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 33 

Abstract  34 

Our understanding of the impact of climate change on global coffee production is largely 35 

based on studies focusing on temperature and precipitation. However, climate indicators 36 

that could trigger critical threshold changes in productivity, such as vapour pressure deficit 37 

(VPD) and soil moisture, remain unexamined at the global scale. Here we investigate 38 

temperature, precipitation, soil moisture and VPD effects on global Arabica coffee 39 

productivity. We show that VPD during fruit development is a key indicator of global coffee 40 

productivity, with yield declining rapidly above 0.82 kPa. The risk of exceeding this threshold 41 

rises sharply for most countries we assess, if global warming exceeds 2°C. At 2.9 °C, 42 

countries making up 90% of global supply are more likely than not to exceed the VPD 43 

threshold. The inclusion of VPD and the identification of thresholds appear critical for 44 

understanding climate change impacts on coffee and for the design of adaptation strategies. 45 
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 59 

Coffee is produced in over 70 countries and supports the livelihoods of millions of farmers1
,
 60 

driving a multi-billion $ (US) value chain that supplies millions of people each day. Arabica 61 

coffee (Coffea arabica) is reported to be highly sensitive to climate variability2-7; and robusta 62 

coffee (C. canephora), the other main coffee species, is now deemed to be more climate 63 

sensitive than previously supposed8. However, climate impacts on coffee, while well 64 

explored, have largely focused on temperature and precipitation2,4,6. Climatic variables, 65 

including, soil moisture and those representing atmospheric drying, such as vapour pressure 66 

deficit (VPD) have not been investigated, despite being important limiting factors of global 67 

ecosystem productivity9,10. More importantly, there has been no investigation into whether 68 

changes in these climatic variables could trigger threshold responses in global coffee 69 

productivity. 70 

Following the Intergovernmental Panel on Climate Change, here a threshold refers to a 71 

relatively large, abrupt and possibly irreversible change in systems caused by global 72 

warming11. In the context of coffee production a threshold may occur when there is an 73 

abrupt increase in the rate of coffee yield decline in response to a small increase in a climate 74 

stress. Non-linear and potential threshold responses to climatic variability have been 75 

investigated in health, economic and ecological research12-18. In contrast, research on 76 

global-scale climate thresholds important for agricultural systems, including coffee, is 77 

limited to studies examining potential non-linear temperature effects on annual crops19-23.  78 

The possibility of threshold responses in coffee yields to small changes in climate variables, 79 

while unexamined, could be expected because of the way plants respond to water stress 80 

and hydraulic dysfunction24. For example, it is well known that plants can cope with rising 81 
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VPD by reducing stomatal conductance and increasing transpiration 10,25. However, once a 82 

certain VPD threshold is reached a cascade of feedbacks are triggered resulting in a rapid 83 

reduction in photosynthesis and growth, with experimental studies highlighting declines in 84 

both reproductive success and yield as a consequence25,26. In managed agricultural systems 85 

rising VPD may not necessarily cause mortality, as in forests27, but may nonetheless still lead 86 

to rapid declines that make production economically unviable. Importantly, the negative 87 

effects of rising VPD on productivity even occur in well-watered systems26. Despite this the 88 

climatic values that could trigger such a physiological response in global scale coffee 89 

productivity have not been assessed for VPD or any other climatic variables. Understanding 90 

and quantifying climate induced threshold responses for agricultural production under 91 

climate change therefore poses a unique and important research challenge.  92 

Here we analyze global-scale Arabica coffee production responses to key seasonal climate 93 

drivers, namely temperature, rainfall, soil moisture and vapor pressure deficit (VPD) in the 94 

fruit development seasons, and test for threshold responses that could translate into rapid 95 

coffee yield declines under climate change. We use Food and Agriculture Organization (FAO) 96 

data from 13 of the worlds’ most important Arabica-producing countries (accounting for 97 

91.2% of global production in 2019, https://fdc.nal.usda.gov/) with TerraClimate data28 and 98 

global coffee production intensity mapping29. We undertake three discrete analyses. First, 99 

we identify the key climate drivers of coffee production using non-linear regression models. 100 

Second, we quantify thresholds for key climate variables using threshold analyses30. Third 101 

and finally, we calculate the probability of exceeding the key climate thresholds we identify 102 

under baseline (1985–2015), as well as under 2 °C and 4 °C warming futures31 and identify 103 

the amount of global warming that causes the breach of a critical climate threshold in 13 of 104 

the worlds’ most important Arabica-producing countries. 105 
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Results 106 

Vapour pressure deficit as a key indicator of coffee productivity 107 

Regression models showed that the effect of growing season vapour pressure deficit (VPD) 108 

and mean maximum temperature on Arabica yields is non-linear, with the rate of change in 109 

yield varying as VPD and temperature increase (Fig. 1ab). In contrast, growing and flowering 110 

season rainfall had much less of an effect on Arabica yields (Extended Data, Fig. 1). 111 

 112 

 113 

Fig 1. Marginal effects (when the effects of all other covariates are held constant) of the key 114 
climate drivers of Arabica yields from the best GAM model identified from model selection 115 
a., vapour pressure deficit (VDP) in the growing season and b., mean maximum 116 
temperatures in the growing season. The solid black line is the mean effect and dashed lines 117 
are 95% confidence intervals. Points are partial residuals. Data is from country-level coffee 118 
yield data from between 1961-2017 for 13 of the most important coffee producing 119 
countries globally (Brazil, Colombia, Costa Rica, El Salvador, Ethiopia, Guatemala, Honduras, 120 
Kenya, Mexico, Nicaragua, Peru, Tanzania and Venezuela). Selected countries were 121 
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restricted to those that produced >20,000 metric tonnes (MT) in 2019, accounting for 91.2% 122 
of Arabica coffee production in 2019 (see methods for details).   123 

 124 

 125 

A vapour pressure deficit threshold for coffee 126 

We used threshold regression analysis to test whether thresholds were present and to 127 

estimate the values of these points of abrupt decline in Arabica coffee yield in relation to 128 

the two climate variables (i.e., VPD and maximum temperature) showing a non-linear 129 

relationship with Arabica yields from regression modelling. Threshold regression analysis 130 

identified a threshold at a VPD of 0.82 kPa (0.82–0.88 kPA, 95% Confidence Interval) (Fig. 2) 131 

and for mean maximum temperature at 29.22°C (28.97–29.53°C, 95% Confidence Interval) 132 

