The Journal of Systems & Software 201 (2023) 111682

Contents lists available at ScienceDirect

SOI:TWAi?E
The Journal of Systems & Software

»

journal homepage: www.elsevier.com/locate/jss

L))

Check for
updates

Software architecture for quantum computing systems — A systematic
review”

Arif Ali Khan **, Aakash Ahmad P, Muhammad Waseem ¢, Peng Liang ¢, Mahdi Fahmideh ¢,
Tommi Mikkonen €, Pekka Abrahamsson €

2 M3S Empirical Software Engineering Research Unit, University of Oulu, 90014 Oulu, Finland

b School of Computing and Communications, Lancaster University, Leipzig, Germany

¢ School of Computer Science, Wuhan University, Wuhan, China

4 School of Business at University of Southern Queensland, Queensland, Australia

€ Faculty of Information Technology and Communication Sciences, Tampere University, 33014 Tampere, Finland

ARTICLE INFO ABSTRACT

Quantum computing systems rely on the principles of quantum mechanics to perform a multitude of
computationally challenging tasks more efficiently than their classical counterparts. The architecture of
software-intensive systems can empower architects who can leverage architecture-centric processes,
practices, description languages to model, develop, and evolve quantum computing software (quantum
software for short) at higher abstraction levels. We conducted a Systematic Literature Review (SLR)
to investigate (i) architectural process, (ii) modelling notations, (iii) architecture design patterns,
(iv) tool support, and (iv) challenging factors for quantum software architecture. Results of the SLR
indicate that quantum software represents a new genre of software-intensive systems; however,
existing processes and notations can be tailored to derive the architecting activities and develop
modelling languages for quantum software. Quantum bits (Qubits) mapped to Quantum gates (Qugates)
can be represented as architectural components and connectors that implement quantum software.
Tool-chains can incorporate reusable knowledge and human roles (e.g., quantum domain engineers,
quantum code developers) to automate and customise the architectural process. Results of this SLR
can facilitate researchers and practitioners to develop new hypotheses to be tested, derive reference
architectures, and leverage architecture-centric principles and practices to engineer emerging and next

generations of quantum software.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Article history:

Received 16 July 2022

Received in revised form 10 March 2023
Accepted 20 March 2023

Available online 24 March 2023

Keywords:

Quantum computing

Quantum software engineering
Quantum software architecture
Systematic literature review

the potential to solve a set of computationally challenging prob-
lems such as nature-inspired computing, financial modelling,
and advanced encryption with increased efficiency (Montanaro,
2016; Grimsley et al., 2019; Kriiger and Mauerer, 2020). Quan-
tum computing attributes (e.g., Qubits, superposition, entangle-
ment, and interference) lie at the heart of quantum information
processing (Zeilinger, 1999; Gay, 2006). Quantum programming
languages that implement quantum algorithms enable quantum
supremacy in computing that is lacking in traditional computing
systems. Montanaro (2016), Gay (2006), Sofge (2008). One class

1. Introduction

Quantum computing relies on quantum mechanics, a disci-
pline more familiar and centre of attention to physicists rather
than computer scientists or software engineers (Zhao, 2020;
Deutsch, 1985; Dirac, 1981). However, in recent years, with an
emergence of quantum algorithms and Quantum Programming
Languages (QPL), software programmers have been able to exploit
the theory and principle of quantum mechanics to process infor-
mation and perform specific computation tasks faster than classi-

cal computing systems (Chong et al., 2017; Ying, 2016). Compared
to classical algorithms for computation, quantum algorithms have

* Editor: Prof. Neil Ernst.
* Corresponding author.
E-mail addresses: arif.khan@oulu.fi (A.A. Khan), a.ahmad13@lancaster.ac.uk
(A. Ahmad), m.waseem@whu.edu.cn (M. Waseem), liangp@whu.edu.cn
(P. Liang), mahdi.fahmideh@usq.edu.au (M. Fahmideh), tommi.j.mikkonen@jyu.fi
(T. Mikkonen), pekka.abrahamsson@tuni.fi (P. Abrahamsson).

https://doi.org/10.1016/].jss.2023.111682

of such problems relate to information and computation science
that requires large amounts of parallel processing (Nguyen et al.,
2022) for tackling challenges, such as optimisation, encryption,
big data analytics, and machine learning (Biamonte et al., 2017;
Rebentrost et al., 2014). Other set of problems relate to effi-
cient and accurate simulation of quantum systems in natural
sciences, such as physics (Grimsley et al., 2019), chemistry (McAr-
dle et al., 2020), mathematics (Kriiger and Mauerer, 2020), and
challenges relating to their applications (Stepney et al., 2005;

0164-1212/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111682
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111682&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:arif.khan@oulu.fi
mailto:a.ahmad13@lancaster.ac.uk
mailto:m.waseem@whu.edu.cn
mailto:liangp@whu.edu.cn
mailto:mahdi.fahmideh@usq.edu.au
mailto:tommi.j.mikkonen@jyu.fi
mailto:pekka.abrahamsson@tuni.fi
https://doi.org/10.1016/j.jss.2023.111682
http://creativecommons.org/licenses/by/4.0/

AA. Khan, A. Ahmad, M. Waseem et al.

Childs et al., 2018; Mosca, 2018). However, QPL and their un-
derlying algorithms focus on computation and implementation
details to produce executable specifications, but lack an overall
global view of the software systems under design. Source code
based implementation details undermine architectural view(s) as
system blueprint, that can compromise the quality and function-
ality of end product, i.e., quantum software (Zhao, 2020; Moguel
et al., 2020; Piattini et al., 2021). Technology giants are scaling up
their financial and strategic investments in quantum computing
platforms, more specifically quantum programming languages
such as Q# from Microsoft, Qiskit from IBM, and Cirq from Google,
however; quantum software engineering and development is still
in its infancy (Microsoft, 2021; Behera et al., 2019; Courtland,
2017). Some recent research studies also indicate that quantum
software projects that overlook design principles to primarily
focus on quantum source code implementations, often lead to
faulty implementations and bugs in quantum software (Zhao
et al,, 2021; Campos and Souto, 2021).

Software architecture as described in the ISO/IEC 42010 stan-
dard provides a global view of software-intensive systems,
representing their blue-print, by abstracting complex implemen-
tation details with architectural components and connectors
(Anon, 2022; Hofmeister et al., 2007; Li et al., 2013). Software
developers and architects have successfully used architectural
descriptions and specifications to design, develop, validate, and
evolve software-intensive system at higher-level of abstractions
while maintaining system functionality and quality (Malavolta
et al., 2012; Di Francesco et al., 2019). Architectural models have
been exploited to design, develop, and validate emerging gener-
ations of software-intensive systems including but not limited
to the internet of things, blockchain applications, and artifi-
cially intelligent systems (Alreshidi and Ahmad, 2019; Fahmideh
et al,, 2021a; Xu et al., 2017; Fahmideh et al., 2021b; Graef and
Georgievski, 2021). Quantum Software Architecture (QSA), as a
new genre of Software Architectures (SA), can provide architec-
tural descriptions (i.e., components, connectors, and configura-
tions) to design and develop quantum software, while abstracting
complex and implementation specific tasks (Hofmeister et al.,
2007; Garcia et al.,, 2021). Specifically, architectural components
can represent modules of source code while architectural con-
nectors specify interactions between modules to represent the
structure and behaviour of a system (Garcia et al., 2021). Trans-
formation from abstract high-level models (i.e., design artifacts)
to low-level executable specifications (i.e., source code artifacts)
can be enabled via model-driven architecting of quantum soft-
ware (Moin et al., 2021; Pérez-Castillo et al.,, 2021). However,
QSA as an emerging discipline remains an under-explored area
by the current generation of designers and architects who find
themselves less prepared to tackle the challenges related to
QSA in the development life-cycle of quantum software (Mag-
nani, 2022; Shepard, 2021; Naveh, 2021). Despite a plethora of
published research in recent years that focuses on engineering
and architecting quantum software, there do not exist any evi-
dence, i.e., empirical study or data-driven analysis to consolidate
a collective impact of existing research on architecting quantum
software (Garcia et al.,, 2021; Moin et al., 2021; Pérez-Castillo
et al., 2021; Magnani, 2022).

Systematic Literature Reviews (SLRs) rely on Evidence-based
Software Engineering (EBSE) approach to identify, classify, com-
pare, and synthesise published research as an evidence to em-
pirically investigate the topic under investigation (Di Francesco
et al., 2019; Kitchenham and Charters, 2007). Recently, a number
of SLRs and review based studies have been conducted to inves-
tigate the application of Software Engineering (SE) to quantum
computing systems, however; there is no effort to review the
state-of-the-art on architecting quantum software (Zhao, 2020;

The Journal of Systems & Software 201 (2023) 111682

Moguel et al., 2020; Piattini et al., 2021; Gill et al., 2022). There-
fore, the objective of this review is to complement SE based
studies and specifically focus on identification, classification, and
synthesis of the published research on the role that software archi-
tecture plays in developing quantum computing systems. We aim
to investigate the core concepts, underpinning fundamentals of
software architectural aspects, often overlooked in SE focused
studies, by outlining a number of Research Questions (RQs). These
RQs focus on (i) architectural process (unifying architecting activ-
ities), (ii) modelling notations (architectural representation), (iii)
patterns and design decisions (reusable knowledge and best prac-
tices), (iv) tool support (enabling automation and customisation)
and (v) emerging challenges for quantum software architectures.
These RQs are motivated by academic research and industrial
studies on software architecture that highlight the needs for
process-centric architecting, where a process acts as an umbrella
to support various architectural aspects (Hofmeister et al., 2007;
Malavolta et al., 2012). Moreover, in quantum software engineer-
ing lifecycle (Dey et al., 2020), during system design, architectural
aspects such as software modelling, patterns, tools, and human
roles are as fundamental for architecture-centric engineering of
quantum software (Piattini et al., 2021). Results and findings of
this SLR complement existing surveys on Quantum Software Engi-
neering (QSE) and can provide foundations for further secondary
studies that can explore architectural principles and practices to
design and develop quantum software.

The results of this SLR indicate that although quantum soft-
ware represents a new generation of software applications,
foundations for quantum software architectures are grounded
in architectural processes and architecting activities of classi-
cal systems (e.g., object, service, or component-based) (Kriiger
and Mauerer, 2020; Malavolta et al., 2012; Di Francesco et al.,
2019; DiAdamo et al., 2021). Quantum-specific features involving
Qubits (e.g., quantum entanglement and quantum superposition)
elaborated later, do require tailored architectural processes and
modelling notations, such as exploiting the Unified Modelling
Language (UML) to effectively address the challenges of the quan-
tum age architectures (Pérez-Castillo et al., 2021). Specifically,
existing processes and notations need customisation to enable co-
design of quantum systems that can enable the mapping between
Qugates and Qubits to software architectural components and
connectors. Tool-chain to support quantum architecting process
can facilitate system and software architects to achieve automa-
tion and incorporate human decision support while designing and
implementing quantum software. The results of the SLR can be
beneficial for:

(i) Researchers who are interested in understanding theory
and principles of architecture-intensive development, es-
tablishing new hypotheses to be tested, and developing
reference architectures and solutions for quantum soft-
ware.

Practitioners who would like to understand the architect-
ing activities, patterns as reusable knowledge, existing and
required tool chain, and the extent to which the academic
research can be leveraged to develop industry scale solu-
tions for quantum software.

(ii

=

The rest of the paper is organised as follows: Section 2 presents
the context and background of this research study. Section 3
details the research methodology to conduct the study. Sec-
tions 4-5 present the result of the study. Section 6 discusses
the core finding and implications of the study results. Section 7
elaborated on threats to the validity of the research. Section 8
reviews and provides comparative analysis of the most relevant
research studies. Section 9 concludes the study with a discussion
of potential future research.

AA. Khan, A. Ahmad, M. Waseem et al.
2. Context: Architecting software for quantum computing

This section contextualises quantum computing systems in
terms of their building blocks, i.e., (a) quantum hardware, (b)
quantum software, and (c) quantum software architecture as
shown in Fig. 1. More specifically, Fig. 1 provides a visual refer-
ence that correlates the Qubits and Qugates to quantum source
code, representing design and implementation phase of QSE life-
cycle. Software architectural components and connectors provide
a blue-print to implement the quantum source code. We use the
illustrations in Fig. 1, elaborated below, to introduce fundamental
concepts and terminologies that will be used throughout the

paper.
2.1. Quantum computing systems

To gain strategic advantages of quantum information pro-
cessing, technology giants, such as IBM, Google, Microsoft and
governmental organisations are heavily investing in the research
and development of quantum systems (Microsoft, 2021; Behera
et al, 2019; Courtland, 2017; Goled, 2021). From the system'’s
engineering perspective, as shown in Fig. 1, fundamental to quan-
tum computing hardware is the concept of Qubit (quantum bit)
that represents the most fundamental unit of quantum infor-
mation processing (Zeilinger, 1999; Gay, 2006). Contrary to the
classical bit (binary digit) that is expressed as [1, 0] in digi-
tal computing systems, a Qubit represents a two-state quantum
computer and these two states are specified as |0) and |1). The
combinations of bits represent flow of digital information that
alters the state of binary logic gates (on: 0 off: 1) to make digital
systems work. Analogous to the binary gates, quantum gate (a.k.a.
the quantum logic) represents the building blocks of a quantum
circuit and transits its state via Qubit (Gay, 2006) as in Eq. (1).

1 0
0 and |1) = 1

classical bit) in a linear combination of both states.

|0>=[H + |1>=[” (1)

In Fig. 1(a), we illustrate and elaborate on the distinction
between a Bit and Qubit. A Bit is like a gate in an electronic
circuit that can be either on or off, whereas a Qubit uses the
unique properties of quantum mechanics to provide a unit that
can be one or zero- or anything in between. The bit can take
a value of ‘0’ or ‘1’ as either ‘Off or ‘On’ with 100% probability
(left). A qubit can be in a state of |0) or |1 or in a superposi-
tion state with 50% |0) and 50% |1), superposition state (left).
Two Qubits are in an entangled state (right) - entangled qubits
are linked such that by looking (i.e.,, measuring) one of these
two, will reveal the state of other Qubit. Further details about
Qubit and Qugate in the context of operationalising the QC sys-
tems can be found in Zhao (2020), Zeilinger (1999). Like the
classical computing systems, controlling the Qubits that manip-
ulate Qugates, there is a need for quantum software systems and
applications that can exploit benefits of quantum information
processing by operationalising quantum computers. For example,
QuNetSim (DiAdamo et al,, 2021) is a Python software frame-
work that is capable of managing quantum circuits to simulate
processing and transmission of quantum information via quan-
tum networks. Fig. 1 shows that in order to enable quantum
software applications to utilise quantum hardware, there is a
need for quantum code compilers that can translate high-level
computational instructions into machine translated code to con-
trol quantum hardware (Chong et al., 2017; Sunita et al., 2021).
As a typical example of such compilation are the solutions by
proposed by Ying (2016) and, Kriiger and Mauerer (2020), which

A Qubit can be in a state |0) = or (unlike a

The Journal of Systems & Software 201 (2023) 111682

receive the compiled code that can be executed or simulated
on quantum platforms to enable quantum processing for opti-
mising solutions regarding unstructured data searching, parallel
processing, and nature inspired computing. In recent years, a
plethora of research and development has emerged that focused
on quantum algorithms and programming languages to address
the above-mentioned computational challenges effectively and
efficiently (Sunita et al., 2021). Quantum algorithms have the
potential to provide computation efficiency to software engineer-
ing problems in areas including but not limited to data mining,
machine learning, and cryptography that do not scale optimally
on non-quantum computing platforms (Miranskyy et al., 2022).
Despite the significance of quantum programming languages to
produce executable specifications for quantum hardware; there is
a need for overall engineering lifecycle(s) that goes beyond level
of source code to specify, execute, validate, and evolve software-
intensive system based on required functionality and desired
quality (Moguel et al., 2020; Piattini et al., 2021).

2.2. Software Engineering (SE) for quantum computing

Software engineering, as defined in the ISO/IEC/IEEE 90003:
2018 standard aims to apply engineering principles and prac-
tices to design, develop, validate, deploy, and evolve software-
intensive systems effectively (ISO/IEC/IE.E.E. 90003:2018, 2021).
In recent years, SE focused research and development started to
tackle, such as quantum software models, their algorithmic spec-
ifications, and simulated evaluations to leverage benefits of quan-
tum hardware for quantum information processing (Montanaro,
2016; Grimsley et al,, 2019; Rebentrost et al., 2014; Childs et al,,
2018; Svore et al,, 2006). More specifically, software engineers
can leverage SE practices and patterns by following software
process(es) that comprises of a multitude of engineering activities
including but not limited to requirements engineering, design,
implementation, evaluation, and deployment, as shown in Fig. 1.
SE activities adopted from quantum and classical software en-
gineering concepts are used to represent a simplified view of
quantum SE process (see Fig. 1 (b)) (Zhao, 2020; Dorfman and
Thayer, 1997). Such generalised process can be tailored (adding,
removing, and/or customising any activities) as per the context of
system development.

Quantum computing systems are in a phase of continuous
evolution and consequently quantum SE represents a new gen-
eration of software-intensive engineering activities to develop
applications that can control the underlying hardware (Piattini
et al,, 2021). In recent years, research communities on software
engineering and software architecture have focused on estab-
lishing dedicated forums, i.e., conferences, workshops and alike
forums in an attempt to set the agenda(s), streamline emergent
challenges, and propose community wide initiatives to engineer
and architect quantum software (Abreu et al., 2021a; Barzen
et al,, 2021). These QSE focused research communities intend
to gather researchers and practitioners and provide a forum to
collaborate and explore the possibilities to exploit existing soft-
ware engineering methods that can be applied to quantum era
computing and software systems (Abreu et al., 2021b; Ali et al,,
2022). The Quantum Flagship represents a prime example to
support sustainable research and development for consolidating
and expanding scientific leadership, achieving excellence and
innovation in quantum computing technologies (Anon, 2022a).
QSE process may involve an additional challenge of managing
hybrid applications and algorithms. A hybrid application and its
underlying implementation involve splitting the overall applica-
tion into classical modules (pre/post-processing) and quantum
modules (quantum computation) referred to as the quantum-
classic split (Weder et al., 2022), as shown in Fig. 1(b). Research

AA. Khan, A. Ahmad, M. Waseem et al.

Quantum Software Engineering Process

The Journal of Systems & Software 201 (2023) 111682

v—
v — x—
- -
= @ s @
. Design and . :
Requirements . Testing || Maintenance
Implementation
[b] Quantum Software "
2
:1-) %9\.\\ ﬁiv.')classical o
o 9’6‘\\0‘“ @) V Program § (_33
g, aeé\gg‘\dgow [Pre-processing | [Post-processing| o 352 Architectural Configuration
& N -l o= === == " éi Port
° Qu’antum Operations [— s& Component g:l-'. (Provider)
& - 3 Program o =T Port
é i Connector (Requester)
S " Quantum Mapping Quantum = "7t T-os
£ Code A T Gates
S 1 E:l
]
® |import qgiskit as g g'
3 gen_integer e '3'-gen_lnteger
-

g.QuantumCircuit (I, F)

circuit.x (F)

|0>| o
s lis ead

getFactors

Quantum Program Compiler

[a] Quantum Hardware

100% 100% 50% 50% | <@ 1>
0<@or(O>»1 0 @1 4
0OR 1 19 Jo+o

Factorise E:l

3INJo9}IdJy SJEMIJOS Wnjen

Simplified Archtectural View
(Shor's Algorithm for Integer Factorisation)

[c] Quantum Software Architecture

Architecture %
[od;

i
(el +(001)

> :
(superposition) (entangelement)

Fig. 1. A simplified view of quantum computing systems ((a) Quantum hardware, (b) Quantum software, (c) Quantum software architecture).

on the quantum-classic split is gaining attention with an aim to
develop QSE process(es) that enable quantum software designers
and developers to engineer hybrid applications by applying the
quantum-classic split pattern (Pérez-Castillo and Piattini, 2022).

