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A B S T R A C T   

Accurate automated medical image recognition, including classification and segmentation, is one of the most 
challenging tasks in medical image analysis. Recently, deep learning methods have achieved remarkable success 
in medical image classification and segmentation, clearly becoming the state-of-the-art methods. However, most 
of these methods are unable to provide uncertainty quantification (UQ) for their output, often being over
confident, which can lead to disastrous consequences. Bayesian Deep Learning (BDL) methods can be used to 
quantify uncertainty of traditional deep learning methods, and thus address this issue. We apply three uncer
tainty quantification methods to deal with uncertainty during skin cancer image classification. They are as 
follows: Monte Carlo (MC) dropout, Ensemble MC (EMC) dropout and Deep Ensemble (DE). To further resolve 
the remaining uncertainty after applying the MC, EMC and DE methods, we describe a novel hybrid dynamic BDL 
model, taking into account uncertainty, based on the Three-Way Decision (TWD) theory. The proposed dynamic 
model enables us to use different UQ methods and different deep neural networks in distinct classification 
phases. So, the elements of each phase can be adjusted according to the dataset under consideration. In this 
study, two best UQ methods (i.e., DE and EMC) are applied in two classification phases (the first and second 
phases) to analyze two well-known skin cancer datasets, preventing one from making overconfident decisions 
when it comes to diagnosing the disease. The accuracy and the F1-score of our final solution are, respectively, 
88.95% and 89.00% for the first dataset, and 90.96% and 91.00% for the second dataset. Our results suggest that 
the proposed TWDBDL model can be used effectively at different stages of medical image analysis.   

1. Introduction 

Accurate and automated medical image classification and segmen
tation are two extremely important procedures used in clinical research. 
However, it can be argued that traditional methods performing these 
tasks are not always efficient when handling large volumes of data. Over 
the last few years, a large number of traditional machine learning and 

deep learning methods have been extensively used to perform diagnosis 
of different diseases, including cancers (e.g., autism spectrum disorder 
[49], cervical cancer [4], colorectal cancer [50,56,65], coronary artery 
disease (CAD) [1,72], brain tumour [60], diabetic retinopathy (DR) 
[16], breast cancer [46], etc). 

Despite the state-of-the-art performance of various deep learning 
methods used in medical image classification and segmentation, they 
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rarely provide uncertainty quantification (estimation) in their outputs, i. 
e., the model’s (called epistemic uncertainty) and data (called aleatoric 
uncertainty) uncertainties [16,60]. In other words, a blind trust in re
sults obtained by traditional machine learning and deep learning 
methods can lead to the loss of some sensitive and important features 
and information [11]. Thus, deep learning-based systems inherently do 
not calculate any uncertainty related to the model’s prediction nor 
highlight the most important input features for a specific prediction. 
This is considered as a lack of theoretical understanding of the under
lying mechanics of deep learning methods. As a result, they are often 
referred to as “black boxes” [3,65]. This issue motivated us to design a 
novel uncertainty quantification (UQ) technique [2]. 

Generally, it is challenging to train and validate different traditional 
machine learning and deep learning methods under uncertainty. In this 
work, we will propose a model for quantifying uncertainty of deep 
learning predictions carried out for medical image data. Uncertainty is 
an authoritarian manner to distinguish what to keep and what to modify as 
we continuously learn different things in our daily life, and therefore 
attenuate catastrophic forgetting [14]. Inspired by commonly used UQ 
techniques and a variety of deep learning architectures, we will propose 
a hybrid UQ model based on the Three-Way Decisions (TWD) theory [5] 
and the Bayesian deep learning (BDL) approach. In this regard, we will 
first apply several well-known UQ methods and then improve the UQ 
results using the TWD theory. To the best of our knowledge, this is the 
first study leveraging the TWD theory to enhance the reliability and 
understanding of the results of deep learning-based methods applied to 
medical image data. 

1.1. Main contributions 

Although Deep Neural Networks (DNNs) often provide practitioners 
and doctors with reasonable predictions in diagnosing a disease, they 
usually focus on improving accuracy, regardless of estimating uncer
tainty in the decision making process. As a result, we propose a three- 
phase uncertainty estimation model to prevent overconfidence in pre
diction. In summary, the main contributions of our work are as follows: 

• Novel hybrid deep learning model for classification of medical im
ages is presented;  

• We apply three well-known UQ techniques: Monte Carlo (MC) 
dropout, Ensemble MC dropout (EMC), and Deep Ensemble (DE), 
and then use the two best of them (i.e., DE and EMC) in the main 
model; 

• In order to provide an accurate prediction model and further un
certainty estimation, we integrate the UQ methods in it using the 
TWD theory;  

• We define a new certainty threshold for the confidence level of both 
classification phases;  

• Using TWD, we combine two well-known UQ techniques (i.e., EMC 
and DE);  

• We optimize the hyperparameters of deep learning methods using a 
Bayesian Optimization (BO) technique [53] and network morphisms 
[63];  

• The developed model is tested on two popular skin cancer image 
datasets; its competitiveness is demonstrated along with the results 
of uncertainty estimation. 

Along with these contributions, we also provide a literature review 
on uncertainty quantification methods applied to analyze medical data. 
The rest of the study is organized as follows. In Section 2, we briefly 
review the application of deep learning and UQ methods in image 
classification. An in-depth background of the applied methods is pre
sented in this section, whereas some additional details regarding the 
proposed UQ model are discussed in Section 3. The experimental vali
dation of the proposed model is described in Section 4. The discussion on 
the obtained results is presented in Section 5. Lastly, the main 

conclusions are drawn in Section 6. 

2. Related work and background 

In this section, we briefly review a number of recent studies con
cerning the use of UQ and deep learning methods in medical data 
analysis. Then, relevant background of UQ methods is discussed. 

2.1. Uncertainty quantification in medical image analysis 

Uncertainty Quantification (UQ) is a key factor for an accurate 
application of machine learning and deep learning methods. A UQ 
estimation can increase the confidence of results provided by these 
methods [33]. For example, Bayesian deep learning (BDL) algorithms 
[16] are well-known methods used to estimate uncertainty. Filos et al. 
[16] introduced BDL benchmarks which include MC dropout [18], MFVI 
(Mean-Field Variational Inference) [64], EMC (Ensemble MC) dropout 
[51], DEs (Deep Ensembles) [30] and α-divergence methods [22,35]. 
Among others, BDL methods have been tested on Diabetic Retinopathy 
(DR) data, for which EMC and MC have achieved the best performance 
in terms of the accuracy and the area under the curve (AUC) metric. 
Next, the work by Leibig et al. [32] leveraged uncertainty information 
from deep neural networks (DNNs) used for diabetic detection. A com
mon approach to train Bayesian Convolutional Neural Networks 
(BCNNs) is the Bernoulli approximate variational inference (BAVI). 
Leibig et al. [32] computed consequential uncertainty estimations of 
BCNNs without demanding further labels for obvious uncertain image 
category. No need for more labels can be considered a good achievement 
for this approach. Wickstrom et al. [65] employed a CNN model for 
semantic segmentation of colorectal cancer images. Their results 
demonstrated that the obtained uncertainty differed significantly for 
correct and false predictions. In the work of Carneiro et al. [10], an 
automated-based polyp classification (a five-class classification task) of 
colonoscopy images using deep learning methods (DenseNet and 
ResNet) has been introduced. Furthermore, by using confidence cali
bration (CC), these authors increased the classification Entropy and 
decreased the standard deviation (STD) of estimated variance. Accord
ing to the results, the applied uncertainty estimation and confidence 
calibration algorithms led to a better performance of deep learning 
methods used for colonoscopy image classification. 