(Extended Data, Fig. 2). The two approaches (GAM and threshold regression analysis) give 133 

congruent results for the relationship between VPD, maximum temperatures and Arabica 134 

yields. 135 

Arabica yields decline rapidly beyond the 0.82 kPa VPD threshold (i.e. mean VPD during the 136 

flower and fruit development season), declining by up to ~400 kg/ha (i.e., c. 50% relative to 137 

the global long-term mean yield) with a small change in VPD (~0.1 kPa) (Fig 2). Similarly, 138 

Arabica yields decline rapidly as growing season (flower and fruit development) mean 139 

maximum temperatures rise above 29.22 °C though not as sharply as when the VPD 140 

threshold is exceeded and with much greater uncertainty (Fig. 1ab, Extended Data, Fig. 2). 141 

 142 

 143 

 144 
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 145 

Fig. 2: Predicted coffee yield response to vapour pressure deficit (VPD) and the estimated 146 
VPD threshold. Arabica (C. arabica) yields relationship with mean vapour pressure deficit in 147 
the growing season (flower and fruit development) while other covariates are held constant 148 
at their mean. Black dashed line is the estimated VPD threshold. The blue line is the 149 
relationship between VPD and yield before the 0.82 kPa threshold and the red line after 150 
passing the VPD threshold. The inset box shows predicted coffee yields response across the 151 
entire VPD gradient. Grey coloured shaded areas are 95% confidence intervals. Extended 152 
data Fig. 2 shows the predicted coffee yield response to mean maximum temperature and 153 
associated estimated threshold. Data is from country-level coffee yield data from between 154 
1961-2017 for thirteen of the most important coffee producing countries globally (Brazil, 155 
Colombia, Costa Rica, El Salvador, Ethiopia, Guatemala, Honduras, Kenya, Mexico, 156 
Nicaragua, Peru, Tanzania and Venezuela). Selected countries were restricted to those that 157 
produced >20,000 tonnes in 2019, accounting for 91.2% of Arabica coffee production in 158 
2019 (see methods for details).   159 

 160 

 161 

Soil moisture and the vapour pressure deficit threshold 162 

 163 

The relationship between VPD and soil moisture is debated and at times difficult to 164 

disentangle, particularly in moisture-limited conditions9,22. However, as the inclusion of soil 165 
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moisture did not improve model performance (Extended Data, Table 3), our results suggest 166 

that soil moisture is a relatively less important indicator of global coffee yield variability than 167 

VPD. Furthermore, in our dataset soil moisture and VPD are only weakly correlated (Pearson 168 

r = 0.15) (Extended Data, Fig. 4) (i.e. soil moisture was not excluded in the best model 169 

because of collinearity with VPD, but because it did not add substantial additional 170 

explanatory power). These findings are consistent with recent global scale assessments, 171 

which show that while soil moisture is the dominant factor driving ecosystem production 172 

responses to dryness in most areas, this is not the case in the tropics where VPD 173 

dominates9. Likewise, our results, focusing on the tropics, suggest that VPD is a key indicator 174 

of coffee productivity. 175 

 176 

 177 

Figure 3. a., Predicted Arabica yields in response to VPD for the best model including soil 178 
moisture. b., Predicted Arabica yields for very high soil moisture values (dark blue line = 90th 179 
percentile of soil moisture, light blue line = 75th percentile) with predictions constrained to 180 
where data is available and very low soil moisture (red line = 25th percentile and dark red 181 
line 10th percentile). Shaded coloured areas are 95% confidence intervals for predictions. 182 

 183 

Still, since soil moisture could affect the relationship we find between yield and VPD, we 184 

investigated a model including soil moisture and its interaction effect with VPD (Fig. 3). The 185 
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VPD threshold estimate identified from this interaction model was 0.83 kPa (0.82 - 0.84 kPa, 186 

95% Confidence Interval), which overlapped that of the best model without soil moisture 187 

(Fig. 2, Fig. 3a). Moreover, the VPD threshold is still evident even at very high soil moisture 188 

values (i.e. the 75th and 90th percentiles of soil moisture in our dataset) (Fig 3b) (see also 189 

Methods and Extended Data, Fig. 5). Although, at very high soil moisture there appears to 190 

be an increase in yield as VPD increases, this only continues up until the 0.82 kPa threshold 191 

is reached, at which point yield declines. This could be because increasing VPD when soil 192 

moisture is high may favor flowering conditions and / or prevent disease, although further 193 

research is needed to investigate this.  194 

Global warming and the vapour pressure deficit threshold 195 

 196 

Figure 4 maps the probability of surpassing a vapour pressure deficit (VPD) threshold of 0.82 197 

kPa for the current coffee-growing areas of the world’s most important Arabica-producing 198 

countries under different warming scenarios (see Methods for warming scenario details). 199 

We map scenarios of 2 °C and 4 °C global temperature increases above pre-industrial (1850–200 

1879) conditions, to provide two policy-relevant futures for assessing and communicating 201 

the sensitivity of global coffee production to climate change31. Depending on emissions, 2°C 202 

of global warming above pre-industrial levels is expected between 2035–2050 and 4 °C 203 

between 2060–209532-34. 204 

We project that when the 2°C threshold is breached, seven of 13 Arabica-producing 205 

countries assessed have a non-zero probability of surpassing the VPD threshold under 206 

baseline (1985–2015) conditions (Fig. 4a). Arabica-producing countries most likely to exceed 207 

a VPD of 0.82 kPa in any given year under baseline conditions include El Salvador, Ethiopia, 208 

Guatemala, Kenya, Mexico, Peru and Tanzania (Fig. 4a). The number of Arabica-dominant 209 
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producing countries with a greater than zero probability of surpassing the VPD threshold 210 

increases from seven under baseline conditions to 10 under 2 °C of global warming (Fig. 211 

4ab). Relative to baseline conditions Honduras (0.00 to 0.90 probability of passing the 212 

threshold), Ethiopia (0.07 to 0.70), Venezuela (0 to 0.53), Peru (0.31 to 1.00) and Guatemala 213 

(0.62 to 1.00) show large climatic shifts that markedly increase the likelihood of surpassing 214 

the 0.82 kPa VPD threshold (Fig. 4ab).  215 

The probability of exceeding the VPD threshold again increases considerably when moving 216 

from a 2 to 4°C global warming scenario (Fig. 4bc). Under a 4°C global warming scenario, all 217 

13 of the Arabica countries assessed have > 0.75 probability of surpassing the 0.82 kPa VPD 218 

threshold (Fig. 4c). A 4°C global warming scenario sees Brazil, Costa Rica and Colombia shift 219 

from having a 0 probability of passing the 0.82 kPa VPD threshold under a 2 °C warming 220 

scenario to a high probability (> 0.75) of exceeding it (Fig 4c). It is certain (probability=1.00) , 221 

according to our analysis that under a 4°C global warming scenario the VPD threshold of 222 

