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orders along the grid line are enforced at the two end-points. The imposed nodal derivative

values are simply acquired through a Picard-type iteration scheme. The stencil is made up

of 3 points and 5 points for 1D and 2D discretisations, respectively. Numerical results show

that the proposed stencils yield a high rate of convergence with respect to grid refinement,

e.g. up to the 13th order for 1D problems and to the 9th order for 2D problems.
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1 Introduction

Ordinary/partial differential equations (ODEs/PDEs) arise in the mathematical modelling

of physical phenomena. For most problems, their governing equations can only be solved

by means of numerical methods. Conventional techniques such as the finite-element and

finite-volume methods require a mesh to support the interpolation of the field variable.

The generation of meshes for problems defined on complex geometries can be very time-

consuming. As a result, much effort has been devoted to develop meshless methods and

Cartesian-grid methods. Meshless methods have attracted a great deal of attention in recent

decades [1]. The domain of interest is represented by a set of unstructured points, and the

interpolation of the field variable is simply based on overlapping cells that do not require any

fixed topology. Cartesian-grid methods have a long history with the early works ([2]) dated

back to the 1930’s. The domain is discretised by using Cartesian grids that can be generated

in a straightforward manner. The methods have been increasingly used for solving problems

with complexly-shaped domains due to their economical preprocessing. For most of the

reported Cartesian-grid methods, their discretisations are based on finite-difference/finite-

volume formulations, which typically lead to schemes that are second-order accurate [3,4].

Radial basis functions (RBFs) have been widely used in solving ODEs and PDEs (see, for ex-

ample, [5,6,7,8,9,10, 11,12,13]). In the RBF collocation methods [14], the field variable, which

is typically a nonlinear function, is expressed as a linear combination of RBFs, of which the

accuracy can be enhanced quickly with an increase in the number of RBFs (i.e. the number

of nodes). For several types of RBFs such as the Gaussian and multiquadric functions, they

have the ability to offer an exponential rate of convergence [15,16,17]. With all nodes taken

into account, the RBF approximations lead to system matrices that are fully populated. In

addition, their condition numbers grow rapidly with the number of nodes which can depend

exponentially on the number of dimensions. Utilisation of extended-precision floating point

arithmetic to bypass the solution of the ill-conditioned linear system was shown to be ef-

fective [18,19]. The computational costs for solving global RBF systems become prohibitive

when a large number of nodes are employed. For local RBF approximations [20], only a few

2



nodes are activated for the approximation at a point. It leads to sparse algebraic systems,

which can be solved in an efficient way. A drawback here is that their accuracies are sig-

nificantly reduced (i.e. algebraic convergence rates only). In [21], for equispaced nodes, the

error was analytically estimated as ǫ ≈ O((h/a)p), where h is the nodal distance and a the

RBF width/shape-parameter. The exponent p takes value of 2 when the number of support-

ing nodes is in range of 5 to 12. One effective way to overcome accuracy reductions is to

develop compact local RBF stencils, where the RBF approximations are expressed in terms

of nodal values of not only the field variable but also its derivatives [22,23,24,25]. They can

be implemented with differentiated RBFs or integrated RBFs on Cartesian grids [24,25,26]

or unstructured nodes [23,27]. Nodal derivative values can be included by using the Her-

mite interpolation approach [23,27] or by means of integration constants [26]. An advantage

of the former over the latter is that its interpolation matrix is symmetric and guaranteed

to be invertible. However, the former involves the computation of fourth-order derivatives

including the cross/mixed ones. For the latter, one needs to compute pure second-order

derivatives. Improved rates of convergence are acquired with compact approximations. In

the case of using Cartesian grids, 1D-approximation-based stencils are typically employed

with 3 nodes in each direction. If more than 3 nodes are employed, special treatments will be

required for the stencils associated with interior nodes near the boundaries. In addition, the

level of sparseness of the system matrix is also reduced (i.e. larger matrix bandwidths). For

one-dimensional 3-point stencils and two-dimensional 5-point stencils, fourth-order accurate

solutions were achieved [23,25]. In this work, we propose new IRBF approximations on the

3- and 5-point stencils to further improve their rates of convergence. The error can decrease

at the rate of much higher than 4 on regular and irregular 3-point/5-point stencils. We note

some recent efforts in the development of robust reduced-order models (ROMs) (e.g. [28])

to solve large-scale applications.

The structure of the paper is as follows. In Section 2, compact IRBF stencils including

the proposed ones are presented. In Section 3, the implementation of the proposed stencils

is discussed. In Section 4, verification is conducted in linear and nonlinear problems with

rectangular and non-rectangular domains, and uniform and nonuniform grids. Section 5
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gives some concluding remarks.

2 Compact IRBF stencils

2.1 One dimension

Approximation stencils based on IRBFs including the proposed ones are presented in the

solution of

−d
2u

dx2
+ λ

du

dx
= f(x), xA ≤ x ≤ xB, (1)

with Dirichlet boundary conditions only, and with Dirichlet and Neumann boundary con-

ditions. In (1), f(x) is a smooth function and λ is a constant. The domain [xA, xB] is

disrectised by a set of N points: (x1 = xA, x2, · · · , xN = xB).