In addition to the needs for innovative technologies and pro-
cesses, principle, and practices that specifically tackle challenges
for quantum software modelling and architecting, coding, and
simulation, existing classical SE processes can be customised
to engineer and develop quantum software (Svore et al., 2006;
Baczewski et al., 2017). For example, the concept of architectural
modelling as a generic architecting activity, can be customised
with initiatives like quantum UML profile, exploiting the UML
activity diagrams that could help model parallel computing for
quantum search algorithms (Pérez-Castillo et al., 2021). UML
profiles for quantum systems enable software designers to create
multiple views as different perspectives of system under design.
For example, the designer can utilise the activity diagram to
design quantum circuits (Pérez-Castillo et al., 2021) or utilise use

case, sequence, or deployment diagrams to design the interac-
tion, control flow, and configuration views of classical-quantum
software (Pérez-Castillo and Piattini, 2022). Similarly, existing
requirements engineering process can be tailored to support
requirements for quantum (i.e.,, quantum entanglement) that is
missing in the existing models. In SE process(es), architecting rep-
resents a pivotal activity that accumulates system requirements
as a model thus leading to software implementation, validation,
and evolution while maintaining a global view of the system
and managing architectural trade-offs (Malavolta et al., 2012;
Di Francesco et al., 2019).

2.3. Architecture for quantum software

Architecture of software intensive systems, as described in the
ISO/IEC/IEEE 42010:2022 standard, aims to abstract complex and
implementation specific details to represent system blueprint in
an implementation and technology neutral way (Anon, 2022).

AA. Khan, A. Ahmad, M. Waseem et al.

| v

The Journal of Systems & Software 201 (2023) 111682

f Step 1] Step 2] (Step 3]
Planning the Review Conducting the Review Reporting the Review
Specify Research || 9 Select Primary E Report Demography /,O\\
Questions k{’,J Studies | Details =@
Identify Data g Perform Quality E Report Architectural %
Sources Ej Assessment O\ Solutions
[Formulate Search g@ Perform Data _§ Report Architectural ; g -

Strategy Q Extraction Challanges Z L

Define Inclusion/ Perform Data o Report Implications EEEE

Exclusion Criteria Synthesis e and Validity Threats | oooo

Fig. 2. An overview of the research methodology for SLR.

Empirically-grounded academic research and industrial studies
on architecting software-intensive systems have highlighted that
there is no unified view to represent software architectures
(Hofmeister et al., 2007; Malavolta et al., 2012; Medvidovic and
Taylor, 2000). Different architectural views (also referred to as
architectural models or representations) can also be attributed
to a multitude of modelling approaches supported via UML,
ADL, and graph models that allow software practitioners to cre-
ate customised architectural view(s) that fits their context in a
specific architecting activity (Pérez-Castillo and Piattini, 2022;
Medvidovic et al., 2002). For example, considering the 4 + 1 ar-
chitectural view (Hofmeister et al., 2007), requirements engineers
may be more interested in the interaction model(s) expressed
as graphs or UML use case diagrams that capture architecturally
significant requirements (functionality and quality of system). In
comparison, software developers and quality engineers/testers
are more likely to utilise the component and connector models
that represent modules of source code and their interactions, and
runtime view that models system execution as UML sequence
diagrams. As per the 4 4 1 architectural view, in this study, we
have mainly relied on the component and connector architecture
model (Fig. 1) that represents software in terms of computa-
tions and data stores. However, during architectural review and
synthesis, the component and connector architectural models
alone are not sufficient and the effort to consolidate a singu-
lar or unified view that supports various architectural activities
may be impractical. Once expressed, some architectural models,
i.e., model driven architecture can help to generate the necessary
skeleton or libraries of source code in a (semi-) automated way
using model-driven engineering (Moin et al., 2021). In recent
years, architectural models and notations have proven to be
successful to design and develop software intensive systems by
enabling reusability (patterns and styles), evolvability (architec-
tural reconfigurations), and elasticity (auto-scaling) (Hofmeister
et al,, 2007; Li et al., 2013). Fig. 1(c) illustrates a partial archi-
tectural view of a quantum algorithm to factorise integers that is
modelled as UML component diagram (Pérez-Castillo et al., 2021).
The architectural view abstracts the source code level details to
present design decisions in terms of components (Shor_Factor,
Shor_Order) that coordinate via a connector (getFactors) for inte-
ger factorisation. Architecture in itself represents non-executable
specifications of the quantum search system, however; the ap-
plication of model-driven engineering can help architects and
designers to derive source code directly from architecture models.

In the overall view of Fig. 1, we can conclude that in quantum
computing systems, software architecture represents a blue-print
to develop software systems and applications that manipulate
quantum hardware. Quantum software projects primarily focused

on producing quantum source code while overlooking quantum
software design are often prone to bugs and unfulfilled require-
ments (Campos and Souto, 2021). The role of software architec-
ture in quantum SE is pivotal to develop the requirements, which
lead to software designing, coding, validation, and deployment,
all facilitated using architectural notations. Software architecture
for quantum computing systems (quantum software architec-
ture) can empower the role of software engineers and developers
to create models that act as basis for system implementation.
Based on the architectural models, model driven engineering
and development can be exploited for the automated generation
of quantum source code (code modules and their interactions)
from the corresponding quantum software architecture (based
on architectural components and their connectors) (Ying, 2016;
Moin et al., 2021; Shepard, 2021).

3. Research methodology

We followed EBSE approach to conduct this research (Pizard
et al.,, 2021). As part of our research methodology, we adopted
the Systematic Literature Review (SLR) approach to identify, anal-
yse, and investigate the available literature based on the out-
lined research questions. Specifically, SLR follows the principle
of evidence-based software engineering approach to adopt a rig-
orous process for conducting the review based on well-defined
protocol to extract, analyse, and report the results (Kitchenham
et al., 2004). SLR provides “a means of evaluating and interpreting
all available research relevant to a particular research question, topic
area, or phenomenon of interest”,keele2007 guidelines. We followed
the guidelines provided by Kitchenham and Charters to conduct
this SLR (Kitchenham and Charters, 2007), which consists of three
core steps, i.e., planning, conducting, and reporting the review as
illustrated in Fig. 2.

Each step of SLR, as illustrated in Fig. 2, is elaborated below.
While performing the literary reviews and secondary studies in
the context of software engineering research, there is an ongo-
ing debate about conducting the Multivocal Literature Reviews
(MLRs) - including grey literature - instead of SLRs for fast
evolving areas like quantum computing and quantum software
engineering (Garousi et al,, 2019). We preferred the SLR, based
on the guidelines in Kitchenham and Charters (2007), to only
review peer-reviewed published research as secondary studies on
quantum software architecting. Non-peer reviewed studies and
grey literature are also discussed to discuss the results of primary
studies, however; such studies and literature are complementary
and are not included in the list of primary studies for SLR.

AA. Khan, A. Ahmad, M. Waseem et al.

Table 1
Research questions of this SLR.

The Journal of Systems & Software 201 (2023) 111682

A: Demographic details of published research

Research question

Rationale

RQ1.1 What are the types and the frequency of
publications on quantum software

architecture?

This RQ aims to pinpoint the types of publications (e.g., journal articles,
conference proceedings) and highlight the frequency of publications (number
of publications per year). The RQ provides an understanding of the research
progress (i.e., type and frequency published research over the years) with
respect to the topic under investigation.

RQ1.2 What are the research types and reported Types of research (i.e., solution type, evaluation type) and research
contributions in published studies on quantum contributions help us to understand the diversity of published research,
software architecture? solutions to address the problems, empirical foundations, and theoretical

principles as the available evidence in the SLR.

RQ1.3 What are the application domains to which Application domain refers to the areas (e.g., network security, system

the proposed architectural solutions can be
applied?

engineering) to which architectural solutions can be applied to address
specific challenges. A classification of application domains help us understand
the extent to which architectural solutions address software design challenges
pertaining to different areas.

Architectural solutions for quantum software and emerging challenges

Research question

Rationale

RQ2.1 Are there any architectural processes for

quantum software?

Architectural process include a number of architecting activities to provide a
step-wise and incremental approach to develop architectural solutions. By
investigating the architectural process and its underlying architecting
activities, we can understand architectural analysis, synthesis, and evaluation
of proposed solutions.

RQ2.2 What modelling notations have been used to Modelling notations visually depict the detail sequence of architecting
represent quantum software architectural activities and show the relations between the numerous units of the software
solutions? system. Answer to this RQ will give an understanding of existing graphical

notation used to specify quantum software architecture.

RQ2.3 What patterns exist for quantum software Patterns represent reusable knowledge and best practices to design and
architectures? implement software solutions. The answer to this RQ will help to investigate

the patterns which reveal reusable (architectural) knowledge and best
practices to architect quantum software systems.

RQ2.4 Are there any tools and/or frameworks to To study the available tools and framework support that can enable
support automation and customisation of automation and customisation (i.e., user decision support) of the architectural
architectural solutions for quantum software? process and its activities. We aim to further analyse tools that complement

the architectural solutions with their automation and customisation.

RQ2.5 What challenges have been reported for Various challenges could impact the process of developing quantum software

quantum software architecture?

architecture. Analysing the challenges will pinpoint the issues and factors that
impact architectural solutions for quantum software.

3.1. Planning the review

As the initial step, the planning phase starts with develop-
ing the research questions that encapsulate the key research
objectives of the SLR.

3.1.1. Step 1: Specify research questions

We outline the Research Questions (RQs) to investigate multi-
faceted information including demography, architectural activities,
architectural modelling notations, architectural design patterns, tools
and frameworks, and challenges. The RQs to investigate the men-
tioned multi-faceted information are outlined and the details
along rationale of each RQ is provided in Table 1. Answer to
the reported RQs helps us document the SLR results described in
subsequent sections of this paper.

3.1.2. Step 2: Identify data sources

In systematic reviews and mapping studies, Electronic Data
Sources (EDS) allow an automated search, based on predefined
and often customised search string(s), to identify the relevant
literature on a topic under investigation (Chen et al, 2010). A
number of empirical studies have investigated methods for con-
ducting systematic searches along with putting forward a list of
EDS that can help select literature efficiently while minimising
the potential bias and risk of missing relevant data (Mourao et al.,
2017). Based on the recommendations for adopting a systematic
search process and selecting the most relevant data source, we se-
lected five EDS for an automated search (Zhang et al., 2011). These

EDS include ACM Digital Library, IEEE Xplore, Science Direct,
SpringerLink, and Wiley Online Library that represent prominent
sources to search literature on computing in general and software
engineering and software architecture research in particular. The
list of EDS that we selected is not an exhaustive, nor does it
guarantee to cover all possible existing literature, however, prior
empirically-based studies on SLRs have highlighted these five
electronic sources as necessarily sufficient and appropriate to
identify the relevant literature (Chen et al., 2010; Zhang et al,,
2011).

3.1.3. Step 3: Formulate search strategy

The first three authors analysed the RQs to identify the key
terms or keywords. Moreover, all the authors were invited to
participate in the group meeting to finalise the key terms. The aim
of reporting the key research terms is to develop the search string
and explore the selected digital libraries using that string. Finally,
the authors agreed to consider the following search string for the
data search: (Software) AND (Architecture OR Design OR Framework
OR Pattern) AND (Quantum)

The key terms are concatenated using the “OR” and “AND”
boolean operators to develop the above-given search string. The
decision to finalise the search string was based on a pilot search
of relevant literature on IEEE eXplore and Google Scholar. In the
pilot search, we aimed at identifying the titles of existing studies
and various synonyms used to refer to software architecture in
the quantum computing context. For example, we observed that
use of key term 'model’ as a synonym for architecture yielded a

AA. Khan, A. Ahmad, M. Waseem et al.

The Journal of Systems & Software 201 (2023) 111682

Table 2
Inclusion and exclusion criteria.
Code Inclusion criteria Code Exclusion criteria
Inc1 Studies that specifically focus on software Excl1 Exclude grey literature and duplicate studies.
architecture studies in quantum computing
domain
Inc2 Peer-reviewed published research (e.g., Excl2 If multiple studies are published in the same
conference proceedings, journal articles, project, then consider the one with maximum
workshop/symposium papers contribution.
Inc3 Peer-reviewed studies available in full-text. Excl3 Exclude studies that do not model or describe
structure and/or behaviour of quantum software.
Inc4 Reported in English language. Excl4 Exclude the studies that do not discuss any of

the software architectural aspects as outlined in
the RQs (e.g., process, patterns, notations, tools)

significantly large but irrelevant number of studies that discuss
software process models (focused on QSE rather than QSA). Based
on the consensus of the researchers, we omitted the key term
'model’ to avoid an exhaustive search space. Moreover, based on
the pilot searching phase, we included key term 'framework’ that
did identify some relevant studies. The main goal of the final
search string was to identify the most relevant literature as much
as possible while avoiding potentially irrelevant studies that can
exhaust manual scanning of titles, keywords, and abstract for
study selection. The replication package based on the given search
string is provided in Khan et al. (2022a).

3.1.4. Step 4: Define inclusion and exclusion criteria

Based on the guidelines by Kitchenham and Charters (2007)
for including or excluding the identified studies, we outlined
the inclusion and exclusion criteria in Table 2. By following the
criteria any irrelevant, redundant, or non-English studies were
excluded. Study inclusion and exclusion was followed by a quality
assessment step to assess the quality of each included study and
eliminate any study that did not satisfy the qualitative assessment
criteria (see Section 3.2.2). The inclusion and exclusion criteria
filters the search findings returned by the search string. The key
points of the criteria were developed by the first three authors
based on Kitchenham and Charters (2007). Table 2 provides the
criteria for the inclusion and exclusion of the literature for review
along with the codes (Incl 1-4: as the inclusion criteria and Excl
1-4: as the exclusion criteria). We discuss the details in Table 2
later to elaborate the selection of primary studies to be included
in the SLR.

3.2, Conducting the review

The second phase of the SLR process is conducting the review,
which is based on the protocol defined in the first phase, i.e., plan-
ning the review (See Fig. 2). Following are the key steps involved
in this phase:

3.2.1. Step-1: Select primary studies

Primary studies search process started with exploring the
selected digital repositories using the search string discussed
in Section 3.1.3. The search process was initiated on 30th Septem-
ber 2021 and ended on 9th October 2021. Initially, the search
string returned a total of 8,406 studies, which are further filtered
by the first three authors based on the studies titles, keywords,
and abstracts against the inclusion and exclusion criteria (see
Fig. 3). The second phase screening returned a total of 589 studies.
The third phase of inclusion and exclusion screening was per-
formed based on the full-text review of the studies, where 32
primary studies were finally selected (see Fig. 3). Additionally,
the fourth and fifth authors were invited to confirm the search
findings and list of selected studies.

For example, we used the advanced search option for IEEE
Xplore (‘Search Term’) to execute the search string to iden-
tify published studies (in ‘Full Text & MetaData). The search
yielded a total of 32115 studies, majority of which focused on
quantum systems in general and quantum hardware in partic-
ular. While trying to eliminate an exhaustive list of irrelevant
studies, we interchanged the search parameter (from ‘in Full
Text & MetaData’ to ‘in Abstract’) and found 397 studies that
missed some relevant studies that were discovered before the
search parameter interchange. Therefore, we decided to manually
scan through the 32115 studies after we applied further digital
library-specific filtering to eliminate search results classified un-
der ‘Standards’, ‘Books’ and other alike categories to get a total
of 1751 candidate studies from IEEE eXplore. Based on a similar
approach, often digital library-specific filtering, we extracted and
identified the candidate studies to proceed with their screening,
inclusion/exclusion, and qualitative assessment, as in Fig. 3.

Moreover, the backward snowballing approach was used to
manually search the references list of the selected 32 primary
studies to identify additional studies that might have been missed
during the search string-based review process (Wohlin, 2014).
The backward snowballing eventually returned two more stud-
ies that explicitly fulfilled the inclusion and exclusion criteria.
The snowballing process was mainly performed by the first and
second authors. Additionally, the third and fourth authors were
invited to mutually verify the findings reported by the first and
second authors. To include studies that discuss software archi-
tecture, we specifically looked for architectural models (graphical
notations, e.g., UML diagrams) or architectural specifications (de-
scriptive notations, e.g., ADLs) that represent the structure or
behaviour of software system (Medvidovic and Taylor, 2000;
Medvidovic et al., 2002). Finally, (32+2) studies are shortlisted
(see Fig. 3) to review, analyse and address the research ques-
tions based on their findings. The selected primary studies list
is provided in Appendix (Table 11). Furthermore, We included
several non-peer-reviewed studies available on the arXiv open-
access repository (Zhao, 2020; Nguyen et al.,, 2022; Fahmideh
et al., 2021a,b; Graef and Georgievski, 2021; Moin et al., 2021;
Pérez-Castillo et al., 2021; Dey et al., 2020; Miranskyy et al., 2022;
Wang et al., 2022; Paulo and de Camargo, 2021; Khan et al,,
2022b) to complement the study’s overall findings. However, we
did not include them in the primary studies list (Appendix -
Table 11) as per the guidelines of SLR (Kitchenham et al., 2004)
approach. In addition to following the guidelines of the SLRs for
literature inclusion (Kitchenham et al., 2004), our decision was
also motivated by the fact that preprints are often subject to
changes overtime, with several versions having the same title but
differing content. Given the fast-paced research fields of quantum
software engineering/architecture, preprints may contain errors
or changes that could compromise the reliability of our SLR’s
results and threaten its internal validity. Therefore, we excluded
preprints from our list of selected primary studies to minimise the

AA. Khan, A. Ahmad, M. Waseem et al.

The Journal of Systems & Software 201 (2023) 111682

Literature Search String

String Execution (Software)
¢ AND
(Architecture OR Design OR Framework OR Pattern)
o AND .
ACLI\i'lb?;er;tal ﬂ L) Literature
== 2133 Inclusion
Inclusion in
IEEE 0
g oo 11 757 "
= — v Literature Selection Phases
©
S8 Sci 0 | 1350 Total Studies Initiaily Selected | | Finally Selected Snow
O et —_— Retrieved Studies Studies Balling
= — 8406 589 32 2 I
et
= 2111 [N —
A Seinger U\j |
Link | UL
" = Title, Keywords, Full Text Qualitative
Abstract etc. Assessment
Wiley Online 0 1061
Library Screening Inclusion/Exclusion Inclusion/Exclusion

Fig. 3. Studies selection process.

mentioned risk. For instance, one preprint changed (Abbott et al.,
2018) its content four times within two years, highlighting the
need for caution when incorporating preprints into a systematic
review.

In addition to our adopted approach for automated search in
electronic databases and backward snowballing to identify the
relevant studies, several other approaches could be used. Some
of these approaches include but are not limited to searching
individual publication venues (e.g., conference proceedings, jour-
nal volumes), research group publications, and forward snow-
balling (Felizardo et al., 2016). Specifically, forward snowballing
- searching for studies that cite the studies contained in the seed
set - is found to be more useful in updating or extending an
already conducted secondary study but is still prone to missing
relevant literature. Jalali and Wohlin (2012) investigates the ap-
plication of snowballing approaches in SLRs and suggests that
similarity in identified literature is expected to increase if both
the backward and forward snowballing are performed since the
overlap in the included papers would be greater. This influenced
our decision to avoid forward snowballing, however; future ex-
tensions of this SLR can benefit from forward snowballing with
an updated seed list of studies (Felizardo et al., 2016).

3.2.2. Step-2: Perform quality assessment (QAs)

The quality of the selected studies is evaluated based on the
quality assessment criteria that aim to remove the research bias
and evaluate the degree of significance and completeness of
the selected studies (Kitchenham and Charters, 2007). The qual-
ity assessment guidelines provided by Kitchenham and Charters
are followed to develop the assessment criteria (see Table 3)
(Kitchenham and Charters, 2007). The criteria consist of five
assessment questions, and each selected primary study assessed
against these questions (QAs1-QAs5). Assigned score (1) if the
primary study explicitly addressed the QAs questions and (0.5)
points if the questions are partially addressed. Similarly, studies
with no evidence of considering the assessment questions are
given 0 point. The final quality assessment score for each primary
study is the sum of the score assigned against each QAs question.
The first author applied the assessment criteria and the results
were further independently verified by second and third authors.
We include those studies in the final list which had accumulative
QAs score greater than or equal to 1.5 (Waseem et al., 2020). The
accumulative final score of each primary study against the QAs
questions is given in Appendix (Table 11).

3.2.3. Step-3: Perform data extraction

We defined a set of data extraction items (see Table 4) to
address the RQs formulated in Section 3.1.1. Data items are the
particular types of data extracted from each selected primary
study that directly map to the study RQs. The first author per-
formed the pilot data extraction process for ten studies to eval-
uate the reliability of the extracted data items. The second and
third author assessed the pilot study findings, and based on their
suggestions, the first author revised the data extraction items.
The formal data extraction process was performed by the first
three authors by equally distributing the total number of selected
primary studies, and the studies distribution was done based on
the authors’ research expertise and interest. The general (demo-
graphic) details of each selected primary study were extracted
against the data items (DI1-DI4), and the rest (DI5-DI13) are
specific to the study RQs.