0.82 kPa will be breached in 12 of the 13 Arabica-producing countries we assess, with Costa 223 

Rica the only exception (probability=0.76). 224 
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 225 

Fig. 4: Probability of surpassing the vapour pressure deficit (VPD) threshold in Arabica (C. 226 
Arabica) producing countries under different climate scenarios. a, under baseline (1985–227 
2015) climatic conditions. b, under a 2 °C warming scenario. c, under a 4 °C warming 228 
scenario. Light yellow colours correspond to a low probability (i.e., < 0.25) of exceeding the 229 
0.82 kPa VPD threshold and red colours to a high probability (i.e., > 0.75). Brazil (BR), 230 
Colombia (CO), Costa Rica (CR), El Salvador (SV), Ethiopia (ET), Guatemala (GT), Honduras 231 
(HN), Kenya (KE), Mexico (MX), Nicaragua (NI), Peru (PE),Tanzania (TZ) and Venezuela (VE).  232 

 233 

 234 

 235 
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Over 2 °C of warming reduces Arabica supply    236 

To identify the amount of global warming that pushes a country past the vapour pressure 237 

deficit (VPD) threshold we interpolated between each of TerraClimate’s 30-year baseline, 2 238 

°C and 4 °C climate change scenarios for each country (Fig. 5a; see Methods for details). 239 

Based on each country’s contribution to global supply (https://fdc.nal.usda.gov/), once 2°C 240 

of global warming is surpassed, possibly occurring by 2035–205032-34, there is a rapid 241 

increase in the percentage of global supply that exceeds the VPD threshold (Fig. 5b). At 2 °C 242 

of global warming countries making up 25% of global supply are more likely than not 243 

(probability of 0.53) to have breached the VPD threshold. At 2.5°C, 75% of global supply has 244 

a 0.25 probability of exceeding the threshold, at 2.69 °C this increased to a probability of 0.5 245 

and at 2.85 °C to a probability of 0.75. At 3.03 °C, by 2050–2075 under a high emissions 246 

scenario32-34, when Brazil breaches the threshold, countries currently contributing 75% to 247 

global supply are, according to our analysis, certain to exceed the VPD threshold (Fig. 5b; 248 

Extended Data, Fig. 6 & 7). 249 

The probability of surpassing the VPD threshold increases with global warming 250 

temperatures (relative to pre-industrial) for each country (Fig. 5c). El Salvador, Kenya, 251 

Tanzania and Mexico, collectively accounting for ~5.5% of global supply, surpass the 252 

threshold under baseline conditions (i.e. at 0.7 °C above pre-industrial conditions). At 1.41 253 

°C, Guatemala (3.56% of global supply) will surpass the VPD threshold (Fig. 5c), collectively c. 254 

9% of global supply. Currently global warming of the land surface is at 1.2 °C above pre-255 

industrial levels31,35. As global warming temperatures increase from 2 to 3°C Peru, 256 

Honduras, Venezuela, Ethiopia, Nicaragua, Colombia and Brazil, together accounting for 81% 257 

(collectively c. 90%) of global supply, have a rapidly increasing probability of exceeding the 258 
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VPD threshold (Fig. 5bc). Costa Rica (1.25% of global supply), is the country least likely to 259 

pass the VPD threshold (Fig. 5c). Only at 4.14 °C, according to our analysis, is Costa Rica 260 

certain to breach the VPD threshold. 261 

 262 

Fig. 5: The relationship between global warming, the vapour pressure deficit (VPD) 263 
threshold and global Arabica coffee supply, a, Relationship between change in global mean 264 
annual temperature (above pre-industrial levels) and VPD. See Fig. 4 for country codes b, 265 
Percentage of supply exceeding the 0.82 kPa VPD threshold as a function of global mean 266 
annual temperature. Grey dashed line is 1.5 °C and black 2 °C c, Global temperature 267 
corresponding with a breaching of the threshold. White horizontal line and text correspond 268 
to the global mean annual temperature at which that country has a probability of 1 of 269 
exceeding the VPD threshold.  270 
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Discussion 271 

Despite the importance of coffee production to the economies of coffee growing countries, 272 

there has been no analyses of the key climate variables most affecting coffee yields at a 273 

global scale, nor whether they could trigger threshold responses. Although work does exist 274 

exploring how climate affects coffee suitability6,7 these almost exclusively focus on 275 

precipitation and temperature2,7,8. Recent work also highlights the importance of the 276 

combined and seasonal effect of rainfall and temperature6,7. Our results re-iterate these 277 

findings at a global scale and further highlight that a combination of climate parameters, 278 

and in particular the interplay between precipitation and temperatures, and their 279 

seasonality explain the climate sensitivity of Arabica coffee3,4,7. In our study, growing season 280 

(i.e. the fruit development period) VPD, which represents the evaporative effect of relative 281 

humidity (%RH) and temperature, seems to capture this combined impact on global scale 282 

coffee yields well, or at least better than temperature and precipitation by themselves.  283 

Even though VPD is driven by temperature increase, it is likely that VPD limits coffee 284 

productivity not entirely through heat stress, but also through plant water stress. Water 285 

stress results not just from reductions in precipitation and soil moisture, but from increasing 286 

atmospheric demand, which increases plant water demand36,37. Studies on maize suggest 287 

that temperature rises that increase atmospheric demand (i.e. VPD) and thus plant water 288 

requirements, may have an even stronger influence on plant water stress than typical 289 

variations in precipitation21,36. As such, our finding that precipitation and soil moisture 290 

variation has a relatively minimal impact on global coffee yields should not be taken to 291 

mean that coffee is insensitive to water stress. The opposite in fact.  The high sensitivity of 292 
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Arabica coffee to VPD suggests that it may be highly sensitive to water stress and that 293 

temperature increase which drives VPD higher is a key indicator of this sensitivity.   294 