Consider a 3-point stencil [xi−1, xi, xi+1], over which the field variable can be represented by

an IRBF approximation scheme

dqu(x)

dxq
=

3∑

i=1

wiGi(x) =
3∑

i=1

wiI
(q)
i (x), (2)

dq−1u(x)

dxq−1
=

3∑

i=1

wiI
(q−1)
i (x) + c1, (3)

dq−2u(x)

dxq−2
=

3∑

i=1

wiI
(q−2)
i (x) + c1x+ c2, (4)

· · · · · · · · ·

du(x)

dx
=

3∑

i=1

wiI
(1)
i (x) + c1

xq−2

(q − 2)!
+ c2

xq−3

(q − 3)!
+ · · ·+ cq−1, (5)

u(x) =

3∑

i=1

wiI
(0)
i (x) + c1

xq−1

(q − 1)!
+ c2

xq−2

(q − 2)!
+ · · ·+ cq−1x+ cq, (6)

where q is the order of an IRBF scheme, Gi(x) the RBF, I
(q−1)
i (x) =

∫
I
(q)
i (x)dx, I

(q−2)
i (x) =

∫
I
(q−1)
i (x)dx, · · · , I(0)i (x) =

∫
I
(1)
i (x)dx, (w1, w2, w3) the coefficients, and (c1, c2, · · · , cq) the

integration constants. For the multiquadric function, Gi(x) =
√

(x− xi)2 + a2i , where a is
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the width/shape-parameter.

Classical stencils

For second-order differential problems, q = 2 is typically employed. A mapping from the

RBF space to the physical space is then formed by collocating expression (6) (function u)

at the three nodes of the stencil:

û = Cŵ, (7)

where C is called the conversion matrix, which are of dimensions 3× 5 here,

C =




I
(0)
1 (xi−1), I

(0)
2 (xi−1), I

(0)
3 (xi−1), xi−1, 1

I
(0)
1 (xi), I

(0)
2 (xi), I

(0)
3 (xi), xi, 1

I
(0)
1 (xi+1), I

(0)
2 (xi+1), I

(0)
3 (xi+1), xi+1, 1



,

û = (ui−1, ui, ui+1)
′ ,

ŵ = (w1, w2, w3, c1, c2)
′ .

Solving (7) yields

ŵ = C−1û, (8)

where C−1 is the Moore-Penrose pseudoinverse of matrix C.

Making use of (8), the second derivative of u at x = xi is computed as

d2ui
dx2

=
[
I
(2)
1 (xi), I

(2)
2 (xi), I

(2)
3 (xi), 0, 0

]
C−1 (ui−1, ui, ui+1)

′ , (9)

or

d2ui
dx2

= ν1ui−1 + ν2ui + ν3ui+1, (10)

where (ν1, ν2, ν3) are known coefficients.

Other derivatives of u at x = xi (e.g. dui/dx) can be obtained by replacing derivative expres-

sion in the RBF space on RHS of (9) with an appropriate one (e.g.
[
I
(1)
1 (xi), I

(1)
2 (xi), I

(1)
3 (xi), 1, 0

]
).
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Compact stencils (CIRBF)

For compact approximations, nodal derivative values are also included on the right site of

(10). In [25], the conversion matrix and its associated vectors are constructed as

C =




I
(0)
1 (xi−1), I

(0)
2 (xi−1), I

(0)
3 (xi−1), xi−1, 1

I
(0)
1 (xi), I

(0)
2 (xi), I

(0)
3 (xi), xi, 1

I
(0)
1 (xi+1), I

(0)
2 (xi+1), I

(0)
3 (xi+1), xi+1, 1

−I(2)1 (xi−1) + λI
(1)
1 (xi−1), −I(2)2 (xi−1) + λI

(1)
2 (xi−1), −I(2)3 (xi−1) + λI

(1)
3 (xi−1), λ, 0

−I(2)1 (xi+1) + λI
(1)
1 (xi+1), −I(2)2 (xi+1) + λI

(1)
2 (xi+1), −I(2)3 (xi−1) + λI

(1)
3 (xi+1), λ, 0




,

û = (ui−1, ui, ui+1, fi−1, fi+1)
′ ,

ŵ = (w1, w2, w3, c1, c2)
′ .

The conversion matrix C here is of dimensions 5× 5.

Expression for computing the second derivative of u at x = xi becomes

d2ui
dx2

=
(
I
(2)
1 (xi), I

(2)
2 (xi), I

(2)
3 (xi), 0, 0

)
C−1 (ui−1, ui, ui+1, fi−1, fi+1)

′ , (11)

or

d2ui
dx2

= µ1ui−1 + µ2ui + µ3ui+1 + µ1fi−1 + µ2fi+1, (12)

where C−1 is the inverse of matrix C, and (µ1, µ2, µ3, µ1, µ3) are known coefficients. An

alternative way to obtain these coefficients is to solve the following algebraic equation set:

C′(µ1, µ2, µ3, µ1, µ3)
′ =

(
I
(2)
1 (xi), I

(2)
2 (xi), I

(2)
3 (xi), 0, 0

)
′

, (13)

where Gaussian elimination can be used without explicitly computing the inverse.

Proposed compact stencils

In this study, we have employed q = 10 and imposed the following values of function f(x)
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and its derivatives:

fi−1, fi+1,

dfi−1/dx, dfi+1/dx,

d2fi−1/dx
2, d2fi+1/dx

2,

d3fi−1/dx
3, d3fi+1/dx

3,

d4fi−1/dx
4, d4fi+1/dx

4.

