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Abstract
Background Diabetes mellitus (DM) increases the risk of vascular complications, and retinal vasculature imaging serves as 
a valuable indicator of both microvascular and macrovascular health. Moreover, artificial intelligence (AI)-enabled systems 
developed for high-throughput detection of diabetic retinopathy (DR) using digitized retinal images have become clinically 
adopted. This study reviews AI applications using retinal images for DM-related complications, highlighting advancements 
beyond DR screening, diagnosis, and prognosis, and addresses implementation challenges, such as ethics, data privacy, 
equitable access, and explainability.
Methods We conducted a thorough literature search across several databases, including PubMed, Scopus, and Web of Sci-
ence, focusing on studies involving diabetes, the retina, and artificial intelligence. We reviewed the original research based 
on their methodology, AI algorithms, data processing techniques, and validation procedures to ensure a detailed analysis of 
AI applications in diabetic retinal imaging.
Results Retinal images can be used to diagnose DM complications including DR, neuropathy, nephropathy, and atheroscle-
rotic cardiovascular disease, as well as to predict the risk of cardiovascular events. Beyond DR screening, AI integration also 
offers significant potential to address the challenges in the comprehensive care of patients with DM.
Conclusion With the ability to evaluate the patient’s health status in relation to DM complications as well as risk prognos-
tication of future cardiovascular complications, AI-assisted retinal image analysis has the potential to become a central tool 
for modern personalized medicine in patients with DM.
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Introduction

Diabetes mellitus (DM) affects more than 422 million peo-
ple globally and is among the top ten causes of mortality 
and morbidity [1, 2]. It significantly increases the risk of 
macrovascular complications, including atherosclerotic car-
diovascular diseases such as coronary heart disease, cere-
brovascular disease, and peripheral arterial disease (PAD), 
with mortality rates from cardiovascular diseases being two 
to six times higher in individuals with diabetes than in non-
diabetic populations [1] Additionally, it predisposes patients 
to microvascular complications, such as peripheral neuropa-
thy [3], nephropathy, where the prevalence of end-stage kid-
ney disease is ten times greater in diabetic populations [4], 
and retinopathy.

Diabetic retinopathy (DR) is the leading cause of prevent-
able adult blindness [5] with a prevalence of 34.6% among 
diabetic patients [6]. DR can be categorized into non-prolif-
erative DR (NPDR) and proliferative DR (PDR). NPDR is 
the early stage of DR, in which existing retinal blood ves-
sels weaken, leading to microaneurysms and possible fluid 
leakage. It progresses from mild to severe stages without 
new blood vessel formation. However, PDR refers to the 
advanced stage of DR characterized by the growth of new 
abnormal blood vessels on the retina or optic disc, which 
can lead to serious vision complications [7]. The incidence 
of sight-threatening diabetic macular edema (DME), where 
fluid accumulates in the macula due to leaking retinal blood 
vessels, causing swelling and potential vision loss [8, 9], can 
occur at any stage and increases as DR progresses [5]. With 
the rising prevalence and incidence of DM, the burden of 
DR and the consequent vision loss has increased. Globally, 
1.4 million patients with DM have severe NPDR and PDR 
and will require treatment to prevent or slow further ‎vision 
deterioration [6]. Therefore, the term referable DR refers to 
cases in which DR has progressed to a level requiring spe-
cialist referral, typically encompassing moderate NPDR or 
worse, or the presence of DME [10]. Preemptive systematic 
and continual screening of asymptomatic diabetic patients, 
with early initiation of antiproliferative treatment where 
indicated, is obligatory for preventing clinical sequelae and 
reducing the human costs of DR [11].

Retinal vasculature is the only part of the human body’s 
microcirculation and can be visualized noninvasively [12]. 
The retina is a veritable “window” to the state of health of 
the microcirculation, providing insights into DR as well as 
other diabetic macrovascular and microvascular complica-
tions such as neuropathy and nephropathy [13]. Fundoscopic 
retinal examination is traditionally used in clinics to screen 
for DR. However, the introduction of digital fundus photog-
raphy, which enables offline analysis of retinal images by 
experts, has contributed to the successful implementation of 

national DR screening programs. With the advent of arti-
ficial intelligence (AI) applications in medicine, especially 
in the interpretation of digital medical images (which are 
by nature objective and accessible), many AI-based sys-
tems utilizing AI’s ability to handle high-throughput, ‎com-
plex image data have been developed for the detection of 
DR using digitized retinal images and are now clinically 
adopted [14, 15].

Beyond DR screening, AI integration also holds immense 
potential for addressing the challenges associated with the 
comprehensive care of patients with DM complications. As 
mentioned above, retinal vasculature images contain diag-
nostic and prognostic clues to the microvascular and mac-
rovascular health of the whole body. In contrast to existing 
review studies centered solely on DR within the context of 
DM, the retina, and AI, our study takes a broader approach 
[16–24]. Our review takes a comprehensive perspective, 
covering all DM-related complications detectable through 
retinal imaging rather than focusing solely on DR, as in 
most existing studies. We explored AI’s potential to iden-
tify a broad range of complications, including DME as 
well as cardiovascular, neurological, and kidney diseases. 
Additionally, most studies emphasize diagnostic capabili-
ties, with little attention given to the role of AI in predict-
ing disease progression or guiding personalized treatments. 
Real-world implementation challenges, including adapting 
AI models to diverse healthcare settings, data privacy con-
cerns, and regulatory hurdles, are underexplored. Ethical 
issues, such as algorithm bias and equitable access to AI 
tools, have received minimal discussion, especially in the 
context of low-resource settings where DM complications 
are prevalent. This narrative review aims to address these 
gaps by exploring broader applications of AI in diabetes 
care, synthesizing insights into multi-complication detec-
tion, and highlighting barriers to clinical adoption. Various 
DM-related complications are visualized in Fig. 1.

Literature search method

We performed our search in PubMed, Scopus, and Web of 
Sciences databases for scholarly articles published in the 
English language until June 2024, using various combina-
tions (by using Boolean operators: AND, OR, NOT) of the 
following main keywords: “diabetes mellitus,” “retina,” 
“artificial intelligence.” Other keywords were “diabetic 
care,” “diabetes complications,” “diabetic foot,” “dia-
betic nephropathy,” “diabetic neuropathy,” “diabetic reti-
nopathy,” “diabetic macular edema,” “cardiovascular risk 
assessment,” “peripheral arterial disease,” “fundus image,” 
“personalized medicine,” “deep learning,” “machine learn-
ing,” and “machine vision”.
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In selecting articles for inclusion in our study, we 
employed an approach focused on identifying peer-reviewed 
original studies written in English with clear research goals, 
meticulous methodology, and extensive technical details. 
In our evaluation process, we defined the ‘technical details’ 
to include the technological aspects and analytical methods 
used in the studies. We also excluded non-peer-reviewed and 
low-quality articles with unclear research goals, duplicates, 
editorial articles, and conference abstracts. This entailed 
examining the types of AI algorithms deployed, data-pro-
cessing techniques, specific retinal imaging methods, and 
any advanced computational strategies implemented. We 
also discuss software applications, statistical techniques, 
and validation procedures in these studies. Our focus on 
these technical details is to ensure a comprehensive assess-
ment of the methodologies and technological advancements 
in AI applications in diabetic retinal image analysis.