2.2. Deep learning-based medical image classification 

As mentioned earlier, different deep learning methods have shown 
outstanding performance not only in medical image classification but 
also in other domains. In this sub-section, we briefly discuss some of the 
existing studies which have considered different deep learning methods 
to perform medical image classification. Ghoneim et al. [21] applied 
convolutional neural networks (CNNs) and extreme learning machines 
(ELMs) for classification of cervical cancer. The proposed hybrid 
CNN-ELM-based model achieved 99.50% and 91.20% accuracies for 
2-way and 7-way classification tasks, respectively. Saha et al. [46] 
introduced a new deep network, named HscoreNet, for scoring (scoring 
layer was a novel concept here) of estrogen and progesterone in breast 
IHC (Immunohistochemistry) images. Rubin et al. [45] proposed a new 
deep learning algorithm for classification of a small training sets 
(label-free cancer cell data), called the transferring of pre-trained 
generative adversarial networks (TOP-GANs). Coudray et al. [13] 
applied a CNN model for classification, as well as mutation prediction, of 
non–small cell lung cancer (histopathology) images. The proposed 
method automatically classified lung cancer images into three classes: 
LUAD (Adenocarcinoma), LUSC (squamous cell carcinoma) and normal 
lung tissues. Based on the obtained results, the authors have emphasized 
the effectiveness of deep learning in the classification of lung cancer 
images. Another common challenge in medical image analysis is the 
collection of high-quality medical image labels which is usually an 
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expensive, laborious and time consuming task, needing a clinical 
expertise. 

It should be noted that some extensive studies focusing on the ability 
of UQ method to deal with uncertainties in traditional machine learning 
and deep learning have been conducted. Indeed, uncertainties in the 
prediction stages of machine learning methods have been well studies 
and are often taken into account. In this work, we intend to use the TWD 
theory to examine uncertainties in the decision stage of deep learning 
methods in the field of medical image classification. 

2.3. Bayesian Deep Learning 

In this section, preliminaries of Bayesian neural networks (BNNs) 
and uncertainty types are reviewed. We discuss an important back
ground features of BNNs as well as those of the approximate variational 
inference (VI) approach. We have also provide necessary background for 
UQ and then describe our novel UQ model in the following sub-sections. 

Bayesian Neural Networks: The use of the Bayesian model aver
aging allows one to estimate uncertainty through assigning a distribu
tion over model parameters, followed by the parameters 
marginalization in order to build a predictive distribution [34]. Since 
BNNs scale well to high dimensional inputs, such as images, here we 
focus on BNNs, which are robust to overtting [26]. Predicting the ma
chine learning model outputs using uncertainty estimation on a single 
observation needs a distribution over possible outcomes. The estimation 
of uncertainties using Bayesian approaches has been used in many 
studies for evaluating the validity of different clinical predictions [27, 
32,61], including large-scale real-world problems [23,32,54]. Given 
training inputs X = {x1,…, xN} and their associated outputs Y = {y1,…,

yN}, in a Bayesian regression, the parameters ω of the function y = fω(x)
are inferred. Some prior distributions are used in the space of parame
ters, p(ω). Moreover, we need to dene a likelihood distribution p(y|x,ω). 
For example, classication models often consider a Softmax likelihood 
[19]: 

p(y= d|x,ω)=Categorical
(

exp
(
f ωd (x)

)

∑
d′ exp

(
f ωd′ (x)

)

)

. (1) 

Let us now consider the posterior distribution through the space of 
parameters: p(ω|X, Y), given a dataset X,Y. Using this distribution, the 
output corresponding to a given input point x* can be predicted by 
integrating [19]. 

p(y*|x*,X,Y)=
∫

p(y*|x*,ω)p(ω|X, Y)dω. (2) 

Placing a prior distribution on the neural network (NN) weights 
defines a BNN. According to the weight matrices Wi and the bias vectors 
bi for the layer i, the standard Gaussian prior distributions are usually 
assigned to the weight matrices, p(Wi) = N(0, 1) [19]. 

Uncertainty: Epistemic and aleatoric are two major types of un
certainties that have been extensively studied in the literature. Indeed, 
we face the epistemic uncertainty when a probabilistic model is uncertain 
and has many possible predictions for the input that can be decreased by 
observing more data. It is often referred to as model uncertainty [7,16, 
24]. On the other hand, we have the aleatoric uncertainty if the input is 
not clear and cannot be decreased by gathering more data. In this paper, 
we provide a novel, simple, but still efficient approach to further address 
the issue of epistemic uncertainty in deep learning models used for bi
nary classification of medical images. 

Epistemic Uncertainty: To assess epistemic uncertainty in NN 
models, a prior distribution is placed over the model weights, which are 
named BNNs. BNNs apply distributions over these parameters instead of 
using the deterministic weight parameters of NNs. Afterwards, all 
possible weights are averaged. This process is referred to as marginali
zation. If the random output, BNN is illustrated as fW(x), the model’s 

likelihood can be shown as p(y
⃒
⃒
⃒fW(x)). Given a dataset X = {x1,…,xN}, 

Y = {y1,…,yN}, Bayesian inference is applied to calculate the posterior 
over the weights p(W|X,Y). The posterior takes some plausible param
eters of the model. In terms of classification, the output of the model can 
be computed using a Softmax function. We can, therefore, sample from 

the probability vector of the result: p(y
⃒
⃒
⃒fW(x)) = Softmax(fW(x)). In 

some approximate inference methods [24], the posterior p(W|X,Y) is 
fitted with a sample distribution q*

θ(W), which is parameterized by θ. To 
implement the inference, at first, a model should be trained with 
dropout before any weight layer, and then dropout layer, could be 
applied at the test stage in order to sample from the approximate pos
terior. Dropout is considered as a variational Bayesian approximation, 
where the distribution of approximating is a combination of two 
Gaussians, which have low variances, and the mean value of one of the 
Gaussians is zero. The objective function to be minimized (for N data 
points) can be formulated as follows: 

Ldropout
(
θ, pdrop

)
=
− 1
N

∑N

i=1
log p

(
yi
⃒
⃒
⃒f Ŵ i (xi)

)
+

1 − p
2N

⃒
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
θ

⃒
⃒
⃒
⃒
⃒
|
2
. (3) 

It is worth noting that ̂Wi ∼ q*
θ(W) denotes samples and θ denotes the 

set of distribution parameters. The epistimic uncertainty induces the 
uncertainty of the classifier’s prediction by marginalizing through the 
posterior distribution of weights. This uncertainty can be estimated in 
classification tasks using the MC integration, as follows: 

p=(y= c|x,X,Y) ≈
1
T

∑T

t=1
softmax

(
f Ŵ t (x)

)
. (4)  

where qθ(W) is the Dropout distribution [7,24]. 
Uncertainty Estimator. The uncertainty of our binary classication is 

computed by predictive Entropy [17,48], taking into account the 
average of information which is available in the predictive distribution: 

Hpred(y|x) : = −
∑

c
p(y= c|x)log p(y= c|x). (5) 

The sum is taken over all possible existing classes c (in our case 
c ∈ 0, 1). The value of Hpred is high, if either the value of aleatoric un
certainty or of epistimic uncertainty is high. The probability p(y= c|x) is 
approximated by T Monte Carlo samples, 1

T
∑

tpθ(y = c|x). This is ach
ieved by stochastic forward passes through the probabilistic networks. It 
is worth noting that it is a biased (consistent) estimator of the predictive 
Entropy in equation (2) [17]. 