We finally conducted the Cohen’s Kappa test to check inter-
personal bias in the primary studies selection (Section 3.2.1),
quality assessment (Section 3.2.2), and data extraction
(Section 3.2.3) phases. Mainly, the first three authors were in-
volved in the studies selection, quality assessment, and data
extraction process. To remove the inter-personal bias for the
mentioned phases of the SLR process, we invited the remaining
authors and merged them across two different groups (authors 4-
5, authors 6-7). They were asked to randomly select a set of ten
primary studies and sequentially perform the studies selection,
quality assessment, and data extraction process as performed by
authors 1-3. Eventually, the Cohen’s Kappa test was performed
to measure the agreement level and identify the significant dif-
ferences across the mentioned phases between all the three
groups of authors (authors 1-3, authors 4-5, authors 6-7). The
Cohen’s Kappa test is widely adopted in EBSE research (Pérez
et al., 2020). Cohen’s kappa coefficient (k) is the proportion of
chance-expected disagreements which do not occur, or alternatively,
it is the proportion of agreement after chance the agreement is re-
moved from consideration,cohen1960coefficient. The (k) coefficient
measures the level of agreement between a group of raters that
evaluate N-objects into (c) mutually exclusive categories (Cohen,
1960). The agreement level between the raters equals chance
agreement when Cohen’s kappa coefficient value (k)=0. The level
of agreement is positive when (k) is greater than the chance
agreement and negative if it is less than it. The perfect agreement
occurs between a group of raters when the value of k ranges from

AA. Khan, A. Ahmad, M. Waseem et al.

Table 3
Studies quality assessment criteria.

The Journal of Systems & Software 201 (2023) 111682

Code Quality assessment questions Score
QAs1 Do the research objectives of the study are explicitly defined? (1/0.5/0)
QAs2 Does the adopted research methodology is clearly discussed? (1/0.5/0)
QAs3 Do the experimental settings are explicitly reported? (1/0.5/0)
QAs4 Do the results and findings are thoroughly discussed? (1/0.5/0)
QAs5 Do the real-world implications of the study are reported? (1/0.5/0)
Table 4
Relevant data items extracted from the selected primary studies.
Code Data item Description Related RQ
QI1 Index The study ID Demographic
QI2 Study title Full title of primary study Demographic
QI3 List of authors Authors full names Demographic
Ql4 Publication’s venue Name of the Journal, Conference, Workshop, Demographic
Book, symposium, Magazine
QI5 Publication’s year Temporal information of each study. RQ 1.1
Ql6 Publication type Journal, Conference, Workshop, Book chapter, RQ1.1
Magazine
Q17 Research type Studies mapping across research facets RQ1.2
QI8 Research domain Develop themes and sub-themes of studies RQ1.3
research focus across different domains
QI9 Architectural activities Key activities to define quantum software RQ2.1
architecture process
QI10 QSA modelling notations The existing modelling notations to structure RQ2.2
quantum software architecture
QI11 QSA patterns Identify the patterns for quantum software RQ2.3
architectural design problems
QI12 Architectural tools and frameworks The tools discussed in the primary studies to RQ2.4
support architecting activities
QI13 QSA challenges The challenges reported to develop quantum RQ2.5

software and system architecture

(0.81 to +1.00). The interpretation of the k-value to measure the
strength of agreement is adopted from the observer agreement
study conducted by Landis and Koch (1977)

We used R-3.6.3 to conduct the (k) test for interpreting the
agreement level between the groups of raters (authors). The R-
code (see Appendix (Table 12)) was executed and obtained
the Cohen’s Kappa coefficient value (k= 0.62), which shows a
positive and substantial agreement level (Landis and Koch, 1977)
between all the authors for the primary studies selection, quality
assessment, and data extraction phases. Based on the test results,
we concluded that no personal bias exists between the authors
that could significantly impact the core SLR phases.

Similarly, the Cohen’s Kappa test was performed to evaluate
the interpersonal bias between the authors for the snowballing
process. Mainly authors 1-4 performed the snowballing process
(Section 3.2.1), however, authors 5-6 were invited to participate
in the Cohen’s Kappa test to assess inter-personal bias. Both
groups (authors 1-4, authors 5-6) selected the first five primary
studies (S1 to S5) and performed the snowballing search. The
Cohen’s kappa coefficient (k = 0.50) is calculated based on
the search findings of both groups using the R-code given in

Appendix (Table 12). The given value of (k) reveals that both
groups of authors have an unbiased, positive, and moderate level
of agreement for the snowballing process.

3.2.4. Step-4: Perform data synthesis

Data items (DI1-DI4) were analysed using the descriptive sta-
tistical approach. Similarly, we generated initial codes for the data
items (DI7, DI8, DI12 and DI13) to define the research themes
and address RQ1.2, RQ1.3, RQ2.4 and RQ2.5. Thematic analysis
guidelines for qualitative data provided by Braun and Clarke
are considered to systematically analyse, organise, and develop
themes across the extracted data (Braun and Clarke, 2006). In
line with the outlined RQs 1, the following thematic data analysis
steps are followed to develop the key themes of extracted data
items:

1. Data familiarisation: The first three authors thoroughly
read the selected primary studies and noted the data items
given in Table 4.

2. Generating the initial codes: The initial codes from the
extracted data are generated to define the research themes
for RQ1.2, RQ1.3, RQ2.4, and RQ2.5.

3. Searching for themes: The codes define in the previous
step are analysed and encapsulated across broader themes.

4. Reviewing themes: The first three authors examined the
themes to separate, drop and merge based on the mutual
discussion and understanding.

5. Defining and naming themes: The defined themes are
characterised with precise names.

6. Producing the report: This step involves to refine the
developed themes and their respective characteristics.

The thematic analysis process of this SLR is given in Fig. 4, and
all the authors finally participated in the brainstorming session to
remove bias in the thematic approach by defining and naming the
key themes. To complement the methodological steps of this SLR,
a replication package is provided that details the selected primary
studies based on the customised search string, scoring of quality
assessment of identified studies, and the extracted data for each
individual RQs (Khan et al., 2022a).

3.3. Reporting the review

We reported the results of SLR, presented in dedicated sec-
tions, based on the categories of outlined RQs (see Table 1).
Specifically, (i) demography details of published research (i.e.,, RQ1.1
to RQ1.3) are discussed in Section 4, and (ii) architectural solutions
and challenges (i.e., RQ2.1 to RQ2.5) are detailed in Section 5.
The analysis of the SLR and summary of key results are detailed
in Section 6.

AA. Khan, A. Ahmad, M. Waseem et al.

Selected Primary Pata)
Studies Familiarsation

—_, Em==

'E oooa

’/ Oooono

Generating Data Codes

Author O Y Y
(] (]]
Eh =
Autho ! e Code 1 Code 3 Code M

Author 1o O

Brainstorming Final Theme

Fig. 4. Thematic analysis process.

4. Demography details of published research

In this section, we answer RQ1, having three sub-questions,
i.e, RQ1.1 - RQ1.3 that rely on mapping analysis to present
demography details of published research (Petersen et al., 2015).
Specifically, within the SLR, we performed systematic mapping to
investigate demography details of published research focus on (i)
types and frequency of publications (RQ1.1: Section 4.1), (ii) types
and contributions of research studies (RQ1.2: Section 4.2), and
(iii) application domains of architectural solutions (RQ1.3: Sec-
tion 4.3), all detailed below. The demography details complement
the presentation of overall results and discussion of proposed
architectural solutions. For example, the types of research stud-
ies (answering RQ1.2) discussed here indicate a multitude of

2
M

[Journal Article (15)

L |:|W0rksh0p Paper (4)

N W A O

p—
M

Number of Publicatoins
(Publication Freuency per Year)

" I Conference Proceedings (13)

I Symposium Paper (2)
[Publication Growth Curve

DIIIIIIII

The Journal of Systems & Software 201 (2023) 111682

research contributions, such as solution proposals, validation re-
search, and/or philosophical studies, and their roles in deriving
the architecting activities for quantum software.

4.1. Types and frequency of publications (RQ1.1)

It is significant to classify the selected primary studies based
on their frequency and type of publications. This analysis high-
lights the research trend of a particular research area and the
research community’s interest. The frequency indicates how fre-
quent is the occurrence of publications over the years, whereas
the types refer to a specific type of publications (e.g., a journal
article) as illustrated in Fig. 5. The total number of published
studies are presented across (Y-axis) and their year of publication
across (X-axis). Moreover, Fig. 5 is a bar graph that relatively
highlights different publication types, i.e., conference proceed-
ings, journal articles, symposium papers, and workshop articles.
The initial study was published in 2004 and final in October
2021. The bar graph reveals that a total 21 (62%) of the selected
studies were published in the last four years (from 2018 to
October 2021), which is an interesting finding that interprets
the significance of quantum software architecture in present-
day quantum computing research. It reveals that the research
community are significantly working on designing architectural
solutions for quantum software systems. Moreover, 15 (44%) pri-
mary studies are published in journals, 13 (38%) in conference
proceedings, 4 (12%) workshop papers and 2 (6%) symposium ar-
ticle. A report by Scopus in 2021 highlights recent research trends
on quantum computing, reflected via Scopus-indexed documents,
in terms of demography details of published research. The report
provides a multi-faceted overview of published research in terms
of frequency, types, top institutes, and top contributors in regard
to their research on quantum computing (Anon, 2022b).

Key Findings of RQ1.1

Finding 1: Maximum number of primary studies (n = 21,
62%) are published from 2018 to 2021. It exhibits that
quantum software architecture is emerging research area
and got significant attention of research community.
Finding 2: Regarding publications type, the given results
underline that journals (n = 15, 44%) and conferences
(n = 13, 38%) are the popular venues to publish the
relevant studies.

2004 2006 2008 2010 2012 2013 2014 2015 20162017 20182019 2020 2021
Years of Publications
(Temporal Distribution of Publications)

Fig. 5. Overview of frequency and types of publications.

AA. Khan, A. Ahmad, M. Waseem et al.
4.2. Types of research and contributions (RQ1.2)

The selected publications are categorised based on the fol-
lowing six well-established research types proposed by Wieringa
et al. (2006): evaluation research, proposal of solution, validation
research, philosophical papers, opinion papers, and personal ex-
perience papers. Evaluation research is conducted to evaluate a
specific problem or solution in practice using different empir-
ical research techniques. Proposal of solution articles develop a
method or solution for a relevant problem without fully validat-
ing its significance. Validation research is conducted to evaluate
the quality attributes of the proposed solution, which has not
yet been deployed in a real-world environment. Philosophical pa-
pers focus on architecting theoretical or conceptual frameworks.
Opinion papers discussed authors’ negative or positive opinions
regarding a specific framework, model, a solution. In Personal
experience papers, the authors report their personal experiences
regarding a particular project or group of it. Additionally, we
reported the research contribution of each paper classified across
the mentioned research types.

Thematic analysis process discussed in Section 3.2.4 is fol-
lowed to address RQ1.2 and classify the selected 34 primary
studies across the given research types (see Fig. 6(a)). The set of
selected studies consist of (n = 8, 24%) proposal of solution, (n
= 3, 9%) personal experience papers, (n = 2, 6%) philosophical
papers and (n = 1, 3%) opinion papers. Moreover, we identified
(n = 20, 59%) studies that cover both proposal of solution and
validation research categories. These studies are classified in a
separate category (i.e., proposal of solution and validation research)
(see Fig. 6(a)). We did not identify any paper that fits in the
evaluation research category; therefore, it is excluded from the
mapping process.

The results given in Fig. 6(a) reveal that majority of the studies,
i.e., (n = 20, 59%) are mapped in the heterogeneous (i.e., proposal
of solution and validation research) category. It means that the
selected studies proposed their own solutions and conducted
sample implementation to validate the significance of those so-
lutions. It is aligned with the fact that quantum software archi-
tecture is a new paradigm, and there is a demanding need of
novel architecture solutions. The second most common category
is proposal of solution (n = 8, 23%), where various architectural
solutions are proposed. However, the proposed solutions are not
evaluated or validated both empirically and in real-world prac-
tice. For example, software architecture is proposed in [S1]' to
set up an ecosystem for quantum key distribution (QKD) in quan-
tum networks. The architecture is build using a set of modules
i.e,, QKD module, relay modules, and QKD node. However, the
proposed solution is not validated or evaluated to assess its real-
world implications and contributions. Three (n = 3, 9%) primary
studies are mapped into the personal experience papers category
[S21, S31, S34]. For example, Leymann et al. [S31] reported an
understanding of the architectural model to support business
processes for developing and sharing the quantum software sys-
tems. The philosophical papers category covers two (n = 2, 6%)
primary studies [S26, S30]. For instance, Nallamothula proposed
a theoretical decision-making framework for quantum software
architecture selection [S26]. The proposed framework has not
been evaluated experimentally or in real-world practice. One
single study (n = 1, 3%) is categorised as opinion paper, where the
authors shared the opinion of quantum and classical co-design
architecture [S20]. Regarding overall contribution, we noticed

1 please note, the notation [S,], where n represents a numerical value (range:
1 to 34) to indicate a reference to the selected primary studies for SLR, listed in
Appendix (Table 11). This notation also help to distinguish the selected primary
studies from references in the bibliography section of this paper.

11

The Journal of Systems & Software 201 (2023) 111682

that 9 studies focused on quantum-classical intersection (i.e., co-
design of quantum systems), where both classical and quantum
techniques used to develop the quantum software architecture
(see Fig. 6(a)) [S3, S20, S21, S16, S17, S18, S23, S24, S28]. It
is a known fact that quantum software development is not a
well establish field. Presently, its not possible to entirely develop
a quantum software architecture based on quantum computing
concepts. We still need to consider the classical software devel-
opment concepts and techniques, at least at the interface level, to
structure a quantum software system.

Key Findings of RQ1.2

Finding 3: Analysing the types of published research
highlight that the combination of solution proposals and
validation research represent most frequent publications.
A total of 20 studies (i.e.,, n = 20, 59% approx) represent
this category to propose architectural solutions and val-
idate quantum software solutions via simulation or case
studies.

Finding 4: Thematic classification of the research con-
tributions highlights that (n = 9, 26% approx) studies
focused on proposing architectural solutions for co-design
of quantum systems. Quantum system co-design refers to
mapping between classical and quantum concepts dur-
ing the development of quantum computing systems.
It means that most of the studies focused on develop-
ing quantum software systems using both classical and
quantum computing concepts.

4.3. Classification of application domains (RQ1.3)

Thematic process defined in Section 3.2.4 is followed to cat-
egorise the selected primary studies based on the common ap-
plication domains. Systematic identification, categorisation, and
naming process of identified themes and sub-themes are given
in Fig. 6(b).

We collected at least two or more studies of common appli-
cation domains and encapsulate them under a single umbrella
called theme. In this study, the following five core themes are
identified and the selected studies are classified across them:
(i) systems and hardware engineering (n = 20, 59%), (ii) software
engineering (n = 5, 15%), (iii) smart systems (n = 1, 3%), (iv) source
code compilation (n = 4, 12%), and (v) network security (n = 4, 12%).
In sub-thematic classification, we further categorised the main
themes into more specific topics. Sub-themes are secondary to
core themes, where the overall application domain (core theme)
is classified more narrow (sub-themes). For example, the core
theme (systems and hardware engineering) is classified across
three distinct sub-themes including co-design of quantum systems
(n 9, 26%), optimisation of quantum processor (n = 6, 18%),
and software control for quantum hardware (n = 5, 15%). Similarly,
software engineering is sub-classified into quantum software de-
velopment (n = 2, 6%) and quantum software modelling (n = 3, 9%).
Source code compilation has two sub-themes: compiling quantum
source code (n = 3, 9%) and quantum code optimisation (n = 1,
3%). Moreover, the classification given in Fig. 6(b) illustrates that
network security is further categorised across sub-themes quan-
tum key transmission (n = 2, 6%), quantum information networking
(n = 1, 3%), and simulating quantum information flow (n = 1, 3%).
Finally, the core theme smart systems has only one sub-theme
i.e., quantum game theory for smart classroom (n = 1, 3%).

Fig. 6(b) provides the high level categorisation of the existing
quantum software architectural solutions with respect to dif-
ferent application domains. For instance, systems and hardware

AA. Khan, A. Ahmad, M. Waseem et al.

The Journal of Systems & Software 201 (2023) 111682

a) Types of published research and

contribution

20 Studies (59%)

[S2] Quantum Key
Transmission

[S16, S17, S18, S23, S24, S28]
Co-design of Quantum Systems
[S11, S13, S19] Optimisation of

uantum Processor
[S14, S15, S27, S33] Software

Control for Quantum

Hardw
[S4, S5 S7] Compiling Quantum

Source Code

[S6] Quantum Information
Networking

[S25] Simulating Quantum
Information Flow

Proposal of
Solution and
. Validation

"\ Research

" 8 Studies (23%):

Validation
Research

Proposal of
Solution

2 Studies (6%)
[26] Decision making
1 Study (3%) framework
[S20] Co-design of | |[30] Quantum
Quantm Systems Software Modeling

Philosophical
Papers

Opinion
Papers

Personal
Experience
Papers

Types of Published
Research

3 Studies (9%)

[S22] Quantum Game Theory
for Smart Classroom

[S8] Quantum Code

‘Quantum Processor

Hardware

[S1] Quantum Key Transmission
[S3] Co-design of Quantum Systems

[S9, S10, S12] Optimisation of
[S29] Software Control for Quantum

[S32] Quantum Software Modeling

[S21] Co-design of
Quantm Systems

[S31, S34] Quantum
Software Development

Optimisation

Smart
Systems

Quantum Game
Theory for Smart
Classroom [S22]

(3 % ~
Quantum Key

Transmission [S1, S2]

Network
Security

Source Code

Quantum Information
Compilation

Networking [S6]

Appllcatlon

Systems and Hardware
Engineering

Co-design of Quantum Systems [S3,
S16, S17, S18, S20, S21, S23, S24,

S28]
Optimisation of Quantum Processor

[S9, S10, S11, S12, S13, S19]
Software Control for Quantum

domains

Simulating Quantum Compiling Quantum Software Hardware [.S14, S15, S27, S29, S33]
Information Flow [S25][W Source Code [S4, S5, Ensineerin 20 Studies
4 Studies s7] £ (59%)
(12%) Quantum Code Quantum Software

Optimisation [S8]

Development [S31, S34]

4 Studies
12%) Quantum Software
Modeling [S26, S30, S32]
5 Studies
(15%)

b) Application domains based thematic
classification

Fig. 6. Overview of types of research and application domains.

engineering is the most common and explicitly explored applica-
tion domain with twenty research studies. It is aligned with the
fact that the research focus on quantum software development is
heating up (Zhao, 2020). Technology giants e.g., Google, Alibaba,
and IBM are marching forward to propose advance architec-
tural solutions to take the lead in quantum software technolo-
gies (Lapedus, 2021). Similarly, co-design of quantum systems is a
sub-theme of systems and hardware engineering, which has a total
of nine studies. It highlights the significance of quantum-classical

hybridisation (Everitt et al., 2016). Quantum-classical collabora-
tive relationship will have significant impact on quantum soft-
ware architecture in the near-term (Baczewski et al., 2017). It
will improve the architectural efficiency and meet the require
performance.

In summary, Fig. 6(b) provides a holistic overview of studies
mapping with respect to the application domains. It enables dif-
ferent interpretations of published studies based on core research
themes and sub-themes. The given mapping provides a taxonom-
ical understanding of state of the art application domains.

12

AA. Khan, A. Ahmad, M. Waseem et al.

Key Findings of RQ1.3

Finding 5: The core application domains are: systems
and hardware engineering , software engineering , smart
systems, source code compilation, and network security.
The selected primary studies are categorised across the
mentioned domains.

Finding 6: Systems and hardware engineering (n
20, 59%) is identified as the most common application
domain. It reveals the fact that research community sig-
nificantly focuses on presenting architectural solutions
for quantum system and hardware problems. The reason
might be that the existing classical system engineering
approaches are not able to explicitly encompass the at-
tributes of quantum physics (Everitt et al., 2016). There
is a need of novel system and hardware engineering
frameworks that tackle the quantum interface problems.

5. Architecture-centric solutions for quantum software

We now discuss architecture-centric solutions and emerging
challenges, answering RQ2.1 to RQ2.5, that highlight some of
the core aspects of designing and implementing quantum soft-
ware. Specifically, (i) we present architectural process and its
underlying activities (RQ2.1: Section 5.1), (ii) architectural mod-
elling notations (RQ2.2: Section 5.2), (iii) architectural patterns
and design decisions (RQ2.3: Section 5.3), (iv) tools and frame-
works (RQ2.4: Section 5.4), and challenges of quantum software
architecture (RQ2.5: Section 5.5).