(14)

In the present conversion system û = Cŵ, there are 13 equations (3 for function u and 10

for function f(x) and its derivatives) and 13 unknowns

û =

(
ui−1, ui, ui+1, fi−1, fi+1, · · · ,

d4fi−1

dx4
,
d6fi+1

dx4

)
′

,

ŵ = (w1, w2, w3, c1, c2, · · · , c10)′ ,

C =




I
(0)
1 (xi−1), · · · I

(0)
3 (xi−1),

x9
i−1

9!
, · · · 1

I
(0)
1 (xi), · · · I

(0)
3 (xi),

x9
i

9!
, · · · 1

I
(0)
1 (xi+1), · · · I

(0)
3 (xi+1),

x9
i+1

9!
, · · · 1

−I(2)1 (xi−1) + λI
(1)
1 (xi−1), · · · −I(2)3 (xi−1) + λI

(1)
3 (xi−1), −x7

i−1

7!
+ λ

x8
i−1

8!
, · · · , 0

−I(2)1 (xi+1) + λI
(1)
1 (xi+1), · · · −I(2)3 (xi+1) + λI

(1)
3 (xi+1), −x7

i+1

7!
+ λ

x8
i+1

8!
, · · · , 0

· · · · · ·

−I(6)1 (xi−1) + λI
(5)
1 (xi−1), · · · −I(6)3 (xi−1) + λI

(5)
3 (xi−1), −x3

i−1

3!
+ λ

x4
i−1

4!
, · · · , 0

−I(6)1 (xi+1) + λI
(5)
1 (xi+1), · · · −I(6)3 (xi+1) + λI

(5)
3 (xi+1), −x3

i+1

3!
+ λ

x4
i+1

4!
, · · · , 0




.

When compared to classical and compact IRBF stencils in [25], it can be seen that an IRBF

scheme of higher order is employed here, and not only function f(x) but also its derivatives

are imposed at the two end-nodes. It leads to

d2ui
dx2

=

(
I
(2)
1 (xi), I

(2)
2 (xi), I

(2)
3 (xi),

x7i
7!
,
x6i
6!
, · · · , 1, 0, 0

)
C−1

(
ui−1, ui, ui+1, fi−1, fi+1, · · · ,

d4fi−1

dx4
,
d4fi+1

dx4

)
′

, (15)

or

d2ui
dx2

= η1ui−1 + η2ui + η3ui+1 + η1fi−1 + η2fi+1 + · · ·+ η9
d4fi−1

dx4
+ η10

d4fi+1

dx4
. (16)
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As an alternative to (15)/(16), the coefficients can be acquired by solving the following

algebraic equation set:

C′(η1, η2, η3, η1, · · · , η10)′ =
(
I
(2)
1 (xi), I

(2)
2 (xi), I

(2)
3 (xi),

x7i
7!
, · · · , 0

)
′

. (17)

Coefficients (ν1, ν2, ν3) in (10), (µ1, µ2, µ3, µ1, µ2) in (12), and (η1, η2, η3, η1, · · · , η10) in (16)/(17)

are all obtained numerically. There is no difference in handling between uniform and non-

uniform stencils. For problems in higher dimensions, the 1D formulas (10), (12) and (16)

can be applied separately in each direction.

Discretisations based on (10), (12) or (16) lead to systems of algebraic equations. In the

case of Dirichlet boundary conditions only, the obtained algebraic system can be written as

Aû = d̂, (18)

where

A =




1 0 . . . . . . .

c2 a2 b2 0 . . . . .

. c3 a3 b3 0 . . . .

. . . . . . . . .

. . . . . 0 cN−1 aN−1 aN−1

. . . . . . . 0 1




,

û = (u1, u2, · · · , uN)′,

d̂ = (d1, d2, · · · , dN)′,

in which d1 and dN are given boundary values, (ci, ai, bi) is value of (ν1, ν2, ν3), (µ1, µ2, µ3)

and (η1, η2, η3) which are acquired from the ith stencil. When i runs from 2 to N − 1,

di = fi
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for classical stencils,

di = fi − η1fi−1 − η2fi+1

for compact IRBF stencils and

di = fi − η1fi−1 − η2fi+1 + · · · − η9
d4fi−1

dx4
− η10

d4fi+1

dx4

for the proposed CIRBF stencils.

Equations in system (18) can be rewritten in general form

ciui−1 + aiui + biui+1 = di, i = 1, 2, · · · , N. (19)

For the first (i = 1) and last (i = N) equations, one has a1 = 1, b1 = 0 and c1 = 0, and

aN = 1, bN = 0 and cN = 0, respectively. The system (19) can be solved efficiently by the

Thomas algorithm or the TDMA (TriDiagonal-Matrix Algorithm), which is based on two

processes: forward substitution and backward substitution.

In the case of Dirichlet and Neumann boundary conditions, the last equation in (18) is

replaced with expression for computing the first derivative of u at x = xN .

2.2 Two dimensions

For simplicity, the proposed CIRBF stencils are presented in the solution of

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), xA ≤ x ≤ xB, yC ≤ y ≤ yD, (20)

subjected to Dirichlet boundry conditions and defined on a rectangular domain that is dis-

rectised by a set of Nx ×Ny points.

The stencil is made up of 5 nodes. Consider an interior node (i, j) (intersection between

the ith horizontal and jth vertical grid lines). Its four neighbours are (i − 1, j), (i + 1, j),
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(i, j−1) and (i, j+1). The IRBF approximation in the x and y directions are constructed on

(xi−1, xi, xi+1) and (yj−1, yj, yj+1), respectively by means of (16). This discretisation process

leads to a set of algebraic equations:

∂2ui,j
∂x2

+
∂2ui,j
∂y2

= fi,j, (21)

where 2 ≤ i ≤ Nx−1 and 2 ≤ j ≤ Ny−1. In (21), ∂2ui,j/∂x
2 is a linear function of ui,j, ui−1,j,

ui+1,j, ∂
2ui−1,j/∂x

2, ∂2ui+1,j/∂x
2, ..., ∂6ui−1,j/∂x

6 and ∂6ui+1,j/∂x
6, and ∂2ui,j/∂y

2 a linear

function of ui,j, ui,j−1, ui,j+1, ∂
2ui,j−1/∂y

2, ∂2ui,j+1/∂y
2, ..., ∂6ui,j−1/∂y

6 and ∂6ui,j+1/∂y
6.