Diabetic retinopathy and diabetic macular 
edema

DR screening

In a landmark study by Abramoff et al., an AI system 
based on supervised machine learning (ML) with logistic 
regression attained 96.8% sensitivity, 59.4% specificity, 
and 0.937 (95% CI, 0.916–0.959) AUC (a generic term 

referring to the area under a curve, typically used to evalu-
ate classifier performance) for the detection of referable DR. 
Despite its modest specificity, the system was projected to 
halve the screening burden compared with manual screen-
ing by experts [10]. The team developed a deep learning 
(DL) model, based on convolutional neural network (CNN) 
architectures inspired by AlexNet and VGGNet, to enhance 
the detection of referable DR. This model demonstrated a 
specificity of 87% (95% CI: 84.2–89.4%) and an AUC of 
0.980 (95% CI: 0.968–0.992), achieving these improve-
ments without compromising sensitivity [25]. EyeArt 
and Retmarker, two AI systems designed to detect refer-
able DR, reported sensitivities of 93.8% (92.9-94.6%) and 
85% (83.6-86.2%), respectively, and have been linked to 
reduced costs in DR screening [26]. Other economic mod-
els studies also have also shown that semi-automated and 
fully automated screening methods by human experts are 
more cost-effective than traditional manual screening [27, 
28]. IDx-DR, the first medical device implementing AI for 
detecting moderate and severe DR, was approved by the 
FDA in 2018 [29]. A cost-effectiveness analysis of a nation-
wide DR screening program in China involving 251,535 
participants revealed that AI models need a sensitivity of 
at least 88.2% and specificity of 80.4% to be cost-effective. 
The most cost-effective scenario showed a higher sensitivity 
(96.3%) but lower specificity (80.4%) than the most accurate 
model (93.3% sensitivity and 87.7% specificity). This study 
showed that urban regions and younger populations demand 
higher sensitivity for optimal cost-effectiveness [30]. Addi-
tionally, another cost-effectiveness analysis revealed that 
implementing AI-based DR screening in primary care for 
both non-indigenous and Indigenous Australians with DM 
is highly effective and cost-saving, with significant reduc-
tions in blindness cases and healthcare costs projected over 
40 years [31].

Recent studies have highlighted the potential of AI to 
improve DR screening and diagnosis. In a study by Riazi-
Esfahani et al. [32], 84 eyes of 57 individuals were ana-
lyzed to differentiate between normal eyes, NPDR, and 
PDR. They utilized optical coherence tomography (OCT) 
images, evaluated an ML-based segmentation system, and 
found significant differences in the retinal layer area and 
smoothness index (SI) across the groups. Specifically, the 
inner nuclear layer (INL) area was the most effective in dis-
tinguishing DR stages, with an accuracy of 87.6%, while 
the SI of the inner plexiform layer (IPL) in the nasal zone 
distinguished PDR from NPDR with 97.2% accuracy. The 
DL model developed by Saranya et al. [33] for detecting DR 
showed remarkable metrics. The model’s accuracy, sensitiv-
ity, specificity, and F1-scores (The harmonic mean of preci-
sion and recall used to evaluate the balance between false 
positives and false negatives in a binary classification) were 

Fig. 1 Illustration of various diabetic complications diagnosed by reti-
nal imaging using AI. (Graphical abstract)
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networks, which achieved a sensitivity of 99.1% (95% CI: 
95.1–99.9) and a specificity of 80.4% (95% CI: 73.9–85.9) 
for detecting STDR based on online-processed smartphone 
retinal images evaluated against human expert assessments 
[45].

Advanced DR screening for DME

DME, an accumulation of fluid in the macula, can lead 
to visual loss at any stage of DR and mandates referral to 
specialists. Definitive diagnosis requires macular thickness 
measurement using OCT or visualization of edema on fluo-
rescein angiography, which is the gold standard diagnostic 
tool. Hard exudates within one optic disc diameter on the 
color fundus photograph (CFP) are a surrogate for DME [46], 
with a significant false positive rate of up to 42% in the UK 
screening program [47]. The Danish guidelines recommend 
OCT as a second-line screening method for DR [48]. Diag-
nostic criteria for DME, as identified through OCT imaging, 
include central retinal thickness (CRT) > 250–300 μm, pres-
ence of intraretinal or subretinal fluid, hyperreflective dots, 
and disruption of retinal layers [49]. Moreover, diagnostic 
criteria for DME, as identified through fluorescein angiog-
raphy, include leakage of fluorescein dye, areas of capillary 
nonperfusion, and evidence of macular ischemia [50].

AI plays a significant role in diagnosing and classify-
ing DME [23]. A DL model trained on fundus photographs 
attained an AUC of 0.89 (95% CI: 0.87–0.91) for discrimi-
nating center-involved DME, with superior specificity and 
positive predictive value compared to human experts [51]. 
More DL systems have been developed for the automatic 
detection of DME on OCT images, which can also discern 
grades of severity, ranging from diffuse retinal thicken-
ing cystoid macular edema to serous retinal detachment 
[52]. A study by Manikandan et al. reported 96% (95%CI: 
0.94–0.98) and 94% (95% CI: 0.90–0.96) sensitivities 
for AI-assisted DME detection based on OCT and fun-
dus images, respectively [53]. Similarly, another study by 
Lam et al. evaluated the performance of various DL mod-
els in detecting DME using fundus photography and OCT 
images. They reported a pooled area under the receiver 
operating characteristic curve (AUROCs) of 0.964 (95%CI: 
0.964–0.964) for fundus photography-based algorithms and 
0.985 (95%CI: 0.985–0.985) for OCT-based algorithms, 
with sensitivities of 92.6% and 95.9% and specificities of 
91.1% and 97.9% [54]. AUROC measures the ability of a 
classifier to distinguish between classes across all thresh-
olds, with values closer to 1 indicating better performance. 
Another investigation reported a pooled 96.0% (95% CI: 
93.9–97.3%) sensitivity and 99.3% (95% CI: 98.2–99.7%) 
specificity for DME detection using DL with OCT images 
[55]. In a comparison with the other two DL models, the 

97.54%, 90.34%, 98.24%, and 93.28% on the MESSIDOR 
dataset, and 96.32%, 95.73%, 97.12%, and 96.74% on the 
E-ophtha Ex dataset. In another study, an AI screening 
model for referable DR in Rwanda demonstrated 92% (95% 
CI, 86.3–96.8%) sensitivity, 85% (95% CI, 75.1–88.2%) 
specificity, and 33.2% of patients were referred for follow-
up [34]. Similarly, in Tanzania, a trial involving 2364 par-
ticipants aims to improve the follow-up rates for referable 
DR cases using AI-supported screening pathways [35]. 
Another study comparing 21 AI algorithms for DR screen-
ing found varying performances. The mean agreement for 
referable DR was 79.4%, with sensitivity and specificity of 
77.5% and 80.6%, respectively. These findings emphasize 
the need for real-world validation before clinical application 
[36]. Additionally, an AI model developed in Greenland for 
DR screening showed an AUC of 0.99 but requires further 
optimization for practical clinical application [37]. Lastly, 
AI analysis of retinal microvascular changes demonstrated 
the potential for the early diagnosis of diabetic complica-
tions by identifying significant retinal abnormalities [38].

In low-income countries with limited healthcare 
resources, the lack of established DM screening programs 
and insufficient blood glucose control results in a higher inci-
dence of DM-related complications. In one study conducted 
in sub-Saharan Africa, the rate of progression from no DR 
to sight-threatening DR (STDR) was five times higher than 
in Europe [39, 40]. However, universal annual DR screen-
ing for all patients with DM remains elusive goal [40]. The 
solution may lie in using technological advancements, such 
as AI-based analysis of digital fundus photographs, which 
has the potential to reduce the costs of nationwide screen-
ing programs while delivering comparable or even supe-
rior diagnostic performance [6, 41, 42]. However, whether 
models developed and validated in countries with differ-
ent ethnic compositions can be effectively applied to local 
populations is still a valid concern. In a study by Bellemo 
et al. [43], an ensemble model combining adapted VGG-
Net and ResNet architectures trained on a Singaporean 
database of color retinal images, demonstrated robust diag-
nostic performance in a real-world diabetic population in 
Zambia. Specifically, the model achieved an AUC of 0.973 
(95% CI: 0.969–0.978) for detecting referable DR, with a 
sensitivity of 99.42% (95% CI: 99.15–99.68) for STDR and 
97.19% (95% CI: 96.61–97.77) for DME. Separately, a real-
world prospective interventional cohort study in Thailand 
utilized a DL-based system to detect STDR and reported 
an accuracy of 94.7% (95% CI 93.0–96.2), compared to 
93.5% (91.7–95.0) achieved by human experts [44]. More-
over, among novel cost-effective approaches, retinal images 
can now be captured using smartphone-based retinal cam-
eras. In one study, this method proved feasible when using 
the EyeArt software, an ensemble of deep artificial neural 
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et al. [63] trained a modified GoogLeNet model on 9,939 
fundus photographs (four 45° color fundus photographs per 
eye) using a refined Davis grading protocol. When tested on 
496 images (5% of the dataset), the model achieved 81% 
accuracy (correctly classifying 402 images) and a preva-
lence- and bias-adjusted Fleiss’ kappa (PABAK) of 0.64 
compared with the modified Davis grading. Against a real 
prognosis grading, the model attained a PABAK of 0.37 and 
96% accuracy. Other researchers have also reported high 
sensitivity and specificity rates for DR grading using vari-
ous models [64–66]. Figure 2 shows a schematic illustration 
of various DR severity grades.