Monte Carlo Dropout (MC). Gal and Ghahramani [18] proposed a 
Bayesian theory of dropout. They revealed that optimising NNs by 
dropout (as a standard regularization technique) [55] and 
L2-regularization can be equivalent to a type of variational inference in a 
Bayesian machine learning model. Bayesian machine learning model 
gives as output the probability distribution. The variance of the output 
probability distribution is predicted to determine the uncertainty of the 
model for an input sample. Output samples are considered as Monte 
Carlo samples which are drawn from the posterior distribution of the 
models by applying standard dropout on DNNs at the test stage. A DNN 
should be trained using dropout in order to implement MC. Secondly, to 
compute the inference on each input, the DNN method is carried out T 
times by applying dropout at the test phase. At any time, the input image 
is the same but has a different randomly generated dropout mask. The 
estimators in the case of the mean and the variance of the outputs of 
Bayesian models are computed as follows: 

E[y] ≈
1
T
∑T

t=1
ŷt(X), (6)  

Var[y] ≈ τ− 1ID +
1
T

∑T

t=1
ŷt(X)

T ŷt(X) − E[y]TE[y], (7)  
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where ŷt(x) is the output of the given DNN input sample x, t is a set of 
dropout masks and τ is a constant selected depending of the model’s 
structure [29]. 

Deep Ensemble. Lakshminarayanan et al. [30] developed the DE 
model as a simple and scalable alternative to BNNs. This method com
putes the uncertainty by collecting various predictions that are achieved 
by T several individual deterministic models, whose parameters are 
initialized to random starting points, trained independently [30]. The 
DE models are not only easy to run, but also parallelizable. They yield 

more accurate estimations of uncertainty. Despite these advantages, 
they are usually very computationally expensive [16]. 

Ensemble Monte Carlo (EMC) Dropout. An Ensemble Monte Carlo 
(EMC) dropout uses several different MCD models in parallel. By sam
pling repeatedly from all of the ensemble members (individual models), 
which require to apply dropout masks for each sample, estimations of 
each individual models are computed. Afterwards, those estimations are 
averaged to get the final result of EMC. It is worth noting that EMC 
dropout is combined by using the two following UQ methods: MC 

Table 1 
Illustration of the optimized values of the hyperparameters of different deep learning architectures after using Bayesian optimization for the first dataset.  

Hyperparameter DenseNet201 MobileNetV2 ResNet152V2 InceptionResNetV2 

Units0 256 512 320 256 
Activation0 Sigmoid SWish Swish Relu 
Units1 64 128 128 96 
Activation1 Swish Sigmoid Sigmoid Sigmoid 
Optimizer SGD Adam Adam SGD 
Learning rate 0.01 0.02 0.0001 0.01 
Epoch 31 20 21 22  

Table 2 
Illustration of the optimized values of the hyperparameters of different deep learning architectures after using Bayesian optimization for the second dataset.  

Hyperparameter DenseNet201 MobileNetV2 ResNet152V2 InceptionResNetV2 

Units0 192 192 192 128 
Activation0 Relu Relu Swish Relu 
Units1 128 64 96 94 
Activation1 Relu Relu Relu Relu 
Optimizer Adam RMSprop RMSprop RMSprop 
Learning rate 0.01 0.001 0.001 0.001 
Epoch 31 20 21 22  

Table 3 
Comparison of the obtained results of different deep learning methods and three types of UQ methods for the first skin cancer dataset. In this table, Entropy-correct (EC) 
- indicates the Entropy of correctly classified samples, Entropy-incorrect (EI) - indicates the Entropy of misclassified samples, STD-correct (STD-Co) - indicates the STD 
of correctly classified samples, STD-incorrect (STD-In) - indicates the STD of misclassified samples.  

Method EC EI STD-Co STD-In Accuracy (%) F1-score (%) AUC 

DenseNet + MC 1.974 2.694 0.2488 0.42702 86.15 86.56 0.9420 
DenseNet + EMC 1.992 2.687 0.25473 0.4266 85.19 85.16 0.9489 
DenseNet + DE 0.4898 0.5162 0.03410 0.1303 89.00 89.08 0.9133 
ResNet152V2 + MC 2.0807 3.045 0.2814 0.4772 85.90 85.88 0.9325 
ResNet152V2 + EMC 2.792 4.166 0.2553 0.4777 85.45 84.39 0.9412 
ResNet152V2 + DE 0.4869 0.5571 0.0497 0.1734 87.42 87.40 0.9077 
MobileNetV2 + MC 2.113 3.180 0.2742 0.4512 86.66 86.64 0.9161 
MobileNetV2 + EMC 2.746 4.046 0.2396 0.4116 86.20 86.05 0.9418 
MobileNetV2 + DE 0.4958 0.6093 0.03971 0.1057 88.48 88.46 0.9014 
InceptionResNetV2 + MC 2.076 3.0589 0.2711 0.4497 85.00 84.96 0.9190 
InceptionResNetV2 + EMC 2.78493 3.98824 0.24678 0.438516 83.66 81.53 0.9321 
InceptionResNetV2 + DE 0.4939 0.5334 0.03806 0.1633 85.45 85.43 0.8930  

Table 4 
Comparison of the obtained results of different deep learning methods and three types of UQ methods for the second skin cancer dataset. In this table, Entropy-correct 
(EC) - indicates the Entropy of correctly classified samples, Entropy-incorrect (EI) - indicates the Entropy of misclassified samples, STD-correct (STD-Co) - indicates the 
STD of correctly classified samples, STD-incorrect (STD-In) - indicates the STD of misclassified samples.  

Method EC EI STD-Co STD-In Accuracy (%) F1-score (%) AUC 

DensNet + MC 1.562 1.626 0.5075 0.5615 83.20 83.13 0.6999 
DensNet + EMC 2.738 2.793 0.5881 0.6181 81.48 81.48 0.9031 
DensNet + DE 0.5435 0.5354 0.0647 0.1170 71.68 71.66 0.7436 
ResNet152V22 + MC 1.623 1.771 0.4907 0.5712 87.33 87.25 0.9435 
ResNet152V2 + EMC 2.640 2.765 0.5582 0.6061 79.93 79.91 0.8944 
ResNet152V2 + DE 77.98 0.5571 0.0497 0.1734 77.98 77.96 0.8116 
MobileNetV2 + MC 1.764 1.614 0.5357 0.5274 44.30 44.00 0.1334 
MobileNetV2 + EMC 2.829 2.845 0.6128 0.5984 29.48 28.82 0.2351 
MobileNetV2 + DE 0.5639 0.6043 0.0686 0.1175 71.95 71.89 0.7423 
InceptionResNetV2 + MC 1.608 1.7044 0.5182 0.5307 47.89 47.71 0.5012 
InceptionResNetV2 + EMC 2.753 2.779 0.6056 0.5885 31.41 31.32 0.2622 
InceptionResNetV2 + DE 0.5491 0.5507 0.0577 0.1060 74.22 74.21 0.7656  
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dropout and Model Ensembling [16]. 

3. The proposed uncertainty quantification model 

In the following, we provide a general explanation of the Three-Way 
Decision (TWD) theory. Thereafter, we present our new model, called 
Three-Way Decision-based Bayesian Deep Learning (TWDBDL), for 
quantifying uncertainties in skin cancer image classification. 

3.1. Basic uncertainty quantification methods 

Three well-known uncertainty methods, i.e., MC, DE and EMC 
dropout, will be employed and tested on two different skin cancer 
datasets. Then, their performances obtained for the first and second 
datasets will be reported and compared in Table 3 and Table 4, 
respectively, using various metrics to identify the best UQ method. Thus, 
for the first dataset, the best two of the three applied UQ methods are 
used as basic UQ methods in two different classification phases of our 
TWDBDL model (DE in phase 1 and EMC in phase 2). For for the second 
dataset, we use EMC only in the both phases because MC and DE provide 
very mediocre results. 