The nodal derivative values here are unknown, and we employ a Picard-type iteration scheme

to find their values. The solution procedure is described below:

1. Set nodal derivatives of the 2nd, 3rd, 4th, 5th and 6th orders of u along the grid lines

to zero.

2. Solve the algebraic equation set derived from (21).

3. Relax the solution

solk = ζsolk + (1− ζ)solk−1, (22)

where subscript k denotes a current iteration, “sol” a vector containing interior nodal

values of u, and ζ a relax factor (0 < ζ ≤ 1).

4. Compute the derivatives.

5. Compute Convergence Measure defined as the 2-norm ratio of the two vectors (solk −

solk−1) and solk.

6. Check CM . If CM < 10−12, stop the iteration and output the result. Otherwise,

repeat from Step 2.

To compute the derivatives of 2nd, 3rd, 4th, 5th and 6th orders in Step 4, we employ a global

one-dimensional IRBF approximation scheme. Along a horizontal grid line, the scheme is
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based on

∂qu(x)

∂xq
=

Nx∑

i=1

wiGi(x) =
Nx∑

i=1

wiI
(q)
i (x), (23)

∂q−1u(x)

∂xq−1
=

Nx∑

i=1

wiI
(q−1)
i (x) + c1, (24)

· · · · · · · · ·

∂u(x)

∂x
=

Nx∑

i=1

wiI
(1)
i (x) + c1

xq−2

(q − 2)!
+ c2

xq−3

(q − 3)!
+ · · ·+ cq−1, (25)

u(x) =

Nx∑

i=1

wiI
(0)
i (x) + c1

xq−1

(q − 1)!
+ c2

xq−2

(q − 2)!
+ · · ·+ cq−1x+ cq, (26)

where Nx is the number of nodes on the grid line. The IRBF coefficients in (23)-(26) can be

replaced with nodal values of u by solving the conversion system û = Cŵ, where

C =




I
(0)
1 (x1), I

(0)
2 (x1), · · · , I

(0)
Nx

(x1),
x
q−1

1

(q−1)!
, · · · , x1, 1

I
(0)
1 (x2), I

(0)
2 (x2), · · · , I

(0)
Nx

(x2),
x
q−1

2

(q−1)!
, · · · , x2, 1

· · · · · · · · ·

I
(0)
1 (xNx

), I
(0)
2 (xNx

), · · · , I
(0)
Nx

(xNx
),

x
q−1

Nx

(q−1)!
, · · · , xNx

, 1




,

û = (u1, u2, · · · , uNx
)′ ,

ŵ = (w1, w2, · · · , wNx
, c1, c2, · · · , cq)′ .

Derivatives of second order and higher can now be computed using nodal values of u on the

grid line only. On the ith horizontal grid line, the expressions are

∂2ui,j
∂x2

=
[
I
(2)
1 (xi,j), · · · , I(2)Nx

(xi,j), · · ·
]
C−1û, (27)

∂3ui,j
∂x3

=
[
I
(3)
1 (xi,j), · · · , I(3)Nx

(xi,j), · · ·
]
C−1û, (28)

· · · · · · · · · (29)

∂6ui,j
∂x6

=
[
I
(6)
1 (xi,j), · · · , I(6)Nx

(xi,j), · · ·
]
C−1û, (30)

where j = (1, 2, · · · , Nx). Expressions for computing derivatives on a vertical grid line can be

11



acquired in a similar way. As in our previous works, the RBF width here is simply chosen as

ai = β2h. For non-rectangular domains, Nx and Ny become variable values. For the steady

advection diffusion equation, the convection terms are taken to be the forcing function f(x)

(i.e. the right-hand side of Poisson equation).

3 Implementation notes

The proposed stencils result in a sparse system matrix, which has 3 non-zero entries per

row (tri-diagonal) for 1D problems and 5 non-zero entries per row (sparse) for 2D problems.

These algebraic systems can be solved in an efficient way. On the other hand, the proposed

method involves a Picard-type iteration scheme to find derivative values at the two end-

nodes of the stencil. In addition, to achieve a high level of accuracy, the method needs

to use extended precision arithmetic for computing the inverse of local conversion matrices

in the IRBF formulation. In this study, the matrix inverse is computed with 32 digits

of precision, and the computations of other tasks such as forming the conversion matrix,

computing derivatives, solving the final system of algebraic equations are all carried out

with standard double precision. It was observed that the total CPU times used by our

Matlab code for finding the IRBF coefficients in (15) and (17) were small: 0.028161 seconds

and 0.022366 seconds, respectively, where the computations were carried out using function

vpa on a Laptop with an CPU Intel(R) Core(TM) i7-7660U 2.50GHz 2.50GHz. For the

region discretised with a uniform grid, one needs to compute the matrix inversion on only

one stencil, and the obtained results are then used for other stencils and for every iterative

step. They can be taken as a preprocessing step. Also, the final system matrix stays the

same during the iteration process. For non-linear problems, an iteration scheme is needed

for any numerical method, and the computation of derivatives in the present formulation is

simply embedded in those iterative steps without extra loop required.
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4 Numerical results

The solution accuracy is measured in the form of relative L2-norm

Ne =

∑N

i=1 (ui − uei )
2

∑N

i=1(u
e
i )

2
, (31)

where u and ue are the approximate and exact solutions, respectively. For the RBF width,

we take ai = βh, where β is a positive scaler and h is the size of the grid.