5.1. Architectural process and activities (RQ2.1)

We now answer RQ2.1 that aims to investigate the exist-
ing process(es) that can support a process-centred - incremen-
tal and structured - approach to architect quantum software
systems (Hofmeister et al., 2007). Specifically, an architectural
process comprises of a collection of activities (a.k.a. architecting
activities to support analysis, synthesis, and evaluation of the
architecture for quantum software systems and applications (Li
et al., 2013; Svore et al., 2006). During system design and imple-
mentation phase, architectural process streamlines what needs
to be done and provides an umbrella to accumulate a collection
of architecting activities that demonstrate how it is to be done.
For example, in an architectural process, the activity called ar-
chitectural requirements aims to analyse and outline the design
challenges/issues that a particular architecture must resolve. The
outcome of architectural analysis activity is a set of architec-
turally significant requirements (ASRs) to highlight the needed
functionality and desired quality of the system under design (Li
et al,, 2013). For example, as in Fig. 7, as part of architectural
requirements one of the ASR is: how to effectively and securely
transmit quantum information over quantum network? The ASR
outlines a design challenge that must be addressed by design-
ing the appropriate architecture that supports transmission of
quantum information (i.e., required functionality) over quantum
network in an efficient and secure manner (i.e., desired quality
attribute). The relevant studies, as an evidence, that support
architectural process are indicated in Fig. 7. For example, Fig. 7
shows that two studies specify the requirements of an reference
architecture, as a software blueprint, to generate quantum source
code [S14, S27].

From quantum software engineering perspective, existing ar-
chitectural processes represent a concentrated knowledge and
wisdom (derived from architects’ experiences, industrial prac-
tices, and academic solutions that can be attuned to architectural

13

The Journal of Systems & Software 201 (2023) 111682

challenges for quantum genre of software systems) (Zhao, 2020;
Hofmeister et al., 2007; Malavolta et al., 2012; Di Francesco
et al,, 2019). However, architecting quantum systems entail some
specific challenges that cannot be effectively addressed by exist-
ing processes that have been designed for classical computing
systems. Some of the quantum specific challenges include but
are not limited to co-design, i.e., mapping quantum algorithms to
Qubits of a Qugates, compiling hybrid source code into a unified
quantum instruction set, and configuring simulators to simulate
and execute quantum code (Svore et al., 2006; Leymann, 2019).
This means that existing architectural processes need customised
activities to address design challenges of quantum software.

To present the results, we followed available guidelines and
empirically-based studies, grounded in industrial practices and
academic research to document software architectures in terms
of architectural processes and their underlying architecting activ-
ities (Hofmeister et al., 2007; Li et al., 2013; Malavolta et al., 2012;
Di Francesco et al.,, 2019). We followed a generic process pattern
derived from five industrial approaches to document architectural
processes in terms of architectural design activities namely archi-
tectural analysis, architectural synthesis, and architectural evalu-
ation (Hofmeister et al., 2007). The architectural process model
proposed by Hofmeister et al. (2007) is incorporated by Tang
et al. (2010) with two additional activities namely architectural
implementation and architectural maintenance. Some industrial
surveys, incorporating practitioners’ perspective also highlight
the needs for fine-grained representation, specifically in the con-
text of architectural synthesis activity to effectively represent
architectural solutions (Malavolta et al., 2012). To support a fine-
granular representation of the architectural synthesis activity,
we divided it into two distinct activities namely architectural
modelling (representing ASRs as an architectural model) and
architectural implementation (transform architectural model into
specifications that can be executed or simulated). In the follow-
ing, we detail the architectural process for quantum software,
defined in terms of architecting activities, illustrated in Fig. 7
that also acts as a running example for demonstrative purposes.
Fig. 7 provides a visual catalogue of the process and activities
that are exemplified based on the available evidence from the
reviewed literature. During the review, each study that corre-
sponds to an architecting activity was identified, whereas Fig. 7
was constructed by synthesising the overall contributions from a
collection of studies for their generic representation as a unified
architectural process.

For example, as per Fig. 7, the selected studies help us to
identify the architectural requirements to support efficient and
secure transmission of quantum information over a quantum net-
work [S1, S2]. The proposed architectural model as in Fig. 7 relies
on a pipe and filter architectural pattern that supports generation,
transmission, and reconciliation of a quantum key to secure quan-
tum information that travels over quantum network (Garcia et al.,
2021). To support the modelling, architectural implementation
is enabled via components, representing computational units for
source (transmitter) and target (receiver) nodes in the network
that coordinate quantum information via component ports. A case
study based approach is adopted for architectural validation in
terms of efficiency and security of generating, transmitting, and
reconciling the quantum key [S1, S2]. Peer to peer configuration
of network nodes is adopted for architectural deployment.

(i) Architectural Requirements as the initial activity of the
process aims at analysing, filtering, and/or reformulating
architectural concerns to derive a set of architecturally

AA. Khan, A. Ahmad, M. Waseem et al.

(ii

(iii

(iv

=

)

—

—

The Journal of Systems & Software 201 (2023) 111682

7= |:|- O
= oo
" . N " . " Architectural Architectural
Archi ral R rement o
| rchitectu equirements | | Architectural Modeling | | Architectural Implementation | | Validation | | Deployment |
: D pecific Model for Quantum System Co-desig H Quantum Quantum Source B H
. Domain Specific Model Architecture Model Code
How to support the co-design e
(software and hardware artifacts) for oilioio <[>|
quantum computing systems? oioilio Model
Model __Gates Transformation €
Quantum System Co- < c‘ | 0 s
i Patterns. - 28 H H
? design Code XA and Domain BICE] 8% : | Sourc
H Architecture-based Co-dsign of <> \ / [] Knowledge [l & Source Quantum Codei
== ™ Quantum Systems [s5, 57, 520] Software ey Hardware | | Code Simulator
F—— Engineer "aw] Engineer ... 0101110
F <€— oiioio
— oioio o
Repository o ! Quantum Computing Quantum S
uantum Hardware H : 5
Quantum Software o S RNIY @ ; Processor Instrudtions Set | 1 | 33
Model-based A for Quantum Code D Algorithms N -
: N
How to utilise design models to Software Layer Hardware Layer S
Q develop quantum source code that Architecture Source Machine [Classical Code Quantum Code
can control quantum hardware? Model Code || Compilation | | Instruction Qe
uantum |
<[> H
Quantum Code QE o0l _ Processor ! Simulation and
Development 23 71914819 i Execution Layer
‘Architectiral Model to Generate iz </ ©
— Quantum Source Code | | —>
[S14, S27, $28, S29, S33, S34] an & Compilation Merged Code Code Compiler
Architecture for Quantum Software Az Layer
[S19, S21, S31] Quantum Software Quantum Hardware == .
CodeSimulator Code Processor
Quantum Key Distribution A

Quantum Network Packet B0 E‘% filtor

Information Flow

G

| Information !
How to (effectively and securely) - : 2
transmit quantum information over | \ § >
quantum newtrok? : :

)

Quantum Network

Quantum Information St Py ® Y
Processin O— _n_% :‘_% :_i%
Vel E Network Architecture for Quantum Quantum T) (7
F Information Transmssion Node-A Node-B - Node-N
E ’j [s1,82]

(at each node)

Quantum Network Packet |

i Key Generation Informatin Encoding
(source code) (source code)

Quantum Network

O
ot & Packet
Quantim Packet Module Os uantum
. (source) Case Study H
H Uantum
Port K

.. (Packet Receive)| (Packet Send) B
i Key ° enerate ;

§°% Quantim Packet Module Distribution ! cnQuantum Network
Qu?(ntum (destination) Rate Reconcile! % Packet
ey 2 S i 8| [uantum

: Jok B meek ks

Reconciliation gs L O - £°4 i 8| ra
(source code) (source code) PG

Peer Node A

Fig. 7. Overview of quantum architecting process and its activities.

significant requirements (a.k.a., architectural requirements).
This activity aims to define the problems that an architec-
ture needs to address.

Architectural Modelling aims to satisfy the identified archi-
tectural requirements by creating an overall architecture of
the system that acts as a blue-print for the implementation.
This activity represents the first steps towards providing
an architectural solution for ASRs, while bridging the gap
between requirements (i.e., desired functionality and qual-
ity) and implementation (i.e., executable or simulatable
specifications).

Architectural Implementation exploits the architectural
model to implement the software system in terms of al-
gorithmic specifications and executable source code. The
implemented software relies on programming languages,
compilers, and tools to write, compile, and execute the
software.

Architectural Validation focuses on validating the func-
tionality and quality of the implemented software in the
context of architectural requirements. Architectural vali-
dation assesses the extent to which the required func-
tionality (i.e., functional requirements) and desired quality
(i.e., non-functional requirements) are being satisfied by
the implemented software.

Architectural Deployment as the last activity of life cycle
is concerned with deploying the validated software for
its operationalisation. The deployment involves configuring
the executable specification (architectural implementation)
on a deployment node (typically an application server) that
facilitates the execution of the deployed software.

14

Based on the available evidence, as illustrated in Fig. 7, the
architectural process and its underlying architecting activities
for classical computing systems can be tailored to support the
architecting process for quantum software systems. However,
architectural modelling and implementation activities must ex-
plicitly cover architectural requirements specific to quantum
software (Hofmeister et al., 2007; Li et al., 2013; Tang et al., 2010).
For example, the architectural requirement in Fig. 7, i.e., quan-
tum system co-design requires analysing and selecting the hard-
ware (e.g. quantum processor) as well as software (e.g., quantum
search algorithm) components to effectively design a quantum
computing system (Fig. 1) [S5]. To satisfy this requirement, soft-
ware as well as hardware engineer need a collaborative design
of architectural model, referred to as a domain specific model
that incorporates software architectural components mapped
to instruction set for quantum computing processor [S7]. The
co-designed model for a quantum computing system requires
architectural implementation via model transformation. Model
transformation exploits the concepts of model-driven architec-
tures to transform architectural model into the high-level source
code that is compiled into quantum instruction set by means
of model traceability (mapping between architectural model and
executable instruction set) and mode transformation (transition
from architectural model to executable instruction set) [S20].
As in Fig. 7, the architecting activities can be iterative, for ex-
ample, in case of any mismatch between architectural model
(i.e., design) and instruction set (i.e., execution) at architectural
implementation phase requires maintenance or refactoring of the
domain specific model at architectural modelling phase to ensure
consistency between design and implementation.

AA. Khan, A. Ahmad, M. Waseem et al.

Table 5

The Journal of Systems & Software 201 (2023) 111682

Summary view of modelling notations, modelling artifacts, and lifecycle support. (AR = Architectural Requirements, AD = Architectural
Design, Al = Architectural Implementation, AE = Architectural Evaluation, AT= Architectural Deployment).

Study ID Modelling notation Modelling artifact Process support
AR AD Al AE AD
S1 Box and arrows Component diagram v
S2 Graph-based model State graph v v
S4 UML Class diagram v v v
S5 Graph-based model Process flow model v v
S6 Box and arrows State transition diagram v v
S7 Graph-based model State graph v
S9 UML State transition diagram v v
S14 Box and arrows Component diagram v v
S21 Box and arrows State graph v v
Graph-based model
S22 Box and arrows Component diagram v v
S25 Graph-based model State graph v v
S27 Graph-based model Process flow model v v v
S28 Box and arrows State graph v v
Graph-based model
S31 Graph-based model Process flow model v
S32 UML (Q-UML) Class diagram v v
Sequence diagram
S33 Box and arrows Component diagram v v v

Key Findings of RQ2.1

Finding 7: An architecture design endeavour for the
quantum software requires an architecting process to
incorporate a number of architecting activities. Existing
architectural process can be leveraged to support five
architecting activities for quantum software namely (i)
architectural requirements, (ii) architectural modelling, (iii)
architectural implementation, (iv) architectural validation,
and (v) architectural deployment.

Finding 8: Quantum specific requirements such as mod-
elling Qubits to Qugates and co-design of quantum hard-
ware and software requires domain specific modelling
and transformation to be supported by architectural
process activities.

5.2. Architectural modelling notations (RQ2.2)

We now answer RQ2.2 that investigates the modelling
notations, representing a multitude of graphical models or de-
scriptive notations to specify, document, or represent the archi-
tectural models. From architectural process perspective (RQ2.1),
the terms modelling notation, modelling language, and architec-
tural language are virtually synonymous and often used inter-
changeably all referring to same concept of architectural
representation either graphically or textually (Malavolta et al.,
2012; Pérez-Castillo et al., 2021). For example, to support quan-
tum modelling languages for specifying QSAs, Carlos et al. [S32]
have developed Q-UML - an extension to classical UML (Unified
Modelling Language) - to support structural and behavioural
representation of quantum search algorithms (Medvidovic et al.,
2002). Specifically, considering the (co-) design and implemen-
tation challenges of QSAs, the role of architectural modelling
becomes pivotal to provide a software blue-print model that acts
as a bridge between architectural requirements and their imple-
mentations, as in Fig. 7. Architectural models essentially becomes
the driving artifact in the context of model-driven architecting,
where architectural models and model transformation can be
exploited for model-based implementation and validation of the
system (Moin et al., 2021). To systematically classify, analyse and
compare architectural modelling or description languages, some
frameworks have been developed that provide a criteria-driven

15

analysis of architectural modelling (Malavolta et al., 2012; Medvi-
dovic and Taylor, 2000). These evaluation criteria can be generally
classified into three main types, each type exploring the role of
modelling notations to support (i) architectural specifications
(e.g., architectural representation, architectural structure, syntax,
and semantics and, analysing static and dynamic nature of the ar-
chitectures), (ii) quality attributes (e.g., extension, customisation,
interoperability of the notations), (iii) architectural process (ar-
chitectural requirements, implementation, validation). The focus
of this RQ is architectural representation, not quality attributes
of modelling notations, therefore, we mainly focus on aspects of
architectural representation and support for architectural process
(Fig. 7) with the help of Table 5. Table 5 acts as a structured
catalogue to summarise the following information to answer this
question.

Available evidence reflects the published research, that pro-
vides details of the modelling notation for QSAs [S32].

Modelling notation represents a specific method or technique
that is being used to represent the model for QSA. For example,
the Q-UML solution provided by Carlos et al. [S32] is an extension
of the UML for structural and behavioural representation of the
QSA. In addition to the extensions of already existing modelling
notations (i.e., QSA specific tailoring), conventional notations such
as graph-based models or box and arrow structures have been ex-
ploited to specify the structure and semantics of QSAs [S16][S27].
For example, Killoran et al. [S27] exploits graph-based models to
represent modules of code to implement the quantum software.
Specifically, in graph-based modelling the modules of source code
are represented as graph nodes (computational elements and
data stores), whereas graph edges represent the interconnection
the code modules. This means that TransactionCommit module
(node_1) transfers control to Update TransactionRecord module
(node_2) via commit connector (edge_A) in architectural graph
for quantum software.

Modelling artifact represents a specific artifact (i.e., visual
diagram, model) to represent an instance of the architectural
model. For example, Carlos et al. [S32] used UML class diagram
is being used to represent the structure, whereas UML sequence
diagrams are used to represent the behaviour of the quantum
search algorithm.

Architectural process support needs modelling notation (and
its underlying artifacts) to support specific activities in the ar-
chitectural process from RQ2.1. For example, Q-UML presents
class and sequence diagrams to (i) model requirements and (ii)

AA. Khan, A. Ahmad, M. Waseem et al.

specify structural representation and execution flow of the quan-
tum search design. The proposed solution Q-UML does not pro-
vide support for other architecting activities such as architectural
implementation or evaluation.

Table 5 summarises the core findings of RQ2.2 to streamline
most adopted modelling notations, the artifacts being used to
model the QSAs, and their impacts on architectural process. We
can conclude that most prominent modelling notations can be
broadly classified into three main types as UML profiles and
extensions such as [S4, S9, $32] (3 studies), graph-based models
including [S2, S5, S7, S21, S25, S27, S28, S31] (8 studies), and box
and arrow notations including [S1, S6, S14, S16, S19, S21, S22, S28,
$33] (9 studies). Some of the most used state transition diagrams,
state graph, and process flow models diagram. In the context of
architectural process support, existing modelling notations are
primarily focused on supporting architectural requirements [S5,
S9, S16, S21, S32] (05 studies), design [S1, S2, S4, S5, S6, S7,
S9, S16, S19, S21, S22, S25, S27, S28, S31, S32, S33] (17 studies)
and implementation phases [S2, S4, S14, S19, S27, S28, S33] (7
studies), whereas there is much less support for life-cycle activi-
ties like architectural evaluation [S14, S22, S27] (3 studies) and
deployment [S4, S6, S25, S33] (4 studies). Modelling notations
are fundamental to the creation of architectural design models
that provide foundations for architectural implementation (Med-
vidovic et al., 2002). In the context of this research, models can
facilitate other architectural aspects including but not limited to
design decisions (patterns and styles that promote reuse) and
tools that support customisation, human decision support, and
automation, detailed in subsequent sections of this paper.

Key Findings of RQ2.2

Finding 9: Modelling notations to specify quantum soft-
ware architectures primarily rely on box and arrow
notations (having component diagrams) and graph-based
models (having state graph) to represent the structures
and behaviour of quantum software under design. Unlike
conventional software architectures that mostly exploit
UML notations (often considered as a defacto approach
for software design), there is much less evidence on
UML-based modelling quantum software architectures

Finding 10: It appears that there is a need for architec-
tural description languages and UML profiles that can be
helpful to leverage existing tools, frameworks, and ar-
chitectural knowledge to empower the role of designers
and architects to model, develop, and evolve quantum
software based on re-usability and (semi-) automation.

5.3. Architecture design patterns (RQ2.3)

To answer RQ2.3, we identified a total of six quantum soft-
ware architecture patterns discussed in (n 17, 50%) studies.
In design or architectural context, patterns represent reusable
design knowledge, referred to as best practices and concentrated
wisdom of designers to address recurring challenges of software
development. For example, to address the challenges of sys-
tem structuring and deployment the layered architecture pattern
helps architects to organise software-intensive systems and ap-
plications into various layers, each dedicated to different concerns
such as data management, user interfacing and computations [S1,
S18]. A collection of patterns formally or informally organised
into a sequence, results in architectural pattern languages (Ley-
mann, 2019). The focus of this study is individual patterns rather
than pattern languages. The set of identified quantum software
architecture patterns is presented in Table 6. The most recurring

16

The Journal of Systems & Software 201 (2023) 111682

Table 6
Quantum software architecture design patterns.

Pattern name Study IDs

S3, S5, S9, S14, S18, S26, S28, S29
S2, S20, S21, S27, S31

Layered pattern
Pipe and filter pattern

Composite design pattern S4
Prototype design pattern S24
Recursive containment S9
Two-qubit gate pattern S20

design patterns discussed in the 18 primary studies are layered (n
= 8, 24%) and pipe and filter architecture (n = 5, 15%) patterns. The
other patterns having low frequency of occurrence are (compos-
ite design, prototype design, recursive containment and two-qubit
gate). In the following text, we briefly describe the example of
a layered pattern for the general-purpose microarchitecture of
quantum software [S3]. Generally, the layered pattern architecture
of quantum software mainly consists of several properties that we
also need to estimate. These properties include appropriate in-
struction length, pipeline depth (for parallel quantum gates), and
multiple control channels per single instruction. These properties
help to construct the basic blocks of quantum software, such as
the timing control unit and the microcode instruction set of the
overall system. According to our results, the second most fre-
quently reported pattern used for designing quantum software is
pipe and filter. Killoran et al. [S27] proposed an open-source quan-
tum programming architecture (i.e., Strawberry Fields) based on
pipe and filter patterns. The elements of the proposed architec-
ture are organised as the front-end and the back-end. The front-
end layer consists of interactive server, application, field API, and
quantum programming language components, and the back-end
components include a quantum processor and simulator. Both
layers communicate through the compiler engine. Our results in-
dicate that the patterns for quantum software are similar to other
types of software (e.g., monolithic based architecture, services-
oriented based architecture, microservices-based architecture).
However, these patterns deal with a series of instructions that
need to be executed on quantum processors.

