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Abstract

Recently, a mix of traditional and modern approaches have been proposed to

detect brain abnormalities using bio-signal/bio-image-assisted methods. In hospi-

tals, most of the initial/scheduled assessments consider the bio-signal-based

appraisal, due to its non-invasive nature and low cost. Further, brain bio-signal

scans can be recorded using a single/multi-channel electrode setup, which is fur-

ther evaluated by an experienced doctor, as well as computer software, to identify

the nature and severity of abnormality. In this paper, we describe the develop-

ment of a system for computer supported detection (CSD) of schizophrenia using

the electroencephalogram (EEG) signal collected with a 19-channel electrode

array. Schizophrenia is a mental illness that interferes with the way an individual

thinks and behaves. It is characterised by psychotic symptoms such as hallucina-

tions or delusions, negative symptoms such as decreased motivation or a lack of

interest in daily activities and cognitive symptoms such challenges in processing

information to make informed decisions or staying focused. This research has uti-

lized 1142 EEGs (516 normal and 626 schizophrenia) with a frame length of 25 s

(6250 samples) for investigation. The work initially converts the EEG signals to

images using a spectrogram. Local configuration pattern features were extracted

from the images thereafter, and 10-fold validation technique was used wherein

Student's t-test and z-score standardization were computed per fold. The highest

accuracy of 97.20% was achieved with the K-nearest neighbour (KNN) classifier.

The results obtained confirm that the KNN classifier is helpful in the rapid detec-

tion of schizophrenia. This work is one of the first studies to extract local configu-

ration pattern features from spectrogram images, yielding a high accuracy of

97.20%, with reduced computational complexity.
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1 | INTRODUCTION

Recently, several semi-automated/automated disease examination procedures have been proposed and implemented by investigators to diagnose

a class of brain-related disorders (BRD) (Acharya et al., 2012; Gudigar, Raghavendra, Ciaccio, et al., 2019; Gudigar, Raghavendra, San, et al., 2019;

Raja et al., 2018; Rajinikanth et al., 2017; Subudhi et al., 2018; Talo et al., 2019). The accessibility of recent therapeutic service has also helped in

the recognition of a variety of brain disorders in the early phase, and it has also been found to be useful in suggesting probable handling actions

to regulate and treat the disease (Acharya et al., 2019; Acharya, Oh, Hagiwara, Tan, & Adeli, 2018; Acharya, Oh, Hagiwara, Tan, Adeli, &

Subha, 2018; Michielli et al., 2019; Oh et al., 2018; Sharma, Achuth, et al., 2018; Sharma, Deb, & Acharya, 2018; Yuvaraj et al., 2018). Schizophre-

nia is one of the BRD in humans which causes hallucinations and delusions in affected people (Picchioni & Murray, 2007), and early diagnosis may

help them to recover from the disease impact. This effect also includes deformation in thinking, sensitivity, emotion, speech, sagacity of self, and

activities. The abovementioned characteristics could be present due to the increased levels of dopamine neurotransmitters in the brain of a

schizophrenic patient as compared with that of a normal individual. The 2019 report of the World Health Organization (WHO) revealed that

schizophrenia is a chronic BRD affecting 20 million people globally every year (Schizophrenia, World Health Organisation, 2022). This disease cau-

ses substantial disability, and increases the premature death rate by 2–3 times as compared with unaffected persons (GBD 2017 Disease and

Injury Incidence and Prevalence Collaborators, 2018). If the disease is recognized in its early phase, it may be managed with scheduled medication

and psychosocial support. The WHO report also confirmed that most schizophrenia sufferers living in low- and middle-income countries will not

have sufficient provision for disease diagnosis so that a treatment planning process could proceed (Laursen et al., 2014). Furthermore, 69% of per-

sons known to be affected by schizophrenia do not receive suitable care (Lora et al., 2012).

