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a b s t r a c t 

Fruits are mature ovaries of flowering plants that are inte- 

gral to human diets, providing essential nutrients such as 

vitamins, minerals, fiber and antioxidants that are crucial 

for health and disease prevention. Accurate classification and 

segmentation of fruits are crucial in the agricultural sec- 

tor for enhancing the efficiency of sorting and quality con- 

trol processes, which significantly benefit automated systems 

by reducing labor costs and improving product consistency. 

This paper introduces the “FruitSeg30_Segmentation Dataset 

& Mask Annotations”, a novel dataset designed to advance 

the capability of deep learning models in fruit segmenta- 

tion and classification. Comprising 1969 high-quality images 

across 30 distinct fruit classes, this dataset provides diverse 

visuals essential for a robust model. Utilizing a U-Net archi- 

tecture, the model trained on this dataset achieved training 

accuracy of 94.72 %, validation accuracy of 92.57 %, precision 

of 94 %, recall of 91 %, f1-score of 92.5 %, IoU score of 86 %, 

and maximum dice score of 0.9472, demonstrating superior 

performance in segmentation tasks. The FruitSeg30 dataset 

fills a critical gap and sets new standards in dataset quality 
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and diversity, enhancing agricultural technology and food in- 

dustry applications. 

© 2024 The Authors. Published by Elsevier Inc. 
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pecification Table 

Subject Computer Vision and Image Processing 

Specific subject area Automatic Fruit Recognition and Classification, Agricultural Quality Control, 

Computer Vision, Machine Learning, Deep learning 

Type of Data Raw: Fruits Images (512 × 512 pixels, JPG format) 

Raw: Segmentation Masks (512 × 512 pixels, PNG format) 

Data Collection The dataset includes high-resolution images of various fruits, segmented into 

30 distinct classes. The archive contains 1969 mages entirely, along with their 

corresponding segmentation masks. Images were captured using various phone 

cameras in Malaysia, Bangladesh, and Australia under diverse conditions. Each 

class is organized into two subfolders: “Images” (JPG) and “Mask” (PNG). 

Data Source Location 1. Location: USJ 19 

City: Subang Jaya 

Country: Malaysia 

2. Location: Mirpur-1, Mirpur-10 

City: Dhaka 

Country: Bangladesh 

3. City: Springfield 

State: Queensland 

Country: Australia 

Data Accessibility Repository name: Mendeley Data 

Data identification number: 10.17632/vkht8pfsp3.1 

Direct URL to data: https://data.mendeley.com/datasets/vkht8pfsp3/3 

. Value of the Data 

• Automated Quality Assessment: In the agriculture sector, the precise annotations and diverse

image collection of the FruitSeg30 dataset enable the development of advanced deep-learning

models for automated fruit quality assessment. These models can be integrated into sorting

and grading systems in processing facilities to classify fruits based on quality metrics, leading

to a more efficient packing and distribution process. 

• Yield Prediction: Agronomists and agricultural researchers can leverage the dataset to train

models capable of predicting fruit yield images captured throughout the growing season.

Such predictive models assist in estimating yield quantities, facilitating better resource man-

agement and crop planning, thus optimizing agricultural output. 

• Nutritional Monitoring and Diet Management: The dataset can be utilized by developers of

health and wellness applications to recognize and classify fruits in meal photos, providing

users with instant nutritional information, including calorie estimates. The application sup-

ports monitoring management and encourages healthier eating habits. 

• Educational Tools: Educational institutions and software developers can use the FRuitSeg30

dataset to create tools and applications that educate students and aspiring professionals in

image processing, machine learning and segmentation techniques. These teaching technolo-

gies have the potential to greatly improve learning experiences by offering practical exercises

with authentic data. 

• Market Analysis and Trend Prediction: The dataset’s comprehensive coverage of fruit varieties

across different geographical regions provides valuable insights for market analysis within

the agricultural sector. Businesses can use these insights to forecast market trends, plan crop

production, and strategize on distribution to meet regional demands effectively. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/vkht8pfsp3.1
https://data.mendeley.com/datasets/vkht8pfsp3/3
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2. Background 

The advent of deep learning has significantly enhanced the capabilities of image recognition

systems, particularly in the agricultural sector, where such advancements can lead to improved

outcomes in areas like yield estimation, fruit sorting, and disease detection [ 1–5 ]. Despite these

advancements, the performance of machine learning models heavily relies on the quality and

diversity of the datasets used during the training process [ 6–8 ]. Traditionally, fruit recognition

systems have employed datasets captured under controlled environmental conditions, involving

fruits presented against uniform backgrounds and consistent lighting conditions [ 9 ]. While this

simplifies the image segmentation and recognition task, it does not adequately prepare models

for the complexities and variabilities in natural environments [ 10 ]. 