Key Findings of RQ2.3

Finding 11: Layered and pipe and filter patterns are
identified as the most recurring quantum software archi-
tecture patterns. However, these are generic or classical
patterns that can be used to design any software sys-
tem. To this end, further research efforts are required to
explore and propose new patterns to particularly focus
on quantum computing attributes (e.g. superposition and
quantum entanglement) and facilitate the architecture of
quantum software systems.

5.4. Architecture tools and frameworks (RQ2.4)

RQ2.4 is developed to identify tools and frameworks used
to support the architecting activities discussed in Section 5.1.
We explored the selected primary studies and noticed that only
(n = 11, 32%) studies discussed architectural tools and frame-
works (see Table 7). The tools and frameworks provide semi- or
fully automated solutions to perform architecting activities. Tools
broadly refer to software solutions that automate, enhance, or
customise process activities. On the other hand, a framework is a
set of tools used to perform a bunch of activities, e.g., designing,
implementation, and documentation. Each identified tool and
framework is interpreted based on the following five criteria (Saj-
jad et al,, 2018), as listed in Table 7). Source type refers to the

AA. Khan, A. Ahmad, M. Waseem et al.

The Journal of Systems & Software 201 (2023) 111682

Table 7

List of identified tools.
Tool/Framework Source type Input instructions Output Automation level Evaluation Study
XACC (eXtreme-scale Accelerator) CS HL QscC FA EX S4
Link layer CS QI SF FA EX S6
Auto E/E framework oS MV SF SA IM S9
eQASM CS QI QA SA EX S14
JKQ (tool set) 0S HL SF FA EX S16
Kwant oS MV SF FA EX S17
JKQ DDSIM oS HL SF FA EX S19
QuNetSim 0S HL SF SA M S25
Strawberry fields oS HL SF FA EX S27
qcor 0S HL SF FA EX S28
GH-QPL CS HL Qsc SA IM S33

type as open source (OS) or close source (CS). In open source,
the copyright holders grant the user permissions to study, use or
update the tool, framework or system. Input instructions are the
instructions provided to execute the logic. The instruction types
are categorised as high-level (HL), quantum instruction (QI), and
mathematical variables (MV). Qutput are the type of post exe-
cution findings and categorised as quantum source code (QSC),
quantum algorithm (QA), and simulation findings (SF). Automa-
tion level refers to the automation level of the tool or framework.
Automation could be fully-automated (FA), semi-automated (SA),
or non-automated (NA). Evaluation refers to the performance
assessment of a particular tool and framework. Evaluation could
be explicit (EX) or implicit (IM). Implicit means that tool or
framework is partially evaluated or few of the components are
empirically assessed.

The results given in Table 7 reveal that (n = 7, 64%) tools and
frameworks are open source (0S). Similarly, (n = 7, 64%) tools and
frameworks accept input code in high-level (HL) programming
format (i.e instructions that are more or less independent of a
specific type of computer). Moreover, (n = 8, 73%) tools and
frameworks simulate the high-level input instructions and give
the output based on the simulation findings (SF). We further no-
ticed that (n = 7, 64%) tools and frameworks are fully-automated
(FA) and (n = 8, 73%) are explicitly (EX) evaluated based on their
performance. The visualisation and summary of the results on
tool support are provided in Fig. 8 and Table 8.

Finally, the identified tools and frameworks are classified with
respect to their contribution across the architectural process ac-
tivities reported in Section 5.1. Thematic analysis approach dis-
cussed in Section 3.2.4 is followed to categorise the identified
tools and frameworks and present the toolchain. It should be
noted that a specific tool or framework might contribute to more
than one architecting activities and we consider them across
multiple activities (see Table 8).

The core architecting activities with respect to the tools and
frameworks support are subsequently discussed:

Architectural requirements: We explored the selected primary
studies and identified a single framework that focuses on archi-
tectural requirements (see Table 8) [S9]. Lan et al. [S9], proposed a
quantum computing based architectural framework to minimise
the gap between the functional domains and meet the require-
ments of the open electrical and electronic automotive embedded
systems. Architectural requirements is a less focus activity with
respect to tools and frameworks and the reason might be that
quantum software architecture field is in the evolution phase and
still the architectural requirements activities do not have tool
based automation and customisation support.

Architectural implementation: We identified that a total of six
tools and frameworks contributed to the architectural implemen-
tation activity (see Table 8). More narrow, these tools and frame-
works explicitly focus on the code compilation and design to code
transformation sub-activities (see Fig. 8). The power of quantum

17

computer could only be realised by implementing quantum algo-
rithms to control the hardware devices, improve the performance
and verify the quantum attributes (Magnani, 2022). Therefore,
researchers and practitioners are rushing to develop strategies,
tools, frameworks and guidelines to implement algorithms in
a simple and efficient way. For example, XACC (eXtreme-scale
ACCelerator) provides interfaces to enhance hybrid compilation
of programmes developed both in quantum and classical pro-
gramming languages [S4]. XACC programming framework is de-
signed in a manner that it is entirely independent of selected
language, computational model and hardware. The implementa-
tion tools and frameworks instantly assist in realising the real-
world computation benefits of quantum computers and increase
its application across various industrial domains.

Architectural modelling: We noticed that only two architectural
modelling tools and frameworks are developed, which explic-
itly address design model and architecture model sub-activities
[S27, S28] (see Fig. 8). Modelling activities performed to develop
the overall architecture, which acts as a blueprint for the im-
plementation. The quantum software engineering field is still
undeveloped, and it is important to create high-level modelling
abstractions for classical software engineers to understand and
model the quantum programmes. For example, Strawberry Fields
is an open source architectural framework developed to design
and optimise the software systems for photonic quantum com-
puters [S27]. Strawberry Fields has built-in engine to convert
the code developed in domain specific programming language
(blackbird) and run using the photonic quantum computers.

Architectural deployment: Finally, we noticed that only one
framework focuses on deployment activities i.e., link layer [S6].
It is developed for quantum communication that improves the
entanglement attributes between quantum computers into robust
and well defined services. Additionally, strategies for network
scheduling are developed to evaluate the protocol performance
with respect to different use cases. Architectural deployment is
a slightly less focused activity and in near term the tools to
automate the deployment activities will be demanding need.

Key Findings of RQ2.4

Finding 12: The identified tools and frameworks are
categorise based on the five core attributes namely (i)
source type, (ii) inputs, (iii) outputs, (iv) automation, and
(v) evaluation level.

Finding 13: The identified tools and frameworks are
mapped across the architecting activities and presented
as a toolchain (see Fig. 8). Architectural implementation
is identified as the most common activity with respect
to tools and frameworks. We noticed that six tools and
frameworks (n = 6, 55%) are developed to automate and
customise the architectural implementation activities.

AA. Khan, A. Ahmad, M. Waseem et al.

The Journal of Systems & Software 201 (2023) 111682

v= translated to &%ﬁ operationalised with E'—
=l ¥ | v E@
Architectural Architectural Architectural Architectural
Requirements Modeling Validation Deployment
3 Design Model
(% PTS Fun'ctlonal m]
$0s Requirements ‘ ! : ~ @ f' AI:' igf:ttizfl % f_h.@ Archiectural
! Configurations
{) Non-functional eval:;lted &4 —=
Requrrements ------ > .
Paltersn and I I . A .
QL. Archiectural =FE—— @ Archiectural
‘ Domaln Specific ‘ % Styles & Simulation .\ Maintenance
Requirements -
Architecture Model
A A \ '
' ' Architectural ' '
1specified as Implementation validates! '
: [€-------- :
' mapped to (% Code Compilation operationalise |
---------------------------- > and Execution TTTTttmmmmmmmmmem
545
[=a=] g
B oln | Design to Code
o0 | Transformation
B
Architecting | (. Tool Support | ' Tool Support
Activity Available Not Available
Control Flow Mapping
—_— > - >»

Fig. 8. Tool support for architecting activities.

Table 8

Summary view of tools and frameworks across architecting activities (AR = Architectural Requirements, AM = Architectural Modelling,
Al = Architectural Implementation, AV = Architectural Validation, AD= Architectural Deployment).

Study ID Tool name Tool focus Process support
AR AM Al AV AD
S4 XACC Code compilation v
S9 Auto.E/E Framework Requirements v
S27 Strawberry fields Domain modelling v
S28 qCOR Design v v
S14 eQASIM Programme flow and execution v
S16 JKQ Code compilation v v
S19 JKQ DDSIM Simulation, compilation v
S33 GH-QPL Translation and compilation v
S6 LinkLayer Quantum communication v
S17 Kwant Simulation v
S19 JKQ DDSIM Simulation v
S25 QuNetSim Simulation v

5.5. Architecture challenges

The selected primary studies are explored to identify the key
challenges of quantum software architecture (RQ2.5). We found
that only (n = 16, 47%) primary studies reported the architecture
challenging factors. The identified challenges are further clas-
sified across four core themes: quantum data transmission and
security, process-centric architecting, architectural tools and tech-
nological support, and architecting knowledge and expertise. The
thematic analysis approach discussed in Section 3.2.4 is followed
to systematically identify the most common themes of the chal-
lenging factors (see Fig. 9). For fine-grained analysis, the main
themes (core categories) and sub-themes (challenging factors) are
presented in Fig. 9 and explicitly discussed below:

5.5.1. Quantum data transmission and security

This theme covers the challenging factors related to the secu-
rity of network architecture developed for quantum data trans-
mission. We identified a total of four sub-themes (challenging
factors) related to the security of quantum network architecture
(see Fig. 9). The identified challenging factors are thoroughly
discussed as follow:

Quantum key distribution (QKD): The quantum key distribution
(QKD) approach is used to develop the ultra-secure network for
quantum data transmission [S1]. QKD involves sending the en-
crypted data and decryption keys over quantum network in qubit
state. However, the existing QKD systems are designed to work
on the single link quantum network and becomes challenging to
operate across multiple networks where the system design and

18

AA. Khan, A. Ahmad, M. Waseem et al.

The Journal of Systems & Software 201 (2023) 111682

Architectural
Programming Lack of Simulation
Languages Tools
[S12, S15, S19, 06 05
S21, S25, $29] Studies Studies [S7, S14, S24, S26, S33]

Architectural Tools and
Technologies

L

Simulating Quantum Network

Architecture Noisy Components #—

Noisy Intermediate-Scale m—]
Quantum Computers
Lack of Computer Aided Designs—

Quantum Data
Transmission and Security

[$1, S2, S33]

Quantum Key Distribution

Quantum Communication
Architecture

Quantum Teleportation
Strategies

Quantum Cryptography

Quantum software

Centric Challenges

I_|$

Studies Studies

Taxonomy) _—

Legend

Process-Centric
Architecting

Classification of Architectural Design Models

Architectural Pattern Selection

Designing Scalable Software
$30, S31] Architecture

Architecting Knowledge
and Expertise

Architecture-

02
Lack of Experienced

workforce

Lack of Architectural
Knowledge

Sub-theme

Fig. 9. Thematic classification of identified challenges.

protocols get more complex [S1,S2]. It is evident that there is a
strong need of QKD architecture that could deploy across multiple
networks for transmitting secure quantum data.

Quantum communication architecture: Architecting a quan-
tum network is challenging with respect to communication per-
spectives. Quantum network architecture is distinct to classical
because of quantum attributes including superposition, entangle-
ment, and quantum measurement [S33]. These attributes brings
significant constraints to design the quantum communication
architecture. In classical communication, the data bits used to
convey the message. In contrast, the qubits are used to transmit
the data over quantum communication channel, however; de-
veloping a quantum communication architecture needs a major
paradigm shift to consider the characteristics of quantum me-
chanics [S33]. The open-source community should join the efforts
to design and fabricate the quantum communication architecture
models and interfaces.

Quantum teleportation strategies: Techniques used to trans-
fer quantum information between sender and receiver is called
quantum teleportation. Teleportation in science fiction refers to
transfer a physical object from location A to B; however, in quan-
tum computing it is used to transfer the Qubits. It has pivotal role
in the continuing progress of quantum communication, and quan-
tum networks. However, teleportation is a major challenge in
present day quantum computing science because of lack of tele-
portation protocols, strategies and techniques. Qubits transmis-
sion across multiple nodes and computation in the cloud domain
is only possible by using the quantum teleportation strategies
[S33]. There is a strong need for teleportation protocols and
strategies that could reshape the quantum teleportation process.

Quantum cryptography: Practically, quantum cryptography is
in its infancy because of data transmission rates and process-
ing limitations. These issues are complicated and challenging
to tackle as the high-quality single photons for long-distance
required low transmission loss rates. It increases the technolog-
ical cost of quantum cryptography as compared to the classical.
Similarly, developing a sharing infrastructure for secure data en-
cryption and decryption is a significant challenge for quantum
cryptography [S33]. The effective encryption and decryption solu-
tion is possible by introducing the intermediate node between the
sender and receiver. Presently, tackling quantum cryptography
challenges is complex, and world-leading technology giants are
racing to propose effective solutions.

19

5.5.2. Process-centric architecting

This theme is developed to categorise the key challenging
factors (sub-themes) that could impact the design process of
quantum software architecture. Following is the detail descrip-
tion of each selected challenge that covers the process-centric
theme.

Architectural design models: There is a lack of models for de-
signing quantum software architectures. The existing models are
simplified extended versions of classical modelling approaches
and do not explicitly cover the quantum properties including
superposition, interference, and entanglement [S7, S24]. The un-
availability of particular quantum software design models make it
hard to design the system architecture. The expectations to con-
sider quantum computing as alternative to classical increased ex-
ponentially [S7, S24]. Consequently, it becomes important to pro-
pose rigorous design models in advance for architecting quantum
software systems.

Architectural pattern selection: Architectural pattern is a com-
mon and reusable solution for generally occurring architectural
problems. Selecting an appropriate architecture pattern for a spe-
cific quantum problem is a challenging feat. The multi-criteria de-
cision making (MCDM) model could be a best solution to choose
a right pattern for right problem [S26]. MCDM model provides a
platform to tackle the commonly occurred quantum architectural
problems.

Designing scalable quantum software architecture: Scalable sys-
tems refer to the information processing concept where a com-
plex system could be developed using the basic building blocks. In
quantum architectural scalability, the qubits properties improve
or remains consistent when they are extended across multi-
qubits systems [S14, S33]. However, architectural scalability also
needs to consider the Qubits operations with specific timing, in
time instructions fetching and processing to ensure that desired
operations are accurately performed [S14]. It is hard to live up
the real-world promises and supremacy of quantum computers
without architectural scalability [S33].

5.5.3. Architectural tools and technologies

The tools and technologies theme is developed to classify
the challenges related to the technical support for architecting
activities. In-depth discussion of these challenges is provided as
follows:

Noisy Components: Constructing a scalable quantum computer
is challenging due to environmental interaction noise that could

AA. Khan, A. Ahmad, M. Waseem et al.

destroy its highly fragile components [S12]. Environmental inter-
action noise generated because of control devices and heat, which
can seriously disturb the qubits superposition state and cause
computational errors. The robust statistical and mathematical
models to estimate the noise impact can significantly improve the
computation process and protect the superposition state [S12].

Noisy Intermediate-Scale Quantum (NISQ) computers: It will
take decades of research to realise the fault-tolerant quantum
computer for solving the wide range real-world problems [S15].
However, the concept of noisy intermediate-scale quantum
(NISQ) computer already exists, which contains fifty to a few
hundred Qubits but is not smart enough to continuously perform
fault-free computations [S15, S21]. The term noisy is used be-
cause the present day quantum processors are not sophisticated
enough to cope with the environmental impacts, which cause to
lose the quantum coherence. Experimental interest is expected
and demanded in designing quantum software and hardware
architectures to process and execute a large number of error-
free Qubits. Transition to quantum computing or more specifically
adopting the quantum hardware and quantum computing plat-
forms requires financial investments as well as human skills to
manage quantum resources. The PISQ (Perfect Intermediate Scale
Quantum) enables the development of new software applica-
tions by developing algorithms and evaluating them on quantum
simulators that can be executed on existing computing plat-
forms (Bertels et al., 2021). Solutions like PISQ may not be long
term solutions to support quantum software, but such solutions
allow research and development of quantum logic via simulations
that can be deployed and executed on non-quantum computing
platforms.

Lack of computer-aided design (CAD) tools: Computer-aided
design tools enable the development, change, and optimisation
of the architecture design process. These tools are significantly
important for developing nanoscale quantum software archi-
tectures [S19]. Research to automate and optimise the design
approaches for quantum software systems is boosting; however,
there is a considerable coordination gap between the CAD and
quantum computing community [S19]. Consequently, various
proposed CAD tools are failed to achieve the core architectural
objectives.

Simulating quantum networks architecture: The quantum in-
ternet is defined to transmit quantum data, which is a network
architecture of multiple devices and software tools. The concept
of a quantum internet is still not in practice, and development
efforts are being made to shape it practically. To analyse network
protocols, it is important to assess their significance using dif-
ferent simulation tools [S25]. However, limited studies discussed
such tools for evaluating quantum network protocols and there
is a strong need for advanced simulation tools.

Architectural programming languages: Quantum architectural
programming language should provide all the required abstrac-
tions both to quantum physicists and algorithm designers. The
existing languages are not rich enough to consider for future
high-number Qubits algorithms [S29]. They are still unpredictable
for complex quantum problems. In the future, the architectural
languages should support high-level abstractions for developing
and deploying advance algorithms based on quantum superpo-
sition and entanglement. Quantum programming languages and
frameworks provided by technology giants (e.g., Qiskit by IBM,
and Q# by Google) enable software developers to implement QSA
as quantum source code that can be executed or implemented
on quantum computing platforms. However, the results of an
exploratory study show that (i) mined quantum source code
repositories available on GitHub and (ii) interviewed quantum
code developers suggests that beyond the industry led projects,
adoption and applicability of quantum programming in devel-
opers’ community is still limited (De Stefano et al., 2022). The

20

The Journal of Systems & Software 201 (2023) 111682

study also highlights that the current generation of software de-
velopers, while implementing quantum code, face a multitude of
challenges that range from quantum programme comprehension
to source code analysis, manipulation, and testing (Wang et al.,
2022).

Lack of simulation tools: The lack of simulation tools is consid-
ered a major barrier for quantum software architecture research.
The need of simulation tools escalates for large-scale practical
and reliable measurements [S29]. Generally, the architects are
interested in knowing how fast the architecture works for a
specific application, which types of operations it can perform, and
what would be the reliability level of its results? These ques-
tions could possibly be answered by proposing particular simula-
tors for quantum software architecture [S29]. OpenQL provides
a quantum programming language and its associated quantum
compiler to develop and execute quantum source code. OpenQL
also produces quantum assembly code that is technology in-
dependent and can be simulated using QX Quantum Computer
Simulator (Khammassi et al., 2021).

5.5.4. Architecting knowledge and expertise

Designing a real-world quantum software system require ade-
quate knowledge and expertise, which play major roles to realise
the quantum software design and development activities. This
theme is developed to organise the core challenges related to
quantum software knowledge and expertise. Following is the
detail discussion of the identified challenges (sub-themes).

Lack of experienced workforce: Building a workforce for de-
signing a software system is substantially a major challenge in
quantum computing domain. The skills needed to develop a clas-
sical computing system are different to quantum [S30]. There is
a need for specific professional expertise (i.e., human roles in
architecture-centric development process) such as quantum soft-
ware architects, quantum code developers, and quantum domain
engineers (Khan et al., 2022b). The technical team should under-
stand physics to characterise the quantum properties of software
systems. Such expertise during the quantum software design and
architecting phase can enrich the architecting activities to better
meet quantum-specific requirements of the software. Designing
and architecting quantum software is radically a different con-
cept, and it demands skillful quantum technical and managerial
workforce [S30].

Lack of architectural knowledge: The research field to under-
stand quantum mechanics and integrate it in computing domain
by designing quantum software architecture is far from being
mature. Various architectural solutions are proposed to develop
a quantum software system; however, it require deep knowledge
of theory, technology, and understanding to select and implement
a suitable solution based on the architectural problem [S31].
It is important to educate the quantum software engineering
community to reshape the architecture processes, activities and
practices [S31].

Key Findings of RQ2.5

Finding 14: Following four core themes of the identified
challenges are developed: quantum data transmission and
security, process-centric architecting, architectural tools and
technologies, and architecting knowledge.

Finding 15: We observed that most of the (n = 6, 40%)
challenges are related to the architectural tools and tech-
nologies theme. The existing tools and technologies are
not at advance level to tackle the architectural problems
and it cause various challenges. This is inline with the
finding to develop a software engineering community
that focuses on devising advance level tools and tech-
nologies for managing quantum software architecture
challenges (Zhao, 2020).

AA. Khan, A. Ahmad, M. Waseem et al.