Recently, a considerable number of recognition and treatment planning procedures have been proposed to treat patients at the hospital level,

as well as in home care with the supervision of family members. Different studies performed in past years have confirmed that the diagnosis of

schizophrenia can be carried out with bio-signal-based procedures, which include the collection of (EEGs) obtained by using a suitable electrode

array. EEG signals form due to events occurring in neurons within the brain and are usually documented with single/multi-channel electrodes

placed on the scalp area. EEG signals are also efficient in providing information on other BRDs, such as dementia, Alzheimer's disease (AD), sleep

disorder, and epilepsy (Bhattacharyya et al., 2017; Bhattacharyya et al., 2018; Gupta et al., 2017; Sharma et al., 2017; Sharma, Deb, &

Acharya, 2018; Tripathy & Acharya, 2018; Yıldırım et al., 2018).

Our research aims to construct a computer supported detection (CSD) system to detect schizophrenia by evaluating the signal patterns of

multi-channel EEG signals. The clinical level detection of schizophrenia is according to the history of complaint and the occurrence of neurological

and psychological features (Jahmunah et al., 2019). The medical and/or activities of the patient may be gathered from family and friends before

the decision is executed. Essential information regarding the patient, such as gender, diet, use of drug/medicines, and behaviour, are also consid-

ered during schizophrenia diagnosis.

Different CSD systems have been developed and executed by investigators to examine the incidence and degree of schizophrenia

(Dvey-Aharon et al., 2015). Our present work also aims to develop a novel CSD system to recognize the disease with greater accuracy. The

work consists of the following phases: (i) Conversion of 1-dimensional (1D) signals (19 channel) EEG with surface electrodes to

2-dimensional (2D) images, (ii) Extraction of image features from the images, (iii) Selection of significant features, (iv) Training and testing of

classifiers and (v) validation and performance confirmation. This work was executed using EEG tracings, supported in examination of schizo-

phrenia using the clinical-grade EEG signal database provided by Olejarczyk and Jernajczyk (2017), EEG Database et al. (2017). In this data-

base, the number of signal samples/volunteers is large, and hence a segmentation technique was implemented to extract a signal sequence,

with 6250 samples. The segmented EEG signal was then evaluated with our proposed CSD system. Our system confirmed that the detection

accuracy of CSD improves with the K-nearest neighbour (KNN) classifier (97.20%) as compared to other classifiers considered in this

research work. The outcome of this study also confirmed that the discussed technique is easy to implement, and can be employed to detect

schizophrenia from EEG tracings collected from patients. This work is one of the first studies to extract local configuration pattern features

from the spectrogram images, obtaining a high accuracy of 97.20% with reduced computational complexity. This paper is structured as fol-

lows: Section 1 provides the background of schizophrenia, Section 2 provides the context for developing a CSD system, Section 3 describes

the main aim of research, Section 4 discusses the proposed methodology, Section 5 discusses the results and compares the current study

with related studies and Section 6 concludes the work.

2 | CONTEXT

Due to its clinical significance, many EEG guided brain abnormality assessment techniques have previously been proposed and implemented to

evaluate various illnesses. Schizophrenia is one such abnormality (Khare et al., 2021; Sharma & Acharya, 2021); it affects a considerable number

of persons globally, and early detection and hospital/home supported care should reduce disease impact. Multi-channel EEG is a proven diagnos-

tic procedure in which the required EEG signals are collected from patients using a non-invasive scalp electrode array, and these signals are then
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assessed with conventional/recent evaluation procedures. Normally, the conventional approach requires the assistance of an experienced doctor,

who will examine the signal pattern physically to recognize the nature and degree of abnormality. This is a time-consuming process and hence,

CSD systems have been proposed to assist the doctor in assessing EEG signals (Lai et al., 2021). The recent (past 6 years) schizophrenia assess-

ment methods using traditional machine learning methods with EEG signals and images are summarized in Tables 1 and 2, respectively. From the

table, it is observable that most authors had explored common techniques such as non-linear feature extraction, statistical feature extraction and

wavelet transform methods. While some authors had explored different methods ranging from feature extraction methods using optimization

techniques to spectral analysis of frequency bands and multivariate patterns analysis, these studies were all conducted using EEG signals. The cur-

rent study is one of the earliest to have uniquely extracted local configuration patterns on spectrogram images for the classification of schizophre-

nia with EEG signals.

