then add extra bytes to flows in accor-
dance with their arrival times, to compensate for the missing shorter
flows, and then submit the configuration to NS2 for simulation.

4. VALIDATION AND COMPARISON WITH
ANALYSIS

The simulation software includes extensive internal validation
tests, which can be turned off to speed up simulations once testing
is complete. These tests mainly take the form of checks that bytes
in arriving flows are fully represented in all stages of the simulation.
The range of tests of this form is sufficient to give confidence that
the simulation code is free from significant errors.

In addition, several approaches to validating the simulations by
comparing the results generated to predictions generated indepen-
dently have been undertaken: (a) we show that the generated flow
lengths have the desired distribution; (b) we show that as W — co,
the simulations converge to a limit; (c) we compare the results
of our simulations with conventional simulations; (d) we compare
with analytical results for models which have them; and, finally,
(e) we can check that the simulation results converge to a limit as
Y — 1. These different validation methods have been applied to
both the FQ and the SJF queueing disciplines. All of these ap-
proaches have been taken, and in some cases combinations of these
approaches. Space is not available for showing all of these results.
For more details, see [19].

Conventional simulations of FQ and SJF systems of lengths 1,000
seconds, 10,000 seconds and 100,000 seconds are shown in Figure
1. Since A = 66 flows per second were generated in all these sim-
ulations, the longest of these simulations comprised approximately
6.6 million flows. It took approximately 1 1/2 hours of computer
time to complete. The convergence to theoretical results — a geo-
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Figure 1: Convergence of conventional simulations to theoreti-
cal results. Parameters: y= 1.1, A = 66, 6 = 1, C = 1000.
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Figure 2: Activity Levels under FQ, for W = 1, 10, 100, 1000,
and comparison with theory. Parameters: y=1.1,A=66,5=1,
C = 1000.

metric distribution for the FQ discipline [8, 9] and a Poisson dis-
tribution for the SJF discipline [20] — is visible, but so slow that
satisfactory results will not be obtainable for the model under con-
sideration. This confirms a major contention of this paper, that con-
ventional simulations cannot be used to estimate the performance
of these models.

Convergence of snapshot simulation results to the theoretical re-
sult expected, as W — oo, is shown in Figure 2. Only results for
the FQ discipline are shown. It appears that satisfactory conver-
gence has occurred by the time W = 10. The same observation
applied to the SJF case. The fact that the results when W = 100 ap-
pear to be less accurate than the W = 10 runs is probably due to the
fact that the lengths of these simulations were shorter. The lengths
of the simulations shown in Figure 2 were as follows: W = 1:
1,000,000 runs; W = 10: 1,000,000 runs; and W = 100: 100,000
runs.

The SJF and FQ simulation results have been compared to ana-
Iytical results for these systems as presented in [20] and the results
are shown in Figure 3. The simulations required 6 minutes of pro-
cessing time (for both at once). Conventional simulations of the
same systems requiring more than 1 1/2 hours each, but still not
providing satisfactory accuracy, are presented in Figure 1.

The flow lengths generated in some relatively short simulation
runs (approximately 100 flows in total), were collected and their
sample complementary distribution functions are shown in Figure
4. These are consistent with the expected Pareto distribution with
parameter 0.1.

As a demonstration of the application of the snapshot simulation
technique to queueing disciplines other than FQ and SJF, simula-
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Figure 3: Activity Levels under SJF and FQ, as calculated by
snapshot simulations and by analysis. Parameters: y=1.1,A =
66,0 =1,C = 1000, W = 100.
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Figure 4: Sample Complementary Flow Distributions from
short simulations. Parameters: y= 1.1, A =66, =1, C = 1000.

tions of SJF-3, SJF-5, and SJF-10 were implemented and run. The
SJF-n discipline serves the n largest flows in SJF order and the
remaining flows are given priority over these flows and served in
FQ order amongst themselves. The results are shown in Figure 5.
These results show that in this particular case most of the benefits
of the impractical SJF discipline can be achieved by discriminating
against only the 3 longest flows!

5. CONCLUDING REMARKS

A new approach to simulating Internet traffic has been outlined
and some experiments described. This approach is very fast, and
converges to the stationary behavior of the system in a fraction
of the time a conventional simulation would take. The reason for
this is that the real system contains processes which operate at ex-
tremely diverse time-scales; the technique we use focuses on the
impact of flows at a specific point in time; during periods of time far
from the main focus, full detail of how shorter flows affect longer
flows is not simulated. Each simulation experiment is very fast and
can therefore easily be repeated many times. By this method, very
accurate results may be obtained.

In the experiments described here only minimal details of Inter-
net operations have been incorporated. However, there are no limi-
tations on how much detail can be added to the simulation without
fundamentally changing the algorithm. This will allow us to fur-
ther investigate the significance of these details. In this paper, the
simulations have been used to validated a mathematical model of
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Figure 5: Simulations of SJF-n compared to SJF and FQ. Pa-
rameters: Y= 1.1,A = 66,8 = 1, C = 1000.

the activity level in Internet systems which implement the SJF or
FQ queueing disciplines. The simulation technique used here can
be used to investigate other queueing disciplines, e.g. disciplines
which combine features of SJF and FQ to gain most of the effi-
ciency of SJF without having to introduce much additional com-
plexity, such as SJF-n. The results obtained in this paper already
show that this particular queueing discipline is capable of deliver-
ing good performance despite its low complexity.

The snapshot simulation method is not able, in itself, to produce
accurate estimates of probabilities of events which occur with prob-
abilities lower than approximately 107> This is because the snap-
shot simulations are natural simulations, so any such event would
occur only in 1 in 100,000 simulations. However, there is no rea-
son not to apply importance sampling techniques in addition to the
snapshot approach. In this way it should be possible to produce
better estimates of the probabilities of unlikely events.
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