UNIVERSITY OF SOUTHERN QUEENSLAND

GEOGRAPHIC INFORMATION SYSTEM BASED

MANURE APPLICATION PLANNING

A Dissertation submitted by

Badri Bahadur Basnet, M. Eng.

For the award of

DOCTOR OF PHILOSOPHY

2002

CERTIFICATE OF DISSERTATION

I certify that the ideas, investigations, analysis, results, discussions, and conclusions reported in this dissertation are entirely my own work, except where otherwise acknowledged. I also certify that the work is original and has not been previously used to earn academic awards.

Date:/..../....

Signature of Candidate – Badri B Basnet

ENDORSEMENT

Date:/...../....

Signature of Supervisor (1) – Dr Armando A Apan

Date:/...../....

Signature of Supervisor (2) – Dr Steven R Raine

ABSTRACT

The disposal of animal waste has become a problem in many parts of the world due to the rapid growth in the number and the size of intensive animal industries. Safe waste disposal sites are rarely available and the relocation and/or treatment of animal waste is seldom economically viable. The reuse of animal waste for energy recovery and re-feeding is also not popular. Animal waste is a valuable source of plant nutrients and a very good soil conditioner, and has been commonly applied as fertiliser to agricultural fields. However, due to the increasing oversupply of animal waste in recent years, it has often been applied in excess to the agricultural fields.

Excessive application of animal waste, without due consideration of its implications, is a serious concern. The run-off and leaching losses of nutrients from the fields fertilised with animal waste have contributed significantly to the eutrophication and toxic blue-green algae blooms in surface water systems and nitrification of ground water systems. It has also led to nutrient imbalances in the soils and odour pollution to the surrounding communities. The animal waste, which is a valuable source of plant nutrients, has thus become both an economic and environmental burden, and there is a need to develop a strategy for its sensible use as a fertiliser in agricultural fields.

Sensible use of animal waste involves the consideration of all the agricultural, environmental, social, and economical limitations. A rational method of achieving this is to restrict the use of animal waste to sites suitable for such uses, identify areas where it can be relocated and applied economically, limit the application rates to a safe level, and observe appropriate manure management practices. This study addressed each of these components by developing a comprehensive manure application plan (MAP) for the site-specific use of animal waste as fertiliser in agricultural fields.

Various geographic information systems (GIS) based techniques, including a weighted linear combination model and map algebra based cartographic modelling, were employed to achieve the goal. The appropriateness of the existing techniques and procedures were evaluated and modified to meet the current input requirements. New methods of analysis were devised as necessary. The Westbrook sub-catchment of the Condamine River catchment in south-east Queensland was selected as the study area. The sub-catchment covers 24,903 hectares and contains 39 intensive animal industries. The catchment is also a part of the Murray-Darling Basin, which has been suffering from toxic blue green algae blooms recurrently since 1991.

This study identified that only about one-fifth of the sub-catchment area is suitable for animal waste application. Depending on the method of site suitability analysis and the number of input factors used the suitable area ranged between 16 and 22 percent. This comparatively small area is mainly due to the presence of a large proportion of non-agricultural areas in the sub-catchment. The suitable areas were also found to have various degrees of suitability for waste application. However, the degree of site suitability was affected by the number of input factors used in the analysis, the weighting of the factors, and the method of factor attribute standardisation. Conventional methods of weighting input factors were found to be cumbersome and not particularly suitable. Hence, this study developed a new 'objective oriented comparison' method of factor weighting. Standardisation of input factors using a continuous, rather than discrete, classification (ie fuzzy set) method was found to be more consistent in degree of suitability determination. The discrete classification of factor attributes into classes of different numbers and sizes, and the weighting of classes to a sum of one, were identified as a limitation in using this standardisation method. A new 'weight adjustment' method was devised and demonstrated to reduce factor-weighting biases.

The suitable sites, degree of site suitability, and other relevant spatial and non-spatial information were processed within a GIS framework to develop a comprehensive manure application plan. The inherently high presence of available phosphorus in the soils of the study area was recognised and the P_2O_5 content in the manure was used as the basis for determining manure application rates. A complimentary nitrogen supply map was also generated. Manure management practices applicable to the areas with a lower degree of suitability were also suggested.

LIST OF PUBLICATIONS ARISING FROM THIS WORK

Basnet, B B, Apan, A A and Raine, S R (2000). <u>Selecting Sites Suitable for Animal</u> <u>Waste Application Using a Vector GIS</u>. Proceedings of the Society of Engineering in Agriculture (SEAg) Conference, 2-5 April, Adelaide, Australia.