3 | PROBLEM FORMULATION

This research aims to execute a clinically significant CSD system to detect schizophrenia using multi-channel EEG obtained with a suitable elec-

trode array. Recording and examining the EEG is a difficult task due to its multi-level signature. Moreover, the complexity of the assessment will

increase based on the span of the EEG to be assessed. Hence, in this work, a segmentation procedure is implemented to limit the span of the EEG

to the appropriate level, and the signal is converted into imagery prior to assessment. This work considered 28 volunteers' EEGs (14 normal and

14 disease classes) and the collected EEG was then segmented into 6250 samples. Then these samples were analysed using our proposed CSD to

detect the schizophrenia class of EEG with enhanced accuracy.

4 | METHODOLOGY

The proposed research work aims to execute a CSD to diagnose the segmented EEG signal with superior accuracy. The scheme executed in this

CSD can be found in Figure 2. Initially, a clinical trial is initiated to acquire a 19-channel EEG sequence from volunteers (N = 28), and the acquired

EEG are then segmented into 6250 samples (25 s sequences) with repeated patterns. The density of this EEG is large, and assessment of these

patterns for all 19 channels is complex and time-consuming. Hence, the existing 1-dimensional EEG signals are converted to 2-dimensional images

using the short-time Fourier transform (STFT). Local configuration pattern (LCP) features are extracted from the grey images thereafter. Highly

significant features are selected with Student's t- test. This feature set is then input to an array of classifiers, for the classification task. Figure 1

shows the various stages involved in the development of our automated system.

4.1 | Database preparation and pre-processing

Collection of clinical-grade schizophrenia EEG signals requires a complex preparation process and also the co-operation of volunteers who suffer

from the disease. This work considered the multi-channel EEG database recorded and used by Olejarczyk and Jernajczyk (Olejarczyk &

Jernajczyk, 2017), and this data set consists of 28 high-quality EEG sequences, which can be accessed from (EEG Database et al., 2017). The seg-

mented signals were rescaled and normalised in the range 0 to 1. Table 3 presents information about the EEG signals. The actual EEG of normal/

schizophrenia class of samples are complex to view and evaluate. Furthermore, the patterns of EEG are repetitive when it is recorded in a con-

trolled environment. Hence, to minimize complexity, repeating patterns were segmented, and a new data set was constructed with 6250 sam-

ples/sequences. This segmentation procedure provided 1142 values from EEG sequences, which were then evaluated with the proposed CSD.

Figure 2 depicts a sample EEG sequence, in which Figure 2a presents the disease class EEG, and Figure 2b depicts that of the normal class. These

EEGs were acquired using a sampling frequency of 250 Hz with a 10–20 EEG montage and standard electrode locations: Fp1, Fp2, F7, F3, Fz, F4,

F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2. Other information about the signals can be found in (EEG Database et al., 2017).

4.2 | Conversion to spectrogram images

The pre-processed signals were then transformed into 2-D time-frequency spectrograms using the short-time Fourier transform (Huang

et al., 2019). EEG signals are non-stationary, wherein the spontaneous frequency changes according to time. Thus, the characteristics of the

changes cannot be explained using information from the frequency domain alone. Hence, the STFT, which is derived from the discrete Fourier

Transform, is used to analyse the time-frequency characteristics (Huang et al., 2019). The spectrograms were obtained using a window of 10 sam-

ples with 0 overlap along the y-axis. The obtained STFT coefficients were separated into magnitude and angle components, where each column
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of coefficients contained an approximation of the short-term and time-frequency information of the signals. Figures 3 and 4 show the spectro-

gram images of magnitude and angle of the normal and schizophrenia classes, obtained from channel 1 of the signals, respectively.

4.3 | Extraction of local configuration pattern features

LCP features were then extracted from the spectrograms. Among various image features, local binary patterns are very commonly used for extrac-

tion due to the low computational complexity and invariable rotations involved (Kwak et al., 2015). It works by forming a binary pattern based on

the comparison of pixel grey-level patterns with its neighbours (Ojala et al., 2002). However, a drawback of this feature is that the intensity is

approximated based on the computation of the average and variance of the neighbouring pixels. Hence, in this study, LCP features, which inte-

grate local architectural and minuscule configuration information (Guo et al., 2011), were used. Considering neighbours P = 8, 10, 12 and radius

R = 2, 3, 4, 81, 121 169 features were extracted from LCP, respectively, since using large neighbours may short change the LCP technique while

approximating the reconstruction coefficients (Guo et al., 2011). Thus in this study, three different mappings: [(2, 8), (3, 10), (4, 12)] with small

neighbours were extracted from each spectrogram, using LCP. The feature vector was concatenated to a single vector thereafter. Figure 5 shows

the histograms (from the first channel out of the 19 channels) representing the LCP features for the three different mappings, for the normal and

schizophrenia classes, respectively.