Current datasets typically lack the variability necessary to mimic real-world conditions,

where fruits appear in diverse settings, often under varying lighting conditions and backgrounds

[ 11 ]. Furthermore, these datasets rarely include a wide range of fruit types, further limiting the

robustness and applicability of the resulting models [ 12 ]. 

The “FruitSeg30_Segmentation Dataset & Mask Annotations” was developed to address these

shortcomings by providing a richly annotated dataset captured from a variety of natural and un-

controlled environments across Malaysia, Bangladesh and Australia. This dataset comprises 1969

images across 30 distinct fruit classes, each annotated with precise segmentation masks. This

dataset not only advances the field by filling the gap in available resources but also supports the

development of more sophisticated image segmentation models that are crucial for applications

such as automated fruit quality assessment, yield prediction, and real-time monitoring of fruit

growth and health. Additionally, the diverse backgrounds and lighting conditions included in the

dataset challenge existing models, pushing the envelope on what these algorithms can achieve

and where they fail, thereby providing a path toward significant improvements in model accu-

racy and reliability. 

3. Data Description 

The “FruitSeg30_Segmentation Dataset & Mask Annotations” consists of a comprehensive col- 

lection of high-resolution fruit images meticulously annotated with segmentation masks. This

dataset is segmented into 30 distinct fruit classes, providing a total of 1969 images alongside

their corresponding segmentation masks. Each image and mask pair has 512 × 512 pixel resolu-

tion, ensuring uniformity and high quality for detailed image processing tasks. 

The images in this dataset were captured under diverse environmental conditions in

Malaysia, Bangladesh, and Australia, ensuring variability in lighting, angles, and backgrounds.

This diversity enhances the robustness of the dataset, making it suitable for training and evalu-

ating image segmentation models in real-world scenarios. 

Each class folder is organized into two subfolders: 

• Images: This subfolder contains high-quality JPG images of fruits. The images feature various

backgrounds, ranging from natural outdoor settings (with natural lighting and real-world ele-

ments) to controlled indoor environments (with consistent lighting and minimal distraction).

This variety includes different textures, lighting conditions, and scenes, providing a compre-

hensive training ground for machine-learning models. 

• Mask: This subfolder contains the corresponding segmentation masks in PNG format. These

masks are binary images where the fruit is clearly delineated from the background. In these

masks, white pixels represent the fruit, while black pixels represent the background. The

masks provide a precise annotation, which is essential for accurate segmentation tasks. 
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.1. Technical details 

• Image Resolution and Quality: Each image in the dataset is 512 × 512 pixels, a resolution that

captures fine details necessary for high-precision segmentation. The high resolution supports

detailed feature extraction and model training. 

• Lighting and Angle Variations: The dataset includes images taken under various lighting condi-

tions, from direct sunlight to shaded environments, and from multiple angles to ensure that

models trained on this data can handle real-world variability. 

• Background Complexity: The dataset includes images with varying degrees of background

complexity, from plain, uncluttered backgrounds to complex, textured ones. This variability

helps develop models that can generalize well to different real-world conditions. 

• Class diversity: The dataset comprises 30 different fruit classes covering various fruit

types. The classes are: ‘Apple_Gala’, ‘Apple_Golden Delicious’, ‘Avocado’, ‘Banana’, ‘Berry’,

‘Burmese Grape’, ‘Carambola’, ‘Date Palm’, ‘Dragon’, ‘Elephant Apple’, ‘Grape’, ‘Green Co-

conut’, ‘Guava’, ‘Hog Plum’, ‘Kiwi’, ‘Lichi’, ‘Malta’, ‘Mango Golden Queen’, ‘Mango_Alphonso’,