It is important to note that the UQ model we consider here is a dy
namic UQ model. This means that the number of classification phases (in 
this study we have three main phases in which the third phase collects 
the retained images from the first and second phases), the number of 
DNNs and UQ methods can be changed based on different case studies. 
Moreover, the number of methods in each classification phase is totally 
optional and can always be adjusted. To cover this point, we first discuss 
a general view of the proposed dynamic TWDBDL model and then the 
present detailed models used to analyze each of the two considered real 
datasets. 

Fig. 1. A general view of the proposed dynamic TWDBDL model.  

Fig. 2. The block diagram of the applied dynamic TWDBDL model for the first dataset.  
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3.2. Three-way decision-based uncertainty quantification 

We believe that decision-making is the key to achieve the best 
possible results in any system relying on a”decision” process. For this 
reason, one needs to consider uncertainties in choosing the best options. 
Moreover, in machine and deep learning, the decision-making process is 
inevitable. In this area of science, the optimal decision can help 
achieving the best performance and increase the reliability and trust
worthiness of the obtained results. This means that we deal with the 
model’s uncertainties by identifying uncertain points, while conducting 
different procedures such as classification and segmentation. In 2010, 
Yao [68] proposed the theory of TWD that is based on the idea of 
acceptance, rejection and non-commitment. The main notion of the 
theory can be defined in case of a ternary classification which is related 
to the evaluation of a set of criteria. 

Let U be a finite non-empty set of objects and C be a finite set of 
conditions. Each member of C may be a criterion. Thresholds on the 
degrees of satisfiability determine the final decision. The final decisions 
can be as follows: (a) the object is accepted if it satisfies the set of criteria 
and if its degree is above a certain level; (b) the object is rejected if it 
does not satisfy the criteria, meaning that its degree of satisfiability is 
below a certain level. It is worth noting that an object is considered as a 
non-commitment if it is neither accepted nor rejected. The last option 
may also be referred to a deferment decision which needs extra inves
tigation. Whether an object satisfies or does not satisfy the criteria, we 
cannot determine the subset of objects of the final decisions without 
considering uncertainty criteria. As a result, we forward uncertain 
samples to an enhanced model to be further examined in the second 
phase, as it is illustrated in the block diagram representing our TWDBDL 
model, Fig. 1. 

3.3. The proposed TWD-based UQ dynamic model 

As illustrated in Fig. 1, we propose a dynamic multi-phase model in 
which the TWD-based classification with UQ methods is performed in 
order to detect uncertain points that will be further examined in the 
decision-making process of deep learning methods. 

In the first phase, presented in Fig. 1, we separately train different 
DNN models using input images. During training, we use the Bayesian 
Optimization (BO) to get the best values of hyperparameters (the process 

of BO is illustrated in Fig. 4). The BO application helps achieving better 
results at the test stage. For the first dataset, we used DE as uncertainty 
quantification method which is applied on the elements of the first 
phase, i.e., four individual DNN models (ResNet152V21, DenseNet2012, 
InceptionResNetV20 and MobileNetV22), as shown in Fig. 2. Further
more, for the second dataset, EMC is applied on the elements of the first 
phase, ResNet152V2, DenseNet2011 and DenseNet2010, as shown in 
Fig. 3. Thus, the dynamic ability of the model enables us to change UQ 
methods and DNNs with respect to the dataset under consideration. 
Now, we can identify samples for which the DNN models are not certain 
in their predictions. In other words, the predictions are achieved from M 
independent trained models. The uncertainty of the probabilistic pre
diction ŷ is computed by estimating its Entropy over its vector of ele
ments ŷ. For each test sample (x̂), the class with the greatest predictive 
mean is selected as the final output prediction and the Entropy is the 
measure used for quantifying model uncertainty. Assume that 
X = {xk|k= 1,2,…,N} is the considered input dataset, where N denotes 
the number of samples belonging to two classes (class A and class B), 
denoted as CA and CB, respectively. The input sample, which is passed 
through each DNN model, is denoted as Xk, where the output of each 
DNN model is denoted as yk. In general, the state of every sample can be 
defined as follows: 
{

DNN is uncertain, for yk > Hpred;

Xk ∈ CA or CB, for yk < Hpred,
(8)  

where Hpred illustrates the Etropy that is the threshold used to define the 
model’s uncertainty. It is worth mentioning that the classified samples 
can be categorized into one of the following categories: true positives 
(TP), true negatives (TN), false positives (FP) and false negatives (FN). 
The DNN is certain for some of these samples that can be called retrained 
samples. However, the other samples for which the DNN is uncertain are 
considered as referred ones. Referred samples are then forwarded to the 
second phase. 

At the second phase, the proposed model is trained with the same 
training data that are used at the first phase. Instead of referring un
certain samples to an expert, these samples are fed to the second phase in 
which a proper UQ method is applied on DNNs to determine whether a 
sample belongs to a certain class or not, as illustrated in Fig. 1. In other 
words, dropout is implemented several times at the test time to sample 
from the approximate posterior and average the stochastic feed forward 
MC sampling. This gives us an Entropy to estimate the uncertainty. The 
test samples are then given to the DNN models at the test time. The 
empirical average of the model’s predictions over MC iterations is 
considered as the estimation of the output for the unseen data, which is 
given as [17]: 

μpred ≈
1
T
∑T

t=1
p(ŷ|x̂, x, y), (9)  

where the predictive mean is denoted as ŷ. Finally, the Entropy esti
mates provided by each individual DNN model are averaged in case of 
unknown samples to detect uncertain samples. 

It should be noted that the ensemble model (i.e., EMC) applied to 
process the first dataset consists, at the second phase, of three individual 
models (ResNet152V22, DenseNet2010 and InceptionResNetV20) pre
sented in Fig. 2. However the ensemble model (i.e., EMC) used to process 
the second dataset includes, at the second phase, two elements: 

Fig. 3. The block diagram of the applied dynamic TWDBDL model for the 
second dataset. 

Fig. 4. Bayesian optimization (BO) scheme.  
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ResNet152V22 and DenseNet2010, as illustrated in Fig. 3. As mentioned 
earlier, at each phase of the model, the UQ methods and DNNs can be 
changed to make the model more suitable to the data at hand. Then, the 
referral samples are given to the ensemble model as unseen data at the 
test time. Finally, as depicted in Fig. 1, the output result of a given model 
determines whether an unseen sample belongs to class A, class B, or to 
none of them. If the EMCD model is uncertain about selecting a partic
ular class for a given sample, the model classifies it as uncertain (as 
indicated: “Uncertainty”). In other words, the model expresses it is as: “I 
don’t know” or “I am not certain”. 

3.4. Bayesian Optimization (BO) 

Bayesian Optimization (BO) is a probabilistic technique used for the 
hyperparameter tuning. It is based on the Bayesian theorem. BO has two 
major components: an acquisition function and a surrogate model. It 
creates a probabilistic surrogate model, generally by considering a 
Gaussian process [52,66] or a tree-based model [62]. It sets a Gaussian 
process prior over the optimization functions to present assumptions 
about the optimized function. Then, it collects the information from the 
previous sample to reform the posterior. Then, an acquisition function is 
chosen to create a utility function from the posterior of the model [52]. 
Indeed, BO maps several different hyperparameters configurations of 
their performance with various uncertainty measures [62]. Hyper
parameters play an important role in traditional machine learning and 
deep learning models as they control the training process of the applied 
models and thus significantly affect their efficiency [67]. 

3.4.1. Block diagram of the model 
In this study, four different well-known deep learning architectures 

(i.e., ResNet152V2, MobileNetV2, DenseNet201 and InceptionRes
NetV2) are used as pre-trained deep learning models on ImageNet. The 
models’ weights are frozen during the training stage. However, as it is 
presented in Fig. 5, two new fully connected layers, followed by a 
dropout layer with dropout probability of 0.5, are added to each model. 
As reported in Table 1 and Table 2, the number of neurons in two fully 
connected layers is separately determined using BO for each individual 

pre-trained model. Unites0 represents the number of neurons used in the 
first layer, while Units1 indicates the numbers of neurons used in the 
second layer. Finally, a two-dimensional output layer is set as the top 
layer of the model to classify images. 