Basnet, B B, Apan, A A and Raine, S R (2001). <u>Selecting Suitable Sites for Animal</u> <u>Waste Application using a Raster GIS</u>. Environmental Management, 28 (4), p.519-531. DOI: 10.1007/s002670010241.

Basnet, B B, Apan, A A and Raine, S R (in press). <u>Geographic Information System</u> <u>Based Manure Application Plan</u>. Journal of Environmental Management, volume 64. DOI: 10.1006/jema.2001.0484

Basnet, B B, Apan, A A and Raine, S R (in process). <u>Degree of Site Suitability for</u> <u>Site-Specific Decision-Making</u>. Journal of Environmental Engineering, (Tentatively accepted in April 2001).

ACKNOWLEDGEMENTS

I wish to sincerely thank my supervisors Dr Armando A Apan and Dr Steven R Raine who have contributed equally and complemented each other in guiding me throughout this study. This study would not have been possible without their continuous guidance, supervision, encouragement, and support. I would also like to thank the Faculty of Engineering and Surveying for providing a scholarship for this work. My thanks are also extended to the staff members of the Faculty and the Office of Research and Higher Degrees for their continuous support.

I wish to extend my thanks to Mr Mark Schuster (Toowoomba City Council) for providing some of the more important datasets, organising field visits, and giving valuable advice. I also wish to thank the members of the AgWise research group for their constructive comments and suggestions, and to acknowledge the assistance of Mr Andrew Biggs, Mr Steve Donald (Department of Natural Resources), and Mr Bill Mills (Department of Primary Industries) in data acquisition. I would also like to acknowledge the Environmental Protection Agency (Queensland) and Australia Surveying and Land Information Group for making relevant information available.

Finally, I wish to express my sincere thanks to my wife Bhagabati, son Prajwal and daughter Prasamsa for their continuous encouragement and support throughout this study. I would not have been able to complete this work without them allowing me to carry on with the project work, often at the expense of more important parental duties.

TABLES OF CONTENTS

1	GENERAL INTRODUCTION					
	1.1	Probler	n statement	1		
	1.2	Aim		4		
	1.3	Researc	ch approach	5		
2	REV	REVIEW OF LITERATURE				
	2.1	Introduction				
	2.2	Animal waste and the environment				
	2.3	Utilisation of animal waste				
	2.4	GIS as	a tool for manure management	15		
		2.4.1	GIS and spatial analysis	15		
		2.4.2	Location modelling for waste application	18		
		2.4.3	Degree of site suitability for site-specific decision making	20		
		2.4.4	Application of GIS for site-specific manure management	22		
	2.5	The ob	jectives	23		
3	COMMON RESEARCH METHODS					
	3.1	Introduction				
	3.2	Study a	urea	25		
		3.2.1	Using a sub-catchment as the study unit	29		
		3.2.2	Structuring the digital elevation model of the study area	30		
		3.2.3	Delineating the sub-catchment	34		
	3.3	Selection of input factors				
	3.4	Data acquisition and pre-processing				
	3.5	Site suitability evaluation				
4	SITI	SITE SUITABILITY ANALYSIS				
	4.1	Introdu	ction	43		

	4.2	Selectin	ng Sites Suitable for Animal Waste Application	43		
		4.2.1	Vector-based site suitability analysis	44		
		4.2.2	Raster-based site suitability analysis	44		
		4.2.3	Objectives	46		
	4.3	Materia	ls and methods	47		
		4.3.1	Comparison of vector- and raster-based analyses	47		
		4.3.2	Field validation of suitability measurements	50		
		4.3.3	Sensitivity analysis	51		
		4.3.4	Weighting of input factors	56		
	4.4	Results		58		
		4.4.1	Comparison of vector- and raster-based analyses	58		
		4.4.2	Field validation of sites identified using the raster-based WLC			
			method	61		
		4.4.3	Sensitivity analyses	62		
		4.4.4	Evaluation of the OOC method	65		
	4.5	Discussion				
		4.5.1	Comparison of vector and raster methods of site suitability			
			analysis	66		
		4.5.2	Sensitivity analysis (degree of site suitability)	70		
		4.5.3	Objective oriented method of factor weighting	73		
	4.6	Conclus	sion	74		
5	ASSESSING THE DEGREE OF SITE SUITABILITY 76					
	5.1	Introduction				
	5.2	Degree	of site suitability for animal waste application	76		
		5.2.1	Standardisation of input factors	77		
		5.2.2	Ambiguities about standardisation	78		
		5.2.3	Effect of standardisation on degree of site suitability	79		
		5.2.4	Objectives	82		
	5.3	5.3 Materials and Methods				
		5.3.1	Standardisation using a classification method	85		