‘Mango_Amrapali’, ‘Mango_Bari’, ‘Mango_Himsagar’, ‘Olive’, ‘Orange’, ‘Palm’, ‘Persimmon’,

‘Pineapple’, ‘Pomegranate’, ‘Watermelon’, ‘White Pear’. This diversity enhances the dataset’s

applicability across various fruit recognition and segmentation tasks. Fig. 1 illustrates the

sample images of each class from the dataset. 
Fig. 1. Representative images from each of the 30 classes in the FruitSeg30 dataset. 
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Fig. 2. Provide an overview of the dataset’s number of images and segmentation masks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Data structure 

• Organized Directory Structure: The dataset is nearly organized into directories for each fruit

class, with subdirectories for images and masks. The structure facilitates easy access and ef-

ficient use of datasets for various image processing tasks. 

• File Naming Convention: Consistent file naming conventions are used across the dataset to

ensure that corresponding images and masks can be easily matched. For each class, images

are named as 1.jpg, 2.jpg, etc., and their corresponding masks are named as 1_mask.png,

2_mask.png, etc. This consistency is critical for training and validating machine learning mod-

els effectively. Fig. 2 demonstrates a detailed overview of the dataset. 

4. Experimental Design, Materials and Methods 

4.1. Data collection techniques 

• Capture Devices: Images were taken using various cameras to capture a broad spectrum of

lighting conditions, angles, and backgrounds. This approach ensures a realistic representation

of fruits in different environments. 

• Environmental Conditions: Images were captured in both natural and controlled settings, re-

flecting a wide array of scenarios that fruits may be subjected to in real-world conditions.

This includes different times of day, verifying light intensities, and diverse geographical loca-

tions. 

• Segmentation Masks: The mask creation process for the “FruitSeg30_Segmentation Dataset &

Mask Annotations” dataset involves automated background removal and manual verification 

to ensure high accuracy and reliability. The primary tool used for this process is the ‘rembg’

library, which leverages advanced machine learning techniques to separate the foreground

(fruit) from the background, and create precise binary masks. Each image I is loaded using

the Python Imaging Library (PIL). 

I = P I L.I mage.open input_path (1) 
( ) 
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The ‘rembg’ library is applied to remove the background, producing an image Ino_bg with the

ruit in the foreground and a transparent background. 

Ino_bg = r embg.r emov e ( I) (2)

A binary mask M is created from the processed image. The mask is a grayscale image where

he fruit is represented by white pixels (value 255) and the background by black pixels (value

). This is achieved by extracting the alpha channel α of Ino_bg . 

M( x, y ) =
{

255 

0 

i f α ( x, y ) > 0 

otherwise 
(3)

Then, the processed image Ino_bg and the binary mask M are saved in the respective directo-

ies. The entire process of generating segmented masks is illustrated in Algorithm 1 . 

Algorithm 1 : Mask creation for FruitSeg30 dataset. 

Require: Input directory: Dinput , Output directory: Dout put , Mask directory: Dmask 

Expected Output: Processed images and binary masks 

1: Create Dout put and Dmask if they do not exist 

2: for each file f in Dinput do 

3: if f ends with ‘.png’, ‘.jpg’, or ‘.jpeg’ then 

4: Load image I ← PI L.I mage.open ( f ) 

5: Remove background Ino_bg ← rembg. remove (I) 

6: Save Ino_bg to Dout put as PNG 

7: Create binary mask M ← Image.new (“L ”, Ino_bg .size, 0) 

8: Extract alpha channel α ← Ino_bg .getchannel (‘ A ’) 

9: for each pixel (x, y ) in α do 

10: if α (x, y ) > 0 then 

11: M (x, y ) ← 255 

12: else 

13: M (x, y ) ← 0 

14: end if 

15: end for 

16: Save M to Dmask as PNG 

17: end if 

18: end for 

.2. Preprocessing 

The “FruitSeg30_Segmentation Dataset & Mask Annotations” dataset comprises a meticu-

ously curated collection of 1969 images across 30 distinct fruit classes, selected from various

nvironments to ensure a representative and diverse sample for the purpose of training a deep

earning model. Each image and its corresponding mask were resized to a consistent resolution

f 512 ×512 pixels to standardize input processing across the dataset. Furthermore, the pixel val-

es were normalized to the range [0, 1] by dividing by 255, ensuring data scaling and improving

eep learning model training consistency. Fig. 3 represents the entire procedure of the dataset

ollection and processing. 