In fundus examination, DR–induced vascular changes 
often manifest heterogeneously across the retina. Neverthe-
less, traditional manual analyses generally classify the entire 
fundus image according to the most severe lesion identified 
in any region of the image. With AI analysis of CFP images, 
the basis for severity grading is not apparent, which limits 
the explainability of AI decision-making. To address this, 
researchers have developed DL neural networks for lesion-
based classification [62, 66, 67]. Wang et al. [68] trained 
a CNN-based DR lesion classifier, Lesion-Net, on 12,252 
fundus images of patients with DM. The model contains 
two branches: the inferior branch uses a fully convolutional 
network (FCN-32s) for lesion segmentation predictions of 
eight types of common DR lesions to diagnose and stage 
DR, and the superior branch integrates convolutional layers 
from the Inception-v3 architecture to classify referable vs. 
non-referable DR classes. Lesion-Net attained a good AUC 
of 0.943, sensitivity of 90.6%, and specificity of 80.7% for 
the five-stage DR grading as well as an improved AUC of 
0.936 vs. 0.928 for the internal test set and 0.977 vs. 0.964 
for the external test set for binary referable vs. non-referable 
DR classification. According to a recent study, the Incep-
tion-v3 model, trained on a dataset of 35,126 retinal images, 
delivered the best performance for DR diagnosis among ML 
and DL models, yielding an accuracy rate of approximately 
97% in feature extraction [69]. Concurrently, the Mobile-
NetV3 model has been identified as optimal for data clas-
sification tasks in the same domain, achieving an accuracy 
of 98.56% [70].

Sandhu et al. combined OCT and OCTA images with 
primary clinical and demographic data collected from 111 
patients to train an AI model for DR screening and staging 
[71]. They developed a novel computer-aided design sys-
tem to grade NPDR into mild and moderate stages. They 
reported 98.7% accuracy, 100% sensitivity, 97.8% specific-
ity, 99% differential scanning calorimetry (DSC), and 0.981 
AUC (progressive improvements in almost all metrics were 
observed as OCTA, clinical, and demographic data were 
incrementally added to the model). Wang et al. [72] used 
ultra-widefield fluorescein angiographic images from 399 

Optic-Net model (98% accuracy, 100% specificity) out-
performed Dense-Net (94% accuracy, 96% specificity) for 
OCT-based DME classification [56]. Liu et al. [57] trained 
a faster R-CNN model with ResNet101 backbone on more 
than 50,000 labeled fundus images and 20,000 OCT B-scans 
acquired from patients across multiple centers and reported 
a remarkable 97.78% sensitivity, 98.38% specificity, and 
0.981 (95%CI: 0.966–0.990) AUC for detection of referable 
DR; and 91.30% sensitivity, 97.46% specificity, and 0.944 
(95% CI 0.922–0.962) AUC for detection of DME. The 
incremental diagnostic utility of OCT-based AI analysis―
combined CFP plus OCT screening-detected cases of DME 
that would have been missed on CFP analysis alone― sup-
ports the addition of OCT to standard CFP-based AI screen-
ing programs; however, cost-effectiveness should be further 
assessed.

AI evaluation of OCT angiography (OCTA), which gen-
erates angiographic images of retinal vessels from motion 
imaging of volumetric blood flow signals without contrast, 
has recently attracted attention. Ryu et al. [58] compared 
two models for detecting early DR using OCTA. The first 
model was a ML-based classifier that combined segmenta-
tion—via a U-Net capable of isolating blood vessels and 
the foveal avascular zone in OCTA images—followed by 
feature extraction and classification. The second model 
employed a CNN-based classifier that processed the OCTA 
images directly using a ResNet101 architecture. Notably, 
the CNN-based model achieved excellent performance, 
with an accuracy of 91–98%, sensitivity of 86–97%, speci-
ficity of 94–99%, and AUC values between 0.919 and 
0.976, comparing favorably against ultra-widefield fluores-
cein angiography.

Grading of DR severity

Classification of CFP images into distinct DR severity grades 
―no retinopathy, mild NPDR, moderate NPDR, severe 
NPDR, and PDR [24]― based on retinal vascular changes 
can provide valuable insights into disease progression and 
prognosis [59]. This is traditionally performed through 
expert manual fundus examinations for DR [60], a resource 
that is both limited and not easily accessible. Promising AI-
based tools can categorize DR grades and reduce healthcare 
costs and burdens [27, 61]. Gulshan et al. [62] developed 
a CNN model with Inception-v3 architecture and transfer 
learning (TL) which outputs five independent binary classi-
fiers for DR grading. The model attained good performance 
for grading DR, and achieved 84.0% (95% CI, 75.3-90.6%) 
sensitivity and 98.8% (95% CI, 98.5-99.0%) specificity 
for detecting severe or worse DR. Additionally, it attained 
90.8% (95% CI, 86.1-94.3%) sensitivity and 98.7% (95% 
CI, 98.4- 99.0%) specificity for detecting DME. Takahashi 
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Fig. 2 Schematic representation of fundoscopy showing the DR grading
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collected from the electronic health records of 55 type I DM 
(T1DM) patients who were followed over five years. The 
DSS used strongly linked risk factors―age, DM duration, 
glycated hemoglobin, cholesterol, triglyceride, hyperten-
sion (HTN), incidence rate, and DM treatment duration―to 
predict DR progression. Receiver operating characteristic 
(ROC) analysis showed that the most accurate primary clas-
sifier had an accuracy of 97%, while the overall combined 
DSS had higher sensitivity, specificity, and accuracy.

Developing an AI model based on images, demograph-
ics, and clinical information to predict the risk of progres-
sion enables clinicians to make informed decisions. Arcadu 
et al. [79] developed an algorithm to predict the worsening 
of DR using 7-field CFPs acquired from patients with DM 
who were monitored over two years. The baseline CFPs 
were used to train the model to indicate the presence of 
2-step or greater worsening of DR on the Early Treatment 
DR Scale during the follow-up visits. Based on an Incep-
tion-v3 architecture, separate deep CNNs (DCNN) were 
trained in parallel for each of the seven fields using TL ini-
tialized with ImageNet weights. Ultimately, the generated 
probabilities were consolidated using random forests (RF) 
to enhance the overall prediction accuracy. The trained DL 
model predicted worsening of DR at multiple intervals. It 
achieved an AUC of 0.68 ± 0.13, sensitivity of 66% ± 23%, 
and specificity of 77% ± 12% at 6 months. At 12 months, it 
achieved an AUC of 0.79 ± 0.05, sensitivity of 91% ± 8%, 
and specificity of 65% ± 12%. For the 24-month predic-
tion, the model achieved an AUC of 0.77 ± 0.04, a sensitiv-
ity of 79% ± 12%, and a specificity of 72% ± 14%. Their 
results provided evidence for the use of AI in refining and 
personalizing the prognostication of DR. The ability of the 
AI model to accurately predict disease progression, even 
among individuals within the same DR grade as assessed by 
traditional manual methods, shows its potential to enhance 
clinical decision-making and patient management. Nota-
bly, the aggregate result was also superior to the output of 
each field-specific DCNN. Furthermore, they discovered 
that the peripheral parts of the retina contributed more to 
the predictions than the central regions, with the model per-
formance dropping significantly when the peripheral zones 
were excluded. Additionally, the attribution map showed 
that the model could differentiate between microaneurysms, 
hemorrhages, and hard exudates, providing a foundation for 
potential lesion-specific analyses and predictions. Finally, 
the results of this study suggest that, in contrast to tradi-
tional manual grading assessments, which can only predict 
disease outcomes in a group of patients with similar signs 
and symptoms, DL algorithms can approximately predict 
the course of DR in a single patient.