4.1 1D problems

4.1.1 Steady diffusion equation

The proposed method is first verified in

d2u

dx2
= −(9975 sin(100x) + 1000 cos(100x)) exp(−5x), 0 ≤ x ≤ 1, (32)

whose exact solution is ue(x) = sin(100x) exp(−5x) (Figure 1).

Uniform grids: For an RBF solution, one can also control its accuracy through the width of

RBFs. The effects of grid size and RBF width on the solution accuracy are both studied here.

Results concerning grid size adaptability together with those by some other techniques are

shown in Figure 2. To study the grid-size effect carefully, the number of nodes is increased in

small increments of 2. It can be seen that the proposed method yields a very fast convergence,

apparently as O(h13.55) which is much higher than O(h1.87) of the finite difference (FD),

O(h4.07) of the compact FD [29], and O(h4.23) of the compact IRBF [25] methods. Figure 3

displays the effect of the RBF width, measured through β, on the solution accuracy. It can

be seen that varying β can also improve the solution accuracy.

For the case of Dirichlet-Neumann boundary conditions, high rates of convergence are also

obtained as shown in Figure 4. A rate of 13.94 is achieved using β = 3. However, their levels
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of accuracy are lower when comparing to the case of Dirichlet-Dirichlet boundary conditions.

Non-uniform grids: Such grids are generated here using

xi =
1

2
+ α sinh

(
η

(
1− i− 1

N − 1

)
+ θ

i− 1

N − 1

)
, (33)

where α is a given number, i = (1, 2, · · · , N), N the number of grid nodes, η = sinh−1(−1/2α)

and θ = sinh−1(1/2α). This transformation produces the points that are concentrated near

x = 1/2. The smaller the value of α the more non-uniform the grid will be. We consider 3

values α = (2, 1/2, 1/3) employed with the same value of β (β = 3). Grids are generated with

small increments of 2: N = (35, 37, · · · , 161) to study the effect of grid size on accuracy. The

solution converges as O(h12.35) for α = 2, O(h13.47) for α = 1/2, and O(h13.35) for α = 1/3,

where h = (xB − xA)/(N − 1) = 1/(N − 1) - the average grid size (Figure 5).

4.1.2 Steady advection-diffusion equation

We solve the steady constant-velocity advection diffusion equation

−d
2u

dx2
+ λ

du

dx
= 0, 0 ≤ x ≤ 1, (34)

with boundary conditions: u(0) = 0 and u(1) = 1. The exact solution to this problem is

ue(x) = (1 − exp(λx))/(1 − exp(λ)). Four different numerical schemes, namely the upwind

differencing (UDS), central differencing (CDS), high-order compact differencing (cFDM)

[30] and proposed CIRBFs, are employed. Results for λ = 50 are shown in Figure 6. The

numerical solution converges apparently as O(h1.34) for UDS, O(h1.77) for CDS, O(h3.70)

for cFDM and O(h10.20) for the proposed method. In addition to the achievement of much

greater accuracy, Figure 7 shows that the proposed method has the ability to suppress

spurious numerical oscillations that arise in CDS.
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4.2 2D problems

Both linear and nonlinear problems, and both rectangular and non-rectangular domains are

considered to verify the proposed method.

4.2.1 Rectangular domain

The PDE is chosen as

∂2u

∂x2
+
∂2u

∂y2
= 4(1− π2) sin(2πx) sinh(2y) + 16(1− π2) cosh(4x) cos(4πy), (35)

defined on −1/2 ≤ x, y ≤ 1/2 and subjected to the Dirichlet boundary conditions. The

exact solution to this problem is

u(e)(x, y) = sin(2πx) sinh(2y) + cosh(4x) cos(4πy),

from which boundary values of u can be derived. A global one-dimensional IRBF ap-

proximation scheme with q = 6 is employed to compute the derivatives of second order

and higher along the grid lines. In comparison with 1D problems, there is one extra pa-

rameter here: the RBF width (a) used on the grid lines, which is measured through β2

(a = β2h). To carefully study the effect of grid size, grids with small increments are em-

ployed: (11×11, 13×13, · · · , 41×41). For a grid of 21×21, β = 1 and β2 = 1, the convergence

behaviour of the Picard iteration scheme is shown in Figure 8. To reach CM = 10−12, the

scheme requires 41, 55, 78, 123 and 259 iteration steps for ζ = 1, ζ = 0.8, ζ = 0.6, ζ = 0.4

and ζ = 0.2, respectively. A larger value of ζ yields a faster convergence. Convergence rates

of the solution with respect to the grid size for several values of β2 are shown in Figure 9.

The proposed method achieves a convergence of O(h7.34) for β2 = 1, O(h8.46) for β2 = 3

and O(h9.26) for β2 = 5. It is noted that a high rate of convergence is achieved with a

simple choice of the RBF width/shape-parameter (ai = h). Figure 10 shows a comparison of

convergence rates of different numerical methods. The proposed method (O(h9.26)) clearly
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outperforms the central differences (O(h1.87)) and the compact IRBF method (O(h3.94)) [25].

4.2.2 Non-rectangular domain

Consider a concentric annulus as shown in Figure 11, where an inner circle is of radius R

and an outer square is of side length L. Here, we take R/L = 0.125. The domain is simply

discretised using a Cartesian grid of density Nx×Ny. Grid nodes inside the physical domain

are taken to be interior grid nodes, except those that are within a small distance of h/6 to

the inner boundary. Boundary points are generated from the intersection of the grid lines

and the boundaries.