4.4 | Feature selection and validation

The 10-fold cross-validation technique (Kohavi, 1995) was used to evaluate the performance of classifiers wherein Student's t-test (Kim, 2015)

and z-score standardization (Kranzusch et al., 2020) were computed per fold. Through the t-test, highly significant features were selected, and

10-fold was used to evaluate the classifiers.

4.5 | Implementation of classifiers

Classification of medical information is an essential process which helps to decrease the diagnosis burden. In machine learning and deep learning

assessments, two-level and multi-level classifications are commonly executed to separate abnormal from normal information (Dey et al., 2019;

TABLE 2 A summary of studies using machine learning methods with images for classification

Reference Database Methodology: other methods

Model/

classifier used

Accuracy

(%)/results

Present

study

19-channel EEG (14 normal and 14

Schizophrenia subjects)

Classification based on local configuration pattern

image features and classifiers

K-nearest

neighbour

classifier

Accuracy:

97.2

F IGURE 1 Various stages concerned with computer supported detection
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Paul et al., 2019; Rajinikanth et al., 2018). This work also employs two-class classifiers, and the performances of these classifiers are confirmed

based on the performance values (PV) and the confusion matrix. This work employs the following classifiers to segregate the existing EEGs into

normal/schizophrenia groups.

F IGURE 2 Multi-channel (19) EEG signals of (A) normal and (B) schizophrenia classes

WEIKOH ET AL. 7 of 19
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4.5.1 | Decision tree

Decision tree (DT) is one of the generally considered classifiers to categorize linear and non-linear data with a series of testing schemes,

which evolves as a tree resembling formation (Guan et al., 2019; Kotsiantis, 2013). DT utilizes a quality exploration setting as the root and

interior nodes, and the class labels form the terminal nodes. Once a DT has been formed, categorization is achieved based on the decision

taken in every limb in the tree. Other essential information regarding the DT considered to classify the EEG signals can be accessed from

Aboalayo et al. (2016).

4.5.2 | Support-vector-machine

Support-vector-machine (SVM) classification is based on a hyperplane which categorizes the information according to the guiding features used

during the training phases of the two and multi-class classification task (Acharya et al., 2012). The earlier works confirmed the implementation of

SVM to classify the EEGs based on the considered features (Abe, 2003; Gautam & Ahmed, 2015; Sumithra et al., 2015). The proposed work con-

sidered the SVM with a linear/radial-basis-function (RBF) kernel. Furthermore, the SVM with other kernels, such as first order, second order and

third order along with RBF, were used to classify the signals into normal/schizophrenia groups

F IGURE 3 Spectrogram images of the magnitude of (a) normal and (b) schizophrenia classes obtained from channel 1

F IGURE 4 Spectrogram images of angle of (a) normal and (b) schizophrenia classes obtained from channel 1

TABLE 3 Information of the multi-channel EEG considered in this research

Type Actual Segmented EEG sequences

Normal EEGs of 14 volunteers (211,250 samples/volunteer) 516 (6250/sequence)

Schizophrenia EEGs of 14 volunteers (231,250 samples/volunteer) 626 (6250/sequence)

Total 1142 sequences
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4.5.3 | KNN

KNN classifies therapeutic information based on feature sets. In this work, the KNN (K = 5) is executed to categorize the EEG signals. Like other

classifiers, the KNN also needs training and testing phases based upon the selected features. KNN evaluates the space among new features to

each training feature, and discovers the best neighbour. Earlier work on KNN classification can be found in Kijsirikul and Ussivakul’s (2002).