.3. Segmentation using U-Net 

The U-Net model [ 13 ] employed for segmentation consists of an encoder-decoder architecture

ith skip connections. The encoder (contracting path) reduces the spatial dimensions while in-

reasing the feature dimensions, and the decoder (expansive path) progressively recovers the

patial resolution and detail. 
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Fig. 3. Entire pipeline of dataset collection and processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1. U-Net architecture 

• Encoder: The contracting path includes four levels of double conventional layers followed by

a max-pooling layer. Each convolutional layer uses a 3 × 3 kernel with ReLU activation. The

sequence of feature channels across the encoder is as follows: 64 → 128 → 256 → 512. Max-

pooling is performed with a 2 × 2 window and stride of 2, reducing the spatial dimensions

by half after each level. 

• Bottleneck: At the bottom of the U-Net, a bridge connects the contracting and expansive

paths, consisting of two 3 × 3 convolutions with 1024 filters each, followed by ReLU acti-

vation. This section is crucial as it processes the most compressed feature representation. 

• Decoder: The expansive path mirrors the encoder, using transposed convolutions for up-

sampling. At each stage, the feature map is upsampled, followed by a concatenation with

the corresponding cropped feature map from the encoder path, maintaining high-resolution

features for precise localization. The layers in the decoder are structured as follows:

512 → 256 → 128 → 64. 

4.3.2. Loss function and optimization 

The model optimization was performed using the Adam optimizer [ 14 ] with a learning rate

of 1 × 10 −4 . A custom dice loss [ 15 ] function was utilized, defined as: 

L
(
ytrue , ypred 

)
= 1 −

2 .
∑ 

(
ytrue .ypred 

)
+ 1 ∑ 

ytrue +
∑ 

ypred + 1 
(4) 

This loss function is particularly effective for data with imbalanced classes, as it helps achieve

a balance between precision and recall by maximizing the overlap between predicted and true

masks. Algorithm 2 provides a detailed overview of the applied U-Net model. 

4.3.3. Training, validation and analysis 

The U-Net model was methodically trained over 100 epochs using a batch size of 8. Several

strategies were employed to mitigate the risk of overfitting, which was particularly important

due to the model’s complexity and the detailed nature of image segmentation tasks. Callbacks

for early stopping were set to monitor the validation loss, terminating training if the loss did

not improve for a specified number of epochs. This approach ensures that the model retains

its generalization capabilities and does not merely memorize the training data. Additionally, a

model checkpoint strategy was implemented to save the model weights at the epoch where it

achieved the lowest validation loss, thereby capturing the most effective version of the model

during the training process. 

Fig. 4 illustrates the performance metrics for the model’s training and validation phases over

100 epochs. In Fig. 4 (a), the training accuracy (blue line) and validation accuracy (green line)

demonstrate a consistent upward trend, including that the model is learning effectively through-

out the training process. The training accuracy starts at approximately 50 % and steadily in-

creases to over 94 % by the 100th epoch. Similarly, the validation accuracy begins at around
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Algorithm 2: Applied U-Net Architecture. 

Require: Input image I of shape (H, W, C ) . 

Ensure: Segmented output image O of shape (H, W, C ) 

1: Encoder: 

2: for level l = 1 to 4 do 

3: Apply double 3 × 3 convolutional layers with ReLU activation: Cl = Conv3 ×3(ReLU(Conv3 ×3 ( I))) 

4: Apply max-pooling with 2 × 2 window and stride of 2: Pl = Maxpool2 ×2 (Cl ) 

5: Increase the number of feature channels: Cl+1 = 2 × Cl 

6: end for 

7: Bottleneck: 

8: Apply double 3 × 3 convolutional layers with 1024 filters and ReLU activation: 

B = Conv 3 × 3(ReLU (Conv 3 × 3(P4 ) ) ) 

9: Decoder: 

10: for level l = 4 to 1 do 

11: Apply transposed convolution for upsampling: Ul = U pCon v (B ) 

12: Concatenate with corresponding feature map from encoder: Ml = Concat(Ul , Cl ) 