Table 9
A Summary of the key findings of SLR.

The Journal of Systems & Software 201 (2023) 111682

Demography of Published Research (RQ-1.1- RQ1.3)

RQ-1.1 - Frequency and types of publications

Frequency: Years of publications = 2004 to 2021 with the most number of publications

from 2018 - 2021 (21, 62%)

Types: Journal articles (15, 44%), Conference proceedings (13, 38%), Workshop paper (4, 12%),

Symposium paper (2, 6%)

RQ-1.2 - Types of published research

Personal experience papers, Philosophical papers, Opinion papers,
Validation research, Proposal of solution, Proposal of solution and validation research

RQ-1.3 - Application domains of research

Systems and hardware engineering (20, 59%), Software engineering (5, 15%),

Source code compilation (4, 12%),
Network security (4, 12%), Smart systems (1, 3%)

Architectural solutions for quantum software (RQ-2.1- RQ-2.5)

RQ-2.1 - Architectural process for quantum software
-Architectural requirements

-Architectural modelling

—Architectural implementation

-Architectural validation

-Architectural deployment

RQ-2.2 - Architectural modelling notations
-Graph-based models

-Box and arrow

-UML

-UML (Q-UML)

Q-2.3 - Architectural patterns

Layered pattern, Pipe and filter pattern, Composite design pattern, Prototype design pattern,

Recursive containment, Two-qubit gate patterns

Q-2.4 - Architectural tools and frameworks

XACC, Link layer, Auto E/E framework, Strawberry fields, qCOR, eQASM, JKQ, Kwant,

JKQ DDSIM,QuNetSim, GH-QPL

RQ-2.5 - Emerging challenges for quantum software architectures

-Process-centred architecting
-Architecting knowledge and expertise
—Quantum data transmission and security
-Architectural tools and technologies

6. Key findings and implications of the SLR

We now summarise the core findings of the SLR - discussing
key results as answers to all RQs - that highlight the state-of-
research on architecting quantum software in Section 6.1. We also
discuss the implications of the SLR on future academic research
in Section 6.2 and its significance along with the potential rele-
vance of this SLR to industrial solutions that address challenges
of quantum software architecting in Section 6.3.

6.1. Summary of key findings

A conclusive summary of each RQ is presented in Table 9 that
structures the general demographic details of published research,
answering RQ-1.1 to RQ-1.3 and architectural solutions for quan-
tum software answering RQ-2.1 to RQ-2.5. Table 9 can be looked
up to identify the core finding corresponding to a specific RQ
quickly. For example, a summary of the answer to RQ-1.3 high-
lights that architectural solutions for quantum software can be
applied to several domains such as systems and hardware engi-
neering, software engineering, source code compilation, network
security, and smart systems. Since the year 2018, a compara-
tive growth in research on QSE and more specifically quantum
software design, architecture, and implementation can be at-
tributed to a number of factors. Our study identifies three such
factors including (i) a number of pioneering surveys on quan-
tum software engineering and development (Zhao, 2020; Piattini
et al, 2021; Gill et al,, 2022; Ali et al., 2022) (ii) community-
wide initiatives with dedicated workshops and conferences for
quantum software (Moguel et al., 2020; Abreu et al., 2021a;

21

Barzen et al., 2021, 2022), along with the emergence of quantum
programming models and languages (Zhao et al., 2021; Sunita
et al,, 2021; De Stefano et al.,, 2022; Khammassi et al., 2021).
Moreover, beyond academic research, the recently growing inter-
est to exploit quantum computing and technologies in IT industry
is based on rapid advances in quantum hardware and quantum
programming languages that support QSE initiatives in terms
of developing quantum software systems and applications (Mi-
crosoft, 2021; Behera et al., 2019; Courtland, 2017). It is vital
to mention that the launch of the Quantum Flagship project in
2018 (funded by the European Commission) reflects regional and
global ambitions to foster research and development on quan-
tum computing technologies (Anon, 2022a). Similarly, the studies
[S31, S34] present solutions that enable software designers and
architects to design and implement quantum software using ar-
chitectural components and connectors that can be mapped to
source code modules and interaction between the models. Simi-
larly, Table 9 highlights the key findings for RQ-2.3 that to model
and represent quantum software architectures the most promi-
nent architectural notations are graph-based modules, box and
arrow structures, and Unified Modelling Language. For example,
the study [S32] presents a quantum-specific UML named Q-UML
that exploits class and sequence diagrams to represent the be-
haviour and structure of quantum software systems. The details
in Table 9 are self-explanatory and focus on summarising the core
findings that have already been discussed in Sections 4-5.

6.2. Research implications

(i) Research types based analysis is performed to understand
the types of research conducted by the selected primary

AA. Khan, A. Ahmad, M. Waseem et al.

studies (see Section 4.2). However, we found that none of
the studies conducted evaluation research to assess a par-
ticular problem or solution. Quantum software architecture
is an emerging research area and no evaluation research
studies conducted to assess the contributions promised
by the available architectural solutions. It is a significant
research gap, and we encourage the researchers to focus
on evaluation research to appraise the real-world signifi-
cance of quantum software systems as well as the existing
relevant architectural problems.

Most of the research studies were conducted across five ap-
plication areas (see Fig. 6(b)); however, we were not able to
find enough evidence related to other important areas, like
model-driven quantum software architecture (MDQSA), quan-
tum Al software architecture, and quantum software archi-
tecture applications for the industrial problems (Ali et al.,
2022; Bertels et al.,, 2021). The possible reason for lack of
research in the mentioned areas might be that quantum
software architecture is a novel research area and most of
the studies focused on proposing architectural solutions for
quantum hardware systems (see Fig. 6(b)). Therefore, we
encourage the research community to put more focus on
the following areas: (1) Model driven quantum software
architecture (MDQSA) to manage complexity, achieve high
level reuse and reduce the development efforts (Abreu
et al,, 2021b). (2) Quantum Al software architecture to
improve state-of-the-art and propose solutions to operate
beyond the classical competencies (Graef and Georgievski,
2021). (3) Boost industrial awareness related to quantum
software architecture and develop architectural solutions
to deal with complex industrial problems (Anon, 2022a).
Concerning the domain problem, we thoroughly investi-
gated the challenging factors of quantum software archi-
tecture (see Section 5.5) and mapped these factors across
different major themes. Thematic mapping provides a con-
ceptual framework to understand the broad picture of the
identified challenges and barriers of quantum software ar-
chitecture (Medvidovic et al., 2002).

(ii)

(iii)

In conclusion, this study provides quick access to the body of
knowledge based on quantum software architecture literature.

6.3. Industrial implications

(i) We systematically investigated, analysed, and mapped the
existing tools and frameworks across the architecting ac-
tivities (see Section 5.4). A mapping between architecting
activities and corresponding tool support can guide prac-
titioners in exploiting the available tool support (enabling
automation) to perform a specific architecting activity. For
example, as shown in Table 8 if a practitioner wants to con-
duct architectural validation, he/she can utilise the QuNet-
Sim on implemented architecture to simulate quantum
information processing on a quantum network [S25]. In
general, the results of this SLR can facilitate the practition-
ers to get an overview and analyse the extent to which
architecting activities, patterns and existing tool support
that enable semi-automation can be leveraged to develop
industrial-scale solutions for quantum software.

(ii) We proposed an architecting process, which consists of a
sequential list of activities, actions, and events to develop
a scalable quantum software architecture (see Section 5.1).
The proposed process acts as a blueprint for practitioners
to understand the inputs, workflow, and outputs of the
quantum software architecting process (see Section 5.1).

22

The Journal of Systems & Software 201 (2023) 111682

(iii) Thematic classification of identified challenges (see Fig. 9)
provides an overview of potential barriers that need to
consider by practitioners before initiating the architecting
activities (De Stefano et al., 2022).

Several studies (n = 11, 32%) discussed architectural tools
and frameworks (see Section 5.4). We developed a toolchain
of the identified tools and frameworks based on their
contribution across the architecting activities (see Fig. 8).
It will assist the practitioners to select a suitable tool or
framework with respect to a specific architecting activity.
However, there is still a need for industrial efforts to
develop more advanced tools to manage the unexplored
architecting activities (Khammassi et al., 2021; Miranskyy
et al.,, 2022).

(iv

—

The quantum software architecture is a new and unexplored
research area. Academic researchers and industrial practitioners
working in quantum software architecture domain are invited to
contribute by sharing their experiences. It will alleviate the gap
between academic research and industrial practices.

7. Threats to validity

Various threats could impact the validity of this study. How-
ever, we adopted the SLR guidelines proposed by Kitchenham
and Charters to alleviate these threats (Kitchenham and Charters,
2007). The potential threats are analysed based on the core four
types of validity threats: internal validity, external validity, con-
struct validity, and conclusion validity (Wohlin et al., 2012; Zhou
et al,, 2016).

7.1. Internal validity

The extent to which certain factors affect the results and
analysis of the extracted data is called internal validity. Threats to
the internal validity of this study could happen in the following
SLR phases:

Search strategy:. It might be possible that relevant primary stud-
ies are missed during the search process because of the search
strings and the overlap across the selected studies due to the
snowballing approach, as highlighted by Jalali and Wohlin Jalali
and Wohlin (2012). However, we explicitly defined the search
strategy in Section 3.1.3. The first three authors extracted the
search terms based on their understanding of RQs, which were
further refined by all the authors in consent meetings. More-
over, the search terms were used to develop the search string,
which was iteratively developed by all the authors. It should
be noted that the authors have extensive research experience
in conducting SLR based studies in the software engineering
domain.

Studies selection and quality assessment:. The inclusion and exclu-
sion criteria are defined in Section 3.1.4 and used to filter the
search results and select the most relevant studies. The first three
authors jointly participated in the studies selection process. Fur-
thermore, the first author evaluated the quality of each selected
study against the assessment criteria defined in Section 3.2.2. The
second and third authors independently verified the assessment
results to avoid personal bias.

Data extraction:. Personal bias is a fundamental data extraction
threat in SLR studies. We mitigate this threat by defining the data
extraction form (see Table 4) to consistently extract the relevant
data. The first three authors initially extracted the data; however,
the other co-authors participated in the discussion meetings to
remove any doubt and verify the data as suggested by Wohlin
et al. (2012).

AA. Khan, A. Ahmad, M. Waseem et al.

Data synthesis:. Inaccurate data classification and mapping might
cause subjective interpretation bias. However, this threat has
been alleviated by following thematic classification guidelines
provided by Braun and Clarke (Braun and Clarke, 2006). More-
over, quantitative and qualitative methods are used to analyse the
collected data. The bias in the data synthesis process could im-
pact the data interpretation process. This threat has been lessen
by using the well-established descriptive statistical approaches
to analyse the quantitative data and thematic mapping for the
qualitative data.

7.2. External validity

External validity refers to the degree to which the study find-
ings could be generalised. We do not claim the generalisability
of this study, however; we tried to maximise it by providing an
explicit overview of quantum software architecture and logically
setting the collected data, results, analysis, and conclusions in
the study domain. We followed the rigorous protocol-based SLR
approach to attain external validity. Moreover, we followed the
guidelines provided by Chen et al. (2010) to search and select the
most appropriate digital repositories and target the relevant peer-
reviewed studies. Methodological details (Section 3, and Fig. 2),
SLR protocol, and data extraction mechanism can support the
identification and synthesis of new studies and more RQs to
extend this research and minimise the threat to external validity.

7.3. Construct validity

A relevant construct validity could be “data items” since we
as the researches observed, decided, and pick up the text frag-
ments or content from the identified studies. Perhaps, this data
extraction might not have been correctly performed due to dif-
ferent reasons. For instance, inappropriate search strategies could
cause threats like returning a set of irrelevant studies or missing
the relevant articles. We tried to mitigate these threats by fol-
lowing operation measures, e.g., conducting group meetings to
finalise the search string, developing studies inclusion and ex-
clusion criteria, performing studies quality assessment, and using
data extraction form to remove interpersonal bias. Additionally,
the search string is customised according to the peculiarities of
the selected databases to identify the most relevant studies.

7.4. Conclusion validity

Conclusion validity refers to the degree to which the study
conclusions are credible or reasonable. In this SLR, the selection
criteria was strict so only quality studies (a clear objective and
evaluation) were selected for the analysis in this paper (Kitchen-
ham and Charters, 2007). Additionally, brainstorming sessions
are conducted by the authors to discuss the study findings and
draw the correct conclusions. It was acknowledged that beyond
the scope of current SLR, future efforts may be needed to evolve
the results and conclusions, if newly published research is to be
investigated, extending the findings of this SLR.

8. Related work

To the best of our knowledge, this work is the first compre-
hensive systematic literature review on the research of quantum
software architecture, including architecting activities, modelling
notations, design patterns, tools and frameworks, and architec-
tural challenges. This section discussed the related work that
covers different aspects of quantum software engineering (Zhao,

23

The Journal of Systems & Software 201 (2023) 111682

2020; Gill et al., 2022; Sunita et al., 2021; Paulo and de Camargo,
2021; Garcia et al., 2022).

Zhao (2020) conducted a classical survey to cover core quan-
tum software engineering life-cycle activities. Zhao summarised
that the quantum software development concept emerges from
quantum programming languages, and it is considered synony-
mous to quantum programming (Zhao, 2020). However, there
is a significant need of complete software engineering disci-
pline for quantum software development. This survey extensively
discussed the technological support for quantum software de-
velopment life-cycle phases, including requirements engineer-
ing, design, implementation, testing, and maintenance. The study
findings reveal that these areas (phases) are rapidly growing;
however, they are still far from being mature.

Gill et al. (2022) conducted a comprehensive literature survey
to provide in-depth observations of quantum computing concepts
and discuss the open challenges experienced by the quantum
computing community. A list of taxonomies are proposed to pro-
vide conceptual understanding of selecting the available quantum
computing techniques and determining the optimal strategies to
utilise the classical supercomputing infrastructure. It is because,
the existing quantum computers are still not strong enough to
replace the supercomputers. Quantum computers are coping with
the scaling-up challenge of quantum qubits. It is still not certain
when exactly quantum computers will replace the classical; how-
ever, it is expected that many exciting improvements will happen
in the next decade.

Sunita et al. (2021) conducted a systematic review that sur-
veys available quantum programming language (QPLs) to
overview the state-of-the-art in the context of computer pro-
gramming for developing quantum-intensive software systems.
The study formulates a number of RQs to investigate various
aspects of QPL such as types of programming languages, recent
trends in the development of QPLs, along with academic and
industrial progress on the development and adoption of QPLs.
The survey also highlights that well-curated design/architecture
for quantum software impacts the selection of QPLs for quantum
programming. This SLR is also completed with a recently con-
ducted mixed method research (De Stefano et al., 2022) (mining
GitHub repositories and developer survey) to investigate the
state-of-practice on QPLs in the context of QSE.

Paulo and de Camargo (2021) recently performed a systematic
mapping study, reviewing 24 studies, to analyse the existing
research on quantum software development in regard to QSE. The
focus of the systematic mapping is to understand the prominent
programming infrastructures, differences between the develop-
ment of classical of quantum-intensive software, and the applica-
tion domain for quantum software systems. The authors highlight
that in the last decade the availability of tools, technologies, and
programming infrastructures have given impetus to academic on
quantum software engineering.

Garcia et al. (2022) conducted an SLR to explore different
types of algorithms developed for quantum machine learning
and its applications. The study findings reveal that the various
conventional/classical algorithms are used for machine learning
solutions in the quantum domain e.g., support vector machine
and supervised machines learning k-nearest neighbours (KNN)
model. The classical algorithms are mainly used for image classi-
fication problems. In broad, the implications of quantum machine
learning are promising, however, achieving the full-scale benefits
of quantum machine learning is still far from being mature.
The large-scale implications of quantum machine learning algo-
rithms are still exceedingly challenging because of quality, speed
and scalability issues. It requires massive improvements in the
existing QC infrastructure to tackle complex industrial problems.

AA. Khan, A. Ahmad, M. Waseem et al.

Table 10

The Journal of Systems & Software 201 (2023) 111682

A comparison of results between this systematic review and the existing secondary studies.

This review results Existing secondary studies

Zhao (2020) Gill et al. (2022) Sunita et al. (2021) Paulo and Garcia et al. (2022)
de Camargo (2021)
Protocol based SLR review X X v (+) v (+) v(+)
Demographic detail X X v (+) X X
Quantum computing basics V(%) v (*) v (+) v(+) v (+)
Quantum software engineering v (*) v(+) X v(+) V()
Quantum software architecture v (+) X (+) Vv (+) X X
Architecture modelling notations X X X v (+) X
Quantum software design patterns v/(+) X X X X
Architecture tools and frameworks X X V(+) X X
Challenges X X X X X

Note: (v: included, X: Not included, *: Extensive discussion, +: Simple overview).

8.1. Comparative analysis

The comparative analysis of our work with the existing related
studies is shown in Table 10. The results reveal that our findings
are significantly distinct to the existing related work studies.
For instance, sufficient number of primary studies are published,
however; only one secondary study (Garcia et al., 2022) partially
followed the formal protocol-based SLR approach to conduct the
review study (Kitchenham and Charters, 2007). The SLR guide-
lines developed by Kitchenham and Charters are widely adopted
to conduct systematic literature reviews in software engineer-
ing (Kitchenham and Charters, 2007). Similarly, we reported the
demographic details of each selected primary study, including
publication type, frequency, research types, contribution, and ap-
plication domains (RQ1), which are not considered in the related
work secondary studies.

Moreover, we provided a comprehensive overview of quantum
software architecture, however Zhao (2020), and Sunita et al.
(2021) provided introductory level details of quantum software
architecture. The subsequent comparison is made based on archi-
tecting activities and modelling notations, which are ignored in
the related studies (see Table 10). We developed RQ2.1 and RQ2.2
to respectively define and discuss the key activities of quantum
software architecture and modelling notations. Similarly, Zhao
(2020) and Paulo and de Camargo (2021) provided a simple
overview of quantum software design. However, we explicitly
cover and discuss the existing design patterns (RQ2.3) used to
tackle the commonly occurred quantum software architectural
problems.

Additionally, no discussion of quantum software tools and
frameworks is provided in the related secondary studies. We
explicitly explored the selected primary studies to identify the
tools and frameworks that support various architecting activities
(RQ2.4). Finally, we reported quantum software architecture chal-
lenges and provided their thematic classification map (RQ2.5).
However, the existing related studies do not provide any details
or abstract level discussion of quantum software architecture
challenging factors (see Table 10).

9. Conclusions

Quantum software architecture -design and implementation
blueprint for quantum software - represents a new genre of soft-
ware architectures to address computation-specific challenges
rooted in quantum computing. With a growing momentum for
the adoption of quantum age systems, industrial initiatives of
technology giants (e.g., Google, Microsoft, IBM) and academic
research have focused on exploiting architectural solutions to

24

develop quantum software that manages and manipulates quan-
tum hardware. This SLR focused on investigating peer-reviewed
published research that streamlines the role of software archi-
tectures in designing, implementing, validating, and deploying
quantum software. We reviewed a total of 34 qualitatively se-
lected studies to conduct this SLR by answering a total of 08 RQs
to a fine-grained presentation of the results.

Results presents that most of our reviewed studies (n = 21,
i.e., 62% approx.) have been published in the last four years (2018-
2021). Majority of the published research types (i.e., proposal
of solution and validation research (n = 20, 59%) indicate that
quantum software architecture is in its infancy, rapidly evolv-
ing by borrowing concepts from classical software architectures
to address quantum specific challenges. Quantum-specific chal-
lenges include but are not limited to quantum systems co-design
and mapping Qubits/Qugates to architectural components and
connectors that can be effectively addressed by deriving a process
for architecting quantum software. To support the architectural
process, modelling notations need to build on established foun-
dations of UML profiles and architectural description languages
for (semi-) formal specification of quantum software architec-
tures. The SLR identified a total of five architecting activities, six
architectural patterns that promote reuse, 11 tools and frame-
works that can automate and customise the process of quantum
software architecting. While investigating the architectural chal-
lenges, we identified a total of 15 emerging challenging factors,
classified across 04 different categories, to resolve emerging is-
sues pertaining to architectural solutions for quantum software.
The implications of this SLR are for:

(i) The researchers interested in focusing on quantum soft-
ware architecture and willing to fill the open research gaps
discussed in the study findings.

(ii) Facilitating the knowledge transfer to practitioners regard-
ing quantum software architecture application domains,
architecting activities, modelling notations, design patterns,
tools and frameworks, and challenges.