The role of water stress is also highlighted by the offsetting effect of very high soil moisture 295 

on yield loss (up to +20% at a VPD of around 0.9 kPa) (Fig. 3b). This highlights the possible 296 

role that increasing soil moisture (e.g. through supplemental irrigation) could have in 297 

mitigating some of the negative impacts of passing the VPD threshold. However, over 95% 298 

of the coffee growing areas in the countries we assess are non-irrigated29 and whether 299 

wide-scale irrigation is a sustainable and feasible strategy for alleviating rising VPD impacts 300 

requires more research, which would also need to include ecosystem impact, economic, 301 

carbon accounting and socio-economic studies. Even though we emphasize that while plants 302 

may acclimate to increasing VPD, particularly under well-watered conditions, there are still 303 

major costs to growth at high VPD, even with zero water stress, leading to changes in plants 304 

nitrogen balance, a reduction in primary productivity and plant yields26. 305 

Consideration of plant water status and stress also points to a possible mechanism through 306 

which to interpret the threshold response of coffee yield to increasing VPD that we show 307 

here. Plants can cope with rising VPD at the leaf level by reducing stomatal conductance, 308 

increasing transpiration and lowering photosynthesis10,26. In turn, these leaf level 309 

adaptations to increasing VPD manifest in reduced plant mass, flower numbers and 310 

yield10,26. These physiological effects of VPD on plants occur even in well-watered 311 

conditions26, which may explain in part why we find a threshold response to VPD, albeit with 312 

some moderation of losses22, even when soil moisture is high. Importantly, this suggests 313 

that future increases in VPD, and potentially the threshold value we find here, will reduce 314 

coffee productivity to some extent regardless of changes in soil water status. Further 315 
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research is needed to test the magnitude of the negative effect of VPD on coffee under 316 

different watering regimes both at the finer farm scale and experimentally.  317 

Recent research has emphasized the positive effects that elevated CO2 has on coffee 318 

photosynthetic functioning38,39. Numerous studies have shown that elevated CO2 levels, 319 

alter coffee leaf physiological responses to temperature and promote higher water-use 320 

efficiency, which could mitigate climate change impacts on coffee production38,39. However, 321 

beyond leaf physiological responses the effects of elevated CO2 on coffee yields are unclear. 322 

In a two-year study of elevated CO2 levels (550 μmol/mol) on two varieties of Arabica only 323 

one variety in one year (of the 2 varieties tested over two-years) showed an increase 324 

(+14.6%) in yields at elevated CO2 levels (550 μmol/mol) 40. More recently, a longer-term 4-325 

year study showed no increase in yields at elevated CO2 levels (550 μmol/mol)41.  326 

Nonetheless, studies on other plant species have shown that increased water-use efficiency 327 

at high CO2 can partly off-set the negative effects of high VPD36,42. There has been no 328 

assessment of the role of CO2 fertilization on coffee productivity under VPD stress. As such, 329 

our findings highlight an important avenue for future research in quantifying the possible 330 

role of CO2 in offsetting coffee yield losses from increasing VPD under climate change26.  331 

It should be noted that these results are based on a country-level analyses. At finer scales 332 

there is likely to be heterogeneity within countries – with some being more or less likely to 333 

breach the VPD threshold at different global temperatures. It is also important to emphasize 334 

that these calculations do not factor in the movement of Arabica production to newly 335 

emerging areas of suitability as the climate changes. This has substantial potential in 336 

countries with plentiful elevation capacity, such as Ethiopia7, but globally this may be limited 337 
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and is fraught with diverse social, environmental and economic challenges, including land 338 

use change issues, land tenure rights, and human migration. 339 

While FAO data is well suited to our macro-scale analyses, and widely used in climate impact 340 

studies at the global scale43-45, we acknowledge the importance of future regional and farm-341 

level investigations testing whether the VPD relationships and threshold values we find here 342 

are also applicable at finer scales (e.g. at farm-level). As transpiration rates vary through the 343 

day as atmospheric demand fluctuates37, experimental studies directly measuring coffee 344 

stress responses (over hourly to daily timescales) could also be especially valuable in 345 

elucidating the mechanism through which VPD may cause threshold responses in coffee 346 

productivity (e.g. predominantly through water stress, heat stress or another pathway).  347 

Alongside finer scale studies, there is also a need to experimentally test whether 348 

management interventions can offset yield declines that occur once the VPD threshold is 349 

surpassed26. This is critical for informing finer-scale management adaptation options (e.g. 350 

shading, irrigation and fertilizer use). Investigating the effectiveness of management 351 

interventions will be all the more important if, as is suggested for other species, rising VPD 352 

effects are still negative even when irrigated. If this is the case for coffee as well, 353 

investigation of plant breeding traits that confer resilience to higher VPD, in both the 354 

common coffee crop species and other coffee species that are better adapted to warmer5 355 

and drier climates46 will be critical. Farm-level micro-climatic management manipulations 356 

that alter VPD effects, such as shading47 and tree spacing27, could also be important. 357 

 358 

 359 

 360 
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Online methods 361 

Global coffee yield data 362 

We took country-level coffee yield data (http://www.fao.org/faostat/en/#home) from 363 

between 1961–2017 for 13 of the most important coffee producing countries globally. 364 

Selected countries were restricted to those that produced >20,000 metric tonnes (MT) in 365 

2019, accounting for 91.2% of Arabica coffee production in 2019 (https://fdc.nal.usda.gov/). 366 

Countries producing less coffee have less reliable reporting (e.g. some only report averaged 367 

statistics over multiple years) making them unsuitable for a global scale analysis of climate 368 

impacts. FAO data is the best available standardized dataset on agricultural productivity of 369 

crops available at a global scale. FAO uses a statistics quality assurance framework to ensure 370 

data are as accurate, reliable, comparable (e.g. over time and between geographical areas) 371 

and coherent as possible and regularly assesses and validates statistical outputs 372 

(http://www.fao.org/3/i3664e/i3664e.pdf). FAO data has been widely used in country and 373 

global scale climate impacts analyses for numerous crops43-45. Coffee yield data from the 374 

FAO was also screened for outliers with any centred yield observations > |3| standard 375 

deviations removed. The final dataset comprised 648 country-years of data.  376 

The use of aggregated FAO data may be associated with some uncertainty, due to 377 

potentially unreliable reporting (e.g. under or over reporting of yields) from some countries. 378 

However, as long as any reporting biases are uncorrelated with year-to-year changes in 379 

yields and VPD, which is most likely, this does not bias our results, but simply increases their 380 

uncertainty45. This uncertainty is accounted for well by both the non-linear GAM and 381 

threshold regression analyses. Even so, to minimize uncertainty we restricted analysis to 382 