Similarly, another study improved the automated ML 
models to predict DR progression from retinal images. The 

patients to train an AI model for differentiating normal 
retina, NPDR, and PDR. The resulting developed model 
attained a classification accuracy of 88.50%.

Individualized DR screening

The current guideline-based practice for DR screening 
involves annual fundoscopic examination. However, this 
practice fails to account for the heterogeneity of the clini-
cal course of different patients. For example, only 11% of 
individuals with mild NPDR in both eyes progress to STDR 
each year, whereas all patients should undergo annual 
screening [73]. Given the increasing incidence of DM and 
projected increase in DM-related healthcare resource uti-
lization, individualized screening at varying intervals and 
approaches (home visit, AI-assisted, or specialized screen-
ing) may be more cost-effective as an alternative to routine 
annual DR screening.

Mathematical models have been developed to predict 
the risk of progression from non-DR or mild DR to STDR. 
Aspelund et al. used six parameters―sex, DM type, dura-
tion of DM, glycated hemoglobin, blood pressure, and the 
existence and grading of DR―to statistically model optimal 
DR screening intervals [74–76]. Compared to routine annual 
DR screening, their model, along with those developed by 
other researchers, achieved a 40–60% reduction in the num-
ber of screening visits, which resulted in an 11–40% increase 
in the incidence of STDR detected at subsequent screening 
visits [74–76]. Moreover, AI can potentially improve the 
prediction accuracy of mathematical models using the least 
amount of data. Piri et al. analyzed demographic, labora-
tory, and comorbidity data of more than 1.4 million patients 
with DM using supervised ML models and artificial neural 
networks where only a routine blood test could predict DR 
with an accuracy of 92.76% [76]. These observations sug-
gest that risk stratification without the need for retinal imag-
ing could facilitate the early diagnosis of DR while reducing 
the need for mass screening, notably in regions with poor 
infrastructure and low compliance.

Individualized DR follow-up

There is considerable variability in the progression of DR 
between patients with DM, even among those diagnosed 
with the same DR grade. A clear understanding of the antici-
pated progression of the disease greatly enhances the abil-
ity to develop the most effective screening and treatment 
plans for each patient. This enables customization of treat-
ment options, scheduling of visit frequencies, and timing of 
interventions to optimize individual patient outcomes [77]. 
Skevofilakas et al. [78] developed a decision support sys-
tem (DSS) for assessing DR progression using clinical data 
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An AI system’s prediction of a poor treatment response 
may justify the adoption of alternative therapeutic strate-
gies, thereby minimizing unnecessary risks and costs, while 
ensuring that patients who could benefit from appropriate 
treatments are not excluded. In a retrospective study, Gal-
lardo et al. [89] developed an ML system to assess the bur-
den of anti-VEGF treatment―defined as low, moderate, 
and high based on the interval of injections―in a treat-and-
extend (T&E) regimen for DME and retinal vein occlusion 
using demographic data and OCT images obtained from 
patients at two consecutive clinic visits [89]. The proposed 
RF-based supervised ML model predicts the 1-year treat-
ment requirement with a reasonable AUC so that the deci-
sion-making process is rendered interpretable. In particular, 
all features related to intraretinal fluid are important for pre-
dicting low and high treatment demands.

In addition to predicting treatment response, AI can be 
applied to the direct planning of therapeutic procedures. 
Focal or grid laser photocoagulation, in which a series of 
controlled photocoagulations are delivered to the pathologi-
cal areas of the retina [90, 91], is another indicated treat-
ment for DME and PDR. This treatment induces regression 
of neovascularization by normalizing oxygen partial pres-
sures in the peripheral avascular regions of the retina. As a 
result, the rates of vitreous hemorrhage and membrane for-
mation were reduced.

Treatment efficacy is highly dependent on the siting and 
dosing of the administered photocoagulates [92]. Stan-
dard predetermined patterns for photocoagulation cannot 
account for individual differences in the shapes and patterns 
of macular edema and anatomical variations of the retinal 
vasculature [90, 93]. Furthermore, manual mapping of the 
coagulation pattern requires surgical expertise and consid-
erable time [93]. AI can be used to automate retinal seg-
mentation, such that only personalized, predetermined areas 
of the retina are coagulated, thereby increasing the preci-
sion of laser photocoagulation and minimizing unwanted 
side effects. Novel AI software has generated personalized, 
high-quality coagulation maps by processing patient infor-
mation. The system enhances precision in localizing the 
exact burn points and controlling the power delivered com-
pared to manual methods, resulting in a nine-fold reduction 
in laser burns beyond the edema borders, shortened proce-
dural preparation time, and fewer postoperative complica-
tions [93].

models were trained and validated on images with mild or 
moderate NPDR over three years using images from a ter-
tiary diabetes center. The models achieved an Area Under 
the Precision-Recall Curve (AUPRC), which summarizes 
the performance of a classifier in handling imbalanced data-
sets by focusing on precision and recall trade-offs across 
thresholds of 0.717 for mild NPDR and 0.863 for moderate 
NPDR, with sensitivity and specificity ranging from 0.63 to 
0.80 [80]. Moreover, another trial evaluated the effective-
ness of autonomous AI-based diabetic eye screening at the 
point-of-care in increasing examination completion rates 
among youth with type 1 and type 2 diabetes mellitus. This 
study compared AI-assisted examinations with traditional 
eye care provider referrals and found that the completion 
rate was significantly higher in the AI group (100%) than in 
the control group (22%). This study showed that AI could 
significantly improve DR follow-up adherence in a diverse 
youth population [81].

DR treatment: who to treat and how to treat?

Intravitreal injection of anti-vascular endothelial growth 
factor (VEGF) medications, such as ranibizumab, bevaci-
zumab, and aflibercept, is an indicated treatment for STDR, 
especially DME [82–85]. OCT is often used to monitor 
therapeutic responses. Through the analysis of OCT images, 
AI models can predict individual patient responses to anti-
VEGF therapy and potentially facilitate personalized treat-
ment approaches for DME [86]. Advanced AI algorithms 
have been developed to evaluate OCT parameters―central 
macular fluid volume, integrity of the ellipsoid zone, intra-
retinal fluid, subretinal fluid, hyperreflective retina foci, and 
external limiting membrane [87]―to predict visual acu-
ity trajectories in DME, thereby providing clinicians with 
objective parameters for DME diagnosis and follow-up. Liu 
et al. [88] developed an ensemble ML system that consisted 
of DL models and five classical ML (CML). They trained 
AlexNet, VGG16, ResNet18, and an ensemble of three DL 
architectures on a dataset of 304 pretreatment OCT images 
of patients with DME. Fifteen OCT features generated by 
the DL ensemble model were then used to train conventional 
ML algorithms―Least Absolute Shrinkage and Selection 
Operator (LASSO), support vector machine (SVM), deci-
sion tree (DT), and RF― to predict post-treatment central 
foveal thickness (CFT) and best-corrected visual acuity 
(BCVA) values one month after three months of anti-VEGF 
injections [88]. However, the model failed to accurately 
predict post-treatment CFT and BCVA values, suggesting 
that OCT images alone were insufficient as the sole model 
inputs. However, adding further clinical information asso-
ciated with treatment outcomes in CML models improves 
prediction accuracy.
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Predicting cardiovascular risk using retinal 
photographs

DM increases the risk of cardiovascular events by two to 
four folds [1, 94], and cardiovascular diseases remain the 
leading cause of death in individuals with DM. Evaluating 
future cardiovascular risks may help guide treatment deci-
sions and enable timely preventive measures. In response 
to this need, risk calculators have been developed using 
traditional statistical models that incorporate both clinical 
factors (e.g., age, sex, body mass index, and blood pres-
sure) and laboratory measures (e.g., eGFR, HbA1c, HDL, 

Beyond the eye: systemic microvascular and 
macrovascular complications

Table 1 summarizes studies on AI models developed using 
retinal images to detect DM complications or sequelae out-
side the eye. The explanations are detailed in the following 
sections.

