

In-season yield prediction using VARIwise

Dr Alison McCarthy¹, Kieran O'Keeffe² and Andrew McKay²

¹ Centre for Agricultural Engineering, University of Southern Queensland

² CottonInfo, Cotton Research and Development Corporation

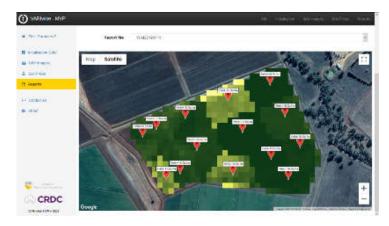
- Background of in-season yield prediction
- USQ-developed yield prediction software VARIwise
- Performance of VARIwise yield prediction with different data inputs
- Use of VARIwise at trial sites by CottonInfo extension officers in 2017/18 and 2018/19 seasons
- Further work

Existing yield prediction approaches

- Yield prediction improves contract planning and agronomic management (e.g. which field to irrigate)
- Existing approaches lack transferability and accuracy:
 - Machine learning models trained from satellite imagery and measured yield require intensive data collection for transferability
 - Biophysical models calibrated using satellite imagery have lower accuracy because of unreliable calibration data (e.g. Graincast has yield prediction errors of 33%)

USQ yield prediction 'VARIwise'

- Calibrates biophysical model using available weather, soil and management data and crop features extracted from UAV imagery
- Used in irrigation automation research
- Components of technology:
 - Crop monitoring sensors: UAV \$2000
 - Access to online weather and soil databases: free
 - Webpage for imagery upload and processing



Centre for Agricultural Engineering

1. Image collection

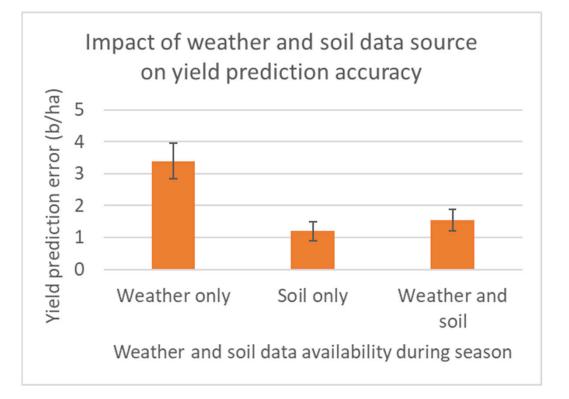
2. Image and model analysis

Evaluations of VARIwise yield prediction

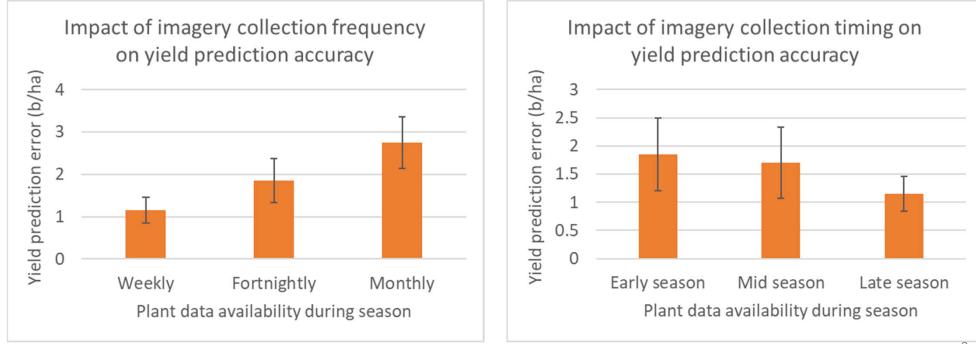
- 1. Identify impact on yield prediction accuracy from:
 - Source of weather and soil data (online vs in-field)
 - Frequency of UAV data collection
 - > Evaluation of data requirements for yield prediction
- 2. Evaluate robustness of system at CottonInfo trial sites
 - Evaluation of VARIwise useability and robustness at broader scale