13: Apply double 3 × 3 convolutional layers with ReLU 

activation: Dl = Conv 3 × 3(ReLU (Conv 3 × 3(M1 ) ) ) 

14: Decrease the number of feature channels: Dl−1 = 

Dl 

2 

15: end for 

16: Output Layer: 

17: Apply 1 × 1 convolution to map to output channels: O = Con v 1 × 1 (Dl ) 

18: Loss Function and Optimization: 

19: Define custom dice loss function: L (ytrue , ypred ) = 1 − 2 .
∑ 

(ytrue .ypred )+ 1 ∑ 

ytrue +
∑ 

ypred + 1 

20 Optimize using Adam optimizer with learning rate 1 × 10−4 

Fig. 4. Performance metrics over 100 epochs, showing (a) training and validation accuracy and (b) training and valida- 

tion loss. 
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8 % and rises to 92.5 %. The alignment of the training and validation accuracy curves indicates

hat the model is generalizing well to the validation data, with no significant overfitting. Sub-

equently, Fig. 4 (b) depicts the training and validation loss curves. The training loss (blue line)

tarts at a higher value of 33 % and decreases steadily to around 5 % by the end of the training

eriod. The validation loss (green line) follows a similar trend, starting at 30 % and decreasing to

bout 10 %. The decreasing loss curves indicate that the model’s predictions are becoming more

ccurate over time, and the small gap between the training and validation loss further confirms

he model’s good generalization capabilities. The stability of the dataset contributes significantly

o the model’s accuracy, as consistent and representative data ensures the reliability and robust-

ess of the training process. 

Table 1 provides the summary of the performance of the applied U-Net model on our dataset

FruitSeg30_Segmentation Dataset & Mask Annotations”. The model processes images with an

nput specification of (256, 256, 3), enabling detailed feature extraction crucial for precise im-

ge segmentation. Over 1579 samples were trained with an 80:20 train/validation split over 100

pochs, achieving an outstanding training and validation accuracy of 94.72 % and 92.57 %, re-
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Table 1 

Parameters and performance summary of the U-Net model. 

Model Input 

Specifi- 

cation 

Number of 

Training 

Samples 

Train/ 

Val Split 

Epochs Training 

Accuracy 

Validation 

Accuracy 

Training 

Time 

Preci 

sion 

Recall F1- 

Score 

IoU 

Score 

U-Net (256, 

256, 3) 

1579 80:20 100 94.72 % 92.57 % 6055s 94 % 91 % 92.5 % 86 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spectively. The model’s precision was 94 %, recall 91 %, F1 score 92.5 %, and IoU scores 86 %, in-

dicating high accuracy and balanced performance in segmentation tasks. These impressive met-

rics highlight the robustness and effectiveness of the “FruitSeg30” dataset, which includes 30

distinct fruit classes with comprehensive segmentation masks. 

Furthermore, the outputs ( Table 2 ) from the U-Net model applied to our dataset demon-

strate a broad spectrum of segmentation capabilities, with varying Dice Scores across differ-

ent fruit types that underscore the dataset’s robustness and diversity. The scores highlight the

dataset’s correctness in presenting challenging scenarios involving reflective surfaces and com-

plex textures, providing invaluable opportunities for rigorous model testing and enhancement.

The scores also illustrate the dataset’s comprehensive coverage of textural and color complexi-

ties, making it an excellent tool for advancing segmentation techniques across varied conditions.

This dataset not only includes a wide array of fruit types, each presenting a unique challenge

in terms of shape, texture, and background conditions, but it also enriches the field of machine

learning by introducing real-world complexities that are crucial for developing robust models. 

4.3.4. Confusion matrix analysis 

The confusion matrix presented in Fig. 5 provides a detailed analysis of the U-Net model’s

performance on the validation set of the dataset, which comprises 390 images across 30 differ-

ent fruit classes. Each cell in the matrix represents the number of instances where the actual

class (True label) matches the predicted class, with diagonal elements indicating correct predic-

tions and off-diagonal elements indicating misclassifications. 

