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Abstract. This study proposes a computer vision-based system to reveal the cardiopulmonary 

signal of humans in both static and dynamic scenarios without the need for restricting or contact. 

The proposed system extracts the signal based on the optical properties of skin colour variations 

in the facial region using image sequence analysis captured by a hovering drone while being 

convenient, safe and also cost-effective. The experimental results showed very good agreement, 

strong correlation coefficients and acceptable error ratios in comparison to reference instruments 

(finger pulse oximeter and Piezo respiratory belt). Therefore, the proposed system in this paper 

may be suitable to be applied to detect human physiological parameters in war zones and natural 

disasters when the contact with the subject is difficult or impossible.  

1.  Introduction 

Measurement of physiological parameters is often essential to maintain individuals’ health because of 

its primary role in the diagnosis of health conditions and monitoring of wellbeing. Current monitoring 

systems rely on direct contact and require a variety of sensors and electrodes to be attached to patients 

for long periods, in both clinical and home environments. These systems are restrictive, uncomfortable 

and potentially unsafe [1-6]. Therefore, there is a need to monitor physiological parameters when contact 

with skin is either undesirable or is not possible. With rapid growth of remote measurement technology, 

unobtrusive cardiopulmonary activity monitoring has become feasible. 

Interesting research has been undertaken using many remote technologies to detect cardiopulmonary 

signal, including Doppler effect-based technologies [7-12], thermal imaging technologies [13-18] and 

imaging photoplethysmography (iPPG) technologies [19-24]. All these remote technologies rely on the 

observation of physiological and physical variations resulting from the cardiopulmonary activity such 

as skin colour variations, head motion, arterial pulse motion, thorax motion [25, 26]. However, Doppler 

and thermal imaging technologies generally need specialised hardware and are somewhat expensive [25, 

27]. In addition, Doppler technologies may cause some biological effects on human tissue [13, 25, 27]. 

In contrast, the iPPG technologies seem to be the most promising methods for remote physiological 

assessments [25, 27]. But one of the most challenges facing iPPG technologies is when cardiopulmonary 

signal mix with noise and motion artefacts signal [28]. Many studies proposed different algorithms for 

noise artefacts removal from the iPPG signal. some examples, including principal component analysis 

(PCA) [29], independent component analysis (ICA) [22, 23], canonical correlation analysis (CCA.) [19, 

http://creativecommons.org/licenses/by/3.0
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30], ensemble empirical mode decomposition (EEMD) [20, 31, 32], chrominance (CHRO) [33], support 

vector regression (SVR) [21], spatial-subspace rotation (2SR) [34] and partial least squares (PLS) [35]. 

However, each algorithm has its strengths and weaknesses under different conditions, leading to some 

challenges and problems that have to be addressed [25].    

In this study, a computer vision-based iPPG is proposed to extract the cardiopulmonary signal (heart 

rate HR and respiratory rate RR) from a hovering unmanned aerial vehicle (UAV) and remove the noise 

and motion artefacts using a new algorithm using signal decomposition technique based on complete 

ensemble EMD and ICA technique. 

2.  Materials and methods 

2.1.  Research ethics 

The research ethics clearance was obtained from the Human Research Ethics Committee (HREC) at the 

University of South Australia (UniSA). Our research participants had consented to take part in this study 

and for the use of data that were captured from the UAV after a full explanation of the study procedures. 

For asset protection and privacy purposes, all collected video data were stored on a secure computer at 

the UniSA and will not be available for public use. 

2.2.  Participants and validation methods 

This study was performed using 8 participants (4 males and 4 females) aged from 24 to 38 years. The 

video data were captured using a hovering UAV (3DR solo drone, 10MP, 5.4 mm GoPro Lens) with a 

resolution of 3840 × 2160 and a frame rate of 25 fps at a distance of 3 meters from the participant as 

shown in Figure 1. All participants were asked to breathe normally while doing some static and dynamic 

scenarios (normal talking, blinking, head rotation and facial expression). The validation procedure was 

carried out considering the measured data provided by a Rossmax SA210 pulse oximeter and MLT1132 

Piezo respiratory belt transducer. 

 

 

Figure 1. Data collection using the UAV (3DR solo drone) 

2.3.  System framework 

Several image and signal processing techniques were considered in the design of the proposed system 

in this study to extract the relevant features from the facial video signal and eliminate noise artefacts 

embedded in the image spatial domain. These techniques include skin colour magnification technique, 

signal decomposition technique, ICA technique, spectral analysis method, band-pass filters and peak 

detection. The system framework of the proposed system is presented in Figure 2. 
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Figure 2. The system framework of the proposed system 

 

 

2.3.1.  Skin colour magnification  

The skin colour variations in the participant’s face are volumetric changes in the blood caused by the 

pressure changes during cardiac cycle. The colour of blood varies due to the exchange of gases through 

the cardiopulmonary activity, which also affects the skin colour. These variations in the skin colour are 

difficult to recognise. Therefore, a standard video magnification technique [36] was used to magnify 

these variations. The green (G) component was only selected and magnified 20x with band-pass filtering 

of 0.15 Hz to 3 Hz since this component contains the most harmonic cardiac signal among the other 

components (i.e. red and blue) [19, 22, 23, 37]. 