Methodology for VARIwise yield prediction evaluation in 2017/18 and 2018/19

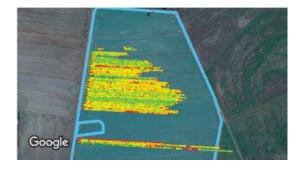
- 1. Evaluation of data requirements for yield prediction:
 - Darling Downs centre pivot irrigated field
 - Onsite automatic weather station, electrical conductivity map, soil sampling, soil moisture sensors, weekly UAV and crop assessments
 - VARIwise yield prediction accuracy comparing weather and soil property data sources and frequency and timing of UAV data collection



Impact of weather and soil property data source on yield prediction accuracy

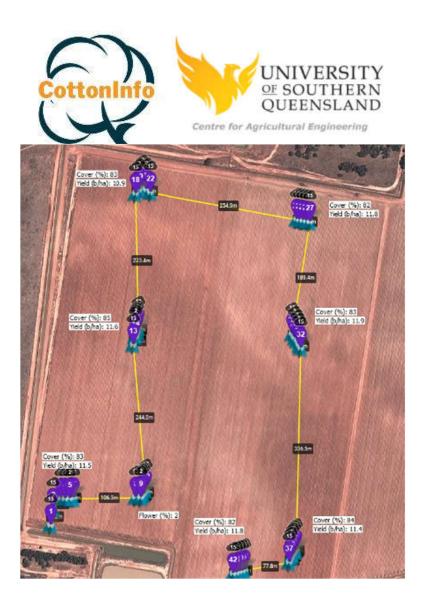

- Yield prediction accuracy analysed with UAV imagery and different combinations of weather and data sources
- Infield soil data more important than on-farm weather data
- No significance difference between soil data and weather/soil data

Impact of UAV data collection frequency on yield prediction accuracy

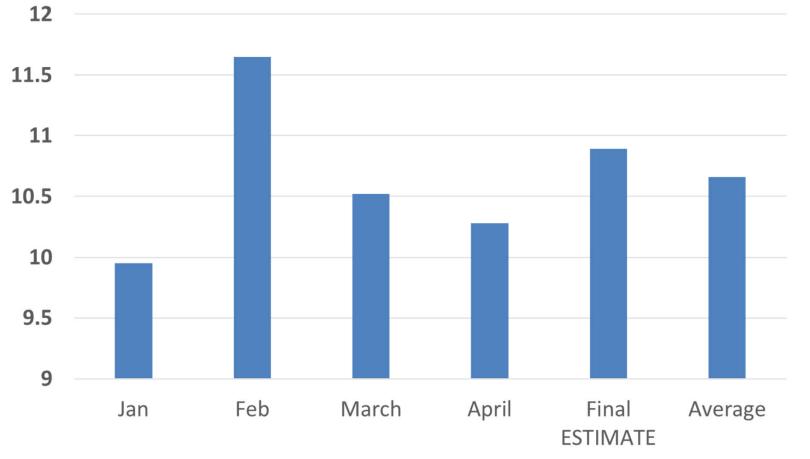

- Yield prediction accuracy improves as:
 - > UAV capture frequency increases
 - Season progressed

Methodology for VARIwise evaluation in 2017/18 and 2018/19

- 2. Evaluation of commercial scale VARIwise useability at CottonInfo trial sites:
 - UAV trials conducted at 16 sites in Griffith (7 with final yield) and 1 site in Goondiwindi
 - Weather and soil property information sourced online
 - Field variability map identified UAV crop assessment locations
 - Fortnightly UAV mappin
 - Yield prediction reporting from webpage