We invite practitioners to step forward to focus more on
missing application domains, design architecture description lan-
guages, develop tools and frameworks to automate the less fo-
cused architecting activities, and propose solutions to tackle the
challenging factors. We plan to conduct an empirical study to
mine the code hosting and questions and answer public plat-
forms to know practitioners’ perceptions regarding the quantum
software architecture. We finally plan to compare the results of
the empirical study and this SLR to identify the gap between the
research and practice regarding quantum software architecture.

AA. Khan, A. Ahmad, M. Waseem et al.
CRediT authorship contribution statement

Arif Ali Khan: Conceptualization, Investigation, Writing - orig-
inal draft, Visualization, Reviewing and editing, Project adminis-
tration. Aakash Ahmad: Conceptualization, Investigation, Writing
- original draft, Visualization. Muhammad Waseem: Concep-
tualization, Investigation, Writing - original draft. Peng Liang:
Conceptualization, Investigation, Writing - reviewing & editing,
Supervision. Mahdi Fahmideh: Conceptualization, Investigation,
Reviewing and editing. Tommi Mikkonen: Conceptualization,
Investigation, Reviewing and editing. Pekka Abrahamsson: Con-
ceptualization, Resources, Investigation, Reviewing and editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Table 11

The Journal of Systems & Software 201 (2023) 111682

Data availability

No data was used for the research described in the article

Acknowledgment

This work has been supported by the Academy of Finland
(project DEQSE 349945) and Business Finland (project TORQS
8582/31/2022).

Appendix

See Tables 11 and 12.

Selected studies for this SMS.

ID

Authors, Publication Title, and Venue

Publication year

Publication type

Quality score

S1

Vicente Martin, Diego R. Lopez, Alejandro Aguado, Juan Pedro Brito, Julio
Setién Villaran, Pedro Jesis Salas Peralta, Carmen Escribano, Victor Lopez,
Antonio Pastor Perales, and Momtchil Peev. A Components Based Framework
for Quantum Key Distribution Networks. In 22nd IEEE International Conference
on Transparent Optical Networks (ICTON), Bari, Italy, pp. 1-4. I, 2020.

2020

Conference

4

S2

Qiong Li, Dan Le, and Ming Rao. A design and implementation of multi-thread
quantum key distribution post-processing software. In Second IEEE International
Conference on Instrumentation, Measurement, Computer, Communication and
Control (IMCCC), Harbin, China, pp. 272-275, 2012.

2012

Conference

35

S3

Xiang Fu, Leon Riesebos, Lingling Lao, Carmen Garcia Almudever, Fabio
Sebastiano, Richard Versluis, Edoardo Charbon, and Koen Bertels. A
heterogeneous quantum computer architecture. In Proceedings of the 13th
ACM International Conference on Computing Frontiers, Como, Italy, pp.
323-330. 2016.

2016

Conference

S4

Alexander J.McCaskey, Eugene F.Dumitrescu, Dmitry Liakh, Mengsu Chen,
Wu-chun Feng, and Travis S. Humble. A language and hardware independent
approach to quantum-classical computing. SoftwareX, 7: pp. 245-254, 2018.

2018

Journal

S5

Krysta M. Svore, Alfred V. Aho, Andrew W. Cross, Isaac Chuang, and Igor L.
Markov. A layered software architecture for quantum computing design tools.
Computer, 39(1): pp. 74-83, 2006.

2006

Journal

S6

Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, Leon Wubben, Filip
Rozpedek, Matteo Pompili, Arian Stolk, Przemystaw Pawelczak, Robert
Knegjens, Julio A De Oliveira Filho, Ronald Hanson, Stephanie Wehner. A link
layer protocol for quantum networks. In Proceedings of the 33rd ACM Special
Interest Group on Data Communication (SIGCOMM), Beijing, China, pp.
159-173, 2019.

2019

Conference

S7

Thomas Hdner, Damian S. Steiger, Krysta Svore, and Matthias Troyer. A
software methodology for compiling quantum programmes. Quantum Science
and Technology , 3(2): pp. 1-19, 2018.

2018

Journal

3.5

S8

Michael Booth, Edward Dahl, Mark Furtney, and Steven P. Reinhardt.
Abstractions considered helpful: a tools architecture for quantum annealers. In
5th IEEE High Performance Extreme Computing Conference (HPEC), Waltham,
MA USA, pp. 1-2, 2016.

2016

Conference

2.5

S9

Hongbon Lan, Chengrui Zhang, and Hongbin Li. An open design methodology
for automotive electrical/electronic system based on quantum platform.
Advances in Engineering Software, 39 (6): pp. 526-534, 2008.

2008

Journal

S10

Victor Potapov, Sergei Gushansky, Vyacheslav Guzik, and Maxim Polenov.
Architecture and software implementation of a quantum computer model. In
2nd Computer Science On-line Conference (CSOC), pp. 59-68. Springer, Cham,
Zlin, Czech Republic, pp. 59-68, 2016.

2016

Conference

S11

Loyd R. Hook, and Samuel C. Lee. Design and simulation of 2-D 2-dot
quantum-dot cellular automata logic. IEEE Transactions on Nanotechnology,
10(5), pp. 996-1003, 2010.

2010

Journal

S12

Ilia Polian, and Austin Fowler. Design automation challenges for scalable
quantum architectures. In 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), Austin, TX, USA, pp. 1-6, 2015.

2015

Conference

3.5

25

(continued on next page)

AA. Khan, A. Ahmad, M. Waseem et al.

Table 11 (continued).

The Journal of Systems & Software 201 (2023) 111682

ID

Authors, Publication Title, and Venue

Publication year

Publication type Quality score

S13

Heranmoy Maity, Arijit Kumar Barik, Arindam Biswas, Anup Kumar
Bhattacharjee, and Anita Pal. Design of quantum cost, garbage output and
delay optimised BCD to excess-3 and 2’s complement code converter. Journal
of Circuits, Systems and Computers, 27(12): pp. 1-5, 2018.

2018

Journal

4

S14

Xiang Fu, Leon Riesebos, Adriaan Rol, Jeroen Van Straten, Hans van Someren,
Nader Khammassi, Imran Ashraf, Raymond Vermeulen, V. Newsum, Kelvin
Kwong Lam Loh, Jacob de Sterke, Wouter Vlothuizen, Raymond Schouten,
Carmen G. Almudéver, Leonardo DiCarlo, and Koen Bertels. eQASM: An
executable quantum instruction set architecture. In 25th IEEE International
Symposium on High Performance Computer Architecture (HPCA), Washington,
DC, USA, pp. 224-237, 2019.

2019

Symposium

4.5

S15

Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari,
Nhung Hong Nguyen, and Cinthia Huerta Alderete. Full-stack, real-system
quantum computer studies: Architectural comparisons and design insights. In
46th ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), Phoenix, AZ, USA, pp. 527-540. 2019.

2019

Conference

S16

Robert Wille, Stefan Hillmich, and Lukas Burgholzer. JKQ: JKU tools for
quantum computing. In 33rd IEEE/ACM International Conference On Computer
Aided Design (ICCAD), San Diego, CA, USA, pp. 1-5, 2020.

2020

Conference

S17

Christoph W Groth, Michael Wimmer, Anton R. Akhmerov, and Xavier
Waintal. Kwant: a software package for quantum transport. New Journal of
Physics, 16 (6): pp. 1-40, 2014.

2014

Journal

4.5

S18

Nathan Cody Jones, Rodney Van Meter, Austin Fowler, Peter McMahon,
Jungsang Kim, Thaddeus Ladd, and Yoshihisa Yamamoto. Layered architecture
for quantum computing. Physical Review X, 2(3): pp. 1-27, 2012.

2012

Journal

S19

Alwin Zulehner, and Robert Wille. Advanced simulation of quantum
computations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 38 (5): pp. 848-859, 2018.

2018

Journal

S20

Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan
Xie. On the Co-Design of Quantum Software and Hardware. In Proceedings of
the 8th Annual ACM International Conference on Nanoscale Computing and
Communication (NANOCOM), Italy, pp. 1-7, 2021.

2021

Conference

3.5

S21

Teague Tomesh, and Margaret Martonosi. Quantum Codesign. IEEE Micro,
41(5), pp-33-40, 2021.

2021

Journal

35

S22

Munish Bhatia, and Avneet Kaur. Quantum computing inspired framework of
student performance assessment in smart classroom. Transactions on
Emerging Telecommunications Technologies, 32(9): pp. 1-22, 2021.

2021

Journal

3.5

S23

Nan Wu, Haixing Hu, Fangmin Song, Huimin Zheng, and Xiangdong Li.
Quantum software framework: a tentative study. Frontiers of Computer
Science, 7(3): pp. 341-349, 2013.

2013

Journal

S24

laakov Exman, and Alon Tsalik Shmilovich. Quantum Software Models: The
Density Matrix for Classical and Quantum Software Systems Design. In
Proceedings of the IEEE/ACM 43rd International Conference on Software
Engineering Workshops (ICSEW), Madrid, Spain, pp. 1-6, 2021.

2021

Workshop

S25

Stephen Diadamo, Janis Noétzel, Benjamin Zanger, and Mehmet Mert Bese.
Qunetsim: A software framework for quantum networks. IEEE Transactions on
Quantum Engineering, 2: pp. 1-12, 2021.

2021

Journal

35

526

Lalitha Nallamothula. Selection of quantum computing architecture using a
decision tree approach. In 3rd International Conference on Intelligent
Sustainable Systems (ICISS), Thoothukudi, India, pp. 644-649, 2020.

2020

Conference

S27

Killoran, Nathan, Josh Izaac, Nicolds Quesada, Ville Bergholm, Matthew Amy,
and Christian Weedbrook. . Strawberry fields: A software platform for
photonic quantum computing. Quantum, 3: pp-1-27, 2019.

2019

Journal

35

S28

Alexander Mccaskey, Thien Nguyen, Anthony Santana, Daniel Claudino, Tyler
Kharazi, and Hal Finkel. Extending c++ for heterogeneous quantum-classical
computing. ACM Transactions on Quantum Computing, 2(2):pp. 1-36, 2021.

2021

Journal

S29

Krista Svore, Andrew Cross, Alfred Aho, Isaac Chuang, and Igor Markov.
Towards a software architecture for quantum computing design tools. In
Proceedings of the 2nd International Workshop on Quantum Programming
Languages (QPL), pp. 145-162. 2004.

2004

Workshop

3.5

S30

Frank Leymann. Towards a pattern language for quantum algorithms. In
International Workshop on Quantum Technology and Optimisation Problems
(QTOP), Springer, Cham, Munich, Germany, pp. 218-230, 2019.

2019

Workshop

35

S31

Frank Leymann, Johanna Barzen, and Michael Falkenthal. Towards a platform
for sharing quantum software. Proceedings of the 13th Advanced Summer
School on Service Oriented Computing (SummerSOC), Crete, Greece, pp. 70-74,
2021.

2021

Conference

26

(continued on next page)

AA. Khan, A. Ahmad, M. Waseem et al.

Table 11 (continued).

The Journal of Systems & Software 201 (2023) 111682

S32

Carlos A. Pérez-Delgado, and Hector G. Perez-Gonzalez. Towards a quantum

2020 Workshop 2.5

software modelling language. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops (ICSEW), Seoul,

South Korea, pp. 442-444, 2020.

S33

El-Mahdy M.Ameen, , Hesham A. Ali, Mofreh M. Salem, and Mahmoud

2017 Journal 35

Badawy. Towards implementation of a generalised architecture for high-level
quantum programming language. International Journal of Theoretical Physics,

56(8): pp. 2376-2412, 2017.

S34

Rob F.M. van den Brink, Frank Phillipson , and Niels M.P. Neumann. Vision on

2019 Conference 5

next level quantum software tooling. In Proceedings of the 10th International
Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking (COMPUTATION TOOLS), Venice, Italy, pp. 16-23, 2019.

Table 12
Cohen’s Kappa test R-Code.

Cohen’s Kappa test between authors for the SLR process

libraryL(DescTools)

QuantumSoftwareArch <- data.frame(Authors1to3=c(7,6,4,3,10,2,9,5,1,3),
Authors4to5=c(7,6,4,3,9,2,8,5,1,3),

Authors6to7=c(7,5,3,2,10,2,9,5,1,3))

KappaM(QuantumSoftwareArch)

KappaM(QuantumSoftwareArch, method="Conger”)
KappaM(QuantumSoftwareArch, conf.level=0.95)
KappaM(QuantumSoftwareArch, method="Light”)

Cohen’s Kappa test between authors for the snowballing process

libraryL(DescTools)

Snowballing <- data.frame(Authors1to4=c(1,4,2,3,5),
Authors5to6=c(1,5,2,3,4))

KappaM(Snowballing)

KappaM(Snowballing, method=“Conger”)
KappaM(Snowballing, conf.level=0.95)
KappaM(Snowballing, method="Light")

References

Abbott, Benjamin P, Abbott, Richard, Abbott, Thomas D, Abernathy, MR, Acer-
nese, F, Ackley, K, Adams, C, Adams, T, Addesso, P, Adhikari, RX, et al., 2018.
Effects of data quality vetoes on a search for compact binary coalescences
in advanced LIGO’s first observing run. Classical Quantum Gravity 35 (6),
065010.

Abreu, Rui, Ali, Shaukat, Yue, Tao, 2021a. First international workshop on
quantum software engineering (Q-SE 2020). ACM SIGSOFT Softw. Eng. Notes
46 (2), 30-32.

Abreu, Rui, Ali, Shaukat, Yue, Tao, Felderer, Michael, Exman, laakov, 2021b.
Quantum software: Model-driven or search-driven? A Q-SE 2021 workshop
report. ACM SIGSOFT Softw. Eng. Notes 46 (4), 23-25.

Ali, Shaukat, Yue, Tao, Abreu, Rui, 2022. When software engineering meets
quantum computing. Commun. ACM 65 (4), 84-88.

Alreshidi, Abdulrahman, Ahmad, Aakash, 2019. Architecting software for the
internet of thing based systems. Future Internet 11 (7), 153.

Anon, 2022. ISO/IEC/IEEE 42010:2011 systems and software engineering - archi-
tecture description. URL https://www.iso.org/standard/50508.html, (Accessed
25 January 2022).

Anon, 2022a. Introduction to the Quantum Flagship, post=, (accessed 12 april
2022)..

Anon, 2022b. Quantum computing research trends report Get ready for the
second quantum revolution, post=, (accessed 09 november 2022)..

Baczewski, Andrew David, Moussa, Jonathan Edward, Sarovar, Mohan,
2017. Co-design strategies for quantum simulators. Technical Report
SAND2017-0164C, Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States).

Barzen, Johanna, Leymann, Frank, Wild, Karoline, Feld, Sebastian, 2021. 1 st
workshop on quantum software architecture (QSA). In: 2021 IEEE 18th
International Conference on Software Architecture Companion (ICSA-C). IEEE,
p. 94.

Barzen, Johanna, Martin-Fernandez, Francisco, Wimmer, Manuel, 2022. IEEE
International Conference on Quantum Software (QSW 2022).

Behera, Bikash K, Reza, Tasnum, Gupta, Angad, Panigrahi, Prasanta K, 2019.
Designing quantum router in IBM quantum computer. Quantum Inf. Process.
18 (11), 1-13.

Bertels, Koen, Sarkar, Aritra, Ashraf, Imran, 2021. Quantum computing—From
NISQ to PISQ. IEEE Micro 41 (5), 24-32.

27

Biamonte, Jacob, Wittek, Peter, Pancotti, Nicola, Rebentrost, Patrick,
Wiebe, Nathan, Lloyd, Seth, 2017. Quantum machine learning. Nature
549 (7671), 195-202.

Braun, Virginia, Clarke, Victoria, 2006. Using thematic analysis in psychology.
Qual. Res. Psychol. 3 (2), 77-101.

Campos, José, Souto, André, 2021. Qbugs: A collection of reproducible bugs in
quantum algorithms and a supporting infrastructure to enable controlled
quantum software testing and debugging experiments. In: 2021 IEEE/ACM
2nd International Workshop on Quantum Software Engineering (Q-SE). IEEE,
pp. 28-32.

Chen, Lianipng, Babar, Muhammad Ali, Zhang, He, 2010. Towards an evidence-
based understanding of electronic data sources. In: Proceedings of the
14th International Conference on Evaluation and Assessment in Software
Engineering. EASE, pp. 1-4.

Childs, Andrew M, Maslov, Dmitri, Nam, Yunseong, Ross, Neil], Su, Yuan, 2018.
Toward the first quantum simulation with quantum speedup. Proc. Natl.
Acad. Sci. 115 (38), 9456-9461.

Chong, Frederic T., Franklin, Diana, Martonosi, Margaret, 2017. Programming
languages and compiler design for realistic quantum hardware. Nature 549
(7671), 180-187.

Cohen, Jacob, 1960. A coefficient of agreement for nominal scales. Edu. Psychol.
Meas. 20 (1), 37-46.

Courtland, Rachel, 2017. Google aims for quantum computing supremacy [news].
IEEE Spectr. 54 (6), 9-10.

De Stefano, Manuel, Pecorelli, Fabiano, Di Nucci, Dario, Palomba, Fabio, De Lu-
cia, Andrea, 2022. Software engineering for quantum programming: How far
are we?]. Syst. Softw. 190, 111326.

Deutsch, David, 1985. Quantum theory, the church-turing principle and the
universal quantum computer. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng.
Sci. 400 (1818), 97-117.

Dey, Nivedita, Ghosh, Mrityunjay, Chakrabarti, Amlan, et al., 2020. QDLC-the
quantum development life cycle. arXiv preprint arXiv:2010.08053.

Di Francesco, Paolo, Lago, Patricia, Malavolta, Ivano, 2019. Architecting with
microservices: A systematic mapping study. J. Syst. Softw. 150, 77-97.
DiAdamo, Stephen, Nétzel, Janis, Zanger, Benjamin, Bese, Mehmet Mert, 2021.
Qunetsim: A software framework for quantum networks. IEEE Trans.

Quantum Eng. 2, 1-12.

Dirac, Paul Adrien Maurice, 1981. The Principles of Quantum Mechanics. (27),
Oxford University Press.

Dorfman, Merlin, Thayer, Richard H., 1997. Software Engineering. [EEE Computer.

Everitt, M.J., Michael, J. De C., Dwyer, Vincent M., 2016. Quantum systems
engineering: A structured approach to accelerating the development of a
quantum technology industry. In: IEEE 18th International Conference on
Transparent Optical Networks. ICTON, pp. 1-4.

Fahmideh, Mahdi, Ahmed, Aakash, Behnaz, Ali, Grundy, John, Susilo, Willy,
2021a. Software engineering for internet of things: The practitioner’s
perspective. arXiv preprint arXiv:2102.10708.

Fahmideh, Mahdi, Grundy, John, Ahmed, Aakash, Shen, Jun, Yan, Jun,
Mougouei, Davoud, Wang, Peng, Ghose, Aditya, Gunawardana, Anuradha,
Aickelin, Uwe, et al, 2021b. Software engineering for blockchain based
software systems: Foundations, survey, and future directions. arXiv preprint
arXiv:2105.01881.

Felizardo, Katia Romero, Mendes, Emilia, Kalinowski, Marcos, Souza, Erica Fer-
reira, Vijaykumar, Nandamudi L, 2016. Using forward snowballing to update
systematic reviews in software engineering. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. pp. 1-6.

Garcia, David Peral, Cruz-Benito, Juan, Garcia-Pefialvo, Francisco José, 2022.
Systematic literature review: Quantum machine learning and its applications.
arXiv preprint arXiv:2201.04093.

Garcia, Joshua, Mirakhorli, Mehdi, Xiao, Lu, Zhao, Yutong, Mujhid, Ibrahim,
Pham, Khoi, Okutan, Ahmet, Malek, Sam, Kazman, Rick, Cai, Yuanfang,
Medvidovié¢, Nenad, 2021. Constructing a shared infrastructure for soft-
ware architecture analysis and maintenance. In: IEEE 18th International
Conference on Software Architecture. ICSA, pp. 150-161.

http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb5
https://www.iso.org/standard/50508.html
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb23
http://arxiv.org/abs/2010.08053
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb28
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb29
http://arxiv.org/abs/2102.10708
http://arxiv.org/abs/2105.01881
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb32
http://arxiv.org/abs/2201.04093
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb34

AA. Khan, A. Ahmad, M. Waseem et al.

Garousi, Vahid, Felderer, Michael, Mantyld, Mika V., 2019. Guidelines for includ-
ing grey literature and conducting multivocal literature reviews in software
engineering. Inf. Softw. Technol. 106, 101-121.