The PDE chosen is also Poisson equation with its exact solution being

ue(x, y) = e−(x−0.25)2−(y−0.5)2 sin πx cos 2πy, (36)

from which one can derive its forcing function f(x, y) and boundary conditions. A global

one-dimensional IRBF approximation scheme with q = 6 is employed to compute derivatives

of second order and higher on the grid lines. Value of β is simply set to 1.

The convergence behaviour of the Picard scheme for a grid of 18×18 and β2 = 1 is shown in

Figure 12, where all derivative values are set to zero at the first iteration step. It can be seen

that CM is consistently reduced with the number of iteration steps. To reach CM < 10−12,

the scheme only requires 74, 102, 160 and 333 iteration steps for ζ = 0.8, ζ = 0.6, ζ = 0.4

and ζ = 0.2, respectively. The larger the value of α the faster the convergence will be.

To study the grid size effect carefully, the number of nodes in each direction is increased in

small increments of 2: (10× 10, 12× 12, · · · , 50× 50). Results concerning the dependence of

solution accuracy on grid size for several values of β2 are shown in Figure 13. It can be seen

that the error is consistently reduced at small values of h. The proposed method achieves a

convergence of O(h7.85) for β = 0.1, O(h8.22) for β = 0.5 and O(h9.02) for β = 1. As in the

case of rectangular domains, a high rate of convergence is achieved here with a simple choice
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of the RBF width/shape-parameter (ai = h).

4.2.3 Natural convection in annulus domain

The dimensionless governing equations for 2D steady-state buoyancy-driven flows can be

written in terms of the streamfunction ψ, vorticity ω and temperature T as

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (37)

∂2ω

∂x2
+
∂2ω

∂y2
=

√
Ra

Pr

(
u
∂ω

∂x
+ v

∂ω

∂y

)
+

√
Ra

Pr

∂T

∂x
, (38)

∂2T

∂x2
+
∂2T

∂y2
=

√
RaPr

(
u
∂T

∂x
+ v

∂T

∂y

)
, (39)

where u and v are the x and y components of the velocity vector, which are defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

and Pr and Ra are the Prandtl and Rayleigh numbers defined as Pr = ν/α and Ra =

γg∆TL3/αν, respectively in which ν is the kinematic viscosity, α the thermal diffusivity,

γ the thermal expansion coefficient, g the gravity, and L and ∆T the characteristic length

and temperature difference, respectively. In this dimensionless scheme, the velocity scale is

taken as U =
√
gLγ∆T for the purpose of balancing the buoyancy and inertial forces.

Consider natural convection in a concentric annulus between a heated inner circular cylinder

of radius R and a cooled square enclosure of side length L (Figure 11). Simulations with

R/L = 0.2 and Pr = 0.71 are carried out on three uniform Cartesian grids, namely 32× 32,

36× 36 and 40× 40, for a wide range of Ra, (104, 105, 106).

For (37), due to the flow symmetry, the streamfunction ψ is set to zero on both the inner

and outer boundaries. For (39), the temperature T is set to 1 on the inner boundary and 0

on the outer boundary.

For (38), the boundary conditions are derived from (37). On the outer, (37) reduces to
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ω = ∂2ψ/∂x2 on x = −L/2 and x = L/2, and ω = ∂2ψ/∂y2 on y = −L/2 and y = L/2. On

the inner, we utilise analytic formulas proposed in [31], i.e.

ω =

[
1 +

(y
x

)2
]
∂2ψ

∂x2
(40)

for boundary points that lie on the x-grid lines, and

ω =

[
1 +

(
x

y

)2
]
∂2ψ

∂y2
(41)

for boundary points that lie on the y-grid lines.

The solution procedure can be summarised as follows

1. Guess initial values of the streamfunction, vorticity and temperature fields. For the

Stokes flow (Ra = 0), the simulation starts from rest. For Ra > 0, the solution at the

lower and nearest Ra is taken as an initial guess.

2. Discretise equations (37)-(39), where the RHSs are taken to be forcing functions (the

right-hand side of Poisson equation). It is noted that the three equations have the

same system matrix.

3. Solve (39) for interior nodal values of T .

4. Relax the temperature field according to (22).

5. Compute the 1st-, 2nd-, 3rd-, 4th-, 5th- and 6th-order derivatives of T on the grid

lines.

6. Solve (37) for interior nodal values of ψ.

7. Relax the streamfunction field.

8. Compute the 1st-, 2nd-, 3rd-, 4th-, 5th- and 6th-order derivatives of ψ on the grid

lines.

9. Derive a computational boundary condition for ω.
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10. Solve (38) for interior nodal values of ω.

11. Relax the vorticity field.

12. Compute the 1st-, 2nd-, 3rd-, 4th-, 5th- and 6th-order derivatives of ω on the grid

lines.

13. Compute CM , where “sol” is composed of nodal values of T , ψ and ω.

14. Check CM < 10−12. If it is not satisfied, repeat from Step 3.

15. Otherwise, stop the calculation and output the results.

For this problem, value of β and β2 are simply set to 1. In Step 9, following [31], a global one-

dimensional IRBF approximation scheme with q = 2 is employed to estimate the vorticity

boundary conditions. The non-slip boundary conditions at the inner and outer boundaries

(i.e. vx = 0 and vy = 0) lead to ∂ψ/∂x = 0 and ∂ψ/∂y = 0. On the x-grid lines, the vorticity

boundary conditions are estimated using (40), where boundary values ∂ψ/∂x = 0 are incor-

porated into the IRBF approximation of ∂2ψ/∂x2 by means of integration constants. On

the y-grid lines, the vorticity boundary conditions are estimated using (41), where boundary

values ∂ψ/∂x = 0 are incorporated into the IRBF approximation of ∂2ψ/∂y2 by means of

integration constants.