The diagonal elements, which represent the correct classifications for each fruit class, show

high values, reflecting the model’s high accuracy. For instance, the model correctly identified out

of 13 Apple_Gala images, 11 out of 11 Apple_Golden Delicious images, and 13 out of 14 Avocado

images. Similar high accuracies are observed across most classes, highlighting the model’s ro-

bustness and reliability. Misclassification, represented by the off-diagonal elements, is relatively

sparse, indicating that the model rarely confuses one fruit class with another. For example, there

is only one misclassification for Apple_Gala, Avocado, Date Palm, and two in Olive, which was

incorrectly predicted as another class. Such low misclassification rates further underline the ef-

fectiveness of the FruitSeg30 dataset in training accurate segmentation models. 

The confusion matrix also emphasizes the model’s ability to generalize well across diverse

fruit classes. This strong performance can be attributed to the high-quality annotations and di-

verse environmental conditions captured in the dataset, which include variations in lighting,

angles and backgrounds. 

4.3.5. Hardware and software 

Experiments were conducted on a computing system equipped with a Ryzen 7 3800X proces-

sor, 32GB of RAM, and an NVIDIA RTX 4070 GPU. The software stack was managed via Anaconda,

facilitating an organized package management and deployment environment. The model was de-

veloped and tested using Spyder IDE, part of the Anaconda Suite, which provided an efficient

and user-friendly interface for writing and debugging Python code. The model was implemented

using TensorFlow 2.x and Keras, providing a flexible and powerful platform for designing and

training deep learning models. 
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Table 2 

Overview of U-Net outputs displaying original mage with true mask, predicted segmented mage, and dice scores. 
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Fig. 5. Confusion matrix illustrating the U-Net model’s performance on the validation set of the dataset, highlighting 

correct classifications and misclassifications across 30 fruit classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Analysis of the Model Performance and Dataset Characteristics 

The comparative analysis in Table 3 demonstrates the robustness and high performance of

the U-Net model trained on the FruitSeg30 dataset. The U-Net model achieved an accuracy of

92.57 %, precision of 94 %, recall of 91, F1-score of 92.5 % and an IoU score of 86 %. These met-

rics are competitive and often surpass those achieved with other datasets. For instance, M.D.

Barbole et al. [ 25 ] reported a precision of 95 % and an F1-score of 90.28 % using the U-Net

model on the Embrapa Wine Grape Instance Segmentation Dataset (WGISD). In comparison, our

study achieved a higher F1-score of 92.5 % and comparable precision of 94 % using the U-Net

model on our novel dataset. Similarly, the IoU score of 86 % on the FruitSeg30 dataset is signif-

icantly higher than the 71.6 % reported by X. Ni et al. [ 27 ] using Mask R-CNN on the Blueberry

traits extraction and analysis dataset. Additionally, the comparison shows that while the Total

generalized variation fuzzy C means (TGVFCMS) model by V. G Krishnan et al. [ 26 ] achieved a

high accuracy of 93.45 %, it lacks reported precision, F1-score, and IoU, making it difficult to as-

sess the overall segmentation performance comprehensively. In contrast, the FruitSeg30 dataset’s

comprehensive metrics provide a clearer view of its effectiveness. 

Table 4 provides a comprehensive analysis of the “FruitSeg30_Segmentation Dataset & Mask

Annotations” in relation to the other datasets within the field, highlighting its distinctive

attributes and strengths. This dataset stands out significantly compared to existing collections

due to its diverse geographical coverage, extensive class variety, and superior annotation quality.

It is distinguished from other datasets by its international scope, which further enhances its
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Table 3 

Comparison of the model’s performance on the FruitSeg30 dataset with other existing datasets. 

Authors Name Dataset Name Model Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-score 

(%) 

Best Dice 

Score (%) 

IoU 

Score (%) 

K Kestur [ 24 ] MangoNet-Semantic-Dataset CNN 73.6 – – 84.4 – –

M. D. Barbole et al. [ 25 ] Embrapa Wine Grape Instance 

Segmentation Dataset (WGISD) 

U-Net 89 95 86 90.28 – –

V. G Krishnan et al. 

[ 26 ] 

Real Dataset of Bananas in CIAT’s 

image library 

Total generalized 

variation fuzzy C 

means 

(TGVFCMS) 

93.45 – 89.04 – – –

X. Ni et al. [ 27 ] Blueberry traits extraction and analysis Mask R-CNN 90.4 – – – – 71.6 

G Lin et al. [ 28 ] Guava dataset with 304 RGB-D Tiny Mask R-CNN – 53.7 52.3 51.5 – 50 