F IGURE 5 Histograms of angle and magnitude of (a) normal and (b) schizophrenia classes obtained from channel 1

WEIKOH ET AL. 9 of 19
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4.6 | Performance values and validation

Measures such as TPrate (TPR), FPrate (FPR), TNrate (TNR) and FNrate (FNR), are computed. From these values, other PMS, including accuracy

(ACC), precision (PRE), sensitivity (SEN), specificity (SPE), positive predictive value (PPV) and F1 score are determined. For a satisfactory classifier,

PVs, such as ACC, SEN, SPE and PPV should be maximized (approaching unity). The arithmetic expressions of these values are as follows

(Fernandes et al., 2019; Wu et al., 2010)

TPR¼ SEN¼ TP
TPþFN

ð1Þ

TNR¼SPE¼ TN
TNþFP

ð2Þ

FNR¼ FN
FNþTP

ð3Þ

FPR¼ FP
FPþTN

ð4Þ

ACC¼ TPþTN
TPþTNþFPþFN

ð5Þ

PRE¼ TP
TPþFP

ð6Þ

F1S¼ 2TP
2TPþFNþFP

ð7Þ

NPV¼ TN
TNþFN

ð8Þ

5 | RESULTS AND DISCUSSION

Table 4 presents the classification results. From the table, it is evident that the KNN classifier achieved the highest classification accuracy of

97.20%, performing better than other classifiers. This is shown in Figure 6, based on the validation of classifiers. From Table 1, it is apparent that

Prabhakar et al. (Prabhakar et al., 2020) had obtained a higher accuracy of 98.77% as compared with our study. Although the size of data used by

the authors is similar to our study, it is noteworthy that the backtracking search optimization algorithm they had used is computationally intensive

as compared with our proposed method. Hence, our method is more effective for rapid diagnosis of schizophrenia. Similarly, Sharma et al.

(Sharma & Acharya, 2021) had obtained a slightly higher accuracy of 99.21% as compared with our study, using a similar data size to our study.

However, it is apparent that employing local configuration patterns as in our study is less computationally intensive (Kwak et al., 2015) whereas

wavelet-based feature extraction methods are more computationally intensive (Silva, 2015). Baygin et al. (2021) and Sharma and Acharya (2021)

had also yielded higher classification accuracies. Although the authors had used a larger data size to train and test their developed models, as com-

pared to our study, their proposed techniques may be more computationally intensive as compared to ours. Das and Pachori (2021) had also

TABLE 4 Performance of the classifiers based on extracted features

Classifier scheme ACC (%) SEN (%) SPE (%) PPV (%)

SVM-RBF 93.96 90.25 98.45 98.61

K-nearest neighbours (KNN) 97.20 96.81 97.67 98.07

SVM with second order kernel (SVM2) 95.97 94.72 97.48 97.90

SVM with third order kernel (SVM3) 96.23 94.88 97.86 98.22

SVM with first order kernel (SVM1) 92.82 88.34 98.25 98.41

Decision tree (DT) 90.20 92.01 88.01 90.36
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achieved a higher accuracy, but they had employed multivariate iterative filtering and the decomposition technique which is more is computation-

ally intensive as compared to our proposed method. While the other studies had achieved lower accuracies for the machine learning techniques

they had explored, Olejarczyk and Jernajczyk (2017), Ibáñez-Molina et al. (2018) and Xiang et al. (2019) had discussed only qualitative results.

Thus, it is evident that our proposed technique is able to perform better. Figure 7 presents the boxplot of the five unique top features per fold,

wherein the five features appear in at least one fold, were extracted for the boxplot. These features fall under 12 boxplots, hence there are

12 plots in Figure 7. Table A1 shows the best performing LCP features wherein, the top five features from the local configuration patterns are

LCP 03101, LCP031012, LCP031078, LCP031012 and LCP031089. From the confusion matrix, as seen in Figure 8, it is notable that the mis-

classification rate of the KNN classifier is only 1.97% for normal images and 0% for schizophrenia images. The low misclassification rate and highly

discriminatory features extracted, attest to the robustness of our proposed technique.