Arabica dominant producing countries that produced more than 20,000 MT in 2019. These 383 

countries accounted for 91.2% of all Arabica coffee production in 2019 384 
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(https://fdc.nal.usda.gov/) with countries from Africa, Central America and South America 385 

all represented (Extended Data, Table 1). Countries producing less coffee have less reliable 386 

reporting (e.g., some only report averaged statistics over multiple years) making them 387 

unsuitable for a global-scale analysis of climate impacts. 388 

Climate data 389 

Climate data was taken from the TerraClimate dataset (~ 4 km resolution)28. TerraClimate 390 

uses climatically aided interpolation with high-spatial resolution climatological normals from 391 

the WorldClim dataset in combination with coarser resolution time varying (i.e., monthly) 392 

data from CRU Ts4.0 https://data.ceda.ac.uk//badc/cru/data/cru_ts/ and the Japanese 55-393 

year Reanalysis (JRA55) https://jra.kishou.go.jp/JRA-55/index_en.html. For the growing and 394 

flowering seasons (Extended Data, Table 2) each year the total rainfall, minimum and 395 

maximum temperatures, soil moisture, as well as mean vapor pressure deficit were 396 

extracted and aggregated based on coffee production mapping for each country29.  397 

TerraClimate soil moisture estimates are from a one-dimensional-water balance model. This 398 

model is based on a monthly time step and estimates soil moisture and runoff from water-399 

holding capacity, precipitation and  Penman–Monteith reference evapotranspiration 400 

(ET0)20,28. Vapour pressure deficit (VPD) is calculated as the difference between the mean 401 

saturation vapour pressure concomitant with the daily high and low temperatures and 402 

saturation vapour pressure at the daily mean dewpoint temperature (for details see 403 

https://www.climatologylab.org/terraclimate.html). As VPD measurements from the 404 

TerraClimate dataset are based on the difference between the daily minimum and 405 

maximum, they will be lower than if they are based only on daytime VPD. The TerraClimate 406 

dataset has been validated globally and has been used in large scale agricultural studies28,31.  407 
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Climate variables were weighted, such that aggregated climate data reflected the 408 

distribution of coffee production intensity29. As such, climate variables are not a simple 409 

aggregation of annual climatic conditions spanning the political borders of each coffee 410 

producing country, but instead represent climatic conditions only in coffee producing areas 411 

during the time of the year that climate variability is most likely to impact coffee 412 

production2. 413 

For each country and climate variable then 414 

𝐶! =#𝐶
"

#$%

𝑃#  415 

where 𝐶! is the weighted climate variable for each country in each season per year and P is 416 

the proportion of production for each location (i) and C is the corresponding climate 417 

variable. Weighted climate variables were calculated for the flowering and growing season 418 

in each year as this is when production is most sensitive to climatic variability.  419 

Climate change scenario data 420 

Climate change scenario data was extracted and aggregated as outlined above. Climate 421 

scenarios corresponded to 2 °C and 4 °C above pre-industrial (1850–1879) conditions, as 422 

well as a baseline scenario (1985–2015)31. The TerraClimate dataset scenarios are derived 423 

from 23 CMIP5 climate models and use pattern scaling that superposes climate mean and 424 

variability on conditions from 1985–2015. These scenarios are highly flexible and allow for 425 

assessment of climate change impacts on coffee production in an interpretable way while 426 

accounting for the uncertainty that is implicitly a part of climate model projections and 427 

emission scenarios31. The 2 °C and 4 °C scenarios we assess here provide two policy relevant 428 

futures that can be used to assess and communicate the sensitivity of global coffee 429 
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production to climate change31. Depending on emission scenario 2 °C of global warming is 430 

expected between 2035–2050 and 4 °C between 2060–209532-34. 431 

Identifying climate variables important for coffee production 432 

We used a generalized additive regression models (GAM)48 and multi-model selection49 to 433 

identify the key climate drivers of global coffee production. All analyses were carried out in 434 

R50. In the GAM 435 

log(𝑦#&* = 𝛽' +	𝑓()!") +	𝑧#𝜑 +	𝜖#& 	 436 

𝜖#& 	~𝐺𝑎𝑚𝑚𝑎(𝛾) 437 

𝜑	~	𝑁(0, ℶ)	  438 

Yields (y) were modelled as a non-linear (f) function of predictor variables (x) for each 439 

country (i) and year (j) using a Gamma distribution with a log link. A random effect (𝜑) for 440 

each country (Zi) was included to account for the repeat measurements for each year at the 441 

country level. Random-effects control for non-independence by constraining non-442 

independent observations to have the same intercept51. For example, yield observations 443 

from a particular country, may be more similar (e.g., higher on average if soils and 444 

management techniques are better) relative to yield observations from other countries. To 445 

account for temporal autocorrelation year was modelled as an autocorrelation structure of 446 

order 148. There were 10 climate variables (maximum temperature, minimum temperature, 447 

total rainfall, total soil moisture and vapor pressure deficit for both the growing and 448 

flowering season) in the global model. Model selection also accounted for multi-collinearity 449 

by ensuring no models included variables with a Pearson coefficient r > |0.5|.  Gross 450 

domestic product (GDP - current US$) (https://data.worldbank.org/) was included as a 451 

predictor variable to account for the influence of technological advancement on coffee 452 

yields over time52. 453 
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As Arabica exhibits a biennial productivity cycle53 (a productive crop one year is generally 454 

followed by a lesser crop in the following year) we tested for the influence of climate 455 

variables over two-years. This was done by systematically testing the weighted influence (in 456 

5% increments) of the current and previous years yield on the current year’s yields. So, for 457 

example, we weighted the previous year’s influence at 0.95 and the currents at 0.05, then at 458 

0.90 and 0.10 and so on through to weightings of 0.05 and 0.95 for the previous and current 459 

year’s climate respectively. Multi-model selection using AIC49, was used to identify the suite 460 

of main effect predictors, as well as the weightings of previous and current years, that most 461 

parsimoniously explained variations in yield for Arabica. In total the AIC of 14,720 models 462 

were assessed. Additionally, we incorporated a variable, Proportional previous yield (PPY), 463 

to account for the fact that because of its biennial life cycle Arabica can have light and heavy 464 

production years. This was calculated as 465 

𝑃𝑃𝑌 = (𝑌𝑖𝑒𝑙𝑑+,% − 𝑌𝑖𝑒𝑙𝑑+,-)/𝑌𝑖𝑒𝑙𝑑+,- 466 

In line with biennial production cycle of Arabica a 50/50 weighting of the previous and 467 

current years climate most parsimoniously explained yields. Additional to this, the PPY 468 

variable was also selected, suggesting that the best model and FAO data detect and account 469 

well for the biennial nature of Arabica in our assessment of climate impacts. We believe the 470 

approach we outline here accounts well for a biennial crop cycle and would be applicable to 471 

range of other biennial plants and crops underrepresented in climate impact research. 472 