B. A. Farisqi and A. 

Prahara [ 29 ] 

Locally collected Mask R-CNN – 90 88 89 – –

S. Abinaya et al. [ 30 ] Plant village dataset U-Net 90.74 – – 51.70 54.25 62.85 

S. Mane et al. [ 31 ] Locally collected U-Net – 93.27 86.79 89.91 – –

K. Sun et al. [ 32 ] COCO-Stuff dataset DeepLab-ResNet – 87.4 72.7 79.6 – 65.3 

Shamrat et al. FruitSeg30_Segmentation Dataset & 

Mask Annotations 

U-Net 92.57 94 91 92.5 94.72 86 
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Table 4 

A comparative analysis of the related datasets based on various properties. 

Authors No. of 

Images 

Classes Image 

Format 

Geographical 

Diversity 

(Interna- 

tional) 

Segment 

ation 

Mask 

Resolution Lighting 

Conditions 

Background 

Complexity 

Capture 

Protocols 

Annotation 

Process 

Environment 

B. Pakruddin and R. 

Hemavathy [ 16 ] 

5009 5 JPG ✗ ✗ 3120 × 3120 Diverse Complex Distances ✗ Natural and 

controlled 

J. Gené-Mola et al. [ 17 ] 3925 5 JPG ✗ 
√ 

1024 × 1024 Diverse Complex Distances Automated Natural 

P. Pathmanaban et al. [ 18 ] 2095 3 JPG ✗ ✗ 30 0 0 × 300 Uniform Plain Single 

Angle 

✗ Controlled 

A. K. Maitlo et al. [ 19 ] 2309 3 JPG ✗ ✗ 850 × 1300 Uniform Plain Single 

Angle 

✗ Controlled 

S. I. Ahmed et al. [ 20 ] 1800 7 PNG ✗ ✗ 240 × 320 Diverse Plain Multiple 

Angles, 

Distances 

✗ Controlled 

A. Rajbongshi et al. [ 21 ] 681 6 JPG ✗ 
√ 

512 × 512 Diverse Complex Multiple 

Angles, 

Distances 

Manual Natural 

M. R. Sheikh et al. [ 22 ] 1166 6 JPG ✗ ✗ 4608 × 3456 Diverse Complex Multiple 

Angles 

✗ Controlled 

T. Khatun et al. [ 23 ] 3779 2 JPG ✗ ✗ 256 × 256 Diverse Complex Multiple 

Angles 

✗ Natural 

Shamrat et al 1969 30 JPG 
√ √ 

512 × 512 Diverse Complex Multiple 

Angles, 

Distances 

Automated + 

Manual 

Verification 

Natural and 

controlled 
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obustness and applicability in various global contexts, a critical factor in the development

f universally effective machine learning models. Although it comprises 1969 images, which

ay seem modest relative to larger datasets, it uniquely covers 30 classes, thereby offering

 broader range of categories for more comprehensive image analysis tasks. A distinguishing

eature of this dataset is the inclusion of segmentation masks, which are invaluable for precise

mage segmentation tasks and are only paralleled by a few other datasets. The images are

lso provided at a resolution of 512 ×512 pixels, which is particularly suitable for practical

achine learning applications that require moderate image detail without the computational

urden associated with higher resolutions. This resolution balances the need for details with

omputational efficiency. Consequently, this dataset not only satisfies but also surpasses the

onvolutional standards for dataset construction, providing a versatile instrument for advancing

esearch in image processing and machine learning in various realistic environments. 

imitations 

The FruitSeg30 dataset, although characterized by a variety of unique attributes, is limited by

ts relatively small size, consisting of 1969 images. To maintain the original quality and integrity

f the dataset, it was kept in its unmodified, raw form without any augmentation. This limi-

ation may restrict the generalizability of models trained on this dataset. To address this issue,

esearchers can employ various data augmentation techniques, including rotations, flips, scaling,

ropping and color adjustments. These methods help artificially expand the dataset’s size. Ad-

itionally, synthetic data generation methods such as Generative Adversarial Networks (GANs)

an be used to create more training samples. Despite its limitations, the dataset’s high quality,

etailed annotations and diverse environmental conditions significantly enhance its robustness

nd applicability for fruit segmentation tasks. 
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