4. Experimental validation 

In this section, more details of both considered skin cancer datasets, 
experimental setup, and evaluation metrics, are given. Then, the ob
tained experimental results are reported. 

Fig. 5. DNN’s block diagram (the backbone of DNN methods).  

Fig. 6. Some image samples from the first considered skin cancer dataset: (a) 
Benign and (b) Malignant classes. 

M. Abdar et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 135 (2021) 104418

8

4.1. Dataset and experimental setup 

In the first experiment of this study, we considered a Kaggle Skin 
Cancer dataset1 with two classes of images: Benign (class 0) and Ma
lignant (class 1). It contains 2637 training images (1440 Benign and 
1197 Malignant) and 660 test images (360 Benign and 300 Malignant, 
some examples are shown in Fig. 6). Each image is of size 224× 244 
pixels. 

In the second experiment, we considered the ISIC 2019 dataset is 
chosen as the second dataset2 with two classes of images: Melanoma 
cases (class 0) and non-Melanoma cases (class 1). It contains 7234 
training images (3618 Melanoma and 3616 non-Melanoma) and 1808 
test images (904 Melanoma and 904 non-Melanoma) with the size of 
224 × 244 pixels (some examples are shown in Fig. 7). The images 
included in our second experimental dataset can be downloaded from 
this repository: https://drive.google.com/file/d/1XNDq0J86kl9MlRfp 
8V684YwRyERGrtlB/view?usp&equals;sharing. It should be noted 
that this dataset is a part of the ISIC 2019 challenge dataset. The non- 
Melanoma (class 1) class includes images from all classes of the ISIC 
2019 challenge dataset, except for those from the Melanoma class. 

Here, we provide further details regarding the experimental settings 
of the proposed model. As mentioned earlier, the MC dropout is applied 
to quantify uncertainties in which T = 50 stochastic forward passes 
through the DNN model are averaged. In order to achieve faithful re
sults, we repeated each experiment three times and then we reported the 
mean accuracy and F1-score values. The hyperparameters of each in
dividual model were tuned by applying Bayesian optimization tech
nique. Tables 1 and 2 report the values of the tuned hyperparameters for 
each applied DNN model, obtained for the first and second datasets, 
respectively. The default values of the learning rate for the Adam and 
SGD optimizers were 0.001 and 0.01, respectively. Finally, early stop
ping technique was also used to prevent the overfitting [42]. To inves
tigate the performance of all applied UQ methods, we calculated the 
values of the F1-score, Accuracy, Entropy, Standard Deviation (STD) and 
the receiver operator characteristic (ROC) with its area under the curve 
(AUC), metrics as it has been done in the recent studies in the field [1,16, 
47,72]. 

4.2. Experimental results 

In this section, an extensive experimental evaluation of the proposed 
TWDBDL model is provided separately for the first, second and final 
classification phases. First, to select the best models for the first and 
second phases, we took into consideration the performance of each in
dividual DNN model and each individual uncertainty method (i.e., MC, 
EMC and DE). They are presented in Tables 3 and 4 for the first and 
second datasets, respectively. 

As can be observed from the results obtained for the first dataset 
(they are listed in Table 3), DE clearly outperforms MC and EMC. Thus, 
DE was used to combine the best individual DNN models to develop an 
ensemble model, which yielded reasonable measures for the criteria in 
the first classification phase of our model as illustrated in Fig. 2. 
Although DenseNet with the DE technique provided the best accuracy 
and F1-score, it did not recognize uncertain samples. According to 
Table 3, since EMC achieved the best AUC for each DNN model, we used 
it at the second classification phase of the proposed TWDBDL model. 
Moreover, the loss-epoch and accuracy-epoch curves (DenseNet201, 
ResNet152V2, MobileNetV2 and InceptionResNetV2 methods) for the 
first dataset are presented in Fig. 18 in A.1. To assess the performances of 
the four models (i.e., DenseNet201, ResNet152V2, MobileNetV2 and 
InceptionResNetV2) using the three uncertainty techniques in terms of 
the number of referred and retained data of the first dataset, we 
considered 50% and 20% of all test samples with the highest Entropy as 
uncertain samples. We then considered the rest of the dataset (50% and 
80% of data) as retained data. In Table 5, the applied models for each 
uncertainty technique, for both 50% and 20% of data, are evaluated 
separately on the retained data based on the diagnostic accuracy and F1- 
score, as a function of the uncertainty rate. As reported in Table 5, the 
performance of all considered techniques has improved with the in
crease of the referral rate (the rate of the uncertain samples). When we 
removed 50% of all test samples with the highest Entropy from the first 
skin cancer dataset, the performance of all models has improved 
significantly compared to the case where 20% of all test samples with 
the highest Entropy were removed. 

As indicated in Table 4, when the second dataset was considered, 
EMC outperformed the other UQ methods (i.e., MC and DE). Thus, we 
combined the best individual DNN models to design an ensemble model 
based on EMC, giving us reasonable measures for the criteria in both the 
first and second classification phases of our proposed model, as illus
trated in Fig. 3. The loss-epoch and accuracy-epoch curves (for the 

Fig. 7. Some image samples from the second considered skin cancer dataset: 
(a) Melanoma and (b) non-Melanoma classes. 

Table 5 
Percentage of uncertain samples of the first dataset returned to specialists. In this 
table, Accuracy of 20% indicates the achieved accuracy when 20% of samples 
with the highest Entropy were removed and Accuracy of 50% indicates the 
achieved accuracy when 50% of samples with the highest Entropy were removed 
from the first dataset.  

Method 20% 50% 

Accuracy 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

F1-score 
(%) 

DensNet + MC 89.09 89.08 91.86 95.76 
DensNet + EMC 88.18 88.17 92.72 96.22 
DensNet + DE 89.09 89.08 90.67 95.11 
ResNet152V2 + MC 85.90 85.88 89.69 94.56 
ResNet152V2 + EMC 84.23 84.16 90.60 95.07 
ResNet152V2 + DE 87.42 87.40 89.91 94.68 
MobileNetV2 + MC 87.12 87.10 90.90 93.28 
MobileNetV2 + EMC 86.13 86.01 92.12 95.89 
MobileNetV2 + DE 86.13 86.01 90.80 95.18 
InceptionResNetV2 +

MC 
85.00 84.96 89.45 94.43 

InceptionResNetV2 +
EMC 

82.29 82.07 89.42 94.41 

InceptionResNetV2 +
DE 

85.45 85.43 87.93 93.57  

1 https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign.  
2 https://www.kaggle.com/andrewmvd/isic-2019. 