Site 1: IREC 2018

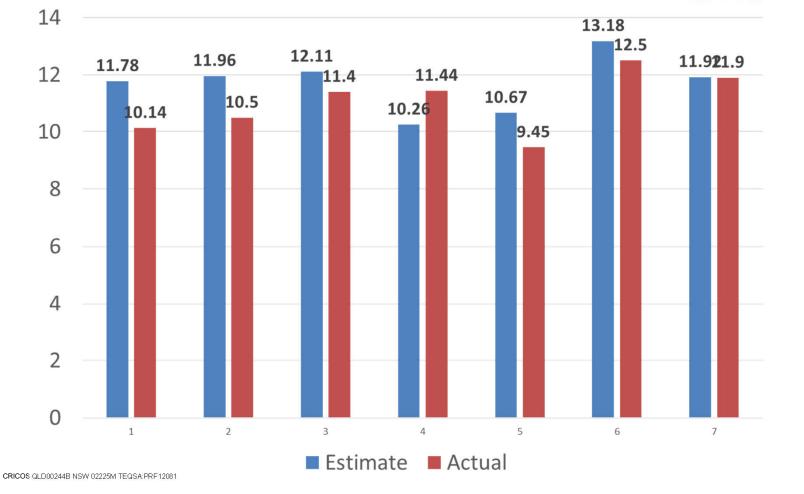

- IREC field station Whitton (30 ha) with six small roll over bays.
- IREC estimates done at the end of each month from cutout till picking.
- Average of the estimates 10.6 b/ha same as actual yield.

Site 1: IREC 2018

IREC Variwise yield (b/ha) estimates 2018 💟

Griffith site 2: Coleambally 2019

Griffith site 2: Variation in different sectors



Griffith sites: overview of results

Variwise results, 7 crops MIA, 2019 b/ha

Griffith VARIwise summary 2019

- VARIwise flights on 16 fields from cut out to defoliation
- In the 2017/18 Griffith trial, the yield prediction errors were 10.2% in January, 6.0% in February, 2.5% in March, and 0.5% at picking
- In the 2018/19 Griffith trial the errors were 18.8% in January, 4.9% in February, 9.5% in March, and 10.1% at picking
- Most estimates in 2019 over estimated yields by 5 to 16 %. Average was 8 % over
- Two fields were under estimated by 3 % and 12 %
- One field estimate was 100% accurate

Goondiwindi site

- In the 2018/19 Goondiwindi trial, the yield prediction percentage errors were 8.7% in February, 5.9% in March, 7.1% in April and 2.6% in May.
- Challenging site for UAV yield estimates due to small plot size.
- Trial was located within a commercial cotton field
- Site was a replicated retention trial with three fruit thinning treatments implemented at three differing densities plus a control treatment.

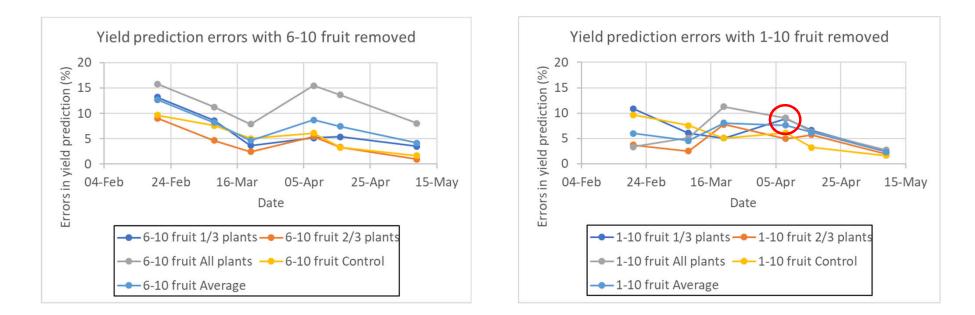
Goondiwindi site: thinning treatments

The three thinning treatments removed fruit on:

- The lower plant
- The upper plant
- Upper and lower
- •The thinning treatments were implemented across 3 densities:
 - 1/3 of plants
 - 2/3 of plants
 - All plants