F IGURE 6 Number of fold versus accuracy plot

F IGURE 7 Boxplot of the unique top five features per fold
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Naira and Del Alamo (2019), Oh et al. (2019), and Nikhil et al. (2021), Phang et al. (2019), Phang et al. (2020), Sun et al. (2021), Singh

et al. (2020), Shalbaf et al. (2020), Aslan and Akin (2020), Chu, Qiu, et al. (2017), Calhas et al. (2020), Ahmedt-Aristizabal et al. (2021) and Shoeibi

et al. (2021) on the other hand, had employed deep learning algorithms for the classification of schizophrenia, mostly achieving high classification

accuracies of above 90%, wherein Oh et al. (2019), Nikhil et al. (2021), Sun et al. (2021), Singh et al. (2020), Shalbaf et al. (2020) and Shoeibi

et al. (2021) had yielded higher accuracies than our study. As part of future work, deep learning models could be explored as a classifier for the

spectrogram images. There are several advantages and disadvantages of our technique, listed below.

5.1 | Advantages

1. The proposed method has been evaluated by 10-fold validation, hence it is robust.

2. A rapid diagnosis of schizophrenia is possible with our recommended system due to its reduced computational complexity.

3. Extracting local configuration pattern features from the spectrogram images allows us to obtain a high accuracy of 97.20%.

5.2 | Disadvantages

1. Only a small data size can be used for this technique.

2. The classification and selection of features is done manually.

6 | CONCLUSION AND FUTURE WORK

The aim of this work was to develop a system for CSD of schizophrenia from the multi-channel EEG. This research incorporated clinical grade

EEG signals from 28 volunteers (14 normal and 14 schizophrenia patients) recorded using a 19-channel electrode array. Initially, a segmentation

task was implemented to extract the EEG with 6250 discretized sample points (25 s duration). Thereafter, the 1D EEG signals were converted to

2D images using the spectrogram. LCP features were extracted from the grey images subsequently. Highly discriminatory features were selected

with Student's t-test. This feature set was then input to several classifiers. The extracted features were split into 10-folds for classification, and

Student's t-test and a z-score standardization were used per fold. The experimental outcome confirmed that the KNN classifier offered a superior

result (classification accuracy = 97.20%) as compared to other related classifiers considered in this study. The overall results have confirmed that

the proposed technique works well on clinically acquired EEG signals, and this approach is significant for diagnosing schizophrenia based on signal

composition. This is one of the earliest studies to extract local configuration pattern features from the spectrogram images, obtaining a high accu-

racy of 97.20% with reduced computational complexity. Larger data set containing high or low-risk for schizophrenia, motivates future work

involving deep learning model.
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F IGURE 8 Confusion matrix of K-nearest neighbour classifier
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APPENDIX A

TABLE A1 Range(mean ± SD) of best-performing LCP features

Control Schizophrenia

Mean SD Mean SD p-value

theta__13_LCP03101 1.8223 0.0191 1.6563 0.1558 0.0000

theta__13_LCP031012 1.6122 0.0148 1.4693 0.1348 0.0000

theta__13_LCP031078 0.7616 0.0199 0.8322 0.0637 0.0000

theta__5_LCP031012 1.6218 0.0136 1.4836 0.1316 0.0000

theta__5_LCP031089 0.5828 0.0164 0.6824 0.0940 0.0000

theta__9_LCP0310101 0.3434 0.0399 0.5213 0.1654 0.0000

theta__9_LCP0310109 0.3434 0.0399 0.5213 0.1654 0.0000

theta__4_LCP031012 1.6176 0.0146 1.4825 0.1291 0.0000

theta__18_LCP031012 1.6141 0.0161 1.4755 0.1326 0.0000

theta__16_LCP031012 1.6135 0.0158 1.4730 0.1346 0.0000

theta__17_LCP031012 1.6116 0.0145 1.4773 0.1291 0.0000

theta__4_LCP031078 0.7571 0.0218 0.8275 0.0638 0.0000

theta__18_LCP0310101 0.3625 0.0419 0.5355 0.1612 0.0000

theta__18_LCP0310109 0.3625 0.0419 0.5355 0.1612 0.0000

theta__3_LCP031012 1.6111 0.0147 1.4778 0.1283 0.0000

theta__19_LCP031012 1.6128 0.0162 1.4746 0.1332 0.0000

theta__8_LCP031012 1.6149 0.0130 1.4844 0.1265 0.0000

theta__8_LCP0310101 0.3625 0.0369 0.5444 0.1728 0.0000

theta__8_LCP0310109 0.3625 0.0369 0.5444 0.1728 0.0000

theta__19_LCP03101 1.8229 0.0196 1.6633 0.1544 0.0000

theta__9_LCP031012 1.6189 0.0137 1.4829 0.1322 0.0000

theta__17_LCP03101 1.8245 0.0167 1.6691 0.1511 0.0000

theta__18_LCP03101 1.8274 0.0199 1.6672 0.1555 0.0000

theta__19_LCP031089 0.5876 0.0160 0.6853 0.0942 0.0000

(Continues)
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TABLE A1 (Continued)