Study AI 
modeling
algorithms

Architecture clinical predictors Metric Results

Diabetic Cardiovascular disease
Poplin et 
al. [97]

DL Inception-v3 (in 
the UKBiobank 
dataset)

Age R2 (95% CI) 0.74 (0.73,0.75)
Gender AUC (95% 

CI)
0.97 
(0.966,0.971)

Smoking status AUC (95% 
CI)

0.71 (0.70,0.73)

BMI R2 (95% CI) 0.13 (0.11,0.14)
SBP R2 (95% CI) 0.36 (0.35,0.37)
DBP R2 (95% CI) 0.32 (0.30,0.33)
HbA1c R2 (95% CI) 0.09 (0.03,0.16)

Diabetic Neuropathy
Benson et 
al. [104]

DL, in 
conjunction 
with TL

VGG16 CNN retinal changes as a predic-
tor of diabetic neuropathy

Accuracy 89%
Sensitivity 78%
specificity 95%

Cervera 
et al. 
[105]

DL SqueezeNet, 
Inception, and 
DenseNet

retinal changes as a predic-
tor of diabetic neuropathy

AUC (95% 
CI)

0.8013 
(± 0.0257)

Diabetic Nephropathy
Sabanay-
agam et 
al. [115]

DL CondenseNet Image only showing retinal 
changes as a predictor of 
diabetic nephropathy

AUC (95% 
CI)

0·911 
(0·886–0·936)

Sensitivity 0·83
Specificity 0·83

RF only includes age, sex, 
ethnicity, diabetes, and 
hypertension

AUC (95% 
CI)

0·916 
(0·891–0·941)

Sensitivity 0·82
Specificity 0·84

hybrid DLA combining 
image and RF

AUC (95% 
CI)

0·938 
(0·917–0·959)

Sensitivity 0·84
Specificity 0·85

Zhang et 
al. [116]

DL (CNN) ResNet-50 Image only showing retinal 
changes as a predictor of 
diabetic nephropathy

AUC 0.829–0.918

RF only (age, sex, height, 
weight, body-mass index, 
and blood pressure)

AUC 0.787–0.861

hybrid DLA combining 
image and RF

AUC 0.845–0.930

Diabetic peripheral arterial disease
Muel-
ler et al. 
[123]

DL (CNN) Multiple Instance 
Learning (MIL)

retinal changes as a predic-
tor of diabetic PAD

Accuracy 0.674–0.837
AUROC 0.653–0.890

Table 1 Summary of performance 
metrics of models and architec-
tures for diabetes complications 
diagnosis
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Eyes on the kidneys: screening for chronic kidney 
disease

Diabetic nephropathy, a microvascular complication of DM, 
is a common cause of chronic kidney disease (CKD) [106–
109]. The global prevalence of CKD is about 13.4% [110]. 
According to the Global Burden of Disease (GBD) study, 
CKD-related deaths increased by 41.5% between 1990 and 
2017 [111]. In 2020, the World Health Organization ranked 
CKD as the tenth leading cause of death and projects that 
it will become the fifth leading cause by 2040 [112]. Early 
diagnosis by blood and urine screening assays, includ-
ing urinary albumin-to-creatinine ratio (ACR), is recom-
mended to identify at-risk patients and initiate interventions 
that slow the progression of kidney dysfunction. However, 
persistent albuminuria, which means ACR > 30 mg/g, and 
eGFR < 60 ml/min/1.73 m2, in the context of DM and in con-
junction with other complications such as DR, are sufficient 
to establish the diagnosis of diabetic nephropathy [113, 114]. 
Retinal images provide clues to systemic microcirculatory 
health and may be used to screen for diabetic nephropathy. 
In a study by Sabanayagam et al. [115], clinical parameters 
and retinal images were utilized both independently and in 
combination within a CondenseNet DL model to predict 
diabetic nephropathy. The model achieved AUC values of 
0.916 for clinical risk factors alone, 0.911 for retinal images 
alone, and 0.938 when both input types were combined. In 
a similar study, a ResNet50 DL model attained maximum 
AUCs of 0.861, 0.918, and 0.930 for clinical risk factors, 
retinal images, and hybrid inputs, respectively [116]. These 
findings corroborate the superior performance of AI-based 
diabetic nephropathy detection using combined clinical and 
retinal image inputs [117].

Retinal images for diagnosing peripheral arterial 
disease

Peripheral arterial disease (PAD) is a macrovascular com-
plication of DM, with an incidence rate of 25–30% [118]. 
The elevated risk of PAD in type 2 DM (T2DM) can be 
attributed to a combination of traditional cardiovascular risk 
factors―age, sex, race, smoking, pulse pressure, glycated 
hemoglobin, albuminuria, and hyperlipidemia [119]―and 
diabetes-specific factors, including postprandial hypergly-
cemia, advanced glycation end-products, lipoproteins, and 
hypercoagulability [120]. A low ankle-brachial pressure 
index is commonly used to screen for lower limb PAD non-
invasively, but may be falsely high in elderly people with 
inelastic arteries. Alternative noninvasive diagnostic tech-
niques are ultrasound Doppler waveform analysis and toe-
brachial index [121]. However, the gold standard technique 
for diagnosing PAD is Computed tomography angiography 

LDL, and triglycerides) to generate predictions. Notably, 
such models are not specific to the DM population. Based 
on the same information, an AI model modestly improved 
risk prediction performance, increasing the AUC from 0.69 
to 0.75 [95].

Retinal parameters have been shown to correlate with 
cardiovascular outcomes In DM patients, independent of 
underlying risk factors [96]. The abundance of retinal image 
databases from patients with DR has enabled researchers to 
extract new associations using AI. For instance, Poplin et 
al. trained an Inception-v3 model on 284,335 retinal images 
and reported 0.70 AUC for image-based prediction of major 
cardiovascular events [97]. Moreover, the accuracy of car-
diovascular risk prediction can be enhanced using combined 
retinal images and accessible clinical and demographic data 
[98]. Finally, cardiovascular risk assessment could be part 
of DR screening in the path toward holistic diabetes care.

Beyond the optic nerve: predicting diabetic 
neuropathy

Similar to DR, diabetic neuropathy is a common microvas-
cular complication of DM. It causes skin ulcers, increases 
the risk of limb amputation, and reduces quality of life, 
accounting for 27% of annual DM-related healthcare costs 
[99–101]. The gold standard for diagnosing diabetic neu-
ropathy is a combination of clinical examinations such as 
the monofilament test and electrophysiological tests, such 
as nerve conduction studies (NCS), which evaluate the 
function of the peripheral nerves [102]. However, routine 
annual screening using clinical neurological examination 
is insensitive and often fails to detect early changes before 
irreversible damage [103]. The retinal vasculature, which 
reflects systemic microcirculation, may also play a role in 
the development of diabetic neuropathy. In a study, Benson 
et al. used a pre-trained VGG16 CNN and a SVM classi-
fier to analyze retinal images and then compared AI-based 
retinal analysis with physician-diagnosed diabetic periph-
eral neuropathy. They attained 89% accuracy, 78% sensi-
tivity, and 95% specificity for detecting diabetic peripheral 
neuropathy [104]. Among the DL methods evaluated for 
diagnosing diabetic neuropathy using CFP, SqueezeNet, 
Inception, and DenseNet emerged as the most effective. 
These models achieved AUCs of 0.8013 (± 0.0257) during 
validation and 0.7097 (± 0.0031) during testing, based on 
analyses performed on various datasets with and without 
pre-trained weights [105].
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results robustly support the feasibility and effectiveness of 
utilizing modern DL methodologies to detect PAD [123]. 
However, a major challenge in employing AI to diagnose 
PAD from retinal images is the difficulty of integrating 
high-quality images and assembling comprehensive train-
ing datasets with labeled PAD cases into the AI frameworks 
[124, 125]. Figure 3 shows a systematic overview of the use 
of AI in diabetes care.