The results we present in the main text are based on a biennial life cycle model. The 473 

threshold relationship with VPD was consistent regardless of whether annual or biennial 474 

climate data was used (VPD threshold based on an annual model is 0.83 kpA, with a 95% 475 
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Confidence Interval of 0.82–0.87 kPa, Extended Data Fig. 8), while for the biennial model it 476 

is 0.82 kPa (0.82–0.88 kPA, 95% Confidence Interval). 477 

We used nested cross-validation on the selected best model to get estimates of model 478 

error54. To do this we split the dataset into six temporal components. The initial model was 479 

built on the first three temporal components of the data (n=28 years, from 1961/3–1990) 480 

and tested on the fourth held-out temporal component (n=9 years, 1991–1999), then built 481 

using the first four temporal components (n=37 years, from 1961/3–1999) and tested on the 482 

fifth held-out temporal component (n=9 years, from 2000–2008) and finally built on the first 483 

five temporal components (n=46 years, from1961/3 to 2008) and tested on the final held-484 

out temporal component of data (n=9 years, from 2009–2017).  485 

The best models with a 50/50 weighting of the previous and current years climate all 486 

included some combination of growing season mean vapour pressure deficit, total rainfall, 487 

mean maximum temperature and flowering season rainfall. The top four models were 488 

almost identical in terms of AIC and all performed similarly well with a cross-validated R2 of 489 

0.67 - 0.70 (Extended Data Table 3). Interactions between main growing season effects were 490 

also assessed, as were interactions between each climate variable and the PPY variable. 491 

However, while these models lowered AIC they did not have a better cross-validated R2 than 492 

models without interactive terms. In the main text we present threshold values and results 493 

from the model with the best model with the lowest AIC (Extended Data, Table 3), however 494 

threshold estimates and the relationship between VPD and Arabica yield was consistent 495 

regardless of model structure (Extended Data Fig. 9 and Fig. 10).  496 

VPD and soil moisture interactions 497 
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We sub-set the dataset to test whether the effect of VPD altered when constrained to only 498 

high or low soil moisture conditions. However, regardless of whether the model was fit to all 499 

data - only low soil moisture or high soil moisture - the effect of VPD on Arabica yields is 500 

broadly similar (Extended Data, Fig 5). Our results are therefore consistent with a broader 501 

pattern emerging in the literature suggesting that while soil moisture is key for plant 502 

productivity in arid, semi-arid (e.g. for maize22) and temperate areas9, in the tropics, where 503 

rainfall and thus soil moisture is much higher, VPD appears to be a key limiting factor on 504 

productivity. 505 

Threshold analyses 506 

As non-linear regression using a generalized additive model (GAM) is fit with a spline (a 507 

smooth function) it is not able to test for and / or identify points of abrupt change, or 508 

thresholds. Threshold regression, on the other hand, explicitly introduces a threshold 509 

parameter allowing for thresholds, or change points, to be quantified30. In turn, this allows 510 

for values (i.e., particular climatic conditions) to be ascribed to threshold changes and thus 511 

clear guidance and recommendations can be made about whether there are important 512 

limits that researchers, managers, farmers and policy makers should be aware, in terms of 513 

risk and planning. 514 

Using threshold regression analysis30 we quantified the threshold value (and its associated 515 

uncertainty) for those climate variable(s) showing a non-linear change (i.e., a threshold 516 

response) that resulted in an increase in the rate of yield decline. We focused on values 517 

greater than median as maximum temperatures and VPD are projected to increase in the 518 

coming decades under climate change55 and because GAM analysis suggests high 519 

uncertainty at the lower end of the temperature and VPD gradient (Fig 1a, b). These 520 
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thresholds are of the most importance because once surpassed they may result in rapid 521 

declines in yield that pose the greatest challenge for climate change adaptation. 522 

For these variables we used threshold regression model estimation and inference using the 523 

package chnpt30 in R50. We used a two-phase segmented threshold model where: 524 

𝜂 = 𝛼% + 𝛼-.𝑧 + 𝛽%(𝑥 − 𝑒)/ + 𝛾𝑥 525 

Here e is the threshold parameter, x is the predictor with threshold effect, z denotes 526 

additional predictors - in this case the additional predictors are those in the best model 527 

identified from GAM multi-model selection (see above), excluding the threshold variable of 528 

interest (x). These additional variables were fit with a non-linear spline with the same 529 

number of knots as in the best GAM. The hinge function is (x-e)+, which equals x-e when x>e 530 

and 0 otherwise30 . Uncertainty in threshold estimates were calculated using bootstrapping 531 

(n=1000), which was used to generate 95% confidence intervals56.  532 

As a check on reliability, we examined whether threshold estimates are being driven by 533 

anomalous country and time period conditions. To do this we sequentially held out each 534 

country and blocks of years from the threshold regression analysis. VPD threshold estimates 535 

when countries and blocks of time were held out are similar to estimates when all data is 536 

considered (Extended Data, Fig. 3). We also randomly held out 50% of all observations in the 537 

dataset and ran threshold analyses on this, repeating this process 1000 times. The VPD 538 

threshold estimate was again 0.82 kPa, although with a wider 95% Confidence Interval of 539 

between 0.75 - 0.89 kPA. The mean maximum temperature threshold values are consistent 540 

across analyses when each country is held-out from the dataset, aside from when El 541 

Salvador was excluded (Extended Data, Fig. 3). This suggests that the maximum temperature 542 

threshold values identified are driven by data from El Salvador and so may be less reliable 543 
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then the VPD threshold estimates, which are insensitive to data from individual countries 544 

being removed. The mean maximum temperature threshold nonetheless does align with the 545 

reported mean maximum temperature optimal for Arabica of 28–30 °C57. 546 

 547 

Probability of exceeding global scale climate thresholds 548 

The relative change in the likelihood of exceeding thresholds was mapped for each country 549 

under baseline, 2 °C and 4 °C warming scenarios. The probability of exceeding the estimate 550 

threshold for was calculated as 551 

𝑃(𝑋# ≥ 𝑥&) = 1 − 𝑃(𝑋# < 𝑥&) = 1 − 𝐹(𝑋# < 𝑥&) 552 

Where 𝑥&  is the threshold estimate and X is the vector of the climate variable under each 553 

scenario (i), and F(.) denotes its cumulative distribution function.  554 

Calculating the amount of global warming that pushes a country past the VPD threshold 555 