Control Schizophrenia

Mean SD Mean SD p-value

theta__13_LCP031089 0.5879 0.0165 0.6884 0.0970 0.0000

theta__16_LCP03101 1.8226 0.0185 1.6600 0.1584 0.0000

theta__16_LCP031089 0.5862 0.0165 0.6860 0.0964 0.0000

theta__4_LCP03101 1.8260 0.0165 1.6745 0.1479 0.0000

theta__18_LCP031089 0.5850 0.0163 0.6830 0.0948 0.0000

theta__13_LCP0310100 0.4289 0.0069 0.5293 0.0990 0.0000

theta__3_LCP03101 1.8240 0.0166 1.6734 0.1477 0.0000

theta__14_LCP031012 1.6106 0.0143 1.4796 0.1286 0.0000

theta__19_LCP031078 0.7614 0.0209 0.8303 0.0641 0.0000

theta__18_LCP031078 0.7537 0.0190 0.8234 0.0657 0.0000

theta__14_LCP0310101 0.3726 0.0414 0.5392 0.1588 0.0000

theta__14_LCP0310109 0.3726 0.0414 0.5392 0.1588 0.0000

theta__5_LCP031078 0.7611 0.0241 0.8310 0.0640 0.0000

theta__12_LCP031012 1.6089 0.0173 1.4718 0.1347 0.0000

theta__10_LCP031078 0.7608 0.0236 0.8289 0.0625 0.0000

theta__4_LCP031089 0.5825 0.0175 0.6799 0.0948 0.0000

theta__7_LCP0310101 0.3805 0.0419 0.5458 0.1576 0.0000

theta__7_LCP0310109 0.3805 0.0419 0.5458 0.1576 0.0000

theta__9_LCP031078 0.7552 0.0230 0.8255 0.0652 0.0000

theta__5_LCP031023 1.4175 0.0187 1.3206 0.0941 0.0000

theta__7_LCP031012 1.6099 0.0148 1.4841 0.1241 0.0000

theta__8_LCP03101 1.8283 0.0153 1.6803 0.1466 0.0000

theta__13_LCP0310111 0.2286 0.0070 0.3182 0.0891 0.0000

theta__16_LCP031078 0.7614 0.0220 0.8304 0.0645 0.0000

theta__12_LCP03101 1.8212 0.0202 1.6635 0.1562 0.0000

theta__9_LCP031089 0.5798 0.0150 0.6776 0.0964 0.0000

theta__5_LCP03101 1.8239 0.0170 1.6726 0.1505 0.0000

theta__10_LCP031012 1.6210 0.0158 1.4895 0.1307 0.0000

theta__10_LCP031089 0.5829 0.0146 0.6778 0.0939 0.0000

theta__14_LCP03101 1.8239 0.0163 1.6730 0.1504 0.0000

theta__9_LCP031023 1.4160 0.0183 1.3200 0.0944 0.0000

theta__17_LCP031078 0.7569 0.0193 0.8229 0.0631 0.0000

theta__3_LCP0310101 0.3701 0.0415 0.5508 0.1764 0.0000

theta__3_LCP0310109 0.3701 0.0415 0.5508 0.1764 0.0000

theta__17_LCP0310101 0.3690 0.0394 0.5318 0.1586 0.0000

theta__17_LCP0310109 0.3690 0.0394 0.5318 0.1586 0.0000

theta__16_LCP031023 1.4086 0.0177 1.3126 0.0951 0.0000

theta__9_LCP031090 0.2037 0.0759 0.4171 0.1989 0.0000

theta__9_LCP031098 0.2037 0.0759 0.4171 0.1989 0.0000

theta__3_LCP0310100 0.4300 0.0076 0.5225 0.0931 0.0000

theta__13_LCP03103 0.1820 0.0422 0.3218 0.1338 0.0000

theta__13_LCP03109 0.1820 0.0422 0.3218 0.1338 0.0000

theta__13_LCP031023 1.4056 0.0165 1.3103 0.0949 0.0000

theta__11_LCP031012 1.6080 0.0155 1.4814 0.1273 0.0000

theta__17_LCP031089 0.5894 0.0176 0.6819 0.0920 0.0000
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TABLE A1 (Continued)