(CTA) [122]. Deep neural network architecture has recently 
been demonstrated to be a promising method for detecting 
PAD using CFP. The most successful model in this inven-
tive methodology achieved an AUROC maximum score of 
0.890. Moreover, visualizing the attention weights used by 
the network, provides valuable insights into its decision-
making process, particularly the significance of ocular 
features in PAD. Statistical analysis of the model’s perfor-
mance confirmed that the optic disc and temporal arcades 
were assigned significantly higher importance (p < 0.001) 
than the retinal background in the detection process. These 

Fig. 3 The diagram provides a structured overview of the integration 
of AI in diabetic care, showing the pathways in which AI has signifi-
cant applications, including DR, nephropathy, neuropathy, cerebrovas-

cular disease, peripheral arterial disease, and cardiovascular assess-
ment. Each branch highlights the potential of AI to enhance diagnosis, 
monitoring, and management within specialized areas of diabetic care
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and using split-attention methods, ResNet is able to train the 
model to focus on the most relevant characteristics for image 
classification [138]. Unlike Inception-v3 and AlexNet, 
which are more general-purpose models, U-Net was devel-
oped specifically for segmenting biological images [139]. 
Its “U-shaped” design allows for more accurate localization, 
which is important in diagnostic imaging [140].

Supervised ML learns by mapping the input signals or 
images to their respective labels. Supervised ML techniques 
have been extensively employed in retinal image analysis 
for the detection and classification of various retinal dis-
eases, including DR. With labeled retinal images, the algo-
rithms can effectively learn the patterns associated with DR, 
thereby facilitating early diagnosis and timely interventions 
to avert irreversible vision loss [25, 141]. TL uses pretrained 
datasets, such as ImageNet [142], to overcome the need 
for large retina-specific training datasets [143]. For retinal 
image analysis, the final layers of the pre-trained model are 
typically adjusted to cater to the specificities of the retinal 
diseases or features. After this adjustment, the model is fine-
tuned on available retinal datasets. TL accelerates the train-
ing process, often yielding models with enhanced accuracy 
and robustness that can be applied to diverse tasks including 
DR detection, retinal lesion identification, and retinal vessel 
segmentation [25, 62]. A recent study analyzing the morpho-
logical characteristics of retinal vessels in DR patients dem-
onstrated that TL can accurately quantify vascular changes, 
revealing significant differences between DR patients and 
healthy individuals, and showing that DME does not alter 
the overall retinal vascular pattern [144].

Various AI models are compared in terms of sensitivity, 
specificity, F1-score, and AUC for diagnosing and screen-
ing DR complications, as shown in Fig. 5. This highlights 
the quality and weakness of each model. For example, 
Logistic Regression and Saranya DL achieved high sensi-
tivity (more than 96%), whereas the EyeArt and Bellemo 
Ensemble models did not exceed specificity and showed a 
balanced result between sensitivity and specificity. Optic-
Net is a model that has maximum specificity (100%) and 
high accuracy (98%), making it the most dependable for DR 
screening with minimum false positives. Conversely, speci-
ficity, one of the important characteristics of the Rwanda 
AI model, is only moderate, which means there is a wide 
scope for further improvement, specifically when resources 
are limited.

Such diversity in the performance of AI represents AI’s 
ability to fit in with a range of clinical needs. For instance, 
if the sensitivity of a test is extremely high, then many cases 
can be detected. Conversely, if the specificity is the main 
goal of a test, not so many referrals will be made. These 
indicators show that Optic-Net was the best model in terms 
of precision, whereas Saranya DL and Bellemo Ensemble 

AI techniques used in retinal images analysis

AI researchers have used various models to analyze reti-
nal images; the two most common neural networks are the 
CNN-based architectures ResNet [125–127] and VGGNet 
[128, 129]. Figure 4 illustrates the architecture of a CNN 
specifically designed for image analysis. Deep neural net-
works often fail in practice due to difficulties in optimizing 
the networks caused by the diminishing gradient problem. 
ResNet overcomes this issue by residual learning, which 
uses skip or shortcut connections to skip one or more lay-
ers during forward and backward passes [125, 130]. This 
ensures that the deeper layers produce no higher training 
errors than their shallower counterparts, which makes it 
easier for the network to learn identity functions. ResNet’s 
modular architecture also facilitates up or down scaling of 
the model by adjusting the number of residual blocks. This 
makes it an ideal choice for developers because they can 
tailor the architecture to specific needs and computational 
constraints. Belying its depth, ResNet consumes compara-
tively fewer computational resources, which underscores its 
efficiency. VGGNet is a family of deep CNNs distinguished 
by its simple design, ability to capture complex image char-
acteristics, and excellent image classification performance. 
VGG16, a notable variant comprising 16 layers [128, 129], 
begins with layers containing 64 channels, with a 3 × 3 filter 
size and consistent padding, which are succeeded by a max-
pooling layer with a stride of (2, 2), and subsequent convo-
lution layers that progressively increase in channels, to for 
example 128, while maintaining a uniform 3 × 3 filter size. 
VGGNet is predominantly engineered for image classifica-
tion on extensive datasets, notably the ImageNet database, 
which encompasses over 14 million images categorized 
based on the WordNet structure. Beyond image classifica-
tion, advancements in VGG architectures have been pur-
sued to cater to diverse computer vision applications and to 
augment its efficacy in classification problems [131, 132].

Inception-v3, DenseNet, AlexNet, ResNet, and U-Net 
are neural network architectures with distinct structural 
variations that have been applied to retinal image analy-
sis [133]. Inception-v3, from the GoogLeNet family, was 
designed for multi-level feature extraction tailored to large-
scale image recognition tasks, incorporating factorization 
and other approaches, such as batch normalization, to mini-
mize parameters and maximize performance [134, 135]. 
DenseNet is well-suited for image classification and seg-
mentation due to dense connections between layers, which 
improve gradient flow and encourage feature reuse [136]. 
AlexNet, an early CNN, is adept at image classification due 
to its deep architecture and use of the rectified linear unit 
(RELU) activation but may be outperformed by later mod-
els in terms of efficiency [137]. By expanding on residuals 
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Fig. 4 A detailed look at the architecture of a convolutional neural net-
work (CNN) for image analysis. a: The convolutional layers (green) 
use kernels that slide over the three-channel RGB image to recognize 
key features from the input image. Following the convolution process, 
the Rectified Linear Unit (ReLU) activation function (green) is applied 
to introduce non-linearity, enhancing the network’s capability to learn 
intricate patterns. Subsequently, the max pooling process (orange) is 
applied, reducing the spatial dimensions by selecting the maximum 

value within specified regions. b: this part is the multiple repetitions 
of convolution, ReLU activation function, and max pooling processes, 
creating the final feature map. c: shows flattening of the last max pool-
ing layer, which converts the 2D feature maps into a 1D vector to pre-
pare the data for the upcoming fully connected layers. d: the architec-
ture transitions to fully connected layers, leading to a classification 
process where the features are used to provide definitive conclusions
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patient demographics, imaging protocols, and dataset vari-
ability must be considered to ensure the findings’ clinical 
applicability and reliability.