M. Abdar et al.                                                                                                                                                                                                                                  

https://drive.google.com/file/d/1XNDq0J86kl9MlRfp8V684YwRyERGrtlB/view?usp&amp;equals;sharing
https://drive.google.com/file/d/1XNDq0J86kl9MlRfp8V684YwRyERGrtlB/view?usp&amp;equals;sharing
https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
https://www.kaggle.com/andrewmvd/isic-2019


Computers in Biology and Medicine 135 (2021) 104418

9

DenseNet201 and ResNet152V2 methods) for the second dataset are 
presented in Fig. 18 in A.1. Similarly, to the experiments with the first 
dataset, we considered 50% and 20% of all test samples with the highest 
Entropy values as uncertain samples to investigate the performances of 
the four deep learning models (i.e., DenseNet201, ResNet152V2, Mobi
leNetV2 and InceptionResNetV2). We then considered the rest of the 
dataset (50% and 80% of the data) as retained data. In Table 6, the 
applied models in terms of each uncertainty technique for both 50% and 
20% are evaluated separately on the retained data based on the diag
nostic accuracy and F1-score, as a function of the uncertainty rate. As 
reported in Table 6, the performance of all considered techniques have 
improved in terms of F1-score with the increase in the referral rate of the 
second dataset (the rate of the uncertain samples). When we removed 
50% of all test samples with the highest Entropy, the performance of all 
models improved significantly in terms of F1-score compared to the case 
where 20% of all test samples with the highest Entropy were removed. 
Although the accuracy rate of 7 UQ methods has increased when 50% of 
all test samples with the highest Entropy were removed from the data, 
compared to the case when 20% of them were removed, it was not the 
case of the remaining 5 UQ methods, including - DensNet using DE, 
ResNet152V2 using DE, MobileNetV2 using EMC, InceptionResNetV2 
using EMC, and InceptionResNetV2 using DE. 

In addition, we have visualized the regions of the input samples that 
were the most important for predictions of the applied deep learning 
methods. The Gradient-weighted Class Activation Mapping (Grad-CAM) 
was used here for the first (see Fig. 8) and second (see Fig. 9) datasets. 

Table 6 
Percentage of uncertain samples of the second dataset returned to specialists. In 
this table, Accuracy of 20% indicates the achieved accuracy when 20% of 
samples with the highest Entropy were removed and Accuracy of 50% indicates 
the achieved accuracy when 50% of samples with the highest Entropy were 
removed from the second dataset.  

Method 20% 50% 

Accuracy 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

F1-score 
(%) 

DensNet + MC 81.72 81.13 83.78 91.17 
DensNet + EMC 78.38 77.63 80.37 83.65 
DensNet + DE 71.68 71.66 69.55 73.65 
ResNet152V2 + MC 85.80 85.73 86.52 85.88 
ResNet152V2 + EMC 77.45 77.44 79.43 84.36 
ResNet152V2 + DE 77.98 78.01 76.19 86.48 
MobileNetV2 + MC 41.31 41.29 41.40 45.87 
MobileNetV2 + EMC 31.69 31.38 29.91 33.49 
MobileNetV2 + DE 71.95 72.02 72.35 76.39 
InceptionResNetV2 +

MC 
85.00 84.96 89.45 94.43 

InceptionResNetV2 +
EMC 

34.10 34.09 32.47 41.26 

InceptionResNetV2 +
DE 

74.22 74.24 72.49 76.56  

Fig. 8. Grad-CAM visualizations shown for ten image samples (five images for each class from the first dataset).  

Fig. 9. Grad-CAM visualization are indicated for ten images (five images for each class of the second dataset).  

Table 7 
The results obtained in the first classification phase of the proposed TWDBDL model applied to two considered skin cancer datasets. In this table, f1-0 is the F1-score of 
class 0, f1-1 is the F1-score of class 1 and F1-score is the overall F1-score.  

Datasets Method EC EI STD-Co STD-In f1-0 f1-1 Accuracy (%) F1-score (%) AUC 

First TWDBDL (DE) 0.6207 0.6335 0.1351 0.2377 91.00 89.00 87.55 90.19 0.9377 
Second TWDBDL (EMC) 2.624 2.835 0.4707 0.4934 91.00 92.00 89.39 92.00 0.9700  
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Thus, we have visualized the heatmaps and superimposed five images 
for each class. In this study, we have detected uncertain images in the 
first classification phase and then referred them to the second classifi
cation phase for further evaluation instead of removing them. In order to 
be more confident in the predicted results, we have presented a two- 
phase model for assessing uncertain samples. 

4.2.1. The first phase results 
The results of the first classification phase provided by our TWDBDL 

model applied to the first considered skin cancer dataset are presented in 
the first row of Table 7, including the assessment of the performance of 
the DE method comprising the ResNet152V2, DenseNet201, Inception
ResNetV2 and MobileNetV2 architectures. The 232 uncertain samples 
were referred to the second phase. It should be noted that only the 
retained samples were considered to estimate the accuracy, F1-score and 

STD of the first phase. The ROC curve for the first classification phase is 
shown in Fig. 10. 

The results of the first phase of the second dataset are presented in 
Table 7, including the assessment of performance of EMC method con
taining ResNet152V2, DenseNet201 architectures. The 375 uncertain 
samples are referred to the second phase. It should be noted that only 
retained samples are considered to estimate the accuracy, F1-score and 
STD of the first phase. The ROC of the first phase is shown in Fig. 11. 

4.2.2. The second phase results 
In this section, we present the performance of the applied ensemble 

model integrating the DenseNet201,ResNet152V2 and InceptionRes
NetV2 architectures using EMCD in Table 8, on quantifying the uncer
tainty of the referred samples of the first dataset. It is important to note 

Fig. 10. The ROC curve of the proposed TWDBDL model constructed for its first 
phase when applied to the first considered skin cancer dataset. 

Fig. 11. The ROC curve of the proposed TWDBDL model constructed for its first 
phase when applied to the second considered skin cancer dataset. 

Table 8 
The results obtained in the second classification phase of the proposed TWDBDL model applied to two considered skin cancer datasets.  

Datasets Method EC EI STD-Co STD-In f1-0 f1-1 Accuracy (%) F1-score (%) AUC 

First TWDBDL (EMC) 2.860 3.995 0.2677 0.4724 91.00 89.00 93.04 90.00 0.95 
Second TWDBDL (EMC) 2.78191 2.708 0.43290 0.46577 90.00 90.00 99.61 90.00 0.96  

Fig. 12. The ROC curve of the proposed TWDBDL model constructed for its 
second phase when applied to the first considered skin cancer dataset. 

Fig. 13. The ROC curve of the proposed TWDBDL model constructed for its 
second phase when applied to the second considered skin cancer dataset. 
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that only the samples for which the given model was certain have been 
used in the second phase. As shown in Tables 7 and 8, the accuracy and 
the AUC values in the second phase were better than in the first phase for 
the first skin cancer dataset. The ROC curve of the second phase for the 
first considered skin cancer dataset is illustrated in Fig. 12. Overall, the 
model was uncertain for 117 test samples out of 232 considered in the 
second phase. It is worth noting that most of these 117 samples belonged 
to the class 1 (Malignant cases), while most of the retained samples (115 
images) belonged to class 0 (Benign cases). The obtained results suggest 
that the proposed TWDBDL model is robust and reliable for the uncer
tain samples as it does not tend to make overconfident predictions. 

The performance of the model including the ensemble of the 
ResNet152V22 and DenseNet2010 architectures using EMC, applied to 
the second considered skin cancer dataset, is provided in the second row 
of Table 8. As shown in Table 8 the accuracy and AUC values in the 
second phase are higher compared to those of the first phase. The ROC 
curve of the second phase for the second considered dataset is illustrated 
in Fig. 13. Here, the model was uncertain for 115 test samples out of 375 
considered in the second phase. These uncertain samples in the final 
phase should be transferred to clinicians. Based on these outcomes, we 
achieved our goal of constructing a more trustable model that says I 
don’t know when it is not confident (certain) regarding its predictions. 

4.2.3. The final phase results 
In this classification phase, we sum up certain samples of the first and 

second classification phases to evaluate the overall accuracy, F1-score 
and AUC of the proposed model. As reported in Table 9, for the first 
considered skin cancer dataset, the final accuracy is higher than the first 
phase accuracy, while the values of F1-score and of AUC of the final 
phase are lower than those of the first phase. The ROC curve of the final 
phase for the first considered dataset is shown in Fig. 14. As indicated in 
Tables 7 and 8, F1-score of class 0 in the final phase is higher than those 
obtained in the first and second phases, whereas F1-score of class 1 in 
the final phase is lower than those in the first and second phases. As 
mentioned in section 4.2.2, most of the referred samples removed from 

the dataset belong to class 1. They are not considered when it comes to 
estimating of the accuracy, F1-score and AUC. Some of these uncertain 
samples, referred to radiologists for further investigation, are recognized 
correctly by the ensemble model in both first and second phases. As a 
result, in the final phase, we have a slight decrease in F1-score of class 1 
(Malignant class), total F1-score and AUC. This point will be discussed in 
more detail in Section 5 to show the importance and advantages of the 
proposed model. 