2.3.2.  Face detection 

To enhance results accuracy and efficiency, a face detection algorithm proposed by Liao et al. [38], was 

used in this study to select the facial region of interest (ROI). This face detection algorithm is a robust 

method to the challenges associated with unconstrained faces (e.g. inclined or angled faces, face rotation 

and faces in a crowd). The locations of the eyes and mouth for the selected ROI were also removed to 

reduce the noise artefacts generating from blinking and talking during videoing. The time-series signal, 

𝑥 (𝑡), was calculated by averaging of all the image pixel intensities in the selected ROI as follows: 

𝑥 (𝑡) =
∑ 𝐼 (𝑎, 𝑏, 𝑡)𝑎,𝑏∈𝑅𝑂𝐼

|𝑅𝑂𝐼|
                                                                                                                             (1) 

where  𝐼(𝑎, 𝑏, 𝑡) is the pixel intensity at location (𝑎, 𝑏) and time (𝑡), and |𝑅𝑂𝐼| is the size of the selected 

region.  

2.3.3.  Signal decomposition 

Signal decomposition is a powerful representation scheme for multiscale signal and image analysis that 

is used to get information from the nonstationary time-varying signals. Empirical mode decomposition 

(EMD) [39] is one of the most commonly used decomposition techniques to reduce the noise artefacts 

from biomedical signals [40-42]. This technique decomposes a non-linear and/or non-stationary signal 

into a set of components, namely intrinsic mode functions (IMFs), and selecting the most informative 

components to represent the original signal. Later on, a noise-assisted signal decomposition technique, 
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called ensemble EMD (EEMD), was proposed by Wu and Huang [43] to solve the mixing mode 

problems associated with EMD. However, EEMD has some weaknesses under different assumptions, 

such as residual noise, reconstruction error and different number of modes at different realisations [44]. 

Another noise-assisted version of the signal decomposition technique, called complete EEMD, was 

proposed by Torres et al. [45] to deal with the reconstruction error from the EEMD and to enhance its 

performance and efficiency by undertaking exact attenuation of the residual noise in the reconstruction 

process. In this technique, pairs of white noise (positive and negative) are added to the original signal to 

produce two sets of ensemble IMFs. The procedure for extracting two sets of mixtures, 𝑀1 and 𝑀2, 

using complete ensemble EMD can be derived by 

[
𝑀1

𝑀2
] = [

1 1
1 −1

] [
𝑥(𝑡)

𝜔(𝑡)
]                                                                                                                (2) 

where 𝑥(𝑡) is the time-series signal, 𝜔(𝑡) is the additive while noise, 𝑀1 is the sum of the time-series 

signal with positive noise and 𝑀2 is the sum of the time-series signal and the negative noise. It is clear 

from Eq. (2) that the final IMF is the ensemble of both 𝑀1 and 𝑀2 with positive and negative residues 

of added white noises, thereby reducing residual noise in the reconstructed signal. Figure 3 demonstrates 

generating seven IMFs of the signal of interest using complete EEMD technique with 100 realisations 

and 100 iterations. 

 

Figure 3. Signal decomposition based on the complete EEMD technique 

2.3.4.  Independent component analysis (ICA)  

ICA is a statistical signal processing technique for solving the blind source separation (BSS) problems 

and is widely used to remove noise artefacts from biomedical signals [46-48].  ICA-based BSS is used 
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to separate the mixed source signals and retrieve the original sources using high-order statistics. Figure 

4 presents the basic scheme diagram of the ICA-based BSS. 

 

Figure 4. Basic scheme diagram of the ICA-based BSS technique 

To understand how ICA operates as the BSS, assume there are 𝐾 sources independently transmitting 

signals,𝑠𝑖(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡),….,𝑠𝐾(𝑡)].The observed signals,  𝑥𝑖 (𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … . . , 𝑥𝐾(𝑡)], by 

different sensors, 𝑖 = 1,2 … , 𝐾, can be expressed as follows [49]: 

𝑥𝑖 (𝑡)  = 𝐴𝑠𝑖(𝑡) = ∑(𝑎𝑖𝑠𝑖(𝑡)

𝐾

𝑖=1

+ 𝑛𝑖(𝑡))                                                                                      (3) 

where 𝐴 is the unknown mixing matrix with column vectors 𝑎𝑖, and 𝑛𝑖(𝑡) is the additive noise. The 

observations, 𝑥𝑖  (𝑡), are now linear combinations or mixtures of the sources, 𝑠𝑖(𝑡). The ICA can solve 

the BSS problem under an assumption that all sources are statistically independent of each other. To 

recover the source signals, 𝑢𝑖 (𝑡), the following expression can be used: 

𝑢𝑖 (𝑡)  = 𝑊𝑥𝑖(𝑡) = 𝑊[𝐴𝑠𝑖(𝑡)] ≈ 𝑠𝑖(𝑡)                                                                                        (4) 

where 𝑊 is the un-mixing weight matrix with column vectors, 𝑤𝑖.  