Challenges of AI in diabetes care

Only two Asian countries have DR screening programs that 
conform to International Council of Ophthalmology stan-
dards [145]. There is not only an imperative to standard-
ize national protocols to mitigate gaps in screening and 
referral timelines [146] but also a need to establish com-
prehensive guidelines for AI implementation in DR screen-
ing to ensure standardized and effective practice [147]. 
AI-based DR screening can reduce economic constraints 
and enhance accessibility to healthcare services [148], but 
several obstacles remain to surmount [149]. Overcoming 
these challenges will require multidisciplinary cooperation, 
data standardization, resource sharing, real-world verifica-
tion, and productization [150]. In particular, DL algorithms 
require large datasets with thousands or millions of images 
for training, which are costly to label and curate.

AI developers often resort to using available but limited 
training datasets, which may not be generalizable to the real 
world, where image quality may be affected by deficiencies 
in the clinical setting and are not of consistently high quality 
[151]. Suboptimal image quality and low target pathology 

adhered to the criteria of sensitivity and specificity, thus 
allowing broader screening. The Liu Ensemble Model also 
performs well, with an impressive AUC of 0.981, show-
ing strong overall diagnostic reliability. The best choice 
depends on the clinical priorities and whether precision or 
balance is more critical.

The nuanced interplay between the AI models and their 
performance metrics in diagnosing diabetic complications 
is shown in Fig. 6. Models such as VGG16 CNN exhibit 
strong specificity (0.95), making them reliable for reducing 
false positives in clinical screening. High AUC values, as 
seen with Hybrid DLA and Inception-v3, reflect their robust 
discriminatory power for differentiating cases, ensuring 
accurate diagnostic outcomes. Sensitivity-focused models, 
such as CondenseNet, effectively minimize missed diagno-
ses, which are critical for early detection in high-risk popu-
lations. Accuracy, exemplified by MIL and VGG16 CNN, 
highlights a model’s overall reliability across diverse set-
tings. This heatmap also reveals key patterns, such as the 
consistent link between models excelling in sensitivity and 
those designed for nuanced clinical predictions and the role 
of metrics such as AUC in indicating broad diagnostic capa-
bilities. However, models optimized for specificity, like RF, 
may exhibit slightly lower sensitivity, suggesting trade-offs 
between reducing false positives and ensuring inclusivity in 
detection. While these performance metrics provide a holis-
tic view of AI model effectiveness, contextual factors like 

Fig. 5 Performance comparison of AI models across the best metrics for DR screening and diagnosis, as obtained from the included studies. All 
AUC values are multiplied by 100
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obligation to identify and resolve ethical issues―inclusiv-
ity, bias, and social acceptability―to ensure fair user access 
to promising healthcare AI technologies [161]. Issues such 
as protecting sensitive medical information during image 
analysis or remote sharing via tele-retinal screening [162] 
also raise patient privacy concerns, requiring careful system 
security during AI solution development and deployment.

Current approaches to AI model design are delinked 
mainly from the complex healthcare environments they are 
intended for; as a result, the development of AI models has 
vastly outpaced their adoption into existing clinical work-
flows [163]. This separation contributes to models that lack 
clear use cases and are neither tested nor scaled in clinical 
settings. A mixed-methods approach that integrates design 
thinking and quality improvement methodologies―aim-
ing to understand variations in healthcare processes and 
incorporating user-centered design to ensure model func-
tionality in practice [164]―can potentially compensate 
this gap to smoothen AI integration within the healthcare 
domain [165], and gather wider clinical adoption [166]. 
Moreover, ensuring that AI models are interpretable is cru-
cial for building trust among clinicians [167]. Techniques 
like Gradient-weighted Class Activation Mapping (Grad-
CAM) play pivotal roles in this regard by generating visual 
explanations that highlight regions in retinal images signifi-
cantly influencing the model’s decisions, thereby allowing 

incidence may drive higher false-positive rates [152]. Even 
if image issues are resolved, AI algorithms that only focus 
on retinal image assessment will not be able to analyze the 
clinical and psychosocial aspects that can modulate the 
diagnosis, perception, coping mechanisms, and holistic 
management of individual patients [153].

The lack of compatibility among electronic health record 
vendors impedes such clinical data integration and may 
delay the execution of computer-interpretable guidelines 
for clinical decision-making in DR [154]. To garner wider 
adoption, there is a need for more research on the assessment 
and testing of AI diagnostic tools in clinical settings [155], 
even as validating AI algorithms in different populations 
and camera systems remains challenging [156]. Addition-
ally, conducting rigorous clinical trials of AI models, par-
ticularly randomized controlled trials, requires meticulous 
methodological adjustments and considerations of clinical 
equipoise, informed consent, and fairness [157]. Practical 
challenges to building and deploying AI at scale include 
regulatory pressures, conflicting business goals, and data 
quality issues [158]. Even as AI promises solutions to prob-
lems through technological advances, AI in healthcare raises 
ethical and legal issues [159]. As AI systems become more 
autonomous, the need to incorporate ethical considerations 
and moral reasoning into model decision-making processes 
has become more pressing [160]. Equally important is the 

Fig. 6 Comparison of AI model performance across various metrics for diabetic complication diagnosis, based on data extracted from the included 
studies
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device configurations can negatively impact model per-
formance. These findings showes the importance of train-
ing AI models on diverse datasets that encompass various 
demographics and imaging conditions to enhance their gen-
eralizability and ensure equitable healthcare outcomes. To 
further address these challenges, tailored solutions, such as 
localized AI systems designed for specific regions or popu-
lations and collaborative initiatives sensitive to cultural and 
socioeconomic contexts, could significantly improve model 
performance across varied patient groups [177].

Interpretability is essential for gaining the trust of cli-
nicians and patients alike, in complex AI models of DR 
diagnosis or treatment decision-making. There is a need for 
transparent and interpretable AI in the reasoning processes 
behind the generated model outputs. Explainable AI (XAI) 
refers to systems that provide understandable explanations 
for their decisions and actions. While explainable AI is an 
active area of research, achieving reliable and interpretable 
explanations remains a significant challenge [178].

Finaly, regulatory compliance is also a crucial function 
that allows for the application and operation of AI models 
in the context of DR diagnosis while also ensuring their 
safety, efficiency, and universality. After passing through 
the demanding FDA process, which involves extreme vali-
dation, the like of IDx-DR can demonstrate, the highest 
sensitivity and specificity in clinical settings. This example 
serves to highlight the transparency of the algorithm devel-
opment process, the careful reporting of validation results, 
and the continuous monitoring of the post-market period 
[15]. Aligning with regulatory standards by promoting 
collaborations within the international setting creates AI 
research space from the challenges it faces and thus allows 
for the safe practice of AI in clinical care [177].

Potential enhancements and future 
directions of AI in DR management

At the intersection of telemedicine and AI, tele-retinal 
image analysis promises to democratize access to screening 
and downstream healthcare services, transform the manage-
ment of DR, and improve long-term patient outcomes while 
reducing financial and time costs for both patients and pay-
ers. AI-based DR screening has demonstrated encouraging 
outcomes, with DL algorithms yielding high levels of sen-
sitivity and specificity. The operational efficiency of com-
munity-based tele-retinal image analysis may be enhanced: 
the gradability of retinal images can be assessed at source, 
expediting identification of poor-quality images for either 
manual or additional AI-based grading (the ultimate choice 
will depend on the associated labor cost vs. intrinsic diag-
nostic value-add of AI) [179–181]. Future technological 

clinicians to verify that AI systems focus on medically rel-
evant areas [168]; moreover, integrating Grad-CAM with 
local interpretable model-agnostic explanations (LIME) 
further enhances explainability by enabling visualization of 
the decision-making process, which in turn improves trust 
in AI-generated outcomes [169]. For instance, Mercaldo et 
al. utilized Grad-CAM with CNN to differentiate between 
healthy eyes and those with DR, achieving an accuracy 
of 98%, and further distinguishing between stages of DR 
with 91% accuracy. Their study also introduced a similar-
ity index to evaluate the robustness of heatmaps generated 
by class activation mapping algorithms, ensuring consistent 
localization of symptomatic areas in angiography [170].