		5.3.2	Standardisation using continuous rescaling	95		
		5.3.3	Comparing the classification and rescaling methods of			
			standardisation	96		
	5.4	Results		98		
		5.4.1	Effect of factor attribute classification	98		
		5.4.2	Effect of factor attribute rescaling	101		
		5.4.3	Comparison between the methods of standardisation	102		
	5.5	Discuss	sion	106		
		5.5.1	Standardisation of factors using the classification method	106		
		5.5.2	Standardisation of factors using rescaling method	112		
		5.5.3	Factor attribute classification versus rescaling	114		
	5.6	Conclus	sion	115		
6	DEV	ELOPIN	IG A MANURE APPLICATION PLAN	117		
	6.1	Introduction				
	6.2	Site-spe	ecific application of animal waste as fertiliser	117		
		6.2.1	Input variables	118		
		6.2.2	Critical plant nutrient	118		
		6.2.3	Non-agricultural aspects of animal waste reuse	119		
		6.2.4	Objective	120		
	6.3	Materials and methods				
		6.3.1	Data collection and pre-processing	120		
		6.3.2	Factor standardisation and weighting	120		
		6.3.3	Site suitability determination	121		
		6.3.4	Determining the crop nutrient requirements	123		
		6.3.5	Manure allocation and nutrient content	126		
		6.3.6	Determining the manure application rate	127		
		6.3.7	Alternate manure management strategies	128		
	6.4	Results		129		
		6.4.1	Site suitability	129		
		6.4.2	Crop distribution and nutrient requirements	131		

X

		6.4.3	Manu	re allocation and manure nutrient (P ₂ O ₅) contents	134	
		6.4.4	Manu	re application plan	136	
		6.4.5	Nitrog	gen application from manure sources	138	
		6.4.6	Maxii	num manure application rates	138	
	6.5	Discuss	ion		141	
		6.5.1	Suital	bility measurements	141	
		6.5.2	Crop	nutrient requirements	142	
		6.5.3	Manu	re allocation map	143	
		6.5.4	Manu	re application plan	144	
		6.5.5	Adop	tion of the manure application plan	147	
	6.6	Conclus	sions		151	
7	GENERAL DISCUSSION					
8	CON	CONCLUSION				
9	REF	REFERENCES				
10	APP	APPENDICES			170	
	10.1	Append	ix A.	Datasets used in catchment delineation	170	
	10.2	Append	ix B.	Input factors	174	
	10.3	Append	ix C.	Classification of input factors	186	
	10.4	Append	ix D.	Validation, processing and processed outputs	196	

xi

LIST OF FIGURES

Figure 2.1	Binary overlay: intersection and union operations	17
Figure 3.1	Location of the study area: Westbrook sub-catchment in south east Queensland, Australia	26
Figure 3.2	Photographs: (a) the general landscape of the study area, (b) the Westbrook Creek embankment, and (c) typical cultivated area	28
Figure 3.3	A process used to structure the digital elevation model and delineate the sub-catchment	32
Figure 3.4	Hillshade view of the study area and the vicinities with overlaid stream network	33
Figure 3.5	Delineated sub-catchment depicting the digital elevation model	34
Figure 3.6	Data pre-processing operations	39
Figure 3.7	The weighted linear combination of three factors producing an output map with various degree of site suitability (following the Figure 5.11 of Chrisman, 1997, p132).	42
Figure 4.1	Site suitability analysis using a vector-based binary intersection operation	49
Figure 4.2	Processing of factors to use as input in WLC model	50
Figure 4.3	Sites suitable for animal waste application (Vector method)	59
Figure 4.4	Sites suitable for animal waste application (Raster method)	59
Figure 4.5	Effect of the number of input factors on suitable areas identified using a raster-based method	61
Figure 4.6	Sites suitable for animal waste application in the Westbrook sub- catchment	63