The IMF components with the best cardiopulmonary frequency bands (IMF4, IMF5 and IMF6) were 

chosen as inputs to ICA technique as demonstrated in Figure 5. 

 

Figure 5. The signals based on ICA technique  
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The fast Fourier transform (FFT) was used as frequency spectrum analysis to inform the estimation 

of the cardiopulmonary signal by selecting the best component of the ICA outputs (u3), which has the 

most resemblance to the expected cardiopulmonary signal. This process was followed by two band-pass 

filters with selected frequencies of 0.5 to 3 Hz (30-180 beats/min) and 0.15 to 0.4 Hz (9-24 breaths/min). 

After the filtration, the inverse FFT was applied to obtain the temporal signals of the cardiopulmonary 

activity. Finally, MATLAB built-in peak detection function [50] was used to determine the number of 

peaks of the temporal signal and calculated the heart and respiratory rates per minute.  

3.  Experimental results and discussion 

The experimental results and statistical readings of the proposed measurement system for two scenarios 

(static and dynamic scenarios) were discussed in this section. The limits of agreement (95% confidence 

intervals), coefficients of correlation and error ratios were calculated using the Bland-Altman plot [51], 

Pearson's correlation coefficient (PCC), Spearman's rank correlation coefficient (SCC), Kendall rank 

correlation coefficient (KCC), mean absolute error and root mean square error. All statistical readings 

were considered when there is no random signal included. The statistics related to HR measurements 

for the video data captured by the UAV for the static and dynamic scenarios are shown in Figure 6. 

 

 
Figure 6. Bland-Altman plot of the cardiac measurements using (a) static scenario,                                     

(b) dynamic scenario 

 

Using the data captured from the participants in the static scenario as demonstrated in Figure 6 (a), 

the mean difference (bias), lower and upper limits of agreement between the cardiac measurements were 

0.17, −1.2 and +1.5 beats/min with correlation coefficients of 0.9962, 0.9939, 0.9588 for the PCC, SCC 

and KCC respectively, and error ratios of 0.52 beats/min and 0.7 beats/min for the mean absolute error 

and root mean square error, respectively. For the data of the dynamic scenario as demonstrated in Figure 

6 (b), the mean difference, lower and upper limit of agreement were 0.22, −2 and +2.5 beats/min with 

PCC of 0.989, SCC of 0.9872, KCC of 0.925, the mean absolute error of 0.99 beats/min and the root 

mean square error of 1.16 beats/min.  

The statistics related to RR measurements for the video data captured by the UAV for the static and 

dynamic scenarios are shown in Figure 7. 
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Figure 7. Bland-Altman plot of the respiratory measurements using (a) static scenario,                              

(b) dynamic scenario 

 

      Using the data captured from the participants in the static scenario as demonstrated in Figure 7 (a), 

the mean difference, lower and upper limit of agreement between the respiratory measurements were 

0.16, −0.69 and +1.1 breaths/min with correlation coefficients of 0.9899, 0.9904, 0.9421 for the PCC, 

SCC and KCC respectively, and error ratios of 0.36 breaths/min and 0.46 breaths/min for the mean 

absolute error and root mean square error, respectively. For the data of the dynamic scenario as 

demonstrated in Figure 7 (b), the mean difference, lower and upper limit of agreement were 0.3, −1.2 

and +1.8 breaths/min with PCC of 0.9694, SCC of 0.971, KCC of 0.8888, the mean absolute error of 

0.65 breaths/min and the root mean square error of 0.81 breaths/min.  

There are many potential applications of the research presented in this study. Some of the prominent 

examples include using the system as a lifesaver in disaster zones or warzones, (e.g. field triage of the 

wounded people), assistance in security and quarantine checkpoints, and also other crowded controlled 

regions when people are standing or prone with only modest movement. It would also be an important 

addition to the future robots to be able to detect the physiological parameters of any number of people 

at different distances. 

4.  Conclusion 

In this study, a computer vision-based system for extracting the human cardiopulmonary signal (HR and 

RR) from a hovering UAV was proposed. The proposed system used the video magnification technique 

to magnify the invisible skin colour variations resulting from the pressure changes during the cardiac 

cycle in the facial region, and applied the complete EEMD technique to decompose the signal of interest 

into a set of IMF components, while the most informative components were chosen as inputs to the ICA 

technique and removed the IMF components that fall outside of the frequency bands of interest. The 

experimental results demonstrated that the proposed system is a feasible solution for remote sensing 

assessment when the contact with the subject is difficult or impossible in certain situations. 
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