Real-time AI processing can analyze retinal images 
within seconds, facilitating quicker diagnoses and timely 
interventions, which is crucial for preventing disease pro-
gression in diabetic patients [171]. Ruamviboonsuk et al. 
conducted a prospective study in Thailand to evaluate a DL 
system for real-time DR detection in a community-based 
screening program. The system demonstrated 94.7% accu-
racy, 91.4% sensitivity, and 95.4% specificity in detecting 
vision-threatening DR, comparable to retina specialists. This 
study emphasizes the importance of integrating socioenvi-
ronmental factors and workflows into large-scale AI-driven 
screening programs in low- and middle-income countries 
[44]. Natarajan et al. explored the use of an real-time AI 
system, Medios AI, for smartphone-based retinal imaging 
by minimally trained health workers in Mumbai, India. The 
system achieved a sensitivity of 100% and specificity of 
88.4% for referable DR detection. These results highlight 
the potential of AI systems in community-level DR screen-
ing, particularly in remote areas lacking access to ophthal-
mologists [171].

AI screening systems have shown promising results 
in detecting DR from CFP and OCT images. Despite the 
advancements, there remains a critical need for validation, 
regulatory frameworks, safe implementation, and demon-
stration of clinical impact before these innovations can be 
widely adopted on a large scale. Testing AI models in clini-
cal settings is crucial for identifying and addressing system 
issues before full deployment [172, 173]. Additionaly, AI 
tools must be validated and calibrated for local populations 
and clinical contexts, as results from one setting may not 
be universally applicable [174]. Burlina et al. [175] dem-
onstrated that AI tools trained on data from specific popu-
lation groups can exhibit disparities in performance when 
applied to other groups, which introduce biases in the diag-
nosis of DR. Similarly, Rogers et al. [176] found that AI 
models trained on fundus images captured using standard 
desktop fundus cameras failed to provide accurate diag-
noses when evaluated on images taken with handheld por-
table cameras. This highlights how variations in imaging 
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algorithms and robust data preprocessing to achieve clini-
cally relevant outcomes [185].

Explainable AI make the complex decision-making pro-
cesses of AI models transparent and interpretable, which is 
essential, given the clinical impact of healthcare decisions, 
for gaining the trust and acceptance of AI model outputs by 
doctors and patients. The applications of explainable AI in 
the medical domain are vast and transformative [186, 187], 
encompassing diverse tasks, such as decision-making, risk 
management, predictions, and medical image analysis (the 
sensitivity of AI for detecting abnormalities often surpasses 
that of the human eye). Explainable AI aids in explaining 
AI-driven insights. For example, while a traditional AI 
model may provide a diagnosis with a confidence score 
(“DR detected with 95% confidence”), ophthalmologists 
may hesitate to Google Net trust the result or administer 
recommended treatment without knowing the basis for the 
diagnosis. With explainable AI, the system can highlight 
regions in the retina or specific lesions, like hemorrhages 
or microaneurysms, critical to the model decision via heat 
maps. These allow clinicians to relate to the results like 
traditional funduscopic examination, and the maps may 
additionally serve as useful guides to the planning of photo-
coagulation therapy, where applicable [188, 189].

Cloud-based systems revolutionize diabetes management 
and prevention by enhancing data processing, enabling real-
time interventions, and optimizing resources. They facili-
tate early detection, personalized therapy, and swift glucose 
fluctuation response. Migration to cloud structures reduces 
costs and administrative burdens, while user-friendly digital 
platforms support self-monitoring and community engage-
ment. Integrating AI with cloud platforms promises sharper 
insights for combating diseases like Type II diabetes, leading 
to societal benefits. Moreover, some researchers have inves-
tigated the potential of cloud-based systems for diabetes 
management and prevention [190, 191]. A study by Salari 
et al. [192] has shown promising results in using mobile and 
cloud systems to improve self-care for chronic conditions, 
offering hope for more effective and user-friendly solutions. 
Similarly, Nasser et al. [193] have proposed innovative 
methods using advanced technology, such as AI and cloud 
computing, to predict glucose levels and integrate them 
with wearable devices. These advancements point toward a 
future where cloud-based systems could revolutionize how 
diabetes is managed, offering personalized and timely inter-
ventions to enhance health outcomes for individuals with 
the condition. Figure 7 illustrates the interconnected compo-
nents of a cloud-based system for DR screening.

developments in AI can introduce significant opportuni-
ties for technical refinements to optimize DR diagnosis and 
downstream management. Faster AI software processing 
speeds will enhance system accuracy and efficiency, facili-
tate seamless and responsive navigation of the AI interface 
by clinician users, and enable more effective preventive 
therapeutic interventions. Independent of these develop-
ments, real-world implementation of AI technology presents 
its practical challenges, e.g., workflow integration, technical 
adaptability, ethical implications, cost-effectiveness consid-
erations, etc. To ensure the ethical and balanced integration 
of AI into DR screening programs, the governance model 
for AI implementation must focus on honesty, equality, reli-
ability, and responsibility [172–174].

Ensemble learning is a machine learning approach that 
does accurate diagnostics in medical applications by using 
multiple algorithms to make predictions that are more reli-
able and robust. Methods like bagging, boosting, and stack-
ing are usually employed in this method. Bagging distributes 
data through different subsets and trains multiple models. 
Boosting which is the sequential improvement of the previ-
ous models, was demonstrated in modeling liver and diabe-
tes. Stacking, which involves using another model (called 
a meta-learner) to combine predictions from the multiple 
models, has been proven to be the most effective among 
other methods in various diseases [182]. However, they do 
not only decrease the risk of overfitting but also increase 
a model’s capability of generalizing over different datasets 
which is one of the reasons they are widely used in clinical 
settings. Moreover, ensemble learning is good for coping 
with problem areas like imbalanced datasets, which are usu-
ally seen in medical diagnostics, by strengthening model sta-
bility and reducing false outcomes [183]. Ensemble learning 
techniques, which combine multiple models, have shown to 
significantly improve accuracy in DR detection and classi-
fication compared to single-model approaches. Mondal et 
al. proposed an automated ensemble of DenseNet101 and 
ResNeXt models, combining DenseNet’s efficient feature 
utilization with ResNeXt’s advanced split-transform-merge 
strategy. Their approach, applied to preprocessed datasets 
(APTOS19 and DIARETDB1), achieved high accuracy for 
both two-class (96.98%) and five-class (86.08%) classifica-
tions, with robust precision and recall, particularly aided 
by GAN-based data augmentation to address class imbal-
ance [184]. Similarly, Lukashevich et al. explored ensem-
ble learning with a focus on hyperparameter optimization, 
combining grid search and random search techniques. Their 
gradient boosting model achieved strong performance, with 
a binary classification accuracy of 94% and a multi-class 
staging accuracy of 75.31%. Both studies highlight ensem-
ble learning’s capacity to improve DR screening and stag-
ing, emphasizing the importance of integrating advanced 
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Fig. 7 This schematic illustrates the interconnected components of 
a cloud-based system for DR screening. The cloud infrastructure, 
depicted as remote servers and databases, processes retinal image 
data captured by a retinal imaging device, such as a fundus camera 
or OCT scanner. AI algorithms analyze the images within the cloud, 
generating diagnostic results like risk scores for DR. These results 

are accessible to healthcare providers through interfaces on comput-
ers or mobile devices, ensuring prompt patient care. Patient data pri-
vacy measures safeguard sensitive information, including encryption 
and secure transmission protocols. Additionally, a feedback loop may 
exist, where diagnostic results contribute to the continuous improve-
ment of AI algorithms over time
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