Control Schizophrenia

Mean SD Mean SD p-value

theta__5_LCP0310100 0.4253 0.0086 0.5197 0.0955 0.0000

theta__16_LCP0310100 0.4284 0.0066 0.5274 0.1005 0.0000

theta__7_LCP03101 1.8223 0.0173 1.6801 0.1440 0.0000

theta__9_LCP03101 1.8287 0.0171 1.6738 0.1571 0.0000

theta__3_LCP031089 0.5894 0.0187 0.6818 0.0922 0.0000

theta__4_LCP031023 1.4126 0.0195 1.3186 0.0936 0.0000

theta__4_LCP0310100 0.4263 0.0080 0.5186 0.0940 0.0000

theta__5_LCP031092 0.1361 0.0591 0.3520 0.2117 0.0000

theta__5_LCP031096 0.1361 0.0591 0.3520 0.2117 0.0000

theta__4_LCP0310101 0.3452 0.0463 0.5269 0.1794 0.0000

theta__4_LCP0310109 0.3452 0.0463 0.5269 0.1794 0.0000

theta__18_LCP031023 1.4076 0.0175 1.3141 0.0941 0.0000

theta__6_LCP031012 1.6023 0.0166 1.4807 0.1235 0.0000

theta__18_LCP0310100 0.4277 0.0072 0.5238 0.0985 0.0000

theta__19_LCP031023 1.4056 0.0173 1.3134 0.0930 0.0000

theta__3_LCP0310111 0.2281 0.0070 0.3080 0.0819 0.0000

theta__8_LCP031023 1.4082 0.0171 1.3211 0.0877 0.0000

theta__19_LCP0310100 0.4289 0.0066 0.5252 0.0990 0.0000

theta__17_LCP0310100 0.4286 0.0079 0.5221 0.0959 0.0000

theta__17_LCP031023 1.4043 0.0167 1.3148 0.0904 0.0000

theta__12_LCP0310100 0.4303 0.0084 0.5273 0.0998 0.0000

theta__11_LCP03101 1.8208 0.0178 1.6767 0.1482 0.0000

theta__8_LCP031089 0.5866 0.0163 0.6758 0.0910 0.0000

theta__10_LCP031023 1.4169 0.0206 1.3240 0.0937 0.0000

theta__2_LCP031012 1.6025 0.0178 1.4808 0.1251 0.0000

theta__6_LCP0310101 0.3938 0.0416 0.5434 0.1489 0.0000

theta__6_LCP0310109 0.3938 0.0416 0.5434 0.1489 0.0000

theta__11_LCP031078 0.7592 0.0195 0.8220 0.0618 0.0000

theta__6_LCP03101 1.8164 0.0181 1.6773 0.1437 0.0000

WEIKOH ET AL. 19 of 19

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.12957 by U

niversity O
f Southern Q

ueensland, W
iley O

nline L
ibrary on [15/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Application of local configuration pattern for automated detection of schizophrenia with electroencephalogram signals
	1  INTRODUCTION
	2  CONTEXT
	3  PROBLEM FORMULATION
	4  METHODOLOGY
	4.1  Database preparation and pre-processing
	4.2  Conversion to spectrogram images
	4.3  Extraction of local configuration pattern features
	4.4  Feature selection and validation
	4.5  Implementation of classifiers
	4.5.1  Decision tree
	4.5.2  Support-vector-machine
	4.5.3  KNN

	4.6  Performance values and validation

	5  RESULTS AND DISCUSSION
	5.1  Advantages
	5.2  Disadvantages

	6  CONCLUSION AND FUTURE WORK
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