To be consistent with the boundary estimation, a global one-dimensional IRBF approxima-

tion scheme in Steps 5, 8 and 12 are also employed with q = 2. To compute the 3rd- and

4th-order derivatives, the 2nd-order derivatives are taken as functions, and to compute the

5rd- and 6th-order derivatives, the 4th-order derivatives are taken as functions.

The obtained results are presented in Figures 14 and 15, and Table 1. Results concerning the

convergence behaviour of the Picard scheme for Ra = 104, Ra = 105 and Ra = 106 on a grid

of 32×32 are shown in Figure 14, where the value CM is seen to reduce quite monotonically

and a higher Ra case requires more iteration steps. Figure 15 presents contour plots of the

streamfunction and temperature fields for Ra = 104, Ra = 105 and Ra = 106 acquired from

a coarse grid of 32× 32. There are 21 lines whose value varies linearly in each contour plot.
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The distributions look feasible when compared to those by the finite-volume method [32]

and the differential-quadrature method [33]. The proposed method is able to capture thin

boundary layers of the temperature field at high values of Ra using a relatively coarse grid.

Table 1 displays estimated values of the average Nusselt number defined as

Nu =
H

κ
, (42)

where H = −(κ/∆T )
∮
∂T/∂nds, κ the thermal conductivity and ∆T the temperature

difference between the inner and outer boundaries. To compare with those in [32] and [33],

where the computational domain is taken as one-half of the physical domain owing to the

flow symmetry, the computed values of Nu in the present work (Table 1) are divided by 2.

Good agreement is achieved.

5 Concluding remarks

This paper presents a new Cartesian-grid-based RBF method, where the system matrix has

only 3 non-zero entries per row (tridiagonal) for 1D problems and 5 non-zero entries per row

(sparse) for 2D problems. A salient feature of the proposed method lies in the inclusion of

nodal values of the 2nd-, 3rd-, 4th, 5th- and 6th-order derivatives in the RBF approximations.

The method needs a Picard-type iteration scheme to compute the imposed derivatives and

the use of higher-precision arithmetic to compute relatively-small conversion matrices. The

proposed method is verified in linear and non-linear problems with rectangular and non-

rectangular domains, and uniform and nonuniform grids. For non-linear problems, like other

numerical techniques, the proposed method involves only one loop to solve the algebraic

system. New compact approximations allow the order of grid convergence of 3-point stencils

in 1D and 5-point stencils in 2D to be higher than 4. High rates of convergence are acquired

even with a simple choice of the RBF-width/shape-parameter (the nodal-distance/grid-size

taken as the RBF width). In the simulation of natural convection in an annulus domain, the

flow behaviour is well captured using relatively-coarse grids.

20



Appendix

The following are integrated basis functions derived from the multiquadric function by using

Mathematica

I
(1)
i (x) = (x−xi)

2
A+

a2
i

2
B,

I
(2)
i (x) =

(
−a2

i

3
+ (x−xi)2

6

)
A +

a2
i
(x−xi)

2
B,

I
(3)
i (x) =

(
−13a2

i
(x−xi)

48
+ (x−xi)3

24

)
A +

(
−a4

i

16
+

a2
i
(x−xi)2

4

)
B,

I
(4)
i (x) =

(
a4i
45

− 83a2i (x−xi)
2

720
+ (x−xi)

4

120

)
A+

(
−3a4i (x−xi)

48
+

4a2i (x−xi)
3

48

)
B,

I
(5)
i (x) =

(
113a4i (x−xi)

5760
− 97a2i (x−xi)

3

2880
+ (x−xi)

5

720

)
A +

(
a6i
384

− 3a4i (x−xi)
2

96
+

2a2i (x−xi)
4

96

)
B,

I
(6)
i (x) =

(
−a6

i

1575
+

593a4
i
(x−xi)2

67200
− 253a2

i
(x−xi)4

33600
+ (x−xi)6

5040

)
A+

(
5a6

i
(x−xi)

1920
− 20a4

i
(x−xi)3

1920
+

8a2
i
(x−xi)5

1920

)
B,

I
(7)
i (x) =

(
−1873a6i (x−xi)

3225600
+

4327a4i (x−xi)
3

1612800
− 551a2i (x−xi)

5

403200
+ (x−xi)7

403200

)
A+

(
−a8i
18432

+
15a6i (x−xi)

2

11520
− 30a4i (x−xi)

4

11520
+

8a2i (x−xi)
6

11520

)
B,

I
(8)
i (x) =

(
a8
i
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− 54511a6

i
(x−xi)2
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+

20939a4
i
(x−xi)4

33868800
− 5309a2

i
(x−xi)6

25401600
+ (x−xi)

8

362880

)
A+

(
−35a8

i
(x−xi)

645120
+

280a6
i
(x−xi)3
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i
(x−xi)5
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64a2
i
(x−xi)7
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)
B,

I
(9)
i (x) =

(
30563a8

i
(x−xi)
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− 135389a6
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(x−xi)3
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(x−xi)5
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203212800
+ (x−xi)9

3628800

)
A+

(
a10i

1474560
− 35a8i (x−xi)

2

1290240
+

140a6i (x−xi)
4

1290240
− 112a4i (x−xi)

6

1290240
+

16a2i (x−xi)
8

1290240

)
B,

I
(10)
i (x) =

(
− a10i

9823275
+

284021a8i (x−xi)
2

64377815040
− 41885a6i (x−xi)

4

2145927168
+

721109a4i (x−xi)
6

40236134400
− 64811a2i (x−xi)

8

20118067200
+ (x−xi)

10

39916800

)
A+

(
63a10

i
(x−xi)

92897280
− 840a8

i
(x−xi)3

92897280
+

2016a6
i
(x−xi)5

92897280
− 1152a4

i
(x−xi)7

92897280
+

128a2
i
(x−xi)9

92897280

)
B

where A =
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(x− xi)2 + a2i and B = ln
(
(x− xi) +

√
(x− xi)2 + a2i

)
.
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Table 1: Natural convection, annulus domain: the Nusselt number. Values of the Nusselt
number by the finite-volume [32] and differential-quadrature [33] methods are also included
for comparison purposes.