Figure 5.1	Schematic representation of the effect of classification on cell	01
	values	81
Figure 5.2	The process of factor attribute standardisation using both discrete classification and continuous rescaling methods	84
Figure 5.3	Classification of factor attributes into different numbers of classes	88
Figure 5.4	Examples of input factors with attribute classified into class of different sizes	90
Figure 5.5	Weighted average as a function of the method of standardisation	103
Figure 5.6	Effect of the number of classes on the degree of site suitability	107
Figure 5.7	Linear combination of input factors with varying class weights	107
Figure 5.8	Adjustment of weight to compensate the division of weight due to factor attribute classification (modification of Figure 5.6)	110
Figure 5.9	Effect of class sizes on the dispersion and skewing of the cell values	112
Figure 6.1	Manure application plan development process for site-specific	
	application of manure in agricultural fields	124
Figure 6.2	Overall suitability of sites for animal waste application	130
Figure 6.3	Crop distribution and nutrient (P2O5) requirement to achieve target	
	yield in the sub-catchment	133
Figure 6.4	Application area of the various manure types in the Westbrook sub-	
	catchment (Total application area = 21.4 % of the sub-catchment)	134
Figure 6.5	Proposed allocation of manure and manure nutrient (P_2O_5) content in the Wayther do such as taken and	125
	in the Westbrook sub-catchment	135
Figure 6.6	Suggested manure application plan for Westbrook sub-catchment	137
Figure 6.7	Total use of different manures in the Westbrook sub-catchment	138

Figure 6.8Ammonium nitrogen potentially applied if the manure applicationplan (Figure 6.6) is implemented

139

LIST OF TABLES

Table 2.1	Commonly available software programs for the calculation of	
	manure application rates	14
Table 3.1	Selection of input factors for the site-specific manure management	35
Table 3.2	Data acquisition: sources, formats, scale, and uses	37
Table 3.3	Exclusionary criteria applied to input factors selected for site suitability determination for animal waste application in agricultural fields	40
Table 4.1	Input factors and potentially suitable area for each input factor	48
Table 4.2	Questionnaire for field assessment of site suitability	51
Table 4.3	Classification and weighting of factor attributes for raster-based site suitability analysis	53
Table 4.4	Example of the pair-wise comparison matrix for class weight determination associated with the "proximity to stream" factor	54
Table 4.5	Objective oriented comparison (OOC) method of weighting input factors	58
Table 4.6	Site suitability measurements as affected by the number of input factors in vector and raster methods	60
Table 4.7	Error matrix and Kappa index of agreement	61
Table 4.8	Summary of the WLC method based site suitability analysis	62
Table 4.9	Effect of the number of input factors in the areal extent and the degree of site suitability for animal waste application	64
Table 4.10	Effect of factor weights on degree of site suitability for animal waste application	65

Table 4.11	Weighting of input factors using AHP based WEIGHT module	66
Table 5.1	Classification of attributes and weighting	86
Table 5.2	Factor attribute classification using equal area method	87
Table 5.3	Area under each class as determined by different methods	89
Table 5.4	Weight distribution between classes using the equal increment method	92
Table 5.5	Uneven weight distribution between classes based on the AHP method	92
Table 5.6	Normal and adjusted weighting of factor attribute classes	94
Table 5.7	Details of the factor attribute classification of selected input factors	96
Table 5.8	Normal weighting of factor attribute classes	97
Table 5.9	Effect of the number of factor attribute classes on the degree of site suitability measurements.	98
Table 5.10	Effect of class size and weights on the degree of site suitability	99
Table 5.11	Effect of uneven weight distribution on the degree of site suitability	100
Table 5.12	Effects of weight adjustment on the degree of site suitability	101
Table 5.13	Degree of site suitability measurement obtained using rescaling method of standardisation	102
Table 5.14	Effect of factor attribute classification (weighting and number of classes) and rescaling on the degree of suitability	104
Table 5.15	Effect of the number of input factors on the degree of site suitability	105
Table 6.1	Objective oriented comparison based weighting of input factors	122
Table 6.2	Phosphorus removal rates and target yields of various crops grown in Westbrook sub-catchment.	125

Table 6.3	Nutrients contained in various types of solid and liquid animal			
	waste (source: OSU, 1992)	127		
Table 6.4	Value attributes of environmental suitability map (expressed as a fraction).	131		
Table 6.5	Cropping area and crop nutrient (P_2O_5) requirements to achieve target yields of various crops grown in the Westbrook sub- catchment	132		
Table 6.6	Maximum application rates of various manure types	140		
Table 6.7	Areas under different degree of site suitability categories	140		
Table 6.8	Suggested suitability classes and manure management practices	148		