Gay, Simon J., 2006. Quantum programming languages: Survey and bibliography.
Math. Struct. Comput. Sci. 16 (4), 581-600.

Gill, Sukhpal Singh, Kumar, Adarsh, Singh, Harvinder, Singh, Manmeet, Kaur, Ka-
malpreet, Usman, Muhammad, Buyya, Rajkumar, 2022. Quantum computing:
A taxonomy, systematic review and future directions. Softw. - Pract. Exp. 52
(1), 66-114.

Goled, Shraddha, 2021. Top countries pumping money into quantum computing
technology. https://tinyurl.com/499hu6ca, (Accessed 05 December 2021).
Graef, Sebastian, Georgievski, Ilche, 2021. Software architecture for next-

generation Al planning systems. arXiv preprint arXiv:2102.10985.

Grimsley, Harper R, Economou, Sophia E, Barnes, Edwin, Mayhall, Nicholas],
2019. An adaptive variational algorithm for exact molecular simulations on
a quantum computer. Nature Commun. 10 (1), 1-9.

Hofmeister, Christine, Kruchten, Philippe, Nord, Robert L, Obbink, Henk,
Ran, Alexander, America, Pierre, 2007. A general model of software archi-
tecture design derived from five industrial approaches. J. Syst. Softw. 80 (1),
106-126.

ISO/IEC/IE.E.E. 90003:2018, 2021. Software engineering — Guidelines for the
application of iso 9001:2015 to computer software. https://www.iso.org/
standard/74348.html. (Accessed 09 December 2021).

Jalali, Samireh, Wohlin, Claes, 2012. Systematic literature studies: database
searches vs. backward snowballing. In: Proceedings of the ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement.
pp. 29-38.

Khammassi, Nader, Ashraf, Imran, Someren,]V, Nane, Razvan, Krol, AM,
Rol, M Adriaan, Lao, Lingling, Bertels, Koen, Almudever, Carmen G,
2021. OpenQL: A portable quantum programming framework for quantum
accelerators. ACM]. Emerg. Technol. Comput. Syst. (JETC) 18 (1), 1-24.

Khan, Arif Ali, Ahmad, Aakash, Waseem, Muhammad, Liang, Peng, Fah-
mideh, Mahdi, Mikkonen, Tommi, Abrahamsson, Pekka, 2022a. Replication
package for the paper: Software architecture for quantum computing sys-
tems - A systematic review. http://tinyurl.com/2uh2n25h. (Accessed 03 July
2022).

Khan, Arif Ali, Akbar, Muhammad Azeem, Ahmad, Aakash, Fahmideh, Mahdi,
Shameem, Mohammad, Lahtinen, Valtteri, Waseem, Muhammad, Mikko-
nen, Tommi, 2022b. Agile practices for quantum software development:
Practitioners perspectives. arXiv preprint arXiv:2210.09825.

Kitchenham, B., Charters, S., 2007. Guidelines for Performing Systematic Lit-
erature Reviews in Software Engineering. Technical Report EBSE Technical
Report EBSE-2007-01, Keele University and Durham University.

Kitchenham, Barbara A., Dyba, Tore, Jorgensen, Magne, 2004. Evidence-based
software engineering. In: Proceedings of 26th IEEE International Conference
on Software Engineering. pp. 273-281.

Kriiger, Tom, Mauerer, Wolfgang, 2020. Quantum annealing-based software
components: An experimental case study with sat solving. In: Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops (ICSE-W). pp. 445-450.

Landis, J. Richard, Koch, Gary G., 1977. The measurement of observer agreement
for categorical data. Biometrics 159-174.

Lapedus, Mark, 2021. The great quantum computing
//semiengineering.com/the-great-quantum-computing-race/,
16 December 2021).

Leymann, Frank, 2019. Towards a pattern language for quantum algorithms.
In: Quantum Technology and Optimization Problems. In: Lecture Notes in
Computer Science (LNCS), Springer International Publishing, pp. 218-230.
http://dx.doi.org/10.1007/978- 3-030-14082-3_19.

Li, Zengyang, Liang, Peng, Avgeriou, Paris, 2013. Application of knowledge-based
approaches in software architecture: A systematic mapping study. Inf. Softw.
Technol. 55 (5), 777-794.

Magnani, Roberto, 2022. Quantum computing - skill creation is a key
factor. Report of informal conversations with students and professors.
https://www.linkedin.com/pulse/quantum-computing-skill-creation-key-
factor-report-informal/ (Accessed 25 January 2022).

Malavolta, Ivano, Lago, Patricia, Muccini, Henry, Pelliccione, Patrizio,
Tang, Antony, 2012. What industry needs from architectural languages: A
survey. IEEE Trans. Softw. Eng. 39 (6), 869-891.

McArdle, Sam, Endo, Suguru, Aspuru-Guzik, Alan, Benjamin, Simon C, Yuan, Xiao,
2020. Quantum computational chemistry. Rev. Modern Phys. 92 (1), 015003.

Medvidovic, Nenad, Rosenblum, David S, Redmiles, David F, Robbins, Jason E,
2002. Modeling software architectures in the unified modeling language.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 11 (1), 2-57.

Medvidovic, Nenad, Taylor, Richard N., 2000. A classification and comparison
framework for software architecture description languages. IEEE Trans.
Softw. Eng. 26 (1), 70-93.

Microsoft, 2021. Quantum computing. URL , (Accessed 05 December 2021).

Miranskyy, Andriy, Khan, Mushahid, Faye, Jean Paul Latyr, Mendes, Udson C,
2022. Quantum computing for software engineering: Prospects. arXiv
preprint arXiv:2203.03575.

race. https:
(Accessed

28

The Journal of Systems & Software 201 (2023) 111682

Moguel, Enrique, Berrocal, Javier, Garcia-Alonso, José, Murillo, Juan Manuel,
2020. A roadmap for quantum software engineering: Applying the lessons
learned from the classics.. In: 1st Quantum Software Engineering and Tech-
nology Workshop (Q-SET), Co-Located with IEEE International Conference on
Quantum Computing and Engineering. QCE, pp. 5-13.

Moin, Armin, Challenger, Moharram, Badii, Atta, Giinnemann, Stephan,
2021. MDE4qai: Towards model-driven engineering for quantum artificial
intelligence. arXiv preprint arXiv:2107.06708.

Montanaro, Ashley, 2016. Quantum algorithms: an overview. Npj Quantum
Inform. 2 (1), 1-8.

Mosca, Michele, 2018. Cybersecurity in an era with quantum computers: Will
we be ready? IEEE Secur. Privacy 16 (5), 38-41.

Mourdo, Erica, Kalinowski, Marcos, Murta, Leonardo, Mendes, Emilia,
Wohlin, Claes, 2017. Investigating the use of a hybrid search strategy
for systematic reviews. In: 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. ESEM, IEEE, pp. 193-198.

Naveh, Yehuda, 2021. Quantum software development is still in its infancy.
https://www.forbes.com/sites/forbestechcouncil/2021/06/23/quantum-
software-development-is-still-in-its-infancy/?sh=4f0f7e976ddd, = (Accessed
25 December 2021).

Nguyen, Thien, Arya, Daanish, Doherty, Marcus, Herrmann, Nils, Kuhlmann, Jo-
hannes, Preis, Florian, Scott, Pat, Yin, Simon, 2022. Software for massively
parallel quantum computing. arXiv preprint arXiv:2211.13355.

Paulo, Eduardo Zanni Junior, de Camargo, Valter Vieira, 2021. A systematic
mapping on quantum software development in the context of software
engineering. arXiv preprint arXiv:2106.00926.

Pérez, Jorge, Diaz, Jessica, Garcia-Martin, Javier, Tabuenca, Bernardo, 2020.
Systematic literature reviews in software engineering—Enhancement of the
study selection process using Cohen’s kappa statistic. J. Syst. Softw. 168,
110657.

Pérez-Castillo, Ricardo, Jiménez-Navajas, Luis, Piattini, Mario, 2021. Modelling
quantum circuits with UML. arXiv preprint arXiv:2103.16169.

Pérez-Castillo, Ricardo, Piattini, Mario, 2022. Design of classical-quantum
systems with UML. Computing 1-29.

Petersen, Kai, Vakkalanka, Sairam, Kuzniarz, Ludwik, 2015. Guidelines for con-
ducting systematic mapping studies in software engineering: An update. Inf.
Softw. Technol. 64, 1-18.

Piattini, Mario, Serrano, Manuel, Perez-Castillo, Ricardo, Petersen, Guido,
Hevia, Jose Luis, 2021. Toward a quantum software engineering. IT Prof. 23
(1), 62-66.

Pizard, Sebastidn, Acerenza, Fernando, Otegui, Ximena, Moreno, Silvana, Valle-
spir, Diego, Kitchenham, Barbara, 2021. Training students in evidence-based
software engineering and systematic reviews: a systematic review and
empirical study. Empir. Softw. Eng. 26 (3), 1-53.

Rebentrost, Patrick, Mohseni, Masoud, Lloyd, Seth, 2014. Quantum support vector
machine for big data classification. Phys. Rev. Lett. 113 (13), 130503.

Sajjad, Maryam, Ahmad, Aakash, Malik, Asad Wagqar, Altamimi, Ahmed B,
Alseadoon, Ibrahim, 2018. Classification and mapping of adaptive security
for mobile computing. IEEE Trans. Emerg. Top. Comput. 8 (3), 814-832.

Shepard, Jeff, 2021. Quantum computing system architectures. https:
//www.microcontrollertips.com/quantum-computing-system-architectures/,
(Accessed 16 December 2021).

Sofge, Donald A., 2008. A survey of quantum programming languages: History,
methods, and tools. In: Second IEEE International Conference on Quantum,
Nano and Micro Technologies (ICQNM 2008). pp. 66-71.

Stepney, Susan, Braunstein, Samuel L, Clark, John A, Tyrrell, Andy,
Adamatzky, Andrew, Smith, Robert E, Addis, Tom, Johnson, Colin,
Timmis, Jonathan, Welch, Peter, Milnerk, Robin, Partridge, Derek, 2005.
Journeys in non-classical computation I: A grand challenge for computing
research. Int. J. Parallel Emergent Distrib. Syst. 20 (1), 5-19.

Sunita, Garhwal, Ghorani, Maryam, Ahmad, Amir, 2021. Quantum programming
language: A systematic review of research topic and top cited languages.
Arch. Comput. Methods Eng. 28 (2), 289-310.

Svore, Krysta M, Aho, Alfred V, Cross, Andrew W, Chuang, Isaac, Markov, Igor L,
2006. A layered software architecture for quantum computing design tools.
Computer 39 (1), 74-83.

Tang, Antony, Avgeriou, Paris, Jansen, Anton, Capilla, Rafael, Babar, Muham-
mad Ali, 2010. A comparative study of architecture knowledge management
tools. J. Syst. Softw. 83 (3), 352-370.

Wang, Xinyi, Arcaini, Paolo, Yue, Tao, Ali, Shaukat, 2022. QuSBT: Search-based
testing of quantum programs. arXiv preprint arXiv:2204.08561.

Waseem, Muhammad, Liang, Peng, Shahin, Mojtaba, 2020. A systematic mapping
study on microservices architecture in devops.]J. Syst. Softw. 170, 110798.

Weder, Benjamin, Barzen, Johanna, Leymann, Frank, Vietz, Daniel, 2022. Quan-
tum software development lifecycle. In: Quantum Softw. Eng.. Springer, pp.
61-83.

Wieringa, Roel, Maiden, Neil, Mead, Nancy, Rolland, Colette, 2006. Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion. Requir. Eng. 11 (1), 102-107.

http://refhub.elsevier.com/S0164-1212(23)00077-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb37
https://tinyurl.com/499hu6ca
http://arxiv.org/abs/2102.10985
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb41
https://www.iso.org/standard/74348.html
https://www.iso.org/standard/74348.html
https://www.iso.org/standard/74348.html
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb44
http://tinyurl.com/2uh2n25h
http://arxiv.org/abs/2210.09825
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb50
https://semiengineering.com/the-great-quantum-computing-race/
https://semiengineering.com/the-great-quantum-computing-race/
https://semiengineering.com/the-great-quantum-computing-race/
http://dx.doi.org/10.1007/978-3-030-14082-3_19
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb53
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb53
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb53
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb53
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb53
https://www.linkedin.com/pulse/quantum-computing-skill-creation-key-factor-report-informal/
https://www.linkedin.com/pulse/quantum-computing-skill-creation-key-factor-report-informal/
https://www.linkedin.com/pulse/quantum-computing-skill-creation-key-factor-report-informal/
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb58
http://arxiv.org/abs/2203.03575
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb61
http://arxiv.org/abs/2107.06708
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb65
https://www.forbes.com/sites/forbestechcouncil/2021/06/23/quantum-software-development-is-still-in-its-infancy/?sh=4f0f7e976ddd
https://www.forbes.com/sites/forbestechcouncil/2021/06/23/quantum-software-development-is-still-in-its-infancy/?sh=4f0f7e976ddd
https://www.forbes.com/sites/forbestechcouncil/2021/06/23/quantum-software-development-is-still-in-its-infancy/?sh=4f0f7e976ddd
http://arxiv.org/abs/2211.13355
http://arxiv.org/abs/2106.00926
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb69
http://arxiv.org/abs/2103.16169
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb71
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb71
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb71
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb76
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb76
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb76
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb76
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb76
https://www.microcontrollertips.com/quantum-computing-system-architectures/
https://www.microcontrollertips.com/quantum-computing-system-architectures/
https://www.microcontrollertips.com/quantum-computing-system-architectures/
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb82
http://arxiv.org/abs/2204.08561
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb86

AA. Khan, A. Ahmad, M. Waseem et al.

Wohlin, Claes, 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In: Proceedings of the 18th Inter-
national Conference on Evaluation and Assessment in Software Engineering.
pp. 1-10.

Wohlin, Claes, Runeson, Per, Host, Martin, Ohlsson, Magnus C, Regnell, Bjorn,
Wesslén, Anders, 2012. Experimentation in software engineering. Springer
Science & Business Media.

Xu, Xiwei, Weber, Ingo, Staples, Mark, Zhu, Liming, Bosch, Jan, Bass, Len,
Pautasso, Cesare, Rimba, Paul, 2017. A taxonomy of blockchain-based sys-
tems for architecture design. In: IEEE International Conference on Software
Architecture. ICSA, pp. 243-252.

Ying, Mingsheng, 2016. Foundations of Quantum Programming. Morgan
Kaufmann.

Zeilinger, Anton, 1999. Experiment and the foundations of quantum physics. Rev.
Modern Phys. 71 (2), 482-498.

Zhang, He, Babar, Muhammad Ali, Bai, Xu, Li, Juan, Huang, Liguo, 2011. An em-
pirical assessment of a systematic search process for systematic reviews. In:
15th Annual Conference on Evaluation & Assessment in Software Engineering
(EASE 2011). IET, pp. 56-65.

Zhao, Jianjun, 2020. Quantum software engineering: Landscapes and horizons.
arXiv preprint arXiv:2007.07047.

Zhao, Pengzhan, Zhao, Jianjun, Miao, Zhongtao, Lan, Shuhan, 2021. Bugs4Q: A
benchmark of real bugs for quantum programs. In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering. ASE, IEEE, pp.
1373-1376.

Zhou, Xin, Jin, Yuqin, Zhang, He, Li, Shanshan, Huang, Xin, 2016. A map of threats
to validity of systematic literature reviews in software engineering. In: 23rd
IEEE Asia-Pacific Software Engineering Conference. APSEC, pp. 153-160.

Arif Ali Khan works as an Assistant Professor with the M3S Empirical Software
Engineering Research Unit, University of Oulu, Oulu, Finland. He has expertise
in quantum software engineering, software process improvement, software ar-
chitecture, DevOps, Al ethics, agile software development, requirements change
management, soft computing, and evidence-based software engineering. He
is professionally active in conducting publication-based research workshops,
serving as guest editor in main track software engineering journals, and editing
software engineering research books. He has published over 90 articles in
peer-reviewed international conferences, workshops and journals.

Aakash Ahmad is currently an Assistant Professor at the School of Computing
and Communications, Lancaster University Leipzig, Germany. He has received his
Ph.D. in Software Engineering from School of Computing, Dublin City University,
Ireland in 2015 respectively. Aakash’s research and development expertise are
in the area of software architecture, software engineering application to mobile
and internet of things systems, and cloud computing. He has published in top-
ranked international journals such as IEEE Transactions on Software Engineering
(TSE), Journal of Systems and Software (JSS), and IEEE Transactions on cloud
computing.

29

The Journal of Systems & Software 201 (2023) 111682

Muhammad Waseem is apostdoctoral researcher in the School of Computer
Science, Wuhan University, China. He received his Ph.D. in Software Engineering
in 2022 from Wuhan University, China. Before pursuing his Ph.D., he had worked
as a lecturer and teaching research associate in the Department of Computer
Science and Software Engineering, International Islamic University, Pakistan. He
received his master degree in software engineering from International Islamic
University, Pakistan. His current research interests include software architecture,
microservices architecture, and DevOps.

Peng Liang is a full -professor of Software Engineering in the School of Computer
Science, Wuhan University, China. His research interests concern the areas of
software architecture and requirements engineering. He is a Young Associate
Editor of Frontiers of Computer Science, Springer. He has published more than
100 articles in peer-reviewed international journals, conference and workshop
proceedings, and books.

Mahdi Fahmideh is a senior lecturer of cyber security at the University of
Southern Queensland. He is working on creating artifacts that help digital
transformation. His research outcomes can be in the form of methodologi-
cal approaches, conceptual models, decision-making frameworks, and software
tools. He has published in international venues such as the European Journal
of Information System (EJIS), IEEE Transactions on Software Engineering (TSE),
Information Sciences, Information Systems, Journal of Computers and Industrial
Engineering, Information and Software Technology (IST), and Journal of Systems
and Software (JSS). He has 8 years of experience in the software industry as an
analyst programmer.

Tommi Mikkonen is a full professor of software engineering at the University of
Jyvaskyld and a full professor of software systems at the University of Helsinki,
both located in Finland. In addition to his academic positions, he has been a
principal scientist at Nokia and a visiting professor at Sun Microsystems Research
and at Mozilla. His research interests include IoT, software development meth-
ods, software architecture, multi-device programming, and software engineering
for AL He is the year 2017 Open World Hero, nominated by the Center of Open
Source Software in Finland.

Pekka Abrahamsson is currently a full Professor of software engineering at
the Faculty of Information Technology and Communication Sciences, Tampere
University, Tampere, Finland. His research is in the area of emerging software
technologies, empirical software engineering, software startups, and the ethics
of artificial intelligence. He is a pioneer in the field of research on agile software
engineering methods and processes. Abrahamsson is the most cited researcher
in his field in Finland, and he is the first Professor of Software Engineering at
the Finnish Academy of Science and Letters. He has published broadly in his
areas of expertise and received many awards and recognitions.

http://refhub.elsevier.com/S0164-1212(23)00077-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb92
http://arxiv.org/abs/2007.07047
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb94
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb95
http://refhub.elsevier.com/S0164-1212(23)00077-8/sb95

	Software architecture for quantum computing systems — A systematic review
	Introduction
	Context: Architecting Software for Quantum Computing
	Quantum Computing Systems
	Software Engineering (SE) for quantum computing
	Architecture for Quantum Software

	Research Methodology
	Planning the review
	Step 1: Specify research questions
	Step 2: Identify data sources
	Step 3: Formulate search strategy
	Step 4: Define inclusion and exclusion criteria

	Conducting the review
	Step-1: Select primary studies
	Step-2: Perform quality assessment (QAs)
	Step-3: Perform data extraction
	Step-4: Perform data synthesis

	Reporting the review

	Demography Details of Published Research
	Types and frequency of publications (RQ1.1)
	Types of research and contributions (RQ1.2)
	Classification of application domains (RQ1.3)

	Architecture-Centric Solutions for Quantum Software
	Architectural process and activities (RQ2.1)
	Architectural modelling notations (RQ2.2)
	Architecture design patterns (RQ2.3)
	Architecture tools and frameworks (RQ2.4)
	Architecture challenges
	Quantum data transmission and security
	Process-centric architecting
	Architectural Tools and Technologies
	Architecting knowledge and expertise

	Key Findings and Implications of the SLR
	Summary of Key Findings
	Research Implications
	Industrial Implications

	Threats to Validity
	Internal validity
	External validity
	Construct validity
	Conclusion validity

	Related Work
	Comparative analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Appendix
	References