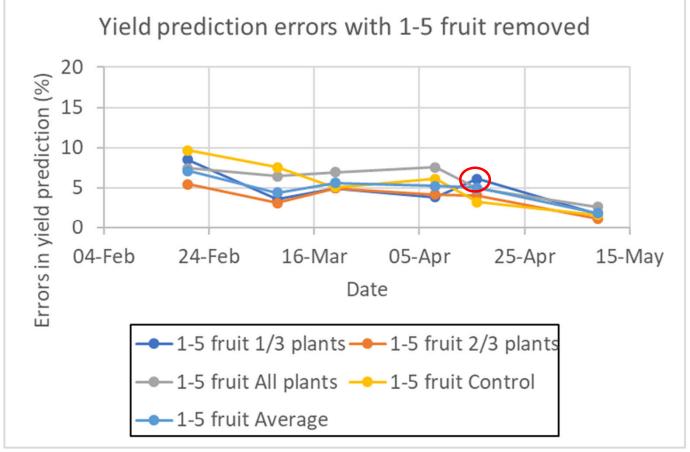
Goondiwindi site: trial site

Goondiwindi site: overview of results



Variwise Yield Estimate per Treatment 14.00 13.00 13.17 13.05 12.00 12.07 N 12.07 12.33 11.76 11.95 .2.31 11.81 11.98 11.95 .47 11.90 11.93 11.97 11.73 11.75 11.84 11.56 Yield bales/ha 11.49 11.00 10.00 9.00 8.00 7.00 6.00 Control 1-10 FB All plants 1-10 FB 1/3 plants 1-10 FB 2/3 plants 1-5 FB All plants 1-5 FB 1/3 plants 1-5 FB 2/3 plants 6-10 FB All plants 6-10 FB 1/3 plants 6-10 FB 2/3 plants Treatment Average predicted yield Actual Yield

Centre for Agricultural Engineering


Goondiwindi VARIwise trial

Goondiwindi site: VARIwise trial

Goondiwindi site: VARIwise trial

	Yiel	Predicti	Predicti	Predicti	Predicti	Predicti	Predicti	Average accurac
	d	on	on	on	on	on	on	y y
	Aver	accurac	accurac	accurac	accurac	accurac	accurac	treatme
bales/ha		у%	<u>у%</u>	у%	y%	y%	у%	nt
11.961		y / 0	y / 0	y / 0	y / 0		y 70	1.6
10.685								
11.637				:	:			
11.680	11.49	:	:		:			
12.440		:	:	:	:	:	:	
11.873		:					:	
11.703		:					:	:
13.795	2.47	:	:	:	:	:	:	:
12.501		:	:	:	:	:	:	
11.856		:			:	:	:	:
11.156		:			1	1	:	:
12.191	11.93	:	:	:	:	:	:	
11.005			:	:			:	:
13.586		:	1	:	:		:	:
10.755		:	:	:	:		:	:
11 955		:	:	:	:	:	:	:
13.121		:				:	:	:
12 110		:			:	:	:	:
12.410		:			1	:	:	:
11.659		1	:	:	:	:	:	
12.953		:	:				:	:
11.416		1		:			:	:
12.350		:		:			:	:
11.161	11.97	:	:	:	:	:	:	:
12.856		:					:	:
12 588		:	:	:		:		
14.329	12 17	:	:			:	:	:
13.590								
12.942								
12.942	50 OF							
12.948								
12.143								
12.143								
12.763								-
12.472								
11.378								
12.850								
12.830								
12.000	1.04							

Centre for Agricultural Engineering

Goondiwindi site: VARIwise trial

- Largest errors were associated with high yield from removal of 6-10 fruit – in all cases predicted yields were below actual.
- These were mostly driven by a single replicate where actual yield was high. Averaging replicate results reduced error level.
- Prediction accuracy improved as season progressed

Conclusions

- Calibration data requirements identified from Darling Downs trial:
 - Infield soil data more important than on-farm weather data
 - Yield prediction improved with more frequent data and as season progressed
- Overall percentage yield prediction errors were: 10.2-18.8% in January; 4.9-8.9% in February; 2.5-9.5% in March; 0.5-10.1% at picking
- Yield prediction accuracy using VARIwise was more variable with thinning

Further work

• Provide irrigation recommendations based on yield potential of fields

• Refinement for hail, insect and heat stress damaged crop

Commercialisation of VARIwise with CRDC

Acknowledgements

- This project is supported by funding from the Australian Government Department of Agriculture as part of its Rural R&D for Profit program, The University of Southern Queensland and CRDC
- Darling Downs cotton grower Neil Nass
- Paul Grundy for Goondiwindi trial site

In-season yield prediction using VARIwise

Dr Alison McCarthy¹, Kieran O'Keeffe² and Andrew McKay²

¹ Centre for Agricultural Engineering, University of Southern Queensland

² CottonInfo, Cotton Research and Development Corporation