As indicated in Table 9, for the second considered skin cancer 
dataset, the final accuracy is higher than the first phase accuracy and 
lower than the second phase. The value of F1-score in the final phase is 
lower than in the first phase, but greater than in the second phase. The 
ROC curve of the final phase for the second considered skin cancer 
dataset is illustrated in Fig. 15. As reported in Tables 7 and 8, the F1- 
score of classes 0 and 1 in the final phase are higher than in the sec
ond phase. F1-score of class 0 in the final phase remains the same as in 
the first phase, though it decreases compared to that in the second phase. 

5. Discussion 

5.1. Evaluation of the proposed model 

In this section, we highlight the advantages of the proposed UQ 
model discussing its performances on the two considered skin cancer 
datasets. In Table 10,the recall and precision values per class for the two 
datasets are reported. 

5.1.1. First dataset 
As indicated in Table 10, the precision of class 0 (Benign cases) in the 

final classification phase is greater than in the first and second classifi
cation phases. However, the precision of the final phase of class 1 
(Malignant cases) is lower than in the first and second phases. The recall 
value of class 0 for the first phase is the same as for the final phase, while 
it grows in the second phase compared to the first phase. However, there 
is a decreasing trend in the recall value of class 1 in the second and the 
final phases compared to the first phase. As a result, the F1-score of class 
0 is greater in the final phase compared to the first two phases; however, 
the F1 value of class 1 in the final phase dropped compared to the first 
and second phases. Although the overall F1-score and AUC decreased in 
the final phase compared to the first and second phases, the value of the 
F1-score of class 0 and the accuracy increased in the final phase. It 
should be mentioned that the main goal of this study was not to present a 
state-of-the-art model, but assess the performance of TWD combined 
with uncertainty methods to improve the diagnosis performance of 

Table 9 
The results obtained in the final phase by the proposed TWDBDL model for two 
considered skin cancer datasets.  

Datasets Method f1-0 f1-1 Accuracy (%) F1-score (%) AUC 

First TWDBDL 92.00 83.00 88.95 89.00 0.92 
Second TWDBDL 91.00 91.00 90.96 91.00 0.97  

Fig. 14. The ROC curve of the proposed TWDBDL model constructed for its 
when final phase when applied to the first considered skin cancer dataset. 

Fig. 15. The ROC curve of the proposed TWDBDL model constructed for its 
when final phase when applied to the second considered skin cancer dataset. 
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DNNs and BDLs. It is clear that the proposed model cannot improve the 
diagnostic in case of all criteria for both classes, though we managed to 
improve the diagnostic performance of our model for class 0 (Benign) as 
well as the overall accuracy. It is critically important to differentiate 
Benign patients from Malignant ones as the cost of a mistake could be 
fatal. 

5.1.2. Second dataset 
As reported in Table 10, the precision of class 0 (Melanoma cases) in 

the final phase remains the same during the first, second and final 
classification phases. Although in the second phase the precision of class 
1 (non-Melanoma cases) decreased compared to that of the first phase, 

the value of the final phase is greater than that in the second phase. 
When it comes to the value of the recall associated with the class 0, it 
remains stable in the final phase compared to the first phase, being 
higher than the recall value of the second phase. However, the recall 
value of class 1 in the final phase is lower than those of the first and 
second phases. Thereby, the F1-score value of class 0 in the final phase 
remains stable compared to the first phase, while it decreases in the 
second phase. Regarding the F1-score value of class 1, it decreases in the 
final phase compared to the first phase; however, the value of the final 
phase is higher than that of the second phase. The overall F1-score de
creases in the final phase compared to the first one. Thus, we can see that 
the overall accuracy increases compared to that of the first phase, but it 

Table 10 
Precision, recall, F1-score, Accuracy and AUC results obtained for the three phases of the proposed TWDBDL model for the two skin cancer datasets considered in this 
study.  

Dataset Phases P-0 P-1 R-0 R-1 F1-0 F1-1 F1-T Accuracy AUC 

Dataset 1 1 92.00 88.00 90.00 90.00 91.00 89.00 90.00 87.85 0.9377  
2 90.00 90.00 92.00 89.00 91.00 89.00 90.00 93.04 0.9500  
3 93.00 81.00 90.00 86.00 92.00 83.00 89.00 88.95 0.9200 

Dataset 2 1 89.00 94.00 94.00 89.00 91.00 92.00 92.00 89.39 0.9700  
2 89.00 91.00 91.00 90.00 90.00 90.00 90.00 99.61 0.9600  
3 89.00 93.00 94.00 88.00 91.00 91.00 91.00 90.96 0.9700  

Fig. 16. Four test input images with the corresponding STD and Entropy values and the corresponding predictive distributions generated by BDLs (taken from the 
first considered skin cancer dataset). 
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declines compared to the second phase. Finally, the AUC value of the 
final phase is the same as in the first phase and it drops in the second 
phase. 

As mentioned earlier, our objective was not only to improve the 
overall prediction performance, we also aim at defining a model having 
more confidence in its predictions. Clearly, the proposed model is able to 
deal with uncertainties in its predictions. This is vital as it helps to 
distinguish the patients having skin cancer from the healthy ones. 

5.2. Relationship between entropy, STD and misclassification 

5.2.1. First dataset 
Four test input images from the first dataset with the STD and En

tropy values and the corresponding predictive distributions generated 
by BDLs are presented in Fig. 16. According to Fig. 16, the predictive 
uncertainty is greater for misclassified samples compared to the 
correctly classified samples. 

Fig. 16 shows the distribution of predictive uncertainty values for 
four selected test images that are classified correctly (in blue) and 
wrongly (in red). The class with the highest value of the Softmax output 
for the predictive distribution mean is considered as the final output and 
the predictive Entropy of the estimated output distribution is considered 
as the estimated epistemic uncertainty. A model can be uncertain with 

high or low Entropy, which is associated to the predictive posterior 
distribution. Wider output posterior distributions reflect lower confi
dence of the model. Fig. 16 (a) presents an image that is correctly 
classified in the Benign class. It is clear that in this case the model is 
highly certain about its prediction (STD = 0 and Entropy = 0.1). Fig. 16 
(b) illustrates a Benign sample that is misclassified as Malignant. The 
high values of STD and Entropy (STD = 0.3 and Entropy = 3.8066) and a 
wider posterior distributions prove that the model is uncertain. Fig. 16 
(c) presents an image that is classified correctly as a Malignant sample. 
The model is certain about this case (STD = 0.0 and Entropy = 1.9120). 
Fig. 16 (d) presents a misclassified Malignant sample that was wrongly 
diagnosed as Benign. The uncertainty of the model is expressed through 
its high Entropy (STD = 0.48 and Entropy = 3.8903) and wide posterior 
distributions. 