To calculate the amount of global warming that pushes a country past the VPD threshold we 556 

interpolated between each of TerraClimate’s 30 year baseline, 2 °C and 4 °C climate change 557 

scenarios for each country. TerraClimate uses a pattern scaling approach because the 558 

geographic patterns to climate forcing scale reasonably linear as a function of global mean 559 

temperature31. This means that at any location changes to local climate can be estimated 560 

through interpolation as a function of global mean temperature. 561 

The relationship between VPD and global mean temperatures can similarly be interpolated, 562 

using a regression with a second-order polynomial. We did this at 0.01 °C increments for 563 

growing season VPD between global warming temperatures of 0.7–5 °C. Using this 564 

information, we then mapped the amount of global warming that corresponds to different 565 

probabilities of exceeding the 0.82 kPa VPD threshold. Finally, using recent data on global 566 
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coffee supply (https://fdc.nal.usda.gov/) we calculated the amount of global supply that 567 

exceeds the VPD threshold at a probability of 1. 568 
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Extended Data 601 

Extended Data Table 1: Summary statistics showing the percentage of contribution each 602 
country makes to global supply (from https://fdc.nal.usda.gov/ ) and mean and standard 603 
deviation of yield data that was used in GAM and threshold regression analysis from 604 
(http://www.fao.org/faostat/en/#home)    605 

Country 
Percent of global Coffea 

arabica supply 
Mean Yield (t/ha) Yield (t/ha) standard deviation 

Brazil 46.40% 0.759  0.344  

Colombia 13.35% 0.762   0.157  

Costa Rica 1.25% 1.17   0.257  

El Salvador 0.63% 0.788  0.253  

Ethiopia 6.98% 0.698 0.091 

Guatemala 3.56% 0.797 0.192  

Honduras 6.93% 0.682 0.208  

Kenya 0.75% 0.539 0.179  

Mexico 3.47%  0.469 0.106  

Nicaragua 2.50% 0.616 0.165  

Peru 4.24% 0.625 0.110  

Tanzania 0.67% 0.328 0.088 

Venezuela 0.56%  0.277 0.074 

Total 91.29% 0.668 0.289 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 
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Extended Data Table 2: The growing and flowering season months for each country and 617 
supporting references.   618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

Country Growing Flowering Reference 

Brazil Dec-Jun Sep - Nov DaMatta FM, Ronchi CP, Maestri M, Barros RS (2007). Ecophysiology of coffee growth and production. Brazilian journal of 
plant physiology 19:485-510 

Colombia May -  Sep & 
Oct-Mar 

Feb - Apr & 
May-Sep 

Caravela C (2021). Harvest dashboard. https://caravela.coffee/harvest-dashboard/ (accessed on 16.03.2021).    
Peña Quiñones, A.J., Ramírez Builes, V.H., Jaramillo Robledo, A., Rendón Sáenz, J.R. and Arcila Pulgarín, J., 2011. Effects of 
Daylength and Soil Humidity on the Flowering of Coffee Coffea arabica L. in Colombia. Revista Facultad Nacional de 
Agronomía Medellín, 64(1), pp.5745-5754.  

Costa Rica June - Feb Apr - May Cannell MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and 
production of beans and beverage. Croom Helm, London, pp 108-134 

EI Salvador June - Feb Apr - May Cannell MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and 
production of beans and beverage. Croom Helm, London, pp 108-135 

Ethiopia Apr - Nov Feb - Mar Cannell MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and 
production of beans and beverage. Croom Helm, London, pp 108-136 

Guatemala June - Feb Apr - May Cannell MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and 
production of beans and beverage. Croom Helm, London, pp 108-137 

Honduras June - Feb Apr - May Cannell MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and 
production of beans and beverage. Croom Helm, London, pp 108-138 

Kenya May - Oct Apr - May Cannell MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry and 
production of beans and beverage. Croom Helm, London, pp 108-139 

Mexico Jun- Dec Feb - May Wintgens JN, (2008). In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, 
Traders, and Researchers. Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. 
Castillo, N.E.T., Melchor-Martínez, E.M., Sierra, J.S.O., Ramirez-Mendoza, R.A., Parra-Saldívar, R. and Iqbal, H.M., 2020. 
Impact of climate change and early development of coffee rust–An overview of control strategies to preserve organic 
cultivars in Mexico. Science of the Total Environment, 738, p.140225. 
  

Nicaragua June - Feb Apr - May Wintgens JN, (2008). In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, 
Traders, and Researchers. Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. 

Peru Dec - Mar Sep - Nov Wintgens JN, (2008). In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, 
Traders, and Researchers. Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. 

Tanzania May - Nov Mar - Apr Wagner S, Jassogne L, Price E, Jones M, Preziosi R (2021). Impact of Climate Change on the Production of Coffea arabica at 
Mt. Kilimanjaro, Tanzania. Agriculture 11:53 

Venezuela May -Sep Feb - Apr Rahn E, Vaast P, Läderach P, van Asten P, Jassogne L, Ghazoul J (2018). Exploring adaptation strategies of coffee production 
to climate change using a process-based model. Ecological Modelling 371:76-89 
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Extended Data Table 3. The best models from multi-model selection (see Methods for 633 
details). The main effects predictors in the four top models as well as model structure 634 
including interactions are shown. The top four models have almost identical AIC and model 635 
performance. Note log(Gross domestic product) was selected in all best models for the 636 
below. G-RAIN=growing season rainfall, G-VPD=growing season vapour pressure deficit, G-637 
TMAX=growing season maximum temperature and G-SOILM=growing season soil moisture. 638 

Model structure of top 4 four models AIC 

Cross-validated R2 for hold-outs years  

1990-
1998 

1999-
2007 

2009-
2017 

Mean R2 across 
all hold-outs 

G-RAIN + G-VPD + G-TMAX + PPY -978.99 0.68 0.58 0.80 0.69 

F-RAIN + G-RAIN + G-VPD + G-TMAX + PPY -978.68 0.67 0.58 0.80 0.68 

G-RAIN + G-VPD + G-TMAX -978.55 0.69 0.60 0.80 0.70 

F-RAIN + G-RAIN + G-VPD + G-TMAX -978.07 0.69 0.60 0.80 0.70 

Best model including interactive terms      

G-RAIN + G-VPD + G-TMAX + PPY + 

G-RAIN x G-VPD +  

G-RAIN x G-TMAX +  

G-TMAX x G-VPD + 

PPY x G-RAIN 

PPY x G-TMAX 

PPY x G-VPD 

-1031.00 0.71 0.71 0.68 0.68 

Best models including soil moisture      

G-RAIN + G-VPD + G-SOILM + PPY -826.17 0.64 0.48 0.72 0.60 

Best models including soil moisture with 
interactive terms      

G-RAIN + G-VPD + G-SOILM +  

G-VPD* G-SOILM + 

G-VPD* G-RAIN + 

PPY x G-SOILM 

PPY x G-VPD 

PPY x G-RAIN 

-872.12 0.65 0.49 0.71 0.60 

 639 

 640 

 641 

 642 

 643 

 644 

 645 
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 646 

Extended Data Fig. 1: The influence of each predictor main effects in the best model. Grey 647 
shaded areas are the 95% confidence intervals and black dots are residuals. The y-axis is the 648 
value of the centred smooth and represents the contribution made to the fitted value of 649 
that smooth function. 650 