Nu

Nx ×Ny Ra = 104 Ra = 105 Ra = 106

32× 32 3.2205 4.8494 10.4656
36× 36 3.2218 4.8724 9.6596
40× 40 3.2227 4.8851 9.1403
Ref. [32] 3.24 4.86 8.90
Ref. [33] 3.331 5.080 9.374
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Figure 1: Steady diffusion equation: Exact solution.
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Figure 2: Steady diffusion equation, N = (35, 37, · · · , 161): Effect of the grid size on ac-
curacy. To study the grid-size effect carefully, the number of nodes is increased in small
increments of 2. The numerical solution converges apparently as O(h1.87) for the central
differences, O(h4.07) for the compact central differences, O(h4.23) for the compact IRBF [25]
and O(h13.55) for the present CIRBF (β = 5).
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Figure 3: Steady diffusion equation, N = 101: Effect of the RBF width, measured through
β, on numerical accuracy.
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Figure 4: Steady diffusion equation, N = (35, 37, · · · , 161): With Dirichlet-Neumann bound-
ary conditions, the numerical solution converges as O(h11.27) for β = 1, O(h12.44) for β = 2
and O(h13.94) for β = 3, where h is the average grid size. When compared to Dirichlet-
Dirichlet boundary conditions, high rates of convergence are also obtained here, but their
levels of accuracy are lower.
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Figure 5: Steady diffusion equation, N = (35, 37, · · · , 161), β = 3: With non-uniform grids,
the solution converges as O(h13.35) for α = 1/3, O(h13.47) for α = 1/2, and O(h12.35) for
α = 2, where h is the average grid size.
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Figure 6: Steady advection-diffusion equation in 1D, λ = 50, N = (31, 33, · · · , 101): Com-
parison of convergence rates of different numerical methods. The numerical solution con-
verges apparently as O(h1.34) for the upwind difference scheme, O(h1.77) for central difference
scheme, O(h3.70) for compact FDM and O(h10.20) for the proposed method.
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Figure 7: Steady advection-diffusion equation in 1D, λ = 50, N = 9: Solutions by the central
difference method and the proposed method.
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Figure 8: PDE, 21× 21, β = 1, β2 = 1, zeros as initial guess: Convergence behaviour of the
Picard scheme. To reach CM = 10−12, the scheme requires 41, 55, 78, 123 and 259 iteration
steps for ζ = 1, ζ = 0.8, ζ = 0.6, ζ = 0.4 and ζ = 0.2, respectively.

34



10-2 10-1 100

h

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

N
e

2
=1

2
=3

2
=5

Figure 9: PDE, Nx ×Ny = (11× 11, 13× 13, · · · , 41× 41), β = 1: Effect of the grid size on
accuracy for several values of the RBF width employed on the grid lines. To study the grid-
size effect carefully, the number of nodes in each direction is increased in small increments
of 2. The numerical solution converges apparently as O(h7.34) for β2 = 1, O(h8.46) for β2 = 3
and O(h9.26) for β2 = 5.
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Figure 10: PDE, Nx×Ny = (11×11, 13×13, · · · , 41×41): Comparison of convergence rates
of different numerical methods. The numerical solution converges apparently as O(h1.87)
for the central differences, O(h3.94) for the compact IRBF [25] and O(h9.26) for the present
CIRBF.
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Figure 11: PDE, annulus domain (R/L = 0.125): Cartesian-grid-based discretisation.

37



0 50 100 150 200 250 300 350

Number of iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

C
M

=0.8
=0.6
=0.4
=0.2

Figure 12: PDE, annulus domain (R/L = 0.125), 18 × 18, β = 1, β2 = 1, zeros as initial
guess: Convergence behaviour of the Picard scheme. To reach CM = 10−12, the scheme
requires 74, 102, 160 and 333 iteration steps for ζ = 0.8, ζ = 0.6, ζ = 0.4 and ζ = 0.2,
respectively.
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Figure 13: PDE, annulus domain, Nx ×Ny = (10× 10, 12× 12, · · · , 50× 50), β = 1: Effect
of the grid size on accuracy for several values of the RBF width employed on the grid lines.
To study the grid-size effect carefully, the number of nodes in each direction is increased in
small increments of 2. The proposed method achieves a convergence of O(h7.85) for β2 = 0.1,
O(h8.22) for β2 = 0.5 and O(h9.02) for β2 = 1.
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Figure 14: Natural convection, annulus domain (R/L = 2), 32 × 32, β = 1: Convergence
behaviour of the Picard scheme, where the solution at lower Ra is taken as initial guess. To
reach CM = 10−12, the scheme requires 650, 957 and 10901 iteration steps for Ra = 104(ζ =
0.1), Ra = 105(ζ = 0.1) and Ra = 106(ζ = 0.01), respectively.
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Figure 15: Natural convection, annulus domain: Distributions of the temperature (left) and
stream function (right) acquired from a coarse grid of 32×32. Each plot contains 21 iso-lines
whose associated values vary linearly between the two extremes.
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