5.2.2. Second dataset 
Furthermore, the STD and Entropy values with the corresponding 

predictive distributions generated by BDLs for four test samples from the 
second dataset are illustrated in Fig. 17. Once again, here, the estimated 
uncertainty is higher for misclassified samples than for correctly clas
sified ones. Fig. 17 shows the distribution of predictive uncertainty for 
four selected random test images from the second dataset. The mis
classified samples are shown in red and correctly classified samples in 

Fig. 17. Four test input images with the corresponding STD and Entropy value and the corresponding predictive distributions generated by BDLs (taken from the 
second considered skin cancer dataset). 
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blue. As mentioned earlier, the predictive Entropy of the estimated 
distributions is considered as estimated epistemic uncertainty, whereas 
a wider output posterior distribution reflects a low confidence of the 
model. Fig. 17 (a) presents an image that is correctly classified in the 
Melanoma class. It shows that the model is certain about its prediction 
(STD = 0.2712 and Entropy = 1.3862). Fig. 17 (b) illustrates a Mela
noma sample that is misclassified as a non-Melanoma image. The high 
value of STD and Entropy (STD = 0.4898 and Entropy = 2.5011) with 
wide posterior distributions indicate that the model is uncertain in its 
prediction. Fig. 17 (c) presents a test image that is classified correctly as 
a non-Melanoma sample. Here, the model is certain in its prediction with 
low Entropy (STD = 0.2374 and Entropy = 2.9501). Fig. 17 (d) presents 
a misclassified image of non-Melanoma, wrongly diagnosed as Mela
noma. The high value of Entropy (STD = 1.4963 and Entropy = 3.0910) 
and wide posterior distributions suggest that the model is not certain 
about its outcome here. 

5.3. Comparison with existing prediction models 

In order to highlight the results provided by the proposed TWDBDL 
model, we compare its performance with those of the existing efficient 
models used to classify different skin cancer datasets (see Table 11). It 
the addition to the models’ performances, we are also interested in the 
uncertainty of classification results. 

Table 11 reports the results provided by the proposed TWDBDL 
model in its final phase for both skin cancer datasets. According to these 
results, the TWDBDL model is highly competitive compared to its 
counterparts, being able to estimate the uncertainty accurately (for both 
considered datasets). Moreover, even though Rasul et al. [43] obtained 
slightly better results for the second dataset, they did not use the second 
dataset alone to design and train their model. Rasul et al. first used the 
ISIC 2018 dataset for segmentation and the second dataset for 
classification. 

By observing the results presented in Table 11, we can notice that 
most of the existing ML models dealing with skin cancer classification (e. 
g., Yu et al. [69], Roslin [44], Zhang et al. [70], Pathan et al. [41], Tang 
et al. [58], Zhuang et al. [71] and Tan et al. [57]) do not consider the 
uncertainty of the model’s output. A few studies considering the model’s 
uncertainty include those of Mobiny et al. [36] and Combalia et al. [12]. 
Mobiny et al. [36] tested their model on the HAM10000 dataset (seven 
classes) and achieved 90.00% accuracy by referring 35% of the samples 
(approximately 1 out of 3 images) to physicians. The TWDBDL model 
introduced here refers to physicians and clinicians much fewer samples. 
Another important advantage of our model is that in each classification 
phase, we use multiple models instead of a single one. In other words, 
our model has a set of decision processes instead of a single decision 

process. Combalia et al. [12] developed their model for the ISIC 2018 
and 2019 challenges, achieving balanced accuracies of 76.00% and 
64.00%, respectively. 

Even though our model has several important advantages, it still has 
a great potential for improvement which need to be addressed in the 
future. For instance, the performance of the proposed TWDBDL model 
can be improved using an attention-based mechanism [6]. Moreover, 
some other recent UQ methods, such as MC-DropConnect [37], can be 
integrated in it to get a better quantification output. The weight of each 
individual classifier used at each step of the presented model can be 
considered as well [28]. Finally, both the robustness of the TWDBDL 
model against noise (noise classifications [20,47]) and the impact of 
various fusion models [5,39] can be studied. 

6. Conclusion 

In this study, we introduced a new, simple, but yet very efficient 
uncertainty quantification model based on the Three-Way Decision 
(TWD) theory and applied it to analyze two well-known skin cancer 
image datasets. The main goal of our work was not to introduce a new 
state-of-art deep learning model, but assess the performance of uncer
tainty quantification models using both Bayesian CNNs and TWD in 
order to improve the performance of computer-aided diagnostic sys
tems. Our novel hybrid dynamic TWDBDL model allowed us to apply 
different UQ methods and different DNNs in distinct classification 
phases. Thus, we were able to select the most appropriate elements of 
the model in each phase, adjusting them to the data at hand. In our 
study, two UQ methods were used in two classification phases, pre
venting one from making overconfident skin cancer classification de
cisions. DE and EMC were applied in the first and second classification 
phases for the first considered skin cancer dataset. However, only EMC 
was applied in both the first and second classification phases for the 
second considered skin cancer dataset. The accuracy, F1-score and AUC 
of the final phase of the model were, respectively, 88.95%, 89.00% and 
0.92 for the first considered dataset, and, respectively, 90.96%, 91.00% 
and 0.97 for the second considered dataset. These results are very 
encouraging. One of the advantages of our model is an automated dif
ferentiation between two classes of benign and malignant melanoma 
cases as well as non-melanoma cases (since the cost of misdiagnosis can 
be fatal). To further deal with uncertainty, a Bayesian optimization 
method was employed to tune the hyperparameters of all deep learning 
architectures used in our work. The proposed TWDBDL model can be 
effectively incorporated into various computer-aided diagnostic systems 
which certainly need to integrate new tools for estimating uncertainty of 
the models’ predictions. 

In the future, we plan to develop a weighted ensemble model based 

Table 11 
Comparison of the performance of the proposed TWDBDL model with some existing ML models used to classify skin cancer data.  

Study Year # of Classes Model Accuracy F1-score AUC Uncertainty 

Esteva et al. [15] 2017 3 CNN 72.10 N/A N/A No 
Esteva et al. [15] 2017 9 CNN 55.40 N/A N/A No 
Mobiny et al. [36] 2019 7 Bayesian DenseNet-169 83.59 N/A N/A Yes 
Bologna and Fossati [9] 2020 2 CNN + VDIMLPa 84.90 N/A N/A No 
Combalia et al. [12] 2020 9 TA + MCDb N/A N/A N/A Yes 
Lee and Renee [31] 2020 2 CNN 82.90 N/A N/A No 
Pacheco and Krohling [40] 2021 9 ResNet-50 91.30 N/A 0.865 No 
Samrat and Ganguly [38] 2021 2 CNN 60.00 69.04 N/A No 
Bhardwaj and Rege [8] 2021 2 SVMc 86.00 68.57 N/A No 
Khan et al. [25] 2021 7 CNN 86.50 86.28 N/A No 
Wang et al. [59] 2021 7 STCNd 80.60 N/A 0.790 No 
Our study (Dataset 1) 2021 2 TWDBDL 88.95 89.00 0.920 Yes 
Our study (Dataset 2) 2021 2 TWDBDL 90.96 91.00 0.970 Yes  

a VDIMLP = Virtual Discretized Interpretable a Multi-Layer Perceptron. 
b TA + MCD = Test Augmentation þ MC dropout. 
c SVM = Support Vector Machine. 
d STCN = Self-supervised Topology Clustering Network. 
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on the TWD theory to enhance the uncertainty awareness of different 
deep learning models. Furthermore, non-probabilistic decision theory, 
called Info-Gap decision theory, can also be considered to optimize the 
robustness of failure. Moreover, the proposed model should be tested for 
noise detection. Finally, we plan to provide a confidence score for the 
TWD theory procedure outputs to make the model’s decisions more 

effective. 
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Appendix 

A.1. Accuracy-Epoch vs Loss-Epoch curves 

The loss-epoch and accuracy-epoch curves (DenseNet201, ResNet152V2, MobileNetV2, and InceptionResNetV2 methods) for the first and second 
datasets are presented in Fig. 18.

Fig. 18. Accuracy-Epoch vs Loss-Epoch curves for the first and second datasets.  
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