 651 

 652 

 653 
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 654 

 655 

 656 

 657 

Extended Data Fig. 2: Predicted coffee yield response to mean maximum temperature and 658 
the estimated mean maximum temperature threshold. Arabica (C. arabica) yields 659 
relationship with mean maximum temperature in the growing season while other covariates 660 
are held constant at their mean. Black dashed line is the estimated mean maximum 661 
temperature threshold. The blue line is the relationship between mean maximum 662 
temperature and yield before the 29.22 °C threshold and the dashed red line after passing 663 
the mean maximum temperature threshold. The inset box shows predicted coffee yields 664 
response across the entire mean maximum temperature gradient. Grey coloured shaded 665 
areas are 95% confidence intervals. 666 

 667 

 668 

 669 

 670 

 671 

 672 
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 673 

 674 

Extended Data Fig. 3: Testing whether threshold values vary when a particular country or 675 
block of time is excluded from analysis. The (-) designates the country (or time period) that 676 
has been excluded from analysis and the value return is the median threshold value. The 677 
black dashed line is the median threshold value of all analyses and the dashed red lines 678 
represent the 95% confidence interval of all analyses. The grey histograms and shaded in 679 
different colours for each individual hold-out analyses. a, is threshold the country-wise hold-680 
out analysis for growing season vapour pressure deficit, b, the block of years hold-out 681 
analysis for growing season vapour pressure deficit, c, is threshold the country-wise hold-682 
out analysis for growing season mean maximum temperature, d, the block of years hold-out 683 
analysis for growing season mean maximum temperature. 684 

 685 
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 686 

 687 

Extended Data 4. a., Scatterplot showing the correlation between growing season soil 688 
moisture and vapour pressure deficit b., Growing season soil moisture under baseline 689 
baseline (1985-2015) conditions. Additional  boxplots show global warming scenarios of 2 °C 690 
(mustard) and 4 °C (red). The centre line of boxplots is the median, lower and upper sections 691 
are 25th and 75th percentiles, respectively, whiskers show the full range of the data, except 692 
for outliers which are shown as points.  693 

 694 

 695 
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 696 

Extended Data Fig. 5: Marginal effects of VPD on Arabica yields under different soil 697 
moisture scenarios  a. all data (n=648), b. low soil moisture (i.e. below the median total 698 
growing season soil moisture of 851 mm, n=323) and c., high soil moisture (i.e. above the 699 
median total growing season soil moisture of 851 mm, n=325). Points are residuals. Note 700 
the lack of data at low VPD in c., for the high soil moisture scenario.  701 

 702 
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 703 

 704 

 705 

 706 

Extended Data Fig. 6: The density distribution of growing season VPD for the top four 707 
Arabica (C. arabica) producing countries (based on 2019 production levels 708 
https://fdc.nal.usda.gov/). Blue shaded density plots are baseline conditions (1985-2015), 709 
yellow density plots represent a 2 °C warming scenario and red density plots a 4 °C warming 710 
scenario. Dark shaded areas on density plots represent the range of the data from 711 
TerraClimate climate change scenarios and extended light areas are extrapolations. Dashed 712 
vertical lines represent the 0.82 kPa VPD threshold. Calculations of the probability of 713 
exceeding VPD thresholds were made on the range of actual climate change scenario data 714 
(i.e., the darker shaded areas of the density plots). 715 
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 716 

Extended Data Fig. 7: Density plots showing the distribution of median vapour pressure 717 
deficit (VPD) for Brazil at mean annual global temperatures corresponding with a probability 718 
of 0.25, 0.5, 0.75 and 1 of exceeding the 0.82 kPa VPD threshold. Dark shaded areas on 719 
density plots represent the range of the data from TerraClimate climate change scenarios 720 
and extended light areas are extrapolations. Calculations of the probability of exceeding 721 
VPD thresholds were made on the range of actual climate change scenario data (i.e., the 722 
darker shaded areas of the density plots). 723 

 724 

 725 

 726 
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 727 

Extended Data Fig. 8: The relationship between growing season vapour pressure deficit and 728 
yield in a-b, model and threshold estimate that accounts for the biennial life cycle of Arabica 729 
(C. arabica) with the past two-years of climate taken into account and a controlling variable 730 
for on and off production years (see Methods for details), b-d, an annual model (only 731 
accounting for the most recent seasons climate) and threshold estimate. e, AIC values 732 
(lower values indicate better model parsimony). A 50/50 weighting of the current and 733 
previous years seasons is the best performing model (i.e., has the lowest AIC). 734 

 735 
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 736 

 737 

Extended Data Fig. 9. Coffee yield response to vapour pressure deficit and maximum 738 
temperatures and estimated thresholds for a model without interactions. a, Arabica (C. 739 
arabica) yields relationship with mean vapour pressure deficit (VPD) in the growing season 740 
while other predictors are held constant at their mean. b, Arabica yields relationship with 741 
mean maximum temperature in the growing season while other predictors are held 742 
constant at their mean. Blue shaded areas are the 95% confidence interval. Black dashed 743 
line is the estimated threshold. c, Bootstrapped threshold estimates for the mean VPD 744 
threshold. d, Bootstrapped threshold estimates for mean maximum temperature.  745 

 746 

 747 
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 748 

Extended Data Fig. 10. Arabica (C. arabica) yield response to vapour pressure deficit and 749 
maximum temperatures and estimated thresholds for a model with climate variable 750 
interactions only. a, Arabica yields relationship with mean vapour pressure deficit (VPD) in 751 
the growing season while other predictors are held constant at their mean. b,  Arabica yields 752 
relationship with mean maximum temperature in the growing season while other predictors 753 
are held constant at their mean. Blue shaded areas are the 95% confidence interval. Black 754 
dashed line is the estimated threshold. c, Bootstrapped threshold estimates for the mean 755 
VPD threshold. d, Bootstrapped threshold estimates for mean maximum temperature.  756 

 757 

 758